答案版2014-2015学年高一数学期末测试卷(1)

合集下载

2014-2015学年云南省高一上学期期末考试数学试卷(解析版)

2014-2015学年云南省高一上学期期末考试数学试卷(解析版)

2014-2015学年云南省高一上学期期末考试数学试卷(解析版)一 、选择题(本大题共12小题,每小题0分,共0分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.)613sin(π-的值是( ) A .23 B .23-C .21 D .21-【答案解析】D【解析】试题分析:根据三角函数的诱导公式可知,131sin sin sin 6662πππ⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭,故选D . 考点:考查了三角函数的诱导公式.点评:解本题的关键是掌握三角函数的诱导公式和特殊角的三角函数值.2.已知集合M={}{},25|,,32|2≤≤-=∈-+=x x N R x x x y y 集合则)(N C M R 等于( )A .[)+∞-,4B .),2()5,(+∞--∞C .),2(+∞D .∅【答案解析】C【解析】试题分析:{}{}2|23|4M y y x x y y ==+-=≥-,{}|52R C N x x x =<->或, ∴(){}|2R M C N x x ⋂=>,故选C .考点:考查了补集和交集.点评:解本题的关键还掌握集合M 表示的是函数的值域,集合M 和集合N 中的元素都是实数,先求出集合N 的补集,再求出两个集合的交集.3.已知点A (1,1),B (4,2)和向量),,2(λ=a 若AB a //, 则实数λ的值为( )A .32-B .23 C .32 D .23-【答案解析】C【解析】试题分析:根据A .B 两点的坐标可得AB =(3,1),∵a ∥AB ,∴2130λ⨯-=,解得23λ=,故选C .考点:考查了向量共线的条件.点评:解本题的关键是掌握两个向量共线的条件,代入两个向量的坐标进行计算.●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●4.函数x x x f ln )(+=的零点所在的区间为( )A .(-1,0)B .(0,1)C .(1,2)D .(1,e )【答案解析】B 【解析】试题分析:函数()ln f x x x =+在(0,+∞)上单调递增,1111ln 10f e e e e⎛⎫=+=-< ⎪⎝⎭,()11ln110f =+=>,故选B .考点:考查了函数的零点.点评:解本题的关键是掌握函数在某个区间上存在零点的条件,若函数在某个区间上单调,且在区间两端点的函数值异号,则函数在这个区间内存在零点. 5.若幂函数222)33(--+-=m m xm m y 的图像不过原点,则实数m 的取值范围为( )A .21≤≤-mB .2=m 或 1=mC .2=mD .1=m【答案解析】B【解析】试题分析:∵()22233m m y m m x--=-+为幂函数且函数图象不过原点,∴2233120m m m m ⎧-+=⎨--≤⎩,解得m =1或m =2,故选B .考点:考查了幂函数.点评:解本题的关键是掌握幂函数的形式,形如y x α=的函数为幂函数,注意x 的前边系数为1,还要注意幂函数图象不过原点时,指数小于等于0. 6.已知⎩⎨⎧<+≥-=)6(),2()6(,5)(x x f x x x f ,则f (3)为( )A .2B .3C .4D .5【答案解析】A【解析】试题分析:∵3<6,∴f (3)=f (3+2)=f (5),5<6,∴f (5)=f (5+2)=f (7)=7-2=5,∴f (3)=2,故选A .考点:考查了分段函数求函数值.点评:利用分段函数求函数值的时候,一定要注意自变量的范围,要代入到对应的解析式中求函数值.7.函数122+=x xy 的值域是( )A .(0,1)B .(]1,0C .()+∞,0D .[)+∞,0【答案解析】A【解析】试题分析:221111212121x x x x x y +-===-+++,20,211x x>+>,则10121x <<+,∴101121x<-<+,故选A . 考点:考查了函数的值域.点评:解本题的关键是把函数的解析式变形,利用指数函数的值域求出函数的值域. 8.已知3log 3log 22+=a ,3log 9log 22-=b ,2log 3=c 则c b a ,,的大小关系是( )A .c b a <=B .c b a >=C .c b a <<D .c b a >>【答案解析】B 【解析】试题分析:2222222log 3log log log 9log log log a b =+==-==,2log 1>,3c log 21=<,∴a b c =>,故选B .考点:利用对数函数的性质比较大小.点评:解本题的关键是根据对数的运算化简对数式,然后根据函数值与1的大小关系进行比较. 9.函数)sin()(ϕω+=x A x f (其中A>0,2,0πϕω<>)的图像如图所示,为了得到x x g 3sin )(=的图像,则只要将)x f (的图像( )A .向右平移12π个单位长度B .向右平移4π个单位长度 C .向左平移4π个单位长度D .向左平移12π个单位长度【答案解析】A【解析】试题分析:根据图象可知,A =1,541246T πππ=-=,∴223T ππω==,∴3ω=,把点5,112π⎛⎫- ⎪⎝⎭代入函数解析式可得:51sin 312πϕ⎛⎫-=⨯+ ⎪⎝⎭,∴()53242k k Z ππϕπ+=+∈,∵2πϕ<,∴4πϕ=,∴()sin 3sin 3412f x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,要想得到()sin3g x x =的图象,只需把f (x )的图象向右平移12π个单位即可,故选A . 考点:考查了根据三角函数的图象求解析式和函数图像的平移.点评:解本题的关键是根据函数的图象,由最小值求出A 的值,根据周期求出ω的值,代入最低点的坐标求出ϕ的值得到函数的解析式,再根据“左加右减”得出由函数f (x )的图象得到函数g (x )的图象应平移的单位数. 10.若函数)0(1>-+=a m a y x 的图像经过第一、三和四象限,则( )A .a >1B .0< a <1且m>0C .a >1 且m<0D .0< a <1 【答案解析】C 【解析】试题分析:根据题意,若函数()10xy a m a =+->的图像经过第一、三和四象限,∴a >1且m -1<-1,∴a >1且m <0,故选C . 考点:函数的图像点评:解本题的关键是掌握指数函数的图像,要熟练掌握底数a >1和0<a <1时图像的特征. 11.已知P 是边长为2的正三角形ABC 的边BC 上的动点,则)(AC AB AP +⋅( )A .有最大值,为8B .是定值6C .有最小值,为2D .与P 点的位置有关 【答案解析】B 【解析】 试题分析:AP AB BP =+,∴()()()()2AP AB AC AB BPAB AC AB AB AC BP AB AC +=++=+++,∵△为正三角形,∴()AB AC BC +⊥,∵点P 在BC 上,∴()AB AC BP +⊥,∴()0AB AC BP +=,∴()22122262AP AB AC AB AB AC +=+=+⨯⨯=,故选B . 考点:向量的数量积的计算.点评:解本题的关键还熟练掌握向量加法的几何意义,得出正三角形中()AB AC BC +⊥,然后根据向量的数量积等于向量的模及其夹角余弦值的乘积.12.若函数)x f (为奇函数,且在()+∞,0上是减函数,又 03(=)f ,则0)()(<--xx f x f 的解集为( ) A .(-3,3) B .)3,0()3,( --∞C .),3()0,3(+∞-D .),3()3,(+∞--∞【答案解析】D【解析】试题分析:∵f (x )为奇函数,∴()()()20f x f x f x x x--=<,∵在()+∞,0上是减函数,且()30f =,∴f (x )在(-∞,0)上单调递减且()()330f f -=-=,∴原不等式等价于()00x f x >⎧⎨<⎩ 或()0x f x <⎧⎨>⎩,∴x >3或x <-3,故选D . 考点:考查了函数性质的综合应用.点评:解本题的关键是掌握奇函数的性质,在原点两侧单调性相同,利用函数的单调性解不等式. 二 、填空题(本大题共4小题,每小题0分,共0分) 13.已知2tan =α,则=+-ααααcos sin cos sin __________.【答案解析】13【解析】试题分析:根据同角三角函数的关系可得:sin cos sin cos tan 1211cos sin cos sin cos tan 1213cos αααααααααααα----====++++. 考点:利用同角三角函数的关系式求值. 点评:解本题的关键是掌握一个角的正切值等于正弦和余弦的比值,把要求值的式子转化为关于角α的正切值进行求值.14.若向量b a ,满足,1==b a 且,23)(=⋅+b b a 则向量b a ,的夹角为__________.【答案解析】3π 【解析】试题分析:设向量,a b 的夹角为α,∴()223cos cos 12a b b a b b a b b αα+=+=+=+=,∴1cos 2α=, 又[]0,απ∈,∴3πα=.考点:考查了利用向量的数量积求向量的夹角.点评:解本题的关键是掌握向量的数量积等于向量的模及其夹角余弦值的乘积,利用向量的数量积及向量的模求出向量夹角的余弦值,得出向量的夹角.15.若函数(]1-)32(log )(221,在∞+-=ax x x f 上是增函数,则实数a 的取值范围是__________. 【答案解析】 [1,2)【解析】试题分析:根据复合函数的单调性可知,∵12log y u =在(0,+∞)上单调递减,∴若函数(]1-)32(log )(221,在∞+-=ax x x f 上是增函数,必须满足:223u x ax =-+在(-∞,1]上单调递减且函数值0u >,∴11230a a ≥⎧⎨-+>⎩,解得1≤a <2,即a ∈[1,2).考点:考查了复合函数的单调性.点评:解本题的关键是掌握复合函数的单调性“同增异减”,要注意函数的单调区间必须在函数的定义域内,即对数的真数必须大于0.16.已知)(x f 是定义在R 上的偶函数,并满足)(1)2(x f x f -=+,当时,32≤≤x x x f =)(,则=-)211(f __________. 【答案解析】52【解析】试题分析:由()()12f x f x +=-可得()()()142f x f x f x +=-=+,∵函数f (x )是R 上的偶函数,∴111122f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,∴11554222f f f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∵5232≤≤,∴5522f ⎛⎫= ⎪⎝⎭,即11522f ⎛⎫-= ⎪⎝⎭.考点:考查了函数性质的应用.点评:解本题的关键是根据题中给出的条件把自变量转化为在[2,3]的范围内,求出函数值. 三 、解答题(本大题共6小题,共0分)17.(本小题满分10分)已知βα,都是锐角,,54sin =α135)cos(=+βα. (Ⅰ)求α2tan 的值; (Ⅱ)求βsin 的值.【答案解析】(1)247-;(2)1665. 【解析】试题分析:(Ⅰ)∵0,2πα⎛⎫∈ ⎪⎝⎭,4sin 5α=,∴3cos 5α===,∴sin 4tan cos 3ααα==, ∴22tan 24tan 21tan 7ααα==--; (Ⅱ)∵,0,2παβ⎛⎫∈ ⎪⎝⎭,()0,αβπ+∈,()5cos 13αβ+=, ∴()12sin 13αβ+=, ∴()()()1235416sin sin sin cos cos sin 13513565βαβααβααβα=+-=+-+=⨯-⨯=⎡⎤⎣⎦. 考点:三角函数的求值.点评:解本题的关键是熟练掌握同角三角函数的关系式和二倍角公式,两角和与差的三角函数公式. 18.(本小题满分12分)已知函数R x x x x f ∈++=,1)6sin(cos 2)(π.(Ⅰ)求函数)x f (的最小正周期及单调递增区间;(Ⅱ)若⎥⎦⎤⎢⎣⎡-∈3,6ππx ,求函数的值域. 【答案解析】(1)f (x )的最小正周期为π,单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)[1,52]. 【解析】试题分析:(Ⅰ)())2cos cos 1cos cos 1f x xx x x x x =++=+1cos 2131cos 221sin 22262x x x x π+⎛⎫=+=+=++ ⎪⎝⎭, ∵222T πππω===,即函数f (x )的最小正周期为π. 由()3sin 262f x x π⎛⎫=++ ⎪⎝⎭, 由222,262k x k k Z πππππ-≤+≤+∈,解得:,36k x k k Z ππππ-+≤≤+∈,故函数()3sin 262f x x π⎛⎫=++ ⎪⎝⎭的单调递增区间为,,36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦; (Ⅱ)x ∈[-,63ππ],252,233666x x πππππ-≤≤-≤+≤, ∴-12≤sin (2x +6π)≤1,∴1≤sin (2x +6π)+32≤52,∴函数的值域为[1, 52].考点:考查了三角函数的性质.点评:解本题的关键还把函数转化为一个角的三角函数,根据周期公式求出函数的周期,利用正弦函数的单调性和值域求出单调区间和值域.19.(本小题满分12分)已知函数xx f 2)(=的定义域是[0,3],设)2()2()(+-=x f x f x g(Ⅰ)求)(x g 的解析式及定义域; (Ⅱ)求函数)(x g 的最大值和最小值.【答案解析】(1)g (x )的定义域是[0,1];(2)最大值-3,最小值-4.【解析】 试题分析:(Ⅰ)∵f (x )=2x,∴g (x )=f (2x )-f (x +2)=2222xx +-.∵f (x )的定义域是[0,3], ∴023023x x ≤≤⎧⎨≤+≤⎩,解得0≤x≤1.∴g (x )的定义域是[0,1].(Ⅱ)()()()22242224x x x g x =-⨯=--,∵x ∈[0,1],∴2x ∈[1,2].∴当2x =1,即x =0时,g (x )取得最大值-3; 当2x =2,即x =1时,g (x )取得最小值-4.考点:考查了求函数的定义域和最值.点评:函数的定义域是x 的取值集合,求最值的关键是函数转化为二次函数,在指定的闭区间内求出函数的最值.20.(本小题满分12分)已知向量))sin(),(cos(θπθ+-=a ,))2sin(),2(cos(θπθπ--=b .(Ⅰ)求证b a⊥;(Ⅱ)若存在不等于0的实数k 和t, 使b t a x )3(2++=,b t a k y +-=满足,y x ⊥试求此时tt k 2+的最小值.【答案解析】(1)见解析;(2)114【解析】 试题分析:(Ⅰ)∵a b ⋅ =()()cos cos sin sin sin cos sin cos 022ππθθπθθθθθθ⎛⎫⎛⎫--++-=-= ⎪ ⎪⎝⎭⎝⎭, ∴a b ⊥ ;(Ⅱ)由x y ⊥ 可得0x y ⋅=, 即()()230a t b ka tb ⎡⎤++⋅-+=⎣⎦,∴()()2232330ka t t b t k t a b ⎡⎤-+++-+=⎣⎦,∴()22330k a t t b -++=, 又∵221,1a b ==,∴30k t t -++=,∴33k t t =+,∴223223111324k t t t t t t t t t +++⎛⎫==++=++ ⎪⎝⎭,故当t =-12时,2k t t + 取得最小值,为114.考点:考查了向量垂直的条件和二次函数求最小值.点评:解本题的关键是掌握向量垂直的充要条件,把函数转化为二次函数,根据二次函数的性质求出最小值.21.(本小题满分12分)已知)(x f 是定义在R 上的偶函数,且0≤x 时,)1(log )(21+-=x x f .(Ⅰ)求函数)(x f 的解析式;(Ⅱ)若求实数,1)1(-<-a f a 的取值范围.【答案解析】(1)()()()1212log 1,0log 1,0x x f x x x ⎧+>⎪=⎨-+≤⎪⎩;(2)(-∞, 0) (2, +∞).【解析】 试题分析:(Ⅰ)令x >0,则-x <0,从而()()()12log 1f x x f x -=+= ,∴x >0时,()()12log 1f x x =+.∴函数f (x )的解析式为()()()1212log 1,0log 1,0x x f x x x ⎧+>⎪=⎨-+≤⎪⎩ .(Ⅱ)设12,x x 是任意两个值,且120x x <≤ , 则120x x ->-≥,∴1211x x ->-.∵()()()()221121111122221log 1log 1log log 101x f x f x x x a --=-+--+=>=-,∴()()21f x f x >,∴()()12log 1f x x =-+在(-∞, 0]上为增函数.又f (x )是定义在R 上的偶函数,∴f (x )在(0, +∞)上为减函数.∵f (a -1)<-1=f (1),∴|a -1|>1,解得a >2或a <0. 故实数a 的取值范围为(-∞, 0) (2, +∞).考点:考查了求函数的解析式,利用函数的单调性解不等式.点评:解本题的关键是掌握偶函数的性质,利用定义证明函数的单调性,利用函数的单调性解不等式.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- 22.(本小题满分12分)已知)x f (是定义在[]1,1- 上的奇函数,且1)1(=f ,当∈b a ,[]1,1-,0≠+b a 时,有0)()(>++ba b f a f 成立. (Ⅰ)判断)x f (在[]1,1- 上的单调性,并加以证明;(Ⅱ)若12(2+-≤am m x f )对所有的[]1,1-∈a 恒成立,求实数m 的取值范围. 【答案解析】(1)f (x )在[-1, 1]上单调递增;(2)m =0或|m|≥2.【解析】试题分析:(Ⅰ)任取12,x x ∈[-1, 1],且12x x <,则-2x ∈[-1,1].因为f (x )为奇函数. 所以()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-, 由已知得()()()1212f x f x x x +-+- >0,120x x -<, 所以()()120f x f x -<,即()()12f x f x <.所以f (x )在[-1, 1]上单调递增.(Ⅱ)因为f (1)=1, f (x )在[-1, 1]上单调递增,所以在[-1, 1]上,f (x )≤1.问题转化为2211m am -+≥,即22m am -≥0,对a ∈[-1,1]恒成立.下面来求m 的取值范围.设g (a )=22am m -+≥0.①若m =0,则g (a )=0,对a ∈[-1, 1]恒成立。

