高考数学一轮复习 题组层级快练8(含解析)

合集下载

2022年高考数学课标通用(理科)一轮复习真题演练:第八章 立体几何8-7 Word版含解析

2022年高考数学课标通用(理科)一轮复习真题演练:第八章 立体几何8-7 Word版含解析

真题演练集训1.[2022·新课标全国卷Ⅱ]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值. (1)证明:由已知,得AC ⊥BD ,AD =CD . 又由AE =CF ,得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H . 由AB =5,AC =6,得 DO =BO =AB 2-AO 2=4. 由EF ∥AC ,得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解:如图,以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD →′的方向为z 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0), AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧6x 2=0,3x 2+y 2+3z 2=0, 所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n|m||n|=-1450×10=-7525,sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.2.[2022·山东卷]在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点.求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值. (1)证明:设FC 的中点为I ,连接GI ,HI ,在△CEF 中,由于点G 是CE 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,由于H 是FB 的中点, 所以HI ∥BC .又HI ∩GI =I ,OB ∩BC =B , 所以平面GHI ∥平面ABC .由于GH ⊂平面GHI , 所以GH ∥平面ABC .(2)解:解法一:连接OO ′,则OO ′⊥平面ABC . 又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz .由题意,得B (0,23,0),C (-23,0,0), 所以BC →=(-23,-23,0). 过点F 作FM 垂直OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).故BF →=(0,-3,3).设m =(x ,y ,z )是平面BCF 的法向量, 由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0,可得⎩⎪⎨⎪⎧-23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝⎛⎭⎪⎫-1,1,33.由于平面ABC 的一个法向量n =(0,0.1),所以cos〈m,n 〉=m·n|m||n|=77.所以二面角F-BC-A的余弦值为7 7.解法二:如图,连接OO′.过点F作FM垂直OB于点M,则有FM∥OO′.又OO′⊥平面ABC,所以FM⊥平面ABC.可得FM=FB2-BM2=3.过点M作MN垂直BC于点N,连接FN.可得FN⊥BC,从而∠FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BM sin 45°=6 2,从而FN=422,可得cos ∠FNM=77.所以二面角F-BC-A的余弦值为7 7.3.[2022·新课标全国卷Ⅲ]如图,四棱锥P-ABCD中,P A⊥底面ABCD,AD ∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明:MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.(1)证明:由已知,得AM=23AD=2.如图,取BP的中点T,连接AT,TN.由N为PC的中点知,TN∥BC,TN=12BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.由于AT⊂平面P AB,MN⊄平面P AB,所以MN∥平面P AB.(2)解:取BC的中点E,连接AE.由AB=AC,得AE⊥BC,从而AE⊥AD,且AE=AB2-BE2=AB2-⎝⎛⎭⎪⎫BC22= 5.以A为坐标原点,AE→的方向为x轴正方向,建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ⎝ ⎛⎭⎪⎫52,1,2,PM →=(0,2,-4),PN →=⎝ ⎛⎭⎪⎫52,1,-2,AN →=⎝ ⎛⎭⎪⎫52,1,2.设n =(x ,y ,z )为平面PMN 的法向量, 则⎩⎪⎨⎪⎧n ·PM →=0,n ·PN →=0,即⎩⎨⎧2y -4z =0,52x +y -2z =0,可取n =(0,2,1).于是|cos 〈n ,AN →〉|=|n ·AN →||n ||AN →|=8525,则直线AN 与平面PMN 所成角的正弦值为8525.4.[2021·新课标全国卷Ⅰ]如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明:如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC 可知,AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322. 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC . 由于EG ⊂平面AEC , 所以平面AEC ⊥平面AFC .(2)解:如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G -xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.5.[2021·新课标全国卷Ⅱ]如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解:(1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M , 则AM =A 1E =4,EM =AA 1=8. 由于四边形EHGF 为正方形, 所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向, 建立如图所示的空间直角坐标系D -xyz , 则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8), FE →=(10,0,0),HE →=(0,-6,8). 设n =(x ,y ,z )是平面α的法向量, 则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0, 所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面α所成角的正弦值为4515. 课外拓展阅读巧用向量法求立体几何中的探究性问题立体几何中的探究性问题立意新颖,形式多样,近年来在高考中频频消灭,而空间向量在解决立体几何的探究性问题中扮演着举足轻重的角色,它是争辩立体几何中的探究性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探究性问题供应了新的视角、新的方法.下面借“题”发挥,透视有关立体几何中的探究性问题的常见类型及其求解策略.1.条件追溯型解决立体几何中的条件追溯型问题的基本策略是执果索因.其结论明确,需要求出访结论成立的充分条件,可将题设和结论都视为已知条件,即可快速找到切入点.这类题目要求考生变换思维方向,有利于培育考生的逆向思维力量.[典例1] 如图所示,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CEBE =λ,当实数λ的值为________时,∠AFE 为直角.[思路分析][解析] 由于SA ⊥平面ABCD ,∠BAD =90°, 故可建立如图所示的空间直角坐标系A -xyz .由于AB =4,SA =3, 所以B (0,4,0),S (0,0,3). 设BC =m ,则C (m,4,0), 由于SF BF =CEBE =λ,所以SF →=λFB →.所以AF →-AS →=λ(AB →-AF →).所以AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3).所以F ⎝ ⎛⎭⎪⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎪⎫m 1+λ,4,0, 所以FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. 由于F A →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角,即F A →·FE →=0, 则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0,所以16λ=9, 解得λ=916. [答案] 916 2.存在推断型以“平行、垂直、距离和角”为背景的存在推断型问题是近年来高考数学中创新型命题的一个重要类型,它以较高的新颖性、开放性、探究性和制造性深受命题者的青睐,此类问题的基本特征是:要推断在某些确定条件下的某一数学对象(数值、图形等)是否存在或某一结论是否成立.“是否存在”的问题的命题形式有两种状况:假如存在,找出一个来;假如不存在,需要说明理由.这类问题常用“确定顺推”的方法.求解此类问题的难点在于涉及的点具有运动性和不确定性,所以用传统的方法解决起来难度较大,若用空间向量方法来处理,通过待定系数法求解其存在性问题,则思路简洁、解法固定、操作便利.[典例2] 如图所示,四边形ABCD 是边长为1的正方形,MD ⊥平面ABCD ,NB ⊥平面ABCD ,且MD =NB =1,E 为BC 的中点.(1)求异面直线NE 与AM 所成角的余弦值;(2)在线段AN 上是否存在点S ,使得ES ⊥平面AMN ?若存在,求线段AS 的长;若不存在,请说明理由.[思路分析][解] (1)如图所示,以D 为坐标原点,建立空间直角坐标系D -xyz . 依题意,得D (0,0,0),A (1,0,0),M (0,0,1),C (0,1,0),B (1,1,0),N (1,1,1),E ⎝ ⎛⎭⎪⎫12,1,0, 所以NE →=⎝⎛⎭⎪⎫-12,0,-1,AM →=(-1,0,1),由于|cos 〈NE →,AM →〉|=|NE →·AM →||NE →||AM →|=1252×2=1010. 所以异面直线NE 与AM 所成角的余弦值为1010.(2)假设在线段AN 上存在点S ,使得ES ⊥平面AMN . 连接AE ,如图所示.由于AN →=(0,1,1),可设AS →=λAN →=(0,λ,λ), 又EA →=⎝⎛⎭⎪⎫12,-1,0,所以ES →=EA →+AS →=⎝⎛⎭⎪⎫12,λ-1,λ.由ES ⊥平面AMN ,得⎩⎨⎧ES →·AM →=0,ES →·AN →=0,即⎩⎪⎨⎪⎧-12+λ=0,(λ-1)+λ=0,解得λ=12,此时AS →=⎝ ⎛⎭⎪⎫0,12,12,|AS →|=22.经检验,当|AS |=22时,ES ⊥平面AMN .故在线段AN 上存在点S ,使得ES ⊥平面AMN ,此时|AS |=22. 3.结论探究型立体几何中的结论探究型问题的基本特征是:给出肯定的条件与设计方案,推断设计的方案是否符合条件要求.此类问题的难点是“阅读理解”和“整体设计”两个环节,因此,应做到审得认真、找得有法、推得有理、证得有力,整合过程无可辩驳.[典例3] 某设计部门承接一产品包装盒的设计(如图所示),客户除了要求AB ,BE 边的长分别为20 cm,30 cm 外,还特殊要求包装盒必需满足:①平面ADE ⊥平面ADC ;②平面ADE 与平面ABC 所成的二面角不小于60 °;③包装盒的体积尽可能大.若设计出的样品满足:∠ACB 与∠ACD 均为直角且AB 长20 cm ,矩形DCBE 的边长BE =30 cm ,请你推断该包装盒的设计是否符合客户的要求,并说明理由.[思路分析]建立空间直角坐标系→验证所给样品是否满足条件①②③→得出结论[解] 该包装盒的样品设计符合客户的要求.理由如下: 由于四边形DCBE 为矩形,∠ACB 与∠ACD 均为直角,所以以C 为原点,分别以直线CA ,CB ,CD 为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系C -xyz .由于BE =30 cm ,AB =20 cm , 设BC =t cm ,则AC =400-t 2 cm , 则A (400-t 2,0,0),B (0,t,0),D (0,0,30),E (0,t,30),设平面ADE 的法向量为n 1=(x ,y ,z ), DA →=(400-t 2,0,-30),DE →=(0,t,0),由于n 1·DA →=0且n 1·DE →=0,所以⎩⎨⎧400-t 2x -30z =0,ty =0,取x =1,则n 1=⎝⎛⎭⎪⎪⎫1,0,400-t 230. 又平面ADC 的一个法向量CB →=(0,t,0), 所以n 1·CB →=1×0+0×t +400-t 230×0=0, 所以n 1⊥CB →,所以平面ADE ⊥平面ADC ,所以满足条件①. 由于平面ABC 的一个法向量为n 2=(0,0,1),设平面ADE 与平面ABC 所成二面角的平面角为θ,则cos θ≤12,所以cos θ=|cos 〈n 1,n 2〉|=400-t 2301+400-t 2900≤12,所以10≤t ≤20,即当10≤t <20时,平面ADE 与平面ABC 所成的二面角不小于60°.由∠ACB 与∠ACD 均为直角知, AC ⊥平面DCBE ,该包装盒可视为四棱锥A -BCDE ,所以V A -BCDE =13S 矩形BCDE ·AC =13·30t ·400-t 2=10·t 2(400-t 2) ≤10⎝ ⎛⎭⎪⎪⎫t 2+400-t 222=2 000,当且仅当t2=400-t2,即t=10 2 cm时,V A-BCDE的体积最大,最大值为2 000 cm3.而10<t=102<20,可以满足平面ADE与平面ABC所成的二面角不小于60°的要求.综上可知,该包装盒的设计符合客户的要求.方法总结解决立体几何中的结论探究型问题的策略是:先把题目读懂,全面、精确地把握题目所供应的全部信息和题目提出的全部要求,分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,在此基础上建立空间直角坐标系,把所求的问题转化为空间几何体中的证明线面位置关系、角与最值等问题.。

2023版高考数学一轮复习真题精练第八章平面解析几何pptx课件

2023版高考数学一轮复习真题精练第八章平面解析几何pptx课件

【疑难点拨】 破解本题的疑难点是对最值问题如何进行转化,只需把|PM|·|AB|的最小值问题层层转化,最终
转化为|PM|的最小值问题,从而转化为点到直线的距离的最小值问题.
5 (多选)[2021新高考Ⅱ卷·11,5分,难度★★☆☆☆]
已知直线l:ax+by-r2=0(r>0)与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是
1
连接AM,BM,易知四边形PAMB的面积为2|PM|·|AB|,欲使|PM|·|AB|最小,只需四边形PAMB的面积最小,即只需
△PAM的面积最小.因为|AM|=2,所以只需|PA|最小.
又|PA|= ||2 −||2 = ||2 −4,所以只需|PM|最小,此时PM⊥l.因为PM⊥AB,所以l∥AB,所以kAB=-2,排除
5
−2 + 1 = 0
= −1,
得ቊ
所以P(-1,0).易知P,A,M,B四点共圆,所以以PM为直径的圆的方程为
= 0,
1
5
x2+(y-2)2=( 2 )2,即x2+y2-y-1=0 ②,由①②得,直线AB的方程为2x+y+1=0,故选D.
优解 因为☉M:(x-1)2+(y-1)2=4,所以圆心M(1,1).
A.若点A在圆C上,则直线l与圆C相切
B.若点A在圆C内,则直线l与圆C相离
C.若点A在圆C外,则直线l与圆C相离
D.若点A在直线l上,则直线l与圆C相切
答案
5.ABD
对于A,若点A(a,b)在圆C上,则a2+b2=r2,所以圆心C(0,0)到直线l的距离d=
正确;对于B,若点A(a,b)在圆C内,则a2+b2<r2,所以圆心C(0,0)到直线l的距离d=

