2018-2019年天津市初中分班数学模拟试题(44)附详细答案
2021年中考数学模拟试题(44)(解析版)
2021年中考数学模拟试题一、选择题1. 若a 是最大的负整数,b 是绝对值最小的有理数,c 是倒数等于它本身的自然数,则代数式a 2017+2016b+c 2018的值为( )A. 2018B. 2016C. 2017D. 0【答案】D【解析】【分析】根据已知求出a=-1,b=0,c=1,代入求出即可.【详解】根据题意知a=-1、b=0、c=1,则原式=(-1)2017+2016×0+12018 =-1+0+1=0,故选D .【点睛】考查了绝对值、倒数、负数和求代数式的值等知识点,能根据题意求出a 、b 、c 的值是解此题的关键.2. 16的算术平方根是( )A. 4±B. 4-C. 2D. 4 【答案】D【解析】【分析】根据算术平方根的定义求解即可,如果一个正数x 的平方等于a ,即x 2=a ,那么x 叫做a 的算术平方根.【详解】16的算术平方根是.故选D .【点睛】本题考查了算术平方根的求法,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3. 如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是( )A. B. C. D.【答案】D【解析】【分析】正面看到的平面图形即为主视图.【详解】立体图形的主视图为:D ;左视图为:C ;俯视图为:B故选:D .【点睛】本题考查三视图,考查的是空间想象能力,解题关键是在脑海中构建出立体图形.4. 对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A. M =1,N =3B. M =﹣1,N =3C. M =2,N =4D. M =1,N =4 【答案】B【解析】【分析】先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得.【详解】解:21M Nx x ++- =()()()()1221M x N x x x -+++- =()()222M N x M N x x ++-++-∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.5. 如图,点A ,B ,C 在⊙O 上,∠A =50°,则∠BOC 的度数为( )A. 40°B. 50°C. 80°D. 100°【答案】D【解析】【分析】 由题意直接根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选:D .【点睛】本题考查圆周角定理的运用,熟练掌握圆周角定理是解题的关键.6. 如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再把△A 1B 1C 1绕点C 1顺时针旋转90°得到△A 2B 2C 1,则点A 的对应点A 2的坐标是( )A. (5,2)B. (1,0)C. (3,﹣1)D. (5,﹣2)【答案】A【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A2B2C1即所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.二、填空题7. 将201800000用科学记数法表示为_____.【答案】2.018×108.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将201800000用科学记数法表示为2.018×108. 故答案为2.018×108. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8. x 的取值范围是_____.【答案】x >2019【解析】【分析】根据二次根式的定义进行解答.x-2019≥ 0,所以x 的取值范围是x ≥ 2019.【点睛】本题考查了二次根式的定义,熟练掌握二次根式的定义是本题解题关键.9. 因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.10. 如果2(2a +=+,b 为有理数),则a =_____,b =_____.【答案】 (1). 6 (2). 4【解析】【分析】先计算出()2,再根据)2=可得答案.【详解】解:∵(2=+2=,∴a =6、b =4.故答案为6、4.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及完全平方公式.11. 若 m 、n 是方程 x 2+2018x ﹣1=0 的两个根,则 m 2n+mn 2﹣mn=_________.【答案】2019【解析】【分析】根据根与系数的关系得到 m+n=﹣2018,mn=﹣1,把 m 2n+mm 2﹣mn 分解因式得到 mn (m+n ﹣1),然后利用整体代入的方法计算.【详解】解:∵m 、n 是方程 x 2+2018x ﹣1=0 的两个根,20181m n mn +=-=-,,则原式=mn (m+n ﹣1)=﹣1×(﹣2018﹣1)=﹣1×(﹣2019)=2019,故答案为2019.【点睛】本题考查了根与系数的关系,如果一元二次方程 ax 2+bx+c=0 的两根分别为1 x 与2 x ,则1212 b c x x x x a a,.+=-⋅=解题时要注意这两个关 系的合理应用.12. 小强在最近的5场篮球赛中,得分分别为10、13、9、8、10分.若小强下一场球赛得分是16分,则小强得分的平均数、中位数和众数中,发生改变的是____【答案】平均数【解析】试题分析:根据众数、中位数、平均数的定义求解可得.解: 原数据8、9、10、10、13的平均数为15(8+9+10+10+13)=10,众数为10、中位数为10, 新数据8、9、10、10、13、16的平均数为16(8+9+10+10+13+16)=11,众数为10、中位数为10, ∴发生改变的是平均数.故答案为平均数.13. 如图,点M 、N 分别是正五边形ABCDE 的两边AB 、BC 上的点.且AM=BN ,点O 是正五边形的中心,则∠MON 的度数是_____度.【答案】72【解析】【分析】连接OA 、OB 、OC ,根据正多边形的中心角的计算公式求出∠AOB ,证明△AOM ≌△BON ,根据全等三角形的性质得到∠BON=∠AOM ,得到答案.【详解】如图,连接OA 、OB 、OC ,∠AOB=3605︒=72°, ∵∠AOB=∠BOC ,OA=OB ,OB=OC ,∴∠OAB=∠OBC ,在△AOM 和△BON 中, OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BON ,∴∠BON=∠AOM ,∴∠MON=∠AOB=72°, 故答案为72.【点睛】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14. 已知G 是直角三角形ABC 的内心,∠C =90°,AC =6,BC =8,则线段CG 的长为______.【答案】2【解析】试题分析: 作GD ⊥AC 于点D ,作GE ⊥BC 于E ,作GM ⊥AB 于M ,连接GA 、GB 、GC ,根据勾股定理求出AB ,根据三角形的面积公式得出S △ACB =S △GAC +S △GBC +S △GAB ,代入求出GE =2,由等腰直角三角形的性质和勾股定理即可得出CG 的长.解:作GD ⊥AC 于点D ,作GE ⊥BC 于点E ,作GM ⊥AB 于M ,连接GA 、GB 、GC .如图所示:设GM =r ,则GM =GD =GE =r ,∵AC =6,BC =8,∠C =90∘,由勾股定理得:AB =10,根据三角形的面积公式得:S △ACB =S △GAC +S △GBC +S △GAB , ∴12AC ×BC =12AC ×r +12BC ×r +12AB ×r , 即:12×6×8=12×6r +12×8r +12×10r , 解得:r =2.则GE =2,∵G 是直角三角形ABC 的内心,∴∠GCE =12∠C =45∘, ∴CG 2GE 2. 故答案为2.15. 如果抛物线221y x x m =++-经过原点,那么m 的值等于________.【答案】1【解析】【分析】将点(0,0)代入抛物线方程,列出关于m 的方程,然后解方程即可.【详解】解:根据题意,知点(0,0)在抛物线221y x x m -=++上,∴0=m -1,解得,m=1;故答案是:1.【点睛】本题考查了待定系数法求二次函数的解析式.解答该题需知:二次函数图象上的点的坐标,都满足该二次函数的解析式.16. 如图,在反比例函数图象中,△AOB是等边三角形,点A在双曲线的一支上,将△AOB绕点O顺时针旋转α (0°<α<360°),使点A仍在双曲线上,则α=_____.【答案】30°、180°、210°【解析】【分析】根据等边三角形的性质,双曲线的轴对称性和中心对称性即可求解.【详解】解:根据反比例函数的轴对称性,A点关于直线y=x对称,∵△OAB是等边三角形,∴∠AOB=60°,∴AO与直线y=x的夹角是15°,∴α=2×15°=30°时点A落在双曲线上,根据反比例函数的中心对称性,∴点A旋转到直线OA上时,点A落在双曲线上,∴此时α=180°,根据反比例函数的轴对称性,继续旋转30°时,点A落在双曲线上,∴此时α=210°;故答案为30°、180°、210°.【点睛】本题考查了反比例函数的综合运用,旋转的性质,等边三角形的性质.关键是通过旋转及双曲线的对称性得出结论.三、解答题17. 计算:-10 12sin452) 2π⎛⎫-︒⎪⎝⎭.