2014-2015年高一期末考试题带答案

2014-2015年高一期末考试题带答案

2014--2015第一学期期末数学模拟题第I 卷(选择题 共60分)一、选择题(本大题共10小题,每小题5分,共50分.)1. 设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B = ( )A.{}2B. {}2,3C.{}3D.{}1,32.函数1()1f x x =+- ( ) A .[2,)-+∞ B. [)()2,11,-+∞ C.R D. (],2-∞-3.下列四组函数中,表示同一函数的是 ( ) A .2x y x y ==与 B .2lg lg 2x y x y ==与 C .x y x y ==与33D .1112+-=-=x x y x y 与4.某市对上下班交通情况作抽样调查,作出上下班时间各抽取12辆机动车行驶时速(单位:km/h )的茎叶图(如下):则上下班时间行驶时速的中位数分别为 ( )A .28与28.5 B. 29与28.5 C.28与27.5 D.29与27.5 5. 若幂函数()af x x =在()0,+∞上是增函数,则 ( )( )A .a >0B .a <0C .a =0D .不能确定 6.某工厂对一批产品进行了抽样检测,是根据抽样检测后的产品净重(单位:克)数据绘制了频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品个数是( )(A )90 (B )75 (C )60 (D )457. 某程序框图如右图所示,该程序运行后输出的k 的值是 ( )A .4B .5C .6D .78.设()338x f x x =+-, 用二分法求方程3380(1,2)x x x +-=∈在内近似解的过程中, 计算得到(1)0,(1.5)0,(1.25)0,f f f <>< 则方程的根落在区间 ( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定9.已知函数()[],f x x x x R =-∈,其中[]x 表示不超过x 的最大整数,如322⎡⎤-=-⎢⎥⎣⎦,5[3]3,22⎡⎤-=-=⎢⎥⎣⎦,则()f x 的值域是 ( )A .(0,1)B .(0,1]C .[0,1)D .[0,1] 10. 函数22x y x =-的图像大致是 ( )A B C D第Ⅱ卷(非选择题 共90分) 二、填空题:本大题共5小题,每小题5分,共20分.11.方程2132xx ⎛⎫=- ⎪⎝⎭的实数解的个数是___________.12.将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第10个号码为____________.13. 在长为12cm 的线段AB 上任取一点C ,现作一矩形,使邻边长分别等于线段AC 、CB 的长,则该矩形面积大于20cm 2的概率为 _________14.已知定义在R 上的奇函数()x f 和偶函数()x g 满足()()2+-=+-xxaa x g x f()1,0≠>a a 且,若()a g =2,则()=2f ________.15.定义在实数集R 上的函数()f x ,如果存在函数()g x Ax B =+(A 、B 为常数),使得()()f x g x ≥对一切实数x 都成立,那么称()g x 为函数()f x 的一个承托函数。

吉林省吉林市2014-2015学年高一上学期期末考试 数学 Word版含答案(第一套)

吉林省吉林市2014-2015学年高一上学期期末考试 数学 Word版含答案(第一套)

吉林市普通高中2014-2015学年度高一年级学业水平监测数 学本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间100分钟.第Ⅰ卷(选择题,共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求。

)1. 设全集{0,1,2,3,4},{0,3,4},{1,3}U A B ===, 则()U A B =ðA. {2}B. {1,2,3}C.{1,3}D. {0,1,2,3,4}2. 已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥α,则m ∥n ;②若m ∥α,n ⊥α,则n ⊥m ;③若m ⊥α,m ∥β,则α⊥β 。

