八年级分段函数练习
初中数学复习——分段函数习题
65150O y x 1.A 、B 两地相距630千米,客车、货车分别从A 、B 两地同时出发,匀速相向行驶.货车2小时可到达途中C 站,14小时到达A 地,客车需6小时到达C 站.已知客车、货车到.C .站的距离....与它们行驶时间x (小时)之间的函数关系如图1所示,A 、B 两地与C 站的位置如图2所示,则图中的a = ,b = ,客车的速度为 千米/小时.2.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶.甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A 、B 两地之间的距离为 千米.3.有一项工作,由甲、乙合作完成,合作一段时间后,乙改进了技术,提高了工作效率.图①表示甲、乙合作完成的工作量y (件)与工作时间t (时)的函数图象.图②分别表示甲完成的工作量y 甲(件)、乙完成的工作量y 乙(件)与工作时间t (时)的函数图象,则甲每小时完成 件,乙提高工作效率后,再工作 个小时与甲完成的工作量相等.4.某市在实施“村村通”工程中,决定在A 、B 两村之间修筑一条公路,甲、乙两个工程队分别从A 、B 两村同时相向开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.下图是甲、乙两个工程队所修道路的长度y(米)与修筑时间x(天)之间的函数图象,根据图象提供的信息,则该公路的总长度为 .5.有甲,乙两个形状完全相同的容器都装有大小分别相同的一个进水管和一个出水管,两容器单位时间进、出的水量各自都是一定的.已知甲容器单开进水管第10分钟把空容器注满;y (吨)x (小时)126210然后同时打开进、出水管,第30分钟可把甲容器的水放完,甲容器中的水量Q (升)随时间t (分)变化的图象如图1所示.而乙容器内原有一部分水,先打开进水管5分钟,再打开出水管,进、出水管同时开放,第20分钟把容器中的水放完,乙容器中的水量Q (升)随时间t (分)变化的图象如图2所示,则乙容器内原有水 升.6.一个生产、装箱流水线,生产前没有积压产品,开始的2小时只生产,2小时后安排装箱(生产没有停止),6小时后生产停止只安排装箱,第12小时时生产流水线上刚好又没有积压产品,已知流水线的生产、装箱的速度保持不变,流水线上积压产品(没有装箱产品)y 吨与流水线工作时间x (小时)之间的函数关系如图所示,则流水线上产品装箱的速度为 吨/小时.7.某市自来水公司对居民用水采用以户为单位分段计费的方法收费,每月收取水费y (元) 与用水量x (吨)之间的函数关系如图.按上述分段收费标准,小明家三、四月份分别交水费26和18元,则三月份比四月份节约用水_______吨.8..小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完。
初二分段函数试题及答案
初二分段函数试题及答案一、选择题1. 下列哪个选项表示分段函数?A. y = x^2B. y = 3x + 1C. y = |x|D. y = x/x答案:C2. 若分段函数f(x)的定义为:\[f(x) = \begin{cases}x + 1 & \text{if } x < 0 \\x^2 & \text{if } x \geq 0\end{cases}\]则f(-1)的值为多少?A. 0B. 1C. 2D. -2答案:A二、填空题1. 函数y = \begin{cases}x - 3 & \text{if } x > 2 \\\end{cases} 在x = 2时的值为______。
答案:52. 给定分段函数g(x) = \begin{cases}x^2 - 4x + 3 & \text{if } x < 2 \\-x + 5 & \text{if } x \geq 2\end{cases},若g(3) = 2,则g(1)的值为______。
答案:0三、解答题1. 已知分段函数h(x) = \begin{cases}x^2 - 2x + 1 & \text{if } x \leq 1 \\x + 2 & \text{if } x > 1\end{cases},求h(0)和h(2)的值。
答案:h(0) = 1,h(2) = 42. 定义分段函数f(x) = \begin{cases}x + 3 & \text{if } x < 0 \\2x & \text{if } 0 \leq x \leq 2 \\x - 1 & \text{if } x > 2\end{cases},求f(-1)、f(1)和f(3)的值。
答案:f(-1) = 2,f(1) = 2,f(3) = 2四、综合题1. 函数p(x) = \begin{cases}x^3 & \text{if } x < 0 \\\end{cases},求p(-2)和p(4)的值,并讨论函数在x = 0处的连续性。
分段函数、解析式与图像含详解答案
解析式、分段函数、函数图像作业题型一分段函数1.已知函数2,01,()2,12,1,2,2x x f x x x ⎧⎪≤≤⎪=<<⎨⎪⎪≥⎩,则3[()]2f f f ⎧⎫⎨⎬⎩⎭的值为2.设函数23,0()(2),0x x x f x f x x ⎧+≥=⎨+<⎩,则(3)f -=_____3.设()()121,1x f x x x <<=-≥⎪⎩,若()12f a =,则a =4.分段函数已知函数3,0,()4,0.x x f x x x -+≤⎧=⎨>⎩(1)画函数图像(2)求((1))f f -;(3)若0()2f x >,求0x 的取值范围.题型二解析式1.求下列函数的解析式(1)已知2()f x x x =+,求(1)f x -的解析式(2)若1)f x +=+()f x 的解析式(3)如果1f x ⎛⎫ ⎪⎝⎭=1x x-,则当x ≠0,1时,求()f x 的解析式(4)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x 的解析式2.求下列函数的解析式(1)已知函数()f x 是一次函数,若()48f f x x =+⎡⎤⎣⎦,求()f x 的解析式;(2)已知()f x 是二次函数,且满足()01f =,()()12f x f x x +-=,求()f x 的解析式(3)已知函数f (x )+2f (-x )=x 2+2x,求()f x 的解析式.(4)已知函数()f x 的定义域是一切非零实数,且满足13()24f x f x x ⎛⎫+=⎪⎝⎭.求()f x 的解析式.3.已知函数()21f x x =-,2,0,(){1,0,x x g x x ≥=-<求()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦的解析式.题型三函数图像1.画出函数2)(x x f =的图像,并用变换的方法画出以下函数的图像。
