天津市五区县2018届高三二模考试数学试卷(理科)Word版含解析
2018届天津市实验中学高三上学期第二次模拟数学(理)试题 Word版含解析
2017-2018学年高三(18届)二模试卷数学理科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合的真子集个数为()A. B. C. D.【答案】C【解析】真子集个数为故选2. 若为实数,且,则()A. B. C. D.【答案】D【解析】试题分析:,选D.考点:复数相等,复数运算3. 下面程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为,则输出的为()A. B. C. D.【答案】B【解析】由a=14,b=18,a<b,则b变为18﹣14=4,由a>b,则a变为14﹣4=10,由a>b,则a变为10﹣4=6,由a>b,则a变为6﹣4=2,由a<b,则b变为4﹣2=2,由a=b=2,则输出的a=2.故选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.4. 一个四面体的三视图如图所示,则该四面体的表面积是()A. B. C. D.【答案】C【解析】由三视图还原几何体如图所示:三棱锥O−ABC,OE⊥底面ABC,EA=ED=1,OE=1,AB=BC=∴AB⊥BC,∴可判断;△OAB≌△OBC的直角三角形,S△OAC=S△ABC=×2×1=1,S△OAB=S△OBC=,该四面体的表面积:,本题选择C选项.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.5. 已知命题“,使”是假命题,则实数的取值范围是()A. B. C. D.【答案】B【解析】试题分析:依题意可知,,使为真命题.所以,即,解得.故B正确.考点:1命题;2一元二次不等式.6. 已知,则()A. B. C. D.【答案】A【解析】故选7. 设向量满足,则()A. B. C. D.【答案】A【解析】4故选8. 设满足约束条件,则的最大值为()A. B. C. D.【答案】B【解析】作出x,y满足的区域如图(阴影部分),由目标函数对应直线的斜率与边界直线斜率的关系知目标函数在点(1,1)处取得最大值4.故选B点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.9. 由曲线与直线所围成的封闭图形面积为()A. B. C. D.【答案】D【解析】根据题意作出所围成的图形,如图所示,图中从左至右三个交点分别为,所以题中所求面积为,故选D10. 设,则大小关系为()A. B. C. D.【答案】B【解析】,,所以有。
2018年天津市南开区高考数学二模试卷(理科)(解析版)
2018年天津市南开区高考数学二模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i为虚数单位,则复数=()A.﹣1+3i B.3+i C.3﹣i D.2+4i2.(5分)若实数x,y满足约束条件,则目标函数z=2x+3y的最大值为()A.11B.24C.36D.493.(5分)△ABC中,a,b,c分别为角A,B,C的对边,已知b=,c=2,cos B=,则a=()A.B.C.2D.34.(5分)函数f(x)=log0.5(2﹣x)+log0.5(2+x)的单调递增区间是()A.(2,+∞)B.(﹣∞,﹣2)C.(0,2)D.(﹣2,0)5.(5分)设F1,F2是离心率为5的双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()A.4B.8C.24D.486.(5分)下列命题中,正确的是()A.“lna>lnb”是“10a>10b”的充要条件B.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m ≠0且n≠0”C.存在x0>0,使得x0<sin x0D.若cosα≠,则α≠7.(5分)已知S n是数列{a n}的前n项和,a1=2,a2=4,a3=6,数列{a n+a n+1+a n+2}是公差为2的等差数列,则S25=()A.233B.282C.466D.6508.(5分)设△ABC是边长为1的正三角形,M是△ABC所在平面上的一点,且+2λ+=,则当•取最小值时,λ的值为()A.B.C.2D.3二、填空题:本大题共6个小题,每小题5分,共30分.请将答案填在题中横线上.9.(5分)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为.10.(5分)执行如图的程序框图,若输入的N是4,则输出p的值是.11.(5分)二项式()5的展开式中的常数项为.12.(5分)一个几何体的三视图如图所示,该几何体的体积是,则a=.13.(5分)已知曲线C的极坐标方程为ρ=2(cosθ+sinθ),以极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴.两种坐标系中的长度单位相同,直线l:(t为参数)与曲线C交于A,B两点,与y轴交于E,则|EA|•|EB|=.14.(5分)已知函数f(x)=()x,函数g(x)为偶函数且g(x﹣2)=﹣g(x),当x∈[0,2]时,g(x)=若F(x)=g(x)﹣f(|x|)﹣a恰有4个零点,则a的取值范围是.三、解答题:(本大题共6个小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(13分)已知x=是函数f(x)=2cos2x+2a sin x•sin(x+)图象的一条对称轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在区间[0,]上的取值范围.16.(13分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得﹣1分.现从盒内任取3个球.(Ⅰ)求取出的3个球得分之和恰为1分的概率;(Ⅱ)设X为取出的3个球中白色球的个数,求X的分布列和数学期望.17.(13分)如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45°.(Ⅰ)求此三棱柱的侧棱长;(Ⅱ)求二面角A﹣BD﹣C的余弦值;(Ⅲ)求点C到平面ABD的距离.18.(13分)已知数列{a n}的前n项和为S n,a1=,且当n≥2时,=+2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2(1﹣n)a n,证明:b22+b32+b42+..+b n+12<.19.(14分)已知椭圆E的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线x2=4的焦点,离心率等于.椭圆E的左焦点为F,过点M(﹣3,0)任作一条斜率不为零的直线l与椭圆E交于不同的两点A,B,点A关于x 轴的对称点为C.(Ⅰ)求椭圆E的方程;(Ⅱ)求△MBC面积的最大值.20.(14分)已知函数f(x)=xlnx.(Ⅰ)若存在x∈[,e],使不等式2f(x)≥﹣x2+ax﹣3成立,求实数a的取值范围;(Ⅱ)设0<x1<x2,证明:;(Ⅲ)证明:(x+1)(1﹣xf′(x))<(e2+1)e x﹣2.2018年天津市南开区高考数学二模试卷(理科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)i为虚数单位,则复数=()A.﹣1+3i B.3+i C.3﹣i D.2+4i【解答】解:=.故选:B.2.(5分)若实数x,y满足约束条件,则目标函数z=2x+3y的最大值为()A.11B.24C.36D.49【解答】解:作出不等式组对应的平面区域如图由z=2x+3y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+,经过点A时,直线y=﹣x+,的截距最大,此时z最大,由,解得,即A(1,3),此时z=2×1+3×3=11,故选:A.3.(5分)△ABC中,a,b,c分别为角A,B,C的对边,已知b=,c=2,cos B=,则a=()A.B.C.2D.3【解答】解:∵b=,c=2,cos B=,∴由余弦定理b2=a2+c2﹣2ac cos B,可得:5=a2+4﹣2×,整理可得:3a2﹣8a﹣3=0,∴解得:a=3或﹣(舍去).故选:D.4.(5分)函数f(x)=log0.5(2﹣x)+log0.5(2+x)的单调递增区间是()A.(2,+∞)B.(﹣∞,﹣2)C.(0,2)D.(﹣2,0)【解答】解:要使函数有意义,则得,即﹣2<x<2,即函数的定义域为(﹣2,2),f(x)=log0.5(2﹣x)+log0.5(2+x)=log0.5(2﹣x)(2+x)=log0.5(4﹣x2),设t=4﹣x2,则y=log0.5t是减函数,要求函数f(x)的单调递增区间,等价为求函数t=4﹣x2,的单调递减区间,∵函数t=4﹣x2,的单调递减区间为[0,2),∴f(x)的单调递增区间为(0,2),故选:C.5.(5分)设F1,F2是离心率为5的双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()A.4B.8C.24D.48【解答】解:∵设F1,F2是离心率为5的双曲线的两个焦点,∴e===5,解得a2=1,∴c=5,∴|F1F2|=2c=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则|PF1|=|PF2|=x,由双曲线的性质知x﹣x=2,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=×6×8=24.故选:C.6.(5分)下列命题中,正确的是()A.“lna>lnb”是“10a>10b”的充要条件B.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m ≠0且n≠0”C.存在x0>0,使得x0<sin x0D.若cosα≠,则α≠【解答】解:对于A,lna>lnb时,a>b>0,∴10a>10b,充分性成立;10a>10b时,a>b,lna>lnb不一定成立,即必要性不成立;是充分不必要条件,A错误;对于B,命题“若m2+n2=0,则m=0且n=0”,它的否命题是“若m2+n2≠0,则m≠0或n≠0”,∴B错误;对于C,设f(x)=x﹣sin x,则f′(x)=1﹣cos x≥0恒成立,∴f(x)在(0,+∞)上单调递增,∴f(x)≥f(0)=0,即x>sin x在(0,+∞)上恒成立;它的否定命题:存在x0>0,使得x0<sin x0是假命题,C错误;对于D,α=时,cosα=是真命题,∴它的逆否命题:若cosα≠,则α≠也是真命题,D正确.故选:D.7.(5分)已知S n是数列{a n}的前n项和,a1=2,a2=4,a3=6,数列{a n+a n+1+a n+2}是公差为2的等差数列,则S25=()A.233B.282C.466D.650【解答】解:S n是数列{a n}的前n项和,a1=2,a2=4,a3=6,数列{a n+a n+1+a n+2}是公差为2的等差数列,可知a4=4,a5=6,a6=8,a7=6,a8=8,a9=10,a10=8,a11=10,a12=12,即:2,4,6,4,6,8,6,8,10,8,10,12,10,12,14,12,14,16,14,16,…数列{a n}的前25项和:2+2×4+3(6+8+10+12+14+16+18)+20=30+3×=282.故选:B.8.(5分)设△ABC是边长为1的正三角形,M是△ABC所在平面上的一点,且+2λ+=,则当•取最小值时,λ的值为()A.B.C.2D.3【解答】解:如图,∵,,+2λ+=,∴,得.∴,∴==设,则.当t=,即,也就是时,•取最小值.故选:A.二、填空题:本大题共6个小题,每小题5分,共30分.请将答案填在题中横线上.9.(5分)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为,则总体中的个体数为160.【解答】解:在分层抽样中每个个体被抽到的概率相同,则,即n=160,即总体中的个体数为160,故答案为:16010.(5分)执行如图的程序框图,若输入的N是4,则输出p的值是24.【解答】解:由程序框图知;第一次循环k=1,p=1•1=1;第二次循环k=2,p=1•2=2;第三次循环k=3,p=2•3=6;第四次循环k=4,p=4•6=24.不满足条件k<4,跳出循环体,输出p=24.故答案为:24.11.(5分)二项式()5的展开式中的常数项为﹣80.【解答】解:二项式(﹣)5的展开式的通项公式为T r+1=•(﹣2)r•,令﹣=0,求得r=3,∴展开式的常数项为×(﹣8)=﹣80,故答案为:﹣80.12.(5分)一个几何体的三视图如图所示,该几何体的体积是,则a=2.【解答】解:由已知三视图得到几何体为长方体割去一个角,如图所以其体积为•a﹣•a•••=,解得a=2,故答案为:2.13.(5分)已知曲线C的极坐标方程为ρ=2(cosθ+sinθ),以极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴.两种坐标系中的长度单位相同,直线l:(t为参数)与曲线C交于A,B两点,与y轴交于E,则|EA|•|EB|=1.【解答】解:∵曲线C的极坐标方程为ρ=2(cosθ+sinθ),∴ρ2﹣2ρcosθ﹣2ρsinθ=0,∴x2+y2﹣2x﹣2y=0,即(x﹣1)2+(y﹣1)2=2.把直线l:(t为参数)代入曲线C的方程可得:t2﹣3t+1=0,∴t1+t2=3,t1t2=1.∴|EA|•|EB|=t1t2=1.故答案为:1.14.(5分)已知函数f(x)=()x,函数g(x)为偶函数且g(x﹣2)=﹣g(x),当x∈[0,2]时,g(x)=若F(x)=g(x)﹣f(|x|)﹣a恰有4个零点,则a的取值范围是(2,2.375).【解答】解:由函数g(x)为偶函数且g(x﹣2)=﹣g(x),则g(x)=g(﹣x),g(x+2)=﹣g(x),g(x+4)=﹣g(x+2)=g(x),函数g(x)的周期为4,x∈[0,2]时,g(x)=,则在区间[﹣2,0]上,有g(x)=,分别作出函数y=g(x)在[﹣2,2]的图象,并左右平移4个单位,8个单位,…,可得y=g(x)的图象,再作y=()|x|+a的图象,注意上下平移.当经过A(1,2.5)时,a=2.5﹣0.5=2,经过B(3,2.5)时,a=2,5﹣0.53=2.375.则平移可得2<a<2.375时,图象共有4个交点,即F(x)=g(x)﹣f(|x|)﹣a恰有4个零点.故答案为:(2,2.375).三、解答题:(本大题共6个小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(13分)已知x=是函数f(x)=2cos2x+2a sin x•sin(x+)图象的一条对称轴.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在区间[0,]上的取值范围.【解答】解:(Ⅰ)函数f(x)=2cos2x+2a sin x•sin(x+)=1+cos2x+a sin2x=sin(2x+θ)+1,tanθ=.∵x=是函数的对称轴,∴2×+θ=,k∈Z.∴θ=kπ,那么tan(kπ)=tan=,∴a=.(Ⅱ)由可知(Ⅰ)函数f(x)=2sin(2x+)+1,∵x∈[0,]上,∴2x+∈[,]上,∴﹣1≤sin(2x+)≤1.故得函数f(x)在区间[0,]上的取值范围是[﹣1,3].16.(13分)盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得﹣1分.现从盒内任取3个球.(Ⅰ)求取出的3个球得分之和恰为1分的概率;(Ⅱ)设X为取出的3个球中白色球的个数,求X的分布列和数学期望.【解答】解:(Ⅰ)由题意知本题是一个古典概型,∵试验发生包含的所有事件为从9个球中任取3个球有C93种结果,而满足条件取出的3个球得分之和恰为1分有两种种结果,包括取出1个红色球,2个白色球和取出2个红色球,1个黑色球记“取出1个红色球,2个白色球”为事件B,有C21C32种结果.“取出2个红色球,1个黑色球”为事件C,有C22C41种结果,其中它们之间是互斥事件,∴P(B+C)=P(B)+P(C)==.(Ⅱ)X可能的取值为0,1,2,3.P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X的数学期望EX)==1.17.(13分)如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45°.(Ⅰ)求此三棱柱的侧棱长;(Ⅱ)求二面角A﹣BD﹣C的余弦值;(Ⅲ)求点C到平面ABD的距离.【解答】解:(Ⅰ)取BC的中点为O,连接OD由正三棱柱的结构特征得OA⊥平面BCC1B1,且OA=.所以∠ADO是直线AD与侧面BB1C1C所成的角,即∠ADO=45°.所以OD=.所以侧棱的长为2.(Ⅱ)如图,以O为原点,OC为x轴,OA为z轴,建立空间直角坐标系,则A(0,0,),B(﹣1,0,0),C(1,0,0),D(1,,0),=(﹣1,0,﹣),=(1,,﹣),设=x,y,z)是平面ABD的一个法向量,则由,取z=﹣1,得=(,﹣,﹣1),面BCD的一个法向量=(0,0,1),∴cos<>===﹣.而所求二面角为锐角,即二面角A﹣BD﹣C的余弦值为.(Ⅲ)∵=(﹣1,0,),∴点C到面ABD的距离为:d==.18.(13分)已知数列{a n}的前n项和为S n,a1=,且当n≥2时,=+2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2(1﹣n)a n,证明:b22+b32+b42+..+b n+12<.【解答】(I)证明:当n≥2时,=+2.∴﹣=2.=2,∴数列{}是等差数列,公差为2,首项为2.∴=2+2(n﹣1)=2n,∴S n=.∴n≥2时,a n=S n﹣S n=﹣=﹣.﹣1∴a n=.(II)证明:n≥2时,b n=2(1﹣n)a n=.∴n≥3时,=<=,∴b22+b32+b42+..+b n+12<+……+<+=﹣<.19.(14分)已知椭圆E的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线x2=4的焦点,离心率等于.椭圆E的左焦点为F,过点M(﹣3,0)任作一条斜率不为零的直线l与椭圆E交于不同的两点A,B,点A关于x 轴的对称点为C.(Ⅰ)求椭圆E的方程;(Ⅱ)求△MBC面积的最大值.【解答】解:(Ⅰ)设椭圆的方程:(a>b>0),由抛物线x2=4的焦点(0,),则b=,椭圆的离心率e===,则a=,∴椭圆E的方程:;(Ⅱ)设直线l的方程为y=k(x+3).联立,整理得(1+3k2)x2+18k2x+27k2﹣6=0,△=(18k2)2﹣4(1+3k2)(27k2﹣6)>0,解得k2<.设点A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,y1=k(x1+3),y2=k(x2+3).∵F(﹣2,0),C(x1,﹣y1).∴=(x1+2,﹣y1),=(x2+2,y2).∵(x1+2)y2﹣(x2+2)(﹣y1)=(x1+2)k(x2+3)+(x2+2)k(x1+3)=k[2x1x2+5(x1+x2)+12],=k(++12)==0.∴=λ,则直线BC过椭圆的左焦点F,由题意可知:S=|MF||y1|+|MF||y2|=|MF||y1+y2|=|k(x1+x2)+6k|==≤=.当且仅当k2=<,取“=”成立,∴k2=时,△MBC面积取得最大值.20.(14分)已知函数f(x)=xlnx.(Ⅰ)若存在x∈[,e],使不等式2f(x)≥﹣x2+ax﹣3成立,求实数a的取值范围;(Ⅱ)设0<x1<x2,证明:;(Ⅲ)证明:(x+1)(1﹣xf′(x))<(e2+1)e x﹣2.【解答】解(Ⅰ)由题意知,2xlnx≥﹣x2+ax﹣3,则a≤2lnx+x+.若存在x∈[,e]使不等式2f(x)≥﹣x2+ax﹣3成立,只需a小于或等于2lnx+x+的最大值.设h(x)=2lnx+x+(x>0),则h′(x)=.当x∈[,1)时,h'(x)<0,h(x)单调递减;当x∈(1,e]时,h'(x)>0,h(x)单调递增.由h()=﹣2++3e,h(e)=2+e+,h()﹣h(e)=2e﹣﹣4>0,可得h()>h(e).所以,当x∈[,e]时,h(x)的最大值为h()=﹣2++3e,故a≤﹣2++3e.(Ⅱ)证明:构造函数G(x)=,(0<x<x2).G′(x)=lnx﹣ln,∵,0<x<x2.∴,∴G(x)<0∴函数G(x)=,(0<x<x2)单调递减.∴G(x)>G(x2)=0∴G(x1)>G(x2)=0,⇒>0∴;(Ⅲ)证明:令H(x)=1﹣xf′(x)=1﹣xlnx﹣x,则H′(x)=﹣lnx﹣2 x∈(0,e﹣2)时,H′(x)>0,x∈(e﹣2,+∞)时,H′(x)<0∴H(x)=1+e﹣2.令m(x)=,,x∈(0,+∞)时,m′(x)>0,∴m(x)在(0,+∞)单调递增,∴m(x)>m(0)=1+e﹣2∴(1﹣xf′(x))<m(x)=.∴(x+1)(1﹣xf′(x))<(e2+1)e x﹣2.。
