2.5等比数列的前n项和(二)
2.5等比数列的前n项和(二)
沈丘三高高二数学学案
编制 王立
2.5等比数列的前n 项和(二)
【学习目标】
进一步熟练掌握等比数列的通项公式和前n 项和公式.
【典型例题】
例1 .已知等差数列{n a }的第二项为8,前十项的和为185,从数列{n a }中,依次取出第2
项、第4项、第8项、……、第n 2项,按原来的顺序排成一个新数列{n b }.求数列{n b }的通项公式和前项和公式n S .
例2 .已知{}n a 是等比数列,n S 是其前n 项和.求证:7S ,14S -7S ,21S -14S 成等比数列.
思考:数列k k k k k S S S S S 232,,-- (+∈N k )是否成等比数列?
例3.在等比数列}{n a 中,a 1+a 2+a 3+a 4+a 5=3,a 6+a 7+a 8+a 9+a 10=9, 试求 a 11+a 12+a 13+a 14+a 15的值.
【课堂检测】
1.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9 a 2+a 4+a 10
= .
2.在正实数组成的等比数列}{n a 中,若a 4a 5a 6=3,则log 3a 1+log 3a 2+log 3a 8+log 3a 9= .
3.等比数列{a n }中,若S 6=91,S 2=7,求S 4。
4.已知一个项数是偶数的等比数列的首项为1,其奇数项的和为85,偶数项的和为170,求这个数列的公比和项数.
【总结提升】
通过练习进一步熟练掌握等比数列的通项公式和前n 项和公式.。
等比数列的前n项和(二)
课前自主学习
课堂讲练互动
课后智能提升
4.若等比数列的前n项和Sn=5n+m,则m= ( ) A.-1 B.1 C.-5 D.5 解析:a1=5+m,当n≥2时,an=5n-5n-1= 4· 5n-1所以5+m=4,m=-1. 答案:A
课前自主学习
释
等比数列前n项和性质
课前自主学习
课堂讲练互动
课后智能提升
课堂总结
灵活应用等比数列前n项和的性质解题,往往能 达到事半功倍的效果.
课前自主学习
课堂讲练互动
课后智能提升
误区解密
考虑不全面,导致错误
【例3】 设等比数列{an}的前n项和为Sn,a1≠0,若 S3+S6=2S9,求数列{an}的公比q.
错解:因为 S3+S6=2S9,所以 a11-q3 a11-q6 a11-q9 + = 2× , 1-q 1-q 1- q 由于 a1≠0,整理,得 q3(2q6-q3-1)=0. 因为 q≠0,所以(2q3+1)(q3-1)=0, 4 所以 q=1 或 q=- . 2 3
课前自主学习
课堂讲练互动
课后智能提升
520 520 由题意知4 a-4x4 +4x≥4a,
令
520 y=4 ,则
1g y=20(1g 5-1g 4)=20(1-31g 2 )≈2, ∴y=100,∴100a-400x+4x≥4a, 8 ∴x≤ a. 33 8 故每年砍伐量不能超过 a. 33
课前自主学习
课堂讲练互动
课后智能提升
1. 110a- 1.19x- 1.18x-…- 1.1x- x
10 1.1 -1 10 = 1.1 a- x= 2.6a- 16x. 1.1- 1
3 由题意, 得 2.6a- 16x= 2a.解得 x= a(m2). 80 a 3 - a× 10 2 80 1 (2)所求百分比为 = ≈ 6.3%. 2a 16
2.5等比数列的前n项和 (课件)
小结作业
1. “错位相减法”不仅可以推导等比数 列求和公式,而且可以用来求一类特殊 数列的和.
2. Sn
a1(1 qn ) 1q
a是11 等aqnq比(q数 1)
列前n项和的两个基本公式,应用时一般
用前一个公式.
3.利用方程思想和等比数列前n项和公式, 可以求等比数列的首项、公比和项数 .
3.对于等差、等比数列的求和问题,可 直接套公式求解,对于某些非等差、等 比数列的求和问题,我们希望有一些求 和的方法,这又是一个需要探究的课题.
知识探究(一):特殊数列的求和方法
思考1:如何求数列
1
1 2
,
4
1 2n
的各项之和?其和为多少?
3n2 n 2 1
2
2n
思考2:上述求和方法叫做分组求和法, 一般地,什么类型的数列可用分组求和 法求和?
由几个等差、等比数列合成的数列.
思考3:如何求数列
1 2
,
1 6
,
1 12
,
的各项之和?其和为多少?
n
n1
,n2 1 n
思考4:上述求和方法叫做裂项求和法, 一般地,什么类型的数列可用裂项求和 法求和?
每一项都能拆分为两项的差,累加后能 抵消若干项.
思考5:如何求数列2,4a,6a2,…,
2nan-1(a≠0) 的各项之和?其和为多
少? 当a=1时,Sn n(n 1)
当a≠1时, Sn
2(11
an a2
nan ) 1a
思考6:上述求和方法叫做错位相减法, 一般地,什么类型的数列可用错位相减 法求和?
由一个等差数列与一个等比数列对应项 的乘积组成的数列.
第二章 2.5 第1课时 等比数列前n项和公式
§2.5等比数列的前n项和第1课时等比数列前n项和公式学习目标1.掌握等比数列的前n项和公式及公式证明思路.2.会用等比数列的前n项和公式解决有关等比数列的一些简单问题.知识点一等比数列的前n项和公式知识点二 错位相减法1.推导等比数列前n 项和的方法叫错位相减法.2.该方法一般适用于求一个等差数列与一个等比数列对应项积的前n 项和,即若{b n }是公差d ≠0的等差数列,{c n }是公比q ≠1的等比数列,求数列{b n ·c n }的前n 项和S n 时,也可以用这种方法.思考 如果S n =a 1+a 2q +a 3q 2+…+a n q n -1,其中{a n }是公差为d 的等差数列,q ≠1.两边同乘以q ,再两式相减会怎样?知识点三 使用等比数列求和公式时注意事项(1)一定不要忽略q =1的情况;(2)知道首项a 1、公比q 和项数n ,可以用S n =a 1(1-q n )1-q ;知道首尾两项a 1,a n 和q ,可以用S n =a 1-a n q 1-q; (3)在通项公式和前n 项和公式中共出现了五个量:a 1,n ,q ,a n ,S n .知道其中任意三个,可求其余两个.1.在等比数列{a n }中,a 1=b ,公比为q ,则前3项和为b (1-q 3)1-q.( ) 2.求数列{n ·2n }的前n 项和可用错位相减法.( )3.a 1(1-q n )1-q =a 1(q n -1)q -1.( ) 4.等比数列前n 项和S n 不可能为0.( )题型一 等比数列前n 项和公式的直接应用例1 求下列等比数列前8项的和:(1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.反思感悟 求等比数列前n 项和,要确定首项、公比或首项、末项、公比,应特别注意q =1是否成立. 跟踪训练1 (1)求数列{(-1)n +2}的前100项的和;(2)在14与78之间插入n 个数,组成所有项的和为778的等比数列,求此数列的项数.题型二 前n 项和公式的综合利用例2在等比数列{a n}中,a1=2,S3=6,求a3和q.反思与感悟 (1)a n =a 1qn -1,S n =a 1(1-q n )1-q ⎝⎛⎭⎪⎫或S n =a 1-a n q 1-q 两公式共有5个量.解题时,有几个未知量,就应列几个方程求解. (2)当q =1时,等比数列是常数列,所以S n =na 1;当q ≠1时,等比数列的前n 项和S n 有两个公式.当已知a 1,q 与n 时,用S n =a 1(1-q n )1-q 比较方便;当已知a 1,q 与a n 时,用S n =a 1-a n q 1-q比较方便. 跟踪训练2 已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6= .题型三 利用错位相减法求数列的前n 项和例3 求数列⎩⎨⎧⎭⎬⎫n 2n 的前n 项和.反思感悟 一般地,如果数列{a n }是等差数列,{b n }是公比不为1的等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪训练3 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0).分期付款模型典例小华准备购买一部售价为5 000元的手机,采用分期付款方式,并在一年内将款全部付清.商家提出的付款方式为:购买2个月后第1次付款,再过2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.(参考数据:1.00812≈1.10)[素养评析]本题考查数学建模素养,现在购房、购车越来越多采用分期付款方式,但有关方不一定都会计算,所以建立一个老少皆宜的模型来套用是必要的,在建立模型过程中,要把制约因素抽象为符号表示,并通过前若干项探索规律,抓住这些量之间的关系建立关系式.1.