05 第五节 函数的极限

合集下载

函数极限教学课件

函数极限教学课件

利用函数极限解决实际问题
总结词
利用函数极限解决实际问题是一种实用的方法,通过将实际问题转化为数学模型,利用 函数极限进行分析和求解。
详细描述
在解决实际问题时,我们可以将问题转化为数学模型,然后利用函数极限进行分析和求 解。这种方法可以帮助我们更好地理解问题的本质,并且可以提供更加精确和可靠的解 决方案。例如,在经济学、物理学和社会科学等领域中,可以利用函数极限解决一些实
极限存在准则
04
无穷小与无穷大
学生常见问题解答
问题
如何判断一个函数在某点的极限是否存在?
问题
如何求函数的极限?
解答
可以通过定义法、四则运算法或存在准则来判断 。如果函数在某点的左右极限相等,则该点处的 极限存在;如果函数在某点的左右极限不相等, 则该点处的极限不存在。
解答
可以通过直接代入法、四则运算法、无穷小代换 法、洛必达法则等方法来求函数的极限。具体方 法应根据不同情况进行选择。
lim (x→x₀) f(x) = L 表示当 x 趋近于 x₀ 时,f(x) 趋近于 L。
函数极限的性质
唯一性
一个函数的极限值是唯 一的。
有界性
有界函数的极限值必定 在函数的定义域内。
局部有界性
在某点的邻域内有界, 则该点的极限存在。
局部保号性
在某点的邻域内函数值 的符号保持不变,则该
点的极限存在。
下一步学习建议
01
02
03
04
学习下一章:连续函数 与间断点
掌握连续函数的定义、 性质和判断方法
学习间断点的分类和判 断方法
理解函数在间断点处的 极限和连续性的关系
THANKS
感谢观看
利用函数极限求函数的值

高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析函数极限是高等数学课程中的重要内容,它是研究函数在某一点邻域内的变化趋势的数学工具。

函数极限的求法技巧在课程中占据着重要的地位,能够帮助学生更好地理解和掌握函数极限的求解方法。

下面我们将从极限的定义、性质和一些常见的求法技巧进行解析,希望能够帮助学生更好地理解这一部分内容。

一、极限的定义和性质1. 极限的定义对于函数f(x),当x无限接近于某一点a时,如果函数f(x)的取值无限接近于某个确定的值A,那么我们说函数f(x)在点a处的极限为A,记作lim(x->a)f(x)=A。

这个定义中的“无限接近”可以用数学语言来描述,即对于任意小的正数ε,存在一个正数δ,当0<|x-a|<δ时,有|f(x)-A|<ε成立。

这就是函数极限的ε-δ定义,是高等数学中函数极限的核心概念。

2. 极限的性质函数极限有一些基本性质,如:(1)唯一性:当极限存在时,它是唯一确定的;(2)局部有界性:如果函数在某一点的极限存在,则该点的邻域内函数的取值是有界的;(3)局部保号性:如果函数在某一点的极限存在且大于(或小于)零,则该点的邻域内函数的取值保持大于(或小于)零。