其中正确命题的个数是 A .0B .1C .2D .33. 函数1()()12x f x =-的定义域、值域分别是 A .定义域是R ,值域是RB .定义域是R ,值域是(0,)+∞C .定义域是(0,)+∞ ,值域是RD .定义域是R ,值域是(1,)-+∞4.30y --=的倾斜角是 A .30°B .60°C . 120°D .150°5. 函数4y x =的大致图像是A. B. C. D.y ++A .4 B .4- C .4-D .47. 圆22(2)4x y -+=过点P 的切线方程是A .20x -=B .40x -=C .40x +=D .20x +=8. 如图,ABCD -A 1B 1C 1D 1为正方体,异面直线AD 与CB 1所成的角是A . 30°B . 45°C . 60° CDA B C D11119. ,,,a c b d M M M M 四个物体沿同一方向同时开始运动,假设其经过的路程与时间x 的函数关系式分别是()21f x x =,()122f x x =,()32log f x x =,()42x f x =,如果运动的时间足够长,则运动在最前面的物体一定是A. a MB. b MC.c MD.d M10.20y +-=与圆224x y +=交于,A B 两点,则||AB = A. 1B.C.D. 211. 下表中与数x 对应的lg x 值有且只有一个是错误的,则错误的是 A.lg61a b c =+-- B. lg8333a c =--C.lg1232b c =--D.lg2763a b =-12. 已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的等边三角形,SC 为球O 的直径,若三棱锥S -ABC球O 的表面积是 A. 4πB.34πC. 3πD.43π 第Ⅱ卷(非选择题,共72分)二、填空题(本大题共6个小题,每小题3分,共18分) 13. 给出两条平行直线12:3410,:3420L x y L x y --=-+=,则这两条直线间的距离是14.已知某几何体的三视图如图所示,其正视图与侧视图都是边长为2的等边三角形,则该几何体的体积等于 . 15. 给出四个区间: ① (0,1);② (1,2);③ (2,3);④ (3,4),则函数42)(-+=x x f x的零点所在的区间是这四个区间中 的哪一个: (只填序号)16. 如图,正三棱柱ABC -A 1B 1C 1的各棱长均为2,E ,F 分别是AB ,A 1C 1的中点,则EF 的长是 .17. 在平面直角坐标系中,圆C 的方程为228120x y x +-+=, 若直线2y kx =-上至少存在一点,使得以该点为圆心,2为半径的圆与圆C 有公共点,则k 的取值范围是18. 已知函数1()()2x f x =的图象与函数()y g x =的图象关于直线y x =对称,令2()(1)h x g x =-,则关于()h x 有下列命题:①()h x 的图象关于原点对称;②()h x 为偶函数;③()h x 的最小值为0; ④()h x 在(0,1)上为增函数. 其中正确命题的序号是: .14题图正视图俯视图侧视图16题图ABCA B C EF111三、解答题(本大题共5小题,共54分,解答题应根据要求写出必要的文字说明,证明过程或演算步骤) 19.(本题满分10分)已知在平面直角坐标系中,△ABC 三个顶点坐标分别为(1,3),(5,1),(1A B C -- (I )求BC 边的中线AD 所在的直线方程;(II )求AC 边的高BH 所在的直线方程 20.(本题满分10分)已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形, 2AD D E AB ==,F 为CD 的中点.求证: (I )AF ∥平面BCE .(II )平面BCE ⊥平面CDE .21.(本题满分10分)已知函数()y f x =在(0,)+∞上为增函数,且()0(0)f x x <>,试判断1()()F x f x =在 (0,)+∞上的单调性并给出证明过程.22.(本题满分12分)如图,长方体1111ABCD A B C D -中,11,2AD AA AB ===, 点E 是棱AB 上一点 (I ) 当点E 在AB 上移动时,三棱锥1D D CE -的体积是否变化?若变化,说明理由;若不变,求这个三棱锥的体积(II ) 当点E 在AB 上移动时,是否始终有11D E A D ⊥,证明你的结论 (III )若E 是AB 的中点,求二面角1D EC D --的正切值23. (本题满分12分)已知圆M 的半径为3, 圆心在x 轴正半轴上,直线3490x y -+=与圆M 相切 (I ) 求圆M 的标准方程(II )过点(0,3)N -的直线L 与圆M 交于不同的两点1122(,),(,)A x y B x y ,而且满足 221212212x x x x +=,求直线L 的方程 命题、校对: 孙长青吉林市普通高中2014-2015学年度高一年级学业水平监测数学(Ⅰ)参考答案与评分标准ABD E C A B D C 1111AB CDEF二、填空题(本大题共6个小题,每小题3分,共18分) 13.35; 14.3; 15. ② ;16. ; 17. 34k ≥- ; 18. ②③④19.(本题满分10分)解:(1)BC 中点D 的坐标为(2,0), ------------------------------------------2分所以直线AD 方程为:310321y x --=--,360x y +-= -----------------------5分 (2)因为3(1)21(1)AC k --==--,BH AC ⊥,所以12BH k =- ----------------------------8分 所以直线BH 方程为:11(5)2y x -=--,270x y +-= -------------------------10分20.(本题满分10分)证明:(1)取CE 的中点G,连接FG,BG.因为F 为CD 的中点,所以GF ∥DE 且GF=DE. ----2分 因为AB ⊥平面ACD,DE ⊥平面ACD,所以AB ∥DE,所以GF ∥AB.又因为AB=DE,所以GF=AB. --------------------------------------------------2分 所以四边形GFAB 为平行四边形,则AF ∥BG.因为AF ⊄平面BCE,BG ⊂平面BCE,所以AF ∥平面BCE. --------------------------------------------------5分(2)因为△ACD 为等边三角形,F 为CD 的中点,所以AF ⊥CD,因为DE ⊥平面ACD,AF ⊂平面ACD,所以DE ⊥AF.又CD ∩DE=D,故AF ⊥平面CDE. ------------------------8分 因为BG ∥AF,所以BG ⊥平面CDE.因为BG ⊂平面BCE,所以平面BCE ⊥平面CDE. -------------------------------------------10分 21.(本题满分10分)解:F (x )在(0,+∞)上为减函数.证明:任取1x ,2x ∈(0,+∞),且1x < 2x -------------------------------------------2分 ∴F (2x )-F (1x )=()()()()()()12212111f x f x f x f x f x f x --=. ---------------------------------------------4分 ∵y =f (x )在(0,+∞)上为增函数,且1x < 2x ∴f (1x )<f (2x ) ∴f (1x )-f (2x )<0. ----------7分 而f (1x )<0,f (2x )<0,∴f (1x )f (2x )>0. -----------------------------------------------------------------9分 ∴F (2x )-F (1x )<0,即F (1x )>F (2x ) ∴F (x )在(0,+∞)上为减函数. -----------------10分 22.(本题满分12分)解:(I )三棱锥1D D CE -的体积不变,111211,122DCE S DC AD DD ∆=⨯=⨯⨯== 所以11111111333D D CE D DCE DCE V V S DD --∆==⨯=⨯⨯= ---------------------------------------------4分(II )当点E 在AB 上移动时,始终有11D E A D ⊥,证明:连结1AD ,四边形11ADD A 是正方形,所以11A D AD ⊥, 因为1111,,AE A D ADD A A D AB ⊥⊆∴⊥11平面ADD A 平面,111111,,,AB AD A AB AD E AD AD E A D AD E =⊆⊆∴⊥平面平面平面1111,D E AD E D E A D ⊆∴⊥平面 ------------------------------------------------------------- 8分222所以DE EC ⊥,双因为1DD ⊥⊆平面ABCD,CE 平面ABCD,所以1D D EC ⊥11111,,,DD DE D DD D DE DE D DE CE D DE =⊆⊆∴⊥平面平面平面 111,D E D DE CE D E ⊆∴⊥平面1D ED ∴∠是二面角1D EC D --的平面角11tan D D D ED DE ∠===,1D ED ∴∠是二面角1D EC D -- -----12分 23. 解(I )设圆心为(,0)(0)M a a >3,2,8a ==-因为0a >,所以2a =,所以圆的方程为:22(2)9x y -+= ----------------------------------4分(II )当直线L 的斜率不存在时,直线L :0x =,与圆M 交于(0,A B此时110x x ==,满足221212212x x x x +=,所以0x =符合题意 -------------------------6分 当直线L 的斜率存在时,设直线L :3y kx =-223(2)9y kx x y =-⎧⎨-+=⎩消去y ,得22(2)(3)9,x kx -+-= 整理得:22(1)(46)40k x k x +-++= -----------(1)所以121222464,11k x x x x k k ++==++ 由已知221212212x x x x +=得:221212222546254(),()2121k x x x x k k ++==⨯++ 整理得:217724170,1,7k k k -+=∴= -----------------------10分把k 值代入到方程(1)中的判别式222(46)16(1)4820k k k k ∆=+-+=+中,判别式的值都为正数,所以171,7k =,所以直线L 为:173,37y x y x =-=-, 即30,177210x y x y --=--=综上:直线L 为:30,177210x y x y --=--=,0x = ------------------------------12分。

2014-2015高一(上)期末考试数学试卷(必修1、2)及答案

2014-2015高一(上)期末考试数学试卷(必修1、2)及答案

2014-2015高一上学期期末数学模拟试卷(时间:120分钟,分值:150分)说明:本试题分有试卷Ⅰ和试卷Ⅱ,试卷Ⅰ分值为80分,试卷Ⅱ分值为70分。

第I 卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的). 1.已知集合{1,2,3,4},{0,1,2,3}M N ==,则有 ( ) A 、M N ⊆ B 、N M ⊆ C 、{1,2,3}M N ⋂= D 、{1,2,3}M N ⋃= 2.若函数()f x =则(2)f = ( )A 、2B 、4C 、0D 3.已知直线l 的方程为1y x =+,则该直线l 的倾斜角为( )(A)30 (B)45 (C)60 (D)135 4.已知两个球的表面积之比为1∶9,则这两个球的半径之比为( )(A)1∶3 (B)1 (C)1∶9 (D)1∶815.下列命题:(1)平行于同一平面的两直线平行; (2)垂直于同一平面的两直线平行;(3)平行于同一直线的两平面平行; (4)垂直于同一直线的两平面平行; 其中正确的有 ( ) A. (1) (2)和(4) B. (2)和(4) B. (2) (3)和(4) D. (3)和(4) 6.下列函数中,在R 上单调递增的是( )(A)y x = (B)2log y x = (C)13y x = (D)0.5xy = 7.函数()lg(2)f x x =+的定义域为 ( )A 、(2,1)-B 、(2,1]-C 、[2,1)-D 、[2,1]-- 8.已知幂函数)()(322Z ∈=--m x x f m m为偶函数,且在),0(+∞上是单调递减函数,则m 的值为( )A . 0、1、2B . 0、2C . 1、2D . 19.若直线()()084123=+-++y a x a 和直线()()07425=-++-y a x a 相互垂直,则a 值为 ( ) A . 0 B .1 C .10或 D .10-或 10.已知))()(()(b a b x a x x f >--=其中,若)(x f 的图像如右图所示: 则b a x g x+=)(的图像是( )11.已知⎩⎨⎧≥<+-=)1(log )1(4)13()(x x x a x a x f a是),(+∞-∞上的减函数,那么a 的取值范围是( )A . )1,0(B . )31,0( C . )31,71[ D . )31,71(12.如图,ABC S -是正三棱锥且侧棱长为a ,F E ,分别是SC SA ,上的动点,则三角形BEF 的周长的最小值为a 2侧棱SC SA ,的夹角为 ( )A .300B . 600C .200D .900二.填空题(本大题共4小题,每小题5分,满分20分).13.132264()log 83--+= .14.已知()f x 是奇函数,且当0x >时,()1f x x =+,则(1)f -的值为 .15.在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为______. 16.设,m n 是不同的直线,,,αβγ是不同的平面,有以下四个命题:①//////αββγαγ⎫⇒⎬⎭ ②//m m αββα⊥⎫⇒⊥⎬⎭ ③//m m ααββ⊥⎫⇒⊥⎬⎭ ④////m n m n αα⎫⇒⎬⊂⎭其中,真命题是第Ⅱ卷(解答题 满分70分)三.解答题(本大题共6小题,满分70分.解答应写出文字说明.证明过程或演算步骤).17.(本小题满分10分)若}06|{},065|{2=-==+-=ax x B x x x A ,且A ∪B =A ,求由实数a 组成的集合C.S ACE F18.(本小题满分12分)已知直线1l :310x y --=,2l :30x y +-=,求:(1)直线1l 与2l 的交点P 的坐标;(2)过点P 且与1l 垂直的直线方程.19. (本小题满分12分)如图,四棱锥ABCD P -的底面ABCD 为正方形,⊥PA 底面ABCD ,E F 、分别是AC PB 、的中点.(1)求证://EF 平面PCD ;(2)求证:平面⊥PBD 平面PAC .20.(本小题满分12分)已知关于x ,y 的方程C:04222=+--+m y x y x . (1)当m 为何值时,方程C 表示圆。