2018天津高考理科数学真题答案解析(可编辑)
在 ABC中,内角A,B,C所对的边分别为a,b,c. 已知b sin A a cos B , 6
(Ⅰ) 求角B的大小; (Ⅱ) 设a=2,c=3,求b和sin 2 A B 的值. (Ⅰ)解: 在 ABC中,由正弦定理
a b , 可得b sin A=a sin B,又由 sin A sin B
l ( )2 d 2 r 2 2 l 1 ( )2 1 2 2 l 2 2 2 l 2 2 1 S d 2 2 2 2
1 0 2 11
2 2
(13) 已知 a, b R ,且 a 3b 6 0 ,则 2a 答案:
1 4
1 的最小值为_________. 8b
x 2 2ax a, x 0 (14) 已知 a 0 ,函数 f x 2 若关于 x 的方程 f x ax x 2ax 2a, y 0
恰有 2 个互异的实数解,则 a 的取值范围是_________. 答案: (4, 8) 解析:当 x 0时
第二部分:试卷题目解析
一、 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为 R,集合 A x 0 x 2 , B x x 1 ,则 A CR B (A) x 0 x 1 答案:B 解析: Q B = {x | x 砛 1} CR B = {x | x < 1} (B) x 0 x 1 (C) x 1 x 2 (D) x 0 x 2
(4) 设 x R ,则“ x
1 1 ”是“ x3 1 ”的 2 2
(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 答案:A 解析: Q x 1 1 < 2 2
2018年天津市部分区高三质量调查试卷(二).docx
2018年天津市部分区高三质量调查试卷(二)理科综合物理部分一、单项选择题(每小题6小题,共30分。
在每小题给出的四个选项中,只有一个选项是正确的)1.平直公路上有甲、乙两车,uo时刻从同一位置同向运动,它们运动的IT图象如图所示。
下列说法正确的是H 12A」时刻甲、乙两车相距最远B.b时刻,两车的加速度相同C.072时间内,乙车的速度先减小后变大v n + V.D.072时间内,乙车平均速度大于一-2【答案】C【解析】当速度相同时,两者相距最远,故在t2时刻相距最远,故A错误:在v・t图象中,斜率代表加速度, (2时刻,斜率不同,故两车的加速度不相同,故B错误;由图可知,0〜b时间内,乙车的速度先减小后变大,故C止确;在v・t图象中,与时间轴所围而积为物体运动的位移,故甲的平均速度大于乙的平均速度,v o + V] v0 + V,甲做匀变速运动,甲的平均速度为一■,故乙的平均速度小于~ ,故D错误;故选C。
2 22.如图所示,一木块右端连接轻质弹簧,静止在倾角为&的固定斜面上。
现用力F沿斜面向上缓慢拉弹簧的上端P,直至木块沿斜而匀速上滑(滑动摩擦力等于最大静摩擦力),此时F二F().从力F作用开始,至木块滑动距离L的过程中,下列说法正确的是A.木块所受摩擦力先变大后变小B.力F做功为F°LC.弹簧的弹性势能一直增加D.弹簧和木块组成的系统的机械能一直增加【答案】D【解析】在木块静止过程中受力平衡,开始时摩擦力等于重力的分力,随着拉力的增大,摩擦力将减小:当拉力大于重力的分力时,摩擦力向下,并联着拉力的增大而增大;当木块运动后摩擦力为滑动摩擦力,大小不变,故A错误;因拉力为变力,故不能根据W二FL求解拉力的功,故B错误;弹簧的弹性势能与形变量有关,当木块做匀速运动时,拉力不变,形变量不变,弹性势能不再增加,故C错误;因拉力…直做正功,故弹赞和木块组成的系统的机械能一直增加,故D正确。
2018年天津市十二重点中学高考数学二模试卷(理科)
2018年天津市十二重点中学高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,满分40分.1. 已知集合=,=,则为()A. B. C. D.【答案】A【考点】交集及其运算【解析】解不等式求得集合、,根据交集的定义写出.【解答】集合==,==,则==.2. 已知,满足不等式组,则目标函数=的最小值为()A. B. C. D.【答案】B【考点】简单线性规划【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数求得最小值.【解答】由约束条件作出可行域如图,设可行域内一点,由图可知,直线=经过点时取到最大值,经过点时取到最小值,联立,解得,∴的最小值为=,3. 一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.【答案】D【考点】程序框图【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】负值=,=,=,判断条件成立,执行==,==,=;判断条件成立,执行==,==,;判断条件成立,执行==,==,;判断条件不成立,算法结束,输出.此时=,不成立.故判断框中应填入的条件是.4. 已知为实数,直线=,:=,则“=”是“”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】A【考点】充分条件、必要条件、充要条件【解析】根据直线平行的等价条件,求出的值,结合充分条件和必要条件的定义进行判断即可.【解答】当=时,两直线方程分别为直线=,=满足,即充分性成立,当=时,两直线方程分别为=,和=,不满足条件.当时,则,由得=得=或=,由得,则=,即“=”是“”的充要条件,5. 已知函数=的最小正周期为,将=的图象向左平移个单位长度,所得图象关于轴对称,则的一个值是()A. B. C. D.【答案】D【考点】函数y=Asin(ωx+φ)的图象变换【解析】根据函数的周期求,结合三角函数的图象平移关系,结合三角函数的奇偶性进行求解即可.【解答】∵函数=的最小正周期为,∴,得=,则=,将=的图象向左平移个单位长度,所得图象关于轴对称,则==,∵图象关于轴对称,∴,则,,当=时,,则或,即的一个值可能为,6. 已知定义在上的函数=,则三个数=,=(),=,则,,之间的大小关系是()A. B. C. D.【答案】C【考点】对数值大小的比较【解析】求出的导数,得到函数在上为单调增函数,再求出、的范围,则答案可求.【解答】定义在上的函数=是偶函数,时,=,=,∴在时递增,∵,,又=,=(),=,∴,故选:.7. 双曲线的左、右焦点分别为,,点,在双曲线上,且,,线段交双曲线于点,,则该双曲线的离心率是()A. B. C. D.【答案】D【考点】双曲线的离心率【解析】运用双曲线的对称性由条件可设的坐标,由向量共线定理可得的坐标,再由,在双曲线上,满足双曲线的方程,即可得到双曲线的离心率.【解答】由=,可得=,由,可设,设,∴,∵,∴,解得,,∵,在双曲线上,∴,消去整理可得,∴.8. 已知函数定义在上的函数,则下列说法中正确的个数有()①关于的方程,有个不同的零点②对于实数,不等式恒成立③在上,方程=有个零点④当,时,函数的图象与轴围成的面积为A. B. C. D.【答案】B【考点】分段函数的应用【解析】根据函数的表达式,作出函数的图象,利用数形结合分别判断即可.【解答】作出函数的图象,如图:当=时,方程等价为=,∴对应方程根的个数为个,而=个,∴ ①错误;由不等式等价为,在恒成立,作出函数的图象如图,则不等式恒成立,∴ ②正确;由函数表达式可知=,=,=.由=得,设,则=,∴在上,方程=有个零点,∴ ③错误;令=得,=,当时,函数的图象与轴围成的图形是一个三角形,其面积为:=,∴ ④错误.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡中的相应横线上.________为虚数单位,设复数________满足________,则________的虚部是【答案】,,,,【考点】复数的运算【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案.【解答】由,得.∴的虚部是.以直角坐标系的原点为极点,________轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线极坐标方程为,它与曲线,(为参数)相交于两点________、________,则________=________.【答案】,,,,【考点】参数方程与普通方程的互化【解析】把直线极坐标方程、曲线参数方程化为普通方程,求出圆心到直线的距离,利用勾股定理求得弦长.【解答】把直线极坐标方程化为普通方程是=,曲线参数方程化为普通方程是=,圆心为,半径为,圆心到直线=的距离为,则弦长=.一个几何体的三视图如图所示,则该几何体的体积________.【答案】由三视图求体积【解析】由已知中的三视图可得,该几何体是一个半圆锥和一个四分之一球的组合体,分别计算它们的体积,相加可得答案.【解答】由已知中的三视图可得,该几何体是一个半圆锥和一个四分之一球的组合体,球的半径为圆锥的底面半径均为,圆锥的高为,故四分之一球的体积为:,半圆锥的体积为:,故组合体的体积;若________________=(其中________),则________________的展开式中________的系数为________.【答案】,,,,,,【考点】微积分基本定理定积分二项式定理及相关概念【解析】由微积分基本定理求得,代入,写出二项展开式的通项,由的指数为求得值,则答案可求.【解答】由=,如图,得=,即=.∴=,.由=,得=.∴的展开式中的系数为.已知________________,二次三项式________________+________对于一切实数________恒成立,又________,使________________=成立,则的最小值为________.【答案】,,,,,,,,,【考点】反证法与放缩法【解析】由条件求得,=,由此把要求的式子化为,利用基本不等式即可求出答案.【解答】∵已知,二次三项式对于一切实数恒成立,∴,且=,∴.再由,=,可得=,∴=,即=,∴,∵,当且仅当时取等号故的最小值为,已知直角梯形________中,________________,________=,________=,________=,________=,________是腰________上的动点,则的最小值为________.【答案】,,,,,,,,,【考点】平面向量数量积的性质及其运算【解析】建立坐标系,设出的坐标,表示出,的坐标,结合二次函数的性质求出其最小值即可.【解答】分别以,为,轴,建立直角坐标系:如图示:,∵=,=,=,是腰上的动点,∴,,,,则设,故,,故,故,而==,故的最小值是,三、解答题:本大题6小题,共80分.解答应写出必要的文字说明,证明过程或演算步骤.在锐角中,角,,的对边分别为,,,且.(1)求角的大小;(2)已知,的面积为,求边长的值.【答案】锐角中,,∴,由正弦定理得,∴,又=,∴,又,∴;由,利用正弦定理得=;又的面积为,∴,解得=;由余弦定理==,解得=.【考点】三角形的面积公式【解析】(1)根据题意,利用正弦定理与三角形的内角和定理求得的值,从而求得的值;(2)由题意,利用正弦定理与三角形的面积公式求得的值,再由余弦定理求得的值.【解答】锐角中,,∴,由正弦定理得,∴,又=,∴,又,∴;由,利用正弦定理得=;又的面积为,∴,解得=;由余弦定理==,解得=.某大学在一次公益活动中聘用了名志愿者,他们分别来自于、、三个不同的专业,其中专业人,专业人,专业人,现从这人中任意选取人参加一个访谈节目.(1)求个人来自两个不同专业的概率;(2)设表示取到专业的人数,求的分布列与数学期望.【答案】令事件表示“个来自于两个不同专业”,表示“个人平自于同一个专业”,表示“个人来自于三个不同专业”,,,∴个人来自两个不同专业的概率:==.随机变量有取值为,,,,=,=,=,=,∴的分布列为:.【考点】离散型随机变量的期望与方差【解析】(1)令事件表示“个来自于两个不同专业”,表示“个人平自于同一个专业”,表示“个人来自于三个不同专业”,利用列举法能求出个人来自两个不同专业的概率.(2)随机变量有取值为,,,,分别求出相应的概率,由此能求出的分布列和.【解答】令事件表示“个来自于两个不同专业”,表示“个人平自于同一个专业”,表示“个人来自于三个不同专业”,,,∴个人来自两个不同专业的概率:==.随机变量有取值为,,,,=,=,=,=,∴的分布列为:.如图,四边形与均为菱形,=,且==.(1)求证:平面;(2)求二面角的余弦值;(3)若为线段上的一点,满足直线与平面所成角的正弦值为,求线段的长.【答案】设与交于点,连结,∵四边形是菱形,∴,且为的中点,∵=,∴,又=,平面,平面,∴平面.连结,∵四边形是菱形,且=,∴是等边三角形,∵为的中点,∴,又,平面,平面,∴平面,∵、、两两垂直,∴建立空间直角坐标系,如图,设=,∵四边形为菱形,=,∴=,=,∵为等边三角形,∴,∴,,,,∴,,,,设平面的法向量,则,取=,得,∴,∵二面角的余弦值为.设,则=,∴,化简,得=,解得或(舍),∴线段的长为.【考点】二面角的平面角及求法【解析】(1)设与交于点,连结推导出,且为的中点,,由此能证明平面.(2)连结,由、、两两垂直,建立空间直角坐标系,利用向量法能求出二面角的余弦值.(3)设,,则=,利用向量法能求出线段的长.【解答】设与交于点,连结,∵四边形是菱形,∴,且为的中点,∵=,∴,又=,平面,平面,∴平面.连结,∵四边形是菱形,且=,∴是等边三角形,∵为的中点,∴,又,平面,平面,∴平面,∵、、两两垂直,∴建立空间直角坐标系,如图,设=,∵四边形为菱形,=,∴=,=,∵为等边三角形,∴,∴,,,,∴,,,,设平面的法向量,则,取=,得,∴,∵二面角的余弦值为.设,则=,∴,化简,得=,解得或(舍),∴线段的长为.已知数列的前项和满足=,为常数,,(1)求的通项公式;(2)设=,若数列为等比数列,求的值;(3)在满足条件(2)的情形下,,若数列的前项和为,且对任意的满足,求实数的取值范围.【答案】时,==,化为:=,为常数,,.=时,=,可得:=.∴数列为等比数列,首项与公比为.则=.=,可得:=,=,=,∵数列为等比数列,∴=,可得:.由(2)可得:.,∴数列的前项和为,∵对任意的满足,∴,化为:,解得:或.∴实数的取值范围是:或.【考点】数列的求和【解析】(1)时,==,化为:=,为常数,,.=时,=,可得:=.利用等比数列的通项公式可得.(2)=,可得:=,=,=,利用等比数列的性质可得.(3)由(2)可得:.,利用裂项求和方法、数列的单调性、不等式的解法即可得出.【解答】时,==,化为:=,为常数,,.=时,=,可得:=.∴数列为等比数列,首项与公比为.则=.=,可得:=,=,=,∵数列为等比数列,∴=,可得:.由(2)可得:.,∴数列的前项和为,∵对任意的满足,∴,化为:,解得:或.∴实数的取值范围是:或.已知椭圆的两个焦点分别为和,过点的直线与椭圆相交于轴上方的,两点,且.(1)求椭圆的离心率;(2)求直线的斜率;设点与点关于坐标原点对称,直线上有一点在的外接圆上,求的值.【答案】由,可得,从而,整理可得=,故,:由(1)得==,所以椭圆的方程可写为=设直线的方程为=,即=.由已知设,,则它们的坐标满足方程组消去整理,得=.依题意,=,而,①,②,由题设知,点为线段的中点,所以=③联立①③解得,将,代入②中,解得.解法一:由可知=,,当时,得,由已知得.线段的垂直平分线的方程为,直线与轴的交点是外接圆的圆心,因此外接圆的方程为=.直线的方程为,于是点的坐标满足方程组,由,解得,故综上所述.解法二:由可知=,,当时,得,由已知得.由椭圆的对称性可知,,三点共线,因为点在的外接圆上,且,所以四边形为等腰梯形.由直线的方程为,知点的坐标为.因为=,所以=,解得=(舍),或.则,所以.【考点】椭圆的离心率【解析】(1)由,可得,从而,由此可以求出椭圆的离心率.由题意知椭圆的方程可写为=,设直线的方程为=,设,,则它们的坐标满足方程组,整理,得=.再由根的判别式和根与系数的关系求解.解法一:当时,得,线段的垂直平分线的方程为直线与轴的交点是外接圆的圆心,因此外接圆的方程为=.由此可以推导出值.解法二:由椭圆的对称性可知,,三点共线,由已知条件能够导出四边形为等腰梯形.由此入手可以推导出值.【解答】由,可得,从而,整理可得=,故,:由(1)得==,所以椭圆的方程可写为=设直线的方程为=,即=.由已知设,,则它们的坐标满足方程组消去整理,得=.依题意,=,而,①,②,由题设知,点为线段的中点,所以=③联立①③解得,将,代入②中,解得.解法一:由可知=,,当时,得,由已知得.线段的垂直平分线的方程为,直线与轴的交点是外接圆的圆心,因此外接圆的方程为=.直线的方程为,于是点的坐标满足方程组,由,解得,故综上所述.解法二:由可知=,,当时,得,由已知得.由椭圆的对称性可知,,三点共线,因为点在的外接圆上,且,所以四边形为等腰梯形.由直线的方程为,知点的坐标为.因为=,所以=,解得=(舍),或.则,所以.已知函数,=的最大值为.(1)求实数的值;(2)当时,讨论函数的单调性;(3)当=时,令=,是否存在区间,使得函数在区间上的值域为?若存在,求实数的取值范围;若不存在,请说明理由.【答案】∵函数=的最大值为,∴,=,由==,得,当时,,当时,,∴ x===,解得=.的定义域是,=,①=即=时,,故在递增,②若,而,故,则当时,,,时,,故在递减,在,递增,③若,即时,同理在递减,在,递增;由(1)知=,故=,令==,则=对恒成立,故在区间内递增;故=恒成立,故函数在区间递增,假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程=在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,令=,则=对恒成立,故函数在区间递增,故=恒成立,故,在递增,故方程在区间内不存在两个不相等的实根,综上,不存在区间,使得函数在区间上的值域为.【考点】利用导数研究函数的单调性【解析】(1)求出函数的导数,得到函数的单调区间,求出函数的最大值,得到关于的方程,解出即可;(2)求出函数的导数,通过讨论的范围,求出函数的单调区间即可;(3)假设存在,问题转化为关于的方程=在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,根据函数的单调性判断即可.【解答】∵函数=的最大值为,∴,=,由==,得,当时,,当时,,∴ x===,解得=.的定义域是,=,①=即=时,,故在递增,②若,而,故,则当时,,,时,,故在递减,在,递增,③若,即时,同理在递减,在,递增;由(1)知=,故=,令==,则=对恒成立,故在区间内递增;故=恒成立,故函数在区间递增,假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程=在区间内是否存在两个不相等的实根,即方程在区间内是否存在两个不相等的实根,令,,则,令=,则=对恒成立,故函数在区间递增,故=恒成立,故,在递增,故方程在区间内不存在两个不相等的实根,综上,不存在区间,使得函数在区间上的值域为.试卷第21页,总21页。