二、常见的极限求法技巧1. 数列极限在高等数学中,函数极限的求解经常涉及到数列极限的技巧。

数列极限是函数极限的基础,常用来推导函数的极限性质和求解复杂的极限问题。

我们可以利用数列极限的性质和定理来求解函数极限,如夹逼定理、单调有界原理等。

2. 无穷小量与无穷大量的运算在高等数学中,常常需要对无穷小量和无穷大量进行运算,这也是求解函数极限的一个重要技巧。

我们可以将无穷小量和无穷大量进行合并、分解或代换,来简化函数极限的求解过程,例如利用无穷小量的性质来消去形式不确定的无穷小量。

3. 函数的展开和化简在求解函数极限时,我们可以利用泰勒展开、函数的特殊性质等手段,将待求的极限转化为更简单的形式。

通过展开和化简函数,我们可以更容易地求解函数在某一点的极限,从而使得求解过程更加简单和直观。

高等数学高数05第五节函数极限与最大值最小值

高等数学高数05第五节函数极限与最大值最小值

第五节 函数的极值与最大值最小值在讨论函数的单调性时,曾遇到这样的情形,函数先是单调增加(或减少),到达某一点后又变为单调减少(或增加),这一类点实际上就是使函数单调性发生变化的分界点. 如在上节例3的图3-4-5中,点1=x 和2=x 就是具有这样性质的点,易见,对1=x 的某个邻域内的任一点x )1(≠x ,恒有 )1()(f x f <,即曲线在点))1(,1(f 处达到“峰顶”;同样,对2=x 的某个邻域内的任一点x )2(≠x ,恒有 )2()(f x f >,即曲线在点))2(,2(f 处达到“谷底”. 具有这种性质的点在实际应用中有着重要的意义. 由此我们引要入函数极值的概念.分布图示★ 函数极值的定义★ 函数极值的求法★ 例1★ 例2 ★ 例3 ★ 第二充分条件★ 例4★ 例5★ 例6 ★ 最大值最小值的求法★ 例7★ 例8 ★ 例9 ★ 例10★ 例11★ 例12 ★ 内容小结★ 课堂练习★ 习题3-5 ★ 返回内容要点一、函数的极值 极值的必要条件第一充分条件与第二充分条件 求函数的极值点和极值的步骤(1) 确定函数)(x f 的定义域,并求其导数)(x f ';(2) 解方程0)(='x f 求出)(x f 的全部驻点与不可导点;(3) 讨论)(x f '在驻点和不可导点左、右两侧邻近符号变化的情况,确定函数的极值点;(4) 求出各极值点的函数值,就得到函数)(x f 的全部极值.二、函数的最大值与最小值在实际应用中,常常会遇到求最大值和最小值的问题. 如用料最省、容量最大、花钱最少、效率最高、利润最大等. 此类问题在数学上往往可归结为求某一函数(通常称为目标函数)的最大值或最小值问题.求函数在],[b a 上的最大(小)值的步骤如下:(1)计算函数)(x f 在一切可能极值点的函数值,并将它们与),(a f )(b f 相比较,这些值中最大的就是最大值,最小的就是最小值;(2) 对于闭区间],[b a 上的连续函数)(x f ,如果在这个区间内只有一个可能的极值点,并且函数在该点确有极值,则这点就是函数在所给区间上的最大值(或最小值)点.例题选讲求函数的极值例1 (E01) 求出函数593)(23+--=x x x x f 的极值.解 )3)(1(3963)(2-+=--='x x x x x f ,令,0)(='x f 得驻点.3,121=-=x x 列表讨论如下:所以, 极大值,10)1(=-f 极小值.22)3(-=f例2 (E02) 求函数32)1()4()(+-=x x x f 的极值.解 )1( 函数)(x f 在),(+∞-∞内连续,除1-=x 外处处可导,且;13)1(5)(3+-='x x x f)2( 令,0)(='x f 得驻点;1=x 1-=x 为)(x f 的不可导点; )3( 列表讨论如下:)4( 极大值为,0)1(=-f 极小值为.43)1(3-=f例3 求函数 ()3/223x x x f -=的单调增减区间和极值. 解 求导数,1)(3/1--='x x f 当1=x 时,0)0(='f 而 0=x 时)(x f '不存在 , 因此,函数只可能在这两点取得极值. 列表如下:由上表可见:函数)(x f 在区间),1(),0,(+∞-∞单调增加, 在区间)1,0(单调减少. 在点0=x 处有极大值, 在点1=x 处有极小值,21)1(-=f 如图.例4 (E03) 求出函数20243)(23--+=x x x x f 的极值.解 ),2)(4(32463)(2-+=-+='x x x x x f 令,0)(='x f 得驻点.2,421=-=x x又,66)(+=''x x f ,018)4(<-=-''f 故极大值,60)4(=-f ,018)2(>=''f 故极小值.48)2(-=f注意:0)(.10=''x f 时, )(x f 在点 0x 处不一定取极值, 仍用第一充分条件进行判断..2函数的不可导点,也可能是函数的极值点.例5 (E04) 求函数1)1()(32+-=x x f 的极值.解 由,0)1(6)(22=-='x x x f 得驻点,11-=x .1,032==x x ).15)(1(6)(22--=''x x x f 因,06)(>=''/x f 故)(x f 在0=x 处取得极小值,极小值为.0)0(=f 因,0)1()1(=''=-''f f 故用定理3无法判别.考察一阶导数)(x f '在驻点11-=x 及13=x 左右邻近的符号: 当x 取1- 左侧邻近的值时, ;0)(<'x f 当x 取1-右侧邻近的值时, ;0)(<'x f因)(x f '的符号没有改变,故)(x f 在1-=x 处没有极值. 同理,)(x f 在1=x 处也没有极值. 如图所示.例6 求出函数 3/2)2(1)(--=x x f 的极值.解 ).2()2(32)(31≠--='-x x x f 2=x 是函数的不可导点.当2<x 时, ;0)(>'x f 当2>x 时, .0)(<'x f 1)2(=∴f 为)(x f 的极大值.例7 (E05) 求14123223+-+=x x x y 的在]4,3[-上的最大值与最小值. 解 ),1)(2(6)(-+='x x x f 解方程,0)(='x f 得.1,221=-=x x 计算;23)3(=-f ;34)2(=-f ;7)1(=f ;142)4(=f 比较得最大值,142)4(=f 最小值.7)1(=f例8 求函数x x y -=2sin 在⎥⎦⎤⎢⎣⎡-2,2ππ上的最大值及最小值.解 函数x x y -=2sin 在⎥⎦⎤⎢⎣⎡-2,2ππ上连续,,12cos 2)(-='='x y x f令,0='y 得.6π±=x,22ππ=⎪⎭⎫ ⎝⎛-f ,22ππ-=⎪⎭⎫ ⎝⎛f ,6236ππ-=⎪⎭⎫ ⎝⎛f .6236ππ+-=⎪⎭⎫⎝⎛-f故y 在 ⎥⎦⎤⎢⎣⎡-2,2ππ上最大值为,2π最小值为.2π-例9 (E06) 设工厂A 到铁路线的垂直距离为20km, 垂足为B . 铁路线上距离B 为100km 处有一原料供应站C , 如图3-5-4. 现在要在铁路BC 中间某处D 修建一个原料中转车站, 再由车站D 向工厂修一条公路. 如果已知每km 的铁路运费与公路运费之比为3:5, 那么, D 应选在何处, 才能使原料供应站C 运货到工厂A 所需运费最省?解 x BD =(km), x CD -=100(km), .2022x AD +=铁路每公里运费,3k 公路每公里,5k 记那里目标函数(总运费)y 的函数关系式:CD k AD k y ⋅+⋅=35即 ).1000()100(340052≤≤-++⋅=x x k x k y问题归结为:x 取何值时目标函数y 最小.求导得,340052⎪⎪⎭⎫ ⎝⎛-+='x x k y 令0='y 得15=x (km). 由于.26100)100(,380)15(,400)0(k y k y k y ===从而当15=BD (km)时,总运费最省.例10(E07) 某房地产公司有50套公寓要出租, 当租金定为每月180元时, 公寓会全部租出去. 当租金每月增加10元时, 就有一套公寓租不出去, 而租出去的房子每月需花费20元的整修维护费. 试问房租定为多少可获得最大收入?解 设房租为每月x 元,租出去的房子有⎪⎭⎫⎝⎛--1018050x 套,每月总收入为,1068)20(1018050)20()(⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛---=x x x x x R,570101)20(1068)(x x x x R -=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛-='解,0)(='x R 得350=x (唯一驻点).故每月每套租金为350元时收入最高.最大收入为 10890)350(=R (元).求函数的最大值最小值例11 敌人乘汽车从河的北岸A 处以1米/分钟的速度向正北逃窜,同时我军摩托车从河的南岸B 处向正东追击,速度为2千米/分钟,问我军摩托车何时射击最好(相距最近射击最好) ?解 (1) 建立敌我相距函数关系 设t 为我军从B 处发起追击至射击的事件(分).敌我相距函数)(t s 22)24()5.0()(t t t s -++=(2) 求)(t s s =的最小值点 .)24()5.0(5.75)(22t t t t s -++-='令,0)(='t s 得唯一驻点 .5.1=t故得我军从B 处发起追击后1.5分钟设计最好. 实际问题求最值应注意:(1) 建立目标函数; (2) 求最值;若目标函数只有唯一驻点,则该点的函数值即为所求的最大(或最小)值.例12 求内接于椭圆12222=+by a x 而面积最大的矩形的各边之长.解 设),(y x M 为椭圆上第一象限内任意一点,则 以点M 为一顶点的内接矩形的面积为,0,422)(22a x x a x aby x x S ≤≤-=⋅= 且.0)()0(==a S S22222222244)(x a x a a b x a x xx a a b x S --=⎥⎥⎦⎤⎢⎢⎣⎡--+-=' 由,0)(='x S 求得驻点20a x =为唯一的极值可疑点. 依题意, )(x S 存在最大值,故20a x =是)(x S 的最大值,最大值ab a a aa b S 222422max=⎪⎪⎭⎫ ⎝⎛-⋅= 对应的y 值为,2b 即当矩形的边长分别为,2a b 2时面积最大.课堂练习1. 下列命题正确吗?若0x 为)(x f 的极小值点, 则必存在0x 的某邻域, 在此邻域内, )(x f 在0x 的左侧下降,而在0x 的右侧上升.2. 若)(a f 是)(x f 在[a , b ]上的最大值或最小值, 且)(a f '存在, 是否一定有0)(='a f ?。

