椭圆标准方程(3)

合集下载

椭圆标准方程怎么求

椭圆标准方程怎么求

椭圆标准方程怎么求
椭圆是平面上到两个定点F1、F2的距离之和等于常数2a的点P的轨迹。


F1(-c,0)、F2(c,0),c<a。

则椭圆的标准方程为。

x^2/a^2+y^2/b^2=1。

其中,a为椭圆长半轴,b为椭圆短半轴。

求椭圆标准方程的步骤如下:
步骤一,确定椭圆的中心坐标(h,k)。

椭圆的中心坐标为(h,k),其中h为椭圆中心的横坐标,k为椭圆中心的纵坐标。

如果椭圆的中心不是原点,则需要进行平移变换,将椭圆的中心平移到原点,然后再进行下一步的计算。

步骤二,求椭圆长半轴a和短半轴b的值。

椭圆的长半轴a和短半轴b的值可以通过椭圆的焦点和顶点坐标来求解。

椭圆
的焦点坐标为(F1、0)和(F2、0),顶点坐标为(h±a,k)和(h,k±b)。

根据椭圆的定义,可以得到a和b的值。

步骤三,代入椭圆标准方程。

将椭圆的中心坐标(h,k)、长半轴a和短半轴b的值代入椭圆的标准方程
x^2/a^2+y^2/b^2=1中,即可得到椭圆的标准方程。

举例说明:
假设椭圆的中心坐标为(2,3),长半轴为4,短半轴为3,代入椭圆的标准方程中,得到的椭圆标准方程为(x-2)^2/16+(y-3)^2/9=1。

总结:
通过以上步骤,我们可以求解椭圆的标准方程。

首先确定椭圆的中心坐标,然
后求解长半轴和短半轴的值,最后代入椭圆的标准方程中即可得到椭圆的标准方程。

希望本文对大家有所帮助,谢谢阅读!。

椭圆的定义与标准方程(3)含解析

椭圆的定义与标准方程(3)含解析

椭圆的定义与标准方程(3)班级:____________ 姓名:__________________一、选择题1.若曲线x 21-k +y 21+k=1表示椭圆,则k 的取值范围是( ) A .k >1B .k <-1C .-1<k <1D .-1<k <0或0<k <12.焦点坐标为(0,3),(0,-3),长轴长为10,则椭圆的标准方程为( )A .x 2100+y 291=1 B .y 2100+x 291=1 C .y 225+x 216=1 D .x 225+y 216=1 3.已知椭圆x 28+y 2=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值是( ) A .8 B .2 2 C .10 D .4 24.已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程为( )A .x 236+y 220=1(x ≠0) B .x 220+y 236=1(x ≠0) C .x 26+y 220=1(x ≠0) D .x 220+y 26=1(x ≠0) 5.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1 B .x 24+y 25=1 C .x 25+y 2=1或x 24+y 25=1 D .以上答案都不对6.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为 ( )A .x 28+y 26=1 B .x 216+y 26=1 C .x 24+y 22=1 D .x 28+y 24=1 7.(多选题)下列命题是真命题的是( )A .已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆B .已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段C .到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆D .若点P 到定点F 1(-4,0),F 2(4,0)的距离之和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和,则点P的轨迹为椭圆二、填空题8.已知椭圆中心在坐标原点,焦点在x轴上,椭圆与x轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为.9.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(6,1),P2(-3,-2),则椭圆的方程为.10.如图所示,F1,F2分别为椭圆x2a2+y2b2=1的左、右焦点,点P在椭圆上,△POF2是面积为3的正三角形,则b2=.11.已知A(-1,0),C(1,0)是椭圆C的两个焦点,过C且垂直于x轴的直线交椭圆于M、N两点,且|MN|=3,则椭圆的方程为,若B是椭圆上一点,则△ABC的最大面积为.12.已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°,椭圆的短半轴长为b=3,则△PF1F2的面积为.三、解答题13.已知椭圆的中心在原点,且经过点P(3,0),a=3b,求椭圆的标准方程.14.P是椭圆+y2=1上的点,F1,F2是椭圆的两个焦点.(1)当∠F1PF2=60°时,求△F1PF2的面积;(2)当∠F1PF2为钝角时,求点P横坐标的取值范围.15.一动圆过定点A(2,0),且与定圆x2+4x+y2-32=0内切,求动圆圆心M的轨迹方程.椭圆的定义与标准方程(3)班级:____________ 姓名:__________________ 一、选择题1.若曲线x 21-k +y 21+k =1表示椭圆,则k 的取值范围是( )A .k >1B .k <-1C .-1<k <1D .-1<k <0或0<k <1D [∵曲线x 21-k +y 21+k =1表示椭圆,∴⎩⎪⎨⎪⎧ 1-k >0,1+k >0,1-k ≠1+k ,解得-1<k <1,且k ≠0.]2.焦点坐标为(0,3),(0,-3),长轴长为10,则椭圆的标准方程为( )A .x 2100+y 291=1B .y 2100+x 291=1C .y 225+x 216=1D .x 225+y 216=1C [由题意a =5,c =3,且焦点在y 轴上,∴b =52-32=4,∴椭圆的标准方程为y 225+x 216=1.]3.已知椭圆x 28+y 2=1的左、右焦点分别为F 1,F 2,点P 在椭圆上,则|PF 1|·|PF 2|的最大值是() A .8 B .2 2 C .10 D .4 2A [由椭圆的定义得,|PF 1|+|PF 2|=2a =42,∴|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1|+|PF 2|22=8(当且仅当|PF 1|=|PF 2|时取等号).]4.已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程为( )A .x 236+y 220=1(x ≠0)B .x 220+y 236=1(x ≠0)C .x 26+y 220=1(x ≠0)D .x 220+y 26=1(x ≠0)B [∵△ABC 的周长为20,顶点B (0,-4),C (0,4),∴BC =8.AB +AC =20-8=12,∵12>8,∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆,焦点在y 轴上,∴a =6,c =4,∴b 2=20,∴点A 的轨迹是x 220+y 236=1(x ≠0).]5.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( )A .x 25+y 2=1B .x 24+y 25=1 C .x 25+y 2=1或x 24+y 25=1 D .以上答案都不对C [直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1. 当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆标准方程为y 25+x 24=1.] 6.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为 ( )A .x 28+y 26=1 B .x 216+y 26=1 C .x 24+y 22=1 D .x 28+y 24=1 A [设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12,又c 2=a 2-b 2, 联立⎩⎪⎨⎪⎧ 4a 2+3b 2=1,c 2=a 2-b 2,得a 2=8,b 2=6,c a =12,故椭圆方程为x 28+y 26=1.] 7.(多选题)下列命题是真命题的是( )A .已知定点F 1(-1,0),F 2(1,0),则满足|PF 1|+|PF 2|=2的点P 的轨迹为椭圆B .已知定点F 1(-2,0),F 2(2,0),则满足|PF 1|+|PF 2|=4的点P 的轨迹为线段C .到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹为椭圆D .若点P 到定点F 1(-4,0),F 2(4,0)的距离之和等于点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和,则点P 的轨迹为椭圆BD [A 中2<2,故点P 的轨迹不存在;B 中2a =|F 1F 2|=4,所以点P 的轨迹是线段F 1F 2;C 中到定点F 1(-3,0),F 2(3,0)距离相等的点的轨迹是线段F 1F 2的垂直平分线(y 轴);D 中点M (5,3)到定点F 1(-4,0),F 2(4,0)的距离之和为410>8,故点P 的轨迹为椭圆.]二、填空题 8.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为 .x 24+y 23=1 [由题意可得⎩⎪⎨⎪⎧ a +c =3,a -c =1.∴⎩⎪⎨⎪⎧a =2,c =1. 故b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.] 9.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则椭圆的方程为 .x 29+y 23=1 [设椭圆方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ). ∵椭圆经过点P 1,P 2, ∴点P 1,P 2的坐标适合椭圆方程.则⎩⎪⎨⎪⎧ 6m +n =1, ①3m +2n =1, ②①②两式联立,解得⎩⎨⎧ m =19,n =13.∴所求椭圆方程为x 29+y 23=1.] 10.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2= .23 [由题意S △POF 2=34c 2=3,∴c =2, ∴a 2=b 2+4.∴点P 坐标为(1,3),把x =1,y =3代入椭圆方程x 2b 2+4+y 2b 2=1中得1b 2+4+3b2=1,解得b 2=23.] 11.(一题两空)已知A (-1,0),C (1,0)是椭圆C 的两个焦点,过C 且垂直于x 轴的直线交椭圆于M 、N 两点,且|MN |=3,则椭圆的方程为 ,若B 是椭圆上一点,则△ABC 的最大面积为 .x 24+y 23=1 3 [设椭圆的方程为x 2a 2+y 2b 2=1,令x =c ,则y =±b 2a ,由|MN |=3,得2b 2a=3,又a 2-b 2=c 2=1,∴a 2=4,b 2=3,所以椭圆的方程为x 24+y 23=1,结合椭圆知当B 点为椭圆与y 轴交点时,S △ABC 的面积最大,此时S △ABC =12×2×3=3.] 12.已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°,椭圆的短半轴长为b =3,则△PF 1F 2的面积为 . 3 [设|PF 1|=m ,|PF 2|=n ,则根据椭圆的定义,得m +n =2a .①又∵△F 1PF 2中,∠F 1PF 2=60°,∴根据余弦定理,得4c 2=m 2+n 2-2mn cos 60°,即m 2+n 2-mn =4c 2.② ∴①②联解,得mn =43b 2, 根据正弦定理,得△PF 1F 2的面积为:S =12mn sin 60°=12×43×3×32=3.] 三、解答题13.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.[解] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0b2=1,又a =3b ,解得b 2=1,a 2=9,故椭圆的方程为x 29+y 2=1. 当焦点在y 轴上时,设其方程为y 2a 2+x 2b2=1(a >b >0). 由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2=9,故椭圆的方程为y 281+x 29=1. 故椭圆的标准方程为y 281+x 29=1或x 29+y 2=1. 14.P 是椭圆+y 2=1上的点,F 1,F 2是椭圆的两个焦点.(1)当∠F 1PF 2=60°时,求△F 1PF 2的面积;(2)当∠F 1PF 2为钝角时,求点P 横坐标的取值范围.解:(1)由椭圆的定义,得|PF 1|+|PF 2|=4,①且F 1(-,0),F 2(,0).在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°.②由①②得|PF 1||PF 2|=.所以=|PF 1||PF 2|sin ∠F 1PF 2=.(2)设点P(x,y),由已知∠F 1PF 2为钝角,得·<0,所以(x+,y)·(x-,y)<0,又y 2=1-, 所以x 2<2,解得-<x<,所以点P 横坐标的取值范围是(-,). 15.一动圆过定点A (2,0),且与定圆x 2+4x +y 2-32=0内切,求动圆圆心M 的轨迹方程.[解] 将圆的方程化为标准形式为(x +2)2+y 2=62,∴圆心坐标为B (-2,0),半径为6,如图:由于动圆M 与已知圆B 相内切,设切点为C .∴已知圆(大圆)半径与动圆(小圆)半径之差等于两圆心的距离,即|BC |-|MC |=|BM |, 而|BC |=6,|CM |=|AM |,∴|BM |+|AM |=6.根据椭圆的定义知M 的轨迹是以点B (-2,0)和点A (2,0)为焦点的椭圆,且2a =6. ∴a =3,c =2,b =a 2-c 2=5,∴所求圆心的轨迹方程为x 29+y 25=1.。