等比数列1,x,x2,x3,…的前n项和S n等于()A.1-x n1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧ 1-x n 1-x ,x ≠1且x ≠0n ,x =1D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1且x ≠0n ,x =1 2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( ) A .2 B .4 C.152 D.1723.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( )A .179B .211C .243D .2754.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为 .5.已知数列{a n }的前n 项和为S n ,且a n =n ·2n ,则S n = .1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即当q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和.一、选择题1.等比数列{a n }中,a 1=2,a 2=1,则S 100等于( )A .4-2100B .4+2100C .4-2-98D .4-2-1002.在等比数列{a n }中,已知a 1=3,a n =48,S n =93,则n 的值为( )A .4B .5C .6D .73.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-114.已知数列{a n }是等差数列,若a 2+2,a 4+4,a 6+6构成等比数列,则数列{a n }的公差d 等于() A .1 B .-1C .2D .-25.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则a 1等于( )A .-2B .-1 C.12 D.236.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( ) A .-6(1-3-10) B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)7.一弹球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( )A .300米B .299米C .199米D .166米二、填空题8.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4= .9.数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n = .10.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n = . 11.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,则数列的公比q = .三、解答题12.(2018·绵阳检测)在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.13.设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =n a n,求数列{b n }的前n 项和S n .14.在等比数列{a n }中,对任意n ∈N *,a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n 等于() A .(2n -1)2 B.(2n -1)23 C .4n -1 D.4n -1315.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.。
等比数列的前n项和(第二课时)
2. 等比数列前n项和性质
(1)在等比数列{an}中,连续相同项数和也成等比数列,即: Sk,S2k-Sk,S3k-S2k,…仍成等比数列. (2)当 n 为偶数时, 偶数项之和与奇数项之和的比等于
S偶 等比数列的公比,即 =q. S奇 (3)若一个非常数列{an}的前n项和Sn=-Aqn+A(A≠0,q≠0, n∈N*),则数列{an}为等比数列,即Sn=-Aqn+A⇔数列 {an}为等比数列.
2.5 等比数列的前n项和
等比数列前n项和公式的理解 1. (1)在等比数列的通项公式及前n项和公式中共有a1,an,n,q, Sn五个量,知道其中任意三个量,都可求出其余两个量.
a11-qn (2)当公比 q≠1 时, 等比数列的前 n 项和公式是 Sn= , 1-q a1 n a1 a1 它可以变形为 Sn=- · q+ ,设 A= ,上式可写 1-q 1-q 1-q n 成Sn=-Aq +A.由此可见,非常数列的等比数列的前n项和 Sn是由关于n的一个指数式与一个常数的和构成的,而指数式 的系数与常数项互为相反数. 当公比q=1时,因为a1≠0,所以Sn=na1是n的正比例函数(常 数项为0的一次函数).
96 = =32,∴n=6. 3
(2)设公比为 q,由通项公式及已知条件得 a1+a1q2=10, a11+q2=10, 3 即 3 5 5 5 2 a1q +a1q = , a1q 1+q = . 4 4 ∵a1≠0,1+q2≠0, 1 1 ∴②÷ ①得,q = ,即 q= ,∴a1=8. 8 2
a[1+0.016-1] = =a[1.016-1]×102(元). 1.01-1 1.016×102 由 S1=S2,得 a= . 6 1.01 -1 以下解法同法一,得 a≈1 739. 故每月应支付 1 739 元.
等比数列的前n项和(二)
课前训练
1 1 1 的前n项和 求等比数列 1, , , ,…的前 项和 n. 的前 项和S 2 4 8
例题1: 例题1: 变式1: 变式1:
n 17 3 5 9 2 +1 的前n项和 项和S 求数列 2 , , 8 , 16,… 2 n 的前 项和 n. 4
若数列{a 的通项a 项和S 若数列 n} 的通项 n =2n+n,求其前 项和 n. ,求其前n项和
变式2 学案与测评》 变式2:《学案与测评》P32 第7题 题
求数列1,1+2,1+2+22,…,1+2+22+…+2n-1 ,…的前 求数列 的前 n项和 n. 项和S 项和
Байду номын сангаас
例题2: 例题2:
若数列{a 的通项a 求其前n项和 项和S 若数列{an} 的通项an =n2n,求其前n项和Sn.
变式1: 变式1
课外练习: 课外练习:
《学案与测评》P32 学案与测评》 “举一反三”第2题, ”能力提高”第8题, 举一反三” 能力提高” 举一反三 题 能力提高 题 ”拓展延伸”第9题 拓展延伸” 拓展延伸 题
课外作业
课本P61 课本P61 第4题
等比数列的前n项和
na1 等比数列{a 中 当公比 当公比q=1时,Sn=_________; 等比数列 n}中,当公比 时 n a1 an q a1(1-q ) ( 当公比q≠1时,Sn=________________=________________; 当公比 时 1-q 1 q
等比数列的前n项和 的公式推导过程中, 等比数列的前 项和Sn的公式推导过程中,用 项和 了什么方法?___________ 了什么方法 错位相减法
2.5等比数列的前n项和2
复习引入问题 1:等比来自列定义及通项公式;复习引入
问题 1:等比数列定义及通项公式;
一般地,若一个数列从第二项起,每 一项与它的前一项的比等于同一个常数, 这个数列就叫做等比数列.
复习引入
问题 1:等比数列定义及通项公式;
一般地,若一个数列从第二项起,每 一项与它的前一项的比等于同一个常数, 这个数列就叫做等比数列.
新课讲授
某厂去年的产值记为 1,计划在今后的五 年内每年的产值比上一年增长 10%, 则从今年 起到第五年,这个厂的总产值为多少?
新课讲授
某厂去年的产值记为 1,计划在今后的五 年内每年的产值比上一年增长 10%, 则从今年 起到第五年,这个厂的总产值为多少?
问题 3:从今年起的五年内这个厂的逐年产值 有什么特征?利用什么公式求总产值?
通项公式一:
an a1 q
通项公式二:
n 1
(a1 , q 0)
an am q
n m
(a1 , q 0)
复习引入
问题 2:等比数列的求和公式;
复习引入
问题 2:等比数列的求和公式;
na1 (q 1) S n a1 (1 q n ) (q 1) 1q
例题讲解
2.在等比数列{an}中,已知 S10=5, S20=15,求 S30.
例题讲解
2.在等比数列{an}中,已知 S10=5, S20=15,求 S30.
3.Sn 为等比数列的前 n 项和, Sn≠0,则 * Sk , S 2 k Sk , S 3 k S2 k ( k N ),是等比数列.
例题讲解
1. 某商场今年销售计算机 5000 台.如果平均 每年的销售量比上一年的销售量增加 10%, 那么从今年起,大约几年可使销售量达到 30000 台(结果保留到个位)?