函数与极限:函数极限的概念

函数与极限:函数极限的概念

函数与极限:函数极限的概念在数学中,函数极限是函数理论中的重要概念之一,它在解析几何、微分学和积分学等领域中有着广泛的应用。

函数极限可以帮助我们理解函数的行为和性质,在研究数学问题时起到至关重要的作用。

本文将从函数极限的定义、基本性质以及在实际问题中的应用三个方面探讨函数极限的概念。

一、函数极限的定义函数极限的定义是通过数列的极限来描述的。

设有一个函数 f(x),当自变量 x 无限接近于某个数 a 时,如果对于任意一个数ε(ε>0),总存在另一个数δ(δ>0),使得当 x 在 (a-δ, a+δ) 范围内时,都有 |f(x) - L| < ε,那么我们称函数 f(x) 在 x 趋于 a 时的极限为 L,记作:lim(x→a) f(x) = L。

二、函数极限的基本性质1. 函数极限的唯一性:若函数 f(x) 在 x 趋于 a 时的极限存在,则该极限是唯一的,即该极限值与取近点的方法无关。

2. 极限的四则运算:若函数 f(x) 和 g(x) 在 x 趋于 a 时的极限都存在,则有以下性质:(1) lim(x→a) [f(x) ± g(x)] = lim(x→a) f(x) ± lim(x→a) g(x);(2) lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x);(3) lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)(其中lim(x→a) g(x) ≠ 0)。

3. 极限的保序性:若函数 f(x) 和 g(x) 在 x 趋于 a 时的极限都存在,并且f(x) ≤ g(x),则有lim(x→a) f(x) ≤ lim(x→a) g(x)。

4. 复合函数的极限:若函数 f(x) 在 x 趋于 a 时的极限存在,并且g(x) 在 x 趋于 f(a) 时的极限存在,则复合函数 g[f(x)] 在 x 趋于 a 时的极限存在,且有lim(x→a) g[f(x)] = lim(u→f(a)) g(u)。

第五节 两个重要极限

第五节 两个重要极限
x u 5
类型5: 幂指式的极限,先利用幂的有关运 算把式子变换成含有标准式,再用公式
求.
练习
3 x 2x 求 lim( ) . x 2 x
极限的常用计算方法
1.代入法
x 4 3x 8 lim 2 x 2 x x 3
0 2.多项式的 型,分子分母同时分解, 0 约掉同为无穷小的公因
第5节 两个重要极限
sin x 1. lim 1. x 0 x
sin x 观察函数 当 x 0时的变化趋势 . x
y sin x x
sin x 重要极限lim 1的使用要求: x 0 x
1、式中含有三角函数的分式; 2、分母与正玄函数的角变量相同; 3、角变量趋近于0. sin x 重要极限lim 1的推广(类型四) : x 0 x 公式 要求
x
1 2
例5
计算li m 1 x .
x 0 2 x
解 方法1 令 u = -x,因为 x 0 时 u 0,
( 所以 l i m 1 x l i m 1 u)
x 0 2 x u0

2 u
lim
u0
1
(1 u)
1 . 2 2 1 e u
x 0
2 5 x
答案: e
6
有时,所给函数在自变量的某个趋向 下,底的极限为1,指数的极限为无穷,
人们称这类极限为1 ”型未定式. “

1 重要极限lim 1 e的使用要求: x x
(1)幂指式的底是由1与一个接近于0的变量和 (2)底中的变量与指数间互为倒数.
sin x x 0 lim lim 1 ( 型) x 0 x 0 sin x x 0 sin 推广: lim lim 1(上下一致) 0 0 sin

函数极限相关知识点总结

函数极限相关知识点总结

函数极限相关知识点总结一、函数极限的定义1. 函数极限的定义在数学中,函数极限是描述函数在某一点附近的行为的概念。

具体来说,对于给定的函数f(x),当自变量x趋于某一点a时,如果函数值f(x)无限接近某个确定的数L,那么我们就称函数f(x)在点a处的极限为L,记作lim_{x→a}f(x) = L。