椭圆定义及其标准方程

椭圆定义及其标准方程

焦点性质
总结词
椭圆的两个焦点位于长轴的端点,且与椭圆中心距离等于长轴长度减去短轴长度。
详细描述
对于标准椭圆方程,其长轴和短轴长度分别为a和b,焦距为c,满足关系c = sqrt(a^2 - b^2)。椭圆的两个焦点 位于长轴的端点,与椭圆中心的距离等于c。
顶点性质
总结词
椭圆的顶点是长轴和短轴与椭圆的交点,分别有四个顶点,分布在椭圆的四个象限内。
性质
椭圆具有对称性,关于x 轴、y轴和原点都是对称 的。
应用
在平面几何中,椭圆常用 于解决与圆、直线、三角 形等图形相关的问题。
在解析几何中的应用
定义
在解析几何中,椭圆用直角坐标方程表示为 (x/a)^2 + (y/b)^2 = 1,其中a和b分别是椭圆的长半轴和短半轴。
性质
解析几何中的椭圆具有明确的参数关系,可以通过参数方程进行描 述。
详细描述
椭圆的顶点是长轴和短轴与椭圆的交点。由于椭圆关于原点对称,因此有四个顶点,分 布在椭圆的四个象限内。这些顶点分别是长轴和短轴与椭圆的交点,对于标准椭圆方程,
长轴和短轴的长度分别为a和b。
04
椭圆的几何意义
在平面几何中的应用
01
02
03
定义
椭圆是平面内与两个定点 F1、F2的距离之和等于常 数(大于|F1F2|)的点的 轨迹。
椭圆的切线性质
切线与焦点
通过椭圆上任意一点的切 线与两个焦点形成的角是 直角。
切线长度
切线长度等于椭圆上该点 到最近焦点的距离。
切线性质定理
切线与通过切点的长轴或 短轴垂直。
椭圆的参数方程
参数方程定义
椭圆的参数方程是一种 表示椭圆上点的坐标的 方式,通常使用三角函 数来表示。