高考数学一轮复习第八章 解析几何答案

高考数学一轮复习第八章 解析几何答案

第八章解析几何第40讲直线的方程及位置关系链教材·夯基固本激活思维1. ABCD 【解析】对于A,该方程不能表示过点P且垂直于x轴的直线,即点斜式只能表示斜率存在的直线,所以A不正确;对于B,该方程不能表示过点P且平行于x轴的直线,即该直线不能表示斜率为零的直线,所以B不正确;对于C,斜截式不能表示斜率不存在的直线,所以C不正确;对于D,截距式的使用条件是能表示在两坐标轴上都有非零截距的直线,所以D不正确;对于E,经过任意两个不同的点P1(x1,y1),P(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示,是正确的,该方程没有任何限制条件,所以E 正确.故选ABCD.2. B 【解析】化直线方程为y=3x+a,所以k=tan α=3.因为0°≤α<180°,所以α=60°.3. B 【解析】由已知得k1=1,k2=m+15.因为l1⊥l2,所以k1·k2=-1,所以1×m+15=-1,即m=-6. 故选B.4. C 【解析】由直线l的倾斜角为3π4得l的斜率为-1,因为直线l与l1平行,所以l1的斜率为-1.又直线l1经过点A(3,2)和B(a,-1),所以l1的斜率为33-a,故33-a=-1,解得a=6.5. ABC 【解析】当直线经过原点时,斜率为k=2-0 1-0=2,所求的直线方程为y=2x,即2x-y=0;当直线不过原点时,设所求的直线方程为x±y=k,把点A(1,2)代入可得1-2=k或1+2=k,解得k=-1或k=3,故所求的直线方程为x-y+1=0或x+y-3=0.综上可知,所求的直线方程为2x-y=0,x-y+1=0或x+y-3=0.故选ABC.知识聚焦1. (1) 向上方向平行或重合(2) [0,π)2. (1) tan α (2) y2-y1x2-x13. y -y 0=k (x -x 0) y =kx +b Ax +By +C =0 A 2+B 2≠04. (1) ①l 1∥l 2 l 1⊥l 2 k 1=k 2,b 1=b 2②A 1B 2=A 2B 1且A 1C 2≠A 2C 1A 1A 2+B 1B 2=0 A 1B 2=A 2B 1且A 1C 2=A 2C 1 (2) ⎩⎪⎨⎪⎧A1x +B1y +C1=0,A2x +B2y +C2=05. (1) (x 2-x 1)2+(y 2-y 1)2(2) |Ax0+By0+C|A2+B2(3)|C1-C2|A2+B2研题型·融会贯通 分类解析(1) 【答案】 B【解析】 设直线的倾斜角为θ,因为θ∈⎣⎢⎢⎡⎦⎥⎥⎤ π3,3π4,所以当θ∈⎣⎢⎢⎡⎭⎪⎪⎫π3,π2时,k =tan θ>3.当θ∈⎝ ⎛⎦⎥⎥⎤π2,3π4时,k =tan θ<-1,所以其斜率的取值范围为(-∞,-1]∪[3,+∞).故选B.(2) 【答案】 ⎝ ⎛⎦⎥⎥⎤-∞,56∪[2,+∞) 【解析】若要使l 过点P (2,2),且与线段AB 相交,则k ≥k AP =4-23-2=2或k ≤k BP =-3-2-4-2=56,即k ≥2或k ≤56.所以直线l 的斜率k 的取值范围是⎝ ⎛⎦⎥⎥⎤-∞,56∪[2,+∞).(1) 【答案】 D 【解析】 因为sin θ+cos θ=55,①所以(sin θ+cos θ)2=1+2sin θ cos θ=15,所以2sin θcos θ=-45,所以(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0,所以sin θ-cos θ=355,②由①②解得⎩⎪⎨⎪⎧sin θ=255,cos θ=-55,所以tan θ=-2,即l 的斜率为-2.故选D. (2) 【答案】 AD【解析】 方法一:如图,当l 过点B 时,k l =-1,当l 过点A 时,k l =1,所以k l ∈[-1,1],又k =tan α(α∈[0,π)),所以α∈⎣⎢⎢⎡⎦⎥⎥⎤0,π4∪⎣⎢⎢⎡⎭⎪⎪⎫3π4,π.(变式(2))方法二:由题可知l 的斜率存在,可设l :y =kx -1,即kx -y -1=0,易知A ,B 两点在直线l 两侧,所以(k +1)·(2k -2)≤0,所以-1≤k ≤1,以下同方法一.【解答】 (1) 由点斜式方程得y -3=3(x -5),整理得3x -y +3-53=0;(2) x =-3,即x +3=0;(3) y =4x -2,即4x -y -2=0; (4) y =3,即y -3=0;(5) 由两点式方程得y -5-1-5=x -(-1)2-(-1),整理得2x +y -3=0;(6) 由截距式方程得x-3+y-1=1,整理得x +3y +3=0.【解答】(1)由题意知,直线的点斜式方程为y -5=4(x -2),整理得4x -y -3=0.(2) 由题意可知,直线的斜率k =tan 150°=-33,所以直线的斜截式方程为y =-33x -2,整理得3x +3y +6=0.(3) 根据题意可得,直线的两点式方程为y +12+1=x +22+2,整理得3x -4y +2=0.【解答】 方法一: (1) 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线方程可化为l 1:y =-a2x -3,l 2:y =11-a x -(a +1),由l 1∥l 2可得⎩⎪⎨⎪⎧-a 2=11-a ,-3≠-(a +1),解得a =-1.综上可知,a =-1.(2) 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不符合; 当a ≠1时,l 1:y =-a2x -3,l 2:y =11-a x -(a +1),由l 1⊥l 2,得⎝ ⎛⎭⎪⎪⎫-a 2·11-a =-1⇒a =23. 方法二:(1) 由l 1∥l 2知⎩⎪⎨⎪⎧A1B2-A2B1=0,A1C2-A2C1≠0,即⎩⎪⎨⎪⎧a (a -1)-1×2=0,a (a 2-1)-1×6≠0⇒⎩⎪⎨⎪⎧a2-a -2=0,a (a 2-1)≠6⇒a =-1.(2) 因为l1⊥l2,所以A1A2+B1B2=0,即a+2(a-1)=0,解得a=2 3.【答案】-10【解析】因为l1∥l2,所以4-m m+2=-2(m≠-2),解得m=-8(经检验,l1与l2不重合).因为l2⊥l3,所以2×1+1×n=0,解得n=-2,所以m+n=-10.(1) 【答案】x+3y-5=0或x=-1【解析】方法一:当直线l的斜率存在时,设直线l的方程为y-2=k(x+1),即kx-y+k+2=0.由题意知|2k-3+k+2|k2+1=|-4k-5+k+2|k2+1,即|3k-1|=|-3k-3|,解得k=-13,所以直线l的方程为y-2=-13(x+1),即x+3y-5=0.当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意.故直线l的方程为x+3y-5=0或x=-1.方法二:当AB∥l时,有k=k AB=-13,直线l的方程为y-2=-13(x+1),即x+3y-5=0.当l过AB中点时,AB的中点为(-1,4),所以直线l的方程为x=-1.故所求直线l的方程为x+3y-5=0或x=-1.(2) 【答案】 2或-6【解析】依题意知,63=a-2≠c-1,解得a=-4,c≠-2,即直线6x+ay+c=0可化为3x-2y+c2=0,又两平行线之间的距离为21313,所以⎪⎪⎪⎪⎪⎪⎪⎪c2+132+(-2)2=21313,解得c=2或-6.(1) 【答案】 BC【解析】直线l 1:x +3y +m =0,即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172或-232,故选BC.(2) 【答案】 2 2x -y -2=0或2x +3y -18=0 【解析】显然直线l 的斜率不存在时,不满足题意.设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0,由已知,得|-2k -2+4-3k|1+k2=|4k +2+4-3k|1+k2,所以k =2或k =-23. 所以直线l 的方程为2x -y -2=0或2x +3y -18=0. 课堂评价 1.D【解析】由题意,直线的斜率为k =-33,即直线倾斜角的正切值是-33.又倾斜角∈[0°,180°),因为tan 150°=-33,故直线的倾斜角为150°,故选D.2.C【解析】因为A (1,-2)和B (m,2)的中点⎝ ⎛⎭⎪⎪⎫1+m 2,0在直线x +2y -2=0上,所以1+m2+2×0-2=0,所以m =3.故选C.3.A【解析】若l 1∥l 2,则(3+m )(5+m )=4×2,解得m =-1或m =-7.经检验,当m =-1时,l 1与l 2重合,所以m =-7.故“l 1∥l 2”是“m <-1”的充分不必要条件,故选A.4.x +2y -3=05【解析】 当两条平行直线与A ,B 两点连线垂直时,两条平行直线间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以当l 1,l 2间的距离最大时,直线l 1的斜率为k =-12,所以当l 1,l 2间的距离最大时,直线l 1的方程是y -1=-12(x -1),即x +2y -3=0,最大距离为AB =5.5. 【解答】 点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m|1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0,则点C 到直线3x -y +n =0的距离d =|-3+n|9+1=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.第41讲 圆的方程链教材·夯基固本 激活思维 1. D 2. D 3.A【解析】根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.4. (x -2)2+y 2=10【解析】 设圆心坐标为(a,0),易知(a -5)2+(-1)2=(a -1)2+(-3)2,解得a =2,所以圆心为(2,0),半径为10,所以圆C 的标准方程为(x -2)2+y 2=10.5.5【解析】方法一:设圆的标准方程为(x -a )2+(y -b )2=r 2(r >0).因为圆C 经过点M (-1,0)和N (2,3),所以⎩⎨⎧(a +1)2+b 2=r 2,(a -2)2+(b -3)2=r 2,所以a +b -2=0,① 又圆C 截两坐标轴所得弦长相等,所以|a |=|b |,②由①②得a =b =1,所以圆C 的半径为5. 方法二:因为圆C 经过点M (-1,0)和N (2,3),所以圆心C 在线段MN 的垂直平分线y =-x +2上,又圆C 截两坐标轴所得弦长相等,所以圆心C 到两坐标轴的距离相等,所以圆心C 在直线y =±x 上,因为直线y =-x 和直线y =-x +2平行,所以圆心C 为直线y =x 和直线y =-x +2的交点(1,1),所以圆C 的半径为5.知识聚焦1. 定点 定长 (a ,b ) r D 2+E 2-4F >0 ⎝ ⎛⎭⎪⎪⎫-D 2,-E 2 12D2+E2-4F研题型·融会贯通 分类解析(1) 【答案】 AB 【解析】由题知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,a ),半径为r (r >0),则r sinπ3=1,r cosπ3=|a |,解得r =23,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝ ⎛⎭⎪⎪⎫y ±332=43. (2) 【答案】 213【解析】 设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),所以⎩⎪⎨⎪⎧1+D +F =0,3+3E +F =0,7+2D +3E +F =0,所以⎩⎪⎨⎪⎧D =-2,E =-433,F =1,所以△ABC 外接圆的圆心为⎝ ⎛⎭⎪⎪⎫1,233,故△ABC 外接圆的圆心到原点的距离为1+⎝ ⎛⎭⎪⎪⎫2332=213. (1) 【答案】 ⎝ ⎛⎭⎪⎪⎫x -762+⎝ ⎛⎭⎪⎪⎫y -562=16918 【解析】设圆的标准方程为(x -a )2+(y -b )2=r 2.把点A ,B 的坐标代入,得⎩⎨⎧(-1-a )2+(3-b )2=r 2,(4-a )2+(2-b )2=r 2,消去r 2,得b =5a -5.① 令x =0,则(y -b )2=r 2-a 2,y =b ±r2-a2, 所以在y 轴上的截距之和是2b .令y =0,则(x -a )2=r 2-b 2,x =a ±r2-b2, 所以在x 轴上的截距之和是2a . 所以2a +2b =4,即a +b =2.② ①代入②,得a =76,所以b =56.所以r 2=⎝ ⎛⎭⎪⎪⎫-1-762+⎝ ⎛⎭⎪⎪⎫3-562=16918.所以圆的标准方程为⎝ ⎛⎭⎪⎪⎫x -762+⎝ ⎛⎭⎪⎪⎫y -562=16918. (2) 【答案】 x 2+y 2+2x -4y +3=0.【解析】 由题知圆心C ⎝ ⎛⎭⎪⎪⎫-D 2,-E 2,因为圆心在直线x +y -1=0上,所以-D 2-E 2-1=0,即D +E =-2.①又因为半径长r =D2+E2-122=2,所以D 2+E 2=20.②由①②可得⎩⎪⎨⎪⎧D =2,E =-4或⎩⎪⎨⎪⎧D =-4,E =2.又因为圆心在第二象限,所以-D2<0,即D >0.则⎩⎪⎨⎪⎧D =2,E =-4.故圆的一般方程为x 2+y 2+2x -4y +3=0.【解答】 (1) 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆.y x的几何意义是圆上一点与原点连线的斜率,所以设yx=k ,即y =kx .如图(1),当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k2+1=3,解得k =±3.所以yx的最大值为3,最小值为-3.(例2(1))(2)y -x 可看作是直线y =x +b 在y 轴上的截距,如图(2),当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b|2=3,解得b =-2±6.所以y -x 的最大值为-2+6,最小值为-2-6.(例2(2))(3)如图(3),x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为2,所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(2-3)2=7-43.(例2(3))【解答】(1) 因为x2+y2-4x-14y+45=0可化为(x-2)2+(y-7)2=8,所以圆心C(2,7),半径r=2 2.设m+2n=t,将m+2n=t看成直线方程,因为该直线与圆有公共点,所以圆心到直线的距离d=|1×2+2×7-t|12+22≤22,解得16-210≤t≤16+210,所以m+2n的最大值为16+210.(2) 记点Q(-2,3).因为n-3m+2表示直线MQ的斜率,设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0,n-3m+2=k.由直线MQ与圆C有公共点,知|2k-7+2k+3|1+k2≤22,解得2-3≤k≤2+3.所以n -3m +2的最大值为2+3,最小值为2-3.(1) 【答案】 BC【解析】 由题意知AB =(-1)2+(-2)2=5,l AB :2x -y +2=0,圆心坐标为(1,0),所以圆心到直线l AB 的距离d =|2-0+2|4+1=45=455,所以S △PAB 的最大值为12×5×⎝ ⎛⎭⎪⎪⎫455+1=2+52, S △PAB 的最小值为12×5×⎝ ⎛⎭⎪⎪⎫455-1=2-52. (2) 【答案】 5-27【解析】如图,以点A 为原点,AB 边所在直线为x 轴建立平面直角坐标系.则A (0,0),B (4,0),C (1,3),设P (x ,y ),则PB→=(4-x ,-y ),PC →=(1-x ,3-y ),所以PB →·PC →=(4-x )(1-x )-y (3-y )=x 2-5x +y 2-3y +4=⎝ ⎛⎭⎪⎪⎫x -522+⎝ ⎛⎭⎪⎪⎫y -322-3,其中⎝ ⎛⎭⎪⎪⎫x -522+⎝ ⎛⎭⎪⎪⎫y -322表示圆A 上的点P 与点M⎝ ⎛⎭⎪⎪⎫52,32之间距离PM 的平方,由几何图形可得PM min =AM -1=⎝ ⎛⎭⎪⎪⎫522+⎝ ⎛⎭⎪⎪⎫322-1=7-1,所以(PB →·PC →)min=(7-1)2-3=5-27.(例3(2))(1) 【答案】 A【解析】由点P 是x 轴上任意一点,知PM 的最小值为PC 1-1,同理PN 的最小值为PC 2-3,则PM +PN 的最小值为PC 1+PC 2-4.作C 1关于x 轴的对称点C ′1(2,-3),所以PC 1+PC 2=P C 1′+PC 2≥C 1′C 2=52,即(PM +PN )min =PC 1+PC 2-4≥52-4,故选A.(2) 【答案】 22【解析】设P (x ,y ),因为PA→·PB→≤3,所以x 2+y 2≤4,即点P 在以原点为圆心,2为半径的圆O 上或圆内,又因为点P 在圆C 上,所以圆O 与圆C 内切或内含,即圆心距(-a )2+a2≤2-1,所以-22≤a ≤22,所以a 的最大值为22.课堂评价 1.A【解析】 由题意可知圆心为⎝ ⎛⎭⎪⎪⎫1,a +32,因为该圆过原点,所以12+⎝ ⎛⎭⎪⎪⎫a +322=1242+(a -3)2,解得a =1,所以12+⎝ ⎛⎭⎪⎪⎫a +322=5,所以该圆的标准方程为(x -1)2+(y -2)2=5,故选A.2.ABD【解析】由圆M 的一般方程为x 2+y 2-8x +6y =0,化为标准形式得(x -4)2+(y +3)2=25.圆M 的圆心坐标为(4,-3),半径为5.令y =0,得x =0或x =8,故圆M 被x 轴截得的弦长为8;令x =0,得y =0或y =-6,故圆M 被y 轴截得的弦长为6,显然选项C 不正确.ABD 均正确.3.CD【解析】 由x 2+y 2+2x =0,得(x +1)2+y 2=1,表示以(-1,0)为圆心、1为半径的圆,y x -1表示圆上的点P (x ,y )与点M (1,0)连线的斜率,如图,易知,y x -1的最大值为33,最小值为-33.故选CD.(第3题)4. (0,-1)【解析】 因为圆C 的方程可化为⎝ ⎛⎭⎪⎪⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时圆C 的面积最大,此时圆心为(0,-1).5.3【解析】因为cos 2θ+sin 2θ=1,所以P 为以原点为圆心的单位圆上一点,而直线x -my -2=0过定点A (2,0),所以d 的最大值为OA +1=2+1=3.第42讲 直线与圆、圆与圆的位置关系链教材·夯基固本 激活思维 1.D【解析】圆C :x 2+y 2-4x -6y +9=0的圆心坐标为(2,3),半径为2,因为直线l 过点(0,2),被圆C :x 2+y 2-4x -6y +9=0截得的弦长为23,所以圆心到所求直线的距离为1,易知所求直线l 的斜率k 存在,设所求直线方程为y =kx +2,即kx -y +2=0,所以|2k -1|k2+1=1,解得k =0或43,所以所求直线方程为y =43x +2或y =2.故选D.2. C 【解析】 直线2tx -y -2-2t =0恒过点(1,-2), 因为12+(-2)2-2×1+4×(-2)=-5<0,所以点(1,-2)在圆x 2+y 2-2x +4y =0内部,所以直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交. 3.D【解析】圆C 1:(x +1)2+(y +1)2=4,所以圆心C 1(-1,-1),半径长r 1=2;圆C 2:(x -2)2+(y -1)2=1,所以圆心C 2(2,1),半径长r 2=1.所以圆心距d =(-1-2)2+(-1-1)2=13,r 1+r 2=3,所以d >r 1+r 2,所以两圆相离,所以两圆有4条公切线.4. A 【解析】 联立⎩⎪⎨⎪⎧x2+y2-4x +1=0,x2+y2-2x -2y +1=0,解得x -y =0.圆C 1可化成(x -2)2+y 2=3,故C 1(2,0),半径为3,圆心(2,0)到直线x -y=0的距离为d =|2|12+12=2,故弦长为23-(2)2=2.5.ACD【解析】将点(0,1)代入方程(x -2)2+(y +3)2=16的左边,则得4+16=20>16,所以点(0,1)在圆C 外,故A 不正确;由圆C :(x -2)2+(y +3)2=16知圆心为(2,-3),半径为r =4,则圆心(2,-3)到直线3x +4y -14=0的距离d =|3×2+4×(-3)-14|32+42=4=r ,故B 正确;将点(2,5)代入方程(x -2)2+(y +3)2=16的左边,则得0+64=64>16,所以点(2,5)在圆C 外,故C 不正确;圆心(2,-3)到直线x +y +8=0的距离d =|2-3+8|12+12=72≠r ,故D 不正确,故选ACD.知识聚焦1. < > = = > <2. d >r 1+r 2 无 d =r 1+r 2 一组 |r 1-r 2|<d <r 1+r 2 两组不同的 |r 1-r 2| ≤<研题型·融会贯通 分类解析(1) 【答案】 26【解析】 圆C 的方程为x 2+(y -1)2=8,圆心C (0,1),直线l :kx -y -k +2=0,即k (x -1)-(y -2)=0,过定点P (1,2),当AB 取最小值时,AB ⊥PC ,此时CP =2,故AB min =2CA2-CP2=26.(2) 【答案】 ⎝ ⎛⎭⎪⎪⎫-53,53【解析】 因为A (0,a ),B (3,a +4),所以AB =5,直线AB 的方程为y =43x +a .因为S△ABC =12AB ·h =52h =5,故h =2,因此,问题转化为在圆上存在4个点C ,使得它到直线AB 的距离为2.因为圆的半径为3,因此,圆心O 到直线AB 的距离小于1,即|3a|5<1,解得-53<a <53.(1) 【答案】 1023 【解析】易知最长弦为圆的直径10.又最短弦所在直线与最长弦垂直,且PC =2,所以最短弦的长为2r2-PC2=225-2=223.故所求四边形的面积S =12×10×223=1023.(2) 【答案】 3 【解析】圆的方程化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线的距离d =|-1-2+1|2=2,半径是22,结合图形可知有3个符合条件的点.【解答】 (1) 设切线方程为x +y +b =0, 则|1-2+b|2=10,所以b =1±25,所以切线方程为x +y +1±25=0. (2) 设切线方程为2x +y +m =0, 则|2-2+m|5=10,所以m =±52,所以切线方程为2x +y ±52=0.(3) 因为k AC =-2+11-4=13,所以过切点A (4,-1)的切线斜率为-3,所以过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.【解答】由方程x 2+y 2+2x -4y +3=0知,圆心为(-1,2),半径长为2.当切线过原点时,设切线方程为y =kx ,则|k +2|k2+1=2,所以k =2±6,即切线方程为y =(2±6)x .当切线不过原点时,设切线方程为x +y =a ,则|-1+2-a|2=2,所以a =-1或a =3,即切线方程为x +y +1=0或x +y -3=0.综上所述,切线方程为y =(2±6)x 或x +y +1=0或x +y -3=0.【解答】因为两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m ,所以两圆的圆心分别为(1,3),(5,6),半径分别为11,61-m .(1) 当两圆外切时,由(5-1)2+(6-3)2=11+61-m ,得m =25+1011.(2) 当两圆内切时,因为定圆半径11小于两圆圆心之间的距离5,所以61-m-11=5,解得m =25-1011.(3)由(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0,得两圆的公共弦所在直线的方程为4x +3y -23=0,故两圆的公共弦长为2(11)2-⎝⎛⎭⎪⎫|4×1+3×3-23|42+322=27. (1) 【答案】 9或-11 【解析】依题意可得C 1(0,0),C 2(3,4),则C 1C 2=32+42=5.又r 1=1,r 2=25-m,25-m >0.当两圆外切时,r 1+r 2=25-m +1=5,解得m =9;当两圆内切时,|r 2-r 1|=5,即|25-m -1|=5,得25-m=6,解得m =-11.(2) 【答案】 1 【解析】将x 2+y 2+2ay -6=0与x 2+y 2=4两式相减得2ay =2,则y =1a.由题知22-(3)2=⎪⎪⎪⎪⎪⎪⎪⎪1a ,a >0,解得a =1. 课堂评价 1.C【解析】圆C 2化简得(x -4)2+(y -5)2=35-m ,由圆的方程得C 1(1,1),C 2(4,5),半径分别为2和35-m ,因为两圆外切,所以(4-1)2+(5-1)2=35-m +2,解得m =26.