换句话说,当x在逼近a时,f(x)的取值会趋于L。

这一定义可以用数学符号严格表述为:对于任意正数ε,存在一个正数δ,使得当0< |x-a| <δ时,都有 |f(x)-L| <ε成立。

2. 函数极限的右极限和左极限如果函数f(x)在点a的左侧和右侧分别有极限,则称这两个极限为函数f(x)在点a处的左极限和右极限。

左极限记作lim_{x→a^-}f(x),右极限记作lim_{x→a^+}f(x)。

当左极限、右极限和函数值在点a处都存在且相等时,我们称函数f(x)在点a处存在极限,且极限为此值。

3. 函数极限的无穷极限当自变量x趋于无穷大时,函数f(x)的极限称为无穷极限。

具体来说,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|>M成立,则我们称lim_{x→∞}f(x) = ∞。

类似地,若对于任意正数M,存在一个正数N,使得当|x|>N时,都有|f(x)|<M成立,则我们称lim_{x→∞}f(x) = -∞。

4. 函数极限的存在性函数极限在很多情况下是存在的,但也有一些特殊的函数,它们在某些点处的极限并不一定存在。

比如,当函数在某一点的左右极限不相等时,该点处的极限可能不存在;当函数在某一点的极限为无穷大时,该点处的极限也可能不存在。

因此,在研究函数极限时,我们需要考虑函数在极限点处的性质,以确定函数极限是否存在。

二、函数极限的求解方法1. 用极限的定义求解函数极限函数极限的定义是要求对任意给定的ε>0,存在一个δ>0,使得当0<|x-a|<δ时,都有|f(x)-L|<ε成立。

高等数学 函数的极限课件

高等数学   函数的极限课件

无穷小的运算性质
加法性质
两个无穷小的和仍然是无穷小 。
乘法性质
两个无穷小的乘积仍然是无穷 小。
幂运算性质
无穷小的幂仍然是无穷小,但 需要注意其阶数变化。
复合函数的无穷小
复合函数的无穷小可以通过链 式法则进行计算。
THANKS
感谢观看
函数极限的运算性质
和差运算性质
如果$lim_{xto x_0} f(x)=A$且 $lim_{xto x_0} g(x)=B$,则 $lim_{xto x_0} [f(x)+g(x)]=A+B$。
乘积运算性质
如果$lim_{xto x_0} f(x)=A$且 $lim_{xto x_0} g(x)=B$,则 $lim_{xto x_0} [f(x)cdot g(x)]=Acdot B$。
利用函数极限求某些函数的值
求定积分
通过计算被积函数的上下限在积分区 间的极限,可以求得定积分的值。
求数列的通项公式
通过求解数列的递推公式的极限,可 以求得数列的通项公式。
利用函数极限研究函数的性质
函数的连续性
通过计算函数在某点的极限,可以判断函数在该点是否连续。
函数的可导性
通过计算函数的导数在某点的极限,可以判断函数在该点是否可导。
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B,则 lim(x→x0) [f(x) + g(x)] = A + B 。
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B,则 lim(x→x0) [f(x) × g(x)] = A × B 。
函数极限的直观定义
如果当$x$趋近于$x_0$时,函数$f(x)$的取值逐渐 接近某个确定的数$L$,则称$L$为函数$f(x)$在 $xto x_0$时的极限。

极限运算法则

极限运算法则

六个常见的有界函数
arcsin x arctanx
1 2 1 例如,当x 0时, x sin , x arctan 都是无穷小 x x
sin x 1, cos x 1, x (,)

2 2
; arccosx ; x 1,1 ; arc cot x , x (,)
3
lim x 3 lim1
小结: 1. 设 f ( x ) a0 x n a1 x n 1 a n , 则有
x x0
lim f ( x ) a0 ( lim x ) n a1 ( lim x ) n 1 a n
x x0
n
x x0
a0 x0 a1 x0
令u x a
lim 3 u 2
u 0 3
3 a
2
0.
2x3 3x2 5 例4 求 lim . 3 2 x 7 x 4 x 1

x 时, 分子, 分母的极限都是无穷大( 型 ) .
5 x3 2. 1 7 x3
先用x 3去除分子分母 分出无穷小 再求极限. , ,
定理7. 设
且 x 满足
则有
时,
( x) a , 又
x x0
lim f [ ( x) ]
说明: 若定理中 lim ( x) , 则类似可得
x x0
x x0
lim f [ ( x) ] lim f (u ) A
u
例1: lim e
x 2
cos x
lim[ f ( x) g ( x) h( x)] lim f ( x) lim g ( x) lim h( x);

高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析在高等数学中,函数极限是一个十分重要的概念,它在微积分、数学分析等领域中有着广泛的应用。

函数极限的求法技巧在很大程度上影响着学生对这一概念的理解和掌握。

在这篇文章中,我们将从基本的定义入手,通过详细的技巧解析,帮助读者更好地掌握函数极限的求法技巧。

一、函数极限的定义在进行函数极限的求法技巧解析之前,我们首先需要了解函数极限的基本定义。

对于函数 y=f(x),当自变量 x 的取值无限接近某一值(通常是一个常数 a)时,如果相应的函数值 f(x) 也无限接近某一常数 L,则称 L 是函数 f(x) 当 x 趋于 a 时的极限,记作:lim┬(x→a)⁡〖f(x)〗=L其中 lim 表示极限,x → a 表示 x 趋于 a,f(x) 表示函数值,L 表示极限值。

需要注意的是,当函数 f(x) 在 x=a 处的极限存在时,我们称函数 f(x) 在 x=a 处收敛,并且其极限值就是 L;当函数 f(x) 在 x=a 处的极限不存在时,我们称函数 f(x) 在x=a 处发散。