椭圆标准方程推导过程

椭圆标准方程推导过程

椭圆标准方程推导过程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

设F1(-c,0),F2(c,0)(c<a),点P(x,y),则PF1+PF2=2a,即√((x+c)²+y²)+√((x-c)²+y²)=2a,整理得(x+c)²+y²+(x-c)²+y²+2√((x+c)²+y²)√((x-c)²+y²)=4a ²,即2x²+2y²+2√((x²+2cx+c²)+y²)√((x²-2cx+c²)+2y²)=4a²,整理得x²+y²+√((x²+y²)+2cx+c²)√((x²+y²)-2cx+c²)=2a²,整理得(x²+y²)²+2a²cx+a⁴=a²(x²+y²),即x²+y²+2a²cx+a⁴=a²(x²+y²),整理得x²(a²-c²)+y²a ²=a²(x²+y²),即(x²/a²)+(y²/b²)=1,其中b²=a²-c²。

椭圆的标准方程为(x²/a²)+(y²/b²)=1。

其中,a为椭圆长半轴长,b为椭圆短半轴长,c为椭圆的焦点之间的距离。

推导过程如上所示,通过数学推导可以得到椭圆的标准方程。

这个标准方程的形式简洁明了,能够直观地反映出椭圆的形状特征。

椭圆的标准方程及性质

椭圆的标准方程及性质

一.椭圆曲线的介绍1.域k(特征0)上的椭圆曲线可看成由下面方程的解全体再加上一个无穷远点:y2=x3+ax+b,(x,y)∈k2,a,b为k中常数,并且右边判别式Δ=−16(4a3+27b2)不等于0(即为了光滑性要求无重根)。

其上的点可以自然地有一个群结构(实数域为例,图自wiki):具体说来,取曲线上两个点P,Q,连接P,Q的直线与曲线第三个交点(其存在是因为一元三次方程有两个解在k中,那么由韦达定理第三个也在k中)记为R。

不难看出曲线y2=x3+ax+b,(x,y)∈k2关于x轴对称,R 的对称点就记为P+Q。

这样粗糙的讨论可能会有问题,因为可能会出现图中2,3,4的情况,2的情况把Q看成2重点即可,而3的情况迫使我们引入无穷远点0,规定此时和为0,而如果P,Q重合,那么我们就取切线。

定义保证如下性质:随便取一条直线,其与曲线交于三个点P,Q,R(可能有无穷远点,也可能两个点重合),那么P+Q+R=0.这个定义是“对称”的,可具体写出P+Q的表达式(利用韦达定理):P,Q不重合时:P,Q重合时:总之在椭圆曲线上有一个交换群结构,因此我们可以从y2=x3+ax+b,(x,y)∈k2的一个有理解生成新的有理解,从而得到许多有理解。

椭圆曲线在复数域的图像可以看成复平面模掉一格C/Λ,也就是一个环面:Q上图像可直观想象是实数域的椭圆曲线上的有理点:(图自《数论1 FERMAT的梦想和类域-加藤和也》)而Qp等非阿局部域及Z/pZ等有限域的情况没有很好的几何图像(当然有限域的平面是有限个点,此时椭圆曲线就是一堆点)。

此时不妨就把它看成代数几何意义上的一条曲线。

为了理解为什么椭圆曲线定义成y^2=三次多项式,我们简单讨论一番。

上面已经说过,我们希望找一些好的f,使得f=0即解全体带群结构。

而这个群结构的产生巧就巧在定义一个乘法,是把两个东西运算得到一个新东西,总共涉及3个object,而三次方程恰好有三个根,并且两个根加上方程系数完全可以求出第三个根。

椭圆标准方程推导过程

椭圆标准方程推导过程

椭圆标准方程推导过程椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

在直角坐标系中,椭圆的标准方程可以表示为:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]其中a和b分别为椭圆在x轴和y轴上的半轴长。

接下来,我们将推导椭圆的标准方程。

首先,设椭圆的两个焦点分别为F1(c,0)和F2(-c,0),其中c为焦距。

设椭圆上任意一点为P(x,y),则根据椭圆的定义,有:\[PF_1 + PF_2 = 2a\]根据点到定点的距离公式,可以得到:\[\sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a\]整理得到:\[(x-c)^2 + y^2 = (2a \sqrt{(x+c)^2 + y^2})^2\]展开并整理得到:\[x^2 2cx + c^2 + y^2 = 4a^2 4a\sqrt{(x+c)^2 + y^2} + (x+c)^2 + y^2\]化简得到:\[x^2 2cx + c^2 + y^2 = 4a^2 4a\sqrt{x^2 + 2cx + c^2 + y^2} + x^2 + 2cx + c^2 + y^2\]消去相同的项并整理得到:\[4a\sqrt{x^2 + 2cx + c^2 + y^2} = 4a^2 2cx\]两边平方得到:\[16a^2(x^2 + 2cx + c^2 + y^2) = (4a^2 2cx)^2\]展开并整理得到:\[16a^2x^2 + 32a^2cx + 16a^2c^2 + 16a^2y^2 = 16a^4 16a^2cx + 4c^2x^2\]化简得到:\[16a^2x^2 + 16a^2y^2 = 16a^4 16a^2c^2 4c^2x^2\]移项并整理得到:\[20a^2x^2 + 16a^2y^2 = 16a^4 16a^2c^2\]将等式两边同时除以16a^4得到:\[\frac{x^2}{a^2} + \frac{y^2}{(a^2 c^2)} = 1\]由于椭圆的半轴长满足a > c,所以可以令b = √(a^2 c^2),代入得到椭圆的标准方程:\[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\]至此,我们成功推导出了椭圆的标准方程。

3.1.1椭圆的标准方程

3.1.1椭圆的标准方程
定点间距离的大小关系发生变化时动点
的轨迹会发生什么变化?
问题 当动点到两定点间距离和等于
两定点间的距离时,动点的轨迹是什么?
问题 动点到两定点间距离和能小于
两定点间的距离吗?
椭圆的定义
我们把平面内与两个定点F1,F2的距离的和等于常数(大于|
F1F2|)的点的轨迹叫做椭圆(ellipse).
这两个定点叫做椭圆的焦点(focus).
两焦点间的距离叫做椭圆的焦距(focus distance).
焦距的一半称为半焦距.
椭圆的标准方程
问题 用坐标法求椭圆方程的基本步骤是什么?




明确椭圆上的点
满足的几何条件
将几何条件转化为代
数表示,列出方程
问题 如何建立坐标系可能使椭圆的方程形式简单?
y
F2
M
y
MF1O源自yyOF2 x x
O
x
方案一
2 + + 3 2 = 10,那么点M的轨迹是什么曲线?为什么?写出它的
方程.
3.写出适合下列条件的椭圆的标准方程:
(1)焦点坐标分别为(0, − 4),(0,4),a=5;
(2) a+c=10,a − c=4 .
3.1.1 椭圆及其标准方程
第二课时
复习回顾
椭圆的定义: 我们把平面内与两个定点F1,F2的距离的和等于常数
段 ,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是什
么?为什么?
解: 设M (x,y), 0 , 0 ,则 0 , 0 .
则有 = 0 , =
0
.
2
则0 = , 0 = 2.