【答案】3【解析】【分析】按顺序先分别进行负指数幂的计算、特殊角的三角函数值、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可. 【详解】-1012sin45+2+(2018-)2π⎛⎫-︒ ⎪⎝⎭=2-222⨯++1 =3.【点睛】本题考查了实数的混合运算,熟练掌握负指数幂的运算法则、特殊角的三角函数值、0次幂的运算法则是解本题的关键.18. 解方程:x 21x 1x-=-. 【答案】2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19. 我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?【答案】(1)该校对50名学生进行了抽样调查;(2)最喜欢足球活动的人占被调查人数的20%;(3)全校学生中最喜欢篮球活动的人数约为720人.【解析】【分析】(1)根据条形统计图,求个部分数量的和即可;(2)根据部分除以总体求得百分比;(3)根据扇形统计图中各部分占总体的百分比之和为1,求出百分比即可求解.【详解】(1)4+8+10+18+10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,10=20%50, ∴最喜欢足球活动的人占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×1850=720(人). 【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚的表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反应部分占全体的百分比的大小.20. 甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是 ;(2)任选两名同学打第一场,求恰好选中甲、乙两位同学的概率.【答案】(1)13(2)16【解析】【分析】(1) 直接利用概率公式求解;(2)共有乙、丙、丁三位同学,恰好选中甲、乙两位同学有12种情况.【详解】(1)(1)∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,∴P(恰好选中乙同学)=13;(2)随机选两位同学打第一场比赛,可能出现的结果有12种,即(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙),(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙),(丁,丙)、并且它们出现的可能性相等.恰好选中甲、乙两位同学(记为事件A)的结果有2种,即(甲,乙)、(乙,甲),所以P(A)=16.【点睛】本题考查列表法和树状图法,解题关键在于作出正确的判断.21. 已知2x﹣y=1,且﹣1<x<2,求y的取值范围.【答案】-3<y<3【解析】试题分析:利用2x-y=1变形,用含y的式子表示x,再根据-1<x<2列出不等式组,解之即可.解:由2x-y=1,得x=12y+,则由-1<x<2得:112122yy+⎧>-⎪⎪⎨+⎪<⎪⎩,解得:-3<y<3.22. 平行四边形ABCD中,过A作AE⊥BC,垂足为E,连DE、F为线段DE上一点,且∠1=∠B.求证:△ADF∽△DEC.【答案】证明见试题解析.【解析】试题分析:先由平行线的性质得出∠ADF=∠DEC,∠C+∠B=180°,再由∠1=∠B,∠1+∠AFD=180°可得出∠C=∠AFD,由此可得出结论.试题解析:证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠DEC,∠C+∠B=180°.∵∠1=∠B,∠1+∠AFD=180°,∴∠C=∠AFD,∴△ADF∽△DEC.考点:1.相似三角形的判定;2.平行四边形的性质.23. 某长方体包装盒的表面积为146cm2,其展开图如图所示.求这个包装盒的体积.【答案】这个包装盒的体积为90cm3【解析】试题分析:设这种长方体包装盒的高为x cm,则长为(13-2x)cm,宽为12(14-2x)cm.根据长方体表面公式,即可列出方程,求解即可.解:设高为x cm,则长为(13-2x)cm,宽为12(14-2x)cm.由题意,得,[(13-2x)12(14-2x)+12(14-2x)x+x(13-2x)]×2=146,解得:x1=2,x2=-9(舍去).∴长为:9cm,宽为:5cm.长方体的体积为:9×5×2=90cm3.答:这个包装盒的体积为90cm3.点睛:本题主要涉及立体图形的平面展开图、立体图形的表面积、体积.解题的关键是设高为x cm,利用长方体表面积公式建立方程.24. 如图,已知∠ABM=30°,AB=20,C是射线BM上一点.(1)在下列条件中,可以唯一确定BC长的是;(填写所有符合条件的序号)①AC=13;②tan∠ACB=125;③△ABC的面积为126.(2)在(1)的答案中,选择一个作为条件,画出示意图,求BC的长.【答案】(1)②③;(2)答案见解析.【解析】试题分析:根据给出的条件作出辅助线,根据锐角三角函数的概念和勾股定理求出BC的长,得到(1)(2)的答案.解:(1)②③;(2)方案一:选②作AD⊥BC于D,则∠ADB=∠ADC=90°.在Rt△ABD中,∵∠ADB=90°,∴AD=AB·sin B=10,BD=AB·cos B=3在Rt△ACD中,∵∠ADC=90°,∴CD=tan ADACB=256.∴BC=BD+CD=3256.25. 在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用32m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为252m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是17m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【答案】(1)18m或14m;(2)花园面积的最大值是255平方米.【解析】【分析】(1)根据AB=x米可知BC=(32-x)米,再根据矩形的面积公式即可得出结论;(2)根据P处有一棵树与墙CD、AD的距离分别是18米和8米求出x的取值范围,再根据(1)中的函数关系式即可得出结论.【详解】解:(1)设AB=x米,可知BC=(32-x)米,根据题意得:x(32-x)=252.解这个方程得:x1=18,x2=14,答:x的长度18m或14m.(2)设周围的矩形面积为S,则S=x(32-x)=-(x-16)2+256.∵在P处有一棵树与墙CD,AD的距离是17m和6米,∴6≤x≤15.∴当x=15时,S最大= -(15-16)2+256=255(平方米).答:花园面积的最大值是255平方米.【点睛】本题考查二次函数的应用,熟知矩形的面积公式及二次函数的增减性是解题关键.26. 阅读:已知△ABC,用直尺与圆规,在直线BC上方的平面内作一点M(不与点A重合),使∠BMC=∠BAC(如图1).小明利用“同弧所对的圆周角相等”这条性质解决了这个问题,下面是他的作图过程:第一步:分别作AB、BC的中垂线(虚线部分),设交点为O;第二步:以O为圆心,OA为半径画圆(即△ABC的外接圆)第三步:在弦BC上方的弧上(异于A点)取一点M,连结MB、MC,则∠BMC=∠BAC.(如图2)思考:如图2,在矩形ABCD中,BC=6,CD=10,E CD上一点,DE=2.(1)请利用小明上面操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P.点P满足:∠BPC =∠BEC,且PB=PC.(要求:用直尺与圆规作出点P,保留作图痕迹.)(2)求PC的长.【答案】(1)详见解析;(2)310【解析】【分析】(1)作BC 的垂直平分线,交BE 于点O ,以O 为圆心,OB 为半径作圆,交垂直平分线于点P ,则点P 为所求.(2)先根据AD=6,CD=10,DE=2知CE=8,BE=10,从而得OB=OP=5,再由BQ=CQ=12BC=3得OQ=4,再根据勾股定理求解可得.【详解】解:(1)如图所示,点P 即为所求:(2)∵CD =10,DE =2, ∴CE =8,∵BC =AD =6,∴BE =10,则OP =OB =5,∵BQ =CQ =12BC =3, ∴OQ =4,则PQ =9,∴PC 22CQ PQ +2239+=10.【点睛】本题考查作图-复杂作图,解题的关键是掌握圆周角定理、线段垂直平分线的尺规作图、矩形的性质及勾股定理等知识点.27. 如图,在Rt △ABO 中,∠BAO =90°,AO =AB ,BO =2,点A 的坐标(﹣8,0),点C 在线段AO 上以每秒2个单位长度的速度由A向O运动,运动时间为t秒,连接BC,过点A作AD⊥BC,垂足为点E,分别交BO于点F,交y轴于点D.(1)用t表示点D的坐标;(2)如图1,连接CF,当t=2时,求证:∠FCO=∠BCA;(3)如图2,当BC平分∠ABO时,求t的值.【答案】(1)(0,2t);(2)见解析;(3)t=421)【解析】【分析】(1)由已知条件可证明△ABC≌△OAD,根据全等三角形的性质即可求出点D的坐标;(2)由(1)的结论可证明△FOD≌△FOC,从而∠FCO=∠FDO,再根据(1)中△ABC≌△OAD,可得∠ACB=∠ADO,进而∠FCO=∠ACB得证;(3)在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK2m,根据角平分线的性质和三角形外角和定理可得KB=KC2m,从而求得m的值,进而t的值也可求出.【详解】解:(1)∵AD⊥BC,∴∠AEB=90°=∠BAC=∠AOD,∴∠ABC+∠BAE=90°,∠BAE+∠OAD=90°,∴∠ABC=∠OAD,∵AB=OA,∴△ABC≌△OAD(ASA),∴OD=AC=2t,∴D(0,2t).故答案为(0,2t);(2)如图1中,∵AB=AO,∠BAO=90°,OB=82,∴AB=AO=8,∵t=2,∴AC=OD=4,∴OC=OD=4,∵OF=OF,∠FOD=∠FOC,∴△FOD≌△FOC(SAS),∴∠FCO=∠FDO,∵△ABC≌△OAD,∴∠ACB=∠ADO,∴∠FCO=∠ACB;(3)如图2中,在AB上取一点K,使得AK=AC,连接CK.设AK=AC=m,则CK=2m.∵CB平分∠ABO,∴∠ABC=22.5°,∵∠AKC=45°=∠ABC+∠KCB,∴∠KBC=∠KCB=225°,∴KB=KC2m,∴m =8,∴m =81),∴t =81)2=4﹣1). 【点睛】全等三角形的判定和性质、角平分线的性质、三角形的外角和定理等知识都是本题的考点,熟练掌握相关知识并正确运用是解题的关键.。