1. 直接代入法直接代入法是函数极限求法中最简单的技巧之一。

当我们需要求一个函数在某一点的极限时,如果该点可以直接代入,就可以直接进行代入求解。

对于函数y=x²,在 x=3 处的极限可以直接进行代入得到:这种方法通常适用于一些简单的函数极限求解,但是对于一些复杂的函数极限,直接代入法往往无法奏效。

2. 因子分解法当函数的极限形式无法直接代入求解时,我们可以尝试利用因子分解法来简化计算。

因子分解法的核心思想是将原函数进行因子分解,然后对每一个因子进行分别求解,最后将结果进行整合得到最终的极限值。

对于函数y=(x²-4)/(x-2),在 x=2 处的极限可以利用因子分解法进行求解。

我们将函数进行因子分解得:y=(x+2)(x-2)/(x-2)然后去除公共因子得到:y=x+2最后直接代入 x=2 即可得到极限值:3. 无穷小量法当 x 趋于无穷大时,函数的极限求解常常采用无穷小量法。

函数的24种极限总结

函数的24种极限总结

函数的24种极限总结在数学中,函数的极限是一个非常重要的概念,它在微积分、数学分析等领域有着广泛的应用。

本文将总结函数的24种极限,帮助读者更好地理解和掌握这一概念。

1. 常数函数的极限。

当函数f(x) = c为常数时,其极限为lim(x→a) f(x) = c。

这是因为常数函数在任意点的取值都是常数c,因此其极限也等于c。

2. 幂函数的极限。

对于幂函数f(x) = x^n,当n为正整数时,其极限为lim(x→a) f(x) = a^n。

当n 为负整数时,其极限为lim(x→a) f(x) = 1/a^n。

当n为分数时,其极限需要根据具体情况进行计算。

3. 指数函数的极限。

指数函数f(x) = a^x的极限为lim(x→a) f(x) = a^a。

其中a为常数且大于0。

4. 对数函数的极限。

对数函数f(x) = log_a(x)的极限为lim(x→a) f(x) = log_a(a) = 1。

其中a为常数且大于0且不等于1。

5. 三角函数的极限。

三角函数sin(x)和cos(x)在其定义域内的极限都存在,分别为lim(x→0) sin(x) = 0和lim(x→0) cos(x) = 1。

6. 反三角函数的极限。

反三角函数arcsin(x)和arccos(x)在其定义域内的极限也都存在,分别为lim(x→0) arcsin(x) = 0和lim(x→0) arccos(x) = 1。

7. 双曲函数的极限。

双曲函数sinh(x)和cosh(x)在其定义域内的极限分别为lim(x→0) sinh(x) = 0和lim(x→0) cosh(x) = 1。

8. 反双曲函数的极限。

反双曲函数arcsinh(x)和arccosh(x)在其定义域内的极限也都存在,分别为lim(x →0) arcsinh(x) = 0和lim(x→0) arccosh(x) = 1。

9. 指数对数函数的极限。

指数对数函数f(x) = x^a和f(x) = log_a(x)在其定义域内的极限分别为lim(x→a) f(x) = a^a和lim(x→a) f(x) = log_a(a) = 1。

函数极限运算法则课件

函数极限运算法则课件
于该点的纵坐标。
函数极限的性 质
唯一性
一个函数的极限值是唯一的。
有界性
函数在某点的极限存在时,该点的函数值必定有界。
局部保号性
如果lim(x→x0)f(x)=A,且A>0,则在x0的 某个邻域内,f(x)>0。
函数极限的存在性
函数极限存在定理
如果对于任意ε>0,存在δ>0,当|x−x0|<δ时, |f(x)−A|<ε,则lim(x→x0)f(x)=A。
对未来学习的展望
学习更复杂的极限问题
在掌握了基本的函数极限运算法则后,可以进一步学习更复杂的极限问题,例如,无穷大与无穷小的 关系、洛必达法则等。
实际应用
函数极限运算法则不仅在数学中有广泛的应用,也可以应用于实际问题的解决中,例如,金融、物理 等领域的问题。通过深入学习函数极限运算法则,可以更好地理解和应用这些知识。
存在性二
若函数$f(x)$在点$a$处的极限不存在,且函数$g(x)$在点$a$处的值域不包含 常数$L$,则复合函数$f(g(x))$在点$a$处的极限不存在。
04
函数极限的应用
利用函数极限求函数 值
总结词
利用函数极限的性质,通过已知的函数极限值来求解未知的 函数值。
详细描述
在数学分析中,函数极限的性质是重要的工具。通过利用函 数极限的性质,我们可以求解一些未知的函数值。例如,如 果已知函数在某点的极限值,我们可以利用这个极限值来求 解该点处的函数值。
函数极限运算法则课 件
xx年xx月xx日
目录
01
函数极限的基本概念
函数极限的定 义
函数极限的定义
函数在某点的极限是指当自变量趋近于该 点时,函数值的趋近值。

函数的极限

函数的极限

2.3 函数的极限
自变量x的变化趋势 x取正值并且无限增大 x取负值并且绝对值无限增大 x 取正值并且无限增大, x 取负 值并且绝对值无限增大
f ( x )值的变化
趋势
极限表示
f ( x ) 无限趋
近于常数a f ( x ) 无限趋 近于常数a
x
lim f ( x ) a lim f ( x ) a
新世纪教育网 -
3.结论:我们从图中或表中可发现,当x取正值并无限增 1 大(即x趋向于正无穷大)时,函数 y x 的值无限趋近于 0,即 y 0 可以变得任意小,当x取负值并且它的绝对值 1 y 无限增大(即x趋向于负无穷大)时,函数 的值也无 x 限趋近于0。
x f(x) 1 1 2
2 2
(1)填写下表(精确到0.001)并画出此函数的图象
3
3 3
4
1 2
10
10 10
102
103
10 102
104
1 10 2
1 10
… … … …
(2)当x趋向正无穷大时,f(x)有没有极限?如果有,极 限是多少?
需要更完整的资源请到 新世纪教育网 -
f ( x) c 。 4.常数函数f(x)=c(c∈R)有 lim x
lim f ( x ) f ( x)和 lim f ( x ) 都存在且相等,所以 注: 存在表示 xlim x x lim f ( x ) an 中 x 的∞既有+∞又有-∞的意义,而数列极限 lim n 中的∞仅有+∞的意义。
2.我们可以将an看成是n的函数即an=f(n),n∈N*,an就 是一论?
需要更完整的资源请到 新世纪教育网 -