(1)2)(2+=x x f (2)2)1()(-=x x f (3)2)2()(2+-=x x f (4)32)(2+-=x x x f (5)542)(2-+=x x x f 2.画出下列函数函数的图像。
分段函数初二数学练习题
分段函数初二数学练习题题目一:已知分段函数f(x)如下:f(x) = 3x + 1, x ≤ 1f(x) = 2x - 2, x > 1问题一:求f(-2)的值。
解答一:根据给定的分段函数,当x ≤ 1时,f(x) = 3x + 1。
因此,在问题一中,由于-2 ≤ 1,我们需要计算f(-2)的值。
代入x = -2到第一个分段函数中,得到f(-2) = 3(-2) + 1 = -6 + 1 = -5。
因此,f(-2)的值为-5。
问题二:求f(2)的值。
解答二:根据给定的分段函数,当x > 1时,f(x) = 2x - 2。
因此,在问题二中,由于2 > 1,我们需要计算f(2)的值。
代入x = 2到第二个分段函数中,得到f(2) = 2(2) - 2 = 4 - 2 = 2。
因此,f(2)的值为2。
题目二:已知分段函数g(x)如下:g(x) = x^2, x < 2g(x) = 2x + 1, x ≥ 2问题一:求g(0)的值。
解答一:根据给定的分段函数,当x < 2时,g(x) = x^2。
因此,在问题一中,由于0 < 2,我们需要计算g(0)的值。
代入x = 0到第一个分段函数中,得到g(0) = 0^2 = 0。
因此,g(0)的值为0。
问题二:求g(3)的值。
解答二:根据给定的分段函数,当x ≥ 2时,g(x) = 2x + 1。
因此,在问题二中,由于3 ≥ 2,我们需要计算g(3)的值。
代入x = 3到第二个分段函数中,得到g(3) = 2(3) + 1 = 6 + 1 = 7。
因此,g(3)的值为7。
总结起来,通过以上两个问题的解答可以看出,在计算分段函数的值时,我们需要根据给定的条件来选择合适的分段函数进行代入计算。
只要根据给定的条件,正确选择对应的分段函数进行计算,就可以得到分段函数在给定点的值。
这样的练习题有助于我们熟悉和掌握分段函数的概念和计算方法。
初二分段函数练习题
初二分段函数练习题题目一:已知分段函数为:\[ \begin{cases}x+1 & (x\leqslant -2) \\-2x & (-2<x\leqslant 0) \\x^2-4 & (x>0) \\\end{cases} \]试求以下值:1. \( f(-3) \)2. \( f(-1) \)3. \( f(1) \)4. \( f(2) \)解答:1. \( f(-3) \):根据给定的分段函数,当 \( x\leqslant -2 \) 时, \( f(x) = x+1 \),代入 \( x = -3 \) ,得到:\[ f(-3) = (-3) + 1 = -2 \]2. \( f(-1) \):根据给定的分段函数,当 \( -2<x\leqslant 0 \) 时, \( f(x) = -2x \),代入 \( x = -1 \) ,得到:\[ f(-1) = -2(-1) = 2 \]3. \( f(1) \):根据给定的分段函数,当 \( x>0 \) 时, \( f(x) = x^2-4 \),代入 \( x = 1 \) ,得到:\[ f(1) = 1^2-4 = -3 \]4. \( f(2) \):根据给定的分段函数,当 \( x>0 \) 时, \( f(x) = x^2-4 \),代入 \( x = 2 \) ,得到:\[ f(2) = 2^2-4 = 0 \]综上所述,根据给定的分段函数,求得以下值:1. \( f(-3) = -2 \)2. \( f(-1) = 2 \)3. \( f(1) = -3 \)4. \( f(2) = 0 \)题目二:已知分段函数为:\[ \begin{cases}2x+1 & (x\leqslant 1) \\x^2-1 & (x>1) \\\end{cases} \]试求以下值:1. \( f(-2) \)2. \( f(0) \)3. \( f(1) \)4. \( f(2) \)解答:1. \( f(-2) \):根据给定的分段函数,当 \( x\leqslant 1 \) 时, \( f(x) =2x+1 \),代入 \( x = -2 \) ,得到:\[ f(-2) = 2(-2) + 1 = -3 \]2. \( f(0) \):根据给定的分段函数,当 \( x\leqslant 1 \) 时, \( f(x) =2x+1 \),代入 \( x = 0 \) ,得到:\[ f(0) = 2(0) + 1 = 1 \]3. \( f(1) \):根据给定的分段函数,当 \( x>1 \) 时, \( f(x) = x^2-1 \),代入 \( x = 1 \) ,得到:\[ f(1) = 1^2-1 = 0 \]4. \( f(2) \):根据给定的分段函数,当 \( x>1 \) 时, \( f(x) = x^2-1 \),代入 \( x = 2 \) ,得到:\[ f(2) = 2^2-1 = 3 \]综上所述,根据给定的分段函数,求得以下值:1. \( f(-2) = -3 \)2. \( f(0) = 1 \)3. \( f(1) = 0 \)4. \( f(2) = 3 \)题目三:已知分段函数为:\[ \begin{cases}-2x-3 & (x\leqslant -1) \\3 & (-1<x\leqslant 0) \\x^2-1 & (x>0) \\\end{cases} \]试求以下值:1. \( f(-2) \)2. \( f(-1) \)3. \( f(0) \)4. \( f(1) \)解答:1. \( f(-2) \):根据给定的分段函数,当 \( x\leqslant -1 \) 时, \( f(x) = -2x-3 \),代入 \( x = -2 \) ,得到:\[ f(-2) = -2(-2) - 3 = 1 \]2. \( f(-1) \):根据给定的分段函数,当 \( -1<x\leqslant 0 \) 时, \( f(x) = 3 \),代入 \( x = -1 \) ,得到:\[ f(-1) = 3 \]3. \( f(0) \):根据给定的分段函数,当 \( -1<x\leqslant 0 \) 时, \( f(x) = 3 \),代入 \( x = 0 \) ,得到:\[ f(0) = 3 \]4. \( f(1) \):根据给定的分段函数,当 \( x>0 \) 时, \( f(x) = x^2-1 \),代入 \( x = 1 \) ,得到:\[ f(1) = 1^2-1 = 0 \]综上所述,根据给定的分段函数,求得以下值:1. \( f(-2) = 1 \)2. \( f(-1) = 3 \)3. \( f(0) = 3 \)4. \( f(1) = 0 \)通过以上练习题,我们进一步熟悉了分段函数的求值方法,并学会了根据给定的函数表达式求取特定值的技巧。
分段函数习题大全
分段函数习题大全1. 问题描述分段函数是数学中常见的一种函数类型,它在不同的区间内有不同的定义。