2018届天津市十二校高三二模联考数学(理)试题(解析版)
2018届天津市十二校高三二模联考数学(理)试题一、单选题1.已知集合,,则为()A. B. C. D.【答案】A【解析】分析:利用一元二次不等式的解法化简集合和利用绝对值不等式的解法化简集合,从而得到的值.详解:因为集合;集合,所以,故选A.点睛:本题主要考查了一元二次不等式,绝对值不等式的解法以及集合的交集,属于容易题,在解题过程中要注意在求交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2.已知,满足不等式组则目标函数的最小值为()A. B. C. D.【答案】B【解析】分析:画出不等式组表示的可行域,平移直线,结合可行域可得直线经过点时取到最小值.详解:画出不等式组表示的可行域,如图,平移直线,设可行域内一点,由图可知,直线经过点时取到最小值,联立,解得,的最小值为,故选B.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.3.一个算法的程序框图如图所示,若该程序输出的结果是,则判断框中应填入的条件是()A. B. C. D.【答案】D【解析】分析:首先判断循环结构类型,得到判断框内的语句性质,然后对循环体进行分析,找出循环规律,判断输出结果与循环次数以及的关系,最终得出选项.详解:经判断此循环为“直到型”结构,判断框为跳出循环的语句,第一次循环:;第二次循环:;第三次循环:,此时退出循环,根据判断框内为跳出循环的语句,,故选D.点睛:题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.已知为实数,直线,,则“”是“”的()A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】A【解析】分析:根据直线平行的条件以及充分不必要条件的定义即可判断.详解:直线,,若“”,则,解得或,即时,可推出,不能推出,故“”是“”的充分不必要条件,故选A.点睛:本题主要考查直线平行的性质以及充分条件与必要条件,属于简单题.高中数学的每个知识点都可以结合充分条件与必要条件考查,要正确解答这类问题,除了熟练掌握各个知识点外,还要注意一下几点:(1)要看清,还是;(2)“小范围”可以推出“大范围”;(3)或成立,不能推出成立,也不能推出成立,且成立,即能推出成立,又能推出成立;(4)一定看清楚题文中的条件是大前提还是小前提. 5.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于轴对称,则的一个值是()A. B. C. D.【答案】D【解析】分析:先根据函数的最小正周期为,求出的值,再由平移后得到为偶函数,可得,进而可得结果.详解:由函数的最小正周期为,可得,,将的图象向左平移个单位长度,得的图象,平移后图象关于轴对称,,,,故选D.点睛:已知的奇偶性求时,往往结合正弦函数及余弦函数的奇偶性和诱导公式来解答:(1)时,是奇函数;(2)时,是偶函数.6.已知定义在上的函数,则三个数,,,则,,之间的大小关系是()A. B. C. D.【答案】C【解析】分析:求出的导数,得到函数的在上递增,利用对数函数与指数函数的性质可得,,从而比较函数值的大小即可.详解:时,,,可得在上递增,由对数函数的性质可得所以,由指数函数的性质可得,由可得,所以,根据函数的单调性可得,故选C.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7.双曲线的左、右焦点分别为,,点,在双曲线上,且,,线段交双曲线于点,,则该双曲线的离心率是()A. B. C. D.【答案】D【解析】分析:运用双曲线的对称性结合,可设出的坐标,由可得的坐标,再由在双曲线上,满足双曲线的方程,消去参数可得从而可得到双曲线的离心率.详解:由,可得,由,可设,由,可得,可得,由在双曲线上,可得,消去整理可得,,故选D.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.8.已知定义在上的函数则下列说法中正确的个数有()①关于的方程有个不同的零点;②对于实数,不等式恒成立;③在上,方程有个零点;④当时,函数的图象与轴围成的面积为.A. B. C. D.【答案】B【解析】分析:根据函数的表达式,作出函数的图象,利用数形结合分别判断即可.详解:由表达式可知.①当时,方程等价为对应方程根的个数为五个,而,故①错误;②由不等式等价为,在恒成立,作出函数图象如图,由图可知函数图象总在的图象上方,所以不等式恒成立,故②正确;③由,得,设,则在上,方程有四个零点,故③错误;④令得,,当时,函数的图象与轴围成的图形是一个三角形,其面积为,故④错误,故选B.点睛:本题主要通过对多个命题真假的判断,主要综合考查函数的、函数的图象与性质,以及函数的零点与不等式恒成立问题,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.二、填空题9.为虚数单位,设复数满足,则的虚部是__________.【答案】【解析】分析:直接利用复数的乘法运算,化简复数,然后求出复数的虚部.详解:由,可得,,可得,所以,的虚部是,故答案为点睛:本题主要考查乘法运算以及复数共轭复数的概念,意在考查对复数基本概念与基本运算掌握的熟练程度.10.以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线极坐标方程为,它与曲线(为参数)相交于两点、,则__________.【答案】2【解析】分析:先利用直角坐标与极坐标间的关系,将极坐标方程为化成直角坐标方程,再将曲线的参数方程化成普通方程,最后利用直角坐标方程的形式,利用垂径定理及勾股定理,由圆的半径及圆心到直线的距离,即可求出的长.详解:,利用进行化简,,为参数),相消去可得圆的方程为:得到圆心,半径为,圆心到直线的距离,,线段的长为,故答案为.点睛:本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.11.一个几何体的三视图如图所示,则该几何体的体积为__________.【答案】【解析】分析:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,分别求出圆锥与球体的体积,求和即可.详解:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,其中,圆锥的底面半径为,高为,体积为;球半径为,体积为,所以,该几何体的体积为,故答案为.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.12.若(其中),则的展开式中的系数为__________.【答案】280【解析】分析:利用微积分基本定理,求得,可得二项展开式通项为令得进而可得结果.详解:因为,所以,展开式的通项为令得所以,的展开式中的系数为,故答案为.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.13.已知,二次三项式对于一切实数恒成立,又,使成立,则的最小值为__________.【答案】【解析】分析:对于一切实数恒成立,可得;再由,使成立,可得,所以可得,可化为,平方后换元,利用基本不等式可得结果.详解:已知,二次三项式对于一切实数恒成立,,且;再由,使成立,可得,,,令,则(当时,等号成立),所以,的最小值为,故的最小值为,故答案为.点睛:本题主要考查一元二次不等式恒成立问题以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).14.已知直角梯形中,,,,,,是腰上的动点,则的最小值为__________.【答案】【解析】分析:以为轴,为原点,过与垂直的直线为轴,建立坐标系,可设,可得,,利用二次函数配方法可得结果.详解:以为轴,为原点,过与垂直的直线为轴,建立坐标系,由,,,,,可得,在上,可设,则,,,即的最小值为,故答案为.点睛:本题主要考查向量的坐标运算、向量模的坐标表设计以及利用配方法求最值,属于难题. 若函数为一元二次函数,常采用配方法求函数的最值,其关键在于正确化简为完全平方式,并且一定要先确定其定义域.三、解答题15.在锐角中,角,,的对边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)已知,的面积为,求边长的值.【答案】(1);(2).【解析】分析:(1)由,利用正弦定理得,结合两角和的正弦公式以及诱导公式可得,进而可得结果;(2)利用(1),由已知及正弦定理可得,结合的面积为,可得,由余弦定理可得结果详解:(1)由已知得,由正弦定理得,∴,又在中,,∴所以∴.(2)由已知及正弦定理又 SΔABC=,∴,得由余弦定理得.点睛:本题主要考查正弦定理、余弦定理在解三角形中的应用,属于中档题. 正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.16.某大学在一次公益活动中聘用了名志愿者,他们分别来自于,,三个不同的专业,其中专业人,专业人,专业人,现从这人中任意选取人参加一个访谈节目.(Ⅰ)求个人来自于两个不同专业的概率;(Ⅱ)设表示取到专业的人数,求的分布列与数学期望.【答案】(1) (2)见解析.【解析】分析:(1)先利用组合知识结合古典概型概率公式求出,“个人来自于同一个专业”的概率,“个人来自于三个不同专业”的概率,再由对立事件的概率公式求解即可;(2)这人中任意选取人,的可能取值为,利用组合知识结合古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)令A表示事件“3个人来自于两个不同专业”,表示事件“3个人来自于同一个专业”,表示事件“3个人来自于三个不同专业”,则由古典概型的概率公式有;(2)随机变量X的取值为:0,1,2,3则,,,,.点睛:本题主要考查互斥事件的概率公式以及对立事件同时发生的概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.17.如图,四边形与均为菱形,,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.【答案】(1)见解析;(2)二面角的余弦值为;(3).【解析】分析:(1)由菱形的性质可得,由等腰三角形的性质可得,根据线面垂直的判定定理可得平面;(2)先证明为等边三角形,可得,于是可以为坐标轴建立坐标系,利用向量垂直数量积为零,列方程组求出平面的法向量与平面的法向量,利用空间向量夹角余弦公式可得结果;(3)设由直线与平面所成角的正弦值为,利用空间向量夹角余弦公式列方程求得,从而可得结果.详解:(1)设与相交于点,连接,∵四边形为菱形,∴,且为中点,∵,∴,又,∴平面.(2)连接,∵四边形为菱形,且,∴为等边三角形,∵为中点,∴,又,∴平面.∵两两垂直,∴建立空间直角坐标系,如图所示,设,∵四边形为菱形,,∴.∵为等边三角形,∴.∴,∴,设平面的法向量为,则令,得设平面的法向量为,则,令,得所以又因为二面角为钝角,所以二面角的余弦值为(3)设所以化简得解得:所以.点睛:本题主要考查线面垂直的证明以及利用空间向量求二面角与线面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18.已知数列的前项和满足:,(为常数,,).(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值;(Ⅲ)在满足条件(Ⅱ)的情形下,.若数列的前项和为,且对任意满足,求实数的取值范围.【答案】(1) ;(2) ;(3) .【解析】分析:(1)可得,两式相减,可化为且,可得数列是以为首项,为公比的等比数列,从而可得结果;(2)算出数列的前三项,利用等比中项的性质列方程,可求得的值;(3)由,利用裂项相消法即可求得,于是,从而可得结果.详解:(1)且数列是以为首项,为公比的等比数列(2)由得,因为数列为等比数列,所以,解得.(3)由(2)知所以,所以,解得.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.19.已知椭圆的两个焦点分别为和,过点的直线与椭圆交于轴上方的,两点,且.(Ⅰ)求椭圆的离心率;(Ⅱ)(ⅰ)求直线的斜率;(ⅱ)设点与点关于坐标原点对称,直线上有一点在的外接圆上,求的值.【答案】(1) 离心率;(2) ,.【解析】分析:(1)由得,化为,从而可得结果;(2)(i)由(1)可设圆的方程可写,设直线AB的方程为,联立,结合点B为线段AE的中点可得,,从而可得结果;(ii)由(i)可知当时,得,由已知得,求出外接圆方程与直线的方程,联立可得结果.详解:(1)由得,从而整理,得,故离心率(2) 解法一:(i)由(I)得,所以椭圆的方程可写设直线AB的方程为,即.由已知设,则它们的坐标满足方程组消去y整理,得.依题意,而①②w由题设知,点B为线段AE的中点,所以③联立①③解得,将代入②中,解得.解法二:利用中点坐标公式求出,带入椭圆方程消去,解得解出(依照解法一酌情给分)(ii)由(i)可知当时,得,由已知得.线段的垂直平分线l的方程为直线l与x轴的交点是外接圆的圆心,因此外接圆的方程为.直线的方程为,于是点H(m,n)的坐标满足方程组,由解得故点睛:本题主要考查椭圆与直线的位置关系以及椭圆离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.20.已知函数,的最大值为.(Ⅰ)求实数的值;(Ⅱ)当时,讨论函数的单调性;(Ⅲ)当时,令,是否存在区间.使得函数在区间上的值域为若存在,求实数的取值范围;若不存在,说明理由.【答案】(1) ;(2) 时,在单调增;时, 在单调递减,在单调递增;时,同理在单调递减,在单调递增;(3)不存在.【解析】分析:(1)利用导数研究函数的单调性,可得当时,取得极大值,也是最大值,由,可得结果;(2)求出,分三种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(3)假设存在区间,使得函数在区间上的值域是,则,问题转化为关于的方程在区间内是否存在两个不相等的实根,进而可得结果.详解:(1) 由题意得,令,解得,当时,,函数单调递增;当时,,函数单调递减.所以当时,取得极大值,也是最大值,所以,解得.(2)的定义域为.①即,则,故在单调增②若,而,故,则当时,;当及时,故在单调递减,在单调递增。
天津市河东区2018届高三高考二模数学理科试题(含精品解析)
河东区 2018年高考二模考试数学试卷(理工类)参考公式:球的表面积公式球的体积公式,R表示球的半径.如果事件A、B互斥,那么P(A+B)=P(A)+P(B)。
如果事件A、B相互独立,那么P(A●B)=P(A) ●P(B)。
如果事件A在一次试验中发生的概率是P,那么 n次独立重复试验中恰好发生k次的概率一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确结论的代号填在下表内.1. 是虚数单位,复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】分析:先化简复数即得复数在复平面上对应的点所在象限.详解:由题得,因为复数-1-i对应的点在第三象限,故答案为:C点睛:(1)本题主要考查复数的运算及复数的几何意义,意在考查学生对这些基础知识的掌握能力.(2)复数对应的点是(a,b),点(a,b)所在的象限就是复数对应的点所在的象限.2. 执行图1所示的程序框图,则S的值为()图1A. 16B. 32C. 64D. 128【答案】D【解析】分析:模拟程序框图运行即得解.详解:模拟程序的运行,可得i=1,S=1,执行循环体,S=2,i=2,满足条件i≤4,执行循环体,S=8,i=4满足条件i≤4,执行循环体,S=128,i=8此时,不满足条件i≤4,退出循环,输出S的值为128.故答案为:D点睛:(1)本题主要考查程序框图,意在考查学生对程序框图等基础知识的掌握能力.(2)模拟程序运行时,要注意把好输出关,在输出时,看清条件.3. 若实数x,y满足条件,,则z=2x-y的最大值为()A. 10B. 6C. 4D. -2【答案】B【解析】分析:先根据约束条件画出可行域,再利用几何意义求最值,求出最优解,然后求解z的最大值即可.详解:先根据实数x,y满足条件,画出可行域如图,因为z=2x-y,所以y=2x-z,所以直线的纵截距为-z,所以纵截距-z最小时,z最大.由图知,当直线z=2x﹣y过点A(3,0)时,直线的纵截距最小,z最大值为6.故答案为:B点睛:(1)本题主要考查线性规划,意在考查学生对线性规划等基础知识的掌握能力. (2)解答线性规划时,要理解,不是纵截距最小,z最小,要看函数的解析式,y=2x-z,直线的纵截距为-z,所以纵截距-z最小时,z 最大.4. 设x∈R,则“|x|-1>2x”是“”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分又不必要条件【答案】A【解析】分析:先分别解不等式|x|-1>2x和,再根据充要条件的定义和不等式的解集判断充要性得解.详解:当x>0时,由|x|﹣1>2x得x﹣1>2x,得x<﹣1,此时无解,当x≤0时,由|x|﹣1>2x得﹣x﹣1>2x,得x<﹣,综上不等式|x|-1>2x的解为x<﹣.由得x+1<0得x<﹣1,所以不等式的解为x<-1.因为,则“|x|﹣1>2x”是“”的必要不充分条件,故答案为:A点睛:(1)本题主要考查不等式的解法和充要条件的判定,意在考查学生对这些基础知识的掌握能力和计算能力.(2)判定充要条件常用的方法有定义法、集合法和转化法.本题利用的就是集合法,因为,则“|x|﹣1>2x”是“”的必要不充分条件.,则“”是“|x|﹣1>2x”的必要不充分条件.5. 双曲线方程为其中,双曲线的渐近线与圆相切,则双曲线的离心率为()A. B. C. D.【答案】A【解析】分析:先根据双曲线的渐近线与圆相切求出a的值,再求c,最后求双曲线的离心率. 详解:由题得双曲线的渐近线为,即由于双曲线的渐近线与圆相切,所以所以点睛:(1)本题主要考查双曲线的简单几何性质和离心率的计算,考查直线和双曲线的位置关系,意在考查学生对这些基础知识的掌握能力和计算能力. (2)圆锥曲线的离心率常见的有两种方法:公式法和方程法.公式法就是先根据已知条件求出和,或者的关系,再代入离心率的公式化简求解.方程法就是把已知的等式化简可以得到一个关于和的方程,再把该方程化为关于离心率的一次或二次方程,直接计算出离心率.