等比数列的前n项和(二)
等比数列的前n项和(二)课时目标1.熟练应用等比数列前n项和公式的有关性质解题.2.能用等比数列的前n项和公式解决实际问题.1.等比数列{a n}的前n项和为S n,当公比q≠1时,S n=a1(1-q n) 1-q=a1-a n q1-q;当q=1时,S n=na1.2.等比数列前n项和的性质:(1)连续m项的和(如S m、S2m-S m、S3m-S2m),仍构成等比数列.(注意:q≠-1或m为奇数)(2)S m+n=S m+q m S n(q为数列{a n}的公比).(3)若{a n}是项数为偶数、公比为q的等比数列,则S偶S奇=q.3.解决等比数列的前n项和的实际应用问题,关键是在实际问题中建立等比数列模型.一、选择题1.在各项都为正数的等比数列{a n}中,首项a1=3,前3项和为21,则a3+a4+a5等于()A.33 B.72 C.84 D.189答案C解析由S3=a1(1+q+q2)=21且a1=3,得q+q2-6=0.∵q>0,∴q=2.∴a3+a4+a5=q2(a1+a2+a3)=22·S3=84.2.某厂去年产值为a,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为()A.1.14a B.1.15a C.10a(1.15-1) D.11a(1.15-1)答案D解析注意去年产值为a,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a.∴1.1a+1.12a+1.13a+1.14a+1.15a=11a(1.15-1).3.已知{a n}是首项为1的等比数列,S n是{a n}的前n项和,且9S 3=S 6,则数列{1a n}的前5项和为( ) A.158或 5 B.3116或 5 C.3116 D.158答案 C解析 若q =1,则由9S 3=S 6得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q, 解得q =2.故a n =a 1q n -1=2n -1,1a n =(12)n -1.所以数列{1a n}是以1为首项,12为公比的等比数列,其前5项和为S 5=1×[1-(12)5]1-12=3116.4.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( )A .300米B .299米C .199米D .166米答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝ ⎛⎭⎪⎫128=2993964≈300(米). 5.在等比数列中,S 30=13S 10,S 10+S 30=140,则S 20等于( )A .90B .70C .40D .30答案 C解析 q ≠1 (否则S 30=3S 10),由⎩⎪⎨⎪⎧ S 30=13S 10S 10+S 30=140,∴⎩⎪⎨⎪⎧S 10=10S 30=130,∴⎩⎪⎨⎪⎧ a 1(1-q 10)1-q =10a 1(1-q 30)1-q =130,∴q 20+q 10-12=0.∴q 10=3,∴S 20=a 1(1-q 20)1-q=S 10(1+q 10) =10×(1+3)=40.6.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( )A.a (1+γ)(1+γ)5-1万元B.aγ(1+γ)5(1+γ)5-1万元 C.aγ(1+γ)5(1+γ)4-1万元 D.aγ(1+γ)5万元 答案 B解析 设每年偿还x 万元,则:x +x (1+γ)+x (1+γ)2+x (1+γ)3+x (1+γ)4=a (1+γ)5,∴x =aγ(1+γ)5(1+γ)5-1. 二、填空题7.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________.答案 13解析 由已知4S 2=S 1+3S 3,即4(a 1+a 2)=a 1+3(a 1+a 2+a 3). ∴a 2=3a 3,∴{a n }的公比q =a 3a 2=13. 8.在等比数列{a n }中,已知S 4=48,S 8=60,则S 12= ________________________________________________________________________.答案 63解析 方法一 ∵S 8≠2S 4,∴q ≠1,由已知得⎩⎪⎨⎪⎧ a 1(1-q 4)1-q =48 ①a 1(1-q 8)1-q =60 ②由②÷①得1+q 4=54,∴q 4=14 ③将③代入①得a 11-q=64, ∴S 12=a 1(1-q 12)1-q=64(1-143)=63. 方法二 因为{a n }为等比数列,所以S n ,S 2n -S n ,S 3n -S 2n 也成等比数列,所以(S 2n -S n )2=S n (S 3n -S 2n ),所以S 3n =(S 2n -S n )2S n+S 2n , 所以S 12=(S 8-S 4)2S 4+S 8=(60-48)248+60=63. 9.一个蜂巢里有一只蜜蜂,第1天,它飞出去找回了2个伙伴;第2天,3只蜜蜂飞出去,各自找回了2个伙伴……如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有________只蜜蜂.答案 729解析 每天蜜蜂归巢后的数目组成一个等比数列,a 1=3,q =3,∴第6天所有蜜蜂归巢后,蜜蜂总数为a 6=36=729(只).10.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为________.答案 (1+q )12-1解析 设第一年第1个月的生产总值为1,公比为(1+q ),该厂第一年的生产总值为S 1=1+(1+q )+(1+q )2+…+(1+q )11.则第2年第1个月的生产总值为(1+q )12,第2年全年生产总值S 2=(1+q )12+(1+q )13+…+(1+q )23=(1+q )12S 1,∴该厂生产总值的平均增长率为S 2-S 1S 1=S 2S 1-1=(1+q )12-1.三、解答题11.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从优质试题年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以优质试题年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问优质试题年最多出口多少吨?(保留一位小数)参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910). ∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910,∴a ≤12.3. 故优质试题年最多出口12.3吨.12.某市2008年共有1万辆燃油型公交车,有关部门计划于2009年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:(1)该市在优质试题年应该投入多少辆电力型公交车?(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的13?(lg 657=2.82,lg 2=0.30,lg 3=0.48)解 (1)该市逐年投入的电力型公交车的数量组成等比数列{a n },其中a 1=128,q =1.5,则在优质试题年应该投入的电力型公交车为a 7=a 1·q 6=128×1.56=1 458(辆).(2)记S n =a 1+a 2+…+a n ,依据题意,得S n 10 000+S n >13, 于是S n =128(1-1.5n )1-1.5>5 000(辆),即1.5n >65732. 两边取常用对数,则n ·lg 1.5>lg 65732,即n >lg 657-5lg 2lg 3-lg 2≈7.3,又n ∈N +,因此n ≥8. 所以到优质试题年底,电力型公交车的数量开始超过该市公交车总量的13.能力提升13.有纯酒精a L(a >1),从中取出1 L ,再用水加满,然后再取出1 L ,再用水加满,如此反复进行,则第九次和第十次共倒出纯酒精________L.答案 ⎝ ⎛⎭⎪⎫1-1a 8⎝ ⎛⎭⎪⎫2-1a 解析 用{a n }表示每次取出的纯酒精,a 1=1,加水后浓度为a -1a =1-1a ,a 2=1-1a ,加水后浓度为⎝⎛⎭⎪⎫1-1a ⎝ ⎛⎭⎪⎫a -1a =⎝ ⎛⎭⎪⎫1-1a 2,a 3=⎝ ⎛⎭⎪⎫1-1a 2, 依次类推:a 9=⎝ ⎛⎭⎪⎫1-1a 8,a 10=⎝ ⎛⎭⎪⎫1-1a 9. ∴⎝ ⎛⎭⎪⎫1-1a 8+⎝ ⎛⎭⎪⎫1-1a 9=⎝ ⎛⎭⎪⎫1-1a 8⎝ ⎛⎭⎪⎫2-1a . 14.现在有某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元,两方案使用期都是10年,到期后一次性归还本息,若银行贷款利息均按本息10%的复利计算,试比较两种方案谁获利更多?(精确到千元,数据1.110≈2.594,1.310≈13.79)解 甲方案10年中每年获利数组成首项为1,公比为1+30%的等比数列,其和为1+(1+30%)+(1+30%)2+…+(1+30%)9=1.310-11.3-1≈42.63(万元),到期时银行贷款的本息为10(1+0.1)10≈10×2.594=25.94(万元),∴甲方案扣除贷款本息后,净获利约为42.63-25.94≈16.7(万元).乙方案10年中逐年获利数组成等差数列,1+1.5+…+(1+9×0.5)=10(1+5.5)2=32.50(万元),而贷款本利和为1.1×[1+(1+10%)+…+(1+10%)9]=1.1×1.110-11.1-1≈17.53(万元).∴乙方案扣除贷款本息后,净获利约为32.50-17.53≈15.0(万元),比较得,甲方案净获利多于乙方案净获利.1.准确理解等比数列的性质,熟悉它们的推导过程是记忆的关键.用好其性质也会降低解题的运算量,从而减少错误.2.利用等比数列解决实际问题,关键是构建等比数列模型.要确定a 1与项数n 的实际含义,同时要搞清是求a n 还是求S n 的问题.。