2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式(含答案)
2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式一.选择题(共22小题) 1.(2020•津南区一模)计算2a (a+1)2+2(a+1)2的结果为( ) A .1B .2C .1a+1D .2a+12.(2020•和平区三模)计算a (a+b)2+b (a+b)2的结果为( ) A .1B .1a+1bC .a +bD .1a+b3.(2020•红桥区三模)计算2−x x−1+2x−3x−1的结果为( )A .2x−1x−1B .1C .1x−1D .24.(2020•河北区二模)化简x 2x−2+42−x的结果是( )A .x +2B .x +4C .x ﹣2D .2﹣x5.(2020•滨海新区二模)计算3x−1x−1+2−3x x−1的结果为( ) A .3x−1B .x ﹣1C .1x−1D .−1x−16.(2020•西青区二模)化简a 2a−1+1−2a a−1结果为( )A .a+1a−1B .a ﹣1C .aD .17.(2020•天津二模)计算x−2x−1+1x−1的结果为( )A .1B .1x−1C .12D .xx−18.(2020•滨海新区一模)计算3x(x−1)2−3(x−1)2的结果是( )A .3B .3x ﹣3C .xx−1D .3x−19.(2020•红桥区一模)计算2a−1a−1−1a−1的结果是( )A .2B .2a ﹣2C .1D .2aa−110.(2020•南开区二模)化简x 2+2xy+y 2x 2−y 2−y x−y的结果是( )A .xx−yB .y x+yC .xx+yD .yx−y11.(2020•和平区一模)计算22a+b+b 2a+b的结果为( )A .1B .2+bC .2−b2a+bD .2+b2a+b12.(2020•红桥区模拟)计算x+2x+1−x x+1的结果为( )A .1B .2C .2x+1D .2xx+113.(2020•西青区一模)化简x 2x−1+x 1−x的结果是( )A .xB .x ﹣1C .﹣xD .x +114.(2019•津南区二模)计算a a 2−b 2−1a−b的结果为( )A .bB .﹣bC .ba−bD .−b a 2−b215.(2019•西青区二模)计算m 2m−n+n 2n−m的结果为( )A .m 2+n 2B .m +nC .m ﹣nD .n ﹣m16.(2019•天津二模)化简m 2m−4+164−m的结果是( )A .m ﹣4B .m +4C .m+4m−4D .m−4m+417.(2019•河北区二模)计算x 2−2x−1+1x−1的结果为( )A .x +1B .x ﹣1C .1x+1D .1x−118.(2019•和平区一模)计算xx−2+2x−2的结果为( )A .0B .1C .2−xx−2D .x+2x−219.(2019•红桥区一模)计算2x+13x−1−2−x3x−1的结果为( )A .1B .﹣1C .33x−1D .x+33x−120.(2019•天津模拟)计算2a a 2−1−1a+1的结果为( )A .1a+1B .1a−1C .aa+1D .aa−121.(2019•河西区模拟)计算2x5x−3÷325x 2−9⋅x5x+3的结果为( )A .2x 23B .(5x+3)23 C .2x5x−3D .2x15x−922.(2019•东丽区二模)计算a(a+1)2+1(a+1)2的结果为( ) A .1B .1aC .a +1D .1a+1二.填空题(共28小题)23.(2020•津南区一模)计算(√3+√5)2的结果等于 . 24.(2020•西青区二模)计算(√5−2)(√5+2)的结果等于 . 25.(2020•滨海新区二模)计算(√3−1)2的结果等于 . 26.(2020•河北区二模)化简(√5−1)2= .27.(2020•红桥区二模)计算(√11+2)(√11−2)的结果等于 . 28.(2020•南开区二模)计算(3+√6)2的结果等于 . 29.(2020•河东区一模)计算(√5+6)•(√5−6)= . 30.(2020•和平区二模)计算(2√2−3)(3+2√2)的结果等于 . 31.(2020•和平区一模)计算(√6+2)(√6−2)的结果等于 . 32.(2020•南开区一模)计算(√5+√2)2的结果是 . 33.(2020•天津二模)计算(√3+2)(√3−2)的结果是 . 34.(2020•河西区模拟)使式子√a −1有意义的a 的取值范围是 . 35.(2020•西青区一模)计算(2√5−√2)2的结果等于 .36.(2020•滨海新区一模)已知x =√3+1,y =√3−1,则x 2+2xy +y 2的值为 . 37.(2019•宝坻区模拟)将√423化为最简二次根式的结果为 .38.(2019•北辰区二模)当x =√10−1时,多项式x 2+2x +6的值等于 . 39.(2019•津南区二模)计算(√5−√2)2的结果等 . 40.(2019•天津二模)计算(√3−√2)2的结果等于 .41.(2019•红桥区二模)计算:(√5+√2)(√5−√2)的结果等于 . 42.(2019•红桥区一模)计算(√7+2)(√7−2)的结果等于 . 43.(2019•和平区二模)计算(2√2−3)2的结果等于 . 44.(2019•滨海新区模拟)计算(√5−√3)2的结果等于 . 45.(2019•东丽区一模)计算:(√3−√2)2= . 46.(2019•大港区模拟)计算√24−√18×√13−√19= .47.(2018•和平区二模)计算(2+√3)(√3−2)的结果等于.48.(2018•北辰区二模)计算(√10+√2)(√10−√2)的结果等于.49.(2018•天津二模)计算(√7+√5)(√7−√5)的结果等于.50.(2018•南开区二模)计算√2×(√6−2√12)的结果等于.2018-2020年天津中考数学复习各地区模拟试题分类(2)——分式与二次根式参考答案与试题解析一.选择题(共22小题) 1.【解答】解:2a (a+1)2+2(a+1)2=2(a +1)(a +1)2=2a+1. 故选:D . 2.【解答】解:原式=a+b (a+b)2=1a+b . 故选:D . 3.【解答】解:2−x x−1+2x−3x−1=2−x+2x−3x−1=x−1x−1=1.故选:B . 4.【解答】解:x 2x−2+42−x=x 2x −2−4x −2 =x 2−4x −2 =(x −2)(x +2)x −2=x +2. 故选:A . 5.【解答】解:3x−1x−1+2−3x x−1=3x −1+2−3xx −1=1x−1. 故选:C .6.【解答】解:原式=a 2+1−2aa−1=(a −1)2a −1=a ﹣1. 故选:B . 7.【解答】解:x−2x−1+1x−1=x −2+1x −1=1. 故选:A . 8.【解答】解:3x (x−1)2−3(x−1)2=3x−3(x−1)2=3(x−1)(x−1)2=3x−1;故选:D . 9.【解答】解:2a−1a−1−1a−1=2a −1−1a −1=2a −2a −1 =2(a −1)a −1=2, 故选:A .10.【解答】解:原式=(x+y)2(x+y)(x−y)−yx−y=x +y x −y −yx −y=xx−y , 故选:A .11.【解答】解:原式=2+b2a+b , 故选:D . 12.【解答】解:x+2x+1−x x+1=x+2−x x+1=2x+1,故选:C .13.【解答】解:原式=x 2x−1−x x−1=x(x−1)x−1=x ,故选:A.14.【解答】解:aa2−b2−1a−b=a(a+b)(a−b)−a+b(a+b)(a−b)=−ba2−b2,故选:D.15.【解答】解:原式=m2−n2 m−n=m+n,故选:B.16.【解答】解:原式=m2m−4−16m−4=m2−16m−4=(m+4)(m−4)m−4=m+4,故选:B.17.【解答】解:原式=x2−1 x−1=x+1,故选:A.18.【解答】解:xx−2+2 x−2=x+2x−2,故选:D.19.【解答】解:原式=2x+1−2+x3x−1=3x−13x−1=1,故选:A.20.【解答】解:2aa2−1−1a+1=2a(a+1)(a−1)−a−1(a+1)(a−1)=2a−(a−1)(a+1)(a−1)=a+1(a+1)(a−1)=1a−1, 故选:B .21.【解答】解:原式=2x 5x−3•(5x+3)(5x−3)3•x5x+3=2x 23, 故选:A . 22.【解答】解:a (a+1)2+1(a+1)2=1a+1,故选:D .二.填空题(共28小题) 23.【解答】解:原式=3+2√15+5 =8+2√15. 故答案为8+2√15.24.【解答】解:原式=(√5)2﹣22 =5﹣4 =1. 故答案为1.25.