本题使用的是公式法.6. 函数在下列区间单调递增的为()A. B. C. D.【答案】D【解析】分析:根据条件利用降幂公式和诱导公式化简函数的解析式,结合三角函数单调性的性质进行求解即可.详解:f(x)=cos2(π﹣x)﹣==cos(﹣2x)=﹣sin2x,由2kπ+≤2x≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,即函数单调递增区间为[kπ+,kπ+],k∈Z,当k=0时,函数的单调递增区间为[,],∵(,)⊆[,],∴(,)是函数的一个单调递增区间,故答案为:D点睛:(1)本题主要考查三角恒等变换和三角函数的图像和性质,考查复合函数的单调性,意在考查学生对这些基础知识的掌握能力和数形结合的思想方法.(2)本题是一个易错题,分解函数为根据复合函数的单调性原理,要求f(x)的单调性,就是求正弦函数的减区间,所以2kπ+≤2x≤2kπ+,k∈Z,这里不是求正弦函数的增区间.7. 已知正实数a,b,c满足当取最小值时,a+b-c的最大值为()A. 2B.C.D.【答案】C【解析】分析:由条件可得c=a2﹣ab+4b2,代入,利用基本不等式求最小值,可得a=2b,c=6b2,代入a+b ﹣c,利用配方法求最值.详解:正实数a,b,c满足a2﹣ab+4b2﹣c=0,可得c=a2﹣ab+4b2,.当且仅当a=2b取得等号,则a=2b时,取得最小值,且c=6b2,∴a+b﹣c=2b+b﹣6b2=﹣6b2+3b=当b=时,a+b﹣c有最大值为.故答案为:C点睛:(1)本题主要考查基本不等式和二次函数的图像性质,意在考查学生对这些基础知识的掌握能力及分析推理能力. (2)解答本题的关键是观察分析已知联想到消元,先得到c=a2﹣ab+4b2,代入消去c.转化的思想是高中数学中最普遍的数学思想,利用它可以把复杂变简单,把陌生变熟悉,从而突破解题障碍,完成解题目标.8. 已知函数f(x)满足,当x∈[0,1]时,f(x)=x,若在区间(-1,1]上方程f(x)-mx-m=0有两个不同的实根,则实数m的取值范围是()A. B. C. D.【答案】D【解析】分析:设x∈(﹣1,0),则(x+1)∈(0,1),由于当x∈[0,1]时,f(x)=x,可得f(x+1)=x+1.利用f(x)+1=,可得f(x)=,方程f(x)﹣mx﹣x=0,化为f (x)=mx+m,画出图象y=f(x),y=m(x+1),M(1,1),N(﹣1,0),可得k MN=.即可得出.详解:设x∈(﹣1,0),则(x+1)∈(0,1),∵当x∈[0,1]时,f(x)=x,∴f(x+1)=x+1.∵f(x)+1=,可得f(x)=,方程f(x)﹣mx﹣x=0,化为f(x)=mx+m,画出图象y=f(x),y=m(x+1),M(1,1),N(﹣1,0),可得k MN=.∵在区间(﹣1,1]上方程f(x)﹣mx﹣x=0有两个不同的实根,∴,故答案为:D点睛:(1)本题主要考查了函数解析式的求法、函数的图像和性质和零点问题,意在考查学生对这些基础知识的掌握能力及分析推理转化的能力、数形结合的思想方法. (2)解答本题有三个关键点,其一是能求出f(x)=,它用到了代入法.其二是能够准确画出函数f(x)的图像,它考查了学生的作图能力,其三是数形结合分析得到,它考查了学生数形结合的能力.二、填空题:本大题共6个小题,每小题5分,满分30分.请将答案填在题中横线上.9. 集合A={x|},B={x|x-a≥0},A∩B=A,则a的取值范围是_____________.【答案】.【解析】分析:先化简集合A和B,再根据A∩B=A求出实数a的取值范围.详解:由题得,因为A∩B=A,所以A所以.故答案为:点睛:(1)本题主要考查集合的运算和集合的关系,意在考查学生对这些基础知识的掌握能力. (2)本题是一个易错题,一定要注意取等问题,不要把等号漏掉了.到底要不要取等,最好的方法是直接把取等的这个值代入已知检验,看是否满足题意即可.如:a=1时,,满足A所以可以取等.10. 在极坐标系中,点与圆的圆心的距离为_________.【答案】2.【解析】分析:先把点的坐标化成直角坐标,把圆的极坐标方程化成直角坐标方程,再求解.详解:由题得点P的坐标为,因为,所以所以圆心的坐标为(2,0),所以点P到圆心的距离为,故答案为:2点睛:(1)本题主要考查极坐标化直角坐标,意在考查学生对这些基础知识的掌握能力及转化能力.(2)公式,不要记错了,不要死记硬背,要理解公式的推导.11. 麻团又叫煎堆,呈球形,华北地区称麻团,是一种古老的中华传统特色油炸面食,寓意团圆。
2018年天津市部分区高考数学二模试卷(理科)
2018年天津市部分区高考数学二模试卷(理科)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(★)已知集合A={1,2,3},集合B={x∈N|x-1>0},则集合A∩B=()A.{1,2}B.{1,3}C.{2,3}D.{1,2,3}2.(★)阅读如图所示的程序框图,运行相应的程序,则输出的S值为()A.1364B.340C.84D.603.(★)设变量x,y满足约束条件,则目标函数z=x-4y的最小值为()A.B.-3C.-4D.-64.(★)要得到函数y= sin(x- )的图象,只需将函数y= sin(2x- )图象上所有点的横坐标()A.伸长到原来的2倍(纵坐标不变),再将得到的图象向左平移个单位长度B.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度5.(★★)存在实数x,使|x-1|-|x-3|≤a成立的一个必要不充分条件是()A.-2≤a≤2B.a≥2C.a≥-2D.a≥-66.(★★★)已知函数y=f(x+1)的图象关于直线x=-1对称,且当x≤0时,f(x)=-x 3+ln (1-x).记a=f(log 36),b=f(log 48),c=f(log 510),则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>c>a D.b>a>c7.(★★)设F 1,F 2分别是双曲线- =1(a>0,b>0)的左、右焦点,O为坐标原点,过左焦点F 1作直线F 1P与圆x 2+y 2=a 2相切于点E,与双曲线右支交于点P,且满足= (+ ),| |= ,则双曲线的方程为()A.-=1B.-=1C.-=1D.-=18.(★★★)在平面直角坐标系内,如果两点P、Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称(P、Q)是函数y=f(x)的一对“奇点”(奇点(P、Q)与(Q、P)看作是同一奇点).已知函数f(x)= ,恰有两对“奇点”,则实数a的取值范围是()A.(-∞,0)B.(-∞,1)C.(0,1)D.(1,+∞)二、填空题:本大题共有6小题,每小题5分,共30分.9.(★★)已知a∈R,i是虚数单位,若复数z= ∈R,则复数z= .10.(★★★)曲线y=ae x+2的切线方程为2x-y+6=0,则实数a的值为.11.(★★)已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为 cm 3.12.(★★★)天津大学某学院欲安排4名毕业生到某外资企业的三个部门A、B、C实习,要求每个部门至少安排1人,其中甲大学生不能安排到A部门工作的方法有种(用数字作答).13.(★★★)在直角坐标系中,已知直线l的参数方程为(t为参数),以该直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,则直线l被曲线C截得的弦的长为.14.(★★★)在△ABC中,AB=6 ,AC=6,∠BAC= ,点D满足= ,点E在线段AD上运动,若=λ+μ,则3λ+ 取最小值时,向量的模为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(★★★)已知函数f(x)=cos 2ωx+ sin2ωx- (ω>0)的图象上相邻的最高点间的距离是π.(Ⅰ)求函数f(x)的解析式;(Ⅱ)在锐角△ABC中,内角A,B,C满足sinAsinC-sin 2C=sin 2A-sin 2B,求f(A)的取值范围.16.(★★★)某大学数学学院拟从往年的智慧队和理想队中选拔4名大学生组成志愿者招募宣传队.往年的智慧队和理想队的构成数据如表所示,现要求被选出的4名大学生中两队中的大学生都要有.(Ⅰ)求选出的4名大学生仅有1名女生的概率;(Ⅱ)记选出的4名大学生中女生的人数为X,求随机变量X的分布列和数学期望.男(名)17.(★★★)如图,在四棱锥P-ABCD中,侧棱PD⊥底面ABCD,底面ABCD为长方形,且PD=CD=1,E是PC的中点,作EF⊥PB交PB于点F.(Ⅰ)证明:PB⊥平面DEF;(Ⅱ)若三棱锥A-BDP的体积为,求直线BD与平面DEF所成角的正弦值;(Ⅲ)在(Ⅱ)的条件下,求二面角D-BP-C的余弦值.18.(★★★★★)已知抛物线x 2=4y的焦点与椭圆C:+ =1(a>b>0)的一个顶点重合,且这个顶点与椭圆C的两个焦点构成的三角形面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)若椭圆C的上顶点为A,过A作斜率为k(k>0)的直线l交椭圆C于另一点B,线段AB 的中点为M,O为坐标原点,连接OM并延长交椭圆于点N,△ABN的面积为k,求k的值.19.(★★★★)已知数列{a n}的奇数项依次成公比为2的等比数列,偶数项依次成公差为4的等差数列,数列{a n}的前n项和为S n,且a 6=2S 3,a 2+a 3=a 5.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n= ,求数列{b n}的前n项和T n.20.(★★★★)已知函数f(x)=lnx-e x+2,h(x)=f(x)+e x-ax-2,若函数h(x)有两个零点x 1,x 2(x 1>x 2),a∈R.(Ⅰ)求实数a的取值范围;(Ⅱ)求证:当x>0时,f(x)<0;(Ⅲ)求证:x 1x 2>e 2.。
天津市五区县2018届高三上学期期末考试数学理试卷 含解析
2018-2018学年天津市五区县高三上学期期末考试数学(理)一、选择题:共8题1.已知集合,则A. B. C. D.【答案】D【解析】本题考查集合的基本运算,对数函数.由题意得,所以.选D.【备注】集合的基本运算为高考常考题型,要求熟练掌握.2.设变量满足约束条件,则目标函数的最小值为A. B. C.0 D.1【答案】A【解析】本题考查线性规划问题.画出可行域,如图所示;,,;当过点时,取得最小值.选A.3.阅读如图所示的程序框图,运行相应的程序,则输出的值为A.4B.5C.6D.7【答案】C【解析】本题考查程序框图.起初:;循环1次:;循环2次:,不满足条件,结束循环,输出的值为6.选C.4.已知是钝角三角形,若,且的面积为,则A. B. C. D.3【答案】B【解析】本题考查正余弦定理,三角形的面积公式.因为,,所以,所以或;当时,,由余弦定理知,解得;因为,所以是直角三角形,舍去; 当时,,由余弦定理知,解得;因为是钝角三角形,所以由大边对大角知,为最大角,符合题意.所以.所以.选B.【备注】余弦定理:.三角形的面积公式:.5.设是公比为的等比数列,则“”是“为单调递增数列”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】本题考查充要条件,等比数列.“”推不出“为单调递增数列”,若,,即充分性不成立;“为单调递增数列”推不出“”,若,,即必要性不成立;所以“”是“为单调递增数列”的既不充分也不必要条件.选D.6.已知双曲线的焦点到渐近线的距离为2,且双曲线的一条渐近线与直线平行,则双曲线的方程为A. B. C. D.【答案】A【解析】本题考查双曲线的标准方程与几何性质.双曲线的渐近线与直线平行,所以,即,排除B,C;的焦点到渐近线的距离,即A正确.选A.【备注】双曲线,离心率,,渐近线为.7.在中,在上,为中点,相交于点,连结.设,则的值分别为A. B. C. D.【答案】C【解析】本题考查平面向量的线性运算.因为为中点,所以,;因为三点共线,所以存在实数,使得=,所以=;三点共线,同理存在实数,使得=;所以,解得;所以=,而,所以.选C.8.已知(其中是自然对数的底数),当时,关于的方程恰好有5个实数根,则实数的取值范围是A. B. C. D.【答案】D【解析】本题考查导数在研究函数中的应用.,;当时,,单减;当时,,单增;所以取得极小值,取得极大值;画出的草图(如图所示);当时,恰好有5个实数根,即或恰好有5个实数根;当,有3个实数根,则,满足题意;当,有2个实数根,则,满足题意;当,有1个实数根,不满足题意;所以,即实数的取值范围是.选D.二、填空题:共6题9.已知是虚数单位,若,则的值为__________.【答案】【解析】本题考查复数的概念与运算.因为,所以,所以,解得,所以.10.在的展开式中,的系数为__________.(用数字作答)【答案】【解析】本题考查二项式定理.其展开式的通项公式=,令,即,可得的系数为.11.某空间几何体的三视图如图所示,则该几何体的表面积是____________.【答案】【解析】本题考查三视图,空间几何体的表面积.该空间几何体为三棱柱;所以该几何体的表面积.12.在平面直角坐标系中,由曲线与直线和所围成的封闭图形的面积为__________.【答案】【解析】本题考查定积分.由题意得所围成的封闭图形的面积===.13.在直角坐标系中,已知曲线为参数),曲线为参数,),若恰好经过的焦点,则的值为.【答案】【解析】本题考查参数方程.削去得曲线:;削去得曲线:,其焦点为;而恰好经过的焦点,所以,而,所以的值为.14.已知,若方程有且仅有一个实数解,则实数的取值范围为.【答案】【解析】本题考查函数与方程,导数在研究函数中的应用.当时,,,;方程有且仅有一个实数解,即与的图像只有一个交点,如图所示,可得.即实数的取值范围为.三、解答题:共6题15.已知函数.(1)求的最小正周期;(2)当时,的最小值为2,求的值.【答案】(1)函数==,故函数的最小正周期;(2)由题意得,故,所以.【解析】本题考查三角函数的性质与最值,三角恒等变换.(1)三角恒等变换得,故;(2),所以.16.某区选派7名队员代表本区参加全市青少年围棋锦标赛,其中3名来自学校且1名为女棋手,另外4名来自学校且2名为女棋手.从这7名队员中随机选派4名队员参加第一阶段的比赛.(1)求在参加第一阶段比赛的队员中,恰有1名女棋手的概率;(2)设为选出的4名队员中两校人数之差的绝对值,求随机变量的分布列和数学期望.【答案】(1)由题意知,7名队员中分为两部分,3人为女棋手,4人为男棋手,设事件A“恰有1位女棋手”,则;所以参加第一阶段的比赛的队员中,恰有1位女棋手的概率为.(2)随机变量的所有可能取值为其中,,.所以,随机变量的分布列为随机变量的数学期望.【解析】本题考查古典概型,随机变量的分布列与数学期望.(1).(2)的所有可能取值为,求得,,.列出的分布列,求得.17.如图,在四棱锥中,底面为直角梯形,在上,且,侧棱平面(1)求证:平面平面;(2)若为等腰直角三角形.(i)求直线与平面所成角的正弦值;(ii)求二面角的余弦值.【答案】(1)法一:∵,知,且,故.同理可得,且,,.又∵平面,∴;而,∴平面.平面,故平面平面;(2)(i)由(1),平面的一个法向量是;因为为等腰直角三角形,故.设直线与平面所成的角为,则(ii)设平面的一个法向量为由∴,令,则,∴;显然二面角的平面角是锐角,∴二面角的余弦值为.【解析】本题考查线面垂直,空间向量的应用.(1)证得,,∴平面,故平面平面;(2)(i)平面的法向量,,直线与平面所成的角的正弦值;(ii)平面的法向量,∴,即二面角的余弦值为.18.已知数列的前项和,数列的前项和为.(1)求数列的通项公式;(2)设,求数列的前项和;(3)证明:.【答案】(1)当时,,,两式相减:;当时,,也适合;故数列的通项公式为.(2)由题意知:;=,;两式相减可得:,即,;求得.(3),显然,即;另一方面,,即,…,;;即:.【解析】本题考查等差数列,数列求和.(1);当时,也适合;故.(2),错位相减得;(3)由基本不等式得,所以;而;所以.19.已知椭圆的左、右焦点分别为,上顶点为,若的周长为6,且点到直线的距离为.(1)求椭圆的方程;(2)设是椭圆长轴的两个端点,点是椭圆上不同于的任意一点,直线交直线于点,若以为直径的圆过点,求实数的值.【答案】(1)由已知得,解得.所以椭圆的方程为.(2)由题意知,设,则,得.且由点在椭圆上,得.若以为直径的圆过点,则,所以;因为点是椭圆上不同于的点,所以.所以上式可化为;解得.【解析】本题考查椭圆的标准方程,直线与圆锥曲线的位置关系.(1)由已知求得,所以椭圆为.(2)若以为直径的圆过点,则,联立方程,求得.20.已知函数,函数的图像记为曲线(1)若函数在上单调递增,求的取值范围;(2)若函数有两个零点,且为的极值点,求的值;(3)设曲线在动点处的切线与交于另一点,在点处的切线为,两切线的斜率分别为,是否存在实数,使得为定值?若存在,求出的值;若不存在,说明理由.【答案】解法一:(1);当时,所以;而在处取得最小值,所以;解得;(2)因为为的极值点,所以,即;又因为有不同的零点,所以,即,整理得:;所以.(3)满足条件的实数存在,由,知过点与曲线相切的直线为:,且将与联立即得点得横坐标,所以即:整理得:,由已知,所以;所以,即B点的横坐标为;所以过点B的曲线的切线斜率====;因此当且仅当时,成比例,这时;即存在实数,使为定值.解法二:(1),当时,所以对任意的恒成立,故,即;故的取值范围是;(2)因为为的极值点,且有两个零点,所以的三个实数根分别为,由根与系数的关系得;(3)满足条件的实数存在,因为;所以过点且与相切的直线为:,其中.设与交于另一点,则必为方程的三个实数根由得因为上述方程的右边不含三次项和二次项,所以,所以所以==.因此当且仅当时,成比例,这时;即存在实数,使为定值.【解析】本题考查导数在研究函数、不等式中的应用.(1)当时,,所以,解得;(2),即;而,求得;(3)求得直线:,且;与联立得B点的横坐标为;求得;即存在实数,使为定值.。
普通高等学校2018届高三招生全国统一考试模拟(二)数学(理)试题 Word版含答案
