初中数学山东省泰安市中考模拟数学模拟考试题12 部编新课标版.docx
2024年山东省泰安市新泰市中考一模数学模拟试题(原卷版)
(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.
20.如图,一次函数 的图象与函数 的图象交于点 和点B.
(1)求n 值;
(2)若 ,根据图象直接写出当 时x的取值范围;
23.探究:如图,在平面直角坐标系中,一次函数 的图象 分别与x轴,y轴交于点A,点P,经过点P的直线 交x轴的正半轴于点B,且 .
(1)如图①,求点A的坐标及直线 的函数表达式;
(2)如图②,取 的中点 ,过点 作 轴,交直线 于点 ,连接 ,求 的面积;
(3)在(2)的条件下,延长 交直线 于点 ,如图③,若 为 轴上一点,且以 , , 为顶点的三角形是等腰三角形,求点C的坐标,
24.在平面直角坐标系中,二次函数 的图象与x轴交于A、B两点,与y轴交于点 ,且顶点P的坐标为 .
(1)求二次函数的解析式;
(2)如图1,点 ,若点 是二次函数图象上的点,且在直线 的上方,连接 , .求 面积的最大值及此时点 的横坐标;
(3)如图2,设点 是抛物线对称轴上的一点,且在点 的下方,连接 ,将线段 绕点 逆时针旋转 ,点 的对应点为 ,直线 交抛物线于点 (点 与点 不重合),判断此时能否求出点 的坐标,如能,求出点 的坐标,不能,说明理由.
A. B. C. D.
5.已知关于 的分式方程 的解为非负数,则 的取值范围为()
A. 且 B正确的是()
A.根据分式的基本性质, 可化为 B.分式 是最简分式
C.若分式 有意义,则 D.若 ,则
7.我国明代《算法统宗》书中有这样一题:“一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺?设竿长x尺,绳索长y尺,根据题意可列方程组为()
2024年山东省泰安市新泰市九年级中考二模数学试题(原卷版)
九年级第二次模拟考试数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,满分150分考试时间120分钟注意事项:1.答题前,请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答2.考试结束后,监考人员将本试卷和答题卡一并收回第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.的相反数是( )A. 2024B. C. D.2. 下列计算正确的是( )A. B. C D.3. 如图,直线l 与直线a ,b 分别相交于点A ,B ,若,则的度数为( )A. B. C. D. 4. 如图是领奖台的示意图,此领奖台的主视图是( )A. B. C.D.5. 春节假期,我国文化和旅游市场安全繁荣有序,出游人次和出游总花费等多项指标均创历史新高.据初.12024-2024-12024-12024()2239x x -=28210x x x +=()2239x x -=-()()22224x y x y x y-+=+,274a b CA CB =∠=︒,∥1∠74︒37︒32︒16︒步统计,国内游客出游总花费为亿元.亿用科学记数法表示正确的是( )A. B. C. D. 6. 如图,已知四边形内接于,.则的度数为( )A. B. C. D. 7. 某班有5名学生参加了一次考试,他们的成绩分别是:88分、75分、92分、75分和92分,下列描述错误的是( )A. 平均数是分 B. 众数是75分和92分C. 中位数是88分D. 方差大于1008. 将一次函数向左平移个单位后得到一个正比例函数,则的值为( )A. 2B. C. 4D. 9. 如图,,以点O 为圆心,适当长为半径画弧,交于点A ,交于点B ;分别以点A ,B为圆心,大于的长为半径画弧,两弧在的内部相交于点P ,画射线;连接,,,过点P 作于点E ,于点F ,下列结论:①是等边三角形;②;③;④.其中正确结论的个数是( )A. 4B. 3C. 2D. 110. 下表列出了二次函数(,,为常数,)的自变量与函数的几组对应值,.6326.876326.87126.3268710⨯1063.268710⨯116.3268710⨯863268710⨯ABDC O 115BDC ∠=︒BOC ∠130︒120︒110︒100︒84.424y x =-+m m 2-4-60MON ∠=︒OM ON 12AB MON ∠OP AB AP BP PE OM ⊥PF ON ⊥AOB PE PF =P A E P B F ≅△△AOB APB S S = 2y ax bx c =++a b c 0a ≠x y 0n >……有下列四个结论:①;②;③;④若直线(为常数)与二次函数的图象有两个交点,则.其中正确结论的序号为( )A. ①④B. ②④C. ②③D. ①③11. 如图,已知四边形为正方形,,E 为对角线上一点,连接.过点E 作,交延长线于点F ,以,为邻边作矩形.连接,下列结论正确的是( )A. B. C. D. 12. 如图,在平面直角坐标系中,点A 在y 轴上,,点B 在x 轴上,.点M 是平面内的一点,.将线段绕点A 按顺时针方向旋转一周,连接,取的中点N ,连接,则线段长的最大值为( )A. 2B. 12C. D. 8第Ⅱ卷(非选择题 102分)二、填空题(本大题共6小题,每小题4分,满分24分)13. 若关于x的一元二次方程有一个根是,则___________.14. 如图,以的边为直径的恰好过的中点D ,过点D 作于E ,连接,的x 3-2-1-0yn1-p1-2a b c -=420a b c ++>()220a c b +->y m =m 2y ax bx c =++m p >ABCDAB =AC DE EF DE ⊥BC DE EF DEFG CG CE CF =2CE CG +=CG CD=DEEF=8OA =6OB =6AM =AM BM BM ON ON 3()2210a x a x a -+-=1x ==a ABC AB O BC DE AC ⊥OD则下列结论中:①;②;③;④是的切线;正确的序号是______.15. 如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长的竹竿斜靠在石坝旁,量出杆长处的D 点离地面的高度,又量得杆底与坝脚的距离,则石坝的坡度为______.16. 如图,为等边的边的中点,点是上的一个动点,连接,将沿翻折,得到,连接,若,则的度数为___________.17. 如图,在中,,,,将绕点C 顺时针旋转90°后得到,点B 经过的路径为弧,将线段绕点A 顺时针旋转后,点B 恰好落在上的点F 处,点B 经过的路径为弧,则图中阴影部分的面积是______.OD AC ∥B C ∠=∠2OA AC =DE O BC 5m AC 1m 0.6m DE =3m AB =BC D ABC AB P BC DP DBP DP DEP AE 40BAE ∠=︒BDP ∠Rt ABC △90ACB ∠=︒4AB =60A ∠=︒Rt ABC △Rt DEC △BE AB 60︒CE BF18. 如图,在中,,,,在直线上.将绕点A 按顺时针方向旋转到位置①,可得到点,此时;将位置①的三角形绕点按顺时针方向旋转到位置②,可得到点,此时按顺时针方向旋转到位置③,可得到点,此时…,按此规律继续旋转,直到得到点为止.则______.三、解答题(本大题共7小题,满分78分.解答应写出文字说明、证明过程或演算步骤)19. 为实现核心素养导向教学目标,走向综合性、实践性的课程教学变革,某中学推进项目式学习,组织九年级数学研学小组,进行了“测量古树高度”的项目式学习活动.其中甲、乙两个研学小组分别设计了不同的测量方案,他们各自设计的测量方案示意图及测量数据如下表所示:活动课题测量古树AB 的高度研学小组甲组乙组的ABC 90ACB ∠=︒30B ∠=︒1AC =AC l ABC 1P 12AP =1P 2P 22AP =2P 3P 33AP =+2024P 2024AP =测量示意图测量说明于点,为一个矩形架,图中所有的点都在同一平面内于点,图中所有的点都在同一平面内测量数据,,,,请你选择其中的一种测量方案,求古树AB 的高度.(结果保留根号)20. 人类活动对地球的环境产生影响,如“极端气候加剧、物种灭绝加速、海平面上升”等引发人们关注为了了解市民对“环境破坏成因”的认识,随机调查了部分市民,共有5个选项:A .滥伐森林;B .过度开矿;C .洞泽而“渔”;D .废物排弃;E 其它.根据调查结果绘制了两幅不完整的统计图:CE AB ⊥E BECD CD AB ⊥D 4m CD =12m CE =30ACE∠=︒45ACD ∠=︒60BCD ∠=︒4mCD =问题解决:(1)本次调查活动中,调查的人数有______人,采取的调查方式是______(填上“普查”或“抽样调查”);(2)在扇形统计图中,求“C ”组所在扇形的圆心角的度数;(3)若该市人口约有100万人,则可以估计其中持“D ”组观点的市民人数约有______人:(4)“保护生存环境建设美好家园”是实验学校开展环保类社团活动之宗旨,学校利用假期开设了四个如图所示的环保类社团项目,每人只能从这四个项目中随机选择一个项目,每一个项目被选择的可能性相同.小华和小聪分别从这四个项目中选择一个,请用列表或画树状图的方法,求小华和小聪选择同一个项目的概率.社团名称A (环保义工)B (绿植养护)C (回收材料)D (垃圾分类)21. 如图1,点A ,B 反比例函数上,作直线,交坐标轴于点M 、N ,连接.在(),6m ()6,1ky x=AB OA OB 、(1)求反比例函数的表达式和m 的值;(2)求的面积;(3)如图2,E 是线段上一点,作轴于点D ,过点E 作,交反比例函数图象于点F ,若,求出点E 的坐标.22. 清明假期,泰山受到广大市民和全国游客的热烈欢迎.据统计,假期第一天A 入口比B 入口登山游客多万人,第二天A 入口登山游客增加了,B 入口登山游客减少了,当天A ,B 入口登山游客总人数比第一天增加了,试求第二天A ,B 入口登山游客的人数各是多少万人?23. 如图,已知矩形和矩形共用顶点A ,点E 在线段上,连接,,且.(1)求证:;(2)若,,求的长.24. 如图,在平面直角坐标系中,一次函数的图象分别交x ,y 轴于A ,B 两点,抛物线经过点A ,B .点P 为第四象限内抛物线上的一个动点.AOB AB AD x ⊥EF AD ∥13EF AD =1.210%10%3%ABCD AEFG BD EG DG ABE ADG ∠=∠AB AG AD AE ⋅=⋅AB =AD =13BE BD =EG 122y x =-2y x bx c =++(1)求此抛物线函数解析式.(2)当时,求点P 的坐标.25. 如图,菱形中,点E 在对角线上,点M 在直线上,将线段绕点M 顺时针旋转得到线段,旋转角,连接.【问题发现】(1)如图(1),当点M 与点A 重合时,求证:;【类比探究】(2)如图2,当点M 在边上时,时,求证:;【拓展延伸】(3)如图3,当点M 在延长线上时,若,,,设,,求y 与x之间的数量关系的2PBA OAB ∠=∠ABCD BD AB ME MF EMF BAD ∠=∠BF BE BF BD +=AB 60EMF ∠=︒BM BF BE +=BA 12AB =3AM =20BD =BE x =BF y =。
初中数学山东省泰安市中考模拟数学考试题考试卷及答案Word版.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:若()-(-2)=3,则括号内的数是()A.-1 B.1 C.5 D.-5 试题2:下列计算正确的是()A.a4+a4=a8B.(a3)4=a7 C.12a6b4÷3a2b-2=4a4b2D.(-a3b)2=a6b2试题3:下列四个几何体:①正方体②球③圆锥④圆柱其中左视图与俯视图相同的几何体共有()个评卷人得分A.1 B.2 C.3 D.4 试题4:地球表面积约为510 000 000km2,将510 000 000用科学记数法表示为()A.0.51×109B. 5.1×109C.5.1×108D.5.1×107试题5:.如图,AB//CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122° B.151°C.116° D.97°试题6:如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B. C. D.试题7:小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A. B. C. D.试题8:化简的结果等于()A.a-2 B.a+2 C. D.试题9:如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A. B. C. D.8试题10:若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数。
如796就是一个“中高数”。
初中数学山东省泰安市中考模拟 数学考试题及答案(word版).docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列四个数:-3,,,-1,其中最小的数是()A. B.-3 C.-1 D.试题2:下列运算正确的是()A.B.C. D.试题3:下列图案:其中,中心对称图形是()A.①② B.②③ C. ②④ D.③④评卷人得分试题4:“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”.将数据3万亿美元用科学记数法表示为()A.美元 B.美元 C. 美元 D.美元试题5:化简的结果为()A. B. C. D.试题6:下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.4试题7:一元二次方程配方后化为()A. B. C. D.试题8:袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为()A. B. C. D.试题9:不等式组,的解集为.则的取值范围为()A. B. C. D.试题10:某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进件衬衫,则所列方程为()A. B.C. D.试题11:为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A、B、C、D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图.根据统计图中提供的信息,结论错误的是()A.本次抽样测试的学生人数是40B.在图1中,的度数是C.该校九年级有学生500名,估计D级的人数为80D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.2试题12:如图,内接于,若,则等于()A. B. C. D.试题13:已知一次函数的图象与轴的负半轴相交,且函数值随自变量的增大而减小,则下列结论正确的是()A. B. C. D.试题14:如图,正方形中,为上一点,,交的延长线于点.若,,则的长为()A.18 B. C. D.试题15:已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有()A.1个 B.2个 C.3个 D.4个试题16:.某班学生积极参加爱心活动,该班50名学生的捐款统计情况如下表:金额/元 5 10 20 50 100人数 4 16 15 9 6则他们捐款金额的中位数和平均数分别是()A.10,20.6 B.20,20.6 C.10,30.6 D.20,30.6试题17:如图,圆内接四边形的边过圆心,过点的切线与边所在直线垂直于点,若,则等于()A. B. C. D.试题18:如图,在正方形网格中,线段是线段绕某点逆时针旋转角得到的,点与对应,则角的大小为()A. B. C. D.试题19:如图,四边形是平行四边形,点是边上的一点,且,交于点,是延长线上一点,下列结论:①平分;②平分;③;④.其中正确结论的个数为()A.1 B.2 C.3 D.4试题20:如图,在中,,,,点从点沿向点以的速度运动,同时点从点沿向点以的速度运动(点运动到点停止),在运动过程中,四边形的面积最小值为()A. B. C. D.试题21:分式与的和为4,则的值为.试题22:关于的一元二次方程无实数根,则的取值范围为.试题23:工人师傅用一张半径为,圆心角为的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为.试题24:如图,,为上一点,,点是上的一动点,,垂足为点,则的最小值为.试题25:如图,在平面直角坐标系中,的斜边在轴的正半轴上,,且,,反比例函数的图象经过点.(1)求反比例函数的表达式;(2)若与关于直线对称,一次函数的图象过点,求一次函数的表达式.试题26:某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?试题27:如图,四边形中,,平分,点是延长线上一点,且.(1)证明:;(2)若与相交于点,,,求的长.试题28:如图,是将抛物线平移后得到的抛物线,其对称轴为,与轴的一个交点为,另一交点为,与轴交点为.(1)求抛物线的函数表达式;(2)若点为抛物线上一点,且,求点的坐标;(3)点是抛物线上一点,点是一次函数的图象上一点,若四边形为平行四边形,这样的点是否存在?若存在,分别求出点的坐标,若不存在,说明理由.试题29:如图,四边形是平行四边形,,,是的中点,是延长线上一点.(1)若,求证:;(2)在(1)的条件下,若的延长线与交于点,试判定四边形是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)若,与垂直吗?若垂直给出证明,若不垂直说明理由.试题1答案:A试题2答案:D试题3答案:D试题4答案:C试题5答案:A试题6答案:BA试题8答案: B试题9答案: C试题10答案: B试题11答案: C试题12答案: D试题13答案: A试题14答案: B试题15答案: B试题16答案: D试题17答案: A试题18答案: CD试题20答案: C试题21答案: 3试题22答案:试题23答案:试题24答案:试题25答案:试题26答案:试题27答案:试题28答案:试题29答案:。
2023年山东省泰安市泰山实验学校中考数学模拟试卷+答案解析