故选C. 2.B【解析】由题意,过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则点(3,1)在圆上,代入可得r 2=5,圆的方程为(x -1)2+y 2=5,则过点(3,1)的切线方程为(x -1)·(3-1)+y (1-0)=5,即2x +y -7=0.3. A【解析】因为圆心(2,0)到直线的距离d =|2+0+2|2=22,所以点P 到直线的距离d 1∈[2,32].根据直线的方程可知A ,B 两点的坐标分别为(-2,0),(0,-2),所以AB=22,所以△ABP 的面积S =12AB ·d 1=2d 1.因为d 1∈[2,32],所以S ∈[2,6],即△ABP 面积的取值范围是[2,6].4.BD【解析】 因为直线x -2y +a =0与圆O :x 2+y 2=2相交于A ,B 两点(O 为坐标原点),且△AOB 为等腰直角三角形,所以O 到直线AB 的距离为1,由点到直线的距离公式可得|a|12+(-2)2=1,所以a =±5,故选BD.5. 4【解析】 连接OO 1,记AB 与OO 1的交点为C ,如图所示,在Rt △OO 1A 中,OA =5,O 1A =25,所以OO 1=5,所以AC =5×255=2,所以AB =4.(第5题) 第43讲 椭 圆链教材·夯基固本 激活思维1. C2. D3. 724. x236+y227=15. 45 18 【解析】 由椭圆方程知a =5,b =3,c =4,所以其离心率e =c a =45.△PF 1F 2的周长为2a +2c =10+8=18.知识聚焦1. (1) 焦点 焦距 (2) PF 1+PF 2=2a (2a >F 1F 2)2. F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) c 2=a 2-b 2ca=1-b2a21 0研题型·融会贯通 分类解析(1) 【答案】 C 【解析】 设椭圆方程为x2a2+y2b2=1(a >b >0),由已知设BF 的方程为x c +y b=1,因为点O 到直线BF 的距离为3,所以bc a =3,又因为过F 垂直于椭圆长轴的弦长为2,所以2b2a=2,结合a 2=b 2+c 2,知a =4,b =2,故选C.(2) 【答案】x236+y216=1 【解析】 依题意,设椭圆方程为x2a2+y2b2=1(a >b >0),右焦点为F ′,连接PF ′.由已知,半焦距c =25.又由OP =OF =OF ′,知∠FPF ′=90°.在Rt△PFF ′中,PF ′=FF ′2-PF2=(4 5 )2-42=8.由椭圆的定义可知2a =PF +PF ′=4+8=12,所以a =6,于是b 2=a 2-c 2=62-(25)2=16,故椭圆C 的方程为x236+y216=1.(1) 【答案】x24+y23=1【解析】因为3AF1=5AF2,由椭圆定义有AF1+AF2=4,解得AF2=32,又AF2⊥x轴,故AF2=b2a=b22,所以b2=3,故椭圆方程为x24+y23=1.(2) 【答案】x23+y22=1【解析】如图,由已知可设F2B=n,则AF2=2n,BF1=AB=3n,由椭圆的定义有2a=BF1+BF2=4n,所以AF1=2a-AF2=2n.在△AF1B中,由余弦定理推论得cos∠F1AB=4n2+9n2-9n22·2n·3n=13.在△AF1F2中,由余弦定理得4n2+4n2-2·2n·2n·13=4,解得n=32.所以2a=4n=23,所以a=3,所以b2=a2-c2=3-1=2,所以椭圆C的方程为x23+y22=1.(变式(2))(1) 【答案】 C【解析】椭圆方程可化为x211+m+y21m=1,由题意知m>0,所以11+m<1m,所以a=mm,所以椭圆的长轴长2a=2mm.故选C.(2) 【答案】 8【解析】 因为椭圆x2m -2+y210-m=1的长轴在x 轴上,所以⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.因为焦距为4,所以c 2=m -2-10+m =4,解得m =8.(3) 【答案】 3【解析】由椭圆的方程可知a =2,由椭圆的定义可知AF 2+BF 2+AB =4a =8,所以AB =8-(AF 2+BF 2)≥3,由椭圆的性质可知2b2a=3,所以b 2=3,即b =3.(1) 【答案】 D【解析】 由题意可得椭圆的焦点在x 轴上,如图所示, 设F 1F 2=2c ,因为△PF 1F 2为等腰三角形,且∠F 1F 2P =120°, 所以PF 2=F 1F 2=2c ,因为OF 2=c ,所以点P 的坐标为(c +2c cos 60°,2c sin 60°),即点P (2c ,3c ). 因为点P 在过点A ,且斜率为36的直线上,所以3 c 2c +a=36,解得c a=14,所以e =14,故选D.(例3(1))(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫12,1 【解析】不妨设椭圆焦点在x 轴上,设椭圆方程为x2a2+y2b2=1(a >b >0),PF 1=m ,PF 2=n ,则m +n =2a .在△PF 1F 2中,由余弦定理可知,4c 2=m 2+n 2-2mn cos 60°=(m +n )2-3mn =4a 2-3mn ≥4a 2-3·⎝ ⎛⎭⎪⎪⎫m +n 22=4a 2-3a 2=a 2(当且仅当m =n 时取等号),所以c2a2≥14,即e ≥12.又0<e <1,所以e 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫12,1. (1) 【答案】255【解析】 不妨设点P 在第一象限,O 为坐标原点,由对称性可得OP =PQ 2=a 2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =OP OA=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎪⎫a 4,3a 4,代入椭圆方程得116+3a216b2=1,故a 2=5b 2=5(a 2—c 2),所以椭圆C 的离心离e =255.(2) 【答案】 ⎣⎢⎢⎡⎭⎪⎪⎫13,1 【解析】 由椭圆的定义知PF 1+PF 2=2a ,PF 1=2PF 2, 所以PF 1=43a ,PF 2=23a ,又PF 1-PF 2≤F 1F 2,即23a ≤2c ,所以e ≥13,又0<e <1,所以椭圆的离心率e 的取值范围是⎣⎢⎢⎡⎭⎪⎪⎫13,1.【解答】(1)由题意得c =3,c a=32,所以a =23,又因为a 2=b 2+c 2,所以b 2=3,所以椭圆的方程为x212+y23=1.(2) 由⎩⎪⎨⎪⎧x2a2+y2b2=1,y =kx ,得(b 2+a 2k 2)x 2-a 2b 2=0.设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=0,x 1x 2=-a2b2b2+a2k2,依题意易知,OM ⊥ON ,四边形OMF 2N 为平行四边形,所以AF 2⊥BF 2. 因为F2A →=(x 1-3,y 1),F2B →=(x 2-3,y 2), 所以F2A →·F2B →=(x 1-3)(x 2-3)+y 1y 2=(1+k 2)x 1x 2+9=0. 即-a2(a 2-9)(1+k 2)a 2k 2+(a 2-9)+9=0,将其整理为k 2=a4-18a2+81-a4+18a2=-1-81a4-18a2.因为22<e ≤32,所以23≤a <32,即12≤a 2<18.所以k 2≥18,即k ∈⎝ ⎛⎦⎥⎥⎤-∞,-24∪⎣⎢⎢⎡⎭⎪⎪⎫24,+∞. 课堂评价 1. A2. C 【解析】 由椭圆x216+y2m=1的焦距为27,可得216-m =27或2m -16=27,解得m =9或23.故选C.3. ACD【解析】由已知得2b =2,b =1,c a =63,又a 2=b 2+c 2,解得a 2=3,所以椭圆C 的方程为y23+x 2=1.如图,PQ =2b2a=23=233,△PF 2Q 的周长为4a =43.故选ACD.(第3题)4.C【解析】 由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ×b =12(2a +2c )×b3,得a =2c ,即e =ca =12,故选C.5.4【解析】如图,设AB 的方程为ty =x ,F (c,0),A (x 1,y 1),B (x 2,y 2),则y 1=-y 2.联立⎩⎪⎨⎪⎧ty =x ,x2a2+y2b2=1,可得y 2=a2b2b2t2+a2=-y 1y 2,所以△ABF 的面积S =12c |y 1-y 2|=12c (y 1+y 2)2-4y 1y 2=ca2b2b2t2+a2≤cb ,当且仅当t =0时取等号.所以bc =2,所以a 2=b 2+c 2≥2bc =4, 当且仅当b =c 时取等号,此时a =2. 所以椭圆E 的长轴长的最小值为4.(第5题) 第44讲 双曲线链教材·夯基固本 激活思维 1.A【解析】由双曲线的离心率为2,焦点是(-4,0),(4,0),知c =4,a =2,b 2=12,即双曲线的方程为x24-y212=1,故选A.2.A【解析】 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a±y b =0,即bx ±ay =0,所以2a =bc a2+b2=b .又a 2+b 2=c 2,所以5a 2=c 2,所以e 2=c2a2=5,所以e =5.3. AC 【解析】 设双曲线方程为x29-y23=λ,代入(3,2)得λ=13,即x23-y 2=1,故A 正确;由a =3,c =2,得e =23,故B 错误;焦点(2,0)在y =e x -2-1上,故C 正确;联立⎩⎪⎨⎪⎧x23-y2=1,x -2y -1=0,消去x 得y 2-22y +2=0,可得Δ=0,所以直线x -2y -1=0与曲线C 只有1个交点,故D 错误.故选AC.4. A 【解析】 不妨设点P 在第一象限,根据题意可知c 2=6,所以OF =6.又tan ∠POF =ba =22,所以等腰三角形POF 的高h =62×22=32,所以S △PFO =12×6×32=324.故选A.5. 5+12 【解析】 将x =±c 代入双曲线的方程得y 2=b4a2⇒y =±b2a,则2c =2b2a,即有ac =b 2=c 2-a 2,由e =c a,可得e 2-e -1=0,解得e =5+12或e =1-52(舍去).知识聚焦 1. 焦点 焦距2. |x |≥a ,y ∈R |y |≥a ,x ∈R F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c ) A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a )ca =1+b2a2研题型·融会贯通 分类解析(1) 【答案】 B 【解析】由y28+x22=1,得a 2=8,b 2=2,所以c 2=6,得c =6,即椭圆的半焦距为6.设与双曲线x22-y 2=1有相同渐近线的双曲线方程为x22-y 2=λ,因为所求双曲线的焦点在y 轴上,则λ<0,双曲线方程化为y2-λ-x2-2λ=1,设双曲线的实半轴长为m ,虚半轴长为n ,则m 2=-λ,n 2=-2λ, 所以m 2+n 2=-λ-2λ=(6)2,解得λ=-2.所以所求双曲线的方程为y22-x24=1.故选B.(2) 【答案】 x24-y26=1【解析】不妨设B (0,b ),由BA→=2AF →,F (c,0),可得A ⎝ ⎛⎭⎪⎪⎫2c 3,b 3,代入双曲线C 的方程可得49×c2a2-19=1,即49·a2+b2a2=109,所以b2a2=32①.又|BF →|=b2+c2=4,c 2=a 2+b 2,所以a 2+2b 2=16②.由①②可得a 2=4,b 2=6,所以双曲线C 的方程为x24-y26=1.(1) 【答案】 y22-x24=1【解析】因为所求双曲线与已知双曲线x22-y 2=1有公共的渐近线,故可设双曲线方程为x22-y 2=λ(λ≠0),代入点(2,-2),得λ=-2,所以所求双曲线的方程为x22-y 2=-2,即y22-x24=1.(2) 【答案】 x 2-y23=1【解析】 设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0),由题意得B (2,0),C (2,3),所以⎩⎪⎨⎪⎧4=a2+b2,4a2-9b2=1,解得⎩⎪⎨⎪⎧a2=1,b2=3,所以双曲线的标准方程为x 2-y23=1.(1) 【答案】 (0,2) 【解析】对于焦点在x 轴上的双曲线x2a2-y2b2=1(a >0,b >0),它的一个焦点(c,0)到渐近线bx ±ay =0的距离为|bc|b2+a2=b .本题中,双曲线x28-m+y24-m=1,即x28-m-y2m -4=1,其焦点在x 轴上,则⎩⎪⎨⎪⎧8-m >0,m -4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2).故焦点到渐近线距离的取值范围是(0,2).(2) 【答案】 y =±2x 【解析】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为x 2-y24=1,所以渐近线方程为y =±2x .(1) 【答案】 D 【解析】不妨设P 为双曲线右支上一点,则PF 1>PF 2.由双曲线的定义得PF 1-PF 2=2a .又PF 1+PF 2=6a ,所以PF 1=4a ,PF 2=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理可得(4a )2+(2c )2-(2a )22·4a ·2c =32, 即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .故选D. (2) 【答案】 x23-y29=1【解析】 因为双曲线x2a2-y2b2=1(a >0,b >0)的离心率为2,所以e 2=1+b2a2=4,所以b2a2=3,即b 2=3a 2,所以c 2=a 2+b 2=4a 2,由题意可设A (2a,3a ),B (2a ,-3a ), 因为b2a2=3,所以渐近线方程为y =±3x .则点A 与点B 到直线3x -y =0的距离分别为d 1=|2 3 a -3a|2=2 3 -32a ,d 2=|2 3 a +3a|2=23+32a .又因为d 1+d 2=6, 所以23 -32a +23+32a =6,解得a =3, 所以b 2=9.所以双曲线的方程为x23-y29=1.(1) 【答案】655【解析】 设BF 1=x ,则AF 2=3x .由图及双曲线的定义知AF 1-AF 2=2a ,BF 2-BF 1=2a ,则AB +x -3x =2a ,BF 2-x =2a .因为AF 2⊥BF 2,所以AB 2=AF2+BF 2,即(2a +2x )2=9x 2+(2a +x )2,解得a =3x 2,所以AB =5x ,BF 2=4x ,所以cos ∠BAF 2=35.在△AF 1F 2中,由余弦定理知AF 21+AF 2-2·AF 1·AF 2·cos ∠BAF 2=F 1F 22=4c 2,所以36x 2+9x 2-108x25=4c 2,所以c =313x 2 5,所以双曲线的离心率为e =c a =655.(例3(1))(2) 【答案】3【解析】不妨设双曲线的一条渐近线方程为y =b ax ,则F 2到y =b a x 的距离d =|bc|a2+b2=b .在Rt △F 2PO 中,F 2O =c ,所以PO =a ,所以PF 1=6a .又F 1O =c ,所以在△F 1PO 与Rt△F 2PO 中,根据余弦定理得cos∠POF 1=a2+c2-( 6 a )22ac =-cos ∠POF 2=-a c ,即3a 2=c 2,所以e =ca=3.(1) 【答案】 (1,2) 【解析】若△ABE 是锐角三角形,只需∠AEF <45°,在Rt △AFE 中,AF =b2a,FE =a +c ,则b2a<a +c ,b 2<a 2+ac,2a 2-c 2+ac >0,e 2-e -2<0,解得-1<e <2.又e >1,则1<e <2.(2) 【答案】 53【解析】 由双曲线定义知PF 1-PF 2=2a ,又PF 1=4PF 2,所以PF 1=83a ,PF 2=23a ,在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=649a2+49a2-4c22·83a ·23a =178-98e 2,要求e 的最大值,即求cos ∠F 1PF 2的最小值.因为cos ∠F 1PF 2≥-1,所以cos ∠F 1PF 2=178-98e 2≥-1,解得e ≤53,即e 的最大值为53.【题组强化】 1.D【解析】由条件知y =-b ax 过点(3,-4),所以3b a=4,即3b =4a ,所以9b 2=16a 2,所以9c 2-9a 2=16a 2,所以25a 2=9c 2,所以e =53.故选D.2. C 【解析】 由F 1F 2=2OP ,可得OP =c ,故△PF 1F 2为直角三角形,PF 1⊥PF 2,则PF 21+PF 2=F 1F 2.由双曲线的定义可得PF 1-PF 2=2a ,则PF 1=2a +PF 2,所以(PF 2+2a )2+PF 22=4c 2,整理得(PF 2+a )2=2c 2-a 2.又PF 1≥3PF 2,即2a +PF 2≥3PF 2,可得PF 2≤a ,所以PF 2+a ≤2a ,即2c 2-a 2≤4a 2,可得c ≤102a .由e =ca ,且e >1,可得1<e ≤102.故选C.3.2【解析】由题知双曲线的渐近线方程为y =±b a x ,不妨设右焦点F (c,0),过点F 与渐近线平行的直线为l :y =b a(x -c ).由⎩⎪⎨⎪⎧y =-b ax ,y =b a (x -c ),得x =c 2,则y =-b a×c 2=-bc 2a ,所以P ⎝ ⎛⎭⎪⎪⎫c 2,-bc 2a ,PF 的中点为A ⎝ ⎛⎭⎪⎪⎫3c 4,-bc 4a .又点A 在双曲线上,所以⎝ ⎛⎭⎪⎪⎫3c 42a2-⎝ ⎛⎭⎪⎪⎫-bc 4a 2b2=1,化简得c2a2=2,即e =c a=2.4.53【解析】由线段PF 1的垂直平分线恰好过点F 2,可得PF 2=F 1F 2=2c ,由直线PF 1与以坐标原点O 为圆心、a 为半径的圆相切于点A ,可得OA =a ,设PF 1的中点为M ,由中位线定理可得MF 2=2a ,在Rt △PMF 2中,可得PM =4c2-4a2=2b , 即有PF 1=4b ,由双曲线的定义可得PF 1-PF 2=2a ,即4b -2c =2a ,即2b =a +c ,即有4b 2=(a +c )2, 即4(c 2-a 2)=(a +c )2,可得a =35c ,即e =53.(第4题)课堂评价 1. B 2. C【解析】 根据渐近线方程为x ±y =0,可得a =b ,所以c =2a ,则该双曲线的离心率为e =ca=2,故选C. 3. A 【解析】 由题意知,e =ca=3,所以c =3a ,所以b =c2-a2=2a ,所以b a =2,所以该双曲线的渐近线方程为y =±bax =±2x ,故选A.4. x28-y28=1 【解析】 由离心率为2,可知a =b ,c =2a ,所以F (-2a,0),由题意知k PF =4-00-(-2a )=42a=1,解得a =22,所以双曲线的方程为x28-y28=1.5. 23 23 【解析】 由题意知a =2,b =23,c =4,F (4,0),PF =b =23,△POF 的面积为12ab =12×43=23.第45讲 抛物线链教材·夯基固本 激活思维 1. C2. AC 【解析】根据抛物线定义知选项A 正确;对于B ,符合条件的抛物线的焦点可能在x 轴上也可能在y 轴上,故B 错误;对于C ,抛物线焦点为(-1,0),所以p =2,抛物线方程是y 2=-4x ,故C 正确;对于D ,因为p 的符号不确定,所以方程不唯一,故D 错误.故选AC.3.B【解析】因为M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116,设M (x ,y ),则y +116=1,所以y =1516. 4.B【解析】抛物线y 2=6x 的焦点坐标为⎝ ⎛⎭⎪⎪⎫32,0,准线方程为x =-32,设A (x 1,y 1),B (x 2,y 2),因为AF =3BF ,所以x 1+32=3⎝ ⎛⎭⎪⎪⎫x2+32,所以x 1=3x 2+3, 因为|y 1|=3|y 2|,所以x 1=9x 2,所以x 1=92,x 2=12,所以AB =⎝ ⎛⎭⎪⎪⎫x1+32+⎝ ⎛⎭⎪⎪⎫x2+32=8.故选B. 5.y 2=8x 6【解析】由抛物线C :y 2=2px (p >0)的焦点为F (2,0),可得p =4,则抛物线C 的方程是y 2=8x .由M 为FN 的中点,得M 的横坐标为1,所以FN =2FM =2(x M +2)=2×(1+2)=6.知识聚焦1. 相等 焦点 准线 研题型·融会贯通 分类解析(1) 【答案】 22【解析】 因为抛物线y 2=2px (p >0)的准线方程是x =-p2,双曲线x 2-y 2=1的一个焦点为F 1(-2,0),且抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,所以-p 2=-2,解得p =22.(2) 【答案】 13 【解析】由题意得抛物线的焦点为F (2,0),准线方程为x =-2.因为AF =(6-2)2+32=5,所以求△PAF 周长的最小值即求PA +PF 的最小值.设点P 在准线上的射影为D ,如图,连接PD ,根据抛物线的定义,可知PF =PD ,所以PA +PF 的最小值即PA +PD 的最小值.根据平面几何的知识,可得当D ,P ,A 三点共线时PA +PD 取得最小值,所以PA +PF 的最小值为x A -(-2)=8,所以△PAF 周长的最小值为8+5=13.(例1(2))(1) 【答案】 A 【解析】设焦点为F ,准线为l ,过P 作PA⊥l ,垂足为A ,则PF =PA ,PF +PQ =PQ +PA ,当且仅当A ,P ,Q 三点共线时,和最小,此时P ⎝ ⎛⎭⎪⎪⎫14,-1,故选A. (2) 【答案】 4 【解析】因为双曲线的右焦点为(2,0),所以抛物线y 2=2px (p >0)的焦点坐标为(2,0),所以p =4.【解答】 (1) 由已知得抛物线焦点坐标为⎝ ⎛⎭⎪⎪⎫p 2,0. 由题意可设直线方程为x =my +p2,代入y 2=2px ,得y 2=2p ⎝⎛⎭⎪⎪⎫my +p 2,即y 2-2pmy -p 2=0.(*) 易知y 1,y 2是方程(*)的两个实数根, 所以y 1y 2=-p 2.因为y 21=2px 1,y 2=2px 2, 所以y 21y 2=4p 2x 1x 2,所以x 1x 2=y21y224p2=p44p2=p24.(2) 由题意知AF =x 1+p2,BF =x 2+p2,所以1AF +1BF=1x1+p 2+1x2+p 2=x1+x2+px1x2+p 2(x 1+x 2)+p24.因为x 1x 2=p24,x 1+x 2=AB -p ,所以1AF +1BF =ABp24+p 2(AB -p )+p 24=2p(定值).(3)设AB 的中点为M (x 0,y 0),分别过A ,B 作准线的垂线,垂足为C ,D ,过M 作准线的垂线,垂足为N ,则MN =12(AC +BD )=12(AF +BF )=12AB .所以以AB 为直径的圆与抛物线的准线相切.(例2)【解答】 (1) 设P (x 1,y 1),Q (x 2,y 2),因为PQ 为焦点弦,所以y 1y 2=-p 2.因为直线OP 的方程为y=y1x1·x ,它与准线的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫-p 2,y0,所以y 0=y1x1·⎝ ⎛⎭⎪⎪⎫-p 2=2p y1·⎝ ⎛⎭⎪⎪⎫-p 2=-p2y1=y1y2y1=y 2,故直线MQ ∥x 轴.(2) 设M ⎝ ⎛⎭⎪⎪⎫-p 2,y2,则k OM =y2-p 2=-2y2p ,k OP =y1x1=2p y1. 因为PQ 为焦点弦,所以y 1y 2=-p 2,所以y 2=-p2y1,所以k OM =-2y2p =2py1,所以k OM =k OP ,所以P ,O ,M 三点共线. (3)如图,连接PF 并延长交抛物线于Q ′,由(1)知MQ ′∥x 轴,所以Q 与Q ′重合,故PQ 为焦点弦.(例3)【解答】 (1) 由题意,设A ⎝ ⎛⎭⎪⎪⎫x1,x212p ,B ⎝ ⎛⎭⎪⎪⎫x2,x222p ,x 1<x 2,M (x 0,-2p ). 由x 2=2py 得y =x22p ,则y ′=xp ,所以k MA =x1p ,k MB =x2p.因此直线MA 的方程为y +2p =x1p (x -x 0),直线MB 的方程为y +2p =x2p (x -x 0).所以x212p +2p =x1p (x 1-x 0),①x222p +2p =x2p (x 2-x 0).② 由①②得x1+x22=x 1+x 2-x 0,因此x 0=x1+x22,即2x 0=x 1+x 2.所以A ,M ,B 三点的横坐标成等差数列.。