本文将提供一些分段函数的题,帮助读者更好地理解和掌握分段函数的概念和应用。
2. 题示例2.1 问题一已知函数 f(x) 在区间 (-∞, 1] 上定义如下:$$ f(x) = \begin{cases}x^2 & x \leq 0 \\2x+1 & x > 0\end{cases}$$求函数 f(x) 的定义域、值域以及所有的奇点。
2.2 问题二已知函数 g(x) 在区间[0, +∞) 上定义如下:$$ g(x) = \begin{cases}\frac{1}{x} & x \geq 1 \\x^2 - 1 & 0 \leq x < 1\end{cases}$$求函数 g(x) 的最值以及所有的零点。
3. 解答和说明3.1 问题一的解答根据函数 f(x) 的定义,我们可以得知:- 函数 f(x) 的定义域为 (-∞, +∞),因为 x 可以取任意实数。
- 函数 f(x) 的值域为$[0, +∞)$,因为当 x 小于等于 0 时,$f(x) = x^2$ 的值为非负实数,而当 x 大于 0 时,$f(x) = 2x+1$ 的值可大于等于 1。
- 函数 f(x) 的奇点即为在函数定义区间上不连续的点,对于本题中的分段函数 f(x),奇点为 x = 0。
3.2 问题二的解答根据函数 g(x) 的定义,我们可以得知:- 函数 g(x) 的定义域为[0, +∞),因为 x 可以取大于等于 0 的实数。
- 函数 g(x) 的最大值为 $+\infty$,当 x 趋近于 0 时,$g(x)$ 无上界,没有最小值。
- 函数 g(x) 的零点即为满足 $g(x) = 0$ 的 x 值,根据定义可求得 x = 1。
4. 小结本文提供了两个分段函数的题,旨在帮助读者更好地理解和掌握分段函数的概念和应用。
分段函数练习题
分段函数练习题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1、分段函数1、已知函数)(x f = ,则 )1()0(-+f f =( ) A . 9 B . C . 3 D .提示:本题考查分段函数的求值,注意分段函数分段求。
解析:0代入第二个式子,-1代入第一个式子,解得)1()0(-+f f =3,故正确答案为C.902、函数的图象为下图中的( )提示:分段函数分段画图。
解析:此题中x ≠0,当x>0时,y=x+1,当x<0时,y=x-1, 故正确答案为C.1203、下列各组函数表示同一函数的是( )①f(x)=|x|,g(x)=⎩⎨⎧<-≥)0()0(x x x x ②f(x)=242--x x ,g(x)=x+2 ③f(x)=2x ,g(x)=x+2④f(x)=1122-+-x x ,g(x)=0 ,x ∈{-1,1}A.①③B.①C.②④D.①④267,0,100,,x x x x x ++<≥⎧⎪⎨⎪⎩71101110||x y x x=+提示:考察是否是同一函数即考察函数的三要素:定义域、值域、对应关系,此题应注意分段函数分段解决。
解析:此题中①③正确,故正确答案为A.1204、设()1232,2()log 1,2x e x f x x x -⎧<⎪=⎨-≥⎪⎩,则((2))f f 的值为( ) A.0 B.1 C.2D.3提示:此题是分段函数当中经常考查的求分段函数值的小题型,主要考查学生对“分段函数在定义域的不同区间上对应关系不同”这个本质含义的理解.考查对分段函数的理解程度。
解析:因为 f (2)=log 3(22﹣1)=1,所以f (f (2))=f (1)=2e 1﹣1=2.因此f (f (2))=f (log 3(22﹣1))=f (1)=2e 1﹣1=2,故正确答案为C.905、定义在R 上的函数)(x f 满足)(x f =, 则)3(f 的值为( )A .1- B. 2- C. 1D. 2提示:本题主要考查分段函数的求值,同时考查了递推关系,属于基础题.解析:将3代入相应的分段函数进行求值,则f (3)=f (2)﹣f (1),f (2)=f (1)﹣f (0)从而f (3)=f (1)﹣f (0)﹣f (1)=﹣f (0),将0代入f (x )=log 2(4﹣x )进行求解.∴f(3)=f (1)﹣f (0)﹣f (1)=﹣f (0)=﹣log 2(4﹣0)=﹣2, 故正确答案为B .⎩⎨⎧>---≤-0),2()1(0),4(log 2x x f x f x x1806、24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 若00()8,f x x ==则( ) A .232 C. 4D. 1提示:本题主要考查分段函数的求值,但是直接分段函数分段作图就将这道题做麻烦了,不如直接代入求解。
分段函数专题(含答案)
分段函数专题一.选择题(共7小题)1.下列关于分段函数的描述正确的是()①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f(x)=|x|是一个分段函数;③f(x)=|x﹣2|不是分段函数;④分段函数的定义域都是R;⑤分段函数的值域都为R;⑥f(x)={x,x≥0−x,x<0,则f(1)=−1.A.①②⑥B.①④C.②D.③④⑤2.设f(x)={2e x−1,x<2log3(x2−1),x≥2,则f(f(2))的值为()A.0B.1C.2D.33.已知函数f(x)={|log x|,0<x≤10−12x+6,x>10,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)4.已知f(x)={x+2,x≤−1x2,−1<x<22x,x≥2,若f(x)=3,则x的值是()A.1 B.1或32C.1,32或±√3D.√35.函数f(x)={x2+bx+c,x≤02,x>0,若f(−4)=f(0),f(−2)=−2,则关于x的方程f(x)=x的解的个数为()A.1B.2C.3D.46.已知函数f(x)={(a−2)x−1,x≤1log a x,x>1,若f(x)在(﹣∞,+∞)上单调递增,则实数a的取值范围为()A.(1,2)B.(2,3)C.(2,3]D.(2,+∞)7.已知函数f(x)={x2+1,x≤0−2x,x>0使函数值为5的x的值是()A.﹣2B.2或﹣C.2或﹣2D.2或﹣2或﹣二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 . 三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.12.已知函数f(x)={x+2,x≤−1x2,−1<x<22x,x≥2(1)在坐标系中作出函数的图象;(2)若f(a)=12,求a的取值集合.13.已知函数f(x)=2x−1,g(x)={x2,x≥0−1,x<0求f[g(x)]和g[f(x)]的解析式.14.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.分段函数专题答案一.选择题(共7小题)1.