数学 函数极限知识点总结

数学 函数极限知识点总结

数学函数极限知识点总结一、基本概念1.1 函数极限的概念函数极限是指当自变量趋于某个特定值时,函数的取值趋于某个确定的值。

具体地说,设函数f(x)在点x=a的某个邻域内有定义,如果存在一个常数A,对于任意给定的正数ε,总存在另一个正数δ,使得当0<|x-a|<δ时,就有|f(x)-A|<ε成立,那么称函数f(x)当x趋于a时的极限为A,记为lim(x→a)f(x)=A。

1.2 函数极限的图像解释在图像上,函数f(x)在点x=a处的极限为A,就是指当x趋于a时,函数曲线逐渐接近点(x,A)。

特别地,如果对于任意给定的ε,总存在一个正数δ,使得当0<|x-a|<δ时,函数曲线都在点(x,A)的ε-邻域内,那么称函数f(x)在点x=a处的极限存在,并且等于A。

1.3 函数极限的表达方式函数极限通常有三种表达方式,分别是极限右侧、极限左侧和双侧极限。

其中,当x趋于a时,如果函数f(x)的极限只依赖于x大于a时的情况,那么记为lim(x→a+)f(x)=A;如果函数f(x)的极限只依赖于x小于a时的情况,那么记为lim(x→a-)f(x)=A;如果函数f(x)的极限既依赖于x大于a时的情况,又依赖于x小于a时的情况,那么记为lim(x→a)f(x)=A。

1.4 无穷大与无穷小当函数f(x)在点x=a处的极限为无穷大时,即lim(x→a)f(x)=∞或lim(x→a)f(x)=-∞,就称函数f(x)在点x=a处的极限为无穷大;当函数f(x)在点x=a处的极限为0时,即lim(x→a)f(x)=0,就称函数f(x)在点x=a处的极限为无穷小。

二、求解方法2.1 用极限定义求解对于一般的函数极限问题,可以使用极限的定义求解。

具体地说,通过设定ε-δ的方式,利用函数的性质和运算规则,逐步推导出函数在特定点的极限。

通常包括利用夹挤定理、利用三角不等式、利用数列极限等方法来求解函数极限。

05-函数极限概念

05-函数极限概念

不妨 0设 x11, 此时
|x2|4,
于x 是 3 1 3 |x 2 |x | 1 | 4 |x 1 |,
x 1
取 m 1 ,i} ,n 则 { 0 |x 当 1 |时 ,有 4
x3 13 .
x1
证毕
在极限定义中:
1) 与 和 x0 有关, 即 = ( , x0). 一般说来, 值越小, 相应的 值也越小.
与从 函 y数 1 {数 xn (列 }x: x(n0,1 n) ) y
y 1 x
x 的图形可以看出:
lim 10, lim 10.
n n
x x
x nn1
O 1 2 3 n x
如何描述它?
回忆数 {xn}列 : xn
1 极限的定义: n
0 ,若 N 0 ,使 n N 时 ,当 有 |xna|
1 1
1+ 1
( ••••• ••••• )
x
0
1
2
0| x1|1
取11
|x2|4
例8
证明 limx313. x 1 x1
证 0, 要 x3 13 ,
x1
只 | x 2 x 1 3 要 | | x 2 x 2 | | x 2 |x | 1 | ,
既包含了 x +, 又包含了 x 的情形.
定理
lf i ( x ) m a li f ( x ) m li f ( x ) m a .
x
x x
由绝对值关系式: | x | X x X 或 x X ( X 0)
及极限的三个定义即可证明该定理.

高数第五节极限运算法则

高数第五节极限运算法则

高数第五节极限运算法则高数第五节极限运算法则是数学领域中最重要的一个概念,它在数学中的作用是非常重要的,它可以帮助人们更好地理解数据和推导出数学公式。

本文将对极限运算法则做一个概述,介绍极限运算法则的定义、性质和应用等。

一、极限运算法则的定义极限运算法则是一种常见的数学运算法则,它定义了当某个函数的变量接近某个值时,函数的变化趋势。

极限运算法则的定义可以分为三个部分。

首先,极限运算法则需要有一个函数f(x),该函数的输入为x,输出为f(x)。

其次,极限运算法则需要有一个极限值a,令x接近于a,当x接近a时,函数f(x)的值就会接近某一个固定值,这个固定值就是函数f(x)在极限值a处的极限值。

最后,极限运算法则定义了在极限a处,函数f(x)的变化趋势。

二、极限运算法则的性质极限运算法则有两个重要性质:绝对极限性质和相对极限性质。

绝对极限性质,也称为绝对值极限,即函数f(x)在某一极限处的极限值的绝对值存在极限。

相对极限性质,也称为相对值极限,即函数f(x)在某一极限处的极限值的相对值存在极限。

三、极限运算法则的应用极限运算法则在数学中有着诸多应用,下面介绍几个典型的应用案例:(1)求极限极限运算法则可以用来求解函数的极限,例如:求函数f(x)=1/x在x=0处的极限,则可以利用极限运算法则推导出f(x)在x=0处的极限值为无穷大。

(2)求微分极限运算法则也可以用来求解函数的微分,例如:求函数f(x)=x^2在x=1处的导数,可以利用极限运算法则推导出f(x)在x=1处的导数值为2。

(3)求积分极限运算法则也可以用来求解函数的积分,例如:求函数f(x)=x在x=1到2之间的积分,可以利用极限运算法则推导出f(x)在x=1到2之间的积分值为3/2。