椭圆的定义、标准方程与应用(例题详解)

椭圆的定义、标准方程与应用(例题详解)

椭圆的定义、标准方程与应用(例题详解)一、定义类:1、椭圆定义:椭圆是一种中心对称的图形,即椭圆的中心点与形状对称,可以通过对称轴对椭圆进行对称变换。

具体而言,当你沿着对称轴将椭圆的一段变换至另一段时,整个椭圆的线段形式都不变。

椭圆也有自己的焦点,它是椭圆的特征,椭圆上每个点到它的焦点之间的距离总是一定的。

如果一个图形有以上特征,那么它就可以称为椭圆。

2、已知点A( -2,0),B(2,0),动点P满足|PA| + |PB| = 4,求点P的轨迹。

3、已知点A( -2,0),B(2,0),动点P满足|PA| - |PB| = 2,求点P的轨迹。

二、椭圆的标准方程:1、椭圆的标准方程是一种二次曲线函数,是用来表达椭圆的函数。

2、椭圆的标准方程有两种形式,一种是椭圆的极坐标方程,一种是椭圆的笛卡尔坐标方程。

3、椭圆的极坐标方程为:①、$$r=frac{acdot b}{sqrt{a^2cdot sin^2theta + b^2cdot cos^2theta}}$$。

②、a和b分别是椭圆的长轴和短轴,$theta$是弧度。

4、椭圆的笛卡尔坐标方程为:$$frac{x^2}{a^2}+frac{y^2}{b^2}=1$$;其中,a和b分别是椭圆的长轴和短轴,$(x,y)$是椭圆上一点的坐标。

三、椭圆的面积和周长:1、椭圆的面积可以使用一下公式来计算:$$S = picdot a cdot b$$;其中,a和b分别是椭圆的长轴和短轴,S是椭圆的面积。

2、椭圆的周长也可以使用一下公式来计算:$$L = picdot sqrt{2a^2+2b^2}$$;其中,a和b分别是椭圆的长轴和短轴,L是椭圆的周长。

四、标准形式类:1、已知椭圆的方程为 + = 1(a > b > 0),过点P(2,1)且与该椭圆有一个交点的直线方程为:y-1=k(x-2),求k的取值范围。

2、已知椭圆的方程为 + = 1(a > b > 0),过点P(0,2)且与该椭圆有一个交点的直线方程为:y=x+2,求k的取值范围。

2019-数学选修2-12.2椭圆的标准方程-文档资料

2019-数学选修2-12.2椭圆的标准方程-文档资料

圆的标准方程。
y
解:以两焦点 F1, F2 所在 待定系数法
直线为X轴,线段 F1F2
的垂直平分线为y轴,建立
平面直角坐标系xOy。
F1 0
M
F2
x
则这个椭圆的标准方程为:
x2 y2 1(ab0)
所以:b2=1.52-1.22=0.81 因此,这个椭圆的方程为:
a2 b2
x2
y2
根据题意:2a=3, 2c=2.4,
F 1 2 2 ,0,F 2 2 2 ,0 F 1(0, 3) ,F 2(0,3)
(3)x22y2 4 (4)16x29y2144
F 1 2 ,0 ,F 22 ,0 F 1 0 ,7 ,F 20 ,7
示例1:已知一个运油车上的贮油罐 横截面的外轮廓线是一个椭圆,它 的焦距为2.4m,外轮廓线上的点到 两个焦点距离的和为3m,求这个椭
y2 x2 a2 b2 1 (ab0) (2)
y
F1 O F2 x y
问题1
椭圆的标准方程的特点:
F2
1、方程的右边是常数1;
O
x
2、方程的左边是和的形式,每一项的分 F1
子是 x2、y2,分母是一个正数。
问题2
根据上述讨论,如何判断椭圆的焦点的位置?
若 x2 项的分母大,则其焦点就在 x 轴上, 若 y2 项的分母大,则其焦点就在 y 轴上.
(2)焦点在y轴上时: x2 y2 1 16 25
4、若动点P到两定点F1(-4,0), F2(4,0)的距离之和为8,则动点
P的轨迹为( B )
A. 椭圆
B. 线段F1F2
C. 直线F1F2 D. 不存在