2019-2020年高考数学一轮复习 题组层级快练90(含解析)

2019-2020年高考数学一轮复习 题组层级快练90(含解析)

2019-2020年高考数学一轮复习 题组层级快练90(含解析)A .25x 2+9y 2=1B .9x 2+25y 2=1C .25x +9y =1 D.x 225+y 29=1 答案 A2.极坐标方程ρ=cos θ化为直角坐标方程为( ) A .(x +12)2+y 2=14B .x 2+(y +12)2=14C .x 2+(y -12)2=14D .(x -12)2+y 2=14答案 D解析 由ρ=cos θ,得ρ2=ρcos θ,∴x 2+y 2=x .选D. 3.极坐标方程ρcos θ=2sin2θ表示的曲线为( ) A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆答案 C4.设点M 的直角坐标为(-1,-3,3),则它的柱坐标为( ) A .(2,π3,3)B .(2,2π3,3)C .(2,4π3,3)D .(2,5π3,3)答案 C5.(xx·北京西城一模)在极坐标系中,过点(2,π2)且与极轴平行的直线方程是( )A .ρ=0B .θ=π2C .ρcos θ=2D .ρsin θ=2答案 D解析 极坐标为(2,π2)的点的直角坐标为(0,2),过该点且与极轴平行的直线的方程为y =2,其极坐标方程为ρsin θ=2,故选D.6.(xx·北京海淀期末练习)下列极坐标方程表示圆的是( ) A .ρ=1 B .θ=π2C .ρsin θ=1D .ρ(sin θ+cos θ)=1答案 A解析 ρ=1化为直角坐标方程为x 2+y 2=1,表示圆心在原点,半径为1的圆,故A 正确;θ=π2化为直角坐标方程为x =0(y ≥0),表示射线,故B 不正确;ρsin θ=1化为直角坐标方程为y =1,表示直线,故C 不正确;ρ(sin θ+cos θ)=1化为直角坐标方程为x +y =1,表示直线,故D 不正确.7.(xx·皖北协作区联考)在极坐标系中,直线ρ(3cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标为( ) A .(2,π6)B .(2,π3)C .(4,π6)D .(4,π3)答案 A解析 ρ(3cos θ-sin θ)=2可化为直角坐标方程3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y ,得4x 2-83x +12=0,即x 2-23x +3=0,所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为(2,π6),故选A.8.在极坐标系中,极坐标为(2,π6)的点到极点和极轴的距离分别为( )A .1,1B .1,2C .2,1D .2,2 答案 C解析 点(ρ,θ)到极点和极轴的距离分别为ρ,ρ|sin θ|,所以点(2,π6)到极点和极轴的距离分别为2,2sinπ6=1.9.在以O 为极点的坐标系中,直线l 的极坐标方程是ρcos θ-2=0,直线l 与极轴相交于点M ,以OM 为直径的圆的极坐标方程是( )A .ρ=2cos θB .ρ=2sin θC .2ρ=cos θD .ρ=2+cos θ 答案 A解析 直线l :ρcos θ-2=0的直角坐标方程是x =2,直线l 与x 轴相交于点M (2,0),以OM 为直径的圆的直角坐标方程为(x -1)2+y 2=1,即x 2-2x +y 2=0,化为极坐标方程是ρ2-2ρcos θ=0,即ρ=2cos θ.10.在极坐标系中,与圆ρ=4sin θ相切的一条直线的方程是( ) A .ρsin θ=2 B .ρcos θ=2 C .ρcos θ=4 D .ρcos θ=-4 答案 B解析 方法一:圆的极坐标方程ρ=4sin θ即ρ2=4ρsin θ,所以直角坐标方程为x 2+y 2-4y =0. 选项A ,直线ρsin θ=2的直角坐标方程为y =2,代入圆的方程,得x 2=4,∴x =±2,不符合题意;选项B ,直线ρcos θ=2的直角坐标方程为x =2,代入圆的方程,得(y -2)2=0,∴y =2,符合题意.同理,以后选项都不符合题意.方法二:如图,⊙C 的极坐标方程为ρ=4sin θ,CO ⊥Ox ,OA 为直径,|OA |=4,直线l 和圆相切, l 交极轴于点B (2,0),点P (ρ,θ)为l 上任意一点, 则有cos θ=|OB ||OP |=2ρ,得ρcos θ=2.11.在极坐标系中,圆ρ=2cos θ的圆心的极坐标是________,它与方程θ=π4(ρ>0)所表示的图形的交点的极坐标是________.答案 (1,0),(2,π4)解析 ρ=2cos θ表示以点(1,0)为圆心,1为半径的圆,故圆心的极坐标为(1,0). 当θ=π4时,ρ=2,故交点的极坐标为(2,π4).12.(xx·陕西)在极坐标系中,点(2,π6)到直线ρsin(θ-π6)=1的距离是________.答案 1解析 ρsin(θ-π6)=ρ(sin θcos π6-sin π6cos θ)=1,因为在极坐标系中,ρcos θ=x ,ρsin θ=y , 所以直线可化为x -3y +2=0. 同理点(2,π6)可化为(3,1),所以点到直线距离d =|3-3+2|3+1=1.13.在极坐标系中,点M (4,π3)到曲线ρcos(θ-π3)=2上的点的距离的最小值为________.答案 2解析 点M (4,π3)的直角坐标为M (2,23),曲线ρcos(θ-π3)=2,即ρ(12cos θ+32sin θ)=2,化为普通方程为x +3y -4=0. 点M (2,23)到此直线的距离 d =|2+23×3-4|1+32=2即为所求.14.在极坐标系中,已知圆ρ=2cos θ与直线4ρcos θ+3ρsin θ+a =0相切,则a =________. 答案 1或-9解析 圆ρ=2cos θ即ρ2=2ρcos θ,即(x -1)2+y 2=1,直线4ρcos θ+3ρsin θ+a =0,即4x +3y +a =0,已知圆ρ=2cos θ与直线4ρcos θ+3ρsin θ+a =0相切, ∴圆心到直线的距离等于半径. 即|4+0+a |42+32=1,解得a =1或-9. 15.(xx·广州综合测试一)在极坐标系中,直线ρ(sin θ-cos θ)=a 与曲线ρ=2cos θ-4sin θ相交于A ,B 两点,若|AB |=23,则实数a 的值为________.答案 -5或-1解析 将直线ρ(sin θ-cos θ)=a 化为普通方程,得y -x =a ,即x -y +a =0,将曲线ρ=2cos θ-4sin θ的方程化为普通方程,得x 2+y 2=2x -4y ,即(x -1)2+(y +2)2=5,圆心坐标为(1,-2),半径长为r = 5.设圆心到直线AB 的距离为d ,由勾股定理可得d =r 2-|AB |22=5-2322=2,而d =|1--2+a |12+-12=|a +3|2=2,所以|a +3|=2,解得a =-5或a =-1.16.已知极坐标方程C 1:ρ=10,C 2:ρsin(θ-π3)=6.(1)化C 1,C 2的极坐标方程为直角坐标方程,并分别判断曲线形状; (2)求C 1,C 2交点间的距离.答案 (1)C 1:x 2+y 2=100,C 2:3x -y +12=0 (2)16 解析 (1)由C 1:ρ=10,得ρ2=100.∴x 2+y 2=100. 所以C 1为圆心在(0,0),半径等于10的圆. 由C 2:ρsin(θ-π3)=6,得ρ(12sin θ-32cos θ)=6.∴y -3x =12,即3x -y +12=0. 所以C 2表示直线.(2)由于圆心(0,0)到直线3x -y +12=0的距离为d =|12|32+-12=6<10,所以直线C 2被圆截得的弦长等于2102-62=16.17.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 答案 (1)x +3y -2=0,M (2,0),N (233,π2)(2)θ=π6,ρ∈Rπ解析(1)由ρcos(θ-3)=1,得ρ(12cos θ+32sin θ)=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0); 当θ=π2时,ρ=233,所以N (233,π2).(2)M 点的直角坐标为(2,0),N 点的直角坐标为(0,233).所以P 点的直角坐标为(1,33),则P 点的极坐标为(233,π6).所以直线OP 的极坐标方程为θ=π6,ρ∈(-∞,+∞).18.(xx·辽宁)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.答案 (1)C :⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数) (2)ρ=34sin θ-2cos θ思路 (1)利用相关点法先求出直角坐标方程,再写出参数方程.(2)先联立方程求出P 1,P 2两点的坐标,进而求出P 1P 2的中点坐标,得到与l 垂直的直线方程,再化为极坐标方程.解析 (1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+(y 2)2=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧ x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为(12,1),所求直线斜率为k =12.于是所求直线方程为y -1=12(x -12).化为极坐标方程,并整理得 2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.(xx·广东肇庆一模)已知曲线C 的极坐标方程为ρ=2(ρ>0,0≤θ<2π),曲线C 在点(2,π4)处的切线为l ,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,则l 的直角坐标方程为________.答案 x +y -22=0解析 根据极坐标与直角坐标的转化公式可以得到曲线ρ=2⇒x 2+y 2=4,点(2,π4)⇒(2,2).因为点(2,2)在圆x 2+y 2=4上,故圆在点(2,2)处的切线方程为2x +2y =4⇒x +y -22=0,故填x +y -22=0..。

2020版高考数学理一轮总温习层级快练第八章立体几何作业52

2020版高考数学理一轮总温习层级快练第八章立体几何作业52

题组层级快练(五十二)1.以下关于线、面的四个命题中不正确的选项是( )A.平行于同一平面的两个平面必然平行B.平行于同一直线的两条直线必然平行C.垂直于同一直线的两条直线必然平行D.垂直于同一平面的两条直线必然平行答案C解析垂直于同一条直线的两条直线不必然平行,可能相交或异面.此题能够以正方体为例证明.2.设α,β,γ为平面,a,b为直线,给出以下条件:①a⊂α,b⊂β,a∥β,b∥α;②α∥γ,β∥γ;③α⊥γ,β⊥γ;④a⊥α,b⊥β,a∥b.其中能推出α∥β的条件是()A.①②B.②③C.②④D.③④答案 C3.假设空间四边形ABCD的两条对角线AC,BD的长别离是8,12,过AB的中点E且平行于BD,AC的截面四边形的周长为()A.10 B.20C.8 D.4答案 B解析设截面四边形为EFGH,F,G,H别离是BC,CD,DA的中点,∴EF=GH=4,FG=HE=6.∴周长为2×(4+6)=20.4.(2019·安徽毛坦厂中学月考)如图,在正方体ABCD-A1B1C1D1中,E,F别离为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.有无数条B.有2条C.有1条D.不存在答案A解析 因为平面D 1EF 与平面ADD 1A 1有公共点D 1,因此两平面有一条过D 1的交线l ,在平面ADD 1A 1内与l 平行的任意直线都与平面D 1EF 平行,如此的直线有无数条,应选A.5.(2019·陕西西安模拟)在空间四边形ABCD 中,E ,F 别离为AB ,AD 上的点,且AE ∶EB =AF ∶FD =1∶4,H ,G 别离是BC ,CD 的中点,则( )A .BD ∥平面EFG ,且四边形EFGH 是平行四边形B .EF ∥平面BCD ,且四边形EFGH 是梯形C .HG ∥平面ABD ,且四边形EFGH 是平行四边形D .EH ∥平面ADC ,且四边形EFGH 是梯形答案 B解析 如图,由条件知,EF ∥BD ,EF =15BD ,HG ∥BD ,HG =12BD , ∴EF ∥HG ,且EF =25HG ,∴四边形EFGH 为梯形.∵EF ∥BD ,EF ⊄平面BCD ,BD ⊂平面BCD ,∴EF ∥平面BCD.∵四边形EFGH 为梯形,∴线段EH 与FG 的延长线交于一点,∴EH 不平行于平面ADC.应选B.6.(2019·衡水中学调研卷)如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当PA ∥平面EBF 时,PF FC=( )A.23B.14C.13D.12答案 D解析 连接AC 交BE 于G ,连接FG ,因为PA ∥平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =FG ,因此PA ∥FG ,因此PF FC =AG GC .又AD ∥BC ,E 为AD 的中点,因此AG GC =AE BC =12,因此PF FC =12.7.(2019·蚌埠联考)过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有( )A .4条B .6条C .8条D .12条答案 B解析 作出如图的图形,E ,F ,G ,H 是相应棱的中点,故符合条件的直线只能出此刻平面EFGH 中.由此四点能够组成的直线有:EF ,GH ,FG ,EH ,GE ,HF 共有6条.8.(2019·郑州市高三质量预测)如图,在直三棱柱ABC -A′B′C′中,△ABC 是边长为2的等边三角形,AA ′=4,点E ,F ,G ,H ,M 别离是边AA′,AB ,BB ′,A ′B ′,BC 的中点,动点P 在四边形EFGH 的内部运动,而且始终有MP ∥平面ACC′A′,那么动点P 的轨迹长度为( )A .2B .2πC .2 3D .4答案 D解析 连接MF ,FH ,MH ,因为M ,F ,H 别离为BC ,AB ,A ′B ′的中点,因此MF ∥平面AA′C′C ,FH ∥平面AA′C′C ,因此平面MFH ∥平面AA′C′C ,因此M 与线段FH 上任意一点的连线都平行于平面AA′C′C ,因此点P 的运动轨迹是线段FH ,其长度为4,应选D.9.(2019·沧州七校联考)有以下三种说法,其中正确的选项是________.①假设直线a 与平面α相交,那么α内不存在与a 平行的直线;②假设直线b ∥平面α,直线a 与直线b 垂直,那么直线a 不可能与α平行;③假设直线a ,b 知足a ∥b ,那么a 平行于通过b 的任何平面.答案 ①解析 关于①,假设直线a 与平面α相交,那么α内不存在与a 平行的直线,是真命题,故①正确;关于②,假设直线b ∥平面α,直线a 与直线b 垂直,那么直线a 可能与α平行,故②错误;关于③,假设直线a ,b 知足a ∥b ,那么直线a 与直线b 可能共面,故③错误.10.在四面体ABCD 中,M ,N 别离是△ACD ,△BCD 的重心,那么四面体的四个面中与MN 平行的是________. 答案 平面ABC 和平面ABD解析 连接AM 并延长交CD 于E ,连接BN 并延长交CD 于F.由重心的性质可知,E ,F 重合为一点,且该点为CD 的中点E.由EM MA =EN NB =12,得MN ∥AB.因此MN ∥平面ABC 且MN ∥平面ABD.11.(2019·吉林一中模拟)如图,在四面体ABCD 中,AB =CD =2,直线AB 与CD 所成的角为90°,点E ,F ,G ,H 别离在棱AD ,BD ,BC ,AC 上,假设直线AB ,CD 都平行于平面EFGH ,那么四边形EFGH 面积的最大值是________.答案 1解析 ∵直线AB 平行于平面EFGH ,且平面ABC ∩平面EFGH =HG ,∴HG ∥AB.同理:EF ∥AB ,FG ∥CD ,EH ∥CD.∴FG ∥EH ,EF ∥HG.故四边形EFGH 为平行四边形.又AB ⊥CD ,∴四边形EFGH 为矩形. 设BF BD =BG BC =FG CD=x(0≤x ≤1),那么FG =2x ,HG =2(1-x), S 四边形EFGH =FG ×HG =4x(1-x)=-4(x -12)2+1, 依照二次函数的图像与性质可知,四边形EFGH 面积的最大值为1.12.(2019·湘东五校联考)如下图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F.答案 (1)略 (2)略解析 (1)连接FG.∵AE =B 1G =1,∴BG =A 1E =2.∴BG 綊A 1E ,∴A 1G ∥BE.又∵C 1F 綊B 1G ,∴四边形C 1FGB 1是平行四边形.∴FG 綊C 1B 1綊D 1A 1.∴四边形A 1GFD 1是平行四边形.∴A 1G 綊D 1F ,∴D 1F 綊EB.故E ,B ,F ,D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23. 又FC BC =23,且∠FCB =∠GB 1H =90°, ∴△B 1HG ∽△CBF.∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB.又由(1)知,A 1G ∥BE ,且A 1G ⊂平面A 1GH ,HG ⊂平面A 1GH ,BF ⊄平面A 1GH ,BE ⊄平面A 1GH ,∴BF ∥平面A 1GH ,BE ∥平面A 1GH.又∵BF ∩BE =B ,∴平面A 1GH ∥平面BED 1F.13.如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,E ,F 别离是棱AD ,PC 的中点.证明:EF ∥平面PAB.答案 略解析 证明:如图,取PB 的中点M ,连接MF ,AM.因为F 为PC 的中点,故MF ∥BC 且MF =12BC. 由已知有BC ∥AD ,BC =AD.因为E 为AD 的中点,即AE =12AD =12BC , 因此MF ∥AE 且MF =AE ,故四边形AMFE 为平行四边形,因此EF ∥AM.又AM ⊂平面PAB ,而EF ⊄平面PAB ,因此EF ∥平面PAB.14.(2019·福建四地六校联考)一个多面体的直观图和三视图如下图(其中M ,N 别离是AF ,BC 中点).(1)求证:MN ∥平面CDEF ;(2)求多面体A —CDEF 的体积.答案 (1)略 (2)83 解析 (1)证明:由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2, DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 别离是AF ,BC 中点,可知NG ∥CF ,MG ∥EF.又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF.(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH = 2.∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83. 15.(2019·湖南长沙一中时期性检测)如图,已知在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,PC ⊥底面ABCD ,且PC =2,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的表面积;(2)在棱PC 上是不是存在一点E ,使得AP ∥平面BDE ?假设存在,指出点E 的位置,并证明;假设不存在,请说明理由.答案 (1)3+5 (2)存在,E 为PC 中点解析 (1)∵四棱锥P -ABCD 的底面是边长为1的正方形,PC ⊥底面ABCD ,且PC =2,∴PC ⊥BC ,PC ⊥DC ,∴S △PCD =S △PCB =12×1×2=1, PB =PD =22+12= 5.∵AB ⊥CB ,AB ⊥PC ,∴AB ⊥平面PCB ,∴AB ⊥PB ,∴S △PAB =12AB ·PB =52.同理,S △PAD =52. 又S 正方形ABCD =1,∴S P -ABCD =S 正方形ABCD +S △PAB +S △PAD +S △PCD +S △PCB =1+52+52+1+1=3+ 5. (2)在棱PC 上存在点E ,且E 是PC 的中点时,AP ∥平面BDE.证明:如图,连接AC 交BD 于点O ,连接OE ,那么在△ACP 中,O ,E 别离为AC ,PC的中点,∴OE ∥AP ,又OE ⊂平面BDE ,AP ⊄平面BDE ,∴AP ∥平面BDE.。