【解答】解:原式=3﹣2√3+1 =4﹣2√3. 故答案为4﹣2√3.26.【解答】解:原式=5﹣2√5+1 =6﹣2√5. 故答案为6﹣2√5.27.【解答】解:原式=(√11)2﹣22 =11﹣4 =7. 故答案为728.【解答】解:原式=9+6√6+6 =15+6√6. 故答案为15+6√6.29.【解答】解:原式=(√5)2﹣62=5﹣36=﹣31.故答案为:﹣31.30.【解答】解:(2√2−3)(3+2√2)=(2√2)2﹣32=8﹣9=﹣1,故答案为:﹣1.31.【解答】解:原式=(√6)2﹣22=6﹣4=2.故答案为2.32.【解答】解:原式=(√5)2+2√10+(√2)2=5+2√10+2=7+2√10.故答案为7+2√10.33.【解答】解:原式=(√3)2﹣22=3﹣4=﹣1,故答案为:﹣1.34.【解答】解:使式子√a−1有意义,则a﹣1≥0,解得:a≥1.故答案为:a≥1.35.【解答】解:原式=20﹣4√10+2=22﹣4√10.故答案为22﹣4√10.36.【解答】解:∵x=√3+1,y=√3−1,∴x2+2xy+y2=(x+y)2=(√3+1+√3−1)2=(2√3)2=12;故答案为:12.37.【解答】解:原式=√143=√423, 故答案为:√423; 38.【解答】解:解法一:当x =√10−1时, x 2+2x +6=(√10−1)2+2(√10−1)+6 =10﹣2√10+1+2√10−2+6 =15, 故答案为15;解法二:x 2+2x +6=(x +1)2+5 =(√10−1+1)2+5 =10+5 =15, 故答案为15.39.【解答】解:原式=5﹣2√10+2 =7﹣2√10. 故答案为7﹣2√10.40.【解答】解:原式=3﹣2√6+2 =5﹣2√6. 故答案为5﹣2√6. 41.【解答】解:原式=5﹣2 =3. 故答案为3.42.【解答】解:原式=7﹣4=3. 故答案为3.43.【解答】解:原式=(2√2)2﹣2×2√2×3+32 =8﹣12√2+9 =17﹣12√2, 故答案为:17﹣12√2.44.【解答】解:原式=5﹣2√15+3=8﹣2√15.故答案为8﹣2√15.45.【解答】解:原式=(√3)2+(√2)2−2√3×√2=3+2﹣2√3×2=5﹣2√6.故答案为:5﹣2√6.46.【解答】解:原式=2√6−√18×13−13=2√6−√6−1 3=√6−13.故答案为√6−1 3.47.【解答】解:(2+√3)(√3−2)=(√3)2﹣22=3﹣4=﹣1.故答案为:﹣1.48.【解答】解:原式=10﹣2=8.故答案为8.49.【解答】解:原式=7﹣5=2.故答案为2.50.【解答】解:原式=√2×6−2√2×1 2=2√3−2.故答案为2√3−2.。
2018-2019年重庆市初中分班数学模拟试卷(44)附详细答案附答案
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
天津市数学新初一分班试卷含答案
天津市数学新初一分班试卷含答案一、选择题1.一个长方形的操场,长80米,宽50米,在学生练习本上画出平面图,较舒适的比例尺是()A.1:100 B.1:1000 C.1:100002.三角形的3个顶点A、B、C用数对表示分别是(2,1)、(2,4)、(4,5),那么这个三角形定是()三角形。
A.锐角B.直角C.钝角D.等腰3.把横截面边长为6厘米的方钢,锻打成直径为20厘米、厚4厘米的圆盘,若锻打时耗损为2%,应截多长的方钢?正确的算式是()A.3.14××4÷(1﹣2%)÷62B.3.14××4÷(1+2%)÷62C.3.14××4×(1﹣2%)÷62D.3.14××4×(1+2%)÷624.用一根小棒粘住长方形一条边,旋转一周,这个长方形转动后产生的图形是()。
A.三角形B.圆形C.圆柱5.用1kg铁的35和3kg棉花的15相比较,结果是()。
A.3kg棉花的15重B.1kg铁的35重C.一样重D.无法比较6.如图是一个正方体纸盒的表面展开图,与数字3所在的面相对的面上的数字是()。
A.1 B.5 C.67.下面说法错误的是()。
A.圆有无数条半径和直径B.直径是半径的2倍C.圆有无数条对称轴D.圆的大小与半径有关8.把一个圆柱的底面平均分成若干个扇形,切开后拼成一个近似的长方体,表面积比原来增加40平方厘米,圆柱的底面半径是4厘米,那么圆柱的高是()厘米。
A.4 B.5 C.10 D.209.PM2.5是我国新增的大气环境质量监测指标。
下表是某天测得的山东省13个城市PM2.5日平均值情况:城市济南青岛淄博枣庄东营烟台潍坊济宁泰安威海日照临沂聊城PM2.5日平均值/(微克/立方米)1911021111257214220169175179102126105若PM2.5日平均值不超过75微克/立方米的为达标,则这一天不达标的城市占了这13个城市的()。
2018-2019两年天津市中考数学试卷及答案解析
2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算2(3)-的结果等于()A.5 B.5- C.9 D.9-2. cos30︒的值等于()A.22 B.32C.1 D.33. 今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A.50.77810⨯ B.47.7810⨯ C.377.810⨯D.277810⨯4.下列图形中,可以看作是中心对称图形的是()A. B. C. D.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A .B . C.D .6.65 )A .5和6之间B .6和7之间C. 7和8之间 D .8和9之间7.计算23211x x x x +-++的结果为( ) A .1 B .3 C. 31x + D .31x x ++ 8.方程组10216x y x y +=⎧⎨+=⎩的解是( ) A .64x y =⎧⎨=⎩ B .56x y =⎧⎨=⎩ C. 36x y =⎧⎨=⎩ D .28x y =⎧⎨=⎩ 9.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x << C. 231x x x <<D .321x x x <<10.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A.AD BD== B.AE ACC.ED EB DB+=+= D.AE CB AB11.如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP EP+最小值的是()A.AB B.DE C.BD D.AF12.已知抛物线2=++(a,b,c为常数,0y ax bx c-,a≠)经过点(1,0) (0,3),其对称轴在y轴右侧,有下列结论:①抛物线经过点(1,0);②方程22ax bx c++=有两个不相等的实数根;③33-<+<.a b其中,正确结论的个数为()A.0 B.1 C.2 D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算432x x⋅的结果等于.14.计算63)(63)的结果等于.15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线y x=向上平移2个单位长度,平移后直线的解析式为.17.如图,在边长为4的等边ABC△中,D,E分别为AB,BC的中点,⊥于点F,G为EF的中点,连接DG,则DG的长为.EF AC18.如图,在每个小正方形的边长为1的网格中,ABC△的顶点A,B,C均在格点上.(1)ACB∠的大小为(度);(2)在如图所示的网格中,P是BC边上任意一点.A为中心,取旋转角等于BACCP最短∠,把点P逆时针旋转,点P的对应点为'P.当'时,请用无刻度...的直尺,画出点'P,并简要说明点'P的位置是如何找到的(不要求证明).三、解答题 (本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19. 解不等式组31(1)413(2)x x x +≥⎧⎨≤+⎩请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得 .(Ⅱ)解不等式(2),得 .(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?21. 已知AB是O的直径,弦CD与AB相交,38∠=︒.BAC(Ⅰ)如图①,若D为AB的中点,求ABC∠和ABD∠的大小;(Ⅱ)如图②,过点D作O的切线,与AB的延长线交于点P,若∠的大小.//DP AC,求OCD22. 如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48︒,测得底部C处的俯角为58︒,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48 1.11︒≈.︒≈,tan58 1.6023.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(Ⅰ)根据题意,填写下表:游泳次数10 15 20 (x)150 175 …方式一的总费用(元)90 135 …方式二的总费用(元)(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当20x 时,小明选择哪种付费方式更合算?并说明理由. 24.在平面直角坐标系中,四边形AOBC是矩形,点(0,0)A,O,点(5,0)点(0,3)B.以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F.