2023年山东省泰安市泰山实验学校中考数学模拟试卷一、选择题:本题共12小题,每小题4分,共48分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各数,,,,,,中,无理数有()A.2个B.3个C.4个D.5个2.如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3B.4C.5D.63.下列计算中,结果正确的是()A. B.C. D.4.1968年科学家发现世界上最小的物质是夸克,物质就是由这种极其小的物质而构成的,夸克有多小呢?它的大小是1介米,约为原子核的百万分之一.百万分之一用科学记数法表示为()A. B. C. D.5.如图,将一副三角尺按图中所示位置摆放,点F在AC上,,,,,则的度数是()A.B.C.D.6.甲乙两台机床同时生产同一种零件,在某周的工作日内,两台机床每天生产次品的个数整理成甲、乙两组数据,如下表,关于以下数据,下列说法正确的是()机床/星期星期一星期二星期三星期四星期五甲20432乙13404A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数大于乙的平均数D.甲的方差小于乙的方差7.如图,点A,B,C是上的三点.若,,则的大小为()A.B.C.D.8.如果关于x的一元二次方程有两个相等的实数根,则直线必定经过的象限是()A.一、二、三B.一、二、四C.二、三、四D.一、三、四9.如图,AB是的弦,等边三角形OCD的边CD与相切于点P,且连接OA,OB,OP,若,,则AD的长是()A.B.C.D.10.如图,胡同左右两侧是竖直的墙,一架米长的梯子BC斜靠在右侧墙壁上,测得梯子与地面的夹角为,此时梯子顶端B恰巧与墙壁顶端重合.因梯子阻碍交通,故将梯子底端向右移动一段距离到达D处,此时测得梯子AD与地面的夹角为,则胡同左侧的通道拓宽了()A.米B.3米C.米D.米11.如图,在正方形ABCD中,,E,F分别是边BC,CD上的点,连接EF、AE、AF,过A作于点若,那么下列结论:①AE平分;②;③;④;⑤的周长为其中正确结论的个数是()A.2B.3C.4D.512.如图,矩形ABCD的边,,点E在边AB上,且,F为AD边上的一个动点,连接EF,将线段EF绕点E顺时针旋转得到EG,连接CG,则CG的最小值为()A.2B.3C.D.二、填空题:本题共6小题,每小题4分,共24分。
初中数学山东省泰安市中考模拟数学考试卷及答案.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:(﹣2)﹣2等于()A.﹣4 B.4 C.﹣ D.试题2:下列运算正确的是()A.3x3﹣5x3=﹣2x B.6x3÷2x﹣2=3x C.()2=x6 D.﹣3(2x﹣4)=﹣6x﹣12试题3:2012年我国国民生产总值约52万亿元人民币,用科学记数法表示2012年我国国民生产总值为() A.5.2×1012元 B.52×1012元 C.0.52×1014元 D.5.2×1013元试题4:下列图形:其中所有轴对称图形的对称轴条数之和为()A.13 B.11 C.10 D.8试题5:下列几何体中,主视图是矩形,俯视图是圆的几何体是()评卷人得分A. B. C. D.试题6:不等式组的解集为()A.﹣2<x<4 B.x<4或x≥﹣2 C.﹣2≤x<4 D.﹣2<x≤4试题7:实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,5试题8:如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180° C.210° D.270°试题9:如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°试题10:对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x >1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4试题11:在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,点P1绕点O逆时针旋转180°,得到对应点P2,则P2点的坐标为()A.(1.4,﹣1) B.(1.5,2) C.(1.6,1) D.(2.4,1)试题12:有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A. B. C. D.试题13:如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE试题14:化简分式的结果是()A.2 B. C. D.﹣2试题15:某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A. B.C. D.试题16:在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A. B. C. D.试题17:把直线y=﹣x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是()A.1<m<7 B.3<m<4 C.m>1 D.m<4试题18:如图,AB,CD是⊙O的两条互相垂直的直径,点O1,O2,O3,O4分别是OA、OB、OC、OD的中点,若⊙O的半径为2,则阴影部分的面积为()A.8 B.4 C.4π+4 D.4π﹣4试题19:如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8试题20:观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…解答下列问题:3+32+33+34…+32013的末位数字是()A.0 B.1 C.3 D.7试题21:分解因式:m3﹣4m= .试题22:化简:(﹣)﹣﹣|﹣3|= .试题23:如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.试题24:如图,某海监船向正西方向航行,在A处望见一艘正在作业渔船D在南偏西45°方向,海监船航行到B处时望见渔船D 在南偏东45°方向,又航行了半小时到达C处,望见渔船D在南偏东60°方向,若海监船的速度为50海里/小时,则A,B之间的距离为(取,结果精确到0.1海里).试题25:如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,﹣3),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过点C,一次函数y=ax+b的图象经过点A,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.试题26:如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.试题27:某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?试题28:如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE.(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.试题29:如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)(1)求该抛物线的解析式.(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.试题1答案:考点:负整数指数幂.分析:根据负整数指数幂的运算法则进行运算即可.解答:解:(﹣2)﹣2==.故选D.点评:本题考查了负整数指数幂的知识,解答本题的关键是掌握负整数指数幂的运算法则.试题2答案:考点:整式的除法;合并同类项;去括号与添括号;幂的乘方与积的乘方;负整数指数幂.分析:根据合并同类项的法则、整式的除法法则、幂的乘方法则及去括号的法则分别进行各选项的判断.解答:解:A.3x3﹣5x3=﹣2x3,原式计算错误,故本选项错误;B.6x3÷2x﹣2=3x5,原式计算错误,故本选项错误;C.()2=x6,原式计算正确,故本选项正确;D.﹣3(2x﹣4)=﹣6x+12,原式计算错误,故本选项错误;故选C.点评:本题考查了整式的除法、同类项的合并及去括号的法则,考察的知识点较多,掌握各部分的运算法则是关键.试题3答案:考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将52万亿元=5200000000000用科学记数法表示为5.2×1013元.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题4答案:考点:轴对称图形.分析:根据轴对称及对称轴的定义,分别找到各轴对称图形的对称轴个数,然后可得出答案.解答:解:第一个图形是轴对称图形,有1条对称轴;第二个图形是轴对称图形,有2条对称轴;第三个图形是轴对称图形,有2条对称轴;第四个图形是轴对称图形,有6条对称轴;则所有轴对称图形的对称轴条数之和为11.故选B.点评:本题考查了轴对称及对称轴的定义,属于基础题,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.试题5答案:考点:简单几何体的三视图.分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解答:解:A.主视图为矩形,俯视图为圆,故选项正确;B.主视图为矩形,俯视图为矩形,故选项错误;C.主视图为等腰三角形,俯视图为带有圆心的圆,故选项错误;D.主视图为矩形,俯视图为三角形,故选项错误.故选:A.点评:本题考查了三视图的定义考查学生的空间想象能力.试题6答案:考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,解①得:x≥﹣2,解②得:x<4,∴不等式组的解集为:﹣2≤x<4,故选:C.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.试题7答案:考点:众数;中位数.分析:根据众数及中位数的定义,结合所给数据即可作出判断.解答:解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4.故选A.点评:本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义.试题8答案:考点:平行线的性质.分析:根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B.点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.解答:解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.点评:本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.试题9答案:考点:圆周角定理.分析:过A、O作⊙O的直径AD,分别在等腰△OAB、等腰△OAC中,根据三角形外角的性质求出θ=2α+2β.解答:解:过A作⊙O的直径,交⊙O于D;△OAB中,OA=OB,则∠BOD=∠OBA+∠OAB=2×32°=64°,同理可得:∠COD=∠OCA+∠OAC=2×38°=76°,故∠BOC=∠BOD+∠COD=140°.故选D点评:本题考查了圆周角定理,涉及了等腰三角形的性质及三角形的外角性质,解答本题的关键是求出∠COD及∠BOD的度数.试题10答案:考点:二次函数的性质.分析:根据二次函数的性质对各小题分析判断即可得解.解答:解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选C.点评:本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.试题11答案:考点:坐标与图形变化-旋转;坐标与图形变化-平移.分析:根据平移的性质得出,△ABC的平移方向以及平移距离,即可得出P1坐标,进而利用中心对称图形的性质得出P2点的坐标.解答:解:∵A点坐标为:(2,4),A1(﹣2,1),∴点P(2.4,2)平移后的对应点P1为:(﹣1.6,﹣1),∵点P1绕点O逆时针旋转180°,得到对应点P2,∴P2点的坐标为:(1.6,1).故选:C.点评:此题主要考查了旋转的性质以及平移的性质,根据已知得出平移距离是解题关键.试题12答案:考点:列表法与树状图法;点的坐标.专题:图表型.分析:画出树状图,然后确定出在第二象限的点的个数,再根据概率公式列式进行计算即可得解.解答:解:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(﹣1,1)(﹣1,2)共2个,所以,P==.故选B.点评:本题考查了列表法与树状图法,第二象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.试题13答案:考点:切线的性质;圆心角、弧、弦的关系;圆周角定理.专题:计算题.分析:由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.解答:解:A.∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B.∵=,∴BC=CE,本选项正确;C.∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D.AC不一定垂直于OE,本选项错误,故选D点评:此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.试题14答案:考点:分式的混合运算.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.解答:解:=÷[+]=÷=2.故选:A.点评:本题主要考查分式的化简求值,把分式化到最简是解答的关键,通分、因式分解和约分是基本环节.试题15答案:考点:由实际问题抽象出分式方程.分析:首先设甲车间每天能加工x个,则乙车间每天能加工1.3x个,由题意可得等量关系:甲乙两车间生产2300件所用的时间+乙车间生产2300件所用的时间=33天,根据等量关系可列出方程.解答:解:设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:+=33,故选:B.点评:题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.试题16答案:考点:二次函数的图象;一次函数的图象.分析:令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.解答:解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.点评:本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.试题17答案:考点:一次函数图象与几何变换.分析:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,求出直线y=﹣x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.解答:解:直线y=﹣x+3向上平移m个单位后可得:y=﹣x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.故选C.点评:本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.试题18答案:考点:扇形面积的计算;圆与圆的位置关系.分析:首先根据已知得出正方形内空白面积,进而得出扇形COB中两空白面积相等,进而得出阴影部分面积.解答:解:如图所示:可得正方形EFMN,边长为2,正方形中两部分阴影面积为:4﹣π,∴正方形内空白面积为:4﹣2(4﹣π)=2π﹣4,∵⊙O的半径为2,∴O1,O2,O3,O4的半径为1,∴小圆的面积为:π×12=π,扇形COB的面积为:=π,∴扇形COB中两空白面积相等,∴阴影部分的面积为:π×22﹣2(2π﹣4)=8.故选:A.点评:此题主要考查了扇形的面积公式以及正方形面积公式,根据已知得出空白面积是解题关键.试题19答案:考点:平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.专题:计算题.分析:由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.解答:解:∵AE为∠ADB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选B点评:此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.试题20答案:考点:尾数特征.分析:根据数字规律得出3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3进而得出末尾数字.解答:解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2013÷4=503…1,∴3+32+33+34…+32013的末位数字相当于:3+7+9+1+…+3的末尾数为3,故选:C.点评:此题主要考查了数字变化规律,根据已知得出数字变化规律是解题关键.试题21答案:考点:提公因式法与公式法的综合运用.分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解.解答:解:m3﹣4m,=m(m2﹣4),=m(m﹣2)(m+2).点评:本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题的关键,要注意分解因式要彻底.试题22答案:考点:二次根式的混合运算.分析:根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可.解答:解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣),=﹣6.故答案为:﹣6.点评:此题主要考查了二次根式的化简与混合运算,正确化简二次根式是解题关键.试题23答案:考点:含30度角的直角三角形;线段垂直平分线的性质.分析:根据同角的余角相等、等腰△ABE的性质推知∠DBE=30°,则在直角△DBE中由“30度角所对的直角边是斜边的一半”即可求得线段BE的长度.解答:解:∵∠ACB=90°,FD⊥AB,∴∠∠ACB=∠FDB=90°,∵∠F=30°,∴∠A=∠F=30°(同角的余角相等).又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°,∴直角△DBE中,BE=2DE=2.故答案是:2.点评:本题考查了线段垂直平分线的性质、含30度角的直角三角形.解题的难点是推知∠EBA=30°.试题24答案:考点:解直角三角形的应用-方向角问题.专题:应用题.分析:过点D作DE⊥AB于点E,设DE=x,在Rt△CDE中表示出CE,在Rt△BDE中表示出BE,再由CB=25海里,可得出关于x的方程,解出后即可计算AB的长度.解答:解:∵∠DBA=∠DAB=45°,∴△DAB是等腰直角三角形,过点D作DE⊥AB于点E,则DE=AB,设DE=x,则AB=2x,在Rt△CDE中,∠DCE=30°,则CE=DE=x,在Rt△BDE中,∠DAE=45°,则DE=BE=x,由题意得,CB=CE﹣BE=x﹣x=25,解得:x=,故AB=25(+1)=67.5海里.故答案为:67.5.点评:本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.试题25答案:考点:反比例函数与一次函数的交点问题.分析:(1)先根据正方形的性质求出点C的坐标为(5,﹣3),再将C点坐标代入反比例函数y=中,运用待定系数法求出反比例函数的解析式;同理,将点A,C的坐标代入一次函数y=ax+b中,运用待定系数法求出一次函数函数的解析式;(2)设P点的坐标为(x,y),先由△OAP的面积恰好等于正方形ABCD的面积,列出关于x的方程,解方程求出x的值,再将x的值代入y=﹣,即可求出P点的坐标.