椭圆及其标准方程

椭圆及其标准方程

椭圆及其标准方程1.椭圆的定义:平面内与两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.注意:定义中的常数用2a表示,|F1F2|用2c表示,当2a>2c>0时,轨迹为椭圆,当2a=2c 时,轨迹为线段F1F2;当2a<2c时,无轨迹.这样,椭圆轨迹一定要有2a>2c这一条件.另外,应用定义来求椭圆方程或解题时,往往比较简便.2.椭圆的标准方程当焦点在x轴上时:+ =1(a>b>0)当焦点在y轴上时:+ =1(a>b>0)注意:(1)三个量之间的关系:a2=b2+c2(2)由x2,y2的分母大小确定焦点在哪条坐标轴上,x2的分母大,焦点就在x轴上,y2的分母大,焦点就在y轴上.(3)在方程Ax2+By2=C中,只有A、B、C同号时,才可能表示椭圆方程.(4)当且仅当椭圆的中心在原点,其焦点在坐标轴上时,椭圆的方程才具有标准形式.典型例题例1 求与椭圆+ =1共焦点,且过点M(3,-2)的椭圆方程.解法一:(待定系数法)由已知椭圆方程+ =1得C2=9-4=5,且焦点在x轴上,设所求椭圆方程为+ =1又∵点M(3,-2)在椭圆上∴+ =1,得a4-18a2+45=0∴a2=15或a2=3<5=C2(舍)∴所求椭圆方程为+ =1解法二:(定义法)椭圆两焦点为F1(- ,0),F2( ,0),点M(3,-2)到这两个焦点距离之和是2a,即2a=|M1F1|+|M1F2|= + =2∴a2=15 b2=a2-c2=15-5=10∴所求椭圆方程为+ =1例2 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1( ,1),P2(- ,- ),求椭圆的方程.解:设椭圆方程为mx2+ny2=1,(m>0,n>0)由题意有解得m= ,n=∴所求椭圆方程为+ =1说明:设椭圆方程为mx2+ny2=1(m>0,n>0)可免讨论焦点的位置,而且计算简便.例3 已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作焦点所在轴的垂线恰好过椭圆的一个焦点,求椭圆方程.解:设两个焦点为F1F2,且|PF1|= ,|PF2|=由椭圆定义知2a=|PF1|+|PF2|=2 ∴a=而|PF1|>|PF2|知PF2与焦点所在的对称轴垂直.∴Rt△PF2F1中,sin∠PF1F2= =∴∠PF1F2=2C=|PF1|cos =∴b2=a2-c2=故所求方程为+ y2=1或x2+ =13.(代入法)与椭圆有关的轨迹问题:常用的方法有定义法,坐标转移法,交轨法,点差法. 例4 已知圆C1:x2+y2+4x-12=0与圆C2:x2+y2-4x=0,动圆C与C1相内切,且与C2相外切,求动圆圆心的轨迹方程.解:圆C1与C2的标准方程是(x+2)2+y2=16,(x-2)2+y2=4圆心分别为C1(-2,0),C2(2,0)设动圆P的圆心为P,半径为r,有|PC1|=4-r,|PC2|=2+r∴|PC1|+|PC2|=6>|C1C2|=4∴P点在椭圆上运动,又2a=6,2c=4,∴b2=a2-c2=5∴P的轨迹为+ =1(在已知圆C1内)例5 已知MN是椭圆+ =1(a>b>0)中垂直于长轴的动弦,AB是椭圆长轴的两端点,求直线MA与NB的交点P的轨迹方程.解:设M、N的坐标为M(x0,y0),N(x0,-y0),又A(-a,0),B(a,0)所以直线AM的方程为y= (x+a) ①直线BN的方程为:y= ②①×②得:y2= (x2-a2) ③∵点M(x0,y0)在椭圆上,∴b2x20+a2y20=a2b2∴x20-a2=- y02,代入得③得:y2= (x2-a2)∴交点P的轨迹方程为- =1例6已知椭圆+y2=1(1)求斜率为2的平行弦的中点轨迹方程(2)过A(2,1)引椭圆的割线,求截得的弦中点轨迹方程(3)求过点P( ,),且被P平分的弦所在的直线方程.解:(点差法)设弦的两端点分别为M(x1,y1)N(x2,y2)、MN的中点为P(x,y),则x21+2y21=2,x22+2y22=2,两式相减弄除以(x2-x1)得:x1+x2+2(y1+y2) =0而x1+x2=2x,y1+y2=2y∴x+2y· =0 (*)(1)将=2代入(*)式得所求的轨迹方程为x+4y=0(椭圆内部分)(2)将= 代入(*)式,得所求的轨迹方程为x2+2y2-2x-2y=0(椭圆内部分)(3)将x1+x2=1,y1+y2=1代入(*)式,得=-∴所求的直线方程为2x+4y-3=0例7已知中心在原点,一焦点为F(0,)的椭圆被直线l:y=3x-2截得弦的中点横坐标为,求椭圆方程.解:∵C= ,∴a2=b2+50∴可设椭圆方程为+ =1把直线y=3x-2代入椭圆方程整理得10(b2+5)x2-12b2x-b4-46b2=0∴x1+x2=又∵=∴12b2=10b2+50解得b2=25 a2=75∴所求的椭圆方程为+ =1例8已知P为椭圆+ =1上的一点,F1F2是椭圆上的两焦点,∠F1PF2=60°,求△F1PF2的面积.解:∵= |PF1|·|PF2|sin∠F1PF2∴只需求|PF1|·|PF2|即可又|PF1|+|PF2|=10|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°=4C2=64解得|PF1|·|PF2|=12∴= ×12× =3例9已知方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,求实数k的取值范围.解:结合椭圆的变形方程式a2y2+b2x2-a2b2=0从而有:2(k2-2)>0 k<- 或k>k2≠0解得k≠0k2-k-6<0 -2<k<32(k2-2)≠k2k≠±2∴k∈(-2,- )∪( ,2)∪(2,3)例10△ABC的三边a>b>c,且a+c=2b,|AC|=2,求顶点B的轨迹.解:以AC的中点为坐标原点建立坐标系,则A(-1,0),C(1,0),又a+c=2b=4由椭圆的定义知B点在椭圆上运动.∵a>b>c,且A、B、C三点不共线∴B点的轨迹方程是椭圆+ =1,在y轴左侧的部分,但要去掉点(-2,0),(0,),(0,- )核心知识1.椭圆+ =1(a>b>0),范围:椭圆位于直线x=±a和y=±b所围成的矩形里,即|x|≤a,|y|≤b.2.对称性:椭圆关于x轴,y轴和原点都是对称的.坐标轴为椭圆的对称轴,原点是椭圆的对称中心,即为椭圆的中心.3.顶点:椭园与坐标轴的交点为椭圆的顶点为A1(-a,0),A2(a,0),B1(0,b),B2(0,-b)4.离心率:e= ,(o<e<1),e越接近于1,则椭圆越扁;e越接近于0,椭圆就越接近于圆.5.椭圆的第二定义:平面内的点到定点的距离和它到定直线的距离的比为常数e(0<e<1=的点的轨迹.定点即为椭圆的焦点,定直线为椭圆的准线.6.椭圆的焦半径公式:设P(x0,y0)是椭圆+ =1(a>b>0)上的任意一点,F1、F2分别是椭圆的左、右焦点,则|PF1|=a+ex0,|PF2|=a-ex0.7.椭圆的参数方程典型例题例1 设直线l过点P(-1,0),倾角为,求l被椭圆x2+2y2=4所截得的弦长.解:直线l的方程为y= x+ ,代入椭圆方程,得7x2+12x+2=0,∵△=144-4×7×2=88∴弦长= =例2 求椭圆+ =1上的点到直线3x+4y-64=0的最长距离与最短距离.解:设椭圆上的点为(5cosθ,9sinθ),则d= ==∴d max=例3 已知椭圆+ =1内有一点P(1,-1),F是右焦点,M是椭圆上的动点,求|MP|+2|MF|的最小值,并求此时M的坐标.解:过M作右准线x=4的垂线,垂足为M1,由椭圆第二定义,有= ∴2|MF|=|MM1|∴|MP|+2|MF|=|MP|+|MM1|过P作右准线的垂线交椭圆于N,垂足为N1,垂线方程为y=-1.显然|MP|+|MM1|≥|NP|+|NN1|(当M与N重合时等号成立)而|NP|+|NN1|=|PN1|=3由方程组得N( ,-1)∴|MP|+2|MF|的最小值是3,此时M的坐标是( ,-1)例4 P是椭圆方程为+ =1上的任意一点,F1,F2是椭圆的两个焦点,试求|PF1|·|PF2|的取值范围.解:设|PF1|=t,则t∈[a-c,a+c],即t∈[4- ,4+ ]且|PF2|=2a-t=8-t.∴|PF1|·|PF2|=t(8-t)=-(t-4)2+16 t∈[4- ,4+ ]当t=4时,取最大值为16当t=4± 时,取最小值为9.∴所求范围为[9,16]例5 F1、F2是椭圆的两个焦点,过F2作一条直线交椭圆于P、Q两点,使PF1⊥PQ,且|PF1|=|PQ|,求椭圆的离心率e.解:如下图,设|PF1|=t,则|PQ|=t,|F1Q|= t,由椭圆定义有:|PF1|+|PF2|=|QF1|+|QF2|=2a∴|PF1|+|PQ|+|F1Q|=4a 即( +2)t=2a,t=(4-2 )a∴|PF2|=2a-t=(2 -2)a在Rt△PF1F2中,|F1F1|2=(2c)2∴[(4-2 )a]2+[(2 -2)a]2=(2c)2∴=9-6 ∴e= = -双曲线1.双曲线的定义平面内与两定点F1、F2的距离差的绝对值是常数(大于零小于|F1F2|)的点的轨迹叫双曲线.两定点F1、F2是焦点,两焦点间的距离|F1F2|是焦距,用2c表示.常数用2a表示.(1)若|MF1|-|MF2|=2a时,曲线只表示焦点F2所对应的一支双曲线.(2)若|MF1|-|MF2|=-2a时,曲线只表示焦点F1所对应的一支双曲线.(3)若2a=2c时,动点的轨迹不再是双曲线,而是以F1、F2为端点向外的两条射线.(4)若2a>2c时,动点的轨迹不存在.2.双曲线的标准方程- =1(a>0,b>0)焦点在x轴上的双曲线;- =1(a>0,b>0)焦点在y轴上的双曲线.判定焦点在哪条坐标轴上,不像椭圆似的比较x2、y2的分母的大小,而是x2、y2的系数的符号,焦点在系数正的那条轴上.典型例题例1 若方程+ =1表示双曲线,则实数m的取值范围是( )A.-3<m<2或m>3B.m<-3或m>3C.-2<m<3D.-3<m<3或m>3分析该方程表示双曲线,则x2与y2项的系数的符号相反,即(2-m)(|m|-3)<0,将问题转化为不等式的求解.答:A例2 求与椭圆+ =1共焦点,且过点(3 ,)的双曲线的方程.分析一由题意知所求双曲线的焦点在x轴上,且焦距为8,∴c=4,设所求双曲线方程为- =1代入点(3 ,),得λ2=7,故所求双曲线方程为- =1.分析二运用与椭圆共焦点的曲线系方程.设所求双曲线方程为+ =1,代入点(3 ,),得λ=16或λ=-7(舍),故所求双曲线方程为- =1.例3 课本第108页习题8.3第一题:△ABC一边的两个端点是B(0,6)和C(0,-6),另两边所在直线的斜率之积是,求顶点A的轨迹.分析其顶点A的轨迹方程求得:- =1(x≠0).若将问题一般化:B(0,a)、C(0,-a)·k AB·k AC= ,则顶点A的轨迹方程为:- =1(x≠0).若B(bcotφ,acosφ)、C(-cotφ,-acscφ).k AB·k AC= ,则顶点A的轨迹会是怎样?反之,双曲线- =1(x≠0)上任一点到B(0,a),C(0,-a)两点的连线的斜率之和,等于;若改变B、C的位置保持B、C两点关于原点对称于双曲线上,k AB·k AC是否成立.总之,同学们在学习过程中要多动手、多思考,举一反三,做到“以点代面,以少胜多”.例4一动圆与圆(x+3)2+y2=1外切又与圆(x-3)2+y2=9内切,求动圆圆心轨迹方程.分析如图,设动圆M与⊙O外切于A,与⊙O2内切于B,由位置关系可得数量关系:|MO1|=|MA|+1 |MO2|=|MB|-3由|MA|=|MB|可得|MO1|-|MO2|=4由定义可知M点轨迹为双曲线的一支.解:如图,设动圆圆心M坐标为M(x,y),圆M与圆O1外切于A,与圆O2内切于B,则,MO1=|MA|+1,①|MO2|=|MB|=3②,①-②:|MO1|-|MO2|=4由双曲线定义知,M点轨迹是以O1(-3,0)O2(3,0)为焦点2a=4的双曲线的右支∴b2=32-23=5∴所求轨迹方程为:- =1(x≥2)说明:在求轨迹方程时,要注意使用曲线的定义,此时的思路:位置关系(内切,外切)数量关系(|MO1|=r1+r0,|MO2|=r-r2其中r为动圆半径曲线形状写出标准方程,可以简化运算.同时应注意定义中是到两定点距离的绝对值,此时不含绝对值,要求|MO1|>|MO2|,所以是双曲线的右支,而不是整个双曲线.例5过双曲线- =1的右焦点作倾角为45°的弦,求弦AB的中点C到右焦点F 的距离,并求弦AB的长.分析将直线方程与双曲线方程联立,求出A、B两点的坐标,再求其中点,由两点的距离公式求出|CF|.解:∵双曲线的右焦点为F(5,0),直线AB的方程为y=x-5,故16x2-9y2-144=0 ①y=x-5 ②消去y,并整理得7x2+90x-369=0 ③此方程的两个根x1、x2是A、B两点的横坐标,设AB的中心点C的坐标为(x,y),则x===- .C点的坐标满足方程②,故y=- -5=-∴|CF|==(5+ )=又设A点坐标为(x1,y1),B点坐标为(x2,y2),则y1=x1-5,y2=x2-5.∴y1-y2=x1-x2,|AB|====由方程③知x1+x2=- ,x1·x2=-∴|AB|====27点评:利用韦达定理及两点间距离公式求弦长核心知识1.双曲线- =1的简单几何性质(1)范围:|x|≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x轴、y轴及原点中心对称。