(Ⅰ)如图①,当点D落在BC边上时,求点D的坐标;(Ⅱ)如图②,当点D落在线段BE上时,AD与BC交于点H.①求证ADB AOB≌;△△②求点H的坐标.(Ⅲ)记K为矩形AOBC对角线的交点,S为KDE△的面积,求S的取值范围(直接写出结果即可).25.在平面直角坐标系中,点(0,0)O,点(1,0)A.已知抛物线22y x mx m=+-(m是常数),定点为P.(Ⅰ)当抛物线经过点A时,求定点P的坐标;(Ⅱ)若点P在x轴下方,当45AOP∠=︒时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当45AHP∠=︒时,求抛物线的解析式.试卷答案一、选择题1-5:CBBAA 6-10:DCABD 11、12:DC二、填空题13.72x 14. 3 15.611 16.2y x=+17.218. (Ⅰ)90︒;(Ⅱ)如图,取格点D,E,连接DE交AB于点T;取格点M,N,连接MN交BC延长线于点G;取格点F,连接FG交TC延长线于点'P ,则点'P 即为所求.三、解答题19. 解:(Ⅰ)2x ≥-;(Ⅱ)1x ≤; (Ⅲ)(Ⅳ)21x -≤≤.20. 解:(Ⅰ)28.(Ⅱ)观察条形统计图, ∵ 1.05 1.211 1.514 1.816 2.04 1.5251114164x ⨯+⨯+⨯+⨯+⨯==++++, ∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=, ∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg 的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg 的数量约占8%. 有25008%200⨯=.∴这2500只鸡中,质量为2.0kg 的约有200只。
天津市2018-2019年初中学业水平考试数学模拟检测题含答案
2018-2019年初中学业水平考试模拟检测题(满分:120分 考试时间:120分钟)第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.有理数-15的倒数为( )A .5B.15C .-15D .-52.作为世界文化遗产的长城,其总长大约为6 700 000 m .将6 700 000用科学记数法表示为( ) A .6.7×105 B .6.7×106 C .0.67×107D .67×1083.下面四个几何体:其中,俯视图是四边形的几何体的个数是( )A .1B .2C .3D .44.下列计算正确的是( ) A .(-2xy)2=-4x 2y 2 B .x 6÷x 3=x 2 C .(x -y)2=x 2-y 2D .2x +3x =5x5.若分式x 2-1x -1的值为0,则x 取值为( )A .x =1B .x =-1C .x =0D .x =±1 6.已知(m +n)2=11,mn =2,则(m -n)2的值为( ) A .7B .5C .3D .17.把抛物线y =-2x 2+4x +1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( ) A .y =-2(x -1)2+6B .y =-2(x -1)2-6C .y =-2(x +1)2+6D .y =-2(x +1)2-68.关于x 的一元二次方程(a -1)x 2+3x -2=0有实数根,则a 的取值范围是( ) A .a>-18B .a ≥-18C .a>-18且a ≠1D .a ≥-18且a ≠19.如图,在▱ABCD 中,AD =2,AB =4, ∠A =30°,以点A 为圆心,AD 的长为半 径画弧交AB 于点E ,连接CE ,则阴影部 分的面积是( ) A .3-π3B .3-π6C .4-π3D .4-π610.如图的两个圆盘中均有5个数字,同时旋转两个圆盘,指针落 在某一个数上的机会均等,那么两个指针同时落在奇数上的概率是()A.425 B.625C.1025D.192511.已知点A(-1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()12.如图,在△ABC 中,BF 平分∠ABC ,AF ⊥BF 于点F ,D 为AB 的中点,连接DF 延长交AC 于点E.若AB =10,BC =16,则线段EF 的长为( ) A .2B .3C .4D .5第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题4分,共20分) 13.分解因式:2m 3-8m =__________.14.已知a ,b 是一元二次方程x 2-x -2 018=0的两个实数根,则代数式a 2-2a -b 的值等于______________.15.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是__________.16.如图,矩形ABCD 中,AB =4,AD =3,点Q 在对角线AC 上,且AQ =AD ,连接DQ 并延长,与边BC 交于点P ,则线段AP =__.17.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(-1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,-3),C(-1,-5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为____________________.三、解答题(本大题共7个小题,共52分.解答应写出必要的文字说明、证明过程或演算步骤)18.(本题满分5分)解方程组:⎩⎨⎧x+y=2,2x-13y=53.19.(本题满分5分)已知:如图,∠BAC=∠DAM,AB=AN,AD=AM.求证:∠B=∠ANM.20.(本题满分8分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行.某自行车厂生产的某型号自行车去年销售总额为8万元.今年该型号自行车每辆售价预计比去年降低200元.若该型号车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求该型号自行车去年每辆售价多少元?21.(本题满分8分)我市某中学为了了解孩子们对《中国诗词大会》《挑战不可能》《最强大脑》《超级演说家》《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了________名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是________度.(4)若该学校有2 000人,请你估计该学校喜欢《最强大脑》节目的学生人数是多少人?22.(本题满分8分)如图,一次函数y=kx+b与反比例函数y=ax的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.23.(本题满分9分)四边形ABCD是边长为4的正方形,点E在边AD所在直线上,连接CE,以CE为边作正方形CEFG(点D,点F在直线CE的同侧),连接BF.(1)如图1,当点E与点A重合时,请直接写出BF的长;(2)如图2,当点E在线段AD上时,AE=1.①求点F到AD的距离;②求BF的长;(3)若BF=310,请直接写出此时AE的长.24.(本题满分9分)如图,抛物线y=ax2+bx-2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(-2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线表达式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由..参考答案1.D2.B3.B4.D5.B6.C7.C8.D9.A 10.A 11.B 12.B13.2m(m +2)(m -2) 14.2 017 15.1616.17 17.(1,-2)18.解:⎩⎨⎧x +y =2, ①2x -13y =53, ② 由②得6x -y =5,③ ①+③得7x =7, 解得x =1,将x =1代入①得1+y =2, 解得y =1,方程组的解是⎩⎨⎧x =1,y =1.19.证明:∵∠BAC =∠DAM , ∠BAC =∠BAD +∠DAC , ∠DAM =∠DAC +∠NAM , ∴∠BAD =∠NAM ,在△BAD 和△NAM 中, ⎩⎪⎨⎪⎧AB =AN ,∠BAD =∠NAM ,AD =AM ,∴△BAD ≌△NAM ,∴∠B =∠ANM.20.解:设该型号自行车去年每辆售价为x 元,则今年每辆售价为(x -200)元.根据题意得80 000x =80 000(1-10%)x -200,解得x =2 000,经检验,x =2 000是原方程的根,且符合题意. 答:该型号自行车去年每辆售价为2 000元. 21.解:(1)200(2)补全条形统计图如图所示.(3)36(4)2 000×60200=600.答:该学校喜欢《最强大脑》节目的学生人数是600人. 22.解:(1)如图,过点A 作AF ⊥x 轴交BD 于E ,∵点B(3,2)在反比例函数y =ax 的图象上,∴a =3×2=6,∴反比例函数的表达式为y =6x .∵B(3,2),∴EF =2.∵BD ⊥y 轴,OC =CA ,∴AE =EF =12AF ,∴AF =4,∴点A 的纵坐标为4,∵点A 在反比例函数y =6x 图象上,∴A(32,4),∴⎩⎨⎧3k +b =2,32k +b =4,∴⎩⎨⎧k =-43,b =6.∴一次函数的表达式为y =-43x +6.