中学2014-2015学年高一上学期期末考试数学试卷word版含答案

中学2014-2015学年高一上学期期末考试数学试卷word版含答案
C.无论 为何值,均有2个零点
D.无论 为何值,均有4个零点
9.已知直角梯形ABCD中,AD∥BC, ∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,
则 的最小值为 ()
A.4B.5C. D.2
10.
A. B. C. D.
二、填空题: 本大题共5小题, 每小题5分, 共25分. 请将答案填在答题卡对应题号的位置上. 答错位置, 书写不清, 模棱两可均不得分
(1)当9天购买一次配料时, 求该食堂用于配料的保管费用 是多少元?
(2)设该食堂 天购买一次配料, 求该食堂在这 天中用于配料的总费用 (元)关于 的函数关系式, 并求该食堂多少天购买一次配料才能使平均每天支付的费用最少?
20.对于函数 , 如果存在实数 使得 , 那么称 为 的线性函数.
(1)下面给出两组函数, 是否分别为 的线性函数?并说明理由;
19.
已知武汉二中食堂需要定期购买食品配料, 该食堂每天需要食品配料200千克, 配料的价格为 元/千克, 每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若 天购买一次, 需要支付 天的保管费). 其标准如下: 7天以内(含7天), 无论重量多少, 均按10元/天支付; 超出7天以外的天数, 根据实际剩余配料的重量, 以每天0.03元/千克支付.
第一组: ;
第二组: ;
(2)设 , 线性函数 .若不等式
在 上有解, 求实数 的取值范围;
21.(1)有时一个式子可以分拆成两个式子, 求和时可以达到相消化简的目的, 如我们初中曾学
过: = =
请用上面的数学思维来证明如下:
11.已知弧度数为2的圆心角所对的弦长为2, 则这个圆心角所对的弧长是.
12.已知 ,则 =. (用t表示)

2014-2015学年度高一数学检测试题(含参考答案)

2014-2015学年度高一数学检测试题(含参考答案)

2014-2015学年第二学期高一数学试题【考试时间:120分钟,分值:150分】一、选择题:(本大题共10小题,共50分,在下列的四个选项中,只有一个选项是符合题目要求的)1.设 0 < b < a < 1,则下列不等式成立的是( )(A) ab < b 2 < 1 (B) log 12 b < log 12 a < 0 (C) 2 b <2 a < 2(D) a 2 < ab < 12.在△ABC 中,a=2 3 ,b=2 2 ,B =45°,则A 等于( ) (A) 30° (B) 60° (C) 60°或 120°(D) 30°或150°3.在△ABC 中∠A = 60︒,b = 1,△ABC 的面积为 3 ,则△ABC 外接圆的直径为( ) (A)2393(B)2633(C) 3 3(D) 2924.已知,3,2,==⊥b a b a 且b a 23+与b a-λ垂直,则实数λ的值为( ))(A ;23- )(B ;23 )(C ;23± )(D ;15.设a >1>b >-1,则下列不等式中恒成立的是 ( )A .ba 11< B .b a 11> C .a >b 2 D .a 2>2b6.不等式组131y x y x ≥-⎧⎪⎨≤-+⎪⎩的区域面积是( )A .1B .12 C . 52 D . 327. 有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积及体积分别为( )A .24πcm 2,12πcm 3B .15πcm 2,12πcm 3C .24πcm 2,36πcm 3D .以上都不正确8.在等差数列{a n }中,已知32na n =-,则该数列前20项之和是( )A .295B .390C .590D .7809.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是A .S 7B .S 8C .S 13D .S 1510.如果a 、x 1、x 2、b 成等差数列,a 、y 1、y 2、b 成等比数列,那么1212x x y y +等于( ) A .a b a b +- B .b a ab - C .ab a b + D .a bab+二、填空题(本大题共4小题,每题5分,共20分)11.在等腰三角形ABC 中,已知sin A ∶sin B =1∶2,底边BC =10,则△ABC 的周长是__________.12.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于__________. 13.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是__________.14.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是__________.三、解答题(本大题共6小题,共80分。

扬州市2014—2015学年度高一数学第一学期期末调研测试试题参考答案

扬州市2014—2015学年度高一数学第一学期期末调研测试试题参考答案

扬州市2014—2015学年度第一学期期末调研测试试题高一 数 学 参 考 答 案一、填空题: 1. {}0,1,3 2.12-3.1 4. 3π 5. {|31}x x x ≥-≠且 6.21 7.()2,+∞ 8.4 9.2133a b →→+ 10. 23- 11. (3,0),()k k Z ππ-∈ 12. (-3,1)(1,2)(2,+)∞ 13.12m ≥-或1m =- 14. 2813. 解:由题方程22|1|0x mx x +--=在区间(0,2)上有且只有1解,即方程2|1|x m x x -=-在区间(0,2)上有且只有1解,从而函数2|1|,(0,2)x y x x x-=-∈图象与直线y m =有且只有一个公共点。

作出函数212,(0,1)|1|1,11,(1,2)x x x x y x x x x x⎧-∈⎪⎪-=-=-=⎨⎪⎪-∈⎩的图象, 结合图象知12m ≥-或1m =- 14.解:令()3x f x t -=,则()3x f x t =+,()4f t =,又()3tf t t =+,故34tt +=,显然1t = 为方程34t t +=一个解,又易知函数3x y x =+是R 上的增函数,所以方程34t t +=只有一个解1,故()31x f x =+,从而(3)28f =二、解答题:(解法不唯一,请关注学生答卷,合理给分)15.解:(I)由2280x x --+=,解得{}4,2A =- ……………………………2分1a =时,(],1B =-∞ …………………………………… …………… ……4分{}4A B ∴=-I ……………………………………………………………7分(2)A B ⊆Q410210a a --≤⎧∴⎨-≤⎩ ……………………………………………………………10分1142a ∴-≤≤……………………………………………………… ……14分 16.解:(1)由题:2216,9a b ==,043cos606a b =⨯=…………………………3分22(2)(2)232216362932a b a b a a b b ∴+-=+-=⨯+⨯-⨯=……………………7分(2)由题:2222|2|(2)4441646949a b a b a a b b -=-=-+=⨯-⨯+=…………11分|2|7a b ∴-= …………………………………………………………………………14分17.解:(1)由题2sin cos a b θθ⋅=+r r ,若52a b ⋅=r r ,则52sin cos =2θθ+,1sin cos =2θθ∴ ……2分所以2(sin cos )=1+2sin cos 2θθθθ+=.又因为θ为锐角,所以sin cos θθ+7分 (2)因为//a b ,所以tan 2θ=, ……10分所以222222sin 2cos tan 222311sin tan tan 42θθθθθθ++==+=+=, ……15分18.解:(1)①选择函数模型()sin ,(0,0,)y A x B A ωϕωπϕπ=++>>-<<拟合收购价格(元/斤)与相应月份之间的函数关系,……………………………………………1分 由题:1,6,4A B T ===,2||T πω=,2πω∴=,sin()62y x πϕ∴=++,………3分由题图象:sin()62y x πϕ=++图象过点(1,6),02x πϕ∴+=一解为1x =,2πϕ∴=-,sin()66cos 222y x x πππ∴=-+=-… ………………………………………………5分②选择函数模型()2log y x a b =++拟合养殖成本(元/斤)与相应月份之间的函数关系…………………………………………………6分由题:()2log y x a b =++图象过点(1,3),(2,4),()()223log 14log 2a ba b =++⎧⎪⎨=++⎪⎩, ………8分解得:03a b =⎧⎨=⎩,2log 3y x ∴=+, … …………………………………10分(2)由(1):当5x =时,56cos6cos 622y x ππ=-=-=,222log 3log 53log 83336y x =+=+<+=+= 当6x =时,6cos6cos36172y x ππ=-=-=+=,22log 63log 833367y =+<+=+=<当7x =时,76cos6cos622y x ππ=-=-=,222log 3log 73log 83336y x =+=+<+=+= 当8x =时,6cos6cos 46152y x ππ=-=-=-=,22log 3log 833365y x =+=+=+=>当9x =时,96cos6cos622y x ππ=-=-=,222log 3log 93log 83336y x =+=+>+=+= 当10x =时,6cos6cos572y x ππ=-=-=,222log 3log 103log 163437y x =+=+<+=+=当11x =时,116cos6cos622y x ππ=-=-=,222log 3log 113log 83336y x =+=+>+=+= 当12x =时,6cos6cos 652y x ππ=-=-=,222log 3log 123log 833365y x =+=+>+=+=>这说明第8、9、11、12这四个月收购价格低于养殖成本,生猪养殖户出现亏损。

2014—2015学年上期高一数学期末考试试卷及答案

2014—2015学年上期高一数学期末考试试卷及答案

2014—2015学年上期高一数学期末考试试卷(考试时间:120分钟 试卷满分:150分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合(){}/lg 1A x y x /==-,{}2/230B y y y =--≤, 则()A B ⋂=A . {}/13x x <<B . {}/13y y ≤≤C . {}/13x x <≤D . {}/13x x ≤< 2、下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .1y x=B .x y e -=C .lg y x =D .21y x =-+ 3、如果直线m //直线n ,且m //平面α,那么n 与α的位置关系是( ) A . 相交 B . n //α C . n ⊂α D . n //α或n ⊂α 4、两直线230x y ++=与410x my ++=平行,则它们之间的距离为( )A .B .C .D . 45、设 4.20.6a =,0.67b =, 0.6log 7c =,则a 、b 、c 的大小关系是( )A . c b a <<B . c a b <<C . a c b <<D . a b c <<6、已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是( )A .3B .C .6D .87、已知()222,0,0x x x f x x ax x ⎧-≥=⎨+<⎩是偶函数,则()2log 45a y x x =--的单调递增区间为( )A . (),2-∞B .(),1-∞-C . ()2,+∞D . ()5,+∞8、三棱柱111ABC A B C -中,各棱长相等,侧棱垂直于底面,点D 是侧面11BB C C 的中心,则AD 与面11BB C C 所成角的大小是( )A . 45B . 30C . 90D . 609、函数()2log 4f x x x =+-的零点所在的区间是( ) A . 12⎛⎫,1 ⎪⎝⎭B . ()1,2C . ()2,3D . ()3,410、直三棱柱111ABC A B C -,体积为V ,P 、Q 分别为侧棱1AA 、1CC 上的点,且1AP C Q =,则四棱锥B APQC -的体积是( ) A .12V B . 13V C . 14V D . 15V11、已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()()2221232f x x a x a a =-+--;若x R ∀∈,()()1f x f x -≤,则实数a 的取值范围为( )A . 1166⎡⎤-,⎢⎥⎣⎦ B .⎡⎢⎣⎦ C . 1133⎡⎤-,⎢⎥⎣⎦ D .⎡⎢⎣⎦12、当a 为任意实数时,直线()210ax y a --+=恒过定点M ,则以M 为圆心,并且与圆222410x y x y ++-+= 外切的圆的方程为( )A .()()22229x y -++= B .()()22229x y +++= C .()()222216x y -+-= D .()()222216x y -++=332正视图侧视图俯视图4二、填空题:本题共4小题,每小题5分,共20分。