等比数列前n项和(二)
2.5 等比数列的前n 项和(二)[学习目标]1.熟练应用等比数列前n 项和公式的有关性质解题. 2.应用方程的思想方法解决与等比数列前n 项和有关问题. [知识链接]上一节我们学习了等比数列的前n 项和的公式,那么该公式与相应的函数有怎样的关系?等比数列的前n 项和又有怎样的性质?如何利用这些性质解题? [预习导引]1.等比数列的前n 项和的变式(1)当q ≠1时,S n =a 1-a n q 1-q =a n q -a 1 q -1=a 1(1-q n)1-q =a 1(q n-1)q -1;当q =1时,S n =na 1.(2)当公比q ≠1时, S n =a 1(1-q n)1-q 可以变形为S n =-a 11-q ·q n +a 11-q ,设A =a 11-q ,上式可写成S n =-Aq n +A . 由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数.当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数). 2.等比数列前n 项和的性质(1)连续m 项的和(如S m 、S 2m -S m 、S 3m -S 2m ),仍构成等比数列.(注意:q ≠-1或m 为奇数) (2)S m +n =S m +q m S n ,特别地S 2n =S n +q n S n ,S 3n =S 2n +q 2n S n . 证明(3)若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q .题型一 等比数列前n 项和S n 的函数特征 例1 设f (n )=2+24+27+ (23)+1(n ∈N *),则f (n )等于( )A.27(8n -1)B.27(8n +1-1)C.27(8n +2-1)D.27(8n +3-1)跟踪演练1 若{a n }是等比数列,且前n 项和为S n =3n -1+t ,则t =________.题型二 等比数列前n 项和性质的应用例2在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n .跟踪演练2在等比数列{a n }中,S 30=13S 10,S 10+S 30=140,则S 20等于( )A .90B .70C .40D .30题型三 等差、等比数列前n 项和的综合问题例3 已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N *),在数列{b n }中,b 1=1, 点P (b n ,b n +1)在直线x -y +2=0上.(1)求数列{a n },{b n }的通项公式; (2)记T n =a 1b 1+a 2b 2+…+a n b n ,求T n .跟踪演练3 在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25, 又a 3与a 5的等比中项为2. (1)求数列{a n }的通项公式;(2)设b n =log 2a n ,数列{b n }的前n 项和为S n ,当S 11+S 22+…+S nn 最大时,求n 的值.当堂达标1.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 等于( ) A .1 B .0 C .1或0 D .-12.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n =( ) A .2n-1 B.4n -13 C.1-(-4)n 5 D.1-(-2)n33.已知等比数列{a n }的前n 项和为S n =k·3n -1-16,则k 的值为( )A.13 B .-13 C.12 D .-12 4.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.5.等比数列{a n }共2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. 6.在等比数列{a n }中,已知S n =189,q =2,a n =96,求a 1和n .B 组7.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.1728.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( ) A .3×44 B .3×44+1 C .45 D .45+19.等比数列{a n }中,前n 项和为S n ,S 3=2,S 6=6,则a 10+a 11+a 12=________.10.已知等比数列{a n }的前n 项和为S n ,若S m ,S n ,S l 成等差数列,求证:对任意自然数k , a m +k ,a n +k ,a l +k 也成等差数列.。
2.5等比数列的前n项和
预习测评
1.等比数列1,a,a2,a3,…的前n项和为(
a1-an-1 A.1+ 1-a an+1-1 C. a-1 1-an B. 1-a D.以上皆错
)
解析:要考虑到公比为1的情况,此时Sn=n. 答案:D
2.数列{2n-1}的前99项和为 A.2100-1 B.1-2100 C.299-1 D.1-299
15 = .所以 a1=1. 8
答案:1
要点阐释
1.等比数列前n项和公式的推导 设等比数列a1,a2,a3,…,an,…它的前n项和 是Sn=a1+a2+…+an. 由等比数列的通项公式可将Sn写成 Sn=a1+a1q+a1q2+…+a1qn-1. ① ①式两边同乘以q得, qSn=a1q+a1q2+a1q3+…+a1qn. ② ①-②,得(1-q)Sn=a1-a1qn,由此得q≠1时,
1.若本例(1)中的条件不变,如何求{an}的通项 公式?
解:∵S2=30,S3=155,∴a3=S3-S2=125, 125 即 a1· =125.∴a1= 2 . q q
2
又∵a1+a1q=30, 125 125 ∴ 2 + q =30,即 6q2-25q-25=0. q
a1=5 解得: q=5
∴数列{an}的通项公式为an=(a2-1)a2n-2(n∈N*). 即数列{an}是首项为a2-1,公比为a2的等比数列. 方法点评:将已知条件Sn=a2n-1与an=Sn-Sn-1 结合起来 ,得到n≥2时的通项公式an=(a2-1)a2n-2, 特别注意的是,n=1时即a1=a2-1能否统一到an=(a2- 1)·2n-2中去,如果能统一起来,则数列{an}为等比数列, a 否则数列{an}不是等比数列.
典例剖析
等比数列的前n项和公式(2)课件-高二上学期数学人教A版(2019)选择性必修第二册
4
所以 Sn=
1
1- 2
1
1+
2
8
3
= −
8
3
1
-2 .
8 8
= n3 3
·
8
8
= n+
3
9
1
2
1-
1
1- 2
1
1- 2
1
2
.
练习巩固
典例解析
反思感悟 数列综合问题的关注点
(1)等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差
与等比数列的通项公式、前n项和公式,以及等差中项、等比中项问题是
(2)将+1 − = ��( − )化成
+1 = − + . ②
比较①②的系数,可得
= 1.08,
− = −100.
解这个方程组,得
= 1.08,
= 1250.
新知探究
典例解析
所以(1)中的递推公式可以化为
(3)由(2)可知,数列{ -1250}是以-50为首项,1.08为公比的等比数
列,则
(1 −1250) + (2 −1250) + (3 −1250) + ⋯ + ( −1250)
−50 × 1 − 1.0810
=
≈ −724.8.
1 − 1.08
所以
10 =1 + 2 +3 + ⋯ +10 ≈ 1250 × 10 − 724.8 = 11775.7 ≈ 11776.
练习巩固
典例解析
题型一 等比数列前n项和的性质
例1(1)在等比数列{an}中,若S2=7,S6=91,则S4=
第一部分 第二章 2.5 第一课时 等比数列的前n项和
等比数列前 n 项和的重要性质
(1)等比数列{an}的前 n 项和 Sn,满足 Sn,S2n-Sn,S3n -S2n, 4n-S3n, S …成等比数列(其中 Sn, 2n-Sn, 3n-S2n, S S … 均不为 0),这一性质可直接应用. S偶 (2)等比数列的项数是偶数时, =q; S奇 S奇-a1 等比数列的项数是奇数时, =q. S偶
理解教材新知
2.5 第 二 章 数 列 等 比 数 列 的 前 第一 课时 把握热点考向 考点一
考点二 考点三
等比
n
项 和
数列
的前n 项和 应用创新演练
返回
返回
返回
已知等比数列{an},公比为q,Sn是其前n项的和,则 Sn=a1+a2+…+an=a1+a1q+a1q2+…+a1qn-1. 问题1:若q=1,则Sn与an有何关系? 提示:Sn=na1.
na1q=1, a11-qn Sn= q≠1 1-q
首项a1,末项an与公比q
na1q=1, Sn= a1-anq 1-q q≠1
公式
返回
1.当公比 q=1 时,等比数列{an}是常数列,各项均 相等,所以 Sn=na1. 2.当公比 q≠1 时,等比数列{an}的前 n 项和 Sn 有 a11-qn 两个计算公式,当已知 a1,q 与 n 时利用 计算 1-q a1-anq 较方便;当已知 a1,an 与 q 时,用 较好. 1-q
n
返回
又∵2
n-1
96 = 3 =32,∴n=6.