解答:解:(1)∵点A的坐标为(0,2),点B的坐标为(0,﹣3),∴AB=5,∵四边形ABCD为正方形,∴点C的坐标为(5,﹣3).∵反比例函数y=的图象经过点C,∴﹣3=,解得k=﹣15,∴反比例函数的解析式为y=﹣;∵一次函数y=ax+b的图象经过点A,C,∴,解得,∴一次函数的解析式为y=﹣x+2;(2)设P点的坐标为(x,y).∵△OAP的面积恰好等于正方形ABCD的面积,∴×OA•|x|=52,∴×2|x|=25,解得x=±25.当x=25时,y=﹣=﹣;当x=﹣25时,y=﹣=.∴P点的坐标为(25,﹣)或(﹣25,).点评:本题考查了正方形的性质,反比例函数与一次函数的交点问题,运用待定系数法求反比例函数与一次函数的解析式,三角形的面积,难度适中.运用方程思想是解题的关键.试题26答案:考点:相似三角形的判定与性质;直角三角形斜边上的中线.分析:(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB •AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.解答:(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.点评:此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.试题27答案:考点:一元二次方程的应用.专题:销售问题.分析:根据纪念品的进价和售价以及销量分别表示出两周的总利润,进而得出等式求出即可.解答:解:由题意得出:200×(10﹣6)+(10﹣x﹣6)(200+50x)+[(4﹣6)(600﹣200﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9,答:第二周的销售价格为9元.点评:此题主要考查了一元二次方程的应用,根据已知表示出两周的利润是解题关键.试题28答案:考点:菱形的判定与性质;全等三角形的判定与性质.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BAC=∠DAC,再证明△ABF≌△ADF,可得∠AFD=∠AFB,进而得到∠AFD=∠CFE;(2)首先证明∠CAD=∠ACD,再根据等角对等边可得AD=CD,再有条件AB=AD,CB=CD可得AB=CB=CD=AD,可得四边形ABCD 是菱形;(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD.解答:(1)证明:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵在△ABF和△ADF中,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵∠AFB=∠AFE,∴∠AFD=∠CFE;(2)证明:∵AB∥CD,∴∠BAC=∠ACD,又∵∠BAC=∠DAC,∴∠CAD=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)当EB⊥CD时,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,在△BCF和△DCF中,∴△BCF≌△DCF(SAS),∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠EFD=∠BCD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.试题29答案:考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值;(3)△OMD为等腰三角形,可能有三种情形,需要分类讨论.解答:解:(1)把点C(0,﹣4),B(2,0)分别代入y=x2+bx+c中,得,解得∴该抛物线的解析式为y=x2+x﹣4.(2)令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC=AB•OC=12.设P点坐标为(x,0),则PB=2﹣x.∵PE∥AC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△ABC,∴,即,化简得:S△PBE=(2﹣x)2.S△PCE=S△PCB﹣S△PBE=PB•OC﹣S△PBE=×(2﹣x)×4﹣(2﹣x)2=x2﹣x+=(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.(3)△OMD为等腰三角形,可能有三种情形:(I)当DM=DO时,如答图①所示.DO=DM=DA=2,∴∠OAC=∠AMD=45°,∴∠ADM=90°,∴M点的坐标为(﹣2,﹣2);(II)当MD=MO时,如答图②所示.过点M作MN⊥OD于点N,则点N为OD的中点,∴DN=ON=1,AN=AD+DN=3,又△AMN为等腰直角三角形,∴MN=AN=3,∴M点的坐标为(﹣1,﹣3);(III)当OD=OM时,∵△OAC为等腰直角三角形,∴点O到AC的距离为×4=,即AC上的点与点O之间的最小距离为.∵>2,∴OD=OM的情况不存在.综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3).点评:本题是二次函数综合题,考查了二次函数的图象与性质、待定系数法、相似三角形、等腰三角形等知识点,以及分类讨论的数学思想.第(2)问将面积的最值转化为二次函数的极值问题,注意其中求面积表达式的方法;第(3)问重在考查分类讨论的数学思想,注意三种可能的情形需要一一分析,不能遗漏.。
初中数学山东省泰安市中考模拟数学考试题及答案[].docx
xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:的倒数是(A)(B)(C)(D)试题2:下列运算正确的是(A)(B)(C)(D)试题3:下列图形:其中是中心对称图形的个数为评卷人得分(A)1 (B)2 (C)3 (D)4试题4:第六次全国人口普查公布的数据表明,登记的全国人靠数量约为1 340 000 000人。
这个数据用科学记数法表示为(A)人(B)人(C)人(D)人试题5:下列等式不成立的是(A)(B)(C)(D)试题6:下列几何体:其中,左视图是平行四边形的有(A)4个(B)3个(C)2个(D)1个试题7:下列运算正确的是(A)(B)(C)(D)试题8:如图,,等腰直角三角形ABC的直角顶点C在直线上,若∠β=20°,则∠α的度数为(A)25°(B)30°(C)20°(D)35°试题9:某校篮球班21名同学的身高如下表身高cm 180 186 188 192 208人数(个) 4 6 5 4 2则该校蓝球班21名同学身高的众数和中位数分别是(单位:cm)(A)186,186(B)186,187(C)186,188(D)208,188试题10:如图,⊙O的弦AB垂直平分半径OC,若AB=则⊙O的半径为(A)(B)(C)(D)试题11:某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲.乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种各买多少件?该问题中,若设购买甲种奖品件,乙种奖品件,则列方程正确的是(A)(B)(C)(D)试题12:若点A的坐标为(6,3)O为坐标原点,将OA绕点O按顺时针方向旋转90°得到OA′,则点A′的坐标是(A)(3,-6)(B)(-3,6)(C)(-3,-6)(D)(3,6)试题13:已知一次函数的图像如图所示,则、的取值范围是(A)>0,<2(B)>0,>2(C)<0,<2(D)<0,>2试题14:一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是(A)5π(B)4π(C)3π(D)2π试题15:如图,点F是□ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是(A)(B)(C)(D)试题16:袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的的编号相同的概率为(A)(B)(C)(D)试题17:如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为,则的值为(A)16 (B)17 (C)18 (D)19.试题18:不等式组的最小整数解为(A)0 (B)1 (C)2 (D)试题19:如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为(A)(B)(C)(D)6试题20:若二次函数的与的部分对应值如下表:—7 —6 —5 —4 —3 —2—27 —13 —3 3 5 3则当时,的值为(A)5 (B)—3 (C)—13 (D)—27试题21:方程的解是。
2023年山东省泰安市中考数学模拟考试试题
不与 A , B 重合),以下五个结论正确的个数是( )
① AE CF ;② APE CPF ;③VEPF 是等腰直角三角形;④ EF AP ;⑤
S四边形AEPF
1 2
S△
ABC .
A.2
B.3
C.4
D.5
12.如图,在锐角△ ABC 中,∠BAC=45°,AB=2,∠BAC 的平分线交 BC 于点 D,M、
下列说法正确的是( )
A.抛物线的开口向上
B.当 x 1时,y 随 x 的增大而增大
C.二次函数的最大值是 2
D.抛物线与 x 轴只有一个交点
10.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几
试卷第 2 页,共 7 页
株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的 价钱为 6210 文.如果每株椽的运费是 3 文,那么少拿一株椽后,剩下的椽的运费恰好 等于一株椽的价钱,试问 6210 文能买多少株椽?设这批椽的数量为 x 株,则符合题意 的方程是( )
试卷第 4 页,共 7 页
喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.
根据以上信息,回答下列问题: (1)本次调查的学生共有_______人;统计图中的 b _________; (2)通过计算补全条形统计图; (3)在扇形统计图中,C“乒乓球”对应的圆心角的度数是_____________; (4)如果每人只能参加一种活动课,小明和小刚恰好参加同一种活动课的概率是多少? 21.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹简,旋转时低则舀水,高则 泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至 A 处,水沿射线 AD 方向 泻至水渠 DE ,水渠 DE 所在直线与水面 PQ 平行;设筒车为 e O ,e O 与直线 PQ 交于 P, Q 两点,与直线 DE 交于 B,C 两点,恰有 AD2 BD CD ,连接 AB, AC .
2023年山东省泰安市中考数学模拟试题及答案
2023年山东省泰安市中考数学模拟试题(二)(原题卷)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间120分钟.2.答题前请考生仔细阅读答题卡上的注意事项,并务必按照相关要求作答.3.考试结束后,监考人员将本试题和答题卡一并收回.第Ⅰ卷(选择题)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.计算()148⎛⎫-⨯- ⎪⎝⎭的结果等于()A .12B .2C .-2D .12-2.下列计算正确的是()A .235x x x +=B .333(3)9xy x y -=-C .422824()39xy x y =D .5322()()a b a b a b +÷+=+3.位于四川省的三星堆遗址被称为20世纪人类最伟大的考古发现之一,其中出土的文物是宝贵的人类文化遗产,在中国的文物群体中,属最具历史、科学、文化、艺术价值和最富观赏性的文物群体之一.下列四个图案是三星堆遗址出土文物图,其中是中心对称图形的是()A .B .C .D .4.2020年6月23日,我国北斗卫星导航系统(BDS )星座部署完成,其中地球同步轨道卫星运行在地球赤道上空约36000000米的圆形轨道上.将数字36000000用科学记数法表示为()A .63610⨯B .63.610⨯C .73.610⨯D .80.3610⨯5.如图,有一块含有30︒角的直角三角板的两个顶点放在直尺的对边可以自由滑动上.当115∠=︒时,2∠的度数是()A .45︒B .35︒C .25︒D .15︒6.如图,AB 是⊙O 的直径,ACD CAB ∠=∠,2AD =,4AC =,则⊙O 的半径为()A .B .C .D 7.如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A .测得的最高体温为37.1℃B .前3次测得的体温在下降C .这组数据的众数是36.8D .这组数据的中位数是36.68.如图,将含60︒角的直角三角板ABC 绕顶点A 顺时针旋转45︒后得到AB C ''△,点B 经过的路径为弧BB ',若60BAC ∠=︒,1AC =,则图中阴影部分的面积是A .2πB .3πC .4πD .9.如图,在正方形ABCD 中,3cm AB =,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自A 点出发沿折线AD DC CB --以每秒3cm 的速度运动,到达B 点时运动同时停止.设AMN 的面积为y (cm 2).运动时间为x (秒),则下列图象中能大致反映y 与x 之间函数关系的是()A .B .C .D .10.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是()A .()316210x x -=B .()316210x -=C .()316210x x -=D .36210x =11.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP +PN 的最小值是()A .12B .1C D .212.如图,菱形ABCD 的边长为8,E 、F 分别是AB 、AD 上的点,连接CE 、CF 、EF ,AC 与EF 相交于点G ,若2BE AF ==,120BAD ∠=︒,则FG 的长为()A2B C .2D .32第Ⅱ卷(非选择题)二、填空题(本大题共6小题,满分18分。
2024年山东省中考数学模拟押题预测卷及答案
2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。
第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。
考试时间为120分钟。
2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。
所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。
第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。
2023年山东省泰安市泰山区中考数学一模试题(含答案解析)
2023年山东省泰安市泰山区中考数学一模试题学校:___________姓名:___________班级:___________考号:___________A....2.在实数:-,0,3-中,最小的数是()--.5-0.3-A.()63.截至2022日,世界第四大水电站——云南昭通溪洛渡水电站累计生产清洁电能突破5000相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿.5000亿用科学记数法表示为()A.35°B.45°6.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个A .38.过直线l 外一点A ..C ..9.不等式组3x mx <⎧⎨≥⎩有4个整数解,则的取值范围是().67m ≤≤B .667≤<m D .6.如图,AB 是O 的切线,O 交于点C ,以点A 为圆心、长为半径,作 EF,分别交AB .若3OC =,6AB =,则图中阴影部分的面积为()A .99π4-B .3-11.如图,已知ABC ,AB =且4DE =.将C ∠沿GM 折叠,使点E 到AC 的距离为3,③EM =A .1B .212.已知二次函数2y ax bx =+②24b ac <;③23c b <;④a A .1个B .2个二、填空题13.分解因式:22312-=x y ______.14.不透明布袋中装有除颜色外没有其他区别的2个红球和3个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是______.15.我国古代《四元玉鉴》中记载二果问价问题,其内容如下:九百九十九文钱,甜果苦果买千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?其意思为:九百九十九文钱买了甜果和苦果共一千个.已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?若设买甜果x 个,买苦果y 个,根据题意所列方程组是______.三、解答题16.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22︒,再向前70m至D 点,又测得最高点A 的仰角为58︒,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为多少?(精确到1m .参考数据:sin 220.37︒≈,tan 220.40︒≈,sin 580.85︒≈,tan 58 1.60︒≈)四、填空题17.根据图中数字的规律,则x y +的值是______.18.如图,菱形ABCD 的对角线相交于点O ,6AC =,8BD =,点P 为边BC 上一点,且P 不与B 、C 重合.过P 作PE AC ⊥于E ,PF BD ⊥于F ,连接EF ,则EF 的最小值等于______.五、解答题(1)求本次调查的学生人数和m 的值;(2)请补全条形统计图;(3)学校要求每位同学从星期一至星期五选择两天参加活动.如果小明同学随机选择两天,那么其中有一天是星期五的概率是多少?(1)求反比例函数的表达式;(2)以AB BC 、为边作菱形ABCD 22.如图,四边形ABCD 是O 的内接四边形,连接(1)若AB AC =,求证:AD 平分(2)若4BC =,O 的半径为6,求23.某中学为落实《教育部办公厅关于进一步加强中小学生体质健康管理工作的通知》文件要求,决定增设篮球,足球两门选修课程,需要购进一批篮球和足球.若购买篮球的数量是足球的2倍,购买篮球用了单价贵30元;(1)求EF的长.AB=”(2)把“问题”中的条件“9参考答案:∠+∠+︒∵1355∠=∠=︒,1290∠=︒.∴335AP=BP,AQ=BQ,∴点P在线段AB的垂直平分线上,点∴直线PQ垂直平分线线段本选项不符合题意;B、如图,连接AP、AQ、BP、BQ,AP=AQ,BP=BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;C、C项无法判定直线PQ垂直直线l,本选项符合题意;D、如图,连接AP、AQ、BP、BQ,AP=AQ,BP=BQ,∴点A在线段PQ的垂直平分线上,点B在线段PQ的垂直平分线上,∴直线AB垂直平分线线段PQ,即直线l垂直平分线线段PQ,本选项不符合题意;故选:C.【点睛】本题考查作图-复杂作图,线段垂直平分线的逆定理及两点确定一条直线等知识,读懂图像信息是解题的关键,属于中考常考题型.9.D【分析】首先解不等式组,利用m表示出不等式组的解集,然后根据不等式组只有4个整数解即可求得m的范围.设12,,O n A n Ð=Ð= 3,6OC AB ==13,2ABO OB OC AE S V \====21360BOC AEFn OB S S p \+=+扇形扇形()21290993603604n n OB p p p +´===994S π∴=-阴影.故选:A .【点睛】本题主要考查了圆的切线的性质、扇形面积的计算等知识点,掌握的面积”是解本题的关键.11.B∠,由①得:AD平分BAC ∴=,EN EF∠,BE平分BCD∴==4NE DE由①②得EG GC =,EM =GM ∴垂直平分EC ,90CQM CQG ∴∠=∠=︒,在Rt CQM △和Rt CQG 中∵四边形ABCD 是菱形,AC ∴142AC BD BO BD ⊥==,在Rt BOC 中,22BO CO +=【点睛】本题考查了分式的化简求值,分母有理化,解一元一次不等式组,在数轴上表示不等式组的解集,正确的计算是解题的关键.20.(1)100,35(2)见解析(3)2 5(3)画树状图如图:共有20个等可能的结果,其中有一天是星期五的结果有8个,∴其中有一天是星期五的概率为82205P==.∵圆的半径为6,∴12BF =,由勾股定理得:CF BF =∵BAC BFC ∠=∠,∴cos cos BAC BFC ∠=∠(2)解:如图,点E与点C重合,==方法同(1)可得:DE DC===,可得AD DE EF CF可得,AD DE BC CF ==,,又DF FE CE == ,2AD DE ∴==.由上,同理可以得到AD DE =,又FD DC CE == ,。