(2)如图,过点A 作AF ⊥x 轴于F 交OB 于G ,∵B(3,2),∴直线OB 的表达式为y =23x ,∴G(32,1),∴AG =4-1=3,∴S △AOB =S △AOG +S △ABG =12×3×3=92.23.解:(1)BF =4 5.(2)如图,过F 作FH ⊥AD 交AD 的延长线于点H ,作FM ⊥AB 于M ,则FM =AH ,AM =FH. ①∵AD =4,AE =1, ∴DE =3,∵∠FEH +∠DEC =∠DEC +∠ECD =90°,∴∠FEH =∠ECD.又∵∠FHE =∠EDC =90°,EF =EC , ∵△EFH ≌△CED ,∴FH =DE =3,EH =CD =4, 即点F 到AD 的距离为3.②∵BM =AB +AM =7,FM =AE +EH =5, ∴BF =BM 2+FM 2=72+52=74.(3)AE 的长为1或2+41.24.解:(1)由题意得⎩⎨⎧-b 2a =1,(-2)2a -2b -2=0,解得⎩⎪⎨⎪⎧a =14,b =-12,∴抛物线的表达式为y =14x 2-12x -2.(2)令y =14x 2-12x -2=0,解得x 1=-2,x 2=4.当x =0时,y =-2,∴B(4,0),C(0,-2),设BC 的表达式为y =kx +b ,则⎩⎨⎧4k +b =0,b =-2,解得⎩⎨⎧k =12,b =-2,∴y =12x -2.设D(m ,0),∵DP ∥y 轴,∴E(m ,12m -2),P(m ,14m 2-12m -2),∵OD =4PE ,∴m =4(14m 2-12m -2-12m +2),∴m 1=5,m 2=0(舍去), ∴D(5,0),P(5,74),E(5,12),∴S 四边形POBE =S △OPD -S △EBD =12×5×74-12×1×12=338. (3)存在,N(92,-14)或(4.6,45)或(5-255,55)或(5+255,55).。
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DC O=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA 证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|,EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15|①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0,解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0,解得:m=或m=.由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2|∴|﹣m 2+m+2|=|m|.①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣;②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣.由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时, 此时P 点横坐标为0,E ,C ,E'三点重合与y 轴上,也符合题意,∴P (0,5)综上所述,存在满足条件的点P ,可求得点P 坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3) 方法二:(1)略.(2)略.(3)若E (不与C 重合时)关于直线PC 的对称点E′在y 轴上,则直线CD 与直线CE′关于PC 轴对称.∴点D 关于直线PC 的对称点D′也在y 轴上,∴DD′⊥CP ,∵y=﹣x+3,∴D (4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt △AHB 中,AB=6,∠B=60°,∴AH=AB •sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD 为矩形,∴CD=AH=,∵, ∴∠CAD=30°,∵EF ∥AC ,∴∠1=∠CAD=30°;(2)若点G 恰好在BC 上,如图2,由对折的对称性可知Rt △FGE ≌Rt △FDE ,∴GE=DE=x ,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG 是直角三角形,∴∠EGC=30°,∴在Rt △CEG 中,EC=EG=x ,由DE+EC=CD 得,∴x=; (3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=,∴DF=x ÷=x ,∴y=S △EGF =S △EDF ===,∵>0,对称轴为y 轴,∴当,y 随x 的增大而增大,∴当x=时,y 最大值=×=;第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2,∴NG=GE ﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG •tan30°=,∴=∴y=S △EGF ﹣S △MNG ==∵,对称轴为直线,∴当<x ≤时,y 有最大值,且y 随x 的增大而增大,∴当时, =,综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。
2018-2019年合肥市初中分班数学模拟试卷(44)附详细答案附答案
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
天津市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
18、( 1 分 ) 规定:用{m}表示大于 m 的最小整数,例如 =3,{5}=6,{-1.3}=-1 等;用[m]表示不大于
m 的最大整数,例如 =3,[4]=4,[-1.5]=-2,如果整数 x 满足关系式:2{x}+3[x]=12,则 x=________. 【答案】2 【考点】解二元一次方程
则 x+y+z=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:在
中,由①+②+③得:
,
∴
.
第 8 页,共 19 页
【分析】方程组中的三个方的 x、y、z 的系数都是 1,因此由(①+②+③)÷2,就可求出结果。
14、( 1 分 )
的立方根是________.
【答案】4 【考点】立方根及开立方
8、 ( 2 分 ) 如图,如果 AB∥CD,CD∥EF,那么∠BCE 等于( )
A. ∠1+∠2 【答案】C
B. ∠2-∠1
【考点】平行线的性质
C. 180°-∠2+∠1
D. 180°-∠1+∠2
第 5 页,共 19 页
【解析】【解答】解:∵B∥CD ∴∠1=∠BCD ∵CD∥EF, ∴∠2+∠DCE=180° ∠DCE=180°-∠2 ∵∠BCE=∠BCD+ ∠DCE ∴∠BCE=180°-∠2+∠1 故答案为:C
【解析】【解答】解:根据题目两种规定可得,{x}-[x]=1,2{x}+3[x]=12,将二式联立可得{x}=3,[x]=2, ∴2≤x<3 故答案为:2。 【分析】根据两种对于 m 的规定,可以得出{x}和[x]的数量关系,根据题目所给的条件,列出二元一次方程组 解答即可。
2019年天津市某重点中学分班数学试卷(含解析)印刷版
2019年天津市某重点中学分班数学试卷一、填空题(每小题3分,共30分)1.(3分)如果一个圆的半径是a厘米,且2:a=a:3,问这个圆的面积是平方厘米.2.(3分)一辆小汽车的牌照是〇□△5(一个四位数),已知〇+〇=□,〇+□+□+5=25,△+△=〇,那么它的牌照号码是.3.(3分)一些小正方体摆在水平桌面上,从正面和左面看到的形状均为则最少需要小正方体个.4.(3分)把一根长8分米的长方体木料,正好锯成4个一样的正方体,表面积一共增加了平方分米.5.(3分)甲、乙两数是自然数,且甲、乙都不为零,如果甲数的恰好是乙数的,那么甲、乙两数和的最小值是.6.(3分)如图,A,B两个平行四边形重叠在一起,重叠部分面积是A的,是B的.已知A的面积是12平方厘米,则B的面积比A的面积小平方厘米.7.(3分)为配合“书香进校园“活动的开展,学校决定为各班级添置书柜,原计划用4000元购买若干个书柜,由于市场价格变化,每个价格上涨20元,实际购买时多花了400元.书柜原来的单价是元.8.(3分)如图,在△ABC中,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A′B′C′的位置,且A,C,B′三点在同一条直线上,则点A所经过的最短路线的长为cm.(结果保留π)9.(3分)有三张卡片,上面分别写着5,4,3,小聪和小明用这三张卡片轮流摆出不同的三位数,如果摆出的三位数是偶数就是小聪赢,否则小明赢,小明赢的可能性大小是.10.(3分)小明在330米长的环行跑道上跑了一圈,已知他前一半时间每秒跑6米,后一半时间每秒跑5米,那么后一半路程小明跑了秒.二、计算题(每小题20分,共20分)11.(20分)计算题.3.9×0.14÷(2.1×0.13)13.5÷1(1+)×()﹣(1+)×()三、解答题(50分)12.(5分)如图中5个阴影部分所示的图形都是正方形,所标的数字是邻近线段的长度.那么阴影部分的总面积是多少?(单位:厘米)13.(5分)图①是一个三角形,沿虚线折叠后得到图②,这个多边形的面积是原三角形面积的,已知图②中阴影部分的面积和为15平方厘米,那么原三角形的面积是多少平方厘米?14.(10分)(1)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是.