四、总结极限运算法则是一种重要的数学运算法则,它定义了当某个函数的变量接近某个值时,函数的变化趋势。

极限运算法则有两个重要性质:绝对极限性质和相对极限性质,它们都可以帮助我们更好地理解函数的变化趋势。

一元函数的连续与极限-极限的运算法则:函数极限运算法则

一元函数的连续与极限-极限的运算法则:函数极限运算法则

一元函数的连续与极限-极限的运算法则|函数极限运算法则第一章第五节极限的运算法则一、主要内容二、典型例题三、同步练习四、同步练习解答一、主要内容(一)极限的四则运算法则定理1.5若limf(x)=A,limg(x)=B,则x→x0x→x0(1)lim[f(x)±g(x)]=limf(x)±limg(x)=A±Bx→x0x→x0x→x0(2)lim[f(x)g(x)]=limf(x)limg(x)=ABx→x0x→x0x→x0(3)若B≠0,则有f(x)=limx→x0g(x)x→x0limf(x)x→x0A=limg(x)B注对于数列极限及x→∞时函数极限的四则运算法则,有相应的结论.例如,对于数列极限,有以下结论:若limxn=A,limyn=B,则有n→∞n→∞(1)lim(xn±yn)=A±Bn→∞(2)limxnyn=ABn→∞xnA=(3)当B≠0时,limBn→∞yn数列是一种特殊的函数,故此结论可由定理1.5直接得出.推论(极限运算的线性性质)若limf(x)=A,limg(x)=B,λ和μ是常数,则x→x0x→x0x→x0lim[λf(x)±μg(x)]=λA±μB=λlimf(x)±μlimg(x)x→x0x→x0以上运算法则对有限个函数成立.于是有x→x0lim[f(x)]n=[limf(x)]nx→x0——幂的极限等于极限的幂一般地,设有分式函数P(x)R(x)=,Q(x)其中P(x),Q(x)都是多项式,若Q(x0)≠0,则P(x0)=R(x0)结论:limR(x)=Q(x0)x→x0注若Q(x0)=0,不能直接用商的运算法则.结论:a0xm+a1xm1+L+am=0,当n>mlimnn1+L+bnx→∞b0x+b1xa0,当n=mb0∞,当n(a0b0≠0,m,n为非负常数)对于∞型的极限,可以先给分子、分母同除以分∞母中自变量的最高次幂(抓大头),然后再求极限.(二)复合函数的极限运算法则定理1.6设lim(x)=a,当0x→x0u=(x)≠a,又limf(u)=A,则有u→ax→x0limf[(x)]=limf(u)=Au→ao注1°定理1.6中的条件:(x)≠a,x∈U(x0,δ1)不可少.否则,定理1.6的结论不一定成立.2°定理1.6的其他形式若limφ(x)=∞(或limφ(x)=∞),limf(u)=A,且x→x0x→∞u→∞则有x→x0(或x→∞)limf[φ(x)]=limf(u)=A.u→∞由定理1.6知,在求复合函数极限时,可以作变量代换:x→x0limf[(x)](x)=ulimf(u)u→alim且代换是双向的,即u→af(u)u=(x)x→x0limf[(x)].二、典型例题lim(2x2+x5).例1求x→2x→2极限运算的线性性质解lim(2x2+x5)=2lim(x2)+limxlim5x→2x→2x→2幂的极限等于极限的幂=2(limx)2+25x→2=2223=5x→x0a0x0n结论:lim(a0xn+a1xn1+L+an)=+a1x0n1+L+an例2x31lim2.x→2x3x+52x→2=limx2lim3x+lim5解Qlim(x3x+5)x→2x→2x→2=(limx)23limx+lim5 x→2x→2x→2=2232+5=3≠0,3商的极限等于极限的商2317x1=x→22=.=∴lim233x→2x3x+5lim(x3x+5) x→2lim(x31)x1.(0型)例3求lim2x→1x+2x30Qlim(x2+2x3)=0,商的极限法则不能直接用解x→1又lim(x1)=0称0x1为型极限.lim20x→1x+2x3x→1由极限定义x→1,x≠1,x1x1lim2=limx→1x+2x3x→1(x+3)(x1)11=lim=.x→1x+34约去零因子法2x3+3x2+5例4求lim.32x→∞7x+4x1∞(型)∞分析x→∞时,分子,分母都趋于无穷.可以先用x3同时去除分子和分母,然后再取极限.352++3322x+3x+5xx“抓大头”=limlim解41x→∞7x3+4x21x→∞7+3xx35lim(2++3)2xx=x→∞=.41lim(7+3)7x xx→∞例5分析121求lim3.x→2x+2x+8(∞∞型)∞∞型,先通分,再用极限法则.(x22x+4)12解原式=lim3x→2x+8(x4)(x+2)x22x8=lim=lim3x→2(x+2)(x22x+4)x→2x+8 (0)01x4=.=lim2x→2x2x+42122n2例6求lim3+3+L3.n→∞nnn无穷多项和的极限11解原式=lim3n(n+1)(2n+1)n→∞n6111=lim1+2+nn6n→∞1=.3公式求和变为有限项例7求limx→3x3.2x9x→x0limf[(x)]=limf(u)=A①x3f(u)=u解令u=(x)=2u→ax9x31x3==lim于是limu=lim26x→3x→3x9x→3(x3)(x+3) 61从而原式=limf(u)=limu==.166u→u→166从左向右用①式三、同步练习1.在自变量的某个极限过程中,若limf(x)存在,limg(x)不存在,那么(1)lim[f(x)+g(x)]是否一定不存在?为什么?(2)若limf(x)=A≠0,不存在?n1232.lim2+2+2+L+2=?n→∞nnnnlimf(x)g(x)是否一定2x.3.求limx→4x44.已知x→1limx2+3[A+B(x1)]=0,x1试求常数A,B的值.n2+n5.求lim4.2n→∞n3n+1f(x)2x3=2,6.设f(x)是多项式,且li m2x→∞xf(x)lim=3,求f(x).x→0x7.8.x2+1(αx+β))=0试确定常数α,β.已知lim(x→∞x+1111求lim1212L12.n→∞23n2x求lim.x→432x+19.四、同步练习解答1.