初中数学山东省泰安市中考模拟数学考试卷及答案word版.docx
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:在,0,﹣1,﹣这四个数中,最小的数是()A . B. 0 C.﹣ D.﹣1 试题2:下列运算,正确的是()A.4a﹣2a=2 B. a6÷a3=a2 C.(﹣a3b)2=a6b2 D.(a﹣b)2=a2﹣b2试题3:下列几何体,主视图和俯视图都为矩形的是()A. B. C. D.试题4:PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A.2.5×10﹣7 B. 2.5×10﹣6 C. 25×10﹣7 D. 0.25×10﹣5试题5:如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()A.∠1+∠6>180° B.∠2+∠5<180° C.∠3+∠4<180° D.∠3+∠7>180°试题6:下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A. 1 B. 2 C. 3 D . 4试题7:方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A.x+2y=1 B. 3x+2y=﹣8 C. 5x+4y=﹣3 D. 3x﹣4y=﹣8试题8:如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B. 7 C. 8 D. 10 试题9:以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分 80 85 90 95人数/人 1 2 5 2则这组数据的中位数和平均数分别为()A.90,90 B. 90,89 C. 85,89 D. 85,90试题10:在△ABC和△A1B1C1中,下列四个命题:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,则△ABC≌△A1B1C1;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,则△ABC≌△A1B1C1;(3)若∠A=∠A1,∠C=∠C1,则△ABC∽△A1B1C1;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,则△ABC∽△A1B1C1.其中真命题的个数为()A.4个 B. 3个 C. 2个 D. 1个试题11:在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A. B. C. D.试题12:如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B. 2cm C. 2cm D. 3cm试题13:某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15试题14:如图,△ABC中,∠ACB=90°,∠A=30°,AB=16.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A B C. D试题15:若不等式组有解,则实数a的取值范围是()A.a<﹣36 B. a≤﹣36 C. a>﹣36 D. a≥﹣36试题16:将两个斜边长相等的三角形纸片如图①放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图②,连接D1B,则∠E1D1B的度数为()A.10° B. 20° C. 7.5° D. 15°试题17:已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B C D.试题18:如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A. 4个 B. 3个 C. 2个 D. 1个试题19:如图,半径为2cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.(﹣1)cm2 B.(+1)cm2 C. 1cm2 D.cm2试题20:二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:X ﹣1 0 1 3y ﹣1 3 5 3下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个 B. 3个 C. 2个 D. 1个试题21:化简(1+)÷的结果为.试题22:七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):月均用水量x/m30<x≤5 5<x≤10 10<x≤15 15<x≤20 x>20频数/户12 20 3频率0.12 0.07若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有户.试题23:如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,则sinα的值为.试题24:如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为.试题25:某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?试题26:如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.试题27:如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.试题28:如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.试题29:二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B 作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.试题1答案:D.试题2答案:C.试题3答案:D.试题4答案:B.试题5答案:D解:A、∵DG∥EF,∴∠3+∠4=180°,∵∠6=∠4,∠3>∠1,∴∠6+∠1<180°,故本选项错误;B、∵DG∥EF,∴∠5=∠3,∴∠2+∠5=∠2+∠3=(180°﹣∠1)+(180°﹣∠ALH)=360°﹣(∠1+∠ALH)=360°﹣(180°﹣∠A)=180°+∠A>180°,故本选项错误;C、∵DG∥EF,∴∠3+∠4=180°,故本选项错误;D、∵DG∥EF,∴∠2=∠7,∵∠3+∠2=180°+∠A>180°,∴∠3+∠7>180°,故本选项正确试题6答案:C.试题7答案:D试题8答案:C解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFD的中位线,∴BF=2ED=8.故选:C.试题9答案:B解:∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;试题10答案:B解:(1)若AB=A1B1,AC=A1C1,∠A=∠A1,能用SAS定理判定△ABC≌△A1B1C1,正确;(2)若AB=A1B1,AC=A1C1,∠B=∠B1,不能判定△ABC≌△A1B1C1,错误;(3)若∠A=∠A1,∠C=∠C1,能判定△ABC∽△A1B1C1,正确;(4)若AC:A1C1=CB:C1B1,∠C=∠C1,能利用两组对应边的比相等且夹角相等的两三角形相似判定△ABC∽△A1B1C1,正确.故选B.试题11答案:C解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是:=.故选C.试题12答案:A解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠ABD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△ADE中,DE=BD•tan30°=×=cm.故选A.试题13答案:A解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选A.试题14答案:B解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=∴y=×AP×PQ=×x×=x2;当点Q在BC上时,如图所示:∵AP=x,AB=16,∠A=30°,∴BP=16﹣x,∠B=60°,∴PQ=BP•tan60°=(16﹣x).∴==.∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.试题15答案:C解:,解①得:x<a﹣1,解②得:x≥﹣37,则a﹣1>﹣37,解得:a>﹣36.故选C.试题16答案:D解:∵∠CED=90°,∠D=30°,∴∠DCE=60°,∵△DCE绕点C顺时针旋转15°,∴∠BCE1=15°,∴∠BCD1=60°﹣15°=45°,∴∠BCD1=∠A,在△ABC和△D1CB中,,∴△ABC≌△D1CB(SAS),∴∠BD1C=∠ABC=45°,∴∠E1D1B=∠BD1C﹣∠CD1E1=45°﹣30°=15°.故选D.试题17答案:C解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.试题18答案:A解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故此选项正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故此选项正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴AC=CO,∴AC=CO=AO,∴∠COA=60°,∴∠CPO=30°,∴CO=PO=AB,∴PO=AB,故此选项正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故此选项正确;故选:A.试题19答案:A解:∵扇形OAB的圆心角为90°,假设扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故选:A.试题20答案:B解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a<0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一个根,故(3)正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.试题21答案:x﹣1解:原式=•=•=x﹣1.试题22答案:560解:根据题意得:=100(户),15<x≤20的频数是0.07×100=7(户),5<x≤10的频数是:100﹣12﹣20﹣7﹣3=58(户),则该小区月均用水量不超过10m3的家庭约有×800=560(户);故答案为:560.试题23答案:.解:连结BC,如图,∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,AC=8,AB=10,∴BC==6,∵OD⊥AC,∴AE=CE=AC=4,在Rt△BCE中,BE==2,∴sinα===.试题24答案:解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.试题25答案:解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.试题26答案:解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(m+4﹣2,1)∴2m=m+2,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.试题27答案:(1)证明:∵△ADE是等腰直角三角形,F是AE中点,∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF,在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),∴CF=MF,∴∠FMC=∠FCM;(2)AD⊥MC,理由:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.试题28答案:证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,又∵∠ADB=∠ACB=∠ABD,∴∠ADB=∠CBD=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.试题29答案:解:(1)由题设可知A(0,1),B(﹣3,),根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M、P点的坐标分别是(x,﹣x+1),(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BC∥MN,即MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解得:x=1,故当N(﹣1,4)时,MN和NC互相垂直平分.。
【2022】山东省泰安市中考数学模拟试卷(含答案)
山东省泰安市中考数学模拟试卷(含答案)(考试时间:120分钟分数:100分)一.选择题(共12小题,每小题3分,满分36分)1.﹣|1﹣1|的计算结果为()A.B.C.D.2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球3.从﹣1,0,,﹣0.3,π,中任意抽取一个数.下列事件发生的概率最大的是()A.抽取正数B.抽取非负数C.抽取无理数D.抽取分数4.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的20%,理论测试占20%,体育技能测试占60%,一名同学上述三项成绩依次为90分,95分,85分,则该同学这学期的体育成绩为()A.85分B.88分C.90分D.95分5.如图矩形ABCD中,点E是边AD的中点,FE交对角线AC于点F,若△AFE的面积为2,则△BCF的面积等于()A.8 B.4 C.2 D.16.工人师傅常用角尺平分一个任意角.作法如下:如图所示,∠AOB 是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是∠AOB 的平分线.这种作法的道理是()A.HL B.SSS C.SAS D.ASA7.某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准量的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家11月份用水12吨,交水费20元,则该市每户的月用水标准量为()A.8吨B.9吨C.10吨D.11吨8.下列说法中,正确的是()A.两条直线被第三条直线所截,内错角相等B.对角线相等的平行四边形是正方形C.相等的角是对顶角D.角平分线上的点到角两边的距离相等9.已知x a=3,x b=5,则x3a﹣2b=()A.52 B.C.D.10.若关于x的不等式组的解集为x<2,且关于x的一元一次方程mx﹣4=2(x+1)有正整数解,则满足条件的所有整数m 的值之和是()A.7 B.5 C.4 D.311.已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,则AB的长为()A.4 B.3C.5 D.412.一次函数y=kx+b的图象如图所示,则当y≥0时,x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x≥﹣1 D.x≤﹣1 二.填空题(共5小题,每小题3分,满分15分)13.如果(a,b为有理数),则a=,b=.14.分解因式:m2n﹣4mn﹣4n=.15.以绳测井.若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深几何?题目大意是:用绳子测量水井的深度.若将绳子折成三等份,一份绳长比井深多5尺;若将绳子折成四等份,一份绳长比井深多1尺.绳长、井深各式多少尺?若设绳长x尺,井深y尺,根据题意,列出的方程组为.16.如图,正五边形ABCDE内接于⊙O,对角线AC,BE相交于点M.若AB=1,则BM的长为.17.设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.三.解答题(共7小题,满分49分)18.如图,直线a∥b,∠1=45°,∠2=30°,求∠P的度数.19.附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x ﹣2y)2+(x+y﹣2z)2.求的值.20.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.21.某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本.