下列关于分段函数的描述正确的是( )①分段函数在每段定义域内都是一个独立的函数,因此分几段就是几个函数;②f (x )=|x |是一个分段函数;③f (x )=|x ﹣2|不是分段函数;④分段函数的定义域都是R ;⑤分段函数的值域都为R ;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1. A .①②⑥ B .①④ C .② D .③④⑤【答案】①分段函数在每段定义域内都是一个独立的函数,但这几段组合在一起是一个函数,故错误;②f (x )=|x |={x,x ≥0−x,x <0是一个分段函数,正确; ③f (x )=|x −2|={x −2,x ≥22−x,x <2是一个分段函数,错误; ④分段函数的定义域不都是R ,错误;⑤分段函数的值域不都为R ,错误;⑥f (x )={x,x ≥0−x,x <0,则f (1)=−1,错误. 故正确的命题为:②,故选:C2.设f (x )={2e x−1,x <2log 3(x 2−1),x ≥2,则f(f (2))的值为( ) A .0 B .1 C .2 D .3【答案】f(f (2))=f [log 3(22−1)]=f (1)=2e 1−1=2,故选C .3.已知函数f (x )={|log x |,0<x ≤10−12x +6,x >10,若a,b,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)【答案】作出函数f (x )的图象如图,不妨设a <b <c ,则−log a =log b =−12c +6∈(0,1)ab =1,0<−12c +6<1则abc =c ∈(10,12).故选C .4.已知f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2,若f (x )=3,则x 的值是( )A .1B .1或 32C .1, 32或±√3D .√3【答案】该分段函数的三段各自的值域为(−∞,1],[0,4),[4,+∞),而3∈[0,4),故所求的字母x 只能位于第二段.∴f (x )=x 2=3,x =±√3,而﹣1<x <2,∴x =√3故选D .5.函数f (x )={x 2+bx +c,x ≤02,x >0,若f (−4)=f (0),f (−2)=−2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4【答案】由题知(−4)2+b (−4)+c =c,(−2)2+b (−2)+c =−2,解得b =4,c =2故f (x )={x 2+bx +c,x ≤02,x >0, 当x ≤0时,由f (x )=x 得x 2+4x +2=x ,解得x =−1,或x =−2,即x ≤0时,方程f (x )=x 有两个解.又当x >0时,有x =2适合,故方程f (x )=x 有三个解.故选C .6.已知函数f (x )={(a −2)x −1,x ≤1log a x ,x >1,若f (x )在(﹣∞,+∞)上单调递增,则实数a 的取值范围为( )A .(1,2)B .(2,3)C .(2,3]D .(2,+∞)【答案】对数函数在x >1时是增函数,所以a >1,又f (x )=(a −2)x −1,x ≤1是增函数,∴a >2,并且x =1时(a −2)x −1≤0,即a −3≤0,所以2<a ≤3故选C7.已知函数f (x )={x 2+1,x ≤0−2x,x >0使函数值为5的x 的值是( ) A .﹣2 B .2或﹣ C .2或﹣2 D .2或﹣2或﹣【答案】由题意,当x ≤0时,f (x )=x 2+1=5,得x =±2,又x ≤0,所以x =﹣2; 当x >0时,f (x )=−2x =5,得x =−52,舍去.故选A二.填空题(共2小题)8.已知函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点,则实数a 的取值范围是 .【答案】∵函数f (x )={ax 2+2x +1,−2<x ≤0ax −3,x >0有3个零点, ∴a >0 且y =x 2+2x +1在(﹣2,0)上有2个零点,∴{ a >0a (−2)2+2(−2)+1>02<1a <0∆=4−4a >0, 解得34<a <1,故答案为:(34,1).9.已知函数f (x )={x +4,x <0x −4,x >0,则f [f (−3)]的值为 .【答案】因为:f (x )={x +4,x <0x −4,x >0, ∴f (−3)=−3+4=1 f [f (−3)]=f (1)=1−4=−3.故答案为:−3.三.解答题(共6小题)10.已知函数f (x )=−x 2+|x|.(1)用分段函数的形式表示该函数并画出函数的图象;(2)求函数的单调区间;(3)求函数的最大值.【答案】【(1)∵f (x )=−x 2+|x |={−x 2−x,x <0−x 2+x,x ≥0 ∴函数f (x )的图象如下图所示:(2)由(1)中函数图象可得:函数f (x )的单调递增区间为:(−∞,−12]和[0,12],函数f (x )的单调递减区间为:[−12,0]和[−12,+∞).(3)(2)由(1)中函数图象可得:函数f (x )的最大值为14.11.如图,△OAB 是边长为2的正三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ).试求函数f (t )的解析式,并画出函数y = f (t )的图象.【答案】(1)当0<t≤1时,如图,设直线x=t与△OAB分别交于C、D两点,则|OC|=t,又CDOC =BCOE=√3,∴|CD|=√3t,∴f(t)=12|0C|∙|CD|=12∙t∙√3t=√32t2(2)当1<t≤2时,如图,设直线x=t与△OAB分别交于M、N两点,则|AN|=2−t,又MNAN =BEAE=√3,∴MN=√3(2−t)∴f(t)=12∙2∙√3−12|AN|∙|MN|=√3−√32(2−t)2=−√32t2+2√3t−√3(3)当t>2时,f(t)=√3综上所述f(t)={√32t2,0<t≤1−√32t2+2√3t−√3,1<t≤2√3,t>212.已知函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2(1)在坐标系中作出函数的图象;(2)若f (a )=12,求a 的取值集合.【答案】-(1)函数f (x )={x +2,x ≤−1x 2,−1<x <22x,x ≥2的图象如下图所示:(2)当a ≤−1时,f (a )=a +2=12,可得:a =−32;当−1<a <2时,f (a )=a 2=12,可得a =±√22; 当a ≥2时,f (a )=2a =12 ,可得:a =14(舍去);综上所述,a 的取值构成集合为{−32,−√22} 13.已知函数f (x )=2x −1,g (x )={x 2,x ≥0−1,x <0求f[g (x )]和g[f (x )]的解析式. 