Байду номын сангаас
a1-anq 法二:由公式 Sn= 及已知条件得 1-q a1-96×2 189= ,解得 a1=3,又由 an=a1·n-1, q 1-2 得 96=3·n-1,解得 n=6. 2
2.5.2 等比数列的前n项和(2)
an 3 2(an1 3) (n 2) 即
an 3 2 (n 2)
an1 3
∴数列{an-3}是公比为2的等比数列.
an 3 (a1 3)2n1 (3 3)2n1 3 2n an 3(2n 1).
Q an 3(2n 1) 3 2n 3 ,
Sn a1 a2 a3 L an
,
求:(I)a2,a3,a4的值及数列{an}的通项公式;
(II)a2 a4 a6 L a2n 的值.
解:
(I)由a1=1,an1
1 3
Sn
,
得
a2
1 3
S1
1 3 a1
1 3
,
a3
1 3
S2
1 3 (a1
a2 )
4 9
,
11
16
a4 3 S3 3 (a1 a2 a3 ) 27 ,
(II)a2 a4 a6 L a2n 的值.
解:(II)由(I)可知 a2 , a4 ,L
, a2n
是首项为
1 3
,
公比为( 4)2 , 项数为n的等比数列,
3
a2
a4
a6
L
a2n
1
1
( 4)2n 3
3 1 (4)2
3 [( 4 )2n 1]. 73
3
例5 设数列{an}的前n项和为Sn,若对任意的n∈N*
即
n 1 2. Sn
故 { Sn } 是以2为公比的等比数列. n
n
例3 数列{an}的前n项和记为Sn,已知
a1
1, an1
n
n
2
Sn(n
1,2,3
).
(1)数列
{ Sn n
等比数列的前n项和(二)
等比数列的前n 项和(二)[学习目标] 1.熟练应用等比数列前n 项和公式的有关性质解题.2.应用方程的思想方法解决与等比数列前n 项和有关的问题.知识点一 等比数列的前n 项和的变式1.等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1-a n q 1-q =a 1q nq -1-a 1q -1; 当q =1时,S n =na 1.2.当公比q ≠1时,等比数列的前n 项和公式是S n =a 1(1-q n )1-q ,它可以变形为S n =-a 11-q ·qn+a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数. 当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数). 思考 在数列{a n }中,a n +1=ca n (c 为非零常数)且前n 项和S n =3n -1+k ,则实数k 等于________.答案 -13解析 由题{a n }是等比数列, ∴3n 的系数与常数项互为相反数, 而3n 的系数为13,∴k =-13.知识点二 等比数列前n 项和的性质1.连续m 项的和(如S m 、S 2m -S m 、S 3m -S 2m )仍构成等比数列.(注意:q ≠-1或m 为奇数) 2.S m +n =S m +q m S n (q 为数列{a n }的公比).3.若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q .思考 在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .140 B .120 C .210 D .520答案 A解析 S 2=20,S 4-S 2=40,∴S 6-S 4=80, ∴S 6=S 4+80=S 2+40+80=140.题型一 等比数列前n 项和的性质例1 (1)等比数列{a n }中,S 2=7,S 6=91,则S 4=______.(2)等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =____. 答案 (1)28 (2)2解析 (1)∵数列{a n }是等比数列, ∴S 2,S 4-S 2,S 6-S 4也是等比数列, 即7,S 4-7,91-S 4也是等比数列, ∴(S 4-7)2=7(91-S 4), 解得S 4=28或S 4=-21.又∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2 =(a 1+a 2)(1+q 2)=S 2·(1+q 2)>0, ∴S 4=28.(2)由题S 奇+S 偶=-240,S 奇-S 偶=80, ∴S 奇=-80,S 偶=-160, ∴q =S 偶S 奇=2.跟踪训练1 (1)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6等于( )A .2 B.73 C.83 D .3答案 B解析 方法一 因为数列{a n }是等比数列,所以S 6=S 3+q 3S 3,S 9=S 6+q 6S 3=S 3+q 3S 3+q 6S 3,于是S 6S 3=(1+q 3)S 3S 3=3,即1+q 3=3,所以q 3=2.于是S 9S 6=1+q 3+q 61+q 3=1+2+41+2=73.方法二 由S 6S 3=3,得S 6=3S 3.因为数列{a n }是等比数列,且由题意知q ≠-1,所以S 3,S 6-S 3,S 9-S 6也成等比数列,所以(S 6-S 3)2=S 3(S 9-S 6),解得S 9=7S 3,所以S 9S 6=73.(2)一个项数为偶数的等比数列,各项之和为偶数项之和的4倍,前3项之积为64,求通项公式.解 设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇、S 偶,由题意知S 奇+S 偶=4S 偶,即S 奇=3S 偶. ∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13.又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,即a 1=12. 故所求通项公式为a n =12·⎝⎛⎭⎫13n -1. 题型二 等比数列前n 项和的实际应用例2 小华准备购买一台售价为5 000元的电脑,采用分期付款方式,并在一年内将款全部付清.商场提出的付款方式为:购买2个月后第1次付款,再过2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.解 方法一 设小华每期付款x 元,第k 个月末付款后的欠款本利为A k 元,则: A 2=5 000×(1+0.008)2-x =5 000×1.0082-x , A 4=A 2(1+0.008)2-x =5 000×1.0084-1.0082x -x , …A 12=5 000×1.00812-(1.00810+1.0088+…+1.0082+1)x =0, 解得x = 5 000×1.008121+1.0082+1.0084+…+1.00810=5 000×1.008121-(1.0082)61-1.0082≈880.8.故小华每期付款金额约为880.8元.方法二 设小华每期付款x 元,到第k 个月时已付款及利息为A k 元,则: A 2=x ;A 4=A 2(1+0.008)2+x =x (1+1.0082); A 6=A 4(1+0.008)2+x =x (1+1.0082+1.0084); …A 12=x (1+1.0082+1.0084+1.0086+1.0088+1.00810). ∵年底付清欠款,∴A 12=5 000×1.00812,即5 000×1.00812=x (1+1.0082+1.0084+…+1.00810), ∴x = 5 000×1.008121+1.0082+1.0084+…+1.00810≈880.8.故小华每期付款金额约为880.8元.跟踪训练2 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增长14.设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n的表达式.解 第1年投入800万元,第2年投入800×⎝⎛⎭⎫1-15万元,…,第n 年投入800×⎝⎛⎭⎫1-15n -1万元,所以总投入a n =800+800×⎝⎛⎭⎫1-15+…+800× ⎝⎛⎭⎫1-15n -1=4 000×⎣⎡⎦⎤1-⎝⎛⎭⎫45n (万元).同理,第1年收入400万元,第2年收入400×⎝⎛⎭⎫1+14万元,…,第n 年收入400×⎝⎛⎭⎫1+14n -1万元.所以总收入b n =400+400×⎝⎛⎭⎫1+14+…+400× ⎝⎛⎭⎫1+14n -1=1 600×⎣⎡⎦⎤⎝⎛⎭⎫54n -1.综上,a n =4 000×⎣⎡⎦⎤1-⎝⎛⎭⎫45n ,b n =1 600×⎣⎡⎦⎤⎝⎛⎭⎫54n -1. 