高考数学(理)一轮专题重组卷:第一部分 专题八 数列 Word版含解析

高考数学(理)一轮专题重组卷:第一部分 专题八 数列 Word版含解析

专题八 数列本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019·青岛模拟)数列1,3,6,10,15,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2 D .a n =n (n -1)2答案 C解析 设此数列为{a n },则由题意可得a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,… 仔细观察数列1,3,6,10,15,…可以发现: 1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4, 15=1+2+3+4+5, …所以第n 项为1+2+3+4+5+…+n =n (n +1)2,所以数列1,3,6,10,15,…的通项公式为a n =n (n +1)2.2.(2019·三明模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为( )A .a n =2nB .a n =⎩⎨⎧3,n =1,2n ,n ≥2C .a n =2n -1D .a n =2n +1答案 B解析 由log 2(S n +1)=n +1,得S n +1=2n +1.当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n.所以数列{a n }的通项公式为a n =⎩⎨⎧3,n =1,2n ,n ≥2.故选B.3.(2019·长春模拟)已知等差数列{a n }的前n 项和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( )A .第5项B .第6项C .第7项D .第8项 答案 C解析 根据等差数列{a n }的前n 项和公式S n =n (a 1+a n )2,因为⎩⎨⎧S 13<0,S 12>0,所以⎩⎨⎧a 1+a 13<0,a 1+a 12>0,由⎩⎨⎧ a 1+a 13=2a 7,a 1+a 12=a 6+a 7,得⎩⎨⎧a 7<0,a 6+a 7>0,所以数列{a n }中绝对值最小的项为第7项.4.(2019·牡丹江二模)设等差数列{a n }满足a 5=11,a 12=-3,其前n 项和S n 的最大值为M ,则lg M =( )A .1B .-1C .2D .-2 答案 C解析 由a 5=11,a 12=-3,得公差d =-3-1112-5=-2,所以a n =11+(n -5)(-2)=21-2n ,所以a 1=19,故S n =19n +n (n -1)2×(-2)=-n 2+20n =-(n -10)2+100≤100,所以M =100,所以lg M =2.5.(2019·南阳月考)已知各项均不为零的数列{a n },定义向量c n =(a n ,a n +1),b n =(n ,n +1),n ∈N *.下列命题中真命题是( )A .若∀n ∈N *总有c n ⊥b n 成立,则数列{a n }是等比数列B .若∀n ∈N *总有c n ∥b n 成立,则数列{a n }是等比数列C .若∀n ∈N *总有c n ⊥b n 成立,则数列{a n }是等差数列D .若∀n ∈N *总有c n ∥b n 成立,则数列{a n }是等差数列 答案 D解析 ∵向量c n =(a n ,a n +1),b n =(n ,n +1),n ∈N *,∴当c n ∥b n 时,(n +1)a n-na n +1=0,即a n =na 1,∴数列{a n }为等差数列,∴D 正确,B 错误;当c n ⊥b n 时,na n +(n +1)a n +1=0,即a n =(-1)n -1n ·a 1,∴数列{a n }既不是等差数列,也不是等比数列,∴A ,C 错误.故选D.6.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .2 答案 C解析由题意知⎩⎨⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎨⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.7.(2019·重庆市重点中学联考)已知{a n }是首项为32的等比数列,S n 是其前n 项和,且S 6S 3=6564,则数列{|log 2a n |}的前10项和为( )A .58B .56C .50D .45 答案 A解析 设数列{a n }的公比为q ,根据题意知S 6-S 3S 3=164=q 3,所以q =14,从而有a n =32·⎝ ⎛⎭⎪⎫14n -1=27-2n ,所以log 2a n =7-2n ,所以|log 2a n |=|2n -7|,所以数列{|log 2a n |}的前10项和等于5+3+1+1+3+5+7+9+11+13=3×(5+1)2+7×(1+13)2=58.故选A.8.(2019·宜宾二诊)设S n 为等比数列{a n }的前n 项和,若a n >0,a 1=12,S n <2,则{a n }的公比的取值范围是( )A.⎝ ⎛⎦⎥⎤0,34B.⎝ ⎛⎦⎥⎤0,23C.⎝ ⎛⎭⎪⎫0,34D.⎝ ⎛⎭⎪⎫0,23 答案 A解析 设等比数列{a n }的公比为q ,则q ≠1.∵a n >0,a 1=12,S n <2,∴12×q n -1>0,12(1-q n )1-q <2,∴1>q >0.∴1≤4-4q ,解得q ≤34.综上可得,{a n }的公比的取值范围是⎝ ⎛⎦⎥⎤0,34.故选A.9.(2019·揭阳模拟)已知数列{a n }满足2a 1+22a 2+…+2n a n =n (n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1log 2a n log 2a n +1的前n 项和为S n ,则S 1·S 2·S 3·…·S 10=( )A.110B.15C.111D.211 答案 C解析 ∵2a 1+22a 2+…+2n a n =n (n ∈N *),∴2a 1+22a 2+…+2n -1a n -1=n -1(n ≥2),∴2n a n =1(n ≥2),当n =1时也满足,故a n =12n ,故1log 2a n log 2a n +1=1log 22-n log 22-(n +1)=1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1, ∴S 1·S 2·S 3·…·S 10=12×23×34×…×910×1011=111,故选C.10.(2019·辽宁省鞍山市模拟)等差数列{a n }和{b n }的前n 项和分别为S n 与T n ,对一切自然数n 都有S n T n =2n 3n +1,则a 6b 6等于( )A.23B.914C.2031D.1117 答案 D解析 ∵{a n }和{b n }均为等差数列,且前n 项和分别为S n 与T n ,S n T n =2n3n +1,∴a 6b 6=11a 611b 6=11·a 1+a 11211·b 1+b 112=S 11T 11=2×113×11+1=1117.故选D.11.(2019·四川省高三一诊)已知正项等比数列{a n }的前n 项和S n 满足S 4-2S 2=3,则S 6-S 4的最小值为( )A.14 B .3 C .4 D .12 答案 D解析 根据题意,设该等比数列的首项为a 1,公比为q ,若S 4-2S 2=3,则有S 4-2S 2=a 1+a 2+a 3+a 4-2(a 1+a 2)=(a 3+a 4)-(a 1+a 2)=(q 2-1)(a 1+a 2)=3,又由数列{a n }为正项的等比数列,则q >1,则(a 1+a 2)=3q 2-1,则S 6-S 4=(a 5+a 6)=q 4×(a 1+a 2)=3q 2-1×q 4=3⎣⎢⎡⎦⎥⎤(q 2-1)+1q 2-1+2≥6+3×2×(q 2-1)×1q 2-1=12,当且仅当q 2=2时等号成立,即S 6-S 4的最小值为12.故选D.12.(2019·广州市天河区高三一模)若数列{b n }满足:b 12+b 222+…+b n2n =2n (n ∈N *),则数列{b n }的前n 项和S n 为( )A .2n +1B .4·2n -4C .2n +2-2D .2n +2-4 答案 D解析 数列{b n }满足:b 12+b 222+…+b n2n =2n (n ∈N *), 可得b 12+b 222+…+b n -12n -1=2(n -1)(n ∈N *),可得b n2n =2n -2(n -1)=2, 可得b n =2n +1(n ≥2). 当n =1时,b 1=4,所以数列{b n }的通项公式为b n =2n +1. 所以数列{b n }是等比数列,公比为2.数列{b n}的前n项和S n=4(1-2n)1-2=2n+2-4.故选D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·河南省八市重点高中高三第二次联合测评)将正整数1,2,3,…,n,…排成数表如表所示,即第一行3个数,第二行6个数,且后一行比前一行多3个数,若第i行,第j列的数可用(i,j)表示,则100可表示为________.答案(8,9)解析∵第一行有a1=3个数,第二行有a2=6个数,∴每一行的数的个数组成以3为首项,3为公差的等差数列,∴第n行有a n=3+3(n-1)=3n个数,由求和公式可得前n行共12n(3+3n)个数,经验证可得第8行的最后1个数为85,按表中的规律可得第8行共24个数,第一个为108,∴100为第8行的第9个数,故答案为(8,9).14.(2019·江苏南通市重点中学模拟)设y=f(x)是一次函数,f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)=________.答案n(2n+3)解析设y=f(x)=ax+b,∵f(0)=1,∴b=1,f(1),f(4),f(13)成等比数列,所以有(4a+1)2=(a+1)(13a+1),∴a =2,y =f (x )=2x +1,∴f (2)+f (4)+…+f (2n )=4(1+2+…+n )+n =2n (n +1)+n =n (2n +3). 15.(2019·江苏省镇江市期末)已知等差数列{a n }的公差为d (d ≠0),前n 项和为S n ,且数列{S n +n }也为公差为d 的等差数列,则d =________.答案 2(a 1+1)解析 ∵等差数列{a n }的公差为d (d ≠0),前n 项和为S n ,且数列{S n +n }也为公差为d 的等差数列,∴S n =na 1+n (n -1)2d ,即S 1=a 1,S 2=2a 1+d ,S 3=3a 1+3d ,∴a 1+1,2(a 1+1)+d ,3(a 1+1)+3d 成等差数列, ∴22(a 1+1)+d =a 1+1+3(a 1+1)+3d , ∴8(a 1+1)+4d =4(a 1+1)+3d + 23(a 1+1)2+3(a 1+1)d , 整理,得d =2(a 1+1).16.(2019·新疆高三一模)已知数列{a n }为等差数列,a 3=3,a 1+a 2+…+a 6=21,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若对一切n ∈N *,恒有S 2n -S n >m16,则m 能取到的最大正整数是________.答案 7解析 设数列{a n }的公差为d ,由题意得, ⎩⎨⎧ a 1+2d =3,6a 1+15d =21,解得⎩⎨⎧a 1=1,d =1, ∴a n =n ,且1a n =1n ,∴S n =1+12+13+…+1n ,令T n =S 2n -S n =1n +1+1n +2+…+12n ,则T n +1=1n +2+1n +3+…+12n +2,∵T n +1-T n =12n +2+12n +1-1n +1=12n +1+12(n +1)-22(n +1)=12n +1-12n +2>0, ∴T n +1>T n ,则T n 随着n 的增大而增大,即T n 在n =1处取最小值, ∴T 1=S 2-S 1=12,∵对一切n ∈N *,恒有S 2n -S n >m16成立, ∴12>m16即可,解得m <8, 故m 能取到的最大正整数是7.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解 (1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ). 又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列. 由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1, 所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12, b n =12[(a n +b n )-(a n -b n )]=12n -n +12.18.(本小题满分12分)(2019·广东二模)已知数列{a n }满足a 1·a 2·a 3·…·a n -1·a n =n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)若b n =a n +1a n,求数列{b n }的前n 项和S n .解 (1)数列{a n }满足a 1·a 2·a 3·…·a n -1·a n =n +1, ① 则当n ≥2时,a 1·a 2·a 3·…·a n -1=n , ② ①②,得a n =n +1n , 当n =1时,a 1=2,满足上式. 所以a n =n +1n . (2)由于a n =n +1n ,所以b n =a n +1a n =n +1n +n n +1=1+1n +1-1n +1=2+1n -1n +1,则S n =2+⎝ ⎛⎭⎪⎫1-12+2+⎝ ⎛⎭⎪⎫12-13+…+2+⎝ ⎛⎭⎪⎫1n -1n +1=2n +⎝ ⎛⎭⎪⎫1-1n +1=2n +1-1n +1. 19.(本小题满分12分)(2019·江西红色七校联考)已知数列{a n }为等差数列,S n 为{a n }的前n 项和,2a 2+a 5=a 8,S 5=25.数列{b n }为等比数列且b n >0,b 1=a 1,b 22=a 1a 5.(1)求数列{a n }和{b n }的通项公式; (2)记c n =4(2log 3b n +3)·a n,其前n 项和为T n ,求证:T n ≥43.解 (1)设等差数列{a n }的公差为d ,则由2a 2+a 5=a 8,S 5=25,得⎩⎪⎨⎪⎧2(a 1+d )=3d ,5a 1+5×4×d 2=25,解得⎩⎨⎧a 1=1,d =2,所以a n =2n -1.所以a 1=1,a 5=9.设等比数列{b n }的公比为q ,由b 22=a 1a 5且b n >0,得b 2=q =3,∴b n =3n -1.(2)证明:c n =4(2log 3b n +3)·a n =4(2n +1)(2n -1)=2⎝ ⎛⎭⎪⎫12n -1-12n +1,T n =2⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=2⎝ ⎛⎭⎪⎫1-12n +1, 易知T n 随着n 的增大而增大, 所以T n ≥T 1=2⎝ ⎛⎭⎪⎫1-13=43. 20.(本小题满分12分)(2019·贵阳模拟)已知数列{a n }中,a 1=1,S n 是数列{a n }的前n 项和,且对任意的r ,t ∈N *,都有S r S t=⎝ ⎛⎭⎪⎫r t 2.(1)判断{a n }是否为等差数列,并证明你的结论;(2)若数列{b n }满足a nb n=2n -1(n ∈N *),设T n 是数列{b n }的前n 项和,证明:T n <6.解 (1){a n }是等差数列.证明如下: 因为对任意的r ,t ∈N *,都有S r S t =⎝ ⎛⎭⎪⎫r t 2,所以对任意的n ∈N *,有S nS 1=n 2,即S n =n 2.从而n ≥2时,a n =S n -S n -1=2n -1,且n =1时此式也成立. 所以a n +1-a n =2(n ∈N *),即{a n }是以1为首项,2为公差的等差数列. (2)证明:由a nb n =2n -1,得b n =2n -12n -1.T n =1·⎝ ⎛⎭⎪⎫120+3·⎝ ⎛⎭⎪⎫121+…+(2n -1)·⎝ ⎛⎭⎪⎫12n -1, 12T n =1·⎝ ⎛⎭⎪⎫121+3·⎝ ⎛⎭⎪⎫122+…+(2n -3)·⎝ ⎛⎭⎪⎫12n -1+(2n -1)·⎝ ⎛⎭⎪⎫12n . 两式相减,得12T n =1+2·⎝ ⎛⎭⎪⎫121+2·⎝ ⎛⎭⎪⎫122+…+2·⎝ ⎛⎭⎪⎫12n -1-(2n -1)·⎝ ⎛⎭⎪⎫12n=1+2·12-⎝ ⎛⎭⎪⎫12n1-12-(2n -1)·⎝ ⎛⎭⎪⎫12n =1+4⎝ ⎛⎭⎪⎫12-12n -(2n -1)·⎝ ⎛⎭⎪⎫12n =3-(2n +3)⎝ ⎛⎭⎪⎫12n ,T n =6-(2n +3)⎝ ⎛⎭⎪⎫12n -1.∵n ∈N *,∴T n =6-(2n +3)⎝ ⎛⎭⎪⎫12n -1<6.21.(本小题满分12分)(2019·天津高考)设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c 1=1,c n =⎩⎨⎧1,2k <n <2k +1,b k ,n =2k,其中k ∈N *. ①求数列{a 2n (c 2n -1)}的通项公式; ②求∑i =12na i c i (n ∈N *).解 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎨⎧ 6q =6+2d ,6q 2=12+4d ,解得⎩⎨⎧d =3,q =2, 故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n .所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n . (2)①a 2n (c 2n -1)=a 2n (b n -1)=(3×2n +1)(3×2n -1)=9×4n -1. 所以,数列{a 2n (c 2n -1)}的通项公式为a 2n (c 2n -1)=9×4n -1. ②∑i =12na i c i =∑i =12n[a i +a i (c i -1)]=∑i =12na i +∑i =1na 2i (c 2i -1)=⎝ ⎛⎭⎪⎫2n×4+2n (2n -1)2×3+∑i =1n (9×4i -1)=(3×22n -1+5×2n -1)+9×4(1-4n )1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).22.(本小题满分12分)(2019·北京高考)已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若a i 1<a i 2<…<a i m ,则称新数列a i 1,a i 2,…,a i m为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n}的长度为p的递增子列的末项的最小值为a m,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m<a n;(3)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s-1,且长度为s末项为2s-1的递增子列恰有2s -1个(s=1,2,…),求数列{a n}的通项公式.解(1)1,3,5,6.(答案不唯一)(2)证明:设长度为q,末项为a n0的一个递增子列为a r1,a r2,…,a rq-1,a n.由p<q,得a rp≤a rq-1<a n.因为{a n}的长度为p的递增子列末项的最小值为a m0,又a r1,a r2,…,a rp是{a n}的长度为p的递增子列,所以a m0≤a rp.所以a m<a n.(3)由题设知,所有正奇数都是{a n}中的项.先证明:若2m是{a n}中的项,则2m必排在2m-1之前(m为正整数).假设2m排在2m-1之后.设a p1,a p2,…,a pm-1,2m-1是数列{a n}的长度为m,末项为2m-1的递增子列,则a p1,a p2,…,a pm-1,2m-1,2m是数列{a n}的长度为m+1,末项为2m的递增子列.与已知矛盾.再证明:所有正偶数都是{a n}中的项.假设存在正偶数不是{a n}中的项,设不在{a n}中的最小的正偶数为2m.因为2k排在2k-1之前(k=1,2,…,m-1),所以2k和2k-1不可能在{a n}的同一个递增子列中.又{a n}中不超过2m+1的数为1,2,…,2m-2,2m-1,2m+1,所以{a n}的长度为m+1且末项为2m+1的递增子列个数至多为×1×1=2m-1<2m.与已知矛盾.最后证明:2m 排在2m -3之后(m ≥2且m 为整数).假设存在2m (m ≥2),使得2m 排在2m -3之前,则{a n }的长度为m +1且末项为2m +1的递增子列的个数小于2m .与已知矛盾.综上,数列{a n }只可能为2,1,4,3,…,2m -3,2m ,2m -1,…. 经验证,数列2,1,4,3,…,2m -3,2m,2m -1,…符合条件. 所以a n =⎩⎨⎧n +1,n 为奇数,n -1,n 为偶数.。