2018年普通高等学校招生全国统一考试模拟试题理数(二)本试卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,复数()12ai a R i +∈-为纯虚数,则a 的值为 A .2- B .12- C .2 D .122.已知集合{}{}()22log 3,450,R A x x B x x x A C B =<=-->⋂=则 A .[-1,8)B.(]05, C .[-1,5) D .(0,8)3.已知n S 是各项均为正数的等比数列{}n a 前n 项和,7153564,20a a a a S =+==,则A .31B .63C .16D .1274.设向量)()(,,3,1,//a b x c b c a b b ==-=-,若,则与的夹角为 A .30° B .60° C .120° D .150°5.大约2000多年前,古希腊数学家最先开始研究圆锥曲线,并获得了大量的成果,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究这几种曲线,用垂直于锥轴的平面去截圆锥,得到的是圆;把平面再渐渐倾斜得到椭圆.若用周长为24的矩形ABCD 截某圆锥得到椭圆Γ,且Γ与矩形ABCD 的四边相切.设椭圆Γ在平面直角坐标系中的方程为()222210x y a b a b +=>>,测得Γ的离心率为2,则椭圆Γ的方程为 A .221164x y += B .2214x y +=C .2216416x y += D .22154x y += 6.已知某服装厂生产某种品牌的衣服,销售量()q x (单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为()1260,020,190180,x x q x x ⎧<≤⎪+=⎨⎪-<≤⎩则当该服装厂所获效益最大时A .20B .60C .80D .407.已知,x y 满足不等式组240,20,130,x y x y z x y y +-≥⎧⎪--≤=+-⎨⎪-≤⎩则的最小值为A.2B.C. D.1 8.已知函数()2110sin 10sin ,,22f x x x x m π⎡⎤=---∈-⎢⎥⎣⎦的值域为1,22⎡⎤-⎢⎥⎣⎦,则实数m 的取A .,03π⎡⎤-⎢⎥⎣⎦B .,06π⎡⎤-⎢⎥⎣⎦C .,36ππ⎡⎤-⎢⎥⎣⎦D .,63ππ⎡⎤-⎢⎥⎣⎦ 9.已知()2112n x x x ⎛⎫+- ⎪⎝⎭的展开式中常数项为42-,则n = A.10 B.8 C.12 D.1110.某几何体的三视图如图所示,则该几何体的表面积为A .30π+B .803π+ C. 923π+ D .763π+ 11.已知双曲线()2222:10,0x y a b a bΓ-=>>的左、右焦点分别为12,F F ,点P 是双曲线Γ右支上一点,且212PF F F ⊥,过点P 作1F P 的垂线交x 轴于点A ,且22PM MF = ,若PA的中点E 在1F M 的延长线上,则双曲线Γ的离心率是A .3B .2+C .1D .4+12.已知函数()()()222f x x x x mx n =+++,且对任意实数x ,均有()()33f x f x -+=--,若方程()f x a =有且只有4个实根,则实数a 的取值范围为A .()16,9-B .(]16,9-C .(]16,0-D .(]16,5--第Ⅱ卷本卷包括必考题和选考题两部分。
天津市实验中学2018届高三上第二次阶段考试数学(理)试卷(含答案)
2017-2018届高三年级第二次阶段考数学(理)试卷一、选择题(共8小题,共40分)1.设集合}6,2,1{=A ,}42{,=B ,}4,3,2,1{=C ,则C B A I Y )(=( ) A.}2{ B.}4,2,1{ C.}6,4,2,1{ D.}6,4,3,2,1{ 2.设R x ∈,则“1|2|<-x ”是“022>-+x x ”的( ) A.既不充分也不必要条件 B.必要而不充分条件 C.充要条件 D.充分而不必要条件 3.设π2log =a ,π21log =b ,2-=πc ,则( )A.c b a >>B.c a b >>C.b c a >>D.a b c >>4.已知34cos sin =-αα,则α2sin =( ) A.97- B.92- C.92 D.975.设函数)3cos()(π+=x x f ,则下列结论错误的是( )A.)(x f 的一个周期为π2-B.)(x f y =的图像关于直线38π=x 对称 C.)(π+x f 的一个零点为6π=xD.)(x f 在),2(ππ单调递减6.已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满足)2()2(|1|->-f f a ,则a 的取值范围是( )A.)21,(-∞B.),23()21,(+∞-∞YC.)23,21( D.),23(+∞7.设函数)('x f 是奇函数))((R x x f ∈的导函数,0)1(=-f ,当0>x 时,0)()('<-x f x xf ,则使得0)(>x f 成立的x 的取值范围是( )A.)1,0()1,(Y --∞B.),1()0,1(+∞-YC.)0,1()1,(---∞YD.),1()1,0(+∞Y8.已知以4=T 为周期的函数⎪⎩⎪⎨⎧∈---∈-=]3,1(|,2|1]1,1(,1)(2x x x x m x f ,其中0>m ,若方程x x f =)(3恰有5个实数解,则m 的取值范围为( ) A.)38,315(B.)7,315( C.)38,34( D.)7,34(二、填空题(共6小题,共30分)9.已知集合}0)5)(2(|{>-+=x x x A ,}1|{+<≤=m x m x B ,且)(A C B R ⊆,则实数m 的取值范围是 .10.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角θ终边上一点,且552sin -=θ,则y = . 11.已知函数⎪⎩⎪⎨⎧>≤≤--=1,11,1)(2x e x x x f x ,则⎰-21)(dx x f = .12.已知R a ∈,设函数x ax x f ln )(-=的图像在点))1(,1(f 处的切线为l ,则l 在y 轴上的截距为 . 13.已知31)6sin(=+πx ,那么)3(sin )65sin(2x x -+-ππ的值为 . 14.已知函数))((R x x f y ∈=。
2018届天津市部分区高三质量调查(二)数学(理)试题(解析版)
2018届天津市部分区高三质量调查(二)数学(理)试题一、单选题1.设集合,集合,则集合()A. B. C. D.【答案】C【解析】分析:求出集合,直接求即可.详解:请在此填写本题解析!故选C.点睛:本题考查交集的运算,属基础题.2.阅读如图所示的程序框图,运行相应的程序,则输出的值为()A. 1364B. 340C. 84D. 60【答案】B【解析】分析:通过循环,计算的值,当时退出循环,输出结果即可.详解:,满足判断框,第1次循环,第2次判断后循环,,第3次判断并循环,第4次判断并循环,第5次判断退出循环,输出.故选B.点睛:本题考查循环结构,注意循环条件的判断,循环计算的结果,考查计算能力.3.设变量满足约束条件,则目标函数的最小值为()A. B. C. D.【答案】D【解析】分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移求出最优解,代入即可求的最小值.详解:作出变量满足约束条件,对应的平面区域如图由,得平移直线,由图象可知当直线经过点时,直线的截距最大,此时最小.由解得此时z的最小值为故选D.点睛:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.注意目标函数的几何意义.4.要得到函数的图象,只需将函数图象上所有点的横坐标()A. 伸长到原来的2倍(纵坐标不变),再将得到的图象向左平移个单位长度B. 伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度C. 伸长到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D. 伸长到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度【答案】A【解析】分析:根据三角函数的图象关系进行判断即可.详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到再将得到的图象向左平移个单位长度得到故选A.点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键.5.存在实数,使成立的一个必要不充分条件是()A. B. C. D.【答案】D【解析】分析:.可得存在实数,使成立的充要条件是,进而得出答案.详解:存在实数,使成立的充要条件是,存在实数,使成立的个必要不充分条件是.故选D .点睛:本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法、分类讨论方法,考查了推理能力与计算能力,属于基础题.6.已知函数的图象关于直线对称,且当时,,设,则的大小关系为()A. B. C. D.【答案】A【解析】分析:根据函数图象关系得到函数是偶函数,且当时为增函数,结合函数奇偶性和单调性的关系进行判断即可.详解:函数的图象关于直线对称,将的图象向右平移1个单位得到,则关于直线即轴对称,则函数是偶函数,当时,,为减函数,∴当时为增函数,即则 ,即 ∵当时为增函数,即故选A .点睛:本题主要考查函数值的大小判断,结合条件判断函数的单调性和奇偶性是解决本题的关键.7.设分别是双曲线的左、右焦点,为坐标原点,过左焦点作直线与圆切于点,与双曲线右支交于点,且满足, ,则双曲线的方程为( )A. B. C. D.【答案】D【解析】分析:根据圆的半径得出,根据中位线定理和勾股定理计算,从而得出,即可得出双曲线的方程.详解:∵为圆上的点,∴是的中点,又是的中点,且,又是圆的切线,又∴双曲线方程为.故选D.点睛:本题考查了双曲线的性质,直线与圆的位置关系,双曲线标准方程的求法,属于中档题.8.在平面直角坐标系内,如果两点满足条件:①都在函数的图象上;②关于原点对称,则称是函数的一对“奇点”(奇点与看作是同一奇点).已知函数恰有两对“奇点”,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析:求出的一段图象关于原点对称的函数解析式,令与的另一段图象有2个交点即可.详解:当时,关于原点对称的函数为∵恰有两对“奇点”,与恰好有两个交点,显然设与恰好有1条公共切线,切点为,则,解得此时与轴交点为公切点.∴当 ,即时,有两对“奇点”.故选C.点睛:本题考查了函数交点个数的判断,考查对新定义的理解,属于中档题.9.曲线的切线方程为,则实数的值为_______.【答案】2【解析】\分析:根据题意,设直线与曲线的切点坐标为利用导数求出切线的方程,与比较分析可得且,解可得,即可得切点的坐标,将切点坐标代入曲线方程,分析可得答案.详解:根据题意,设曲线与的切点的坐标为其导数,则切线的斜率,又由切线方程为,即则则切线的方程为又由,则切线方程为,即则有,解可得,则切点的坐标为,则有,;故答案为2.点睛:本题考查利用导数计算曲线的切线方程,关键是求出切点的坐标.二、填空题10.已知,是虚数单位,若复数,则复数_______.【答案】【解析】分析:直接利用复数代数形式的乘除运算化简复数,结合已知条件求的值,然后代入复数,再利用复数代数形式的乘除运算化简得答案.详解:∵复数即.则复数.故答案为点睛:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.11.已知一个几何体的三视图如图所示(单位:cm),则该几何体的体积为_______.【答案】【解析】分析:根据几何体的三视图,得出该几何体是四棱锥与半个圆柱的组合体,由此求出它的体积即可.详解:根据几何体的三视图,得;该几何体是上部为四棱锥,下部为半个圆柱的组合体,四棱锥的高为2,底面矩形的宽为2,长为4,圆柱的高为4,底面半径为1,∴该组合体的体积为故答案为.点睛:本题考查了应用空间几何体的三视图求体积的问题,是基础题目.12.天津大学某学院欲安排4名毕业生到某外资企业的三个部门实习,要求每个部门至少安排1人,其中甲大学生不能安排到部门工作的方法有_______种(用数字作答).【答案】24【解析】分析:根据题意,设4名毕业生为甲、,分2种情况讨论:①,甲单独一人分配到或部门,②,甲和其他人一起分配到或部门,由加法原理计算可得答案.详解:根据题意,设4名毕业生为甲、,分2种情况讨论:①,甲单独一人分配到或部门,则甲有2种情况,将分成2组,有种分组方法,再将2组全排列,分配到其他2个部门,有种情况,则此时有种安排方法;②,甲和其他人一起分配到或部门,在A、B、C中任选1人,与甲一起分配到B或C部门,有种情况,将剩余的2人全排列,分配到其他2个部门,有种情况,则此时有种安排方法;则一共有种不同的安排方法;故答案为24点睛:本题考查排列、组合的应用,注意优先分析受到限制的元素.13.在直角坐标系中,已知直线的参数方程为(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,则直线被曲线截得的弦的长为_______.【答案】8【解析】分析:求出直线的直角坐标方程为,曲线的直角坐标方程为联立设直线与抛物线交于由此利用弦长公式能求出直线被曲线截得的弦的长.详解:∵直线的参数方程为(为参数),∴直线的直角坐标方程为,∵曲线的极坐标方程为,即,∴曲线的直角坐标方程为设直线与抛物线交于,则,直线被曲线截得的弦的长:故答案为8.点睛:本题考查弦长的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.在中,,,,点满足,点在线段上运动,若,则取得最小值时,向量的模为_______.【答案】【解析】分析:由题可得可得.建立平面直角坐标系,则设可得.,则利用基本不等式可求的最小值,进而得到的模.详解:在,可得.∵满足如图建立平面直角坐标系,则,设∴则,当且仅当时取最小值.此时 .故答案为.点睛:本题考查了平面向量得坐标运算,均值不等式,属于中档题.三、解答题15.已知函数()的图象上相邻的最高点的距离是.(1)求函数的解析式;(2)在锐角中,内角满足,求的取值范围.【答案】(1);(2).【解析】分析:(1)利用三角恒等变换化函数为正弦型函数,求出的值,写出的解析式;(2)由正弦、余弦定理求得的值,由此求出的取值范围,再求的取值范围.详解:(1)因为函数图象上相邻的两最高点间的距离是,所以由,∵,∴,所以(2)由得,即∴,又,∴∵是锐角三角形,∴,∴,∴∴点睛:本题考查了三角函数的图象与性质的应用问题,也考查了解三角形的应用问题,是中档题.16.某大学数学学院拟从往年的智慧队和理想队中选拔4名大学生组成志愿者招募宣传队.往年的智慧对和理想队的构成数据如下表所示,现要求选出的4名大学生中两队中的大学生都要有.(1)求选出的4名大学生仅有1名女生的概率;(2)记选出的4名大学生中女生的人数为,求随机变量的分布列和数学期望.【答案】(1);(2)见解析.【解析】分析:(1)选出的4人中智慧队和理想队的都要有,选法种数是种,选出的4名大学生仅有1名女生的选法有2种选法:从智慧队中选取1女生的选法共有种,从理想队中选取1女生的选法共有种,由此能求出选出的4名大学生仅有1名女生的概率.(II)随机变量X的取值可为0,1,2,3,分别求出相应的概率,由此能求出随机变量的分布列和.详解:(1)选出的4人中智慧队和理想队的都要有,所以选法种数是:(种)选出的4名大学生仅有1名女生的选法有:从智慧队中选取1女生的选法共有(种)从理想队中选取1女生的选法共有(种)或者用排除法:(种)所以,选出的4名大学生仅有1名女生的概率为(2)随机变量的可能取值为0,1,2,3则,,,,所以随机变量的分布列为.点睛:本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是中档17.如图,在四棱锥中,侧棱底面,底面为长方形,且,是的中点,作交于点.(1)证明:平面;(2)若三棱锥的体积为,求直线与平面所成角的正弦值;(3)在(2)的条件下,求二面角的余弦值.【答案】(1)见解析;(2);(3).【解析】分析:(1)推导出,,从而平面,进而,再证出,从而平面,,再由,能证明平面.(2)由两两垂直,以为坐标原点,建立空间直角坐标系,利用向量法能求出直线与平面所成角的正弦值.(3)求出平面的法向量和平面PBC的法向量,利用向量法能求出二面角D-BP-C的余弦值.详解:(1)证明:∵底面,平面,∴,由于底面为长方形,∴,而,∴平面,∵平面,∴,∵,为的中点,∴,∵,∴平面,∴,又,,∴平面.(2)由题意易知两两垂直,以为坐标原点,建立如图空间直角坐标系,可得,设,则有,∴∴,∴,设直线与平面所成角为,且由(1)知为平面的法向量∴所以直线与平面所成角的正弦值为.(3)由(2)知,,设平面的法向量,由,则令,则,∴由(1)平面,∴为平面PBC的法向量,设二面角为,则所以二面角的余弦值为.点睛:本题考查线面垂直的证明,考查线面角的正弦值、二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.已知抛物线的焦点与椭圆:的一个顶点重合,且这个顶点与椭圆的两个焦点构成的三角形面积为.(1)求椭圆的方程;(2)若椭圆的上顶点为,过作斜率为的直线交椭圆于另一点,线段的中点为,为坐标原点,连接并延长交椭圆于点,的面积为,求的值.【答案】(1);(2).【解析】分析:(1)根据抛物线的性质可得椭圆中的,再根据三角形的面积求出,根据,即可求出椭圆方程,(Ⅱ)过点的直线方程为,代入到由得,可求出点的坐标,再求出的坐标和的坐标,以及|和点到直线的距离,根据三角形的面积求出的值.详解:(1)因为抛物线的焦点与椭圆的一个顶点重合,∴,又椭圆的顶点与其两个焦点构成的三角形的面积为,∴,∴故椭圆的方程是.(2)由题意设直线的方程为,设点由得解得∴,∴直线斜率,直线的方程为,由得点到直线:的距离为∵,∴,又,∴令,则,解得,∴,解得或(舍)∴的值为.点睛:本题考查椭圆方程、椭圆性质、直线方程、理、弦长公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19.已知数列的奇数项依次成公比为2的等比数列,偶数项依次成公差为4的等差数列,数列的前项和为,且,.(1)求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2).【解析】分析:(I)设数列的奇数项的公比为,偶数项的公差为.由已知,,可得,为奇数时,,为偶数时,;(II)由(1)知.为偶数时,,为奇数时,.详解:(1)设数列的奇数项的公比为,偶数项的公差为由已知,得∵,∴,解得为奇数时,为偶数时,∴(2)由(1)知即为偶数时,为奇数时,.点睛:本题考查数列的性质和综合运用,分类讨论思想,难度较大.解题时要认真审题,仔细解答.20.已知函数,若函数有两个零点,.(1)求实数的取值范围;(2)求证:当时,;(3)求证:.【答案】(1);(2)见解析;(3)见解析.【解析】分析:详解:(1)求出函数的导数,通过讨论的范围,求出函数的单调区间,结合函数的单调性以及函数零点的个数确定的范围即可;(2)求出函数的导数,求出,结合函数的单调性求出是函数的极大值点,也是最大值点,从而证明结论.(3)证明:由题意得是两根,∴①,②,可得,要证明,只需证,即令,所以只需证在成立即可,设,利用导数研究其性质,可证成立.设,所以在是增函数,∴即成立.(1),定义域为,当时,,∴在递增,不可能有两个零点,当时,时,,时,所以是函数的极大值点,也是最大值点又因为时,,时,,要使有两个零点,只需,∴(2)在是减函数,∵,∴存在唯一的,使,即,所以,即当时,,当时,,∴是函数的极大值点,也是最大值点∴在上,∵,∴∴,即成立(3)证明:由题意得是两根,∴①,②,①②得,,得,要证明,只需证,即证所以只需证,即令,所以只需证在成立即可设,所以在是增函数,∴即成立.点睛:本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,考查不等式的证明,属难题.。
2018年天津市十二校高三二模联考数学(理)试卷及解析
2018年天津市十二校高三二模联考
数学(理)试卷
第Ⅰ卷(共40分)
一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则为()
A. B. C. D.
【答案】A
【解析】
分析:利用一元二次不等式的解法化简集合和利用绝对值不等式的解法化简集合,从而得到的值.
详解:因为集合;集合,
所以,故选A.
2.已知x,y 满足不等式组,则目标函数的最小值为( )
A. 1
B. 2
C. 4
D. 5
【答案】B
【解析】
分析:画出不等式组表示的可行域,平移直线,结合可行
域可得直线经过点时取到最小值.