2014-2015高一期末考试参考答案(1)

2014-2015高一期末考试参考答案(1)

2014-2015高一期末考试参考答案一、单项选择题(30小题,每小题2分,共60分)1 D2 A3 C4 A 5B 6 C 7 D 8C 9 B 10 C 11D 12B 13 B 14 C 15A 16A 17 D 18 B 19 B 20 C 21D 22A 23 C 24 C 25C 26B 27 A 28 A 29 B30 D二、判断题(10小题,每小题1分,共10分)31 B 32 A 33A 34A 35B 36 B 37 A 38 A 39B 40B三、简答题(2题,41题8分,42题10分,共18分)41.(1)①改革开放三十多年来,我国城乡居民恩格尔系数不断降低,表明我国居民总体消费水平不断提高。

(1分)②农村恩格尔系数远高于农村,说明城乡收入水平、消费水平仍存在比较大的差距。

(1分)③1995年以来,我国基尼系数不断升高,表明我国居民收入差距逐渐拉大。

超过警戒线,说明应引起高度重视。

(1分)(2)①继续深化改革开放,促进生产力发展,增加居民收入。

(1分)②深入贯彻落实科学发展观,转变经济发展方式,实施创新驱动发展战略,挖掘中国经济新的增长动力。

(1分)③坚持和完善按劳分配为主体、多种分配方式并存的分配制度,为形成合理有序的收入分配格局提供制度保证(1分)④初次分配和再分配都要兼顾效率与公平,既要提高效率,又要促进公平。

(或:初次分配要提高居民收入在国民收入分配中的比重、劳动报酬在初次分配中的比重。

再分配要健全以税收、社会保障、转移支付为主要手段的调节机制。

规范收入分配秩序,缩小收入分配差距。

)(1分)⑤推动城乡发展一体化,不断缩小城乡收入差距。

(1分)42.(1)①国家有关部门要加强宏观调控,规范网购秩序,加快健全网购过程中的相关法律法规。

同时,加强社会诚信建设,形成以道德为支撑、法律为保障的社会信用制度。

(1分)②生产企业要注重信誉和形象,生产适应网购市场需求的高质量的商品。

2014-2015学年高一数学上学期期末考试试题含解析

2014-2015学年高一数学上学期期末考试试题含解析

2014-2015学年第一学期高一期末考试数学试题说明:1.本卷共有三个大题,21个小题,全卷满分150分,考试时间120分钟. 2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答不给分.一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U (A ∪B )=( ) A .{1,3,4}, B .{3,4}, C .{3}, D .{4} 2.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( ) A .球, B .三棱锥, C .正方体, D .圆柱 3.若两个球的表面积之比为1:4,则这两个球的体积之比为( ) A .1:2, B .1:4, C .1:8, D .1:164.已知点M (a ,b )在圆O :x2+y2=1外,则直线ax+by=1与圆O 的位置关系是( ) A .相切, B .相交, C .相离, D .不确定 5.在下列命题中,不是公理的是( ) A .平行于同一个平面的两个平面平行B .过不在同一直线上的三个点,有且只有一个平面C .如果一条直线上的两点在同一个平面内,那么这条直线上所有点都在此平面内D .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线6.由表格中的数据可以判定方程20x e x --=的一个零点所在的区间是(,1)()k k k Z +∈, 则k 的值为A .-1B .0C .1D .27.若函数11()2xy m -=+的图像与x 轴有公共点,则m 的取值范围是A .1m ≤-B .10m -≤<C .1m ≥D .01m <≤8.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增.若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是A .10,2⎛⎤⎥⎝⎦B .(0,2]C .[1,2]D .1,22⎡⎤⎢⎥⎣⎦9.若定义在区间[-2015,2015]上的函数f (x )满足:对于任意的x 1,x 2∈[-2015,2015],都有f (x 1+x 2)=f (x 1)+f (x 2)-2014,且x >0时,有f (x )>2014,f (x )的最大值、最小值分别为M ,N ,则M+N 的值为( )A .2014B .2015C .4028D .403010.一个多面体的直观图、主视图、左视图、俯视图如下,M 、N 分别为1A B 、11B C 的中点.下列结论中正确的个数有①直线MN 与1A C 相交. ② MN BC ⊥. ③MN //平面11ACC A . ④三棱锥1N A BC -的体积为1316N A BC V a -=. A .4个B .3个C .2个D .1个二、填空题(本大题共5小题,每题5分,共计25分.请将正确答案填在答题卷相应位置.) 11.函数22log (1)y x x =--的定义域为___________.12.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为 .13.已知集合2{(,)49}A x y y x ==-,{(,)}B x y y x m ==+,且A B φ⋂≠,则实数m 的取值范围是_______________.14.已知函数1333,1()log ,01x x f x x x ⎧-≥⎪=⎨<<⎪⎩,则满足不等式1()()9f m f ≤的实数m 的取值范围为 .15.下列四个命题:其中正确的有________________(写出所有正确命题的序号).三、解答题:(本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.) 16.(本小题满分12分)设全集为U R =,集合(,3][6,)A =-∞-⋃+∞,{}2|log (2)4B x x =+<. (1)求如图阴影部分表示的集合;(2)已知{}|21C x x a x a =><+且,若C B ⊆,求实数a 的取值范围.17.(本小题满分12分)已知直线1l :10ax by ++=,(,a b 不同时为0),2l :(2)0a x y a -++=, (1)若0b =且12l l ⊥,求实数a 的值;(2)当3b =且12//l l 时,求直线1l 与2l 之间的距离.18.(本小题满分12分)已知幂函数21()(22)m f x m m x +=-++为偶函数.(1)求()f x 的解析式;(2)若函数()2(1)1y f x a x =--+在区间(2,3)上为单调函数,求实数a 的取值范围.19.(本小题满分12分)20.(本小题满分13分)已知圆C 的方程:04222=+--+m y x y x ,其中5m <.(1)若圆C 与直线042:=-+y x l 相交于M ,N 两点,且MN =,求m 的值;(2)在(1)条件下,是否存在直线02:=+-c y x l ,使得圆上有四点到直线l ,若存在,求出c 的范围,若不存在,说明理由.21.(本小题满分14分)定义在D 上的函数()f x ,如果满足:对任意x D ∈,存在常数0M ≥,都有()f x M ≤ 成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的一个上界.已知函数11()1()()24x x f x a =++,121()log 1axg x x -=-.(1)若函数()g x 为奇函数,求实数a 的值;(2)在(1)的条件下,求函数()g x 在区间5,33⎡⎤⎢⎥⎣⎦上的所有上界构成的集合;(3)若函数()f x 在[)0,+∞上是以3为上界的有界函数,求实数a 的取值范围.2014-2015学年第一学期高一期末考试数学试题参考答案一、选择题(每小题5分,共50分,在每小题给出的四个选项中只有一个符合要求.)题号 1 2 3 4 5 6 7 8 9 10答案 D D C B A C D D C B2、答案D分析:利用简单几何体的结构特征以及三视图的定义,容易判断圆柱的三视图不可能形状相同,大小均等解答:球的三视图均为圆,且大小均等;正四面体的三视图可以形状都相同,大小均等;正方体的三视图可以是三个大小均等的正方形;圆柱的三视图中必有一个为圆,其他两个为矩形故一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是圆柱故选D点评:本题主要考查了简单几何体的结构特征,简单几何体的三视图的形状大小,空间想象能力,属基础题3、4、6、7、8、9、10、二、填空题(本大题共5小题,每小题5分,共25分.)11.(]2,1 12.14 (0,0,)913.[7,72]-14.31[,log 5]915.①④⑤三、解答题:(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(本小题满分12分).解:(1)由0216,x <+<得(2,14)B =-, ……………………………2分又(,3][6,)A =-∞-⋃+∞,故阴影部分表示的集合为()(,3][14,)R A C B ⋂=-∞-⋃+∞ ; ……………………5分(2)① 21a a ≥+,即1a ≥时,C =∅,成立; ………………………9分② 21a a <+,即1a <时,(2,1)(2,14)C a a =+⊆-,114,22,a a +≤⎧⎨≥-⎩得11a -≤<, ………………………11分综上所述,a 的取值范围为[1,)-+∞. …………………12分17.(本小题满分12分)解:(1)当0b =时,1l :10ax +=,由12l l ⊥知(2)0a -=,…………4分解得2a =;……………6分(2)当3b =时,1l :310ax y ++=,当12//l l 时,有3(2)0,310,a a a --=⎧⎨-≠⎩…………8分解得3a =, …………………9分此时,1l 的方程为:3310x y ++=,2l 的方程为:30x y ++=即3390x y ++=,…………11分则它们之间的距离为229142333d -==+分 18.(本小题满分12分)解:(1)由()f x 为幂函数知2221m m -++=,得 1m =或12m =-……3分 当1m =时,2()f x x =,符合题意;当12m =-时,12()f x x =,不合题意,舍去. ∴2()f x x =. ……………………6分(2)由(1)得22(1)1y x a x =--+,即函数的对称轴为1x a =-, …………8分由题意知22(1)1y x a x =--+在(2,3)上为单调函数,所以12a -≤或13a -≥, ………11分即3a ≤或4a ≥. …………12分19.(本小题满分12分)解:20.(本小题满分13分).解:(1)圆的方程化为 m y x -=-+-5)2()1(22,圆心 C (1,2),半径 m r -=5,则圆心C (1,2)到直线:240l x y +-=的距离为 5121422122=+-⨯+=d ………3分 由于5MN =125MN =,有2221()2r d MN =+, ,)52()51(522+=-∴m 得4=m . …………………………6分(2)假设存在直线02:=+-c y x l ,使得圆上有四点到直线l 的距离为55, ……7分 由于圆心 C (1,2),半径1=r , 则圆心C (1,2)到直线02:=+-c y x l 的距离为 511532122122-<-=++⨯-=c c d , …………10分 解得5254+<<-c . …………13分21.(本小题满分14分)解:(1)因为函数)(x g 为奇函数,所以()()g x g x -=-,即11log 11log 2121---=--+x ax x ax , 即axx x ax --=--+1111,得1±=a ,而当1=a 时不合题意,故1-=a . ……4分 (2)由(1)得:11log )(21-+=x x x g , 下面证明函数11log )(21-+=x x x g 在区间(1,)+∞上单调递增, 证明略. ………6分所以函数11log )(21-+=x x x g 在区间]3,35[上单调递增, 所以函数11log )(21-+=x x x g 在区间]3,35[上的值域为]1,2[--, 所以2)(≤x g ,故函数)(x g 在区间]3,35[上的所有上界构成集合为),2[+∞.……8分(3)由题意知,3)(≤x f 在),0[+∞上恒成立.3)(3≤≤-x f ,x x x a ⎪⎭⎫ ⎝⎛-≤⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛--41221414. xx x xa ⎪⎭⎫ ⎝⎛-⋅≤≤⎪⎭⎫ ⎝⎛-⋅-∴21222124在),0[+∞上恒成立. min max 21222124⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅≤≤⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅-∴x x x x a ……………………10分设t x =2,t t t h 14)(--=,t t t p 12)(-=,由),0[+∞∈x 得1≥t ,设121t t ≤<,21121212()(41)()()0t t t t h t h t t t ---=>, ()()1212121221()()0t t t t p t p t t t -+-=<, 所以)(t h 在),1[+∞上递减,)(t p 在),1[+∞上递增, ………………12分 )(t h 在),1[+∞上的最大值为5)1(-=h ,)(t p 在),1[+∞上的最小值为1)1(=p .所以实数a 的取值范围为]1,5[-. …………………14分。