椭圆标准方程的教案6篇

椭圆标准方程的教案6篇

椭圆标准方程的教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如心得体会、演讲致辞、合同协议、规章制度、条据文书、应急预案、策划方案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as insights, speeches, contract agreements, rules and regulations, policy documents, emergency plans, planning plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!椭圆标准方程的教案6篇教案的编写需要充分考虑学生的学习特点和需求,教案能够帮助教师更好地设计评价方式,准确评估学生的学习成果和进步,本店铺今天就为您带来了椭圆标准方程的教案6篇,相信一定会对你有所帮助。

椭圆及其标准方程

椭圆及其标准方程
2.1.1 椭圆及其标准方程(一)
要点 1
椭圆的定义 (大于
平面内与两定点 F1、F2 的距离之和 等于常数 |F1F2|)的点的轨迹叫做椭圆。 这两个定点 点. 两焦点间的距离 叫做椭圆的焦距.
叫做椭圆的焦
要点 2
椭圆的标准方程
(1)这里的“标准”指的是中心在 原点 ,对称轴为 坐标轴. x2 y2 (2)焦点在 x 轴时,标准方程为a2+b2=1(a>b>0);焦点在 y y2 x2 轴时,标准方程为a2+b2=1(a>b>0).为了计算上的方便,有时将 方程写为 mx2+ny2=1(m>0,n>0,m≠n). (3)标准方程中的两个参数 a 和 b, 确定了椭圆的形状和大小, 是椭圆的定形条件.
(4)椭圆的两种标准方程中,如果 x2 的分母大,焦点就在x 轴 上;如果 y2 的分母大,则焦点就在 y 轴 上. (5)椭圆的方程中,a、b、c 三者之间 a 最大,且满足
a2=b2+c2 .
1.椭圆定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小 于|F1F2|”的常数,其他条件不变点的轨迹是什么?
解析
设椭圆方程为 mx2+ny2=1(m>0,n>0 且 m≠n),
椭圆经过 P1,P2 点,所以 P1,P2 点坐标适合椭圆方程,
6m+n=1 有 3m+2n=1
① ②
1 1 x2 y2 解得 m= ,n= ,∴所求椭圆方程为 + =1 9 3 9 3
探究 3
方程 mx2+ny2=1(m>0,n>0 且 m≠n)表示椭圆:若
m<n,则焦点在 x 轴上;若 n<m,则焦点在 y 轴上。 思考题 3 求经过两点 A(3, 3),B(2,3)的椭圆标准方程.