详解:
1 / 23。
天津市2018年高考理科数学试题及答案汇总(word解析版)
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理科类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时长120分钟。
第I 卷1至2页,第II 卷3至5页。
答卷前,考生务必将自己的姓名、准考证填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考试务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考生顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮檫干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:∙ 如果事件A ,B 互斥,那么()()()P A B P A P B =+;∙ 如果事件A ,B 相互独立,那么()()()P AB P A P B =;∙ 柱体的体积公式V Sh =,其中S 表示柱体的底面面积,h 表示柱体的高;∙ 锥体体积公式13V Sh =,其中S 表示锥体的底面面积,h 表示锥体的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R,集合A={x|0<x<2},B={x|x 》1},则 = A. B. C. D.(2).A. 6B. 19C. 21D. 453.阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 44.A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件5.A.B.C.D.6.A. AB. BC. CD. D7.A. AB. BC. CD. D8.A. AB. BC. CD. D填空题(本大题共6小题,每小题____分,共____分。
)9.. 填空题:本大题共6小题,每小题5分,共30分。
10.11. 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为____.12.已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为____.13.已知,且,则的最小值为____.14.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是____.简答题(综合题)(本大题共6小题,每小题____分,共____分。
天津市高三模拟考试(理科)数学试卷-带答案解析
天津市高三模拟考试(理科)数学试卷-带答案解析班级:___________姓名:___________考号:___________一、单选题1.集合{}24A x x => 和 {}51B x x =-<<,则()R A B ⋂=( )A .{}52x x -<<-B .{}22x x -<<C .{}21x x -<<D .{}21x x -≤<2.若21:|34|2,:02p x q x x -<<--,则p ⌝是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数()2114cos 22x x x xf x ---+=+的部分图象大致是( )A .B .C .D .4.为了了解一片经济林的生长情况 ,随机抽测了其中60株树木的底部周长(单位:cm ) , 所得数据均在区间[]80,130上,其频率分布直方图如图所示 ,则在抽测的60株树木中,树木的底部周长小于100cm 的棵数是( )A .18B .24C .36D .485.当曲线y 240kx y k -++=有两个不同的交点时, 实数k 的取值范围是( ) A .3(,0)4-B .35,4[)12-C .3[1,)4--D .3(,]4-∞-6.设,,1,1x y R a b ∈>>,若3x y a b == 2a b +=,则11x y+的最大值为( )A .4B .3C .2D .17.已知双曲线22:1124x y C -= ,点F 是C 的右焦点,若点P 为C 左支上的动点,设点P 到C 的一条渐近线的距离为d ,则||d PF +的最小值为( )A .2+B .C .8D .108.将函数()()cos 04f x x πωω⎛⎫=+> ⎪⎝⎭的图象向右平移4π个单位长度后得到函数()g x 的图象 若()g x 在5,44ππ⎛⎫ ⎪⎝⎭上单调递减 则ω的最大值为( ) A .14B .34C .12D .19.已知函数222,0()ln ,0x kx k x f x x x ⎧++⎪=⎨>⎪⎩ 若关于x 的不等式()f x k 的解集为[,][,]m n a b ⋃ 且n a <127232mn ab k +-< 则实数k 的取值范围为( )A .54,167⎛⎫⎪⎝⎭B .14,87⎛⎫ ⎪⎝⎭C .15,88⎛⎫ ⎪⎝⎭D .14,27⎡⎫⎪⎢⎣⎭二、填空题10.已知i 为虚数单位 则复数2021i =_______.11.若2nx ⎛ ⎝的展开式中二项式系数之和为256 则展开式中常数项是__________. 12.已知2x > 则42x x +-的最小值是______.13.圆柱的体积为34π 若该圆柱的两个底面的圆周在同一个球的球面上 则该球的体积为____________.三、双空题14.某志愿者召开春季运动会 为了组建一支朝气蓬勃、训练有素的赛会志愿者队伍 欲从4名男志愿者 3名女志愿者中随机抽取3人聘为志愿者队的队长 则在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率是___________;若用X 表示抽取的三人中女志愿者的人数 则()E X =___________.15.已知平面四边形ABCD AC BD ⊥ 3AB = 2AD = 712DC AB =则BAD ∠=______;动点E F 分别在线段DC CB 上 且DE DC λ= CF CB λ= 则AE AF ⋅的取值范围为____.四、解答题16.记ABC 的内角A B C 的对边分别为a b c 已知点D 为AB 的中点 点E 满足2AE EC = 且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =DE =求ABC 的面积. 17.如图,正三棱柱111ABC A B C 中,E 是AC 中点.(1)求证:1AB 平面1BEC ;(2)若2AB =,1AA ,求点A 到平面1BEC 的距离;(3)当1A A AB 为何值时,二面角1E BC C --18.已知坐标平面内三点()()()2,4,2,0,1,1A B C ---. (1)求直线AB 的斜率和倾斜角;(2)若,,,A B C D 可以构成平行四边形且点D 在第一象限 求点D 的坐标; 19.已知等差数列{}n a 的前n 项和为n S 公差0d > 且231424,10a a a a =+=. (1)求数列{}n a 的通项公式; (2)若()*12111N n nT n S S S =++⋯+∈ 求n T . 20.已知函数()2e xf x x =.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)证明:当0x >时 ()3e 2e xf x ≥-.参考答案与解析1.D【分析】解出集合A 利用补集和交集的含义即可得到答案. 【详解】24x > 则2x >或<2x - 则{2A xx =<-∣或2}x > R{22}A x x =-≤≤∣{51}B x x =-<<∣ 则()R {21}A B xx ⋂=-≤<∣ 故选:D. 2.B【分析】首先解不等式得到p ⌝:2x ≥或23x ≤q ⌝:2x ≥或1x ≤- 再根据包含关系即可得到答案. 【详解】|34|2x -< 得2342x -<-< 即223x << 即p ⌝:2x ≥或23x ≤.由2102x x <--得220x x --< 即12x -<< q ⌝:2x ≥或1x ≤-.因为{|2x x ≥或1}x ≤-{|2x x ≥或2}3x ≤所以p ⌝是q ⌝的必要不充分条件. 故选:B 3.C【分析】由已知可得 ()04f = 可得出A 、B 项错误;根据()π0f > 可得出D 项错误. 【详解】由已知可得 ()f x 定义域为R 且()21104cos0442210f --+==+= 所以A 、B 项错误;又()()()()2211114cos 4cos 2222x x x x x x x xf x f x -------+-+-===++ 所以()f x 为偶函数. 又()22π1π1π1π1π4cos ππ4π02222f ------+-==>++ 所以D 项错误 C 项正确.故选:C. 4.B【分析】根据频率直方图中小矩形的面积代表这一组的频率进行求解即可. 【详解】由频率直方图可知:树木的底部周长小于100cm 的棵数为:(0.0150.025)106024+⨯⨯=故选:B 5.C【分析】作曲线y =24y kx k =++的图象 计算出直线24y kx k =++与曲线y =时对应的实数k 的值 数形结合可得结果.【详解】对方程y =224y x =- 即()2204y x y +=≥所以曲线y 224x y +=的上半圆对直线方程变形得()24y k x =++ 该直线过定点()2,4P - 且斜率为k 如下图所示:当直线24y kx k =++与半圆y 2= 解得34k =-当直线24y kx k =++过点()2,0A 时 440k += 解得1k =-.由图形可知 当曲线y 24y kx k =++有两个相异的交点时 31,4k ⎡⎫∈--⎪⎢⎣⎭.故选:C 6.C【分析】先解出,x y 再根据对数性质化简 最后根据基本不等式求最值. 【详解】3log 3,log 3x y a b a b x y ==∴==333log l 1og log ()1a b ab x y∴+=+=29a b ab +=≤(当且仅当2a b =时取等号)因此3log 1192y x +≤=即11x y+的最大值为2 故选:C【点睛】本题考查指数式与对数式转换、对数运算性质、基本不等式求最值 考查综合分析求解能力 属中档题. 7.A【分析】设双曲线左焦点为(40)F '-,,求出其到渐近线的距离 利用双曲线定义将||d PF +转化为2||a PE F P ++' 利用当,,P F E '三点共线时 2F a PE P ++'取得最小值 即可求得答案.【详解】由双曲线22:1124x y C -=,可得2a b == (40)F ,设双曲线左焦点为(40)F '-,不妨设一条渐近线为:b l y x x a =-= 即0x = 作PE l ⊥ 垂足为E 即||PE d = 作F H l '⊥,垂足为H 则||2F H '==因为点P 为C 左支上的动点所以2PF PF a '-= 可得2PF a PF '=+ 故2|2|d FP PE a PF a PE F P '+=++=++'由图可知 当,,P F E '三点共线时 即E 和H 点重合时 2||a PE F P ++'取得最小值最小值为2||2F H '⨯=即||d PF +的最小值为2 故选:A . 8.B【分析】求得()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭ 由5,44x ππ⎛⎫∈ ⎪⎝⎭可求得4444x πωπππωωπ<-+<+ 结合函数()g x 的单调性可得出关于ω的不等式 由此可得出ω的最大值.【详解】将()f x 的图象向右平移4π个单位长度后得到()cos 44g x x ωππω⎛⎫=-+ ⎪⎝⎭的图象. 因为5,44x ππ⎛⎫∈ ⎪⎝⎭所以4444x πωπππωωπ<-+<+ 因为()g x 在5,44ππ⎛⎫⎪⎝⎭上单调递减 所以4πωππ+≤ 304ω<≤ 所以ω的最大值为34.故选:B. 9.A【分析】易知0k > 由表达式画出函数图像 再分类讨论y k =与函数图像的位置关系 结合不等关系即可求解【详解】易知当0k > 0x 时 22227()224k f x x kx k x k ⎛⎫=++=++ ⎪⎝⎭()f x 的图象如图所示.当直线y k =在图中1l 的位置时 22724k k k << 得1427k <<,m n 为方程2220x kx k k ++-=的两根即2220x kx k k ++-=的两根 故22mn k k =-; 而1ab =则2211327212122232mn ab k k k k k k +-=-+-=-+<即2644850k k -+< 解得1588k << 所以1427k <<;当直线y k =在图中2l 的位置时 22k k 且0k > 得102k <;此时0n = 则112712232mn ab k k +-=-< 得51162k <≤.所以 k 的取值范围是54,167⎛⎫⎪⎝⎭.故选:A【点睛】本题考查函数零点与方程根的关系 数形结合思想 分类讨论思想 属于中档题 10.i .【解析】直接利用虚数单位i 的运算性质得答案. 【详解】20214505()i i i i ==; 故答案为:i .【点睛】本题考查复数代数形式的乘除运算 考查了虚数单位i 的性质 是基础题. 11.28【分析】根据二项式展开式的系数和公式可得n 的值 然后再利用展开式通项公式求得常数项.【详解】解:因为2nx ⎛ ⎝的展开式中二项式系数之和为256 所以2256n= 故8n = 即该二项式为882223x x x -⎛⎫⎛⎫=- ⎪⎝⎭⎝设其展开式的通项为1k T + 则1k T +=()()()2216282338811kk k kkk k k C xx C x----⎛⎫-=- ⎪⎝⎭当216203k k --=时 即6k = 此时该项为()668128C ⨯-=故答案为:28. 12.6【分析】根据给定条件 利用均值不等式计算作答.【详解】2x >则44(2)22622x x x x +=+-+≥=-- 当且仅当422x x =-- 即4x =时取“=” 所以42x x +-的最小值是6. 故答案为:6 13.43π 【分析】利用柱体的体积公式求出圆柱的高 由勾股定理求出球的半径 根据球的体积公式可得结果.【详解】设圆柱的高为h圆柱体积为34π 234h ππ∴⨯⨯=⎝⎭1h = 设球半径为R 则()22221R =+244R = 可得1R =∴球的体积为34433R ππ= 故答案为43π.【点睛】本题主要考查圆柱与球体的性质 以及柱体与球体的体积公式 意在考查综合运用所学知识解答问题的能力 考查了空间想象能力 属于中档题. 14.217 97##219 【分析】由条件概率公式计算在“抽取的3人中至少有一名男志愿者”的前提下“抽取的3人中全是男志愿者”的概率 由古典概型概率公式计算事件0,1,2,3X =的概率 再由期望公式公式得结论.【详解】由题意三人全是男志愿者 即事件X 0= 34374(0)35C P X C === 21433718(1)35C C P X C ===()12433712235C C P X C === 33371(3)35C P X C ===181219()1233535357E X =⨯+⨯+⨯= 再记全是男志愿者为事件A 至少有一名男志愿者为事件B 4()(0)35P A P X ===34()1(3)35P B P X =-== 4()235(|)34()1735P AB P A B P B ===.故答案为:217;97. 15.2π3##120︒ 819,644⎡⎤⎢⎥⎣⎦【分析】根据向量基本定理和向量垂直的数量积为0计算得到1cos 2BAD ∠=- 求出2π3BAD ∠= 建立直角坐标系 写出点的坐标 表达出向量,AE AF 的坐标 从而求出向量数量积的关系式 求出取值范围. 【详解】712AC AD DC AD AB =+=+BD AD AB =- 所以()22757121212AC BD AD AB AD AB AD AB AD AB ⎛⎫⋅=+⋅-=-⋅- ⎪⎝⎭57554cos 9cos 0121242AB AD BAD BAD =-⋅⋅∠-⨯=--∠= 解得:1cos 2BAD ∠=-因为()0,πBAD ∠∈ 所以2π3BAD ∠=以A 作坐标原点 AB 所在直线为x 轴 垂直AB 的直线为y 轴建立平面直角坐标系 则()()(30,0,3,0,,4A B DC ⎛- ⎝因为DE DC λ= CF CB λ= 01λ≤≤ 所以设((),,E m F n t由()71,0,04m λ⎛⎫+= ⎪⎝⎭得:714m λ=-39,,44nt λ⎛⎛-= ⎝⎝解得:93,44n t λ=+= 所以)279363639144416164AE AF λλλλ⎛⎫⎛⎫⋅=-+=-+ ⎪⎪⎝⎭⎝⎭、26318116264λ⎛⎫=-+ ⎪⎝⎭ 当12λ=时 26318116264AE AF λ⎛⎫⋅=-+ ⎪⎝⎭取得最小值 最小值为8164 当0λ=或1时 取得最大值 最大值为94所以AE AF ⋅的取值范围是819,644⎡⎤⎢⎥⎣⎦故答案为:2π3 819,644⎡⎤⎢⎥⎣⎦16.(1)2π3A =;【分析】(1)由三角形内角性质及正弦定理边角关系可得sin A A = 进而求角的大小;(2)在△ABC 、△ADE 中应用余弦定理可得2219b c bc ++=、32b c =求出b 、c 再由三角形面积公式求面积.(1)由πA B C ++=得:()()cos cos cos sin a B C a B C A C -++-=- 即2sin sin cos sin a B C A C =-由正弦定理得sin sin sin cos sin A B C B A C =在△ABC 中sin 0B > sin 0C > 故sin A A = 则tan A =因为()0,πA ∈ 所以2π3A =. (2)在△ABC 中 由余弦定理2222cos a b c bc A =+- 得2219b c bc ++=在△ADE 中 由余弦定理得2247943b c bc ++= 所以()22224794319b c bc b c bc ++=++ 化简得225224810b bc c --= 即()()2326270b c b c -+= 所以32b c = 代入2219b c bc ++=得:3b = 2c =则△ABC 的面积12πsin 3sin 23ABC S bc A ===. 17.(1)证明见解析(3)1【分析】(1) 连接1CB 交1BC 于点F ,连接EF ,根据中位线即可证明1EF AB ∥,再利用线面平行判定定理即可证明;(2)根据正三棱柱的几何特征,求出各个长度及1,BEC ABE S S ,再用等体积法即可求得;(3)建立合适空间直角坐标系,设出1,AB A A 长度,找到平面1EBC 及平面1BC C 的法向量,建立等式,求出1,AB A A 长度之间的关系即可证明.【详解】(1)证明:连接1CB 交1BC 于点F ,连接EF 如图所示:因为三棱柱111ABC A B C所以四边形11BB C C 为平行四边形所以F 为1CB 中点因为E 是AC 中点所以1EF AB ∥因为EF ⊂平面1BEC ,1AB ⊄平面1BEC所以1AB 平面1BEC ;(2)由题知,因为正三棱柱111ABC A B C所以1CC ⊥平面ABC且ABC 为正三角形因为2AB =,1AA所以BE =1EC 1BC 所以1BEC △为直角三角形11322BEC S =112ABE S =⨯△ 记点A 到平面1BEC 的距离为h则有11A BEC C ABE V V --= 即111133BEC ABE S h S CC ⨯⨯=⨯⨯即131323h ⨯⨯=解得h =故A 到平面1BEC (3)由题,取11A C 中点为H ,可知1EH CC ∥所以EH ⊥平面ABC因为ABC 为正三角形,E 是AC 中点所以BE AC ⊥故以E 为原点,EC 方向为x 轴,EH 方向为y 轴,EB 方向为z 轴建立如图所示空间直角坐标系不妨记1AB a,A A b所以1300000000222a a a E ,,,B ,,,,b,,,,C C 1133,,0,0,,0,,0222,a a ab EB b BC CC记平面1EBC 的法向量为()111,,x n y z =则有100n BC n EB ⎧⋅=⎪⎨⋅=⎪⎩即1111020a x by z ⎧+=⎪⎪=取12x b ,可得()2,,0b a n =-;记平面1BC C 的法向量为()222,,m x y z =则有1100n CC n BC ⎧⋅=⎪⎨⋅=⎪⎩即2222002by a x by z =⎧⎪⎨+=⎪⎩ 取2x =可得()3,0,1m =;因为二面角1E BC C --所以cos ,m nm n m n ⋅===解得: a b = 即当11A AAB =时,二面角1E BC C --18.(1)斜率为1 倾斜角为π4;(2)()3,5;【分析】(1)根据直线的斜率公式可求得AB 的斜率 进而求得倾斜角;(2)根据平行四边形对边平行 可得对边斜率相等 设(),D x y ,由斜率公式列出方程组即可求得答案. 【详解】(1)由题意可知直线AB 的斜率为4122-=--直线倾斜角范围为[0,π) 所以直线AB 的倾斜角为π4;(2)如图 当点D 在第一象限时 ,CD AB BD AC k k k k ==设(),D x y 则11114212y x y x -⎧=⎪⎪+⎨+⎪=⎪--+⎩ 解得35x y =⎧⎨=⎩故点D 的坐标为()3,5;19.(1)2n a n =(2)1n nT n =+【分析】(1)利用等差数列下标和性质得2310a a += 联立解得234,6a a == 求出d 值 写出通项即可;(2)利用等差数列前n 和公式求得(22)(1)2n n n S n n +==+ 则1111n S n n =-+ 最后利用裂项相消求和即可. 【详解】(1)等差数列{}n a 公差0d > 23142324,10a a a a a a =+=+=. 解得234,6a a == 或236,4a a == 但此时20d =-<故2d = ()()224222n a a n d n n ∴=+-=+-=(2)12422a a d =-=-= 则(22)(1)2n n n S n n +==+ 1111(1)1n S n n n n ∴==-++ 1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫∴=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 20.(1)3e 2e 0x y --=;(2)证明见解析.【分析】(1)先求出切线的斜率 再求出切点即得解;(2)令()()3e 2e x F x f x =-+ 利用导数求出函数的最小值即得证.【详解】(1)解:由题得()22e e x x f x x x '=+ 所以()13e f '=又()1f =e 所以切线方程为()e 3e 1y x -=- 即3e 2e 0x y --=.(2)证明:令()()23e 2e e 3e 2e x x x F x f x x =-+=-+()()()()222e e 3e e 23e 31x x x x x F x x x x x x x '=+-=+-=+-当()0,1x ∈时 ()0F x '< 当()1,x ∈+∞时 ()0F x '>.所以()F x 在()0,1上单调递减 在()1,+∞上单调递增.所以当0x >时 ()min ()10F x F == 0x ∴>时 ()0F x ≥故当0x >时 ()3e 2e x f x ≥-.。