2014-2015学年下学期高一数学期末试题及答案

2014-2015学年下学期高一数学期末试题及答案

2014-2015学年第一学期第二学段高一数学模块检测时间120分钟分数150分第1卷(共60分)一、选择题:本大题共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列说法正确的是A 三点确定一个平面B 两条直线确定一个平面C 过一条直线的平面有无数多个D 两个相交平面的交线是一条线段2.若过坐标原点的直线l的斜率为3-,则在直线l上的点是A)3,1( B )1,3( C )1,3(- D )3,1(-3.某建筑物的三视图如图所示,则此建筑物结构的形状是A 圆锥B 四棱柱C 从上往下分别是圆锥和四棱柱D 从上往下分别是圆锥和圆柱4.直线=-yx与02=-+yx的交点坐标是A.)1,1(B.)1,1(--C.)1,1(-D.)1,1(-5. 已知两个球的表面积之比为1:9,则这两个球的半径之比为A.1:3B.C.1:9D.1:816.已知过点(2,)A m-和(,4)B m的直线与直线210x y+-=平行,则m的值为A. -8B. 0C. 2D. 107.圆622=-+xyx的圆心坐标和半径分别是A.9),0,3(B.3),0,3(C.9),0,3(-D.3),0,3(-8.直线2)32()1(:3)1(:21=-++-=--+ykxklykkxl和互相垂直,则k的值是A -3 或1B 0C 0或-3D 0或19.圆221x y+=上的动点P到直线34100x y--=的距离的最小值为A.2B.1C.3D.410.直线40x y-+=被圆224460x y x y++-+=截得的弦长等于A.B.C.D.11.设,m n是不同的直线,,,αβγ是不同的平面,有以下四个命题:①//////αββγαγ⎫⇒⎬⎭②//mmαββα⊥⎫⇒⊥⎬⎭③//mmααββ⊥⎫⇒⊥⎬⎭④////m nmnαα⎫⇒⎬⊂⎭其中,真命题是()A.①④ B.②③ C.①③ D.②④12.若直线1=+byax与圆122=+yx相交,则点P(),ba与圆的位置关系是A 在圆上B 在圆外C在圆内 D 以上都不可能第Ⅱ卷(非选择题 共90分)二、填空题.本大题共有4个小题,每小题4分,共16分.13.一个圆锥的母线长是20cm ,母线与轴的夹角为030,则圆锥的底面半径是 cm.14.圆心在直线y=2x 上,且与x 轴相切与点(-1,0)的圆的标准方程是 .15.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45,腰和上底均为1. 如图,则平面图形的实际面积为.16.空间四个点P 、A 、B 、C 在同一球面上,PA 、PB 、PC 两两垂直,且PA=PB=PC=a ,那么这个球的半径是 .三、解答题.本大题共6个小题,共74分.解答应写出文字说明、证明过程或推演步骤. 17、(本小题满分12分)如图,已知正四棱锥V -ABCD 中,A CB D M V M 与交于点,是棱锥的高,若6cm AC =,5cm VC =,求正四棱锥V -ABCD 的体积.18、(本小题满分12分)如图,在平行四边形OABC 中,点C (1,3).(1)求OC 所在直线的斜率;(2)过点C 做CD ⊥AB 于点D ,求CD 所在直线的方程. 19、(本小题满分12分)求过点(2,4)A 向圆422=+y x 所引的切线方程。

2014-2015学年秋季学期高一年级期末考试数学试卷

2014-2015学年秋季学期高一年级期末考试数学试卷

2014-2015学年秋季学期高一年级期末考试数学试卷考试时间:120分 满分:150分年级_________班级_________姓名_________得分__________第I 卷(选择题)一、选择题:本大题共12个小题,每小题5分,满分60分。

在每小题的四个选项中,只有一项符合要求。

1.设全集{}12345I =,,,,,集合{}{}134245M N ==,,,,,,则()()I I C M C N =( )A. ∅B.{}4C. {}13,D.{} 25,2.下列各组函数中,表示同一函数的是( )A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D .2)(|,|x y x y ==3.下列等式中,成立的是( ) A .)2cos()2sin(x x -=-ππB .x x sin )2sin(=+πC .x x sin )2sin(-=+πD .x x cos )cos(=+π4.下列函数中,在其定义域内既是奇函数又是增函数的是 ( ) A. B.C. D. .5. 要得到函数cos 2(y x =+4π)的图象,只需将cos 2y x =的图象( ) A .向右平移8π个单位长度 B .向左平移8π个单位长度 C .向左平移4π个单位长度 D .向右平移4π个单位长度6.已知0a >且1a ≠,则在下面所给出的四种图形中,正确表示函数xy a =和log a y x =的图象一定是 (① ② ③④3,y x x R =∈R x x y ∈=,sin ,y x x R =-∈R x x y ∈=,)21(A.①③B.②③C.②④D.①④7. 函数()ln 28f x x x =+-的零点一定位于区间 ( )A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)8. 已知0.30.32log 0.3,2,0.2a b c ===,则c b a ,,三者的大小关系是 ( ) A 、a c b >> B 、c a b >> C 、c b a >> D 、a b c >> 9.若,24παπ<<则( )A .αααtan cos sin >>B .αααsin tan cos >>C .αααcos tan sin >>D .αααcos sin tan >>10.函数()2log 2cos 1y x =-的定义域为 ( ) A.(,)33ππ- B.22},{33|x k x k k Z ππππ-+<<+∈ C.[,]33ππ- D.{22},{33|x k x k k Z ππππ-+≤≤+∈11.函数,(,0)(0,)sin xy x xππ=∈-的图象可能是下列图象中的( )12.设函数121()3(0)2(),(0)xx f x x x ⎧-≤⎪=⎨⎪>⎩已知()1f a >,则实数a 的取值范围是( )A.(2,1)-B.(,1)(0,)-∞-+∞ C.(1,)+∞ D.(,2)(1,)-∞-+∞第II 卷(非选择题)二、填空题(本大题共4小题,每小题5分,共20分.答案填在题中的横线上)13.已知角α的终边经过点(4,3)-,则cos α= . 14.若3log 41x =,则44______x x -+=15.已知()sin()f x A x ωϕ=+在同一个周期内,当π3x =时,)(x f 取得最大值为2,当 0x =时,)(x f 取得最小值为2-,则函数)(x f 的一个表达式为______________.16.已知函数()3sin(2)4f x x π=-,给出下列结论:①函数()f x 的最小正周期为π ②函数()f x 的一个对称中心为5(,0)8π- ③函数()f x 的一条对称轴为78x π=④函数()f x 的图象向右平移8π个单位后所得函数为偶函数其中,所有正确结论的序号是 .三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)全集U=R ,若集合{}|310A x x =≤<,{}|27B x x =<≤,(Ⅰ)求AB ,AB ,()()U UC A C B ;(Ⅱ)若集合C={|}x x a >,A C ⊆,求a 的取值范围; 18.(本题满分12分)已知函数()2sin()cos .f x x x π-= (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间[]62ππ-,上的最大值和最小值.19.(本题满分12分)已知函数()lg(2),()lg(2),()()().f x x g x x h x f x g x =+=-=+设 (Ⅰ)求函数()h x 的定义域(Ⅱ)求(1)(1)h h --的值,并判断函数()h x 的奇偶性,(请说明理由). 20.(本题满分12分)设函数tan()24xf x π=+()。

2014-2015学年度第一学期高一数学期末考试卷

2014-2015学年度第一学期高一数学期末考试卷

2014-2015学年度第一学期高一数学期末考试卷2015.2测试时间:120分钟,满分:100分一、选择题(本大题共有10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项填写在答题卡上) 1.方程255log (21)log (2)x x +=-的解集是( )(A) {3} (B) {-1} (C) {-1,3} (D) {1,3} 2.下列说法中正确的是( )(A)三点确定一个平面. (B)两条直线确定一个平面. (C)三条直线两两相交,则这三条直线共面. (D)空间四点中如果有三点共线,则这四点共面.3.给出下列命题:(1)同垂直于一直线的两直线平行.(2)同平行于一平面的两直线平行. (3)同平行于一直线的两直线平行.(4)平面内不相交的两直线平行.其中正确的命题个数是( )(A) 1 (B) 2 (C) 3 (D) 44设集合2{10}M x x =>,则下列关系式中正确的是 ( ) A .3M ⊆ B .{3}M ⊆ C .∈3∁R M D .3M ∈ 5.以点A (-5,4)为圆心且与x 轴相切的圆的标准方程是( )A .(x+5)2+(y -4)2=25;B .(x+5)2+(y -4)2=16; C .(x -5)2+(y +4)2=16; D .(x -5)2+(y +)2=25;6.偶函数f(x)的定义域[-5,5],其在[0,5]的图象如下所示,则()f x >0的解集为( )(A) {x|2<x<4} (B) {x|2x ≤<4}(D){x|2<x<4或7.函数()f x 0 )(A )是奇函数但不是偶函数 (B )是偶函数但不是奇函数(C )既是奇函数又是偶函数 (D )既不是奇函数又不是偶函数8.两条异面直线在同一平面的正投影不可能是( )(A )两条平行直线 (B)两条相交直线(C )一个点和一条直线 (D )两个点9.设1BD 是正方体 1111ABCD A B C D -的一条对角线,则这个正方体中面对角线与1BD 异面的有( )(A )0条 (B )4条 (C )6条 (D )12条10.已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C(0,1,4),则三角形ABC 是( ) A .直角三角形; B .锐角三角形; C .钝角三角形; D .等腰三角形;班级_______________座号________________姓名______________二、填空题:(本大题共5小题,每小题3分,共15分.) 11.已知()f x ={200x x x x ≥< ,则((2))f f -=____________ .12.用”<”从小到大排列32log 、10.5-、32-、30.5log ______________________.13、过点(2,3)-且与直线2340x y -+=平行的直线方程为 .14.一球的表面积与它的体积的数量相等,则球的半径为___________________.15. 下列函数:○1y=x lg ; ○2;2xy = ○3y = x 2; ○4y= |x| -1; 其中有2个零点的函数的序号是 .三、解答题:(本大题共6小题,共55分.解答应写出文字说明,证明过程或演算步骤.) 16、(8分)全集U ={|3x x <}, A ={|2x x <},B ={|1x x >} 求B A 、A B ⋃、 (∁u A)B17、(8分).在△ABC 中,已知A (5,-2)、B (7,3),且AC 边的中点M 在y 轴上,BC 边的中点N 在x 轴上,求:(1)顶点C 的坐标; (2)直线MN 的方程.18.(9分)如图,在正方体1111ABCD A B C D -中,(Ⅰ) 求证:111//B D BC D 平面; (Ⅱ) 求二面角1C BD C --的正切值.19.(10分)已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.20、(10分)圆的方程为x 2+y 2-6x -8y =0,过坐标原点作长为8的弦,求弦所在的直线方程。