题型三 新情境问题例3 定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数. (1)证明:数列{2a n +1}是“平方数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方数列”的前n 项之积为T n ,则T n =(2a 1+1)(2a 2+1)·…·(2a n +1),求数列{a n }的通项及T n 关于n 的表达式;(3)对于(2)中的T n ,记b n =log 2a n +1T n ,求数列{b n }的前n 项和S n ,并求使S n >4 024的n 的最小值.(1)证明 由条件得a n +1=2a 2n +2a n ,2a n +1+1=4a 2n +4a n +1=(2a n +1)2.∴数列{2a n +1}是“平方数列”.∵lg(2a n +1+1)=lg(2a n +1)2=2lg(2a n +1), 且lg(2a 1+1)=lg 5≠0, ∴lg (2a n +1+1)lg (2a n +1)=2,∴{lg(2a n +1)}是首项为lg 5,公比为2的等比数列. (2)解 ∵lg(2a 1+1)=lg 5,∴lg(2a n +1)=2n -1lg 5.∴2a n +1=125n -,∴a n =12(125n --1).∵lg T n =lg(2a 1+1)+lg(2a 2+1)+…+lg(2a n +1) =lg 5(1-2n )1-2=(2n -1)lg 5, ∴T n =25n-1.(3)解 ∵b n =log 12n a +T n =lg T nlg (2a n +1)=(2n-1)lg 52n -1lg 5=2n -12n -1=2-⎝⎛⎭⎫12n -1, ∴S n =2n -⎣⎡⎦⎤1+12+⎝⎛⎫122+…+⎝⎛⎫12n -1 =2n -1-⎝⎛⎭⎫12n1-12=2n -2+2⎝⎛⎭⎫12n.由S n >4 024,得2n -2+2⎝⎛⎭⎫12n >4 024, 即n +⎝⎛⎭⎫12n >2 013.当n ≤2 012时,n +⎝⎛⎭⎫12n <2 013; 当n ≥2 013时,n +⎝⎛⎭⎫12n >2 013. ∴n 的最小值为2 013.跟踪训练3 把一个边长为1正方形等分成九个相等的小正方形,将中间的一个正方形挖掉(如图(1));再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个正方形挖掉(如图(2));如此继续下去,则:(1)图(3)共挖掉了________个正方形;(2)第n 个图形共挖掉了________个正方形,这些正方形的面积和是________. 答案 (1)73 (2)8n -17 1-⎝⎛⎭⎫89n解析 (1)8×9+1=73.(2)设第n 个图形共挖掉a n 个正方形,则a 1=1,a 2-a 1=8,a 3-a 2=82,…,a n -a n -1=8n -1(n ≥2),所以a n =1+8+82+…+8n -1=8n -17(n ≥2).当n =1时,a 1=1也满足上式,所以a n =8n -17.原正方形的边长为1,则这些被挖掉的正方形的面积和为1×⎝⎛⎭⎫132+8×⎝⎛⎭⎫134+82×⎝⎛⎭⎫136+…+8n -1×⎝⎛⎭⎫132n =19[1-⎝⎛⎭⎫89n ]1-89=1-⎝⎛⎭⎫89n .1.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n 等于( ) A .2n-1 B.4n -13C.1-(-4)n 5D.1-(-2)n 32.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于( ) A .3 B .4 C .5 D .63.等比数列{a n }的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A .28 B .48 C .36 D .524.已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列.求证:2S 3,S 6,S 12-S 6成等比数列.一、选择题1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .162.等比数列{a n }的首项为1,公比为q ,前n 项的和为S ,由原数列各项的倒数组成一个新数列⎩⎨⎧⎭⎬⎫1a n ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项的和是( )A.1S B .Sq n -1 C .Sq 1-n D.q n S3.已知等比数列{a n }的前3项和为1,前6项和为9,则它的公比q 等于( ) A.12B .1C .2D .4 4.已知数列{a n }的前n 项和S n =a n -1(a 是不为零的常数且a ≠1),则数列{a n }( ) A .一定是等差数列 B .一定是等比数列C .或者是等差数列,或者是等比数列D .既非等差数列,也非等比数列5.设数列{x n }满足log 2x n +1=1+log 2x n (n ∈N *),且x 1+x 2+…+x 10=10,记{x n }的前n 项和为S n ,则S 20等于( ) A .1 025 B .1 024 C .10 250D .20 2406.已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 1=8,S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为( ) A .S 1 B .S 2 C .S 3 D .S 47.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a n +1a n -1B.S 5S 3C.S 5a 3D.S n +1S n二、填空题8.在数列{a n }中,已知对任意正整数n ,有a 1+a 2+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n =________.9.等比数列{a n }中,前n 项和为S n ,S 3=2,S 6=6,则a 10+a 11+a 12=________.10.设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q =________.11.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x ,y ,都有f (x )·f (y )=f (x +y ).若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n =________.三、解答题12.数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =2x +1上,其中n ∈N *. (1)若数列{a n }是等比数列,求实数t 的值;(2)设各项均不为0的数列{c n }中,所有满足c i ·c i +1<0的整数i 的个数称为这个数列{c n }的“积异号数”,令c n =na n -4na n (n ∈N *),在(1)的条件下,求数列{c n }的“积异号数”.13.某市为控制大气PM2.5的浓度,环境部门规定:该市每年的大气主要污染物排放总量不能超过55万吨,否则将采取紧急限排措施.已知该市2013年的大气主要污染物排放总量为40万吨,通过技术改造和倡导绿色低碳生活等措施,此后每年的原大气主要污染物排放量比上一年的排放总量减少10%.同时,因为经济发展和人口增加等因素,每年又新增加大气主要污染物排放量m(m>0)万吨.(1)从2014年起,该市每年大气主要污染物排放总量(万吨)依次构成数列{a n},求相邻两年主要污染物排放总量的关系式;(2)证明:数列{a n-10m}是等比数列;(3)若该市始终不需要采取紧急限排措施,求m的取值范围.当堂检测答案1.答案 B解析 由a 1a 2a 3=1得a 32=1, ∴a 2=1, 又∵a 4=4, ∴a 4a 2=4. ∴数列a 2,a 4,a 6,…,a 2n 是首项为1, 公比为4的等比数列.∴a 2+a 4+a 6+…+a 2n =1-4n 1-4=4n -13.2.答案 D解析 设每天植树棵数为{a n },则{a n }是等比数列, ∴a n =2n (n ∈N *,n 为天数). 由题意得2+22+23+…+2n ≥100, ∴2n -1≥50, ∴2n ≥51, ∴n ≥6.∴需要的最少天数n =6. 3.答案 A解析 易知S m =4,S 2m -S m =8, ∴S 3m -S 2m =16, ∴S 3m =12+16=28.4.证明 设等比数列{a n }的公比为q ,由题意得2a 7=a 1+a 4, 即2a 1·q 6=a 1+a 1·q 3, ∴2q 6-q 3-1=0.令q 3=t ,则2t 2-t -1=0, ∴t =-12或t =1,即q 3=-12或q 3=1.当q 3=1时,2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1, ∴S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.