(2)用同样大小的黑色棋子按如图所示的规律摆放:①第5个图形中有多少颗黑色棋子?②第几个图形中有2013颗黑色棋子?请说明理由.15.(5分)生产一批零件,甲每小时可做18个,乙单独做要12小时完成.现在由甲乙二人合做,完成任务时,甲乙生产零件的数量之比是3:5,甲一共生产零件多少个?16.(5分)某服装店老板,为了提高销售额,先将所有商品提价30%,而后宣传说:“为了资金回收,所有商品八折优惠,数量有限,欲购从速.”请你算一算,一件没有提价前标价360元的服装,现在售价多少元?17.(8分)某奶品生产企业2015年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图①②的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图①补充完整.酸牛奶在图②中所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2016年酸牛奶的生产量比2015年增长20%,按照这样的增长速度,请你估算2017年酸牛奶的生产量是多少万吨.18.(12分)黄岩岛是我国南沙群岛的一个小岛,渔产高.一天,某渔船离开港口前往这个海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从此港口出发赶往黄岩岛.渔政船及渔船与港口的距离s和渔船离开港口的时间之间的关系如图所示.(假设渔船与渔政船沿同一航线航行)(1)求渔政船从港口出发赶往黄岩岛的速度;(2)求渔船和渔政船相遇时,两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里.2019年天津市某重点中学分班数学试卷参考答案与试题解析一、填空题(每小题3分,共30分)1.(3分)如果一个圆的半径是a厘米,且2:a=a:3,问这个圆的面积是6π平方厘米.【分析】本题先根据比例的两外项之积等两内项之积的这个基本性质求出a的平方是多少,再根据圆的面积的计算公式列式即可.【解答】解:2:a=a:3,a×a=2×3,a2=6;所以,这个圆的面积为6π平方厘米.故答案为:6π.2.(3分)一辆小汽车的牌照是〇□△5(一个四位数),已知〇+〇=□,〇+□+□+5=25,△+△=〇,那么它的牌照号码是4825.【分析】根据〇+〇=□可知□=2〇,将□=2〇代入〇+□+□+5=25求出〇,进而求出△.【解答】解:因为〇+〇=□所以□=2〇,将□=2〇代入〇+□+□+5=25,即〇+〇+〇+〇+〇+5=25,5〇+5=25,5〇=25﹣5,〇=4;□=2〇=2×4=8;因为△+△=〇,所以△=4÷2=2;故答案为:4825.3.(3分)一些小正方体摆在水平桌面上,从正面和左面看到的形状均为则最少需要小正方体3个.【分析】些小正方体摆在水平桌面上,从正面和左面看到的形状均为则最少需要小正方体3个.这3个小正方体分前、中、后三行,每行1个,交错排列.【解答】解:一些小正方体摆在水平桌面上,从正面和左面看到的形状均为则最少需要小正方体3个(如下图)故答案为:3.4.(3分)把一根长8分米的长方体木料,正好锯成4个一样的正方体,表面积一共增加了24平方分米.【分析】锯成4个一样的正方体,需要锯3次,每锯1次就增加两个正方形的面,所以一共增加6个面;增加的一个面的面积是(8÷4)2,由此即可解答【解答】解:增加的一个面积边长是:8÷4=2(分米),则:2×2×6=24(平方分米);答:表面积一共增加了24平方分米.故答案为:24.5.(3分)甲、乙两数是自然数,且甲、乙都不为零,如果甲数的恰好是乙数的,那么甲、乙两数和的最小值是17.【分析】把乙数看做单位“1”,则甲数是÷=,所以甲乙两个数的和是1+=,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是12,从而甲数是5,和为17.【解答】解:把乙数看做单位“1”,则甲数是÷=,所以甲乙两个数的和是1+=,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是12,从而甲数是5,和为17.答:甲、乙两数和的最小值是17.故答案为:17.6.(3分)如图,A,B两个平行四边形重叠在一起,重叠部分面积是A的,是B的.已知A的面积是12平方厘米,则B的面积比A的面积小4平方厘米.【分析】根据题干,则A×=B×,据此用12乘即可得出重叠部分的面积,然后再除以从而求出B的值,再进一步求出A、B的差即可.【解答】解:12×÷=8(平方厘米)12﹣8=4(平方厘米)答:B的面积比A的面积小4平方厘米.故答案为:4.7.(3分)为配合“书香进校园“活动的开展,学校决定为各班级添置书柜,原计划用4000元购买若干个书柜,由于市场价格变化,每个价格上涨20元,实际购买时多花了400元.书柜原来的单价是200元.【分析】每个价格上涨20元,实际购买时多花了400元,用多花的钱数除以上涨的价格,可以求出原来买的数量,即400÷20=20(个);然后再用原来的总价除以数量就可以求出原来的单价,即4000÷20.【解答】解:4000÷(400÷20)=200(元)答:书柜原来的单价是200元.故答案为:200.8.(3分)如图,在△ABC中,∠A=30°,AC=4cm,将△ABC绕顶点C顺时针方向旋转至△A′B′C′的位置,且A,C,B′三点在同一条直线上,则点A所经过的最短路线的长为πcm.(结果保留π)【分析】这是个直角三角形,∠A=30°,∠ACB=90°﹣30°=60°,BC旋转到CB′,则∠ACA′=180°﹣60°=120°,点A所经过的角度是120°,点A所经过的最短路线就是半径是4厘米的圆心角是120°所对的弧线,求出半径是4厘米的圆的周长,再用周长乘即可解答.【解答】解:π×4×4×=π(厘米)答:点A所经过的最短路线的长为π厘米.9.(3分)有三张卡片,上面分别写着5,4,3,小聪和小明用这三张卡片轮流摆出不同的三位数,如果摆出的三位数是偶数就是小聪赢,否则小明赢,小明赢的可能性大小是.【分析】用这三张卡片轮流摆出不同三位数的个数是:3×2×1=6(个),543、534、453、435、345、354,其中奇数有4个,偶数是2个,小明赢的可能性是:4÷6=,小聪赢的可能性是2÷6=,据此解答.【解答】解:用这三张卡片轮流摆出不同三位数的个数是:3×2×1=6(个),543、534、453、435、345、354,其中奇数有4个,偶数是2个,小明赢的可能性是:4÷6=;答:小明赢的可能性大小是.故答案为:.10.(3分)小明在330米长的环行跑道上跑了一圈,已知他前一半时间每秒跑6米,后一半时间每秒跑5米,那么后一半路程小明跑了32.5秒.【分析】根据时间=路程÷速度和,求出一半的时间,再根据路程=速度×时间,求出后一半时间每秒跑5米跑的路程,一半路程为:330÷2=165米,减去后一半时间跑的米数,余下的米数是以每秒跑6米跑的,再由时间=路程÷速度,求出余下的米数用的时间,加上求出的一半时间即可.【解答】解:330÷(6+5)=30(秒)(330÷2﹣5×30)÷6=2.5(秒),30+2.5=32.5(秒);答:后一半路程小明跑了32.5秒.故答案为:32.5.二、计算题(每小题20分,共20分)11.(20分)计算题.3.9×0.14÷(2.1×0.13)13.5÷1(1+)×()﹣(1+)×()【分析】(1)根据乘法交换律和结合律以及除法的性质进行简算;(2)根据加法交换律和结合律以及分数的拆项公式进行简算;(3)中括号里面根据乘法分配律进行简算,再算除法和乘法,最后算加法;(4)另=A,=B,那么原式=(1+A)×B﹣(1+B)×A,然后再根据乘法分配律进行简算.【解答】解:(1)3.9×0.14÷(2.1×0.13)=2(2)1=(1+2+3+…+10)+(+++…+)=[(1+9)+(2+8)+(3+7)+(4+6)+(5+10)]+[(1﹣)+(﹣)+(﹣)+…+(﹣)]=[10+10+10+10+10+5]+[1﹣+﹣+﹣+…+﹣]=55+[1﹣]=55+=55(3)3.5÷1=3.5÷1+6.5×[12×1﹣12×0.3﹣15%]=3.5÷1+6.5×[16﹣3.6﹣0.15]=3.5÷1+6.5×12.25=2.625+79.625=82.25(4)另=A,=B,那么原式=(1+A)×B﹣(1+B)×A=(1×B+AB)﹣(1×A+AB)=B+AB﹣A﹣AB=B﹣A=(+++)﹣(++)=(++)﹣(++)+=三、解答题(50分)12.(5分)如图中5个阴影部分所示的图形都是正方形,所标的数字是邻近线段的长度.那么阴影部分的总面积是多少?(单位:厘米)【分析】根据题意,阴影部分的面积,是最大的正方形的面积,减去空白部分的面积,而空白部分是由4个同样大的大三角形的面积与4个同样大的小三角形的面积组成;根据图中5个阴影部分所示的图形都是正方形,可知1个空白大三角形的面积是6×4÷2,1个空白小三角形的面积是2×4÷2,分别求出4个同样大的大三角形的面积与4个同样大的小三角形的面积,然后再进一步解答.【解答】解:4+6+2+4=16(厘米)16×16﹣(6×4÷2×4)﹣(2×4÷2×4)=192(平方厘米)答:阴影部分的总面积是192平方厘米.13.(5分)图①是一个三角形,沿虚线折叠后得到图②,这个多边形的面积是原三角形面积的,已知图②中阴影部分的面积和为15平方厘米,那么原三角形的面积是多少平方厘米?【分析】先设原三角形面积为x平方厘米,再由阴影部分的面积为15平方厘米,可得图②的面积为:+15=,求出x的值即可.【解答】解:设原三角形面积为x平方厘米,图②的面积为:+15=,由题意得::x=x=27答:原三角形的面积是27平方厘米.14.(10分)(1)填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是900.