【答案】当x ≥0时,g (x )=x 2,f [g (x )]=2x 2−1,当x <0时,g (x )=−1,f [g (x )]=−3,∴f [g (x )]={2x 2−1,x ≥0−3,x <0∵当2x−1≥0,即x≥12时,g[f(x)]=(2x−1)2,当2x−1<0,即x<12时,g[f(x)]=−1,∴g[f(x)]={(2x−1)2,x≥12−1,x<1214.设函数f(x)={x2+bx+c,−4≤x<0−x+3,0≤x≤4,且f(−4)=f(0),f(−2)=−1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象,并写出函数f(x)的定义域、值域.【答案】(1)∵f(−4)=f(0),f(−2)=−1,∴16−4b+c=3,4−2b+c=−1,解得:b=4,c=3,∴f(x)={x2+4x+3,−4≤x<0−x+3,0≤x≤4,(2)函数的定义域为[−4,4],当x<0时,y=x2+4x+3=(x+2)2﹣1由x<0可得,y≥﹣1当x≥0时,y=−x+3≤3∴﹣1≤y≤3∴函数的值域为[−1,3].其图象如图所示15.已知函数f(x)=−x2+2ax+3,xϵ[−2,4](1)求函数f(x)的最大值关于a的解析式y=g(a)(2)画出y=g(a)的草图,并求函数y=g(a)的最小值.【答案】(1)函数f(x)的对称轴为x=a,①当a<−2时,∵函数f(x)在[−2,4]上单调递减,∴y=g(a)=f(−2)=−4a−1,②当﹣2≤a≤4时,y=g(a)=f(a)=a2+3,③当a>4时,∵函数f(x)在[−2,4]上单调递增,∴y=g(a)=f(4)=8a−13,综上有y=g(a)={−4a−1,a<−2a2+3,−2<a≤4 8a−13,a>4,(2)作出y=g(a)的草图如右,观察知当a=1时y=g(a)有最小值4.。
八下19.2.2 分段函数综合训练 (1)
后10分钟速度不变
新授
y
20x 200
300
(5
(0 x
x 15)
5)
y(米/分) 300 200
y 300 y 20x 200
100
0
5 10 15 x(分)
归纳
根据实际意义求分段函数的方法: (1)分析文字,确定函数类型; (2)用列方程方法求解析式; (3)注明各解析式自变量取值范围;
y(米/分) 300 200
y 300 y 20x 200
100
0
5 10 15 x(分)
范例
例1、小芳以200米/分的速度起跑后,先匀加速 跑5分钟,每分钟提高速度20米/分,又匀速跑 10分钟。写出这段时间里她的跑步速度y (单位: 米/分)随跑步时间x (单位:分)变化的函数关系式, 并画出函数图象。
6t (0≤t≤2)
s=
12 ( 2<t≤3)
-4t+24( 3<t≤6)
小结:今天你有什么收获?
作业: 课本99页 第2题
1、如图,折线ABC是某地向北京打长途电话所 需话费y(元)与通话时间x(分)之间的函数关系图。
(1)根据图象求
y(元)
出函数解析式; 6
C
3.6 A 0
B
3
6 x(分)
巩固
1、如图,折线ABC是某地向北京打长途电话所 需话费y(元)与通话时间x(分)之间的函数关系图。
(2)求通话2分钟所
y(元)
付话费;
6
(3)求通话5分钟所
付话费;
3.6 A
B
0
3
C 6 x(分)
八年级数学第19章 分段函数练习题及答案
数学第19章分段函数(练习)练1. 已知一次函数y=2x+4的图象上有两点A(3,a),B(4,b),则a与b的大小关系为_________练2 一次函数y=(m2+3)x-2,y随x的增大而_________练3 函数y=(m –1)x+1是一次函数,且y随自变量x增大而减小,那么m的取值为______.练4 如图,点A(x1,y2)与点B(x2,y2)都是直线y=kx+b上的点,且x1<x2,试比较y1 y2练1:为缓解用电紧张,某电力公司特制定了新的用电收费标准,每月用电量x (度)与应付电费y(元)的关系如图所示.(1)根据图象,请分别求出当0≤x≤50和x>50时,y与x的函数解析式. (2)请回答:当每月用电量不超过50度时,收费标准是;当每月用电量超过50度时,收费标准是练2 小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分。
试写出这段时间里她的跑步速度y (米/分)随跑步时间x (分)变化的函数关系式,并画同函数图象.练3 学校组织学生到距离6千米的展览馆参观,学生王军因故未能乘上学校的包车,于是在校门口乘出租车,出租车收费标准如下:(1)写出费用y与行驶里程x之间的函数关系式,并画出函数图象(2)王军仅有14元钱,他到展览馆的车费是否足够?春、秋季节,由于冷空气的入侵,地面气温急剧下降到0℃以下的天气现象称为“霜冻”.由霜冻导致植物生长受到影响或破坏的现象称为霜冻灾害.某种植物在气温是0℃以下持续时间超过3小时,即遭受霜冻灾害,需采取预防措施.右图是气象台某天发布的该地区气象信息,预报了次日0时~8时气温随时间变化情况,其中0时~5时,5时~8时的图象分别满足一次函数关系.请你根据图中信息,针对这种植物判断次日是否需要采取防霜冻措施,并说明理由.y/ oCO x/时参考答案。
八年级分段函数练习
分段函数的单调性
定义
分段函数在其定义域内某区间的 单调性是指在该区间内,函数值 随自变量的增大而增大或减小。
判断方法
分别检查各段函数在各自定义域 内的单调性,并注意连接点处的
变化趋势。
举例
分段函数$f(x) = begin{cases} x, & x leq 0 x, & x > 0
end{cases}$在$(-infty, 0]$上单 调递减,在$(0, +infty)$上单调
分段函数的计算方法
方法一
方法二
方法三
举例
分段处理:根据自变量所在 的区间选择相应的函数表达 式进行计算。
连续性处理:利用连续性, 将分段函数视为一个整体进 行计算。
极限和连续性处理:在连接 点处利用极限和连续性的性 质进行计算。
计算分段函数$f(x) = begin{cases} x^2 - 2x, & x leq 1 x^2 + 2x, & x > 1 end{cases}$在$x=1$处的 值,由于连续性,可以直接 代入$x=1$得到结果1。
题目三解析与答案
根据题目三给出的分段函数,当$x = 0$时,属于$x < 2$的范围,所以应该使用第二个 分段进行计算。代入得$f(0) = 0 + 1 = 1$。
THANKS FOR WATCHING
感谢您的观看
它根据不同的x值范 围,有不同的函数表 达式。
分段函数的特点
分段函数具有不连续性。 在分段点上,分段函数可能不连续、不光滑或者不可微。
分段函数在定义域内可以有多个不同的函数表达式。
分段函数的应用场景
分段函数在现实生活中有着广 泛的应用,例如气温变化、股 票价格波动、人口统计等。
八年级分段函数练习
4.某地市话费收费标准为:通话时间在 三分钟以内(包括三分钟),话费为每 分钟0.6元;通话时间超过了三分钟,超 过部分按每分钟0.2元。则总话费(元) 与通话时间x(取整数)之间的关系式 为: .