当q 3=-12时,2S 3=2×a 1(1-q 3)1-q =2a 1×321-q =3a 11-q,S 6=a 1(1-q 6)1-q =3a 141-q , S 12-S 6=a 7(1-q 6)1-q =a 1·q 6(1-q 6)1-q =a 14×341-q , ∴S 26=2S 3·(S 12-S 6), ∴2S 3,S 6,S 12-S 6成等比数列.综上可知,2S 3,S 6,S 12-S 6成等比数列.课时精练答案一、选择题1.答案 C解析 由题意得4a 2=4a 1+a 3,∴4(a 1q )=4a 1+a 1·q 2,∴q =2,∴S 4=1·(1-24)1-2=15. 2.答案 C解析 易知数列⎩⎨⎧⎭⎬⎫1a n 也是等比数列,首项为1,公比为1q ,则数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为1-(1q )n 1-1q=q (1-q n )(1-q )q n =1-q n 1-q ·1q n -1=S qn -1=S ·q 1-n . 3.答案 C解析 S 3=1,S 6=9,∴S 6-S 3=8=a 4+a 5+a 6=q 3(S 3)=q 3,∴q 3=8,∴q =2.4.答案 B解析 当n ≥2时,a n =S n -S n -1=(a -1)·a n -1; 当n =1时,a 1=S 1=a -1,也满足上式.∴a n =(a -1)·a n -1,n ∈N *. ∴a n +1a n=a ,为常数.∴数列{a n }一定是等比数列.5.答案 C解析 ∵log 2x n +1=1+log 2x n =log 2(2x n ),∴x n +1=2x n ,且x n >0,∴{x n }为等比数列,且公比q =2,∴S 20=S 10+q 10S 10=10+210×10=10 250,故选C.6.答案 C解析 由题S 1正确.若S 4错误,则S 2、S 3正确,于是a 1=8,a 2=S 2-S 1=12,a 3=S 3-S 2=16,与{a n }为等比数列矛盾,故S 4=65.若S 3错误,则S 2正确,此时,a 1=8,a 2=12.∴q =32,∴S 4=a 1(1-q 4)1-q =8⎣⎡⎦⎤1-(32)41-32=65,符合题意. 7.答案 D解析 由8a 2+a 5=0,得8a 2+a 2q 3=0,∵a 2≠0,∴q 3=-8,∴q =-2,∵a n +1a n -1=q 2=4, S 5S 3=a 1(1-q 5)1-q a 1(1-q 3)1-q=1-q 51-q 3=113, S 5a 3=a 1(1-q 5)1-q a 1q 2=1-q 5q 2(1-q )=114, 而D 中S n +1S n =1-q n +11-q n 与n 有关,故不确定. 二、填空题8.答案 12(9n -1) 解析 {a n }的首项为2,公比为3,∴{a 2n }也为等比数列,首项为4,公比为9,∴{a 2n }的前n 项和为4(1-q n )1-q=12(9n -1) 9.答案 16解析 方法一 ∵S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列, ∴(S 6-S 3)2=S 3·(S 9-S 6).又∵S 3=2,S 6=6,∴S 9=14.再由S 6-S 3,S 9-S 6,S 12-S 9成等比数列,即(S 9-S 6)2=(S 6-S 3)·(S 12-S 9),求出S 12-S 9=16,即a 10+a 11+a 12=16.方法二 由S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列,此数列首项为S 3=2,公比q ′=S 6-S 3S 3=6-22=2,得S 12-S 9=2×23=16. 10.答案 12解析 由210S 30-(210+1)S 20+S 10=0,得210(S 30-S 20)=S 20-S 10.又S 10,S 20-S 10,S 30-S 20成等比数列,∴S 30-S 20S 20-S 10=q 10=(12)10. 又{a n }为正项等比数列,∴q =12. 11.答案 1-12n 解析 令x =n ,y =1,则f (n )·f (1)=f (n +1),又a n =f (n ),∴a n +1a n =f (n +1)f (n )=f (1)=a 1=12, ∴数列{a n }是以12为首项,12为公比的等比数列, ∴S n =12(1-12n )1-12=1-12n . 三、解答题12.解 (1)由题意,当n ≥2时,有⎩⎪⎨⎪⎧a n +1=2S n +1a n =2S n -1+1, 两式相减,得a n +1-a n =2a n ,即a n +1=3a n (n ≥2),所以,当n ≥2时{a n }是等比数列,要使n ≥1时{a n }是等比数列,则只需a 2a 1=2t +1t=3,从而得出t =1.(2)由(1)得,等比数列{a n }的首项为a 1=1,公比q =3,∴a n =3n -1, ∴c n =na n -4na n =n ·3n -1-4n ·3n 1=1-4n ·3n 1, ∵c 1=1-41=-3,c 2=1-42×3=13, ∴c 1c 2=-1<0,∵c n +1-c n =4n ·3n -1-4(n +1)·3n =4(2n +3)n (n +1)·3n>0, ∴数列{c n }递增.由c 2=13>0得,当n ≥2时,c n >0. ∴数列{c n }的“积异号数”为1.13.(1)解 由已知得,a 1=40×0.9+m ,a n +1=0.9a n +m (n ≥1).(2)证明 由(1)得:a n +1-10m =0.9a n -9m =0.9(a n -10m ), 所以数列{a n -10m }是以a 1-10m =36-9m 为首项,0.9为公比的等比数列.(3)解 由(2)得a n -10m =(36-9m )·0.9n -1, 即a n =(36-9m )·0.9n -1+10m . 由(36-9m )·0.9n -1+10m ≤55,得 m ≤55-36×0.9n -110-9×0.9n -1=5.5-4×0.9n 1-0.9n = 1.51-0.9n +4 恒成立(n ∈N *),解得m ≤5.5,又m >0,综上可得m ∈(0,5.5].。
2.5 等比数列前n项和的性质及应用(2)
能使问题的解决过程变得简洁明快.
跟踪训练3 设数列{an}是以2为首项,1为公差的等差数列;数列{bn} 是以1为首项,2为公比的等比数列,则ba1 ba2 ba3 … ba6=_1_2_6_.ຫໍສະໝຸດ 解析ban1 ban
b qan11 1
b1 qan 1
qan1an
规律与方法
1.在利用等比数列前n项和公式时,一定要对公比q=1或q≠1作出判 断;若{an}是等比数列,且an>0,则{lg an}构成等差数列. 2.等比数列前n项和中用到的数学思想 (1)分类讨论思想: ①利用等比数列前n项和公式时要分公比q=1和q≠1两种情况讨论; ②研究等比数列的单调性时应进行讨论:当a1>0,q>1或a1<0,0<q<1 时为递增数列;当a1<0,q>1或a1>0,0<q<1时为递减数列;当q<0时为 摆动数列;当q=1时为常数列.
Sn (S3n
S2n
)
∴S2n+S22n=Sn(S2n+S3n).
反思与感悟 处理等比数列前n项和有关问题的常用方法 (1)运用等比数列的前n项和公式,要注意公比q=1和q≠1两种情形, 在解有关的方程(组)时,通常用约分或两式相除的方法进行消元. (2)灵活运用等比数列前n项和的有关性质.
跟踪训练2 在等比数列{an}中,已知Sn=48,S2n=60,求S3n.
类型二 等比数列前n项和的性质 命题角度 1 连续 n 项之和问题
例 2 已知等比数列前 n 项,前 2n 项,前 3n 项的和分别为 Sn,S2n,S3n, 求证:S2n+S22n=Sn(S2n+S3n).
证明 方法二 因为Sn,S2n-Sn,S3n-S2n 成等比数列
等比数列前n项和公式
例3.设首项为正数的等比数列,
它的前 n项之和为80中数
值最大的项为54,求此数列
新疆 王新敞
奎屯 新疆 王新敞 奎屯
7
例4. 设数列an 为
1,2x,3x 2 ,4x3 nx n1 x 0
n 求此数列前 项的和
新疆 王新敞
奎屯
8
例5.(1).求和:
Sn ,若S1 1, S2 2 ,且
Sn1 3Sn 2Sn1 0n 2,
问:数列
an
成等比数列吗? ,
11
作业61页习题A组第4题,B组第5题
补充在等比数列 an 中,
(1) a1 a2 a10 2, a11 a12 a30 12 求 a31 a32 a60 的值。 (2)设等比数列{an}中,q=2,S99=7,求a3+a6+···+a99
Sk , S2k Sk , S3k S2k不是等比数列.
②当q≠-1或k为奇数时,
新疆 王新敞
奎屯
Sk , S2k Sk , S3k S2k仍成等比数列.