2018年天津市高考理科数学试题Word版含答案
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A,B互斥,那么•如果事件A,B相互独立,那么()()()P A B P A P B=+()()()P AB P A P B=.•圆柱的体积公式V Sh=.•圆锥的体积公式13V Sh =.其中S表示圆柱的底面面积,其中S表示圆锥的底面面积,h表示圆柱的高.h表示圆锥的高.一、选择题:在每小题给出的四个选项中只有一项是符合题目要ED CBA 求的.(1)i 是虚数单位,复数734ii+=+( ) (A )1i - (B )1i -+ (C )17312525i + (D )172577i -+ (2)设变量x ,y 满足约束条件0,20,12,y x y y x +-⎧≥--≤≥⎪⎨⎪⎩则目标函数2z x y =+的最小值为( )(A )2 (B )3 (C )4 (D )5(3)阅读右边的程序框图,运行相应的程序,输出的S 的值为( )(A )15 (B )105 (C )245 (D )945(4)函数()()212log 4f x x =-的单调递增区间是( )(A )()0,+¥ (B )(),0-¥ (C )()2,+¥ (D )(),2-?(5)已知双曲线22221x y a b -=()0,0a b >>的一条渐近线平行于直线l :210y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为( )(A )221520x y -= (B )221205x y -= (C )2233125100x y -= (D )2233110025x y -= (6)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分CBFÐ;②2FB FD FA =?;③AE CE BE DE ??;④AF BD AB BF ??.则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ (7)设,a b R Î,则|“a b >”是“a a b b >”的( ) (A )充要不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充要也不必要条件(8)已知菱形ABCD 的边长为2,120BAD ?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF ?,23CE CF ?-,则l m +=( ) (A )12 (B )23 (C )56 (D )712第Ⅱ卷注意事项:1.用黑色墨水钢笔或签字笔将答案写在答题卡上。
推荐-天津市五校联考2018—2018学年度高三第二次联考[原创] 精品
天津市五校联考2018—2018学年度高三第二次联考数学试卷第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.下列判断正确的是A .x 2≠y 2⇔x ≠y 或x ≠-yB .命题:“a ,b 都是偶数,则a +b 是偶数”的逆否命题是“若a +b 不是偶数,则a ,b都不是偶数”C .若“p 或q ”为假命题,则“非p 且非q ”是真命题D .已知a ,b ,c 是实数,关于x 的不等式ax 2+bx +c ≤0的解集是空集,必有a >0且Δ≤0 2.若α、β是两个不重合的平面,给定以下条件:①α、β都垂直于平面γ②α内不共线的三点到β的距离都相等③l 、m 是α内的两条直线,且l ∥β,m ∥β④l 、m 是两条异面直线,且l ∥α,l ∥β、m ∥α、m ∥β,其中可以判定α∥β的是 A .①② B .②③ C .②④ D .④3.(理)已知f (x )=1413+-x x ,则下列结论正确的是A .∞→x lim f(x)=1B .∞→x lim f (x )=0C .∞→x lim f (x )=0D .∞→x lim f (x )=1(文)二次函数y =n (n +1)x 2-(2n +1)x +1,当n 依次取1,2,3,4,…,n ,…时,图象在x 轴上截得的线段的长度的总和约为A .1B .2C .3D .44.已知函数f (x )=x ·sin x 的图象是下列两个图象中的一个,请你选择后再根据图象作出下面的判断:若x 1,x 2∈(-2π,2π)且f (x 1) < f (x 2),则 A .x 1>x 2B .x 1+x 2>0C .x 1<x 2D .x 12<x 225.已知双曲线2222by a x -=1的左焦点为F 1,左、右顶占为A 1、A 2,P 为双曲线上任意一点,则分别以线段PF 1,A 1A 2为直径的两个圆的位置关系为A .相交B .相切C .相离D .以上情况都有可能6.已知关于x 的方程x 2-x cos A ·cos B +2sin 22C=0的两根之和等于两根之积的一半,则△ABC 一定是 A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形7.已知函数f (x )=2x -1,g (x )=1-x 2,构造函数F (x ),定义F 如下:当|f (x )|≥g (x )时,F(x )=|f (x )|,当|f (x )<g (x )|时,F (x )= -g (x ),那么F (x ) A.有最小值-1,无最大值 B.有最小值0,无最大值 C.有最大值1,无最小值 D.无最小值,也无最大值8.某学校为了了解学生课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据。
天津市耀华中学2018届高三年级第二次模拟考试数学(理)试题(解析版)
耀华中学2018届高三年级第二次模拟考试数学试卷(理)一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在复平面内,复数2334ii-+-(i是虚数单位)所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】试题分析:由题23(23)(34)188134(34)(34)9162525i i i iii i i-+-++-+===-+--++,对应点坐标为:81(,)2525-为第二象限的点。
考点:复数的运用及几何意义。
.2.已知x,y满足线性约束条件53x yx yx-≥-⎧⎪+≥⎨⎪≤⎩,则z=2x+4y的最小值是( )A. 38B. 5C. -6D. -10 【答案】C【解析】【分析】作出可行域,由z=2x+4y可得:124zy x=-+,作直线12y x=-,平移直线,当直线经过可行域且在y轴上截距最小时,z有最小值.【详解】作出可行域,如图所示,平移目标函数经过点A (3,-3)时,z =2x +4y 取得最小值-6, 故选C.【点睛】本题主要考查线性规划及应用,意在考查学生数形结合的能力,属于中档题. 3.“12x y >⎧⎨>⎩”是“x+y>3”的( )A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件 【答案】B 【解析】 【分析】 当12x y >⎧⎨>⎩时,根据不等式的性质可知x +y>3成立,反之不成立,可知结论. 【详解】若x >1,y >2,则x +y >3,故充分性成立,反之,若x =0,y =5满足x +y >3,显然不满足x >1且y >2,故必要性不成立,∴12x y >⎧⎨>⎩是x +y >3的充分不必要条件,故选B.【点睛】本题主要考查不等式的性质和充要条件,意在考查学生的逻辑思维能力,属于中档题. 4.某程序框图如图所示,运行该程序输出的k 值是( )A. 8B. 7C. 6D. 5【答案】D【解析】【分析】根据框图,分析循环结构,模拟运算过程即可.【详解】第1次循环:S=99,k=1;第2次循环:S=96,k=2;第3次循环:S=87,k=3,第4次循环:S=60,k=4;第5次循环:S=-21,k=5不满足条件,退出循环,输出k=5,故选D.【点睛】本题主要考查程序框图中的循环结构,意在考查学生读图,识图能力,属于中档题.5.已知双曲线22221x ya b-=(a>0,b>0)的左顶点与抛物线y2=2px(p>0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )3525【答案】D【解析】【分析】根据渐近线与抛物线准线交点坐标,可知P的值,写出抛物线焦点坐标,可求双曲线中a,再结合双曲线渐近线即可求出b,从而求出焦距.【详解】∵双曲线的一条渐近线与抛物线的准线交于点(-2,-1),∴2p-=-2,即p =4, ∴抛物线焦点F (2,0),又双曲线左顶点(-a,0)到抛物线焦点距离为4, ∴a =2,又点(-2,-1)在双曲线的渐近线上, ∴渐近线方程为y =12x , ∵a =2,b =1,∴c 5=,∴双曲线的焦距为2c =5 D.【点睛】本题主要考查双曲线,抛物线的标准方程和几何性质,意在考查学生的运算求解能力,属于中档题. 6.对于任意x∈R ,函数f(x)满足f(2-x)=-f(x),且当x≥1时,函数f(x)=lnx ,若a =f(2-0.3),b =f(log 3π),c =f(,则a ,b ,c 大小关系是( )A. b>a>cB. b>c>aC. c>a>bD. c>b>a【答案】A 【解析】 【分析】由2f x f x -=-()() 判断函数f x ()关于10(,)点对称,根据1x ≥时f x lnx =() 是单调增函数,判断f x ()在定义域R 上单调递增;再由自变量的大小判断函数值的大小.【详解】对于任意x R ∈,函数f x ()满足2f x f x -=-()(), ∴函数f x ()关于10(,)点对称,当1x ≥ 时,f x lnx =()是单调增函数, ∴f x ()在定义域R 上是单调增函数;由0.33021log π-<<<,∴0.332f f f log (()<(),π- ∴b >a >c . 故选:A .【点睛】本题主要考查了与函数有关的命题真假判断问题,涉及函数的单调性与对称性问题,是中档题.7.已知函数f(x)=sin ωx ωx(ω>0),若在区间(0,π)上有三个不同的x 使得f(x)=1,则ω的取值范围是( )A. 523,26⎛⎤⎥⎝⎦ B. 523,26⎛⎫ ⎪⎝⎭ C. 316,29⎛⎫ ⎪⎝⎭ D. 316,29⎛⎤ ⎥⎝⎦【答案】A 【解析】 【分析】化简函数f(x),要使在(0,π)上有三个不同的x 使得f (x )=1,即使得sin 3x πω⎛⎫+ ⎪⎝⎭=12成立,需满足:3π-6π <3π+ωπ≤4π+6π即可. 【详解】f (x )=sin ωx 3cos ωx =2sin 3x πω⎛⎫+ ⎪⎝⎭,∵x ∈(0,π), ∴ωx +3π∈+33ππωπ⎛⎫ ⎪⎝⎭,,要使在(0,π)上有三个不同的x 使得f (x )=1,即使得sin 3x πω⎛⎫+ ⎪⎝⎭=12成立,需满足: 3π-6π <3π+ωπ≤4π+6π,解得52<ω≤236,故选A.【点睛】本题主要考查三角函数的图象性质,意在考查学生的数形结合能力和运算能力,属于中档题.8.已知函数()21,0121,0xx f x x x x x -⎧≥⎪=+⎨⎪++<⎩,函数g(x)=f(1-x)-kx +k -12恰有三个不同的零点,则k 的取值范围是( )A. (-292⎧⎫⎨⎬⎩⎭ B. (-22,0]∪92⎧⎫⎨⎬⎩⎭C. (-2,0]∪12⎧⎫⎨⎬⎩⎭D. (-22,0]∪12⎧⎫⎨⎬⎩⎭【答案】D 【解析】 【分析】g(x)=f(1-x)-kx +k -12恰有三个不同的零点,即方程f (1-x )=k (x -1)+12恰有3个不同实根,令1-x =t ,则方程f(t)=-kt+12恰有三个不同实根,即函数y=f(x)与y=-kx+12的图象恰有3个不同交点,数形结合即可求解.【详解】∵g(x)=f(1-x)-kx+k-12恰有3个不同零点,∴方程f(1-x)=k(x-1)+12恰有3个不同实根,令1-x=t,则方程f(t)=-kt+12恰有三个不同实根,即函数y=f(x)与y=-kx+12的图象恰有3个不同交点,画出函数图象如下图:当-k=0即k=0时有三个交点,当y=-kx+12与f(x)=x2+2x+1(x<0)相切时可求得k=-22,当y=-kx+12与f(x)=11xx-+,x≥0相切时可求得k=12,故由图可得-22k≤0或k=12时函数y=f(x)与y=-kx+12的图象恰有3个不同交点,即函数g(x)=f(1-x)-kx+k-12恰有3个不同零点,故选D.【点睛】本题主要考查分段函数的图象,性质和函数零点,意在考查学生的数形结合能力和转化、化归能力,属于中档题.二、填空题(本大题共6小题,每小题5分,共30分.把答案填在相应的横线上.)9.某校共有高一、高二、高三学生1290人,其中高一480人,高二比高三多30人,为了解该校学生的身体健康情况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为________.【答案】78【解析】【分析】由题意求出高三学生人数,再根据高一学生的抽样比计算高三抽样人数即可.【详解】设学校有高三学生x人,则高二学生x+30人,∴x+(x+30)+480=1290,解得x=390人,该样本中的高三人数为96480×390=78人.【点睛】本题主要考查分层抽样的应用,意在考查学生的基本运算能力,属于中档题.10.已知集合A={x|x2+2x-3≤0},集合B={x||x-1|<1},则A∩B=________. 【答案】(]0,1【解析】 【分析】化简集合A ,B ,根据集合的交集运算即可.【详解】A ={x |x 2+2x -3≤0}={x |-3≤x ≤1},B ={x ||x -1|<1}={x |0<x <2}, ∴A ∩B ={x |0<x ≤1}.【点睛】本题主要考查集合的运算,意在考查学生基本的计算能力,属于中档题.11.已知极坐标系中的极点与平面直角坐标系中的原点重合,极轴与x 的正半轴重合,点A 在圆ρ=2cos θ+2sin θ上,点B 在直线31x ty t=+⎧⎨=-+⎩(t 为参数)上,则|AB|的最小值为________.【解析】 【分析】将极坐标方程化为直角坐标方程,将参数方程化为普通方程,转化为圆上的点到直线的最值即可得解.【详解】由ρ=2cos θ+2sin θ得x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2,故圆心M (1,1),半径r,由31x ty t=+⎧⎨=-+⎩ (t 为参数)得x -y -4=0, ∵A 在圆M 上,B 在直线x -y -4=0上, ∴|AB |min =d M -r ()222211-=+-【点睛】本题主要考查曲线的极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化,意在考查学生数形结合的能力,属于中档题.12.如图所示是一个几何体的三视图,则这个几何体外接球的体积为________.【答案】32π 【解析】试题分析:由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥,其外接球,与以俯视图为底面,以4为高的直三棱柱的外接球相同,如图所示,由底面边长为4,高为2,故底面为等腰直角三角形,可得底面外接圆的半径为:2r =,由棱柱高为4,可得球心距为2,故外接球的半径为:222222R =+=故外接球的表面积2432S R ππ==,故答案为32π.考点:1、几何体的三视图及空间想象能力;2、几何体外接球的性质及求表面积公式.【方法点睛】本题利用空间几何体的三视图及空间想象能力、几何体外接球的性质及求表面积公式,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.13.如图,在四边形ABCD 中,AB ⊥BC ,AB=6,BC=8,△ACD 是等边三角形,则AC BD ⋅的值为_______________.【答案】14.【解析】 【分析】根据三角形的边角关系,求得各个边长和角度;根据向量数量积求得AC BD ⋅的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市五区县2018届高三二模考试数学试卷(理科)一、选择题(共8小题,每小题5分,满分40分)1.设集合M={x||x+1|<3,x∈R},N={0,1,2},则M∩N=( )A.{0,1} B.{0,1,2} C.{x|0<x<2} D.{x|﹣4<x<2} 2.设变量x,y满足约束条件,则目标函数z=x+3y的最小值为( ) A.﹣3 B.0 C.3 D.123.阅读如图所示的框图,运行相应的程序,则输出S的值为( )A.﹣1008 B.﹣1007 C.1007 D.10084.下列结论正确的是( )A.若向量∥,则存在唯一的实数λ,使=B.若p∧q为假命题,则p,q均为假命题C.命题“∀x∈R,都有2x≥2x”的否定为“∃x0∈R,使得2x≤2x0”D.“a=0”是“直线(a+1)x+a2y﹣3=0与2x+ay﹣2a﹣1=0平行”的充要条件5.如图,在△ABC中,∠ACB=30°,点D在BC上,AD=BD=1,AB=,则∠BAC=( ) A.120°B.150°C.135°D.90°6.定义在R上的函数f(x),满足f(x+1)=2f(x),已知x∈,f(x)=x2+x,当x∈时,f(x)≤logm恒成立,则实数m的取值范围是( )A.m≤1B.0<m≤1C.m≥1D.0<m≤27.若O是△ABC的重心,=﹣2,A=120°,则||的最小值为( )A.B.C.D.8.如图,已知双曲线C:﹣=1(a>0,b>0)的离心率为,A1、A2分别为其左右顶点,过坐标原点且斜率为k(k≠0)的直线交双曲线C于P1、P2,则A1P1、A1P2、A2P1、A2P2这四条直线的斜率乘积为( )A.8 B.2 C.6 D.4二、填空题(共6小题,每小题5分,满分30分)9.已知+1=2i(i是虚数单位),则实数a=__________.10.在x(x+a)10的展开式中,x8的系数为15,则a=__________.11.某几何体的三视图如图所示,其中正视图和侧视图均为等腰直角三角形,俯视图是圆心角为直角的扇形,则该几何体的体积为__________.12.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.若AE=8,AB=10,则CE的长为__________.13.极坐标方程分别为ρ=cosθ与ρ=sinθ的两个圆的圆心距为__________.14.若函数f(x)=|x﹣1|+|x﹣2|,不等式|t﹣k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,k为非零常数,则实数x的取值范围为__________.三、解答题(共6小题,满分80分)15.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)解析式;(2)若f(x0)=(<x0<),求cos2x0的值.16.某校为了丰富学生的课余生活,决定在每周的星期二、星期四的课外活动期间同时开设先秦文化、趣味数学、国学和网络技术讲座,每位同学参加每个讲座的可能性相同.