2023年高考数学一轮复习 新课标版 理科 作业 题组层级快练1-10

2023年高考数学一轮复习 新课标版 理科 作业 题组层级快练1-10

题组层级快练(一)1.下列各组集合中表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)} 答案 B2.集合M ={x ∈N |x (x +2)≤0}的子集个数为( ) A .1 B .2 C .3 D .4答案 B解析 ∵M ={x ∈N |x (x +2)≤0}={x ∈N |-2≤x ≤0}={0},∴M 的子集个数为21=2.故选B.3.(2021·全国高考Ⅱ卷)设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A ∩(∁U B )=( ) A .{3} B .{1,6} C .{5,6} D .{1,3}答案 B解析 由题设可得∁U B ={1,5,6},故A ∩(∁U B )={1,6},故选B.4.(2022·江苏海安市摸底)若A =⎩⎨⎧⎭⎬⎫x |x 2∈Z ,B =⎩⎨⎧⎭⎬⎫y |y +12∈Z ,则A ∪B 等于( ) A .B B .A C .∅ D .Z答案 D解析 A ={x |x =2n ,n ∈Z }为偶数集,B ={y |y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 5.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =( ) A .0或 3 B .0或3 C .1或 3 D .1或3答案 B解析 ∵A ={1,3,m },B ={1,m },A ∪B =A , ∴m =3或m =m . ∴m =3或m =0或m =1.当m=1时,与集合中元素的互异性矛盾,故选B.6.(2022·石家庄二中模拟)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=() A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]答案 A解析集合M={0,1},集合N={x|0<x≤1},所以M∪N={x|0≤x≤1}=[0,1].7.(2022·湖北八校联考)已知集合A={x||x|≤2,x∈R},B={x|x≤4,x∈Z},则A∩B=() A.(0,2) B.[0,2]C.{0,2} D.{0,1,2}答案 D解析由已知得A={x|-2≤x≤2},B={0,1,…,16},所以A∩B={0,1,2}.8.(2022·广东中山一中模拟)已知i为虚数单位,集合P={-1,1},Q={i,i2},若P∩Q ={z i},则复数z等于()A.1 B.-1C.i D.-i答案 C解析因为Q={i,i2}={i,-1},P={-1,1},所以P∩Q={-1},所以z i=-1,所以z=i,故选C.9.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为() A.0 B.1C.2 D.4答案 D10.设集合M={y|y=2sin x,x∈[-5,5]},N={x|y=log2(x-1)},则M∩N=() A.{x|1<x≤5} B.{x|-1<x≤0}C.{x|-2≤x≤0} D.{x|1<x≤2}答案 D解析∵M={y|y=2sin x,x∈[-5,5]}={y|-2≤y≤2},N={x|y=log2(x-1)}={x|x>1},∴M∩N={y|-2≤y≤2}∩{x|x>1}={x|1<x≤2}.11.(2022·清华附中诊断性测试)已知集合A={x|log2(x-2)>0},B={y|y=x2-4x+5,x∈A},则A∪B=()A.[3,+∞) B.[2,+∞)C.(2,+∞) D.(3,+∞)答案 C解析 ∵log 2(x -2)>0,∴x -2>1,即x >3,∴A =(3,+∞),此时y =x 2-4x +5=(x -2)2+1>2, ∴B =(2,+∞),∴A ∪B =(2,+∞).故选C.12.(2022·山东聊城模拟)已知集合M ,N ,P 为全集U 的子集,且满足M ⊆P ⊆N ,则下列结论中不正确的是( ) A .∁U N ⊆∁U P B .∁U P ⊆∁U M C .(∁U P )∩M =∅ D .(∁U M )∩N =∅答案 D解析 根据已知条件画出Venn 图结合各选项知,只有D 不正确.13.(2022·西安市经开一中模拟)集合A ={x |x <-1或x ≥3},B ={x |ax +1≤0},若B ⊆A ,则实数a 的取值范围是( ) A.⎣⎡⎭⎫-13,1 B.⎣⎡⎦⎤-13,1 C .(-∞,-1)∪[0,+∞) D.⎣⎡⎭⎫-13,0∪(0,1) 答案 A 解析 ∵B ⊆A ,∴①当B =∅时,即ax +1≤0无解,此时a =0,满足题意. ②当B ≠∅时,即ax +1≤0有解,当a >0时,可得x ≤-1a ,要使B ⊆A ,则需要⎩⎪⎨⎪⎧a >0,-1a <-1,解得0<a <1.当a <0时,可得x ≥-1a,要使B ⊆A ,则需要⎩⎪⎨⎪⎧a <0,-1a ≥3,解得-13≤a <0,综上,实数a 的取值范围是⎣⎡⎭⎫-13,1.故选A. 14.集合A ={0,|x |},B ={1,0,-1},若A ⊆B ,则A ∩B =________,A ∪B =________,∁B A =________.答案 {0,1} {1,0,-1} {-1}解析 因为A ⊆B ,所以|x |∈B ,又|x |≥0,结合集合中元素的互异性,知|x |=1,因此A ={0,1},则A ∩B ={0,1},A ∪B ={1,0,-1},∁B A ={-1}.15.设全集U =A ∪B ={x ∈N *|lg x <1},若A ∩(∁U B )={m |m =2n +1,n =0,1,2,3,4},则集合B =________.答案{2,4,6,8}解析U={1,2,3,4,5,6,7,8,9},A∩(∁U B)={1,3,5,7,9},∴B={2,4,6,8}.16.(2022·安徽省示范高中测试)已知集合A={x|x-a≤0},B={1,2,3},若A∩B≠∅,求实数a的取值范围.答案[1,+∞)解析集合A={x|x≤a},集合B={1,2,3},若A∩B≠∅,则1,2,3这三个元素至少有一个在集合A中,若2或3在集合A中,则1一定在集合A中,因此只要保证1∈A即可,所以a≥1.17.已知集合A={x|1<x<k},集合B={y|y=2x-5,x∈A},若A∩B={x|1<x<2},则实数k 的值为()A.5 B.4.5C.2 D.3.5答案 D解析B=(-3,2k-5),由A∩B={x|1<x<2},知k=2或2k-5=2,因为k=2时,2k-5=-1,A∩B=∅,不合题意,所以k=3.5.故选D.18.已知M,N为R的两个不等的非空子集,若M∩(∁R N)=∅,则下列结论不正确的是() A.∃x0∈N,使得x0∈M B.∃x0∈N,使得x0∉MC.∀x∈M,都有x∈N D.∀x∈N,都有x∈M答案 D解析对于D,∵M∩(∁R N)=∅,∴M是N的真子集或M,N相等,又M,N不相等且非空,∴M是N的非空真子集.∴不能保证∀x∈N,都有x∈M.【】题组层级快练(二)1.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定答案 B解析 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题. 2.有下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题; ③“若x ≤-3,则x 2+x -6>0”的否命题; ④“若a b 是无理数,则ab 是无理数”的逆命题. 其中真命题的个数是( ) A .0 B .1 C .2 D .3答案 B3.(2022·河南杞县中学月考)命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( )A .“若x =4,则x 2+3x -4=0”为真命题B .“若x ≠4,则x 2+3x -4≠0”为真命题C .“若x ≠4,则x 2+3x -4≠0”为假命题D .“若x =4,则x 2+3x -4=0”为假命题 答案 C解析 根据逆否命题的定义可以排除A 、D 两项,因为x 2+3x -4=0,所以x =-4或1,故原命题为假命题,即逆否命题为假命题.4.命题“若m >-1,则m >-4”以及它的逆命题、否命题、逆否命题中,假命题的个数为( ) A .1 B .2 C .3 D .4答案 B解析 原命题为真命题,从而其逆否命题也为真命题;逆命题“若m >-4,则m >-1”为假命题,故否命题也为假命题.故选B. 5.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b ”的逆否命题答案 A解析 A 中原命题的逆命题是“若x >|y |,则x >y ”,由x >|y |≥y 可知其是真命题;B 中原命题的否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;C 中原命题的否命题是“若x ≠1,则x 2-x ≠0”,是假命题;D 中原命题的逆否命题是“若1a ≥1b ,则a ≤b ”是假命题,举例:a =1,b =-1.故选A.6.(2020·天津)设a ∈R ,则“a >1”是“a 2>a ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 求解二次不等式a 2>a 可得a >1或a <0, 据此可知“a >1”是“a 2>a ”的充分不必要条件.故选A. 7.(2022·苏锡常镇一模)“0<x <π4”是“0<sin x <π4”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A8.“(m -1)(a -1)>0”是“log a m >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 (m -1)(a -1)>0等价于⎩⎪⎨⎪⎧m >1,a >1或⎩⎪⎨⎪⎧m <1,a <1,而log a m >0等价于⎩⎪⎨⎪⎧m >1,a >1或⎩⎪⎨⎪⎧0<m <1,0<a <1,所以条件具有必要性,但不具有充分性,比如m =0,a =0时,不能得出log a m >0.故选B. 9.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( ) A .必要条件 B .充分条件C .充要条件D .既不充分也不必要条件答案 A解析 设p :攻破楼兰,q :返回家乡,由已知綈p ⇒綈q ,得q ⇒p ,故p 是q 的必要条件.10.(2022·衡水中学调研卷)如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件答案 C解析 “x ≠y ”不能推出“cos x ≠cos y ”,但“cos x ≠cos y ”一定有“x ≠y ”. 11.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 方法一:当a >b >0时,a >b ⇔a |a |>b |b |;当a >0>b 时,a >b ⇔a |a |>b |b |;当b <a <0时,a >b ⇔a |a |>b |b |,∴选C.方法二:构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |.选C.12.(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 答案 B解析 当a 1<0,q >1时,a n =a 1q n -1<0,此时数列{S n }递减,所以甲不是乙的充分条件.当数列{S n }递增时,有S n +1-S n =a n +1=a 1q n >0,若a 1>0,则q n >0(n ∈N *),即q >0;若a 1<0,则q n <0(n ∈N *),不存在.所以甲是乙的必要条件.13.(2022·西安一模)设命题p :“x 2 +x -6<0”,命题q :“|x |<1”,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 p :-3<x <2;q :-1<x <1,易知选B. 14.(1)“x >y >0”是“1x <1y ”的________条件.(2)“tan θ≠1”是“θ≠π4”的________条件.(3)在△ABC 中,“A =B ”是“tan A =tan B ”的________条件. 答案 (1)充分不必要 (2)充分不必要 (3)充要 解析 (1)1x <1y⇒xy ·(y -x )<0,即x >y >0或y <x <0或x <0<y ,则“x >y >0”是“1x <1y”的充分不必要条件.(2)题目即判断θ=π4是tan θ=1的什么条件,显然是充分不必要条件.(3)△ABC 中,若A =B ,则A ,B 只能为锐角,∴tan A =tan B ,则充分性成立;若tan A =tan B ,则只能tan A =tan B >0,∴A ,B 为锐角,∴A =B ,必要性成立.15.(1)(2022·菏泽模拟)命题“所有无理数的平方都是有理数”的否定是________. (2)若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是________. 答案 (1)存在一个无理数,它的平方不是有理数 (2)(3,+∞)解析 (1)全称命题的否定为特称命题,可得命题“所有无理数的平方都是有理数”的否定是:存在一个无理数,它的平方不是有理数.(2)2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.(2021·贵阳模拟)下列不等式: ①x <1;②0<x <1;③-1<x <0;④-1<x <1.其中可以作为“x 2<1”的一个充分条件的所有序号为________. 答案 ②③④17.(2022·潍坊一中月考)若a ,b 都是实数,试从①ab =0;②a +b =0;③a (a 2+b 2)=0;④ab >0中选出适合的条件,用序号填空. (1)“a ,b 都为0”的必要条件是________; (2)“a ,b 都不为0”的充分条件是________; (3)“a ,b 至少有一个为0”的充要条件是________. 答案 (1)①②③ (2)④ (3)①解析 ①ab =0⇔a =0或b =0,即a ,b 至少有一个为0;②a +b =0⇔a ,b 互为相反数,则a ,b 可能均为0,也可能为一正一负; ③a (a 2+b 2)=0⇔a =0或⎩⎪⎨⎪⎧a =0,b =0; ④ab >0⇔⎩⎪⎨⎪⎧a >0,b >0或⎩⎪⎨⎪⎧a <0,b <0,则a ,b 都不为0.18.设命题p :2x -1x -1<0,命题q :x 2-(2a +1)x +a (a +1)≤0,若p 是q 的充分不必要条件,求实数a 的取值范围.答案 ⎣⎡⎦⎤0,12 解析2x -1x -1<0⇒(2x -1)(x -1)<0⇒12<x <1,x 2-(2a +1)x +a (a +1)≤0⇒a ≤x ≤a +1, 由题意得⎝⎛⎭⎫12,1[a ,a +1],故⎩⎪⎨⎪⎧a ≤12,a +1≥1,且等号不能同时取到,解得0≤a ≤12.【】题组层级快练(三)1.(2022·湖北宜昌一中月考)下列命题中是假命题的是( ) A .∃x 0∈R ,log 2x 0=0 B .∃x 0∈R ,cos x 0=1 C .∀x ∈R ,x 2>0 D .∀x ∈R ,2x >0答案 C解析 因为log 21=0,cos 0=1,所以A 、B 项均为真命题,因为02=0,所以C 项为假命题,因为2x >0,所以D 项为真命题.2.命题“所有奇数的立方都是奇数”的否定是( ) A .所有奇数的立方都不是奇数 B .不存在一个奇数,它的立方是偶数 C .存在一个奇数,它的立方不是奇数 D .不存在一个奇数,它的立方是奇数 答案 C解析 全称命题的否定是特称命题,即“存在一个奇数,它的立方不是奇数”. 3.命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是( ) A .∃x 0∈R ,⎝⎛⎭⎫13x 0<0 B .∀x ∈R ,⎝⎛⎭⎫13x≤0 C .∀x ∈R ,⎝⎛⎭⎫13x <0 D .∃x 0∈R ,⎝⎛⎭⎫13x 0≤0答案 D解析 全称命题“∀x ∈R ,⎝⎛⎭⎫13x>0”的否定是把量词“∀”改为“∃”,并把结论进行否定,即把“>”改为“≤”.故选D.4.命题“∃x0∈∁R Q,x03∈Q”的否定是()A.∃x0∉∁R Q,x03∈Q B.∃x0∈∁R Q,x03∉QC.∀x∉∁R Q,x3∈Q D.∀x∈∁R Q,x3∉Q答案 D解析该特称命题的否定为“∀x∈∁R Q,x3∉Q”.5.已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(綈q);④(綈p)∨q中,真命题是()A.①③B.①④C.②③D.②④答案 C解析若x>y,则-x<-y成立,即命题p为真命题,若x>y,则x2>y2不一定成立,即命题q为假命题,则綈p是假命题,綈q为真命题,故p∨q与p∧(綈q)是真命题,故选C. 6.(2022·河北保定模拟)命题“∀x∈R,f(x)·g(x)≠0”的否定是()A.∀x∈R,f(x)=0且g(x)=0 B.∀x∈R,f(x)=0或g(x)=0C.∃x0∈R,f(x0)=0且g(x0)=0 D.∃x0∈R,f(x0)=0或g(x0)=0答案 D解析根据全称命题与特称命题互为否定的关系可得命题“∀x∈R,f(x)·g(x)≠0”的否定是“∃x0∈R,f(x0)=0或g(x0)=0”.故选D.7.若命题p:x∈A∩B,则綈p:()A.x∈A且x∉B B.x∉A或x∉BC.x∉A且x∉B D.x∈A∪B答案 B8.(2022·潍坊一模)已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A解析因为綈p为真,所以p为假,那么p∧q为假,所以“綈p为真”是“p∧q为假”的充分条件;反过来,若“p∧q为假”,则“p真q假”或“p假q真”或“p假q假”,所以由“p∧q为假”不能推出“綈p为真”.综上可知,“綈p为真”是“p∧q为假”的充分不必要条件.9.(2022·江南十校联考)已知命题p:复数z满足(1-i)z=1+i,则|z|=1,命题q:复数z=1-2i 在复平面内对应的点位于第二象限.则下列命题为真命题的是( ) A .p ∧q B .p ∨q C .綈p D .q答案 B解析 由(1-i)z =1+i ,得z =i ,从而|z |=1,故命题p 为真命题;复数z =1-2i 在复平面内对应的点位于第四象限,故命题q 为假命题.故p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题.故选B.10.(2022·湖南邵阳高三大联考)若命题“∃x 0∈R ,x 02+2mx 0+m +2<0”为假命题,则m 的取值范围是( ) A .(-∞,-1)∪[2,+∞) B .(-∞,-1)∪(2,+∞) C .[-1,2] D .(-1,2)答案 C解析 命题的否定是“∀x ∈R ,x 2+2mx +m +2≥0”,该命题为真命题,所以Δ=4m 2-4(m +2)≤0,解得-1≤m ≤2.故选C.11.(2022·山东聊城期末)下列命题是真命题的是( ) A .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数 B .∃α0,β0∈R ,使cos(α0+β0)=cos α0+cos β0C .向量a =(2,1),b =(-1,0),则a 在b 的方向上的投影为2D .“|x |≤1”是“x ≤1”的既不充分又不必要条件 答案 B解析 当φ=π2时,f (x )=cos 2x ,为偶函数,故A 为假命题;令α0=π4,β0=-π2,则cos(α0+β0)=cos ⎝⎛⎭⎫-π4=22,cos α0+cos β0=22+0=22,cos(α0+β0)=cos α0+cos β0成立,故B 为真命题;a 在b 的方向上的投影为a ·b |b |=-2+01=-2,故C 为假命题;由|x |≤1,可得-1≤x ≤1,故充分性成立,若x ≤1,|x |≤1不一定成立,故“|x |≤1”是“x ≤1”的充分不必要条件,D 为假命题.12.(2019·课标全国Ⅲ,文)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题: ①p ∨q ②綈p ∨q ③p ∧綈q ④綈p ∧綈q 这四个命题中,所有真命题的编号是( ) A .①③B .①②C.②③D.③④答案 A解析方法一:作出不等式组表示的平面区域D,如图中阴影部分所示,直线2x+y=9和直线2x+y=12均穿过了平面区域D,不等式2x+y≥9表示的区域为直线2x+y=9及其右上方的区域,所以命题p为真命题;不等式2x+y≤12表示的区域为直线2x+y=12及其左下方的区域,所以命题q为假命题.所以命题p∨q和p∧綈q为真命题.故选A.方法二:在不等式组表示的平面区域D内取点(7,0),点(7,0)的坐标满足不等式2x+y≥9,所以命题p为真命题;点(7,0)的坐标不满足不等式2x+y≤12,所以命题q为假命题.所以命题p∨q和p∧綈q为真命题.故选A.13.已知命题p:∃x0∈R,mx02+1≤0;命题q:∀x∈R,x2+mx+1>0.若p∨q为假命题,则实数m的取值范围为()A.{m|m≥2} B.{m|m≤-2}C.{m|m≤-2或m≥2} D.{m|-2≤m≤2}答案 A解析由p:∃x0∈R,mx02+1≤0,可得m<0;由q:∀x∈R,x2+mx+1>0,可得Δ=m2-4<0,解得-2<m<2.因为p∨q为假命题,所以p与q都是假命题,若p是假命题,则有m≥0;若q是假命题,则有m≤-2或m≥2,故实数m的取值范围为{m|m≥2}.故选A.14.已知命题p:1x2-x-2>0,则綈p对应的x的集合为________.答案{x|-1≤x≤2}解析p:1x2-x-2>0⇔x>2或x<-1,∴綈p:-1≤x≤2.15.(1)已知命题“∀x∈R,sin x-a≥0”是真命题,则a的取值范围是________.答案(-∞,-1]解析由题意,对∀x∈R,a≤sin x成立.由于对∀x∈R,-1≤sin x≤1,所以a≤-1. (2)若命题“∃x0∈R,x02+(a-1)x0+1≤0”为假命题,则实数a的取值范围为________.答案(-1,3)解析由“∃x0∈R,x02+(a-1)x0+1≤0”为假命题,得“∀x∈R,x2+(a-1)x+1>0”为真命题,所以Δ=(a-1)2-4<0,解得-1<a<3,所以a的取值范围为(-1,3).16.(2014·课标全国Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2; p 2:∃(x ,y )∈D ,x +2y ≥2; p 3:∀(x ,y )∈D ,x +2y ≤3; p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 4 C .p 1,p 2 D .p 1,p 3答案 C解析 画出可行域如图中阴影部分所示,由图可知,当目标函数z =x +2y 经过可行域内的点A (2,-1)时,z 取得最小值0,故x +2y ≥0,因此p 1,p 2是真命题,选C.17.若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤0,12 解析 由于函数g (x )在定义域[-1,2]内是任意取值的,且必存在x 0∈[-1,2],使得g (x 1)=f (x 0),因此问题等价于函数g (x )的值域是函数f (x )值域的子集.在[-1,2]上,函数f (x )的值域是[-1,3],函数g (x )的值域是[2-a ,2+2a ],则有2-a ≥-1且2+2a ≤3,即a ≤12.又a >0,故a 的取值范围是⎝⎛⎦⎤0,12. 【】题组层级快练(四)1.设集合P ={x |0≤x ≤2},Q ={y |0≤y ≤2},则图中能表示P 到Q 的函数的是( )答案 D解析 A 、B 中都有一个x 对应2个y 的情形,C 中1<x ≤2时,没有y 与之对应. 2.下列各组函数中,表示同一函数的是( ) A .f (x )=x +2,x ∈R 与g (x )=x +2,x ∈Z B .f (x )=x -1与g (x )=x 2-1x +1C .f (u )=1+u1-u与f (v )=1+v1-vD .y =f (x )与y =f (x +1) 答案 C3.函数y =|x |(x -1) 的定义域为( ) A .{x |x ≥1} B .{x |x ≥1或x =0} C .{x |x ≥0} D .{x |x =0}答案 B解析 由题意得|x |(x -1)≥0,∴x -1≥0或|x |=0. ∴x ≥1或x =0.4.已知f (x 5)=lg x ,则f (2)等于( ) A .lg 2 B .lg 32 C .lg132D.15lg 2 答案 D 解析 令x 5=t ,则x =t 15(t >0),∴f (t )=lg t 15=15lg t .∴f (2)=15lg 2.故选D.5.(2021·皖南八校联考)下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx答案 D解析 y =13x的定义域为{x |x ≠0},而y =1sin x 的定义域为{x |x ≠k π,k ∈Z },y =ln xx 的定义域为{x |x >0},y =x e x 的定义域为R ,y =sin xx的定义域为{x |x ≠0},故选D.6.(2022·德州一中模拟)已知函数f (x )=x [x ],其中[x ]表示不超过x 的最大整数,如[-1.2]=-2,[-3]=-3,[2.1]=2,则f (-2)的值为( ) A .-2 2 B .2 2 C .- 2 D. 2答案 B解析 ∵[-2]=-2,∴f (-2)=-2×(-2)=2 2.故选B.7.已知函数f (x )对任意实数x 满足f (2x -1)=2x 2,若f (m )=2,则m =( ) A .1 B .0 C .1或-3 D .3或-1 答案 C解析 本题考查函数的概念与解析式的求解.令2x -1=t ,t ∈R ,可得x =12(t +1),故f (t )=2×14×(t +1)2=12(t +1)2,故f (m )=12(m +1)2=2,故m =1或m =-3.8.(2022·福州模拟)已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝⎛⎭⎫x 2+f (x -1)的定义域为( ) A .(-2,0) B .(-2,2) C .(0,2) D.⎝⎛⎭⎫-12,0 答案 C9.