(1)请利用分式方程求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入本笔记本?22.关于x的一元二次方程x2+2(m﹣1)x+m2﹣1=0有两个不相等的实数根x1,x2.(1)求实数m的取值范围;(2)是否存在实数m,使得x1x2=0成立?如果存在,求出m的值,如果不存在,请说明理由.23.已知:如图1,四边形ABCD中,∠ABC=135°,连接AC、BD,交于点E,BD⊥BC,AD=AC(1)求证:∠DAC=90°;(2)如图2,过点B作BF⊥AB,交DC于点F,交AC于点G,若S=2S△CBF,求证:AG=CG;△DBF(3)如图3,在(2)的条件下,若AB=3,求线段GF的长.24.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.答案一.选择题(共12小题,满分36分,每小题3分)1.【分析】原式利用绝对值的代数意义计算即可求出值.【解答】解:原式=﹣,故选:B.【点评】此题考查了有理数的减法,以及绝对值,熟练掌握运算法则是解本题的关键.2.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.【分析】分别求出各选项的概率进而得出答案.【解答】解:A、抽取正数的概率为:,B、抽取非负数的概率为:;C、抽取无理数的概率为:;D、抽取分数的概率为:;故发生的概率最大的是B选项.故选:B.【点评】本题主要考查了概率的意义,结合概率=所求情况数与总情况数之比是解题关键.4.【分析】因为体育课外活动占学期成绩的20%,理论测试占20%,体育技能测试占60%,利用加权平均数的公式即可求出答案.【解答】解:由题意知,该同学这学期的体育成绩=90×20%+95×20%+85×60%=88(分).答:该同学这学期的体育成绩为88分.故选:B.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.5.【分析】根据矩形的性质得出AD=BC,AD∥BC,求出BC=AD=2AE,求出△AFE∽△CFB,根据相似三角形的性质即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵点E是边AD的中点,∴BC=AD=2AE,∵AD∥BC,∴△AFE∽△CFB,∴=()2=()2=.∵△AFE的面积为2,∴△BCF的面积为8故选:A.【点评】本题考查了矩形的性质,相似三角形的性质和判定的应用,能推出△AFE∽△CFB是解此题的关键,注意:相似三角形的面积比等于相似比的平方.6.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:由图可知,CM=CN,又OM=ON,OC为公共边,∴△COM≌△CON,∴∠AOC=∠BOC,即OC即是∠AOB的平分线.故选:B.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.7.【分析】根据题意可以设出相应的未知数,列出相应的方程,从而可以解答本题.【解答】解:设该市每户的月用水标准量为x吨,1.5x+(12﹣x)×2.5=20,解得,x=10,故选:C.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,利用方程的思想解答.8.【分析】根据平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质逐个判断即可.【解答】解:A、两条平行线被第三条直线所截,内错角才相等,错误,故本选项不符合题意;B、对角线相等的四边形是矩形,不一定是正方形,错误,故本选项不符合题意;C、相等的角不一定是对顶角,错误,故本选项不符合题意;D、角平分线上的点到角的两边的距离相等,正确,故本选项符合题意;故选:D.【点评】本题考查了平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质等知识点,能熟记平行线的性质、正方形的判定、矩形的判定、对顶角的性质、角平分线性质的内容是解此题的关键.9.【分析】直接利用同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵x a=3,x b=5,∴x3a﹣2b=(x a)3÷(x b)2=33÷52=.故选:B.【点评】此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.10.【分析】根据已知不等式组的解集确定出m的范围,再分式方程有正整数解确定出满足题意m的所有值,并求出之和即可.【解答】解:解不等式≤1,得:x≤6﹣m,解不等式x﹣2>3(x﹣2),得:x<2,∵不等式组的解集为x<2,则6﹣m≥2,即m≤4,解方程mx﹣4=2(x+1),得:x=,∵方程有正整数解,∴m﹣2=1或m﹣2=2或m﹣2=3或m﹣2=6,解得:m=3或4或5或8,又m≤4,∴m=3或4,则满足条件的所有整数m的值之和是7,故选:A.【点评】此题考查了一元一次方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【分析】过A作AD与BC垂直,在直角三角形ACD中,根据题意确定出AD=CD,求出AD的长,再利用30度所对的直角边等于斜边的一半求出AB的长即可.【解答】解:过A作AD⊥BC,在Rt△ACD中,∠C=45°,AC=2,∴AD=CD=2,在Rt△ABD中,∠B=30°,AD=2,∴AB=2AD=4,故选:A.【点评】此题考查了解直角三角形,以及勾股定理,熟练掌握各自的性质是解本题的关键.12.【分析】当y≥0时,即函数图象在x轴上和在x轴上方时对应的x的取值范围,结合图象可求得答案.【解答】解:由图象可知当x=﹣2时,y=0,且y随x的增大而减小,∴当y≥0时,x≤﹣2,故选:B.【点评】本题主要考查一次函数的性质,理解y≥0所表示的含义是解题的关键.二.填空题(共5小题,满分15分,每小题3分)13.【分析】先计算出(2+)2,再根据可得答案.【解答】解:∵(2+)2=4+4+2=6+4,∴a=6、b=4.故答案为:6、4.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.14.【分析】提取公因式n即可.【解答】解:m2n﹣4mn﹣4n=n(m2﹣4m﹣4).故答案为n(m2﹣4m﹣4).【点评】本题考查了提公因式法分解因式,要求学生灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.【分析】此题不变的是井深,用代数式表示井深即可得方程.此题中的等量关系有:①将绳三折测之,绳多五尺;②绳四折测之,绳多一尺.【解答】解:设绳长x尺,井深y尺,根据题意,可得:;故答案为:.【点评】此题考查方程组的应用,不变的是井深,用代数式表示井深是此题的关键.16.【分析】证明∠D+∠DEB=180°,得到BE∥CD;同理可证DE∥AC,求出ME=CD =1,证明△ABE∽△MAB,得到AB2=BE•BM,代入求出即可.【解答】解:∵五边形ABCDE是正五边形,∴CD=DE=AB=1,∠BAE=∠BCD=∠D=×(5﹣2)×180°=108°,∠BAM=∠BCA=∠ABE=∠AEB=×(180°﹣108°)=36°,∴∠BED=108°﹣36°=72°,∴∠D+∠BED=180°,∴BE∥CD;同理可证DE∥AC,∴四边形DEMC为平行四边形,而DE=DC,∴四边形CDEM是菱形,∴ME=CD=1,∵∠ABM=∠ABE,∠BAM=∠AEB=36°,∴△ABE∽△MAB,∴AB:BE=BM:AB,∴AB2=BE•BM;∴12=BM×(BM+1),解得:BM=,故答案为:.【点评】该题主要考查了相似三角形的判定、菱形的判定等几何知识点的应用问题;解题的关键是牢固掌握定理内容,灵活运用有关定理来分析,解答.17.【分析】先利用一元二次方程的定义得到m2=m+2019,m3=2020m+2019,所以m3+2020n ﹣2019=2020(m+n),然后利用根与系数的关系得到m+n=1,最后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣2019=0的根,∴m2﹣m﹣2019=0,∴m2=m+2019,m3=m2+2019m=m+2019+2019m=2020m+2019,∴m3+2020n﹣2019=2020m+2019+2020n﹣2019=2020(m+n),∵m,n是方程x2﹣x﹣2019=0的两实数根,∴m+n=1,∴m3+2020n﹣2019=2020.故答案为2020.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.三.解答题(共7小题,满分49分)18.【分析】过P作PM∥直线a,求出直线a∥b∥PM,根据平行线的性质得出∠EPM=∠2=30°,∠FPM=∠1=45°,即可求出答案.【解答】解:过P作PM∥直线a,∵直线a∥b,∴直线a∥b∥PM,∵∠1=45°,∠2=30°,∴∠EPM=∠2=30°,∠FPM=∠1=45°,∴∠EPF=∠EPM+∠FPM=30°+45°=75°,【点评】本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.19.【分析】先将已知条件化简,可得:(x﹣y)2+(x﹣z)2+(y﹣z)2=0.因为x,y,z 均为实数,所以x=y=z.将所求代数式中所有y和z都换成x,计算即可.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x ﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.【点评】本题中多次使用完全平方公式,但使用技巧上有所区别,要仔细琢磨,灵活运用公式,会给解题带来益处.20.【分析】(1)用不剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供50人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的学生共有600÷60%=1000人,故答案为:1000;(2)剩少量的人数为1000﹣(600+150+50)=200人,补全条形图如下:(3),答:估计该校18000名学生一餐浪费的食物可供900人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)根据打折后购买的数量比打折前多10本,进而得出等式求出答案;(2)先求出打8折后的标价,再根据数量=总价÷单价,列式计算即可求解.【解答】解:(1)设笔打折前售价为x元,则打折后售价为0.9x元,由题意得:+10=,解得:x=4,经检验,x=4是原方程的根.答:打折前每支笔的售价是4元;(2)购入笔记本的数量为:360÷(4×0.8)=112.5(元).故该校最多可购入112本笔记本.【点评】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.22.【分析】(1)在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零,(2)在有不相等的实数根下必须满足△=b 2﹣4ac >0,列方程解出答案;(2)根据题意解方程即可得到结论.【解答】解:(1)∵方程x 2+2(m ﹣1)x +m 2﹣1=0有两个不相等的实数根x 1,x 2. ∴△=4(m ﹣1)2﹣4(m 2﹣1)=﹣8m +8>0,∴m <1;(2)存在实数m ,使得x 1x 2=0成立;∵x 1x 2=0,∴m 2﹣1=0,解得:m =﹣1或m =1,∴当m =1时,方程为x 2=0,有两个相等的实数根,与题意不符,舍去,∴m =﹣1.【点评】本题考查了一元二次方程根的判别式的应用,切记不要忽略一元二次方程二次项系数不为零这一隐含条件,难度适中.23.【分析】(1)过点A 作AP ⊥BD 于点P ,AF ⊥BC ,交CB 的延长线于点F ,可证四边形APBF 是正方形,可得AP =AF ,根据“HL ”可证Rt △APD ≌Rt △FAC ,可得∠DAP =∠FAC ,即可得∠DAC =90°;(2)过点F 作FM ⊥BC 于点M ,FN ⊥BD 于点N ,过点C 作CP ⊥BF 于点P ,在BD 上截取DH =BC ,连接AH ,根据角平分线的性质可得FN =FM ,根据S △DBF =2S △CBF ,可得BD =2BC ,即BH =DH =BC ,通过全等三角形的判定和性质可得AG =GC ; (3)由全等三角形的性质可得BG =PG =,根据勾股定理可求GC ,DC ,PF 的长,即可求GF 的长.【解答】解:(1)如图,过点A 作AP ⊥BD 于点P ,AF ⊥BC ,交CB 的延长线于点F ,∵AP ⊥BD ,AF ⊥BC ,BD ⊥BC∴四边形APBF 是矩形∵∠ABC =135°,∠DBC =90°,∴∠ABP =45°,且∠APB =90°,∴AP =PB ,∴四边形APBF 是正方形∴AP =AF ,且AD =AC ,∴Rt △APD ≌Rt △FAC (HL )∴∠DAP =∠FAC ,∵∠FAC +∠PAC =90°∴∠DAP +∠PAC =90°∴∠DAC =90°(2)如图,过点F 作FM ⊥BC 于点M ,FN ⊥BD 于点N ,过点C 作CP ⊥BF 于点P ,在BD 上截取DH =BC ,连接AH ,∵∠ABC =135°,∠ABF =90°,∴∠CBF =45°,且∠DBC =90°,∴∠DBF =∠CBF ,且FN ⊥BD ,FM ⊥BC ,∴FN =FM ,∵S △DBF =2S △CBF ,∴×2,∴BD =2BC ,∴BH =BD ﹣DH =BD ﹣BC =BC ,∵∠AED =∠BEC ,∠DAC =∠DBC =90°,∴∠ADH =∠ACB ,且AD =AC ,DH =BC ,∴△ADH ≌△ACB (SAS ),∴∠AHD =∠ABC =135°,AH =AB ,∴∠AHB =∠ABD =45°,∴∠HAB =90°,∵BC =BH ,∠HAB =∠BPC ,∠AHB =∠FBC =45°,∴△AHB ≌△PBC (AAS ),∴AB =PC ,∵AB =PC ,且∠ABP =∠BPC ,∠AGB =∠CGP ,∴△AGB ≌△CGP (AAS ),∴AG =GC(3)∵AB =3=CP ,∠PBC =45°,CP ⊥BF ,∴BP =3,∵△AGB ≌△CGP ,∴BG =GP =在Rt △PGC 中,CG == ∴AG =GC =∴AC =AD =3 在Rt △ADC 中,CD ==3,∵S △DBF =2S △CBF ,∴DF =2FC∵DF +FC =DC∴CF = 在Rt △PFC 中,PF ==1∴FG=PG+PF=1+=【点评】本题是四边形综合题,考查了正方形的判定和性质,全等三角形判定和性质,勾股定理,角平分线的性质等知识,添加恰当的辅助线构造全等三角形是本题的关键.24.【分析】(1)将A(﹣1,0)、B(3,0)代入二次函数y=ax2+bx﹣3a求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(3)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.【解答】解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).【点评】考查了二次函数综合题,此题是一道典型的“存在性问题”,结合二次函数图象和等腰三角形、直角梯形的性质,考查了它们存在的条件,有一定的开放性.。
2023年山东省泰安市中考数学模拟试卷及答案解析
2023年山东省泰安市中考数学模拟试卷一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()﹣(﹣2)=3,则括号内的数是()A.﹣1B.1C.5D.﹣52.0.0000002用科学记数法表示为()A.2×10﹣7B.2×10﹣6C.0.2×10﹣8D.﹣2×1073.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2−15xy2=45xy24.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.5.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄1212141516人数12231则这些学生年龄的众数和中位数分别是()A.15,14B.15,13C.14,14D.13,146.不等式组{4x−3>2x−625−x≥−35的整数解的个数为()A.1B.2C.3D.47.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A .4√3B .6√3C .2√3D .88.如图,一艘船由A 港沿北偏东65°方向航行30√2km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )km .A .30+30√3B .30+10√3C .10+30√3D .30√39.如图,已知△ABC ,AB =BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E .若CD =5,CE =4,则⊙O 的半径是( )A .3B .4C .256D .25810.如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A .95B .125C .165D .18511.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则ACAE的值为()A.1B.512C.712D.√212.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0B.0<y<m C.y>m D.y=m二、填空题(每题4分,满分24分,将答案填在答题纸上)13.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为.14.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.16.已知如图:△ABC中,∠C=90°,BC=AC,以AC为直径的圆交AB于D,若AD=8cm,则阴影部分的面积为.17.如图,在△ABC中,∠C=90°,AC=BC=√2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=.18.如图,在平面直角坐标系中,点A1的坐标为(2,4),以点O为圆心,以OA1长为半径画弧,交直线y=12x于点B1.过B1点作B1A2∥y轴,交直线y=2x于点A2,以O为圆心,以OA2长为半径画弧,交直线y=12x于点B2;过点B2作B2A3∥y轴,交直线y=2x于点A3,以点O为圆心,以OA3长为半径画弧,交直线y=12x于点B3;过B3点作B3A4∥y轴,交直线y=2x于点A4,以点O为圆心,以OA4长为半径画弧,交直线y=1 2x于点B4,…按照如此规律进行下去,点B2020的坐标为.三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.19.(8分)先化简,再求值:a2+aa2−2a+1÷(2a−1−1a),其中a是方程2x2+x﹣3=0的解.20.