y 0.6 x(0 x 3)
X取整数
y 0.6 3 0.2( x 3)( x 3)
25
50
75
100
X(千瓦时)
7.沙尘暴发生后,经过开阔荒漠时加速,经过乡
镇、遇到防护林则减速,最终停止。某气象研究
所观察一场沙尘暴从发生到结束的全过程,记录
了风速y(km/h)随着时间t(h)变化的图象(如
图)。
(1)求沙尘暴的最大风速;32 (2)用恰当的方法表示 沙尘暴风速与时间之间 的关系。
某班54名学生去该风景区游览,购买门 840 元。 票共花去______
6.为了缓解用电紧张的矛盾,电力公司 制定了新的用电收费标准,每月用电量x (千瓦时)与应付电费y(元)的关系如 图所示: y(元)
(1)根据图象求出 100 y与x的函数关系式;
75 70
(2)请回答电力公 50 司的收费标准是什 25 0 么?
5.某风景区集体门票的收费标准为:20 人以内(含20人),每人25元;超过20 人,超过部分每人10元,则应收门票y 元与游览人数x人之间的关系式为: ______________;
y
25 x ( 0 x20且x为整数 ) 2520 10 x 20 ( x 20且x为整数 )
3.某医药研究所开发了一种新药,在试验药效时发 现,如果成人按规定剂量服用,那么服药后2小时 时血液中含药量最高,达每毫升6微克(1微克=103毫克),接着逐步衰减,10小时时血液中含药量 为每毫升3微克,每毫升血液中含药量y(微克), 随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,
分段函数初二数学练习题
分段函数初二数学练习题题目一:求解分段函数的定义域与值域给定函数:$$f(x) =\begin{cases}2x+1, & x\leq2 \\x^2, & x>2 \\\end{cases}$$要求:1. 求解函数$f(x)$的定义域与值域;2. 绘制函数$f(x)$的图像。
解答:根据题目已给条件,我们可以得出下面的结论:1. 定义域的求解:首先考虑分段函数中第一段$2x+1$的定义域。
由于没有限制$x$的取值范围,所以该段函数$2x+1$在整个实数域上都有定义。
即第一段部分的定义域为$(-\infty, +\infty)$。
接下来考虑第二段$x^2$的定义域。
该函数要求$x$的取值必须大于2,因为$x^2$在$x\leq2$的时候没有实数解。
所以第二段部分的定义域为$(2, +\infty)$。
综合第一段和第二段的定义域,得到函数$f(x)$的定义域为$(-\infty, +\infty)$。
2. 值域的求解:首先考虑第一段$2x+1$的值域。
根据该函数的定义,我们可以发现无论$x$取多大,函数值$2x+1$总是大于等于1的。
所以第一段部分的值域为$[1, +\infty)$。
接下来考虑第二段$x^2$的值域。
该函数要求$x$的取值必须大于2,所以$x^2$的值域也必须大于$2^2=4$。
即第二段部分的值域为$(4,+\infty)$。
综合第一段和第二段的值域,得到函数$f(x)$的值域为$(1, +\infty)$。
至此,我们已经求解出了函数$f(x)$的定义域和值域。
下面我们绘制函数$f(x)$的图像:【插入图像】图中蓝色的部分代表函数$f(x)=2x+1$,红色的部分代表函数$f(x)=x^2$。
可以看出两段函数在$x=2$处连接。
从图中可以清晰地看出函数$f(x)$的定义域和值域。
综上所述,函数$f(x)$的定义域为$(-\infty, +\infty)$,值域为$(1, +\infty)$。
分段函数练习题(打印版)
分段函数练习题(打印版)### 分段函数练习题(打印版)#### 一、选择题1. 下列分段函数中,哪一个是奇函数?- A. \( f(x) = \begin{cases} x^2, & x \geq 0 \\ -x^2, & x< 0 \end{cases} \)- B. \( f(x) = \begin{cases} x^3, & x \geq 0 \\ -x^3, & x< 0 \end{cases} \)- C. \( f(x) = \begin{cases} x^2 + 1, & x \geq 0 \\ -x^2 + 1, & x < 0 \end{cases} \)- D. \( f(x) = \begin{cases} x + 1, & x \geq 0 \\ -x - 1,& x < 0 \end{cases} \)2. 给定分段函数 \( f(x) = \begin{cases} x + 2, & x < 1 \\ 3x- 1, & x \geq 1 \end{cases} \),求 \( f(-1) \) 和 \( f(2) \)。
3. 判断下列分段函数的连续性:- A. \( f(x) = \begin{cases} 2x, & x < 2 \\ 4 - x, & x\geq 2 \end{cases} \)- B. \( f(x) = \begin{cases} x^2, & x \neq 1 \\ 2, & x = 1 \end{cases} \)#### 二、填空题1. 若分段函数 \( f(x) = \begin{cases} x + 1, & x \leq 0 \\ x^2, & x > 0 \end{cases} \),求 \( f(-2) \) 和 \( f(1) \)。
八年级-人教版-数学-下册-[综合训练]第6课时 分段函数