在自变量的某个极限过程中,若limf(x)存在,limg(x)不存在,那么(1)lim[f(x)+g(x)]是否一定不存在?为什么?答:一定不存在.假设lim[f(x)+g(x)]存在,Qlimf(x)存在由极限运算法则可知:limg(x)=lim{[f(x)+g(x)]f(x)}必存在,这与已知矛盾,故假设错误.1.在自变量的某个极限过程中,若limf(x)存在,limg(x)不存在,那么(2)若limf(x)=A≠0,不存在?limf(x)g(x)是否一定一定不存在.(可用反证法证明)答:23n12.lim2+2+2+L+2=?n→∞nnnnn(n+1)111=lim(1+)=.解原式=lim2n→∞2nn2n→∞22x求lim.(0型)3.x→4x40解2xlimx→4x44x=limx→4(x4)(2+1=limx→42+x1=.4先有理化x)再约去无穷小4.已知x→1limx2+3[A+B(x1)]=0,x1试求常数A,B的值.解Qlim{x2+3[A+B(x1)]}x→1x2+3[A+B(x1)]=lim(x1)=00=0x→1x1而lim{x+3[A+B(x1)]}=2(A+B0)2x→1∴2(A+B0)=0,从而A=2.于是x2+3[A+B(x1)]0=limx→1x1x2+3[2+B(x1)]x2+32=lim=lim(B)x→1x1x→1x1 =lim[x→1(x2+3)4(x1)(x2+3+2)x21(x1)(x2+3+2)x+1B]B]1∴B=.2=lim[x→11=lim[2B]=B,x→12x+3+2n2+n.5.求lim42n→∞n3n+1∞(型)∞解n→∞时,分子,分母都趋于无穷.4同时去除分子和分母,然后再取极限.可以先用n11+32n2+nlim4=limnnn→∞n3n2+1n→∞3112+4nn11lim(2+3)n→∞nn==0.31lim(12+4)n→∞nn6.设f(x)是多项式,且f(x)lim=3,求f(x).x→0xf(x)2x3lim=2,2x→∞x解根据前一极限式可令32f(x)=2x+2x+ax+b再利用后一极限式,得f(x)bb23=lim=lim(2x+2x+a+)=lim(a+)xx→0xx→0xx→0可见a=3,b=0故f(x)=2x+2x+3x327.x2+1(αx+β))=0已知lim(x→∞x+1(∞∞型)试确定常数α,β.解∵x→∞x2+1f(x)=(αxβ)x+1(1α)x2(α+β)x+(1β)=x+1limf(x)=0∴分子的次数必比分母的次数低故1α=0,α+β=0即α=1,β=1.1118.求lim1212L12.n→∞32n无穷多个因子的积解原式=的极限111111lim11+11+L11+n→∞3322nn111=lim(1+)=.n→∞22n变为有限项再求极限9.解2x0求lim.(型)分子分母同乘x→432x+102xlimx→432x+1以各自的有理化因式(2x)(2+x)(3+2x+1)=lim x→4(32x+1)(3+2x+1)(2+x)3+2x+1(4x)(3+2x+1)1=lim=lim2x→42+xx→4(82x)(2+x)3=.4约去无穷小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五节 函数的极限
数列可看作自变量为正整数n 的函数: )(n f x n =, 数列{}n x 的极限为a ,即:当自变量n 取正整数且无限增大(∞→n )时,对应的函数值)(n f 无限接近数a . 若将数列极限概念中自变量n 和函数值)(n f 的特殊性撇开,可以由此引出函数极限的一般概念:在自变量x 的某个变化过程中,如果对应的函数值)(x f 无限接近于某个确定的数A ,则A 就称为x 在该变化过程中函数)(x f 的极限. 显然,极限A 是与自变量x 的变化过程紧密相关,自变量的变化过程不同,函数的极限就有不同的表现形式. 本节分下列两种情况来讨论:
1、自变量趋于无穷大时函数的极限;
2、自变量趋于有限值时函数的极限.
内容分布图示
★ 自变量趋向无穷大时函数的极限
★ 例1 ★ 例2
★ 例3 ★ 自变量趋向有限值时函数的极限
★ 例4 ★ 例5
★ 例6 ★ 左右极限 ★ 例7
★ 例8
★ 例9 ★ 例10 ★ 函数极限的性质 ★ 子序列收敛性
★ 函数极限与数列极限的关系
★ 内容小结 ★ 课堂练习
★ 习题1-5 ★ 返回
内容要点:
一、自变量趋于无穷大时函数的极限
二、 自变量趋于有限值时函数的极限
三、 左右极限的概念
四、函数极限的性质:唯一性 有界性 保号性
五、子序列的收敛性
例题选讲:
自变量趋于无穷大时函数的极限
例1(讲义例1)用极限定义证明 .0sin lim
=∞→x
x x
例2(讲义例2)用极限定义证明
.021lim =⎪⎭⎫ ⎝⎛+∞→x x 例3 证明 .111lim -=+-∞→x x
x
自变量趋于有限值时函数的极限
例4(1)(讲义例3)利用定义证明C C x x =→0
lim (C 为常数).
(2) 证明.lim 00
x x x x =→
例5(讲义例4)利用定义证明 21
1lim
21=--→x x x . 例6 证明: 当00>x 时, 00lim
x x x x =→. 例7 验证x x x |
|lim 0
→不存在.
左右极限的概念
例8(讲义例5)设,0,10,)(⎩⎨
⎧<+≥=x x x x x f 求 )(lim 0x f x →. 例9 设,0,10,
1)(2⎩⎨⎧≥+<-=x x x x x f 求 ).(lim 0
x f x → 例10(讲义例6)设,2121)(11
x
x
x f +-= 求).(lim 0
x f x → 子序列的收敛性
例11(讲义例7)证明x x 1sin lim 0→不存在.
课堂练习
1. 设函数⎪⎪⎩
⎪⎪⎨⎧<+=>=0,
80,
20,1sin )(2x x x x x x x f , 试问函数在0=x 处的左、右极限是否存在? 当 0→x 时, )(x f 的极限是否存在?
2. 若,0)(>x f 且.)(lim A x f =问: 能否保证有0>A 的结论? 试举例说明.。

相关文档
最新文档