(10分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A:很好;B:较好;C:一般;D:较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A类男生和C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.21.(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=kx(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.22.(12分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.23.(12分)如图,在四边形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中点,作CE ⊥AB,垂足E在线段AB上,连接EF、CF.(1)若∠ADC=80°,求∠ECF;(2)求证:∠ECF=∠CEF.24.(12分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S 及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y=174的距离?若存在,求出定点F的坐标;若不存在,请说明理由.25.(14分)已知正方形ABCD和正方形CEGF,连接AC,AG,BE.(1)如图1,探究线段AG与BE之间的数量关系,并证明.(2)当B,E,F三点在一条直线上时,如图2,延长CG交AD于点H.若AG=6,GH =2√2,求BC的值.2023年山东省泰安市中考数学模拟试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()﹣(﹣2)=3,则括号内的数是()A.﹣1B.1C.5D.﹣5解:根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3,故选:B.2.0.0000002用科学记数法表示为()A.2×10﹣7B.2×10﹣6C.0.2×10﹣8D.﹣2×107解:0.0000002=2×10﹣7.故选:A.3.下列计算错误的是()A.(a3b)•(ab2)=a4b3B.(﹣mn3)2=m2n6C.a5÷a﹣2=a3D.xy2−15xy2=45xy2解:选项A,单项式×单项式,(a3b)•(ab2)=a3•a•b•b2=a4b3,选项正确选项B,积的乘方,(﹣mn3)2=m2n6,选项正确选项C,同底数幂的除法,a5÷a﹣2=a5﹣(﹣2)=a7,选项错误选项D,合并同类项,xy2−15xy2=55xy2−15xy2=45xy2,选项正确故选:C.4.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C .D .解:A 、是轴对称图形,但不是中心对称图形,故此选项符合题意; B 、既是中心对称图形又是轴对称图形,故此选项不符合题意; C 、不是轴对称图形,是中心对称图形,故此选项不合题意; D 、既是中心对称图形又是轴对称图形,故此选项不符合题意. 故选:A .5.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄 12 12 14 15 16 人数12231则这些学生年龄的众数和中位数分别是( ) A .15,14B .15,13C .14,14D .13,14解:15出现的次数最多,15是众数.一共9个学生,按照顺序排列第5个学生年龄是14,所以中位数为14. 故选:A .6.不等式组{4x −3>2x −625−x ≥−35的整数解的个数为( ) A .1 B .2 C .3 D .4解:{4x −3>2x −6①25−x ≥−35②, 解不等式①得,x >−32, 解不等式②得,x ≤1,所以,不等式组的解集是−32<x ≤1,所以,不等式组的整数解有﹣1、0、1共3个. 故选:C .7.如图,⊙O 是△ABC 的外接圆,∠B =60°,⊙O 的半径为4,则AC 的长等于( )A.4√3B.6√3C.2√3D.8解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=√32OC=2√3,∴AC=2CD=4√3.故选:A.8.如图,一艘船由A港沿北偏东65°方向航行30√2km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30√3B.30+10√3C.10+30√3D.30√3解:根据题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=30√2,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30√2,∴AE =BE =√22AB =30km ,在Rt △CBE 中,∵∠ACB =60°, ∴CE =√33BE =10√3km , ∴AC =AE +CE =30+10√3,∴A ,C 两港之间的距离为(30+10√3)km , 故选:B .9.如图,已知△ABC ,AB =BC ,以AB 为直径的圆交AC 于点D ,过点D 的⊙O 的切线交BC 于点E .若CD =5,CE =4,则⊙O 的半径是( )A .3B .4C .256D .258解:如图1,连接OD 、BD ,,∵AB 是⊙O 的直径, ∴∠ADB =90°,∴BD⊥AC,又∵AB=BC,∴AD=CD,又∵AO=OB,∴OD是△ABC的中位线,∴OD∥BC,∵DE是⊙O的切线,∴DE⊥OD,∴DE⊥BC,∵CD=5,CE=4,∴DE=√52−42=3,∵S△BCD=BD•CD÷2=BC•DE÷2,∴5BD=3BC,∴BD=35 BC,∵BD2+CD2=BC2,∴(35BC)2+52=BC2,解得BC=25 4,∵AB=BC,∴AB=25 4,∴⊙O的半径是;25 4÷2=258.故选:D.10.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.95B.125C.165D.185解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE=√AB2+BE2=5,由折叠知,BF⊥AE(对应点的连线必垂直于对称轴)∴BH=AB×BEAE=125,则BF=24 5,∵FE=BE=EC,∴∠BFC=90°,∴CF=√62−(245)2=185.故选:D.11.如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则ACAE的值为()A.1B.512C.712D.√2解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt △ABC 中,AC =√32+42=5, ∴AO =OB =52, ∵12BH •AC =12AB •BC ,∴BH =3×45=125,在Rt △OBH 中,OH =√OB 2−OH 2=√(52)2−(125)2=710, ∵EA ⊥CA , ∴BH ∥AE , ∴△OBH ∽△OEA , ∴BH AE =OH OA ,∴OA AE =OH BH =710125=724.∴AC AE=712,故选:C .12.二次函数y =x 2﹣x +m (m 为常数)的图象如图所示,当x =a 时,y <0;那么当x =a ﹣1时,函数值( )A .y <0B .0<y <mC .y >mD .y =m解:∵对称轴是x =12,0<x 1<12 故由对称性12<x 2<1当x =a 时,y <0,则a的范围是x1<a<x2,所以a﹣1<0,当x<12时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选:C.二、填空题(每题4分,满分24分,将答案填在答题纸上)13.若a+b=2,ab=﹣3,则代数式a3b+2a2b2+ab3的值为﹣12.解:∵a+b=2,ab=﹣3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=﹣3×4,=﹣12.故答案为:﹣12.14.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是65°.解:∵l1∥l2,∴∠1+∠CAB=∠2,∵Rt△ACB中,∠C=90°,AC=BC,∴∠CAB=45°,∴∠2=20°+45°=65°,故答案为:65°.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:016.已知如图:△ABC中,∠C=90°,BC=AC,以AC为直径的圆交AB于D,若AD=8cm,则阴影部分的面积为32cm2.解:连接CD,∵△ABC中,∠C=90°,BC=AC,∴∠DAC=45°,∵以AC为直径的圆交AB于点D,∴∠ADC=90°,∴CD⊥AB,∴CD=AD=BD,∵AD=8cm,∴图中阴影部分的面积为:S△BDC=12BD•CD=12×8×8=32(cm2).故答案为:32cm2.17.如图,在△ABC中,∠C=90°,AC=BC=√2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=√3−1.解:如图,连接BB ′,∵△ABC 绕点A 顺时针方向旋转60°得到△AB ′C ′, ∴AB =AB ′,∠BAB ′=60°, ∴△ABB ′是等边三角形, ∴AB =BB ′,在△ABC ′和△B ′BC ′中, {AB =BB′AC′=B′C′BC′=BC′, ∴△ABC ′≌△B ′BC ′(SSS ), ∴∠ABC ′=∠B ′BC ′, 延长BC ′交AB ′于D , 则BD ⊥AB ′,∵∠C =90°,AC =BC =√2, ∴AB =√(√2)2+(√2)2=2, ∴BD =2×√32=√3, C ′D =12×2=1,∴BC ′=BD ﹣C ′D =√3−1. 故答案为:√3−1.18.如图,在平面直角坐标系中,点A 1的坐标为(2,4),以点O 为圆心,以OA 1长为半径画弧,交直线y =12x 于点B 1.过B 1点作B 1A 2∥y 轴,交直线y =2x 于点A 2,以O 为圆心,以OA 2长为半径画弧,交直线y =12x 于点B 2;过点B 2作B 2A 3∥y 轴,交直线y =2x 于点A 3,以点O 为圆心,以OA 3长为半径画弧,交直线y =12x 于点B 3;过B 3点作B 3A 4∥y 轴,交直线y =2x 于点A 4,以点O 为圆心,以OA 4长为半径画弧,交直线y =12x 于点B 4,…按照如此规律进行下去,点B 2020的坐标为 (22021,22020) .解:由题意可得,点A 1的坐标为(2,4),设点B 1的坐标为(a ,12a ),√a 2+(12a)2=√22+42,解得,a =4, ∴点B 1的坐标为(4,2),同理可得,点A 2的坐标为(4,8),点B 2的坐标为(8,4),点A 3的坐标为(8,16),点B 3的坐标为(16,8),……∴点B 2020的坐标为(22021,22020),故答案为:(22021,22020).三、解答题:共78分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.19.(8分)先化简,再求值:a 2+a a 2−2a+1÷(2a−1−1a ),其中a 是方程2x 2+x ﹣3=0的解. 解:原式=a(a+1)(a−1)2÷[2a a(a−1)−a−1a(a−1)] =a(a+1)(a−1)2÷a+1a(a−1)=a(a+1)(a−1)2•a(a−1)a+1 =a 2a−1, 解方程2x 2+x ﹣3=0得x 1=1、x 2=−32,∵a ﹣1≠0,即a ≠1,所以a =−32,则原式=94−32−1=−910. 20.(10分)张老师为了了解班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查.他将调查结果分为四类:A :很好;B :较好;C :一般;D :较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)请计算出A 类男生和C 类女生的人数,并将条形统计图补充完整.(2)为了共同进步,张老师想从被调查的A 类和D 类学生中各随机选取一位同学进行“一帮一”互助学习,请用画树状图或列表的方法求出所选两位同学恰好是一男一女同学的概率.解:(1)∵被调查的总人数为(7+5)÷60%=20人,∴A 类别人数为20×15%=3人、C 类别人数为20×(1﹣15%﹣60%﹣10%)=3, 则A 类男生人数为3﹣1=2、C 类女生人数为3﹣1=2,补全图形如下:(2)画树状图得:∵共有6种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有3种情况, ∴所选两位同学恰好是一男一女同学的概率为12. 21.(10分)如图,在平面直角坐标系中,一次函数y =mx +n (m ≠0)的图象与y 轴交于点C ,与反比例函数y =k x(k ≠0)的图象交于A ,B 两点,点A 在第一象限,纵坐标为4,点B 在第三象限,BM ⊥x 轴,垂足为点M ,BM =OM =2.(1)求反比例函数和一次函数的解析式.(2)连接OB ,MC ,求四边形MBOC 的面积.解:(1)∵BM =OM =2,∴点B 的坐标为(﹣2,﹣2),∵反比例函数y =k x (k ≠0)的图象经过点B ,则﹣2=k −2,得k =4,∴反比例函数的解析式为y =4x ,∵点A 的纵坐标是4,∴4=4x,得x =1,∴点A 的坐标为(1,4),∵一次函数y =mx +n (m ≠0)的图象过点A (1,4)、点B (﹣2,﹣2),∴{m +n =4−2m +n =−2,解得{m =2n =2, 即一次函数的解析式为y =2x +2;(2)∵y =2x +2与y 轴交于点C ,∴点C 的坐标为(0,2),∵点B (﹣2,﹣2),点M (﹣2,0),∴OC =MB =2,∵BM ⊥x 轴,∴MB ∥OC ,∴四边形MBOC 是平行四边形,∴四边形MBOC 的面积是:OM •OC =4.22.(12分)学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.(1)求甲、乙两种办公桌每张各多少元?(2)若学校购买甲乙两种办公桌共40张,且甲种办公桌数量不多于乙种办公桌数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.解:(1)设甲种办公桌每张x 元,乙种办公桌每张y 元,根据题意,得:{20x +15y +7000=2400010x −5y +1000=2000, 解得:{x =400y =600, 答:甲种办公桌每张400元,乙种办公桌每张600元;(2)设甲种办公桌购买a 张,则购买乙种办公桌(40﹣a )张,购买的总费用为y ,则y=400a+600(40﹣a)+2×40×100=﹣200a+32000,∵a≤3(40﹣a),∴a≤30,∵﹣200<0,∴y随a的增大而减小,∴当a=30时,y取得最小值,最小值为26000元.23.(12分)如图,在四边形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中点,作CE ⊥AB,垂足E在线段AB上,连接EF、CF.(1)若∠ADC=80°,求∠ECF;(2)求证:∠ECF=∠CEF.解:(1)∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF=12(180°﹣80°)=50°,∵CE⊥AB,∴CE⊥CD,∴∠DCE=90°,∴∠ECF=90°﹣50°=40°;(2)如图,延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{∠A=∠FDMAF=DF∠AFE=∠DFM,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=12EM=FE,∴∠ECF=∠CEF.24.(12分)如图,已知直线AB与抛物线C:y=ax2+2x+c相交于点A(﹣1,0)和点B(2,3)两点.(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S 及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y =174的距离?若存在,求出定点F 的坐标;若不存在,请说明理由.解:(1)由题意把点(﹣1,0)、(2,3)代入y =ax 2+2x +c ,得,{a −2+c =04a +4+c =3, 解得a =﹣1,c =3,∴此抛物线C 函数表达式为:y =﹣x 2+2x +3;(2)如图1,过点M 作MH ⊥x 轴于H ,交直线AB 于K ,将点(﹣1,0)、(2,3)代入y =kx +b 中,得,{−k +b =02k +b =3, 解得,k =1,b =1,∴y AB =x +1,设点M (a ,﹣a 2+2a +3),则K (a ,a +1),则MK =﹣a 2+2a +3﹣(a +1)=﹣(a −12)2+94,根据二次函数的性质可知,当a =12时,MK 有最大长度94, ∴S △AMB 最大=S △AMK +S △BMK=12MK •AH +12MK •(x B ﹣x H )=12MK •(x B ﹣x A )=12×94×3=278,∴以MA 、MB 为相邻的两边作平行四边形MANB ,当平行四边形MANB 的面积最大时,S 最大=2S △AMB 最大=2×278=274,M (12,154);(3)存在点F ,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴对称轴为直线x =1,当y =0时,x 1=﹣1,x 2=3,∴抛物线与点x 轴正半轴交于点C (3,0),如图2,分别过点B ,C 作直线y =174的垂线,垂足为N ,H , 若抛物线对称轴上存在点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线y =174的距离,设F (1,a ),连接BF ,CF ,则BF =BN =174−3=54,CF =CH =174,由题意可列:{(2−1)2+(a −3)2=(54)2(3−1)2+a 2=(174)2, 解得,a =154, ∴F (1,154),设抛物线上任一点P 坐标为(x ,﹣x 2+2x +3),则PF 2=(x ﹣1)2+(﹣x 2+2x +3−154)2=x 4﹣4x 3+132x 2﹣5x +2516,设点P 到直线y =174的距离为d , 则d 2=(﹣x 2+2x +3−174)2=x 4﹣4x 3+132x 2﹣5x +2516, ∴PF 2=d 2,即PF =d ,∴在抛物线C 的对称轴上存在定点F ,使抛物线C 上任意一点P 到点F 的距离等于到直线y =174的距离,点F 的坐标为(1,154).25.(14分)已知正方形ABCD和正方形CEGF,连接AC,AG,BE.(1)如图1,探究线段AG与BE之间的数量关系,并证明.(2)当B,E,F三点在一条直线上时,如图2,延长CG交AD于点H.若AG=6,GH =2√2,求BC的值.解:(1)连接CG,由旋转性质知∠BCE =∠ACG =α,在Rt △CEG 和Rt △CBA 中,CE CG =cos45°=√22,CB CA=cos45°=√22, ∴CG CE =CA CB =√2,∴△ACG ∽△BCE ,∴AG BE =CA CB =√2,∴线段AG 与BE 之间的数量关系为AG =√2BE ;(2)∵∠CEF =45°,点B 、E 、F 三点共线, ∴∠BEC =135°,∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°,∴∠AGH =∠CAH =45°,∵∠CHA =∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH ,设BC =CD =AD =a ,则AC =√2a ,则由AG AC =GH AH ,得√2a =2√2AH , ∴AH =23a ,则DH =AD ﹣AH =13a ,CH =√CD 2+DH 2=√103a , ∴AG AC =AHCH ,得√2a =23a √103a , 解得:a =3√5,即BC =3√5.。