XXX2014-2015学年高一下学期期末考试数学试题 Word版含答案

XXX2014-2015学年高一下学期期末考试数学试题 Word版含答案

XXX2014-2015学年高一下学期期末考试数学试题 Word版含答案XXX2014-2015-2高一年级数学期末试卷一。

选择题 (每小题 3 分,共 30 分)1.若 $a<b<0$,则下列不等式不能成立的是 _______。

A。

$1<\frac{a}{b}$B。

$2>\frac{2}{a+b}$C。

$|a|>|b|$D。

$(a+b)^2>(a-b)^2$2.不等式$2x+ax+b>0$ 的解集是$\{x|x>3\text{或}x<-2\}$,则 $a$、$b$ 的值分别是 _______。

A。

$2,12$B。

$2,-2$C。

$2,-12$D。

$-2,-12$3.如图,方程 $y=ax+b$ 表示的直线可能是 _______。

图略]A。

直线 $l_1$B。

直线 $l_2$C。

直线 $l_3$D。

直线 $l_4$4.设 $x,y$ 满足begin{cases}2x+y\geq 4,\\x-y\geq -1,\\x-2y\leq 2。

end{cases}$$则 $z=x+y$ 的取值范围是 _______。

A。

有最小值 $2$,最大值 $3$B。

有最大值 $3$,无最小值C。

有最小值 $2$,无最大值D。

既无最小值,也无最大值5.等差数列的首项为 $25$,且从第 $10$ 项开始为比$1$ 大的项,则公差 $d$ 的取值范围是 _______。

A。

$>25$B。

$<25$XXX<d<24$D。

$|d|>24$6.从装有 $4$ 个红球和 $3$ 个黑球的口袋内任取 $3$ 个球,那么互斥而不对立的事件是 _______。

A。

至少有一个红球与都是黑球B。

至少有一个红球与恰有一个黑球C。

至少有一个红球与至少有一个黑球D。

恰有一个红球与恰有两个红球7.已知函数 $f(x)=\begin{cases}x+2,&x\leq 0\\-x+2,&x>0\end{cases}$,则不等式 $f(x)\geq x$ 的解集为_______。

浙江省2014-2015学年高一下学期期末考试数学试题-Word版含答案

浙江省2014-2015学年高一下学期期末考试数学试题-Word版含答案

绝密★启用前浙江省2014-2015学年高一下学期期末考试数学试题 题号一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(10小题,每小题5分,共50分)1.下列各组函数中,表示同一函数的是 A .2()1f u u =+,2()1g v v =+B .()f x x =, 2()()g x x =C .44()f x x =, ()g x =55xD .()f x =1-x ×1+x ,()g x =12-x2.设全集为R ,集合2{|1}1A x x =≥-,2{|4}B x x =>则()RC B A =( ) A.{|21}x x -≤< B.{|22}x x -≤≤ C.{|12}x x <≤ D.{|2}x x < 3.同时具有以下性质:“①最小正周期是π;②图象关于直线x =π3对称; ③在上是增函数”的一个函数是 ( )A. y =sin(x 2+π6)B.y =cos(2x +π3)C. y =sin(2x -π6)D. y =cos(2x -π6) 4.设函数2()43,()32,x f x x x g x =-+=- 集合{|(())0},M x R f g x =∈> {|()2},Nx R g x =∈<则M N 为( ) A.(1,)+∞ B.(0,1) C.(-1,1) D.(,1)-∞(1)34,(0)(),(0)x a x a x f x a x -+-≤⎧=⎨>⎩ 5.已知集合{}{}1,2,3,4,2,3,4M N ==,则A.N M ∈B.N M ⊆C.N M ⊇D.N M =6.已知0a >且1a ≠,函数满足对任意实数12x x ≠,都有2121()()0f x f x x x ->-成立,则a 的取值范围是 ( )A.()0,1B.()1,+∞C.51,3⎛⎤ ⎥⎝⎦D.5,23⎡⎫⎪⎢⎣⎭A B=()1,则x,(,1)AB k =,(2,3)AC =,则sin(α-的值为 .有3个不同实数解,则b1na +,若S19.(本小题满分14分)如图,在梯形ABCD 中,//AB CD ,1,60AD DC CB ABC ===∠=,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,设平面MAB 与平面FCB 所成二面角的平面角为(90)θθ≤,试求cos θ的取值范围.20.(本题满分12分)已知△ABC 的三个内角A 、B 、C 所对的边分别为,,,c b a 向量(Ⅰ)求角A的大小;b⋅取得最大值时△ABC形状.,试判断c21.(本小题满分12分)在直角坐标系xOy中,以坐标原点O (Ⅰ)求圆O的方程;(Ⅱ)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.参考答案1.A【解析】试题分析:选项A中,定义域都是R,对应法则都是变量的平方加上1,故是同一函数。

河南省郑州市2014-2015学年上期期末考试高一数学试题(含答案)(word精校版)

河南省郑州市2014-2015学年上期期末考试高一数学试题(含答案)(word精校版)

河南省郑州市2014-2015学年高一上学期期末考试数学试题一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}2014,2015A =,非空集合B 满足{}2014,2015A B =,则满足条件的集合B 的个数是A .1B .2C .3D .42、下列函数中与函数3y x =相等的是A .y =B .y =C .63x y x = D .6y = 3、已知集合{}1,2,3A =,{},x y B =,则从A 到B 的映射共有A .6个B .5个C .8个D .9个4、下列命题正确的是A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .六条棱长均相等的四面体是正四面体C .有两个面平行,其余各面都是平行四边形的几何体叫棱柱D .用一个平面去截圆锥,底面与截面之间的部分组成的几何体叫圆台5、已知一个圆的方程满足:圆心在点()3,4-,且经过原点,则它的方程为A .()()22345x y -+-=B .()()223425x y +++=C .()()22345x y -++=D .()()223425x y ++-=6、下列命题中不是公理的是A .如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线B .过不在一条直线上的三点,有且只有一个平面C .垂直于同一个平面的两条直线平行D .平行于同一条直线的两条直线互相平行7、函数()f x =的定义域为 A .(]1,2 B .(],2-∞ C .[]1,2 D .()1,28、已知直线l 在x 轴上的截距为3,在y 轴上的截距为2-,则l 的方程为A .3260x y --=B .2360x y -+=C .2360x y --=D .3260x y -+=9、已知点()2,0A -,动点B 的纵坐标小于等于零,且点B 满足方程221x y +=,则直线AB 的斜率的取值范围是A .⎡⎢⎣⎦ B .⎡⎤⎢⎥⎣⎦C .⎡⎣D .⎡⎤⎣⎦ 10、已知点()1,2A 和点()2,4B --,点P 在坐标轴上,且满足∠APB 为直角,则这样的点P 有A .4个B .3个C .2个D .6个11、函数2x y x=-的图象的对称中心的坐标为 A .()2,1- B .()2,1-- C .()2,1 D .()2,1-12、已知2log 3a =,3log 5b =,则lg 24可用a ,b 表示为A .3b B .31a ab ++ C .13a a b ++ D .31a b ++二、填空题(本大题共4小题,每小题5分,共20分.)13、已知空间直角坐标系中有两点()1,2,3A ,()5,1,4B -,则它们之间的距离为 .14、已知15x x -+=,则1122x x -+= .15、圆224x y +=与圆()()222220x y -++=的公共弦所在的直线方程为 .16、在三棱锥C P -AB 中,C 3B =,C 4A =,5AB =,若三个侧面与底面C AB 所成二面角均为60,则三棱锥的体积是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分10分)已知()321x f x k =+-是奇函数,求实数k 的值.。

2014—2015学年度第二学期期末考试高一数学参考答案与评分标准

2014—2015学年度第二学期期末考试高一数学参考答案与评分标准

2014— 2015 学年度第二学期期末考试高一数学参考答案及评分标准一、选择题:(1) - ( 12)BACDB ACABA DB二、填空题:本大题共 4 小题,每小题 5 分 .(13)3( 14)f ( x) 2 s i n x(15)50( 16)①③④6三、解答题:解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分12 分)解: ( Ⅰ ) tan()1, tan1----------(2 分)33sin(2)cos222 sin cos cos2 2 tan 1 1--------(6分)2 cos2sin 2 4 cos2 2 sin cos4 2 tan10( Ⅱ )∵为钝角,tan 1为锐角, sin()3 ,5 3∴cos310, sin10, cos()4----------(9 分)10105∴ sin sin() sin cos()cos sin()1310 ---(12分)50(18)(本小题满分12 分)解:算法步骤如下:S1i = 1;S2输入一个数据a;3如果 a<6.8 ,则输出 a,否则,执行4;S SS4i = i + 1;S5如果 i>9 ,则结束算法,否则执行S2. ------------( 6分)程序框图如图:-----------( 12)(19)( 本小题满分12 分 )解: ( Ⅰ ) 由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为42+ 4+ 17+15+ 9+ 3= 0.08.第二小组频数第二小组频数12又因为第二小组频率=样本容量,所以样本容量= 第二小组频率 = 0.08 =150.--------(4 分)( Ⅱ ) 由图可估计该学校高一学生的达标率约为 17+ 15+ 9+ 32+ 4+17+ 15+9+ 3× 100%= 88%.-------------- (8 分)( Ⅲ ) 由已知可得各小组的频数依次为6, 12,51, 45, 27, 9,所以前三组的频数之和为 69,前四组的频数之和为 114,所以跳绳次数的中位数落在第四小组内.----------------- (12 分)( 20)(本小题满分 12分).解:(Ⅰ)∵ a b ,∴ 1( 2) 2x 0 ,即x 1 .--------------(4 分 )(Ⅱ)∵ x 1 ,∴ a b 1 ( 2)+2 ( 1)= 4 ,且 a 5 , b5 .∴向量 a 与向量 b 的夹角的余弦值为 cos =a b4 . ------------------ (8 分 )a b5(Ⅲ)依题意4a b2,8 x .∵ a(4a b) ,∴ a (4a b) 0 .即 2 16 2x 0,∴ x9.∴ b ( 2, 9) .∴ |b |4 81 85 .-----------------------------(12 分 )( 21)(本小题满分 12 分)解:(Ⅰ)某员工被抽到的概率为P5 1301545 设有 x 名男员工被抽到,则有45 75 , x 3 ,x 5所以抽到的男员工为 3 人,女员工为 2 人---------------(6 分 )(Ⅱ)把 3 名男员工和 2 名女员工分别记为a, b, c, m, n ,则选取 2 名员工的基本事件有(a,b),( a, c),( a, m),( a, n),( b,c),( b, m),( b, n),( c, m),( c, n),( m, n), (b,a),( c,a),( m, a),(n,a),( c, b),( m,b),( n,b), (m, c),( n, c),( n, m) ,共 20 个基中恰好有一名女员工有(a, m),( a, n),( b, m),( b, n),( c, m),( c, n) ,( m, a),( n, a),( m, b),( n, b),( m, c),( n, c) ,有 12 种选出的两名员工中恰有一名女员工的概率为 123----------------(12分 )P.( 22)(本小题满分 10 分)205解:( 1) ab , 4sin 2 x 1 ,又 x [0,] ,2sin x0 ,即 sin x1x---------------(5 分),26(Ⅱ) f ( x)3 sin x cos x sin 2 x3 sin 2x 1 cos 2x sin(2 x) 1 ,22 6 2x [0,], 2x6,5,所以当 2x6 2 ,即 x 时, f ( x) 最大值为 326 632当2x ,,即 x 0,时, f ( x) 单调递增.66 23所以 f ( x) 的单调递增区间为 0, .------------(10分)3。