若参加讲座的人数达到预先设定的人数时称为满座,否则称为不满座,统计数据表明,各讲座的概率如表:星期先秦文化趣味数学国学网络技术星期二星期四根据上表:(1)求趣味数学讲座在星期二、星期四都不满座的概率;(2)设星期四各讲座满座的科目为ξ,求随机变量ξ的分布列和数学期望.17.如图,△ACB,△ADC都为等腰直角三角形,M、O为AB、AC的中点,且平面ADC⊥平面ACB,AB=4,AC=2,AD=2.(1)求证:BC⊥平面ACD;(2)求二面角A﹣CD﹣M的余弦角;(3)若E为BD上一点,满足OE⊥BD,求直线ME与平面CDM所成的角的正弦值.18.已知椭圆C:+=1(a>b>0)的离心率e=,以原点O为圆心,b为半径的圆与直线x﹣y+2=0相切,P为椭圆C上的动点.(1)求椭圆的方程;(2)设M为过P且垂直于x轴的直线上的点,若=λ(≤λ<1),求点M的轨迹方程,并说明轨迹是什么函数.19.在等比数列{a n}中,a1=1,a3,a2+a4,a5成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1++…+=a n(n∈N•),{b n}的前n项和为S n,求满足S n﹣1>a n+b n的n的最小值.20.已知函数f(x)=x﹣+1+2alnx(a∈R).(1)若函数f(x)在点(1,f(1)处的切线方程为y=b,求a+b的值;(2)若函数f(x)有两个极值点x1,x2,并且x1<x2.①求实数a的取值范围;②若A(x1,f(x1)),B(x2,f(x2))两点连线的斜率为k,求证:k﹣1>a.天津市五区县2018届高三二模考试数学试卷(理科)答案一、选择题(共8小题,每小题5分,满分40分)1.设集合M={x||x+1|<3,x∈R},N={0,1,2},则M∩N=( ) A.{0,1} B.{0,1,2} C.{x|0<x<2} D.{x|﹣4<x<2}考点:交集及其运算.专题:集合.分析:求出M中不等式的解集确定出M,找出M与N的交集即可.解答:解:由M中不等式变形得:﹣3<x+1<3,解得:﹣4<x<2,即M=(﹣4,2),∵N={0,1,2},∴M∩N={0,1},故选:A.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.设变量x,y满足约束条件,则目标函数z=x+3y的最小值为( ) A.﹣3 B.0 C.3 D.12考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,求最小值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+3y得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最小,此时z最小.由,解得,即A(﹣6,3),代入目标函数得z=﹣6+3×3=﹣6+9=3.即z=x+3y的最小值为3.故选:C.点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.3.阅读如图所示的框图,运行相应的程序,则输出S的值为( )A.﹣1008 B.﹣1007 C.1007 D.1008考点:循环结构.专题:图表型;算法和程序框图.分析:程序运行的功能是求S=1﹣2+3﹣...(﹣1)n﹣1•n,根据当n=2015时,程序运行终止,得S=1﹣2+3+ (2014)解答:解:由程序框图知:程序运行的功能是求S=1﹣2+3﹣…+(﹣1)n﹣1•n,∵当n=2015时,不满足条件k<2015,程序运行终止,∴S=1﹣2+3﹣…﹣2014=﹣1007.故答案为:﹣1007.点评:本题考查了循环结构的程序框图,判断程序运行的功能是解答此类问题的关键,属于基础题.4.下列结论正确的是( )A.若向量∥,则存在唯一的实数λ,使=B.若p∧q为假命题,则p,q均为假命题C.命题“∀x∈R,都有2x≥2x”的否定为“∃x0∈R,使得2x≤2x0”D.“a=0”是“直线(a+1)x+a2y﹣3=0与2x+ay﹣2a﹣1=0平行”的充要条件考点:复合命题的真假.专题:简易逻辑.分析:对于选项A:利用向量的共线的充要条件即可判断,对于选项B;根据复合命题的真假即可判断;对于选项C;根据命题的否定,即可判断;对于选项D;根据两直线的平行的充要条件即可判断.解答:解:对于选项A:若向量∥,则存在唯一的实数λ,使=,且λ≠0,故A错误;对于选项B;若p∧q为假命题,则p,q至少有一个为假命题,故B错误;对于选项C;命题“∀x∈R,都有2x≥2x”的否定为“∃x0∈R,使得2x<2x0”,故C错误;对于选项D;直线(a+1)x+a2y﹣3=0与2x+ay﹣2a﹣1=0平行,则(a+1)a=2a2,且(﹣2a﹣1)(a+1)≠2×(﹣3),解得a=0,故D正确.故选:D.点评:本题考查了命题的真假的判断,涉及了向量,复合命题,命题的否定,两直线平行等知识,属于基础题.5.如图,在△ABC中,∠ACB=30°,点D在BC上,AD=BD=1,AB=,则∠BAC=( )A.120°B.150°C.135°D.90°考点:余弦定理的应用.专题:解三角形.分析:在△ABD中,由余弦定理可求得cos∠ADB=﹣.cos∠DAB=,从而可求∠ADB,∠DAB的值,即可求∠ADC.∠CAD,从而可求∠BAC=∠CAD+∠DAB的值.解答:解:∵在△ABD中,cos∠ADB===﹣.cos∠DAB===,∴∠ADB=120°,∠DAB=30°∴∠ADC=180°﹣∠ADB=60°.∴∠CAD=180°﹣∠ACB﹣∠ADC=90°∴∠BAC=∠CAD+∠DAB=90°+30°=120°.故选:A.点评:本题主要考查了余弦定理,三角形内角和定理的综合应用,属于基本知识的考查.6.定义在R上的函数f(x),满足f(x+1)=2f(x),已知x∈,f(x)=x2+x,当x∈时,f(x)≤logm 恒成立,则实数m的取值范围是( )A.m≤1B.0<m≤1C.m≥1D.0<m≤2考点:函数恒成立问题.专题:函数的性质及应用.分析:可先根据已知条件求出函数在区间上的解析式,然后根据f(x)≤构造出关于m的不等式求解即可.解答:解:因为f(x+1)=2f(x),所以f(x)=2f(x﹣1)=4f(x﹣2).设x∈,则x﹣2∈.所以此时f(x)=4f(x﹣2)=4(x﹣2)2+4(x﹣2)=4,x∈.易知f(x)max=f(1)=f(2)=0,所以要使当x∈时,f(x)≤logm恒成立,只需即可.所以,因为y=log在定义域内是减函数.所以0<m≤1.故选B.点评:本题考查了不等式恒成立问题的解决方法,一般转化为函数最值问题求解,此例要注意对条件“f (x+1)=2f(x)”的转化作用的体会.7.若O是△ABC的重心,=﹣2,A=120°,则||的最小值为( )A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件容易得到,O是△ABC的重心,而重心是中线的交点,从而可得到(),从而可得到,由基本不等式即可得到,从而求得的最小值.解答:解:,A=120°;∴;O是△ABC的重心;∴;∴;∴;∴的最小值为.故选C.点评:考查数量积的计算公式及其运算,重心的定义,重心的性质:重心到顶点距离是它到对边中点距离的2倍,以及基本不等式用于求最值,以及要求的范围先求范围的方法.8.如图,已知双曲线C:﹣=1(a>0,b>0)的离心率为,A1、A2分别为其左右顶点,过坐标原点且斜率为k(k≠0)的直线交双曲线C于P1、P2,则A1P1、A1P2、A2P1、A2P2这四条直线的斜率乘积为( )A.8 B.2 C.6 D.4考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:设点,利用斜率公式,结合离心率为,即可得出结论.解答:解:设P1(x,y),P2(m,n),则A1P1、A1P2、A2P1、A2P2这四条直线的斜率乘积为==,∵离心率为,∴=,∴=2,∴=4,∴A1P1、A1P2、A2P1、A2P2这四条直线的斜率乘积为4,故选:D.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.二、填空题(共6小题,每小题5分,满分30分)9.已知+1=2i(i是虚数单位),则实数a=5.考点:复数相等的充要条件.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:∵+1=2i,∴ai+2﹣i=2i(2﹣i),2+(a﹣1)i=4i+2,∴a﹣1=4,可得a=5.故答案为:5.点评:本题考查了复数的运算法则,属于基础题.10.在x(x+a)10的展开式中,x8的系数为15,则a=.考点:二项式系数的性质.专题:二项式定理.分析:由条件利用二项式展开式的通项公式,求得x8的系数为•a3=15,从而得到a的值.解答:解:由于在x(x+a)10的展开式中,由x8的系数为•a3=15,求得a=,故答案为:.点评:本题主要考查二项式展开式的通项公式,二项式系数的性质,属于基础题.11.某几何体的三视图如图所示,其中正视图和侧视图均为等腰直角三角形,俯视图是圆心角为直角的扇形,则该几何体的体积为.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是圆锥的一部分,结合三视图中的数据,求出几何体的体积.解答:解:根据几何体的三视图,得;该几何体是圆锥的一部分,且底面是半径为2的圆面,高为2,∴该几何体的体积为:V几何体=×π•22×2=.故答案为:.点评:本题考查了利用几何体的三视图求体积的应用问题,解题的根据是由三视图得出几何体的结构特征,是基础题目.12.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E.若AE=8,AB=10,则CE的长为1.考点:与圆有关的比例线段.专题:直线与圆.分析:连接OD,BC,根据角平分线定义和等腰三角形性质推行∠CAD=∠ODA,推出OD∥AC,根据平行线性质和切线的判定推出即可;解答:解:连接OD,可得∠ODA=∠OAD=∠DAC∴OD∥AE.又AE⊥DE,∴DE⊥OD.而OD为半径,∴DE是⊙O的切线;连接BC,交OD于G,AB是圆的直径,所以AC⊥BC,所以四边形CEDG是矩形,∵OD∥AE,O是AB中点,∴G是BC中点,∴CG=DE=BC=3,∴BG=3,OG=4,∴DG=1,所以CE=1;故答案为:1.点评:本题考查了圆周角定理以及切线的判断、矩形的判断等知识点;比较综合,但难度不大.13.极坐标方程分别为ρ=cosθ与ρ=sinθ的两个圆的圆心距为.考点:简单曲线的极坐标方程.专题:计算题.分析:先利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,将极坐标方程为ρ=cosθ和ρ=sinθ化成直角坐标方程,最后利用直角坐标方程的形式,结合两点间的距离公式求解即得.解答:解:由ρ=cosθ,化为直角坐标方程为x2+y2﹣x=0,其圆心是A(,0),由ρ=sinθ,化为直角坐标方程为x2+y2﹣y=0,其圆心是B(0,),由两点间的距离公式,得AB=,故答案为:.点评:本小题主要考查圆的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心距等基本方法,我们要给予重视.14.若函数f(x)=|x﹣1|+|x﹣2|,不等式|t﹣k|+|t+k|≥|k|•f(x)对一切t∈R恒成立,k为非零常数,则实数x的取值范围为.考点:函数恒成立问题.专题:函数的性质及应用.分析:由|t﹣k|+|t+k|≥|(t﹣k)﹣(t+k)|=2|k|,(|t﹣k|+|t+k|)min=2|k|,|t﹣k|+|t+k|≥|k|f(x)对于任意t∈R恒成立转化为f(x)≤2 即|x﹣1|+|x﹣2|≤2,解绝对值不等式可得x的取值集合解答:解:∵f(x)=,∵|t﹣k|+|t+k|≥|(t﹣k)﹣(t+k)|=2|k|∴(|t﹣k|+|t+k|)min=2|k|问题转化为f(x)≤2,即|x﹣1|+|x﹣2|≤2显然由得2<x≤或得x<1∴实数x的取值集合为故答案为:点评:本题考查了绝对值不等式的几何意义,不等式的恒成立转化为求解函数的最值问题是关键,属于中档题,三、解答题(共6小题,满分80分)15.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示.(1)求函数f(x)解析式;(2)若f(x0)=(<x0<),求cos2x0的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(1)由图象可知A,T,由周期公式可求ω,由sin(2×+φ)=1,又|φ|<,可求φ,即可求得函数f(x)解析式.(2)由f(x0)=,可求sin(2x0+)=,又<x0<,则可求cos(2x0+),由两角差的余弦函数公式即可求值.解答:解:(1)由图象可知A=1,周期T=2()=2×=π,所以ω==2,…3分sin(2×+φ)=1,又|φ|<,则φ=.所以f(x)=sin(2x+)…6分(2)因为f(x0)=,所以sin(2x0+)=,又<x0<,则2x0+<π,可得:cos(2x0+)=﹣=﹣…9分所以cos2x0=cos=cos(2x0+)cos+sin(2x0+)sin=﹣=…12分点评:本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,正弦函数的图象和性质,两角差的余弦函数公式的应用,属于基本知识的考查.16.某校为了丰富学生的课余生活,决定在每周的星期二、星期四的课外活动期间同时开设先秦文化、趣味数学、国学和网络技术讲座,每位同学参加每个讲座的可能性相同.若参加讲座的人数达到预先设定的人数时称为满座,否则称为不满座,统计数据表明,各讲座的概率如表:星期先秦文化趣味数学国学网络技术星期二星期四根据上表:(1)求趣味数学讲座在星期二、星期四都不满座的概率;(2)设星期四各讲座满座的科目为ξ,求随机变量ξ的分布列和数学期望.考点:离散型随机变量的期望与方差;互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:概率与统计.分析:(1)由图表可得星期二、星期四满座的概率,然后由对立事件及相互独立事件的概率得答案.(2)由题意可知ξ的所有取值为:0,1,2,3,4.然后利用相互独立事件和互斥事件的概率求得概率,列出频率分布表,再由期望公式求得期望.解答:解:(1)设趣味数学讲座在星期二、星期四都不满座为时间A,则P(A)=.(2)由题意可知ξ的所有取值为:0,1,2,3,4.P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,P(ξ=4)=.∴ξ的分布列为:ξ0 1 2 3 4P故ξ的期望为Eξ=0×.点评:本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,属中档题.17.如图,△ACB,△ADC都为等腰直角三角形,M、O为AB、AC的中点,且平面ADC⊥平面ACB,AB=4,AC=2,AD=2.(1)求证:BC⊥平面ACD;(2)求二面角A﹣CD﹣M的余弦角;(3)若E为BD上一点,满足OE⊥BD,求直线ME与平面CDM所成的角的正弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)取AC中点O,连结DO,利用线面垂直的判定定理即得结论;(2)分别以OA、OM、OD为x、y、z轴建立空间直角坐标系,则所求值即为平面CDM的法向量与平面ACD 的法向量的夹角的余弦值的绝对值;(3)设,(0≤λ≤1),利用向量的加法法则及线段垂直的向量表示可得,利用向量数量积运算计算即可.解答:(1)证明:∵AB=4,AC=2,AD=2,∴AC⊥BC,AD⊥DC,则取AC中点O,连结DO,则DO⊥AC,∵平面ADC⊥平面ACB,DO⊂平面ADC,∴DO⊥平面ACB,∴DO⊥BC,∵AC⊥BC,AC∩OD=O,∴BC⊥平面ACD;(2)解:分别以OA、OM、OD为x、y、z轴建立空间直角坐标系如图,则A(,0,0),B(﹣,2,0),M(0,,0),C(﹣,0,0),D(0,0,),=(,,0),=(,0,),设平面CDM的法向量为=(x,y,z),由,可得,令x=1,得=(1,﹣1,﹣1),又平面ACD的法向量为=(0,1,0),∴==,∴二面角A﹣CD﹣M的余弦角为;(3)解:由E点在棱BD上,设,(0≤λ≤1),故=(0,0,)+λ(﹣,2,﹣)=(﹣λ,2λ,(1﹣λ)),由OE⊥BD,得,即2λ+8λ﹣2(1﹣λ)=0,解得,∴=(﹣,2,﹣),=(0,﹣,)+(﹣,2,﹣)=(﹣,﹣4,5),平面CDM的法向量为=(1,﹣1,﹣1),设直线ME与平面CDM所成的角为θ,∴sinθ====.点评:本题考查线面垂直的判定定理,求二面角及线面角,注意解题方法的积累,属于中档题.18.已知椭圆C:+=1(a>b>0)的离心率e=,以原点O为圆心,b为半径的圆与直线x﹣y+2=0相切,P为椭圆C上的动点.(1)求椭圆的方程;(2)设M为过P且垂直于x轴的直线上的点,若=λ(≤λ<1),求点M的轨迹方程,并说明轨迹是什么函数.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)圆的方程为:x2+y2=b2,圆心到直线x﹣y+2=0的距离d===b,又,a2=b2+c2,联立解出即可得出;(2)设M(x,y),可设P(x,y′),x∈,由=λ(≤λ<1),可得,而,代入化简整理可得:(3λ2﹣1)x2+3λ2y2=6,,对λ分类讨论即可得出.解答:解:(1)圆的方程为:x2+y2=b2,圆心到直线x﹣y+2=0的距离d===b,又,a2=b2+c2,解得,c=1.∴椭圆的方程为.(2)设M(x,y),可设P(x,y′),x∈,∵=λ(≤λ<1),∴,而,∴,整理得(3λ2﹣1)x2+3λ2y2=6,,(i)当时,点M的轨迹方程为:y2=6,即y=,,其轨迹是两条平行直线;(ii)当时,点M的轨迹方程为:,∵0<3λ3﹣1<3λ2,∴轨迹为中心在原点,长轴在x轴上的椭圆,满足的部分.点评:本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式公式、两点之间的距离公式、分类讨论思想方法,考查了推理能力与计算能力,属于难题.19.在等比数列{a n}中,a1=1,a3,a2+a4,a5成等差数列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足b1++…+=a n(n∈N•),{b n}的前n项和为S n,求满足S n﹣1>a n+b n的n的最小值.考点:数列的求和;等比数列的性质.专题:点列、递归数列与数学归纳法.分析:(1)通过a3,a2+a4,a5成等差数列,可得q=2,进而可得结论;(2)通过b1++…+=a n(n∈N*),可得b n=,易得当n=1时不满足题意;当n≥2时利用错位相减法计算即可.解答:解:(1)设数列{a n}的公比为q,∵a3,a2+a4,a5成等差数列,∴2(a2+a4)=a3+a5,即2(q+q3)=q2+q4,解q=2,又∵a1=1,∴a n=2n﹣1;(2)∵b1++…+=a n(n∈N*),∴当n=1时,b1=a1=1,当n≥2时,=a n﹣a n﹣1=2n﹣2,∴b n=n•2n﹣2,即b n=,∴当n=1时,S1=b1=1,∴S1﹣1=0,不满足S1﹣1>a1+b1;当n≥2时S n=1+2×20+3×21+…+n×2n﹣2,∴2S n=2+2×21+3×22+…+n×2n﹣1,两式相减得:﹣S n=1+21+…+2n﹣2﹣n×2n﹣1==(1﹣n)2n﹣1﹣1,∴S n=1+(n﹣1)2n﹣1.要使S n﹣1>a n+b n,只需(n﹣1)2n﹣1>2n﹣1+n×2n﹣2,解得n>4,∴满足S n﹣1>a n+b n的n的最小值为5.点评:本题考查等差数列、等比数列的概念及性质,考查分类讨论的思想,注意解题方法的积累,属于中档题.20.已知函数f(x)=x﹣+1+2alnx(a∈R).(1)若函数f(x)在点(1,f(1)处的切线方程为y=b,求a+b的值;(2)若函数f(x)有两个极值点x1,x2,并且x1<x2.①求实数a的取值范围;②若A(x1,f(x1)),B(x2,f(x2))两点连线的斜率为k,求证:k﹣1>a.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)求函数的导数,利用导数的几何意义建立方程关系即可;(2)求函数的导数,根据函数的导数和极值之间的关系,结合直线的斜率公式求解和证明即可.解答:解:(1)函数的f(x)的导数f′(x)=1+=,∵函数f(x)在点(1,f(1)处的切线方程为y=b,∴f′(1)=2+2a=0,解得a=﹣1.∵f(1)=1=b,∴a+b=0.(2)①∵函数f(x)有两个极值点x1,x2,并且x1<x2.∴f′(x)=0有两个不等的正根,即x2+2ax+1=0有两个不等正根,令g(x)=x2+2ax+1,∵g(0)=1,∴,解得a<﹣1,即实数a的取值范围(﹣∞,﹣1];②由①知x1x2=1,x1<1<x2.x2﹣>0,故==(1++)﹣1=,令h(x)=2lnx﹣x+,则h′(x)=,∴函数h(x)单调递减,h(x2)<h(1)=0,∴2lnx2﹣x2+<0,∴<1,∵a<﹣1,∴>a,即.点评:本题主要考查导数的几何意义以及导数的综合应用,要求熟练掌握函数单调性,最值和导数之间的关系,考查学生的运算和推理能力.。