山东省泰安市初中学生学业模拟考试数学试题及答案
泰安市二〇一四年初中学生学业模拟考试数 学 试 题本试卷分选择题部分(60分)和非选择题部分(60分),满分120分,考试时间120分钟。
注意事项:1.答题前,请考生仔细阅读答题纸上的注意事项,并务必按照相关要求作答。
2.考试结束后,监考人员将本试卷和答题纸一并收回。
一、选择题:(本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.)1.﹣2的绝对值等于A .2B .﹣2C .D .±2 2. 下列运算正确的是A .523x x x =⋅B .336()x x = C .5510x x x +=D . 336x x x=-3.下列四个图形中,既是轴对称图形,又是中心对称图形是⑴ ⑵ ⑶ ⑷A .⑴、⑵B .⑴、⑶C . ⑴、⑷D .⑵、⑶4、抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移35、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为 输入xA .32B .25 C .425D .2546.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是A .m >0B .n <0C .mn <0D .m -n >07. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是A . 4cmB . 6cmC . 8cmD . 2cm8.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是.AB .C .D .9.已知⎩⎨⎧==12y x 是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则n m -2的算术平方根为A .±2B . 2C .2D . 410.袋子中装有4个黑球2个白球,这些球除了颜色外都相同,从袋子中随机摸出一个球,则摸到黑球的概率是OBA(第7题图)5cmyOxyOxyOoxyA . 1 6B . 1 2C . 1 3D . 2 311. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是 A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12.如图12,已知点A 1,A 2,…,A 在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为A. B.C. 2D. 213.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是|A .3场B .4场C .5场D .6场 14.二次函数y=(2x-1)2+2的顶点的坐标是A .(1,2)B .(1,-2)C .( 2 1,2)D .(- 2 1,-2)15. 如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是 A .4 B .5 C .6 D .10 16. 已知∠I=40°,则∠I 的余角度数是A .150°B .140°C .50°D .60°17. 据统计,今年泰安市中考报名确认考生人数是96 200人,用科学记数法表示96 200为 A .49.6210⨯ B . 50.96210⨯ C .59.6210⨯ D .396.210⨯ 18.如果半径分别为2cm 和3cm 的两圆外切,那么这两个圆的圆心距是 A .1cm B .5cm C .1cm 或5cm D .小于1cm. 19下列图形中,是正方体的平面展开图的是.A BCO xy -4611题图12题A .. B.. C. D.20.如图,AB 是⊙O 的弦,OC 是⊙O 的半径,OC ⊥AB 于点D ,若 AB=8, OD=3,则⊙O 的半径等于A .4B .5C .8D .10.二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题3分)21.计算013+=3⎛⎫-- ⎪⎝⎭____________.22.如图,AB 是⊙O 的直径,CD 是弦,DAB ∠=48︒,则ACD ∠= ︒.23.如图,已知梯形ABCD 中,AD ∥BC ,∠B =30°,∠C =60°,AD =4,AB =33,则下底BC 的长为 __________.24.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为22题图 23题图 24题图三、解答题(本大题共5小题,满分48分.解答要写出必要的文字说明、证明过程或演算步骤) 25. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:(-1)-| -7 |+ 9 ×( 5 -π)0+( 1 5)-1;60°30°DCBADCBAOE(2))化简:a a a a a -+-÷--2244)111(26. (本题满分9分)已知:如图,在△ABC 、△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C 、D 、E 三点在同一直线上,连结BD.求证:(1)△BAD ≌△CAE ;(2)试猜想BD 、CE 有何特殊位置关系,并证明.27.(本题满分10分)为了抓住世界杯商机,某商店决定购进A 、B 两种世界杯纪念品.若购进A 种纪念品10件,B 种纪念品5件,需要1000元;若购进A 种纪念品5件,B 种纪念品3件,需要550元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B 种纪念品数量的6倍,且不超过B 种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?28.(本题满分10分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.29.(本题满分12分)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、BADE(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.泰安市初中学生学业模拟考试数学参考答案一、参考答案:1 2 3 4 5 6 7 8 9 10A ABC A C11 12 13 14 15 16 17 18 19 20D C B B二、填空题:21.4 22. 42 23. 12 24. 32三、解答题:25.(1)原式=1-7+3+5=2.(2).解:()()22211442(1)1122a aa a a aa a a a aa--+--÷=⋅= -----a =50b =10050x +100y =10000 6y ≤x ≤8y 26、(1)AB =AC ,易证∠BAD =∠C AE ,AD =AE ,所以△BAD ≌△CA E (SAS )。
2024年山东省中考数学模拟试题
2024年山东省中考数学模拟试题一、单选题1.下列各数中,最小的数是( )A .5--B .16-的倒数C .64-的立方根D .2.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是( )A .B .C .D .3.2024年4月16日,国家统计局发布,一季度国内生产总值29.6万亿元,按不变价格计算,同比增长5.3%,比上年四季度环比增长1.6%.其中数据“29.6万亿”用科学记数法表示为( )A .122.9610⨯B .132.9610⨯C .140.29610⨯D .142.9610⨯4.如图,一个球体在长方体上沿虚线从左向右滚动,在滚动过程中,球体与长方体的组合图形的视图始终不变的是( )A .左视图B .主视图C .俯视图D .左视图和俯视图5.下列计算正确的是( ) A .623a a a ÷= B .()52a a -=-C .()()2111a a a +-=-D .22(1)1a a +=+6.如图,AB CD ∥,点E 在线段BC 上(不与点B C ,重合),连接DE ,若40D ∠=︒,60BED ∠=︒,则B ∠的度数( )A .20︒B .30︒C .40︒D .60︒7.化简422x x +-+的结果是( ) A .1B .224x x -C .2x x +D .22x x +8.中国古代数学有着辉煌的成就,《周髀算经》、《算学启蒙》、《测圆海镜》、《四元玉鉴》是我国古代数学的重要文献.某中学拟从这4部数学名著中选择2部作为校本课程“数学文化”的学习内容,恰好选中《算学启蒙》的概率是( ) A .14B .12C .13D .169.如图,在ABC V 中,80BAC ∠=︒,70ACB ∠=︒.根据图中的尺规作图痕迹,下列说法中错误的是( )A .BE EC =B .12DE BD =C .40BAQ ∠=︒D .30EQF ∠=︒10.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,对称轴为12x =,且经过点 2,0 .下列说法:①0abc <; ②20b c -+=; ③420a b c ++<;④若15(,)2y -,25(,)2y 是抛物线上的两点,则12y y <;⑤()14b m am b >+(其中12m ≠). 其中结论正确的有( )A .1个B .2个C .3个D .4个二、填空题11 12.如图,将两条宽度都是为2的纸条重叠在一起,使45ABC ∠=︒,则四边形ABCD 的面积为 .13.代数式22x +与代数式535x -的值相等,则x =. 14.如图,正方形ABCD 中,扇形BAC 与扇形CBD 的弧交于点E ,AB =6cm .则图中阴影部分面积为cm 2.15.二次函数222y x x -=-中,当34x ≤≤时,y 的最小值是.16.如图,在ABC V 中,90ACB ∠=︒,30B ∠=︒,1AC =,AC 在直线l 上.将ABC V 绕点A 按顺时针方向旋转到位置①,可得到点1P ,此时12AP =;将位置①的三角形绕点1P 按顺时针方向旋转到位置②,可得到点2P ,此时22AP =将位置②的三角形绕点2P 按顺时针方向旋转到位置③,可得到点3P ,此时33AP =…,按此规律继续旋转,直到得到点2024P 为止.则2024AP =.三、解答题17.(1()10114sin 304π2-⎛⎫-︒++- ⎪⎝⎭;(2)解不等式21232x x -+≥-,并把它的解集表示在数轴上. 18.4月 23 日是世界读书日,为了解学生的阅读喜好,丰富学校图书资源,某校将课外书籍设置了四类:文学类、科技类、艺术类、其他类,随机抽查了部分学生,要求每名学生从中选择自己最喜欢的一类,将抽查结果绘制成如图统计图.请根据图中信息解答下列问题:(1)被抽查的学生人数为,扇形统计图中m 的值为; (2)请将条形统计图补充完整;(3)若该校共有1000名学生,根据抽查结果,试估计全校最喜欢“文学类”书籍的学生人数. 19.随着新能源汽车推广力度加大,产业快速发展,越来越多的消费者接受并购买新能源汽车.我市某品牌新能源汽车经销商1月至3月份统计,该品牌汽车1月份销售150辆,3月份销售216辆.(1)求该品牌新能源汽车销售量的月均增长率;(2)若该品牌新能源汽车的进价为52000元,售价为58000元,则该经销商1月至3月份共盈利多少元?20.学完测高的知识后,学校数学社团的同学对公园里里的一棵古树进行了实地测量.如图,先把长为1.8米的标杆EF 垂直立于地面上的点F 处,当树的最高点A 、标杆顶端E 与地面上的点C 在同一直线上时,1FC =米,接着沿斜坡从C 走到点D 处,此时测得树的最高点A 处仰角45α=︒,D 到地面BC 的距离DM 为9米,CM 为12米,求古树的高度.21.综合与探究:如图,一次函数y x b =+的图象与反比例函数ky x=的图象交于点(),4A m ,与x 轴交于点B ,与y 轴交于点()0,3C .(1)求一次函数、反比例函数的表达式及点B 的坐标; (2)根据图象,请直接写出关于x 的不等式kx b x+>的解集; (3)已知P 为反比例函数ky x=图象上的一点,且2OBP OAC S S =△△,求点P 的坐标. 22.如图,在ABC V 中,AB BC =,AB 为O e 的直径,AC 与O e 相交于点 D ,过点D 作DE BC ⊥于点E ,CB 延长线交O e 于点F .(1)求证:DE 为O e 的切线; (2)若1BE =,2BF =,求AD 的长.23.如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)-.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使C M N V 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由. 24.【课本再现】(1)如图1,四边形ABCD 是一个正方形,E 是BC 延长线上一点,且AC EC =,则D A E ∠的度数为. 【变式探究】(2)如图2,将(1)中的ABE V 沿AE 折叠,得到AB E 'V ,延长CD 交B E '于点F ,若2AB =,求B F '的长.【延伸拓展】(3)如图3,当(2)中的点E在射线BC上运动时,连接B B',B B'与AE交于点P.探究:当EC的长为多少时,D,P两点间的距离最短?请求出最短距离.。
山东省泰安市中考数学模拟试卷
山东省泰安市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)若与互为相反数,则的值等于()A .B .C .D .2. (2分)下列几何体的三视图中,左视图是圆的是()A . ①B . ②C . ③D . ④3. (2分)芜湖地处长江中下游,水资源丰富,素有“江南水乡”之美称.据测量,仅浅层地下水蕴藏量就达56000万m3 ,用科学记数法记作()A . 5.6×109m3B . 56×108m3C . 5.6×108m3D . 56000×104m34. (2分) (2017八上·莒南期末) 如图,下列图案是我国几家银行的标志,其中轴对称图形有()A . 1个B . 2个C . 3个D . 4个5. (2分)如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A . 40°B . 50°C . 60°D . 70°6. (2分)(2016·云南) 某校随机抽查了10名参加2016年云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12124下列说法正确的是()A . 这10名同学的体育成绩的众数为50B . 这10名同学的体育成绩的中位数为48C . 这10名同学的体育成绩的方差为50D . 这10名同学的体育成绩的平均数为487. (2分)(2017·江北模拟) 计算6x6÷3x2的结果是()A . 2x3B . 3x4C . 2x4D . 3x38. (2分)若是正比例函数,则m的值为()A .B .C . 1或-1D . 或9. (2分)下列各组线段不能构成三角形的是()A . 3cm,8cm,7cmB . 4cm,5cm,6cmC . 6cm,8cm,15cmD . 8cm,9cm,15cm10. (2分) (2019九上·海南期末) 已知是一元二次方程的一个解,则的值是()A .B .C .D . 或11. (2分)如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后的等腰三角形周长是()A . 12B . 18C . 2+D . 2+212. (2分) (2016九上·高安期中) 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题: (共6题;共7分)13. (1分) (2016七上·义马期中) 若|y+3|+(x﹣2)2=0,则yx=________.14. (1分)比较大小:4________(填“>”或“<”).15. (1分)如图为一个电路图,在该电路图上有四个开关S1 , S2 , S3 , S4和一个灯泡⊗,闭合开关S1或同时闭合开关S2 , S3 , S4都能够使灯泡发光,现在任意闭合其中两个开关,灯泡能够发光的概率为________.16. (2分)图中的两个四边形相似,则 =________,a=________.17. (1分)一直角三角形的斜边长是13 cm,内切圆的半径是2 cm,则这个三角形的周长是________.18. (1分) (2018八上·茂名期中) 如图放置的△OAB1 ,△B1A1B2 ,△B2A2B3 ,…都是边长为2的等边三角形,点A在x轴上,点O,B1 , B2 , B3 ,…都在正比例函数y=kx的图象l上,则点B2019的坐标是________.三、计算题: (共1题;共5分)19. (5分)计算(﹣5sin20°)0﹣()﹣2+|﹣24|+.四、解答题: (共5题;共41分)20. (5分)如图:正方形ABCD中,E为AB的中点,F为AD上一点,且AF=AD,求∠FEC的度数.21. (6分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是________(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.22. (10分)(2020·杭州模拟) 如图,在矩形ABCD中,M为对角线BD的中点,过点M作直线分别交AD,BC于点E,F.若直线绕点M从与BD重合的位置开始逆时针旋转,设旋转角为 .(1)求证:DE=BF;(2)已知∠ABD=60°,AB= .①若△BMF为等腰三角形,求;②连结BE,若△DEM是直角三角形,用含的代数式表示BE.23. (10分) (2017七下·卢龙期末) 师生积极为地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,该厂生产的帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。
2022年山东省泰安市中考模拟测试数学试题二(word版含答案)