椭圆的标准方程

椭圆的标准方程

2.2椭圆2.2.1椭圆及其标准方程1.椭圆定义:我们把平面内与两个定点1F ,2F 的距离的和等于常数(大于21F F )的点的轨迹叫做椭圆. 这两个定点叫做椭圆的 ,两交点间的距离叫做椭圆的 .(1)我们将常数记为a 2,注意:当a F F 221=时,其轨迹为线段1F 2F ;当a F F 221>时,其轨迹不存在(2)椭圆定义的表达式为)02(22121>>=+F F a a PF PF .它是点P 在椭圆上的充要条件.(3)椭圆定义的集合语言表示}02,2{2121>>=+=F F a a PF PF P2.求椭圆的方程:已知,椭圆的焦距为c 2,椭圆上任意一点M 与1F ,2F 的距离的和等于a 2. 以经过椭圆两焦点1F ,2F 的直线为x 轴,线段1F 2F 的垂直平分线为y 轴,建立直角坐标系xOy .写出椭圆的方程.例1:椭圆的两个焦点坐标分别为1F )0,8(-,2F )0,8(,且椭圆上一点到两个焦点的距离之和为20,则此椭圆的方程为( )..A 11003622=+y x .B 133640022=+y x .C 13610022=+y x .D 1122022=+y x 如果我们把条件改成1F )8,0(-,2F )8,0(,此时椭圆的方程为( )2.已知方程112522=-+-m y m x 表示焦点在y 轴上的椭圆,求实数m 的取值范围.3.已知过椭圆1162522=+y x 的右焦点2F 的直线AB 垂直于x 轴,交椭圆于A ,B 两点,1F 是椭圆的左焦点,(1)求B AF 1∆的周长. (2)如果AB 不垂直于x 轴,那么B AF 1∆的周长有变化吗?为什么?椭圆焦点在x轴上焦点在y轴上标准方程图形焦点(顶点)坐标长轴长短轴长范围对称性离心率准线方程焦半径公式备注2.2.2椭圆的简单几何性质1.离心率我们把椭圆的焦距与长轴长的比a c 称为椭圆的离心率. 用e 来表示,即ac e =. 注:因为o c a >>,所以10<<e ,e 越接近1,则c 越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近0,则c 越接近0,从而b 越接近于a ,此时椭圆越接近于圆. 当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆形,方程为222a y x =+. 例:判断下列每组椭圆的形状,哪一个更圆,哪一个更扁?为什么?1121622=+y x 与36922=+y x 36922=+y x 与110622=+y x 2.椭圆的第二定义若动点),(y x P 和顶点)0,(c F 的距离与它到定直线l :ca x 2=的距离的比是常数a c e =(o c a >>),则动点P 的轨迹是椭圆.这里面:F 是 ;定直线l 叫做椭圆的 ;ac e =是 直线与椭圆1.直线与椭圆的位置关系直线与椭圆的位置关系可以通过讨论椭圆方程与直线方程组成的方程组的实数解的个数来确定.通常用消元后的关于x (或y )的一元二次方程的判别式∆来判定则有⇔>∆0直线与椭圆相交;⇔=∆0直线与椭圆相切;⇔<∆0直线与椭圆相离.2.弦长公式一条直线别椭圆所截得的线段叫做椭圆的弦,直线与椭圆相较于不同的两点),(11y x A ,),(22y x B ,则直线别椭圆所截得的弦长公式为2121||x x k AB -+=或21211||y y k AB -+= 例:已知斜率为1的直线l 过椭圆1422=+y x 的右焦点,交椭圆于A ,B 两点,求弦长AB 的长.。

3.1.1椭圆及其标准方程

3.1.1椭圆及其标准方程

的值为( )
A.1
B.2 C.3 D.4
【答案】B
【解析】因为椭圆 x2
9
y2
1 ,所以 a 3 ,设椭圆的另一个焦点为 F2 ,则
AF2
2a 2 6 2 4 ,
而 OB 是△AF1F2 的中位线,所以 OB
AF2 2
2.
故选:B.
2.已知椭圆
x2 a2
y2 b2
1(a
b
0) ,M
4.椭圆 x2 y2 1的焦距为(

10 2
A. 4 2
B. 4 3
C. 2 2
D. 2 3
【答案】A
【解析】在椭圆 x2 y2 1 中, a 10 ,b 10 2
因此,椭圆 x2 y2 1的焦距为 2c 4 2 . 10 2
2 ,则c
a2 b2 2 2 ,
故选:A.
5.已知椭圆 x2 y2 1 的焦点在 x 轴上,焦距为 4,则 m 等于( )
又焦距为 4, 2m 12 2 ,得 m 8 . 故选: A .
6.设
F1
,F2
是椭圆
x2 16
y2 4
1 的左右焦点,过 F1 的直线l
交椭圆于 A
,B 两点,则 AF2
BF2
的最大值为( )
A.14
B.13
C.12
D.10
【答案】A
【解析】因为 AF1 AF2 BF1 BF2 4a 16,所以 AB AF2 BF2 16 ,
(2)注意事项:将定义中的常数记为 2a,则 当 2a> |F1F2|时,点的轨迹是椭圆. 当 2a=|F1F2|时,点的轨迹是线段 F1F2 当 2a<|F1F2|时,点的轨迹不存在.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
(
5 2
2)
2

(
3 2
)
2
(
5 2
2)
2

10 10 ,
10
2
a b
2
10 . 又 c 2 , a
2
c
2
10 4 6 .
所以所求的椭圆的标准方程为
y
2
10

x
2
6
1.
请同学们结合所讲再看看书,谈谈求椭圆标准 方程的方法和步骤:
请同学回答
分析: 因为B(-3,0),C(3,0) 所以|BC|=6 又三边|AC|, |BC| , |AB|长依次成等差数列
AC AB 2 BC 12
A
根据例题同理可知
A点的轨迹方程是
x
2 2
36

y
B
C
27
1 ( y 0 )
板书请学生在草稿纸上完成!
请同学们思考:
2 2
a
2
b
2
因为2a=10, 2c=8

a= 5, c=4
b 2 a 2 c 2 52 42 9
所以所求椭圆的标准方程为
x
2
25

y
2
9
1.
(2) 因为椭圆的焦点在y轴上,所以设它的标准方程为
y a
2 2

x b
3 2
2 2
1 (a>b>0)
由椭圆的定义知,
2a 3 2 ( ) 1 2
x
2
m
+
y
2
B.8
4
=1的焦距是2,则m的值( C.5或3 D.20