(2)用同样大小的黑色棋子按如图所示的规律摆放:①第5个图形中有多少颗黑色棋子?②第几个图形中有2013颗黑色棋子?请说明理由.【分析】(1)观察图形可知,第一个三角形的左下角数字1,乘第二个三角形的左下角数字4,正好等于第二个三角形右下角的数字4,第二个三角形的左下角数字4,乘第三个三角形的左下角数字9,正好等于第三个三角形右下角的数字36…,即得出规律:前面的三角形的左下角数字乘它后面的三角形左下角的数字,正好等于后面三角形的右下角的数字,所以a=25×36=900,据此即可解答问题.(2)观察图形可知,第一个图形是2×3=6颗、第二个图形是3×3=9颗、第三个图形是4×3=12颗…、第n个图形是(n+1)×3=3n+3颗,据此即可解答问题.【解答】解:(1)根据题干分析可得:25×36=900答:a的值是900.(2)根据题干分析可得:第n个图形是(n+1)×3=(3n+3)颗①当n=5时,3n+3=3×5+3=18(颗)答:第5个图形中有18颗黑色棋子.②当3n+3=2013时,n=670答:第670个图形中有2013颗黑色棋子.15.(5分)生产一批零件,甲每小时可做18个,乙单独做要12小时完成.现在由甲乙二人合做,完成任务时,甲乙生产零件的数量之比是3:5,甲一共生产零件多少个?【分析】我们把这批零件看成单位“1”,那么乙的工作效率就是;因为甲乙合作工作时间一样,工作量和工作效率成正比,甲的工作量与乙的工作量之比是3:5,甲的工作效率:乙的工作效率就是3:5,即甲的工作效率是乙的工作效率的,那么甲的工作效率=.甲乙合作的工作效率就是=,他们的工作时间就是1÷=7.5(小时),甲的工作量=甲的工作效率×工作时间,甲生产的零件数是:18×7.5=135(个)【解答】解:甲的工作量与乙的工作量之比是3:5,那么甲的工作效率:乙的工作效率就是3:5,即甲的工作效率是乙的工作效率的.甲的工作效率:甲乙合作的工作效率:=,工作时间:1÷=7.5(小时)甲生产的零件数是:18×7.5=135(个)答:甲一共生产了135个零件.16.(5分)某服装店老板,为了提高销售额,先将所有商品提价30%,而后宣传说:“为了资金回收,所有商品八折优惠,数量有限,欲购从速.”请你算一算,一件没有提价前标价360元的服装,现在售价多少元?【分析】有提价前标价360元的服装,提价30%后价格为原来的1+30%,所以提价后的价格为300×(1+30%),再打八折出售,即按提价后价格的80%出售,则现在售价300×(1+30%)×80%元.【解答】解:360×(1+30%)×80%=374.4(元);答:现在售价374.4元.17.(8分)某奶品生产企业2015年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图①②的统计图,请根据图中信息解答下列问题:(1)酸牛奶生产了多少万吨?把图①补充完整.酸牛奶在图②中所对应的圆心角是多少度?(2)由于市场不断需求,据统计,2016年酸牛奶的生产量比2015年增长20%,按照这样的增长速度,请你估算2017年酸牛奶的生产量是多少万吨.【分析】(1)根据纯牛奶有120万吨,占50百分,即可求得总数,然后利用总数减去其它类型的数量,即可求得酸牛奶的数量,利用360°乘以酸牛奶对应的比例即可求得对应的圆心角;(2)根据纯牛奶的吨数,由题意列出算式,计算即可得到结果.【解答】解:(1)补充图如下:120÷50%﹣120﹣40=80(万吨);360°×=120°答:酸牛奶生产了80吨?把图①补充完整.酸牛奶在图②中所对应的圆心角是120度.(2)80×(1+20%)=96(万吨);答:2017年酸牛奶的生产量是96万吨.18.(12分)黄岩岛是我国南沙群岛的一个小岛,渔产高.一天,某渔船离开港口前往这个海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航,渔政船接到报告后,立即从此港口出发赶往黄岩岛.渔政船及渔船与港口的距离s和渔船离开港口的时间之间的关系如图所示.(假设渔船与渔政船沿同一航线航行)(1)求渔政船从港口出发赶往黄岩岛的速度;(2)求渔船和渔政船相遇时,两船与黄岩岛的距离;(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里.【分析】(1)由图可知,渔政船从8时出发,时到达,共行路程150海里,所以渔政船的速度为:150÷(﹣8)=45(海里/小时);(2)根据渔船所行路程及所用时间,求其速度为:150÷(13﹣8)=30(海里/小时),然后求二者相遇时间:150÷(30+45)=2(小时),所以,二船相遇时距离黄岩岛为:150﹣30×2=90(海里);(3)根据相距问题公式,二船相距30海里,即共行:150﹣30=120(海里),所用时间为:120÷(30+45)=1.6(小时).【解答】解:(1)150÷(﹣8)=45(海里/小时)答:渔政船从港口出发赶往黄岩岛的速度45海里/小时.(2)150÷(13﹣8)=30(海里/小时)150÷(30+45)=2(小时)150﹣30×2=90(海里)答:渔船和渔政船相遇时,两船与黄岩岛的距离90海里.(3)(150﹣30)÷(30+45)=1.6(小时)答:在渔政船驶往黄岩岛的过程中,渔船从港口出发经过1.6与渔政船相距30海里.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学综合模拟试卷44
一、填空题:
1.1997+1996-1995-1994+1993+1992…-2+1=_______.
3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.
5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.
6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.
7.在下面四个算式中,最大的是______.
8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.
9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.
二、解答题:
1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?
2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?
3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?
答案,仅供参考。
一、填空题:
1.1997
2.19
3.12
经观察可知,算符“*”表示:a*b=2a-b.所以:7*2=2×7-2=12.
4.60
未吃之前,米比面多:150-100=50(斤),吃了以后,剩下的米比面多50斤,又剩下的米比面多6-1=5倍,所以,面剩下:50÷5=10(斤),米剩下:10×6=60(斤),即:[(150-100)÷(6-1)]×6=60(斤).5.张老师教:手工、劳动;王老师教:语文、思想品德;李老师教:数学、自然.
6.18
7.②
同理比较②④两式,可知:②式大于④式.
再比较②③两式:
用⑤式减⑥式得:
所以②式最大.
8.81π
柱体表面积是:4×4π×2+2×4π×4=64π(平方厘米)
被挖柱体表面积是:2×3π×2+2×2π×1+2×1π×0.5=17π(平方厘米)
所以立体图形表面积是81π平方厘米.
9.19∶11
三年级先步行,一年级坐车同时从A点出发,到C点后,一年级下车,车立即返回,与三年级在B点相遇,三年级在B点上车,直到D点.三年级从A步行到B的同时,汽车从A到C又返回到B,所以:
即在相同时间里,汽车行驶距离AB+2BC是三年级行走距离AB的12倍,那么汽车在BC间的往返行程2BC就是三年级行走距离AB的11倍.
为使两个年级的学生在最短的时间内到达D点,车在B点接三年级上车后,必须与一年级步行的同学同时到达,所以:
即在相同时间里,汽车行驶距离2BC+CD是一年级行走距离CD的20倍,那么汽车在BC间的往返行程2BC就是一年级步行距离CD的19倍.
比较①式和②式,可得:
三年级行走距离∶一年级行走距离=19∶11
10.7
从所列数串可以发现,各数除以9的余数依次为1,5,3,7,2,0,4,8,6,1,5,……每9个数的余数循环出现,由于4000除以9的余数是4,所以第4000个数的余数是7.
二、解答题:
1.40人
若180桶全是六年级学生浇的,则只需:180÷2=90(人),比学生人数少:120-90=30(人),每1个六年级学生,换4个一年级学生,浇水桶数不变,人数增加4-1=3(人),要增加30人,需换30÷(4-1)=10(人),所以一年级学生为:4×10=40(人).
2.20题
小雪每分钟算20题,做1题用60÷20=3秒,算80题用3×80=240秒,小序算80题比小雪少用4秒,用了240-4=236秒,小序做1200题要用(1200÷80=)15个236秒,即:236×15=3540秒,小序做完1200题时,小雪做了:3540÷3=1180(题),说明小雪还有1200-1180=20(题)没有做.1200-[(60÷20)×80-4]×(1200÷80)÷3=20(题)
3.不准,慢1.44秒.
小闹钟走半小时,手表多走36秒,所以小闹钟走1800秒等于手表走:
半小时里,手表走了1.02×1764=1799.28(秒),因此,手表走得比标准时间慢,标准时间走半小时,手表少走1800-1799.28=0.72(秒)
分米.拼成后大正方形的面积为:
长方形硬纸板的长和宽的关系为:
被剪下的硬纸板的面积为:。