第 1 页 共 8 页 2022年泰安中考模拟测试数学试题二一、选择题(本大题共12个小题,每小题4分,共48分.)1.-|-2022|的相反数是( )A .-2022B .2022C . 20221D .-20221 2.下列运算正确的是( )A .3a +2a =5a 2B .-8a 2÷4a =2aC .-(2a 2)3=-8a 6D .4a 3·3a 2=12a 63.某个几何体的三视图如图所示,该几何体是( )4.一副三角板如图放置,两三角板的斜边互相平行,每个三角板的直角顶点都在另一个三角板的斜边上,图中∠α的度数为( )A .45°B .60°C .75°D .85°第3题图 第4题图 第5题图第6题图 5.如图,在⊙O 中,弦CD 与直径AB 相交于点E ,连接OC ,BD .若∠ABD =20°,∠AED =80°,则∠COB 的度数为( )A .80°B .100°C .120°D .140°6.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是( )A .中位数是3,众数是2B .众数是1,平均数是2C .中位数是2,众数是2D .中位数是3,平均数是2.5第 2 页 共 8 页 7.甲、乙两人沿着总长度为10km 的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为xkm /h ,则下列方程中正确的是( )A .122.11010=-x xB .2.0102.110=-xx C .12102.110=-xx D .2.02.11010=-xx 8.二次函数y =a (x +b )2+c 的图象如图所示,则反比例函数x a y =与一次函数y =bx +c 在同一坐标系内的大致图象是( )9.无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧边界N 处俯角为43°,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35°,则M ,N 之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A .188mB .269mC .286mD .312m第8题图 第9题图 第10题图 10.如图,AB 是⊙O 的弦,等边三角形OCD 的边CD 与⊙O 相切于点P ,且CD ∥AB ,连接OA ,OB ,OP ,AD .若∠COD +∠AOB =180°,AB =6,则AD 的长是( )A .62B .36C .213D .13第 3 页 共 8 页11.如图,矩形ABCD 的边CD 上有一点E ,∠DAE =22.5°,EF ⊥AB ,垂足为F ,将△AEF 绕着点F 顺时针旋转,使得点A 的对应点M 落在EF 上,点E 恰好落在点B 处,连接BE .下列结论:①BM ⊥AE ;②四边形EFBC 是正方形;③∠EBM =30°;④S四边形BCEM :S △BFM=(22+1):1.其中结论正确的个数是( )A .1个B .2个C .3个D .4个第11题图 第12题图 第13题图 第15题图 12.如图,在△ABC 中,∠ABC =90°,AB =8,BC =12,D 为AC 边上的一个动点,连接BD ,E 为BD 上的一个动点,连接AE ,CE ,当∠ABD =∠BCE 时,线段AE 的最小值是( )A .3B .4C .5D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组{2x −1<3x >m无解,则m 的取值范围 . 14.如图,在矩形ABCD 中,AB =5,AD =4,将矩形ABCD 绕点A 逆时针旋转得到矩形AB ′C ′D ′,AB ′交CD 于点E ,且DE =B ′E ,则AE 的长为 .15.如图,矩形ABCD 中,AB =5,BC =4,点E 是AB 边上一点,AE =3,连接DE ,点F 是BC 延长线上一点,连接AF ,且∠F =21∠EDC ,则CF = . 16.如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕EF 与AC 相交于点O ,连接BO .若AB =4,CF =5,则OB 的长为 .17.如图,反比例函数y =x 3与一次函数y =x ﹣2在第三象限交于点A ,点B的坐标为(﹣3,0),点P是y轴左侧的一点,若以A,O,B,P为顶点的四边形为平行四边形,则点P的坐标为.18.如图,在矩形ABCD中,AB=5,BC=10√3,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为__三、解答题:(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本小题满分8分)⑴221211212x xx x x x+÷+--++,请从不等式组52130xx-⎧⎨+⎩≥>的整数解中选择一个你喜欢的求值.⑵解不等式组3(1)5223722x xxx-+⎧⎪⎨--⎪⎩<①≤②,并求出该不等式组的最小整数解.20.(本小题满分8分).为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:第4页共8页(1)本次被调查的学生共有名;(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为,并把条形统计图补充完整;(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.21.(本小题满分12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标;(3)将y=kx+b向上平移3个单位,与y=ax交于点D,在y轴上是否存在点P,使PA-PD值最大,若存在求出点P坐标及最大值;若不存在,请说明理由.第5页共8页第 6 页 共 8 页22.(本小题满分12分)2022年北京冬奥会吉祥物冰墩墩深受大家的喜欢.某商家两次购进冰墩墩进行销售,第一次用22000元,很快销售一空,第二次又用48000元购进同款冰墩墩,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进冰墩墩多少个?(2)若所有冰墩墩都按相同的标价销售,要求全部销售完后的利润率不低于20%(不考虑其他因素),那么每个冰墩墩的标价至少为多少元?23.(本小题满分12分)如图,△ABC 和△DEF 都是等腰直角三角形,AB =AC ,∠BAC =90°,DE =DF ,∠EDF =90°,D 为BC 边中点,连接AF ,且A 、F 、E 三点恰好在一条直线上,EF 交BC 于点H ,连接BF ,CE .(1)求证:AF =CE ;(2)猜想CE ,BF ,BC 之间的数量关系,并证明;(3)若CH =2,AH =4,请直接写出线段AC ,AE 的长.24.(本小题满分13分)如图,在平面直角坐标系中,抛物线y =﹣21x 2+21 m •x +2m (m >0)与x 轴交于A (﹣1,0),B (m ,0)两点,与y 轴交于点C ,连接BC .(1)若OC =2OA ,求抛物线对应的函数表达式;(2)在(1)的条件下,点P 位于直线BC 上方的抛物线上,当△PBC 面积最大时,求点P 的坐标;(3)设直线y =21x +b 与抛物线交于B ,G 两点,问是否存在点E (在抛物线上),点F (在抛物线的对称轴上),使得以B ,G ,E ,F 为顶点的四边形成为矩形?若存在,求出点E ,F 的坐标;若不存在,说明理由.第 7 页 共 8 页25.(本小题满分13分)某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【观察与猜想】(1)如图1,在正方形ABCD 中,点E ,F 分别是AB ,AD 上的两点,连接DE ,CF ,DE ⊥CF ,则CFDE 的值为 ; (2)如图2,在矩形ABCD 中,AD =7,CD =4,点E 是AD 上的一点,连接CE ,BD ,且CE ⊥BD ,则BDCE 的值为 ; 【类比探究】(3)如图3,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 上一点,连接DE ,过点C 作DE 的垂线交ED 的延长线于点G ,交AD 的延长线于点F ,求证:DE •AB =CF •AD ;【拓展延伸】(4)如图4,在Rt △ABD 中,∠BAD =90°,AD =9,tan ∠ADB =31,将△ABD 沿BD 翻折,点A 落在点C 处得△CBD ,点E ,F 分别在边AB ,AD 上,连接DE ,CF ,DE ⊥CF . ①求CFDE 的值; ②连接BF ,若AE =1,直接写出BF 的长度.第8页共8页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:纳米是非常小的长度单位,已知1纳米=10-7厘米,甲型H1N1流感病毒的直径约为100纳米,则HINI病毒的直径约为()厘米A、B、107C、 D、10试题2:以方程组的解为坐标的点在平面直角坐标系中的位置是()A.第一象限 B.第二象限 C.第三象限 D.第四象限试题3:2010年的世界无烟日(5月31日)即将来临之际,小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是()A.调查的方式是普查B.本地区约有15%的成年人吸烟C.样本是15个吸烟的成年人D.本地区只有85个成年人不吸烟试题4:将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15 B.28 C.29 D.34试题5:将一块弧长为4π的半圆形铁皮围成一个圆锥,则围成的圆锥的高为()A.2 B. 2 C.2 D.4试题6:已知下列命题:①同位角相等;②若a>b>0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x 与坐标轴有3个不同交点;⑤已知一圆锥的高为4,母线长为5,则该圆锥的侧面积为15π。
从中任选一个命题是真命题的概率为()A. B. C. D.试题7:杨伯家小院子的四棵小树刚好在其梯形院子各边的中点上,若在四边形种上小草,则这块草地的形状是()A.平行四边形B.矩形C.正方形D.菱形试题8:如图,O为矩形ABCD的中心,将直角⊿OPQ的直角顶点与O重合,一条直角边OP与OA重合,使三角板沿逆时针方向绕点O旋转,两条直角边始终与边BC、AB相交,交点分别为M、N. 若AB=4,AD=6,BM=x,AN=y,则y与x之间的函数图象是()(A) (B) (C)(D)试题9:如图为二次函数y=ax2+bx+c的图象,则下列说法中正确的个数是()①ac<0;②4a+2b+c>0;③a+c<0;④抛物线与x轴另一交点坐标为(3,0);⑤若A(,m)、B(,n)在图中抛物线上,则m<n.(A) 1个(B)2个(C)3个(D) 4个试题10:如图,分别为正方形的边,,,上的点,且,则图中阴影部分的面积与正方形的面积之比为( )A.B.C.D.试题11:分解因式:4a2b−16b3=_________________;试题12:方程的解是.试题13:已知两圆的半径分别为5cm和12cm,当它们相切时,圆心距为_______ _______cm;当圆心距等于13cm 时,两圆的公共弦长为__________cm。
试题14:三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息其中正确的是_________ ___________(填写序号).试题15:已知关于x的函数y=(2m-1)x2+3x+m图像与坐标轴只有2个公共点,则m=试题16:意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和。
现以这组数中的各个数作为正方形的长度构造如下正方形:再分别依次从左到右取2个、3个、4个、5个正方形拼成如下矩形并记为①、②、③、④.相应矩形的周长如下表所示:序号①②③④周长 6 10 16 26若按此规律继续作矩形,则序号为⑩的矩形周长是_____________.试题17:为了探索代数式的最小值,小明巧妙的运用了“数形结合”思想.具体方法是这样的:如图,C 为线段BD上一动点,分别过点B、D作,连结AC、EC.已知AB=1,DE=5,BD=8,设BC=x.则,则问题即转化成求AC+CE的最小值.(1)我们知道当A、C、E在同一直线上时, AC+CE的值最小,于是可求得的最小值等于,此时;(2)请你根据上述的方法和结论,代数式的最小值等于 .试题18:已知a , b为常数,且三个单项式相加得到的和仍然是单项式。
那么a和b的值可能是多少?说明你的理由。
试题19:如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4. (1)求证: ∽;(2) 求的值;试题20:某旅游区的游览路线图如图所示.小明通过入口后,每逢路口都任选一条道.(1)问他进入A景区或B景区的可能性哪个较大?请说明理由。
(利用树状图或列表来求解)(2)如果左边的两条道路变成一条,还可以比较可能性大小吗?请说明你的理由.(3)通过对(1)(2)的研究,请看古老的谜题Nim游戏规则一.有三堆石子分别有3颗、4颗、5颗,游戏双方轮流拿石子;规则二.每人每次只能从其中的一堆取,最少要取一颗,最多可以全部取走,可以任意选择;规则三.规定其中一方先拿,拿到最后一颗者赢.问这个游戏机会均等吗?直接写出答案即可.试题21:(1)图中共有几条线段?说明你分析这个问题的具体思路. AB C DE(2)你能用上面的思路来解决“十五个同学聚会, 每个人都与其他人握一次手, 共握多少次?”这个问题吗?请解决。
(3)若改为“十五个同学聚会, 每个人都送给其他人一张名片呢, 共送了几张?”试题22:在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2)。
点C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形。
(1)画出△ABC,点C的坐标是,△ABC的面积是;(2)将△ABC绕点C旋转180°得到△A1B1C,连结AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由;试题23:永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地. “永定土楼”模型深受游客喜爱. 图中折线(AB∥CD∥x轴)反映了某种规格土楼模型的单价y(元)与购买数量x(个)之间的函数关系.(1)求当10≤x≤20时,y与x的函数关系式;(2)已知某旅游团购买该种规格的土楼模型的总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)试题24:已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在上图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.试题25:如图①,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在轴的正半轴上,点C在轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标;(2)如图②,若AE上有一动点P(不与A、E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒,过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE 的面积S与时间之间的函数关系式;当取何值时,S有最大值?最大值是多少?(3)在(2)的条件下,当为何值时,以A、M、E为顶点的三角形为等腰三角形,并求出相应时刻点M的坐标.试题1答案:C试题2答案:A试题3答案:B试题4答案:B试题5答案:A试题6答案:B试题7答案:A试题8答案:C试题9答案:C试题10答案:A试题11答案:4b(a+2b)(a-2b),试题12答案:x = −9试题13答案:7或17,试题14答案:①②③④试题15答案:试题16答案:466试题17答案:(1)10, (2) 13.试题18答案:1.若axy b与-5xy为同类项,∴b=1∵和为单项式∴——3分2. 若 4xy2与axy b为同类项∴b=2∵axy b+4xy2=0 ∴a=-4 ∴——3分试题19答案:(1)略;(2)19.51试题20答案:解:(1)列表或者画出树状图(1分)理由:由表可知,小明进入游区后一共有6种不同的可能路线,因为小明是任选一条道路,所以走各种路线的可能性认为是相等的,而其中进入A景区的有2种可能,进入B景区的有4种可能,所以进入B景区的可能性较大。
(2分)(2)不可以(3分)理由:走各种路线的可能性不相等,故无法比较。
(4分)(3)不公平。
(先拿着必赢,故游戏不公平。
)(6分)试题21答案:解:(1)以A为端点的线段有AB、AC、AD、AE四条;以B为端点的且与前面不重复的线段有BC、BD、BE三条;以C为端点的且与前面不重复的线段有CD、CE两条;以D为端点的且与前面不重复的线段有DE一条。
或直接利用公式(思路有理得2分)得出4+3+2+1=10的结论(2分)(2)把人演化成点即可得到上面结论2分由上面结论可知,15×14÷2=105 (2分)答:共握了105次(3)15×14=210(张)(2分)答:共送了210张试题22答案:2分……1分……3分作图正确2分试题23答案:(1)(2)∵200和150均不能整除2625∴ 10<x<20∴解得:答:略试题24答案:(1)解:图①表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发;……1分图②表示批发量高于60kg的该种水果,可按4元/kg批发.………………………………………………………………2分(2)解:由题意得:,函数图象如图所示.………………………………………………………………2分由图可知资金金额满足240<w≤300时,以同样的资金可批发到较多数量的该种水果.……………………………2分(3)解法一:设当日零售价为x元,由图可得日最高销量当m>60时,x<6.5由题意,销售利润为…………………………8分当x=6时,,此时m=80即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.……………………………………10分解法二:设日最高销售量为x kg(x>60)则由图②日零售价p满足:,于是销售利润…………………8分当x=80时,,此时p=6即经销商应批发80kg该种水果,日零售价定为6元/kg,当日可获得最大利润160元.……………………………………10分试题25答案:解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在中,∴∴∴点坐标为…………………………………………………(1分)在中,又∵∴解得:∴点坐标为……………………………………………………(2分)(2)如图①∵∥∴∴又知∴又∵而显然四边形为矩形∴……………(3分)∴又∵∴当时,有最大值(面积单位)……………(1分)(3)(i)若(如图①)在中,,∴为的中点又∵∥,∴为的中点∴∴∴又∵与是关于对称的两点∴,∴当时(),为等腰三角形此时点坐标为………………………………………………(2分)(ii)若(如图②)在中,∵∥,∴,∴∴∴同理可知:,∴当时(),此时点坐标为………………(2分)综合(i)、(ii)可知:或时,以A、M、E为顶点的三角形为等腰三角形,相应M点的坐标为或………………………………(1分)。