课时小结:
1. 讨论了求椭圆标准方程的方法:
注意:求出曲线的方程之后,要 验证方程的曲线上的点是否都符 合题意,如有不符合题意的点应 在所得方程后注明限制条件。
2. 求满足条件的点的轨迹方程时:
(1)若不清楚轨迹类型:用坐标法;
首先,根据题意设出标准方程
其次,根据条件确定a,b的值
第三,写出椭圆的标准方程
A
例2 已知B,C两个定点, BC 且
ABC
6
B
C
的周长等于16 求顶点A的轨迹方程
分析 在解析几何中,求符合某种条件的点的轨迹方程 要建立适当的坐标系。 在 长为16, 常数。即
BC 6
ABC
中, ABC 的周
可知,点A到B,C两点的距离为
AB AC 16 6 10
因此,点A的轨迹是以B,C为焦点的椭圆
解 建立坐标系,使x轴经过B,C,原点0与B,C的中点重合
由已知 有
AB AC BC 16 , BC 6
AB AC
10
y
A
即点A的轨迹是椭圆 且 2c=6 , 2a=16-6=10
(2)若清楚轨迹类型,则建立适当 的坐标系,设出其方程,在确定方 程中的参数即可。
课堂作业:
P96: 2, 3
全旺(古称清平乡)是一个有着一千多年历史的衢南重镇,地属浙江省衢州市,位于衢江区东南边陲,地处衢南半山区,东西宽14.34公里,南北 长16.5公里,东北与高家镇、龙游县的詹家镇、官潭乡、灵山乡毗邻,西南与横路办事处、大洲镇、龙游县庙下乡接壤。衢州市衢江区全旺是 一个有着一千多年历史的衢南重镇,总面积98.93平方公里。 [2] ; / 全旺娱乐 全旺娱乐登录 全旺娱乐注册 全旺娱乐官网 kfh96ndg 全旺古称清平乡,境内方言为吴语衢县南乡话。全旺古村落较多,其中楼山后村历史最为悠久。官塘村境内有浙江省文物保护单位两弓塘窑址。 全旺人大多数为衢县南乡土著,其中立新村以及尹家村一部分为淳安移民,大龙坑、赛东坞有一部分是福建汀州的客家移民,黄毛畈、柴公岗、 岩头、大龙坑等村有江西广丰籍移民。 全旺近三万人口中,王姓、徐姓、毛姓、周姓、郑姓、汪姓、邱姓、袁姓居多,每个村楼都有较强的宗亲观念。 务就算是完成了;反正凝儿也没有来,托四福晋在德妃娘娘面前美言的事情也只能以后再找机会。于是年夫人在福晋回了屋后,赶快起身: “福晋,我们今天登门已经是讨扰了,今天可是大年,不能再耽搁王府的正经事,这就告辞了。”“唉,年夫人,这才坐下没壹会儿功夫,怎 么说走就走呢。”“福晋,谢谢您的款待,只是这番讨扰很是过意不去,来日方长。今天就先给您提前拜年了,玉盈恭祝您大富大贵、福寿连 连。”“哎呀呀,这玉盈姑娘真是知书达礼,说出来的吉祥话儿也这么动听,真不知道将来谁家的公子有福气能娶了回去。”“福晋说笑了, 小女还差得远呢,以后有机会福晋可得多调教才是。”“年夫人也是说笑了,这么有教养的姑娘,可是得睁大眼睛找个好人家呢。”“多谢福 晋吉言。我们这就告辞了。”“好吧,既然你们执意要走,我也不强求了,咱们这就算是见了面,以后相互也多走动,人还不是越走动越亲近 嘛。”“是,是。谢谢福晋。”“红莲,送客。”因为爷刚才来了前院,也不知道走没有,于是红莲就将年夫人和玉盈从侧门领出了霞光苑, 再由嬷嬷送到府门口。听到玉盈的声音,王爷的心中就像是有壹股清泉流过,甘甜清洌,沁人心脾,那颗烦乱浮燥的心,刹那间平静下来。原 来玉盈姑娘的声音竟是这么的美妙!略带苏州口音,夹杂在标准的京片子中,这星星点点的吴侬软语煞是动听,不,应该说,这就是天籁之音! 软若温玉,柔若轻风,娇若黄鹂。有着这么壹副如此甜美娇柔的嗓音,又有着那么令人钦佩的壹身侠肝义胆,玉盈姑娘,爷能如何不想你?第 壹卷 第二十四章 板指 年夫人和玉盈姑娘走了之后,霞光苑里可是真真地乱了套!全院上上下下,男男女女,主子奴才,壹个不落地全部行 动起来――给爷找板指!雅思琦也是奇怪,昨天爷过来的时候,确实是戴着板指,可是,爷早上梳洗的时候,秦顺儿这奴才不可能忘记了这么 重要的物件,况且,爷走后,她就是再忙得不可开交,那么重要的东西,她怎么可能没有发现?那个板指可是爷的心爱之物,翠绿翠绿,不掺 壹点儿杂色儿,水头儿那叫壹个好。这么重要的东西,如果落在了这里,怎么可能自己没有壹点儿印象?可是爷壹口咬定扳指就是落在了这里, 别说奴才了,就是她都不知道怎么去跟爷回话!短短这么两天的时间,快把她这霞光苑忙乱了套。先是年家女眷来访,今天可是大年三十,爷 居然同意在今天见客,还让立即回话同意;客人还没有坐壹会儿呢,爷又急急火火地来找板指,还特别肯定地说就落在她这里了。这些事情怎 么让人感觉这么蹊跷呢?可不管怎么样,既然爷壹口咬定了板指落在这里,那就是掘地三尺也得找出来。当然了,找得出来找不出
1. 椭圆的两个焦点分别是F1(-8,0)和F2(8,0), 且椭圆上一点到两个焦点的距离之和是20,则此 椭圆方程是_____________。 2. △ABC中,三边a、c、b成等差数列,且 a>c>b,若A(-1,0),B(1,0),则动点C的 轨迹方程为____________。 3. 椭圆 A.5
复习回顾:
1. 椭圆的定义:
(大于 平面内与两定点的距离的和等于常数 F1 F 2 )
的点的轨迹叫做椭圆。 这两个定点叫做 椭圆的焦点, 两焦点的距离叫做焦距
y
M
x
F1
o
F2
2. 椭圆的标准方程:
x a
2 2

y b
2 2
1
(a>b>0)

y a
2 2

x b
2 2
1 (a>b>0)
3. 求椭圆标准方程中共有几 个参数?有什么样的关系呢?
c 3 b
2
x B O C
a 5
2
5Βιβλιοθήκη 32 16
b 4
但当点A在直线BC上, 即y=0时,A,B,C三点不能构成三角形
点 A 的轨迹为 x
2
注意 求出曲线的方程后,要注意检查一下方程的曲线 上的点是否都是符合题义。
25

y
2
16
1 y 0
变题:
在平面直角坐标系中,已知三角形 ABC 中B(-3,0) C(3,0),且三边|AC|, |BC| , |AB|长依次成等差数列,求 顶点A的轨迹方程。
a b
2
2
a , b , c 都大于 0 c
2
例 求适合下列条件的标准方程:
(1) 两个焦点的坐标分别是(-4,0)、(4,0)
椭圆上一点P到两焦点距离的和等于10; (2) 两个焦点的坐标分别是(0,2)、(0,2) 并且椭圆经过点
( 3 2 , 5 2 )
解: (1)因为椭圆的焦点在x轴上,所以 设它的标准方程为 x y 1 (a>b>0)
相关文档
最新文档