2014-2015学年高一数学期末试卷

2014-2015学年高一数学期末试卷

2014—2015学年中学 高一年级第一学期数学期末试卷班级 姓名 成绩一.选择题(共12题,每题5分,共60分)1、下图是由哪个平面图形旋转得到的( )A C D2、倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x 3、一个平面内有无数条直线平行于另一个平面,那么这两个平面( )A.一定平行B.一定相交C.平行或相交D.一定重合4、已知直线经α过点A (0,4)和点B (1,2),则直线AB 的斜率为( )A 、3B 、—2C 、2D 、不存在5、若点M 在直线m 上,直线m 在平面α内,则下列表述正确的是( )A 、M ∈m ,m ∈αB 、M ∈m ,m ⊂αC 、M ⊂m ,m ⊂αD 、M ⊂m ,m ∈α6、垂直于同一条直线的两条直线一定( )A .平行B .相交C .异面D .以上都有可能7、过点P (4,-1)且与直线3x -4y +6=0垂直的直线方程是( )A.4x +3y -13=0B.4x -3y -19=0C.3x -4y -16=0D.3x +4y -8=08、以点(2,1)-为圆心且与直线3450x y -+=相切的圆的方程( )A.22(2)(1)3x y -++=B.22(2)(1)3x y ++-= C.22(2)(1)9x y -++= D.22(2)(1)9x y ++-= 9、已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .1010、已知圆C :22+2440x y x y +--=,则圆C 的圆心坐标及半径为( )A 、圆心(-1,1),半径5B 、圆心(-1,2),半径3C 、圆心( 1,0),半径3D 、圆心(1,2),半径511、已知直径为6的球,则球的表面积及体积分别为( )A 、36π,144πB 、36π,36πC 、144π,36πD 、144π,144π 12、两直线330x y +-=与6210x y ++=平行,则它们之间的距离为( )A .4BCD 二、填空题: 13、直线3x -y+1=0的倾斜角为14、过点)3,2(P 且在两坐标轴上截距相等的直线的方程是15、已知正方体ABCD —A 1B 1C 1D 1中,直线B 1D 1与直线CC 1的夹角是 16、直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 选择题及填空题答题卡13. 14. 15. 16.三、解答题(17-21题,每题12分,22题10分,共70分)17、已知A (2,3),B (-1,0)为直线l上两点,点C (4,2)为直线外一点,求直线l的直线方程和点C 到直线l的距离.18、已知点M 与两个定点O (0,0),A(3,0)的距离的比为21,求点M 的轨迹方程19、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A,B 的任意一点,求证平面PBC ⊥平面PAC20、如图已知平面βα,,且AB =⋂βα,α⊥PC ,β⊥PD ,C,D 是垂足,判断直线AB 与直线CD 的位置关系,并证明你的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.设全集 U R ,集合 A { x | | x a | 1} , B {x | (1)求集合 B ;
x 1 2}. x2 (2)若 A U B ,求实数 a 的取值范围.
UB
x 1 20 x2 x 5 0 2分 x2 B (, 2) 5, )
a 1,a 2. 2
2分
log a nx 2 3x 2 m log a 2x 0 2 2 x 3x 1 0
2
2分 ,
3 0 x 2 所以 . 1 x 1或x 2
x
(a 0, a 1) 在 R 上 既是 奇函 数,又 是减函 数, 则

g ( x) log a ( x k ) 的图像是( A
15.已知 x0 是函数 f ( x) 2
x
A. f x1 0, f x2 0 C. f x1 0, f x2 0
2,5
2分 2分
| x a | 1 A (a 1, a 1) A
UB
2分

a 1 2 a 15
3 a 4
2分
18.已知不等式 x 3x m 0 的解集为 x 1 x n, n R ,函数 f x x ax 4 .
于是设 u h( x1 )h( x2 ) 4( x1 = 4 x1 x2
4 4 64 x x )(x2 ) 4 x1 x2 16( 1 2 ) x1 x2 x1 x2 x2 x1
2 x 2 x2 ( x x )2 2 x1 x2 64 64 80 16 1 4 x1 x2 16 1 2 4 x1 x2 32 x1 x2 x1 x2 x1 x2 x1 x2 x1 x2
1 的一个零点.若 x1 1, x0 , x2 x0 , ,则 (B 1 x B. f x1 0, f x2 0
D. f x1 0, f x2 0
)
16.设 f ( x) 是定义在 R 上的函数. ①若存在 x1 , x2 R , x1 x 2 ,使 f ( x1 ) f ( x2 ) 成立,则函数 f ( x) 在 R 上单调递增; ②若存在 x1 , x2 R , x1 x 2 ,使 f ( x1 ) f ( x2 ) 成立,则函数 f ( x) 在 R 上不可能单调递减; ③若存在 x2 0 对于任意 x1 R 都有 f ( x1 ) f ( x1 x2 ) 成立, 则函数 f ( x) 在 R 上递增; ④对任意 x1 , x2 R , x1 x 2 ,都有 f ( x1 ) f ( x2 ) 成立,则函数 f ( x) 在 R 上单调递减. 则以上真命题的个数为( B A.0 B.1 C.2 三、解答题(10+12+12+14=48 分) ) D.3
(2)由题意,得 h( x) ax
b b ( x 0) ,则 h( x) ax 2 ab x x
b a 2 8 2a 8 2 ,解得 ,所以 h( x) 2 x ( x 0) x b 8 2 ab 8 假设存在最大的常数 m ,使 h( x1 )h( x2 ) m 恒成立.
(1) A B f A ( x) f B ( x) (3) f A
B
(2) f
UA
( x) 1 f A ( x)
B
( x) f A ( x) f B ( x)
(4) f A
( x ) f A ( x) f B ( x)
y x1
12.对任意的 x1 0 x2 ,若函数 f ( x) a x x1 b x x2 的大致图像为如图所示的一条折线(两侧的 射线均平行于 x 轴) ,试写出 a 、 b 应满足的 条件是
3 2 x x 2
的单调递增区间是
(1,1)
.
7.若函数 f (x)是定义在 R 上的偶函数,在 (,0] 上是减函数,且 f(2)=0,则使得 f (x)<0 的 x 的取值范围是
2
(2,2)
.
8. 已知关于 x 的方程 x 6 x 5 a 有四个不相等的实数根, 则 a 的取值范围是
2
3h2 ( x) 2h( x) t 0 ,
即 t 3h ( x) 2h( x) 3log 2 x 2log 2 x
2 2
设 s log 2 x ,则 s [1, 2] , y 3log 2 x 2log 2 x 3s 2s ,
2 2
ymax 5 ,故, t 5 .
3)b 0, hmax h(0) 1 b 2 b 1 2分
2分
2)0 b 1, hmax h(b) b b 1 2
2
b
1 5 (舍) 2
2分
综上:b 2或b 1
2分
20.对于函数 f1 ( x), f 2 ( x), h( x) ,如果存在实数 a, b 使得 h( x) a f1 ( x) b f 2 ( x) ,那么 称 h( x) 为 f1 ( x), f 2 ( x) 的生成函数. (1)设 f1 ( x) log 2 x, f 2 ( x) log 1 x, a 2, b 1 ,生成函数 h( x) .
1 3 2分 或1 x . 2 2 k 19.设幂函数 f ( x) (a 1) x (a R, k Q) 的图像过点 ( 2, 2) . (1)求 a, k 的值;
所以 0 x (2)若函数 h( x) f ( x) 2b f ( x) 1 b 在 [0, 1] 上的最大值为 2,求实数 b 的值.
x1 x2 2 1 1 ) ,即 t (0, ] 2 4 4 80 1 设 u 4t 32 在 t (0, ] 上单调递减, 4 t 1 u u ( ) 289 ,故存在最大的常数 m 289 4
令 t x1 x2 ,则 t x1 x2 (
(1)a 1 1 a 2
(2) f ( x) x
2
2分
( 2)k 2 k 2
2分
h( x) x 2 2bx 1 b h ( x ) ( x b ) 2 b 2 b 1 x [0,1]
1)b 1, hmax h(1) b 2
2
若不等式 3h ( x) 2h( x) t 0 在 x [2, 4] 上有解,求实数 t 的取值范围;
2
1 ( x 0) ,取 a 0, b 0 ,生成函数 h( x) 图像的 x 最低点坐标为 (2, 8) . 若对于任意正实数 x1 , x2 且 x1 x2 1 .试问是否存在最大的常数 m , 使 h( x1 )h( x2 ) m 恒成立?如果存在,求出这个 m 的值;如果不存在,请说明理由.
O
x2
x
a b 0, a b 0
.
第 12 题图
二、选择题(每小题 4 分,共 16 分) 13.条件甲: log3 x 2 是条件乙: log3 x 1 成立的(
2
B

A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件
x
14 .若函 数 f ( x) (k 1)a a
2


2
(1)求 m, n 的值;
(2)若 y f x 在 (,1] 上递增,解关于 x 的不等式 log a nx 2 3x 2 m 0 . 解:(1) 由条件得:
2


1 n 3 m 2 , 所以 n 2 1 n m
4分
(2)因为 f x x ax 4 在 ,1 上递增, 所以
( 2)设 f1 ( x) x ( x 0),
f 2 ( x)
解: (1) h( x) 2 f1 ( x) f 2 ( x) 2log 2 x log 1 x log 2 x
2
若不等式 3h ( x) 2h( x) t 0 在 x [2, 4] 上有解,
2


且 A B ,则 x
1
0

, N x y lg( x 1) ,则 M
2
N
. .
(1,2)
.
4.已知实数 a, b 满足 a b 2 ,则 ab 的最大值为 5.函数 f ( x) x lg
3
1 x 的奇偶性为 1 x
奇函数
6.函数 f x 4
2014-2015 学年第一学期高一数学期末考试
学校:
一、填空题(每小题 3 分,共 36 分) 1.函数写出命题“若 x 0且y 0 ,则 x y 0 ”的否命题
2 2
姓名:
否命题:“若 x 0或y 0 ,则 x y 0 ”
2 2
2.已知集合 A 1, x , B 1, x 2 3.若集合 M x x 2
(0,4) .
1 3 9.函数 f ( x) x 3, x 0 ,若 f (a) 2 ,则实数 a 的取值范围是 x 3 1, x 0
(1, 0 (0,)
10.若函数 y .
x b 在 (a, b 4)(b 2) 上的值域为 (2, ) ,则 a b = 6 . x2 1, x A 11.定义全集 U 的子集 A 的特征函数为 f A ( x) ,这里 U A 表示 A 在全集 U 中 0, x A U 的补集, 那么对于集合 A、B U , 下列所有正确说法的序号是 (1) (2) (3) .
相关文档
最新文档