3
其它:
S奇 a1 a3 a2n1 , S偶 a2 a4 a2n
则 S偶 qS奇
4
二.例题讲解
例1.等比数列an 前n项和与积分别
为S和T,数列
1 an
的前 n 项和为
S'
求证: T 2
S S'
n
,
5
例2. 已知等差数列{an}的第二项为8,
前十项的和为185,从数列{ an}中,
依次取出第2项、第4项、第8项、……、 第 2n 项按原来的顺序排成一个新数列
{bn },求数列 {bn }的通项公式和前
2.5 等比数列的前n项和2
即
∴当q≠1时, 或 ② ①
等比数列的前n项和公式的推导2
由定义, 由等比的性质,
即
∴当q≠1时, 或 ∴当q=1时, ② ①
等比数列的前n项和公式的推导3
等比数列的前n项和公式的推导3
等比数列的前n项和公式的推导3
等比数列的前n项和公式的推导3
等比数列的前n项和公式的推导3来自等比数列的前n项和公式的推导3
2 3 63 如果1000 64 粒麦粒重为40
S64 1 2 2 2 2 2 3 2S64 2 2 2 2 2
2 3 64
的年产量约为6亿吨,就是 63 说全世界都要1000多年才 能生产这么多小麦,国王 63 64 无论如何是不能实现发明 者的要求的.
课后作业
若m+n=p+q,则am · an=ap · aq.
复习引入
国际象棋起源于古代印度.相传国王要奖赏 象棋的发明者,于是就问象棋的发明者有什么 要求,发明者说:“请在象棋的第一个格子里放 1颗麦粒,第二个格子放2颗麦粒,第三个格子 放4颗麦粒,以此类推,每个格子放的麦粒数 都是前一个格子的两倍,请给我足够的粮食来 实现上述要求”.国王不假思索就欣然答应了 他的要求. 我们看国王能不能满足他的要求,由于每 个格子里的麦粒数都是前一个格子里的麦粒数 的2倍,共有64个格子,各个格子里的麦粒数 依次是:
的方法 63 ,就 S64 1 2 2 2 是错位相 2 ① 2 3 63 减法 ! 2 S 2(1 2 2 2 2 )
2 3 64
即 2 S64 2 2 2 2 克,那么这些麦粒的总质 ② 2 量就是7300多亿吨.根据统 由① - ② 可得: 计资料显示,全世界小麦
2.5等比数列前n项和公式
a1q .
n1
⑴
⑴×q, 得
qSn
⑴-⑵,得
由此得q≠1时,
a1q a1q2 a1qn2 a1q n1 a1qn . n 1 q Sn a1 a1q ,
a1 1 q Sn 1 q
⑵
n
说明:这种求和方法称为错位相减法
当q≠1时,
解: 1) a1 a3 2 (
q 2 1 q 1 即
当q 1时,数列为常数列 2, 2, ,所以S n na1 2n 2,
当q 1时,S n
a1 (1 q n ) 1 q
2[1 ( 1) n ] 1 ( 1)
1 (1) n
1 (2) q 2, n 5, a1 2
a1 a(1 10%) 1.1a,q 1 10% 1.1,n 10
所以S10
1.1a(11.110 ) 11.1
1.1a (1.110 1)
答:从今年起 年内该家电厂的销售总 10 量是1.1a(1.110 1)万台 .
②
若a1 64, an 2, 则同理可得q
1 2
,n 6
综上所述, n 6, q
1 2
或2
3、某家电厂去年的销售量是a万台,计划在以后10内 每一年比上一年增加10%,问从今年起10年内该家电 厂的销售总量是多少万台?
解:由题意得,从今年 起,每年家电厂的销售 总量组成等比数列。
2.5.等比数列的前n项和
复习:等比数列 {an}
(1) 等比数列:
(2) 通项公式:
(3)a, G, b
an+1 an =q (定值) an=a1• q n-1 (a 0, q 0).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习1.求数列1,3a ,5a 2 ,7a 3 ,L (a ≠ 0) 的前n项和Sn
a1 (1 − q n ) a1 a1 n Sn = =− ⋅q + 1− q 1− q 1− q
a1 =A 记− 1− q
则上式可记成:Sn = Aq − A(q ≠ 0且q ≠ 1)
n
例 4、已知在数 列{an }中, an = 2 , 求Sn
n−1
n
变 : 若 一 个 等 比 数 列 的 前 n项 和 S n =2 +a, 求 a的 值 。
单利与复利
例2、 按单利计算,如果存入本金 元,每月的 、 按单利计算,如果存入本金a元 每月的 利率为0.8%,试分别计算 月后 月后 个月后, 试分别计算1月后 月后,3个月后 利率为 试分别计算 月后,2月后 个月后, ……12个月后的本利和是多少? 个月后的本利和是多少? 个月后的本利和是多少 例3、 按复利计算,如果存入本金 元,每月的 、 按复利计算,如果存入本金a元 每月的 利率为0.8%,试分别计算 月后 月后 个月后, 试分别计算1月后 月后,3个月后 利率为 试分别计算 月后,2月后 个月后, ……12个月后的本利和是多少? 个月后的本利和是多少? 个月后的本利和是多少
设等比数列{an }的前n项和为S n , 若 S3 , S9 , S6成等差数列, (1)求证a2 , a8 , a5成等差数列; (2)求数列的公比q.
等比数列的前n项和
——应用性问题 应用性问题
例1
某商场今年销售计算机5 某商场今年销售计算机 000台,如果平均每 台 年的销售量比上一年的销售量增加10%, %,那么从 年的销售量比上一年的销售量增加 %,那么从 今年起,大约几年可使总销售量达到30 000台 今年起,大约几年可使总销售量达到 台 (结果保留到个位 ? 结果保留到个位)? 结果保留到个位
练习:已知 是数列{a 的前 项和, 的前n项和 练习 已知Sn是数列 n}的前 项和 已知 下列可能是等比数列的是( 下列可能是等比数列的是 )
1) S n = n − 1 2) S n = 3 − 1
2 n
3) S n = 3
n +1
− 1 4) S n = n + 3 − 1
2 n
已知等比数列 {an },a n >0,S n =80, S 2 n =6560,且在前n项中最大的项为54, 求n的值。
(a = 0) 1 数的和为 _____ 240 (5)在10到200之间, 形如2 ( n ∈ N )的
n n −1 n −1
,
例2.等比数列{an }中, 若a6 − a4 = 216, a3 − a1 = 8, S n = 40, 求q , a1及n.
n 例3.求数列{ n }的前n项和。 2
例5
某人贷款5万元, 年等额还清, 某人贷款 万元,分5年等额还清,贷款年 万元 年等额还清 利率为5%,按复利计算, %,按复利计算 利率为 %,按复利计算,问每年需还款多少 精确到1元 ? 元(精确到 元)? 精确到
2.5等比数列的前n 2.5等比数列 Nhomakorabea前n项和
(第二课时) 第二课时)
1 例1. (1)数列{an }中, a1 = , an = 2an + 1 , 则此数列 127 2 的前7项和为 _______ 128 2 (2)数列{an }通项an = ( 3)2 n −1 , 则它的前 2n − 1项和 3 3 4n−3 − ( 3) − 为 ________ 3 (3) 数列1,1 − 2,1 − 2 + 4,L ,1 − 2 +n +8 + L + (a 1) 1) 2 4− 1 (− = n n 1 + (−1) 2 an = 的通项公式为 ________ 1 − an+1 3 (a ≠ 1,0) 2 3 n 1− a (4) 求和1 + a + a + a + L + a = _____
2 2 2 练习2.已知数列{an }中, S n = 2n − 1, 则a1 + a2 + L + an
= ______ 1 n 1 n 2 n A.(2 − 1) B . (2 − 1) C .4 − 1 D. (4 − 1) 3 3
n 2
等比数列前n项和的一般形式: 等比数列前 项和的一般形式: 项和的一般形式
按单利计算: 按单利计算: 时间 第1期末 第2期末 第3期末 …… 第n期末 期末 期末 期末 期末 本利 y = a(1 + r ) y = a(1+ 2r) y = a(1 + 3r ) …… y = a(1 + nr ) 和y 按复利计算: 按复利计算: 时间 第1期末 第2期末 第3期末 …… 第n期末 期末 期末 期末 期末 本利 y = a(1 + r ) 2 y = a (1 + r )3 …… y = a (1 + r ) n y = a (1 + r ) 和y