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=|x |sgn x 的大致图象是( )答案 C解析 函数f (x )=|x |sgn x =⎩⎪⎨⎪⎧x ,x >0,0,x =0,x ,x <0,故函数f (x )=|x |sgn x 的图象为直线y =x .故选C.10.(2022·江南十校模拟)函数f (x )=⎩⎪⎨⎪⎧x 2-4x -3,x ≤2,log 2(x -1),x >2,则不等式f (x )>2的解集是( )A .(-∞,-1)B .(-∞,-1)∪(5,+∞)C .(5,+∞)D .(-∞,1)∪(3,+∞)答案 B解析 当x ≤2时,f (x )=x 2-4x -3>2,即x 2-4x -5>0,解得x <-1或x >5,故x <-1; 当x >2时,f (x )=log 2(x -1)>2,即log 2(x -1)>log 24,解得x >5,故x >5. 综上所述,不等式f (x )>2的解集是(-∞,-1)∪(5,+∞).11.(2022·烟台调研)函数f (x )=⎩⎪⎨⎪⎧e x -3,x <1,ln x ,x ≥1,则关于函数f (x )的说法不正确的是( )A .定义域为RB .值域为(-3,+∞)C .在R 上为增函数D .只有一个零点答案 B解析 f (x )=⎩⎪⎨⎪⎧e x -3,x <1,ln x ,x ≥1,∴f (x )的定义域为R ,值域为(-3,e -3)∪[0,+∞),且e -3<0,∴f (x )在R 上为增函数,且f (1)=0,∴f (x )只有一个零点.故A 、C 、D 正确,B 不正确.12.已知函数f (x )=⎩⎪⎨⎪⎧x +b ,x <1,2x -1,x ≥1,若f (f (-1))=3,则b =________.答案 3解析 ∵f (-1)=b -1,∴f (b -1)=3,当b -1≥1即b ≥2时,2b -1-1=3,解得b =3,当b -1<1即b <2时,b -1+b =3,解得b =2(舍),综上有b =3. 13.已知f ⎝⎛⎭⎫x -1x =x 2+1x 2,则f (3)=________. 答案 11解析 ∵f ⎝⎛⎭⎫x -1x =⎝⎛⎭⎫x -1x 2+2, ∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11. 14.已知函数f (x ),g (x )分别由下表给出:则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________.答案 1 215.已知f (2x +1)=x 2-2x ,则f (3)=________,f (x )=________. 答案 -1 14x 2-32x +54解析 令2x +1=3,则x =1,∴f (3)=12-2×1=-1.令t =2x +1,∴x =t -12,∴f (t )=⎝⎛⎭⎫t -122-2·t -12=14(t 2-2t +1)-t +1=14t 2-32t +54,∴f (x )=14x 2-32x +54. 16.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,求c 和A 的值.答案 c =60,A =16解析 因为组装第A 件产品用时15分钟,所以c A =15①,所以必有4<A ,且c 4=c2=30②,联立①②解得c =60,A =16.17.(名师原创)将正整数12分解成两个正整数的乘积有1×12,2×6,3×4三种,其中3×4是这三种分解中两数差的绝对值最小的,我们称3×4为12的最佳分解.当p ×q (p ≤q 且p ,q ∈N *)是正整数n 的最佳分解时,我们规定函数f (n )=p q ,例如:f (12)=34.关于函数f (n )有下列叙述:①f (7)=17;②f (24)=38;③f (28)=47;④f (144)=916,其中正确的为________.(填序号) 答案 ①③解析 对于①,∵7=1×7,∴f (7)=17,①正确;对于②,∵24=1×24=2×12=3×8=4×6,∴f (24)=46=23,②不正确;对于③,∵28=1×28=2×14=4×7,∴f (28)=47,③正确;对于④,∵144=1×144=2×72=3×48=4×36=6×24=8×18=9×16=12×12,∴f (144)=1212=1,④不正确.18.如图,在矩形ABCD 中,BA =3,CB =4,点P 在线段AD 上移动,CQ ⊥BP ,Q 为垂足.设BP =x ,CQ =y ,试求y 关于x 的函数表达式,并画出函数的图象.答案 y =12x (3≤x ≤5),图象见解析解析 由题意,得△CQB ∽△BAP ,所以CQ BA =CB BP ,即y 3=4x .所以y =12x .连接BD ,因为BA ≤BP ≤BD ,而BA =3,CB =AD =4,所以BD =32+42=5,所以3≤x ≤5.故所求的函数表达式为y =12x(3≤x ≤5).如图所示,曲线MN 就是所求的函数图象.【】专题层级快练(五)1.(2022·上海市杨浦区高三期末)下列函数中,值域为(0,+∞)的是( ) A .y =x 2 B .y =2xC .y =2xD .y =|log 2x |答案 C解析 函数y =x 2的值域为[0,+∞),故排除A ; 函数y =2x 的值域为{y |y ≠0},故排除B ;函数y =2x 的值域为(0,+∞),故C 满足条件; 函数y =|log 2x |的值域为[0,+∞),故排除D.故选C. 2.函数y =1-|x |1+|x |的值域为( )A .(-1,1)B .[-1,1)C .(-1,1]D .[-1,1]答案 C解析 方法一(分离常数法): y =1-|x |1+|x |=-1+21+|x |, ∵|x |≥0,∴|x |+1≥1,∴0<2|x |+1≤2.∴-1<-1+21+|x |≤1.即函数值域为(-1,1]. 方法二(反解法):由y =1-|x |1+|x |,得|x |=1-y 1+y .∵|x |≥0,∴1-y1+y≥0,∴-1<y ≤1, 即函数值域为(-1,1].故选C.3.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2] D .[-2,2]答案 C解析 要使函数有意义,则有-x 2+4x ≥0, ∴x 2-4x ≤0,∴0≤x ≤4,即x ∈[0,4]. ∵-x 2+4x =-(x -2)2+4, ∴0≤-(x -2)2+4≤4,即0≤-x 2+4x ≤2,∴-2≤--x 2+4x ≤0, ∴0≤2--x 2+4x ≤2, ∴0≤y ≤2,即y ∈[0,2].故选C. 4.函数y =1+x -1-2x 的值域为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎦⎤-∞,32 C.⎝⎛⎭⎫32,+∞ D.⎣⎡⎭⎫32,+∞ 答案 B解析 设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x 的值域为⎝⎛⎦⎤-∞,32.故选B. 5.(2022·昆明第一中学摸底)函数y =ln x +1ln x 的值域为( )A .(-∞,-2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .[-2,2] 答案 C解析 当x >1时,y =ln x +1ln x≥2ln x ·1ln x=2,当且仅当x =e 时等号成立;当0<x <1时,y =ln x +1ln x=-⎣⎡⎦⎤(-ln x )+⎝⎛⎭⎫-1ln x ≤-2(-ln x )·⎝⎛⎭⎫-1ln x =-2,当且仅当x =1e时等号成立, 所以函数的值域为(-∞,-2]∪[2,+∞).故选C.6.(2022·山东菏泽模拟)已知函数f (x )=log 2x 的值域是[1,2],则函数φ(x )=f (2x )+f (x 2)的定义域为( ) A .[2,2] B .[2,4] C .[4,8] D .[1,2]答案 A解析 ∵f (x )的值域为[1,2],∴1≤log 2x ≤2, ∴2≤x ≤4,∴f (x )的定义域为[2,4], ∴φ(x )=f (2x )+f (x 2)的自变量x 满足⎩⎪⎨⎪⎧2≤2x ≤4,2≤x 2≤4,解得2≤x ≤2.∴φ(x )的定义域为[2,2].故选A.7.定义运算a *b ,a *b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),例如1*2=1,则函数y =1*2x 的值域为( )A .(0,1)B .(-∞,1)C .[1,+∞) D.(]0,1答案 D解析 当1≤2x ,即x ≥0时,函数y =1*2x =1,当1>2x ,即x <0时,函数y =1*2x =2x ,由图知,函数y =1*2x 的值域为(0,1].故选D. 8.下列函数中,值域为[2,+∞)的是( ) A .y =x 2-x +94B .y =x +1x (x ≥2)C .y =e sin xD .y =(x +1)-23答案 A解析 ∵y =x 2-x +94=⎝⎛⎭⎫x -122+2≥2,∴A 满足题意.∵y =x +1x ,当x ≥2时为增函数,∴y ≥52,∴排除B.∵-1≤sin x ≤1,∴y =e sin x ∈⎣⎡⎦⎤1e ,e ,∴排除C. ∵y =(x +1)-23=13(x +1)2,值域为(0,+∞),∴排除D.9.若对函数f (x )=ax 2+bx +c (a ≠0)作x =h (t )的代换,则不能改变函数f (x )的值域的代换是( ) A .h (t )=10t B .h (t )=t 2 C .h (t )=sin t D .h (t )=log 2t答案 D10.下列函数中,同一 同的是( ) A .y =x +1+1 B .y =|ln x | C .y =13x -1D .y =x +1x -1答案 D解析 对于A ,定义域为[-1,+∞),值域为[1,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为[0,+∞),不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞). 11.(1)函数y =10x +10-x10x -10-x的值域为________.(2)(2022·广东梅州市检测)函数y =x 2+41-2x 2的值域是________. 答案 (1)(-∞,-1)∪(1,+∞) (2)⎣⎡⎦⎤12,4 解析 (1)由y =10x +10-x 10x -10-x ,得x ≠0,y +1y -1=102x . ∵102x >0且不为1,∴y +1y -1>0且不为1.∴y <-1或y >1.即函数值域为(-∞,-1)∪(1,+∞). (2)令t =1-2x 2,则x 2=1-t 22, 由x 2≥0和二次根式的非负性,得0≤t ≤1, 则y =1-t 22+4t =-12t 2+4t +12,易得函数的值域为⎣⎡⎦⎤12,4.12.函数y =x 4+x 2+1的值域是________;y =x 4-x 2+1的值域是________. 答案 [1,+∞) ⎣⎡⎭⎫34,+∞13.(2022·沧衡八校联盟)函数f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1的值域为________.答案 (0,+∞) 解析 当x <1时,f (x )=x 2-x +1=⎝⎛⎭⎫x -122+34≥34; 当x >1时,f (x )=1x∈(0,1),综上可得,f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x ,x >1的值域为(0,+∞).14.函数y =x 2+x +1x +1的值域为________.答案 (-∞,-3]∪[1,+∞) 解析 方法一(判别式法):由y =x 2+x +1x +1,得x 2+(1-y )x +1-y =0.∵x ∈(-∞,-1)∪(-1,+∞),∴Δ=(1-y )2-4(1-y )≥0.解得y ≤-3或y ≥1. 当y =-3时,x =-2;当y =1时,x =0, ∴函数的值域为(-∞,-3]∪[1,+∞). 方法二(分离常数法):y =x 2+x +1x +1=(x +1)2-(x +1)+1x +1=(x +1)+1x +1-1,当x >-1时,(x +1)+1x +1≥2,当且仅当x =0时取等号;当x <-1时,(x +1)+1x +1≤-2,当且仅当x =-2时取等号, ∴y ≥1或y ≤-3.∴函数的值域为(-∞,-3]∪[1,+∞).15.(2022·江西省顶级名校模拟)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________. 答案 (1,2]解析 当x ≤2时,f (x )=6-x ≥4,当x >2时,f (x )=3+log a x ,当a >1时,3+log a x >3+log a 2≥4,解得1<a ≤2;当0<a <1时,3+log a x <3+log a 2<3,不合题意,故实数a 的取值范围是1<a ≤2. 16.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1]. (1)若f (x )的定义域为R ,求实数a 的取值范围;(2)若f (x )的值域为R ,求实数a 的取值范围. 答案 (1)(-∞,-1]∪⎝⎛⎭⎫53,+∞ (2)⎣⎡⎦⎤1,53 解析 (1)依题意(a 2-1)x 2+(a +1)x +1>0对一切x ∈R 恒成立,当a 2-1≠0时,其充要条件是⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)<0,即⎩⎪⎨⎪⎧a >1或a <-1,a >53或a <-1. ∴a <-1或a >53.若a 2-1=0,则a =±1,当a =-1时,f (x )=0,满足题意;当a =1时,f (x )=lg(2x +1),不合题意. ∴a ≤-1或a >53.即a 的取值范围为(-∞,-1]∪⎝⎛⎭⎫53,+∞. (2)当a 2-1=0时,a =1或-1,检验得a =1满足题意. 当a 2-1≠0时,若f (x )的值域为R ,则⎩⎪⎨⎪⎧a 2-1>0,Δ=(a +1)2-4(a 2-1)≥0,解得1<a ≤53. 综上得a 的取值范围为⎣⎡⎦⎤1,53.17.(2022·山东枣庄市三中月考)已知函数f (x )=32x -2·3x +2,定义域为M ,值域为[1,2],则下列说法中不正确的是( ) A .M =[0,log 32] B .M ⊆(-∞,log 32] C .log 32∈M D .0∈M答案 A解析 令t =3x (t >0),则原函数等价于g (t )=t 2-2t +2=(t -1)2+1(t >0), 由g (t )=1,得t =1,即3x =1,得x =0; 由g (t )=2,得t =0(舍)或2,即x =log 32.根据g (t )的图象特征,知0∈M ,log 32∈M ,M ⊆(-∞,log 32].A 错误,故选A.18.(2022·沧州七校联考)设函数f (x )=2x 1+2x -12,[x ]表示不超过x 的最大整数,则函数y =[f (x )]的值域为( ) A .{0} B .{-1,0} C .{-1,0,1}D .{-2,0}解析 ∵f (x )=1-12x +1-12=12-12x +1,又2x >0,∴-12<f (x )<12.∴y =[f (x )]的值域为{-1,0}.【】题组层级快练(六)1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-x D .y =log 0.5(x +1)答案 A解析 A 中,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 中,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 中,函数y =2-x=⎝⎛⎭⎫12x在R 上为减函数,故错误;D 中,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.2.若函数y =x 2+bx +c (x ∈[0,+∞))是单调函数,则实数b 的取值范围是( ) A .b ≥0 B .b ≤0 C .b >0 D .b <0答案 A3.函数f (x )=x -2x -1( )A .在(-1,+∞)上单调递增B .在(1,+∞)上单调递增C .在(-1,+∞)上单调递减D .在(1,+∞)上单调递减 答案 B 解析 f (x )=1-1x -1,∴f (x )的图象可由y =-1x 的图象沿x 轴向右平移一个单位长度,再向上平移一个单位长度得到,如图所示. 4.函数f (x )=x |x -2|的单调递减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析 f (x )=x |x -2|=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,其图象如图,结合图象可知函数的单调递减区间是[1,2].故选A.5.函数f (x )=log 0.5(x +1)+log 0.5(x -3)的单调递减区间是( ) A .(3,+∞) B .(1,+∞) C .(-∞,1) D .(-∞,-1)答案 A解析 由已知易得⎩⎪⎨⎪⎧x +1>0,x -3>0,即x >3,又0<0.5<1,∴f (x )在(3,+∞)上单调递减.6.若函数f (x )=x 2-2x +m 在[3,+∞)上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1答案 B解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即3+m =1,∴m =-2.故选B.7.已知f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案 C解析 由已知得⎪⎪⎪⎪1x >1⇒-1<x <0或0<x <1.故选C.8.(2022·广东省佛山市佛山一中月考)已知函数f (x )是定义域为[0,+∞)的减函数,且f (2)=-1,则满足f (2x -4)>-1的实数x 的取值范围是( ) A .(3,+∞) B .(-∞,3) C .[2,3) D .[0,3)答案 C解析 f (x )在定义域[0,+∞)上是减函数,且f (2)=-1,∴f (2x -4)>-1可化为f (2x -4)>f (2),∴⎩⎪⎨⎪⎧2x -4≥0,2x -4<2,解得2≤x <3. 9.(2022·昆明诊断考试)已知函数f (x )=e x +e -x ,则( ) A .f (-2)<f (e)<f (5) B .f (e)<f (-2)<f (5) C .f (5)<f (e)<f (-2)D .f (-2)<f (5)<f (e)解析 因为f (x )定义域为R ,且f (-x )=e -x +e x =f (x ),所以函数f (x )为偶函数.又当x >0时,f ′(x )=e x -1e x >0,所以函数f (x )在(0,+∞)上单调递增.因为2<5<e ,所以f (2)<f (5)<f (e),又f (-2)=f (2),所以f (-2)<f (5)<f (e).故选D.10.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月二氧化碳的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( ) A .该单位每月二氧化碳的处理量为200吨时,才能使每吨的平均处理成本最低 B .该单位每月最低可获利20 000元 C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40 000元才能使该单位不亏损 答案 D解析 显然x >0,所以每吨的平均处理成本y x =12x +80 000x -200≥212x ·80 000x-200=2×200-200=200,当且仅当12x =80 000x 即x =400时,取等号.所以A 错误.设该单位每月获利为S 元,则S =100x -y =100x -(12x 2-200x +80 000)=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40 000.所以每月需要国家至少补贴40 000元才能使该单位不亏损.D 正确.B 、C 错误. 11.在给出的下列4个条件中,①⎩⎪⎨⎪⎧0<a <1,x ∈(-∞,0); ②⎩⎪⎨⎪⎧0<a <1,x ∈(0,+∞); ③⎩⎪⎨⎪⎧a >1,x ∈(-∞,0); ④⎩⎪⎨⎪⎧a >1,x ∈(0,+∞). 能使函数y =log a 1x 2为减函数的是________(把你认为正确的条件编号都填上).答案 ①④解析 利用复合函数的性质知①④正确.12.函数y =x -x (x ≥0)的最大值为________. 答案 14解析 令t =x ,则t ≥0, 所以y =t -t 2=-⎝⎛⎭⎫t -122+14, 所以当t =12,即x =14时,y max =14.13.函数f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. 答案 1 52解析 因为f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上是增函数,所以f ⎝⎛⎭⎫12=12,f (2)=2. 即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.14.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________. 答案 -6解析 画图知函数f (x )的单调递增区间为⎣⎡⎭⎫-a 2,+∞,故3=-a2,解得a =-6. 15.(2022·西安五校联考)若函数f (x )=e x -e -x ,则不等式f (2x +1)+f (x -2)>0的解集为________. 答案 ⎝⎛⎭⎫13,+∞ 解析 由f (x )定义域为R ,且f (-x )=-f (x ),知f (x )=e x -e -x 为奇函数,又易证在定义域R 上,f (x )是增函数,则不等式f (2x +1)+f (x -2)>0等价于f (2x +1)>-f (x -2)=f (-x +2),则2x +1>-x +2,即x >13,故不等式的解集为⎝⎛⎭⎫13,+∞.16.(2021·《高考调研》原创题)若log 5x +log 51y >e -x -e -y ,则( )A .(x -1)2>(y -1)2B .(x -1)2<(y -1)2C .x 2<y 2D .x 2>y 2答案 D解析 由log 5x +log 51y >e -x -e -y ,得log 5x -e -x >log 5y -e -y ,令f (t )=log 5t -e -t ,∵y =log 5t为(0,+∞)上的增函数,y =-e-t为R 上的增函数,∴f (t )为(0,+∞)上的增函数,∴由f (x )>f (y ),得x >y >0,∴x 2>y 2.故选D.17.(2021·沧州七校联考)已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ) A.⎝⎛⎭⎫0,34 B.⎣⎡⎭⎫0,34 C.⎝⎛⎦⎤0,34 D.⎣⎡⎦⎤0,34 答案 D解析 当a =0时,f (x )=-12x +5, 在(-∞,3)上是减函数; 当a ≠0时,由⎩⎪⎨⎪⎧a >0,-4(a -3)4a ≥3,得0<a ≤34.综上,a 的取值范围是⎣⎡⎦⎤0,34.【】题组层级快练(七)1.(2022·合肥质检)下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( ) A .y =|x |+1 B .y =-x 2+1 C .y =ln x 2 D .y =cos x x答案 B2.(2022·唐山市高三测试)设函数f (x )=x (e x +e -x ),则f (x )( ) A .是奇函数,且在(0,+∞)上单调递增 B .是偶函数,且在(0,+∞)上单调递增 C .是奇函数,且在(0,+∞)上单调递减 D .是偶函数,且在(0,+∞)上单调递减 答案 A解析 方法一:由条件可知,f (x )定义域为R ,且f (-x )=-x (e -x +e x )=-x (e x +e -x )=-f (x ),故f (x )为奇函数.f ′(x )=e x +e -x +x (e x -e -x ),当x >0时,e x >e -x ,所以x (e x -e -x )>0,又e x +e -x >0,所以f ′(x )>0,所以f (x )在(0,+∞)上单调递增.故选A.方法二:根据题意知f (-1)=-f (1),所以排除B 、D.易知f (1)<f (2),所以排除C.故选A.3.(2022·浙江宁波十校联考)已知函数f (x )=x 3+sin x +1(x ∈R ).若f (m )=2,则f (-m )的值为( ) A .3 B .0 C .-1 D .-2答案 B解析 把f (x )=x 3+sin x +1变形为f (x )-1=x 3+sin x .令g (x )=f (x )-1=x 3+sin x ,x ∈R ,则g (x )为奇函数,有g (-m )=-g (m ),所以f (-m )-1=-[f (m )-1],得到f (-m )=-(2-1)+1=0.4.(2022·南昌市联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案 B解析 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y 轴对称.5.已知f (x )为奇函数,当x >0时,f (x )=x (1+x ),那么当x <0时,f (x )=( ) A .-x (1-x ) B .x (1-x ) C .-x (1+x ) D .x (1+x )答案 B解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (-x )=-f (x ),∴f (x )=x (1-x ). 6.(2022·皖南八校联考)设f (x )是定义在R 上周期为2的奇函数,当0≤x ≤1时,f (x )=x 2-x ,则f ⎝⎛⎭⎫-52=( ) A .-14B .-12C.14D.12答案 C解析 因为f (x )是定义在R 上周期为2的奇函数,所以f ⎝⎛⎭⎫-52=-f ⎝⎛⎭⎫52=-f ⎝⎛⎭⎫12.又当0≤x ≤1时,f (x )=x 2-x ,所以f ⎝⎛⎭⎫12=⎝⎛⎭⎫122-12=-14,则f ⎝⎛⎭⎫-52=14. 7.已知定义在R 上的函数f (x )满足f (-x )=-f (x ),f (3-x )=f (x ),则f (2 019)=( ) A .-3 B .0 C .1 D .3答案 B解析 由题意得f (x )为奇函数,f (0)=0,由f (3-x )=f (x ),可得f (x +3)=f (-x )=-f (x ),。