第6课时分段函数1.在某市初中学业水平考试的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程S(单位:m)与所用时间t(单位:s)之间的函数图象分别为线段OA和折线OBCD.下列说法正确的是().A.小莹的速度随时间的增大而增大B.小梅的平均速度比小莹的平均速度大C.在起跑后180 s时,两人相遇D.在起跑后50 s时,小梅在小莹的前面2.小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的图象是().A.B.C.D.3.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x h,两车之间的距离为y km,图中折线表示y与x之间的函数图象.请根据图象解决下列问题:(1)甲、乙两地之间的距离为________km;(2)求快车和慢车的速度.参考答案1.【答案】D【解析】选项A:线段OA表示小莹所跑的路程S(单位:m)与所用时间t(单位:s)之间的函数图象,图象倾斜程度即小莹的速度是没有变化的,故选项A错误;选项B:∵小莹比小梅先到,∴小梅的平均速度比小莹的平均速度小,故选项B错误;选项C:∵起跑后180 s时,两人的路程不相等,∴她们没有相遇,故选项C错误;选项D:∵起跑后50 s时,OB在OA的上面,∴小梅在小莹的前面,故选项D正确.2.【答案】D【解析】容器内最高水位的变化对应三个过程:(1)向玻璃杯内注水而未溢出,水面均匀升高直至杯满;(2)玻璃杯水满并溢出,流向鱼缸,此时最高水位保持不变;(3)鱼缸内水位到达玻璃杯高度,则水位均匀升高直至缸满,注意此时水位升高的速度小于第(1)个过程中水位升高的速度.3.【答案】解:(1)根据x,y的实际意义以及图象可知,甲、乙两地之间的距离是560 km.(2)由图象可知,两车行驶4 h相遇,相遇后停留了1 h,然后快车行驶3 h到达甲地(点D对应的时间表示快车到达甲地的时刻,此时慢车仍在返回的途中行驶).∴快车的速度=560÷7=80(km/h).慢车的速度=(560-80×4)÷4=60(km/h).。
初二数学分段函数练习题
初二数学分段函数练习题1. 函数f(x)如下,求定义域:2x+1, x < 2f(x) =x-1, x ≥ 2答案:函数f(x)的定义域为(-∞, 2)∪[2, +∞)2. 函数g(x)如下,求解不等式g(x) ≤ 3:-x+3, x < -1g(x) =2x-5, x ≥ -1解答:首先确定不等式两边的取值范围。
当x < -1时,g(x) = -x + 3,不等式变为 -x + 3 ≤ 3,解得 -x ≤ 0,即x ≥ 0。
当x ≥ -1时,g(x) = 2x - 5,不等式不变,解得 2x - 5 ≤ 3,即x ≤ 4。
综合以上,解不等式g(x) ≤ 3得到定义域为x ≥ 0 且x ≤ 4。
3. 函数h(x)如下,求解方程h(x) = 1:3x+4, x < 2h(x) =解答:根据方程h(x) = 1,分别求解 x < 2 和x ≥ 2 两种情况下的方程。
当 x < 2 时,3x + 4 = 1,解得 x = -1。
当x ≥ 2 时,-2x + 7 = 1,解得 x = 3。
综合两组解,方程h(x) = 1的解为 x = -1, 3。
4. 函数k(x)如下,求解不等式k(x) > -2:-x+3, x < -1k(x) =2x-5, x ≥ -1解答:首先确定不等式两边的取值范围。
当x < -1时,k(x) = -x + 3,不等式变为 -x + 3 > -2,解得 -x > -5,即 x < 5。
当x ≥ -1时,k(x) = 2x - 5,不等式不变,解得 2x - 5 > -2,即 x > 1.5。
综合以上解集,不等式k(x) > -2的解为 x < 5 且 x > 1.5。
5. 函数m(x)如下,求解方程m(x) = -1:4x+1, x < 3m(x) =解答:根据方程m(x) = -1,分别求解 x < 3 和x ≥ 3 两种情况下的方程。
分段函数八年级试卷
分段函数八年级试卷专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个选项是分段函数的特征?A. 函数图像连续B. 函数图像可以是直线或曲线C. 函数表达式在定义域的不同区间内不同D. 函数值可以是任意实数2. 分段函数的定义域是什么?A. 所有实数B. 与x轴交点的横坐标C. 使得函数表达式有意义的x的值的集合D. 函数图像上的点的横坐标3. 下列哪个选项不是分段函数的表示方法?A. 解析式表示法B. 图像表示法C. 列表表示法D. 符号表示法4. 分段函数的值域是什么?A. 函数图像与y轴交点的纵坐标B. 函数图像上的点的纵坐标C. 函数表达式的值D. 使得函数表达式有意义的y的值的集合5. 下列哪个选项是分段函数的性质?A. 函数图像可以是任意形状B. 函数图像可以是连续的或间断的C. 函数表达式在定义域的不同区间内相同D. 函数值可以是任意实数二、判断题(每题1分,共5分)1. 分段函数的图像可以是直线或曲线。
()2. 分段函数的定义域是所有实数。
()3. 分段函数的表示方法有解析式表示法、图像表示法、列表表示法。
()4. 分段函数的值域是函数图像与y轴交点的纵坐标。
()5. 分段函数的性质是函数图像可以是任意形状。
()三、填空题(每题1分,共5分)1. 分段函数的定义是:在定义域的不同区间内,函数表达式可以是______。
2. 分段函数的图像表示法是通过______来表示函数。
3. 分段函数的解析式表示法是通过______来表示函数。
4. 分段函数的值域是______。
5. 分段函数的性质是函数图像可以是______。
四、简答题(每题2分,共10分)1. 请简述分段函数的定义。
2. 请简述分段函数的表示方法。
3. 请简述分段函数的定义域。
4. 请简述分段函数的值域。
5. 请简述分段函数的性质。
五、应用题(每题2分,共10分)1. 已知分段函数f(x) = x + 2, x < 0; x^2, x >= 0,求f(-3)和f(2)的值。
浙教版数学八年级上册期末复习微专题五《分段函数的应用》
6.(2022 秋·宁波市慈溪市期末)如图①,在平面直角坐标系中,四边形 ABCD 在第一象限内,AD∥BC∥x 轴,∠A=90°,直线 y=2x+4 沿 x 轴向其正方向平 移,在平移过程中,直线被四边形 ABCD 截得的线段长为 t,直线向右平移的距 离为 m ,如图②所示为 t 与 m 之间的函数图象,则四边形 ABCD 的面积为 ________.
A.24
B.25
【答案】 B
C.26
D.27
3.(2021 秋·绍兴市上虞区期末)早上 8 时,妈妈把小明送到游泳馆参加训练, 之后马上回家准备午饭,做好饭后去游泳馆等小明训练结束接其回家,妈妈两次 从游泳馆回家时的驾车速度相同,在家做饭和在游泳馆等小明的时间也相同.从 8 时开始,妈妈离家的距离 y 关于时间 x(时)的函数图象如图所示,则妈妈从家出 发去游泳馆等小明的路途的中间时刻,即图象中 CD 的中点 G 所对应的时刻为
(3)若小明家全年的用水量 x 不超过 270 立方米,则应缴纳的水费为多少元(用含 x 的代数
式表示)?
【解析】 (1)500 (2)215
(3)当 0≤x≤180 时,应缴纳的水费为 5x 元;当 180<x≤260 时,应缴纳的水费为 180×5
为 1 AB·(AD+BC)=1 ×(3+7)×4=20.
2
2
【答案】 20
三、解答题
7.某市对居民用水实行阶梯收费,按年度用水量计算,将居民家庭全年用水量划分为三
档,水价分档递增,实施细则如下表所示:
供水类型
阶梯
每户年用水量 x(立方米) 水价(元/立方米)
第一阶梯
0≤x≤180
5
自来水
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)设一次购买零件x个时,销售单价为y元,求y 与x的函数关系式.
(3)当一次性购买500个或1000个零件时,利润 是多少元?
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
参知政事范仲淹等人遭谗离职,欧阳修上书替他们分辩,被贬到滁州做了两年知州。到任以后,他内心抑郁,但还能发挥“宽简而不扰”的作风,取得了某些政绩。《醉翁亭记》就是在这个时期写就的。目标导学二:朗读文章,通文顺字1.初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例
y 25x(0x20且x为整数) 252010x20( x20且x为整数)
某班54名学生去该风景区游览,购买门 票共花去___8_40__元。
6.为了缓解用电紧张的矛盾,电力公司
制定了新的用电收费标准,每月用电量x
(千瓦时)与应付电费y(元)的关系如
图所示:
y(元)
(1)根据图象求出 y与x的函数关系式;100
(1)求沙尘暴的最大风速;32
(2)用恰当的方法表示 沙尘暴风速与时间之间 的关系。
8 0 4 10 25
57 t(h)
8.某厂生产一种零件,每一个成本为40元,销售 单价为60元.该厂为了鼓励用户购买,决定当 一次性购买超过100个时,每多购买一个,全部 零件的销售单价均降低0.02元,但不能低于5逊于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江
(1)分别求出x<2和x>2时, y与x之间的函数关系式; (2)如果每毫升血液中含药 量为4微克或4微克以上时在 治疗疾病时是有效的,那么 这个有效时间是多长?
4.某地市话费收费标准为:通话时间在
三分钟以内(包括三分钟),话费为每
分钟0.6元;通话时间超过了三分钟,超
过部分按每分钟0.2元。则总话费(元)
2.某块试验田里的农作物每天的需水量y(千 克)与生长时间x(天)之间的关系如折线图 所示.这些农作物在第10天、第30天的需水 量分别为2000千克、3000千克,在第40天后 每天的需水量比前一天增加100千克. (1)分别求出x≤40和x≥40时y与x之间的关系 式; (2)如果这些农作物每
75 70
(2)请回答电力公 50
司的收费标准是什 25
么?
0
25 50 75 100 X(千瓦时)
7.沙尘暴发生后,经过开阔荒漠时加速,经过乡
镇、遇到防护林则减速,最终停止。某气象研究
所观察一场沙尘暴从发生到结束的全过程,记录
了风速y(km/h)随着时间t(h)变化的图象(如
图)。
y(km/h)
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也
分段函数练习
1.某市推出电脑上网包月制,每月收取 费用y(元)与上网时间x(小时)的函 数关系如右下图所示,其中BA是线段, 且BA∥x轴,AC是射线. (1)当x≥30,求y与x之间的函数关系式;
(2)若小李4月份上网20
小时,他应付多少元的上 网费用?
(3)若小李5月份上网费 用为105元,则他在该月份 的上网时间是多少?
西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且病,将退休于颍水之上,则又更号六一居士。客有问曰:“六一何谓也?”居士曰:“吾家藏书一万卷,集录三代以来金石遗文一千卷,有琴一张,有棋一局,而常置酒一壶。”客曰:“是为五一尔,奈何?”居士曰:“以吾一翁,老于此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),
寓之酒也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适
与通话时间x(取整数)之间的关系式
为:
.
y 0.6x(0 x 3)
X取整数
y 0.6 3 0.2(x 3)(x 3)
5.某风景区集体门票的收费标准为:20 人以内(含20人),每人25元;超过20 人,超过部分每人10元,则应收门票y 元与游览人数x人之间的关系式为: ______________;
环滁/皆山也。其/西南诸峰,林壑/尤美,望之/蔚然而深秀者,琅琊也。山行/六七里,渐闻/水声潺潺,而泻出于/两峰之间者,酿泉也。峰回/路转,有亭/翼然临于泉上者,醉翁亭也。作亭者/谁?山之僧/曰/智仙也。名之者/谁?太守/自谓也。太守与客来饮/于此,饮少/辄醉,而/年又最高,故/自号曰/醉翁也。醉翁之意/不在酒,在乎/山水之间也。山水之乐,得之心/而
天的需水量大于或等于 4000千克时需要进行人
工灌溉,那么应从第几 天开始进行人工灌溉?
3.某医药研究所开发了一种新药,在试验药效时发 现,如果成人按规定剂量服用,那么服药后2小时 时血液中含药量最高,达每毫升6微克(1微克=103毫克),接着逐步衰减,10小时时血液中含药量 为每毫升3微克,每毫升血液中含药量y(微克), 随时间x(小时)的变化如图所示. 当成人按规定剂量服药后,