2020年人教版高考数学(理)一轮复习第八单元解析几何测评答案

2020年人教版高考数学(理)一轮复习第八单元解析几何测评答案

小题必刷卷(十一)题组一刷真题角度11. B [解析]方法一:易得△ ABC面积为1,利用极限位置和特值法.当a=0时易得b=1-—;当a=时,易得b=-当a=1时,易得b= 一- 1A.故选B.方法二:(直接法)? y=——,y=ax+b与x轴交于--,结合图形与a>0- x——x2 一(a+b) =a(a+1)>0? a=—T a>0,・••一>0? b~,当a=0 时,极限位置易得b=1-一,故答案为B.2. —[解析]由两平行线间的距离公式得d〜=J.角度2. . 2 2 2 2 . . . .3. A [解析]圆x +y -2x- 8y+13=0化为标准方程为(x- 1) +(y- 4) =4,故圆心为(1,4),圆心到直线的距离d= — =1,解得a=__.4. A [解析]由题意知A(-2,0),B(0,-2),|AB|= 2 _.圆心(2,0)到直线x+y+2=0的距离为一「=2 :设点2 2 ————P到直线AB的距离为d,圆(x- 2) +y =2的半径为r则d € [2 -r ,2 +r],即d€ [ ,3 ],又A ABP的面积S^B P=-|AB|• d= _d,所以A ABP面积的取值范围是[2,6].5. C [解析]方法一:由点到直线的距离公式得d==m.方法二:该题考查圆周上一点到动直线的距离的最值问题,由题知动直线过定点(2,0),观察下图可知,所求距离的最大值为点(2,0)到单位圆上点的距离的最大值,故为3.角度32 26. C [解析]方法一:设圆的方程为x+y+Dx+Ey+F:0,将点A(1,3),B(4,2),C(1,-7)的坐标代入得方程组解得所以圆的方程为x +y - 2x+4y- 20=0,即(x- 1) +(y+2) =25,所以=2 - =4 _方法二:因为k AE=--,k BC=3,所以k AB k BC=-1所以AB丄BC所以△ ABC为直角三角形所以△ ABC的外接圆圆心为AC的中点(1,-2),半径r=- =5,所以=2 -=4:方法三:由•=0得AB丄BC下同方法二.7. (x-2)2+y2=9 [解析]设圆心的坐标为(a,0)(a>0),根据题意得_J,解得a=2(a=-2舍去),所以圆的半__ . . 2 2径r= - - =3,所以圆的方程为(x-2) +y =9.2 2 28. (-2,-4) 5 [解析]由题意知a=a+2,则a=2或a=-1.当a=2 时方程为4x +4y +4x+8y+10=0,即2 2 方法二:设点P(3,1),圆心为C,以PC为直径的圆的方程为- -+y - =0,整理得x-4X+y-y+3=0,2 2 I J 2 2 . . 2 2 2 2x +y +x+2y+-=0? x+- +(y+1)=--,不能表示圆;当a=-1 时方程为x +y +4x+8y- 5=0,即(x+2) +(y+4) =25, 所以圆心坐标是(-2,- 4),半径是5.角度49. A [解析]设所求直线方程为2x+y+m=0,则圆心到该直线的距离为 ^一= 一,「.|m|=5,即m=± 5.10. D [解析]设反射光线所在直线的斜率为k,反射光线过点(-2,-3)关于y轴的对称点(2,-3),二反射光线所在直线方程为y+3=k(x-2).又T 其与圆(x+3)2+(y- 2)2=1 相切,—==一=1,解得k=--或k=--.11. A [解析]方法一:设点P(3,1),圆心为C,设过点P的圆C的切线方程为y-1=k -,由题意得-==1,解之得k=0或-,即切线方程为y=1或4x- 3y- 9=0.联立得一切点为,又Tk PC=——, .k AB=-一=- 2,即弦AB所在直线方程为y-仁-2 -,整理得2x+y- 3=0.联立两式相减得2x+y- 3=0.12. 4 n [解析]x +y -2ay-2=0,即x +(y-a ) =a +2,则圆心为C(0,a).又|AB|= 2 _,C到直线y=x+2a 的距离为一所以(二)2+( ) 2=a2+2,得a2=2,所以圆C 的面积为n (a2+2)=4 n .13. 4 [解析]直线丨:n(x+3)+y- _=0 过定点(-3, 一)又|AB|= 2 一,二(『^)2+( _)2=12,解得m=二.直线方程中,当x=0时,y=2 ".又(-3, _),(0,2 一)两点都在圆上,•••直线丨与圆的两交点为A(-3, _),B(0,2 ").设过点A(-3, 一)且与直线丨垂直的直线为_x+y+c i=0,将(-3, 一)代入直线方程_x+y+c i=0,得c i=2 _.令y=0,得x c=-2,同理得过点B且与I垂直的直线与x轴交点的横坐标为X D=2,• |CD|=4.题组二刷模拟214. A [解析]若11 II l 2,则a x (- 1)=a(a+2),即a +3a=0,「.a=0 或a=- 3,经检验都符合题意,故选A15. C [解析]•「△ ABC是等腰直角三角形,•圆心C(1,-a)到直线ax+y-1=0的距离d^= =—,.•. a= ±, 故选C16. A [解析]由M为PQ的中点,=- ,得PA X QA即I 1丄l 2,. 1 x m+-2)x 1=0,解得m=2.故选A17. B [解析]点B在直线y=2 一上,过点A(0,-2 一)作圆的切线,设切线的斜率为k,由点斜式求得切线方程为kx-y- 2 _=0.由圆心到直线的距离等于半径,得^== 一,解得k=± 一,•切线方程为y=± _x-2 一,与直线y=2 一的交点坐标为(士4,2 _), •要使视线不被圆C挡住,实数a的取值范围是(-%,- 4) U (4,+ 叼,故选B.18. D [解析]如图,点A关于直线BC的对称点为D(-6,2),则直线DB的方程为x+2y+2=0直线DC的方程为y=2.由---- =——=——,| 2a-2|=——,得a=-1,-,1 士——,结合图像可知-1W 1 —,故选D.2 219. D [解析]圆的标准方程为(x+2)+y=4,作CD丄AB于点D.由圆的性质可知/ ACB=20° ,△ ABC为等腰三角形,其中|CA|=|CB|,则|CD|=|CA| si M 30 ° =2X-=1,即圆心(-2,0)到直线4x- 3y+a=0的距离为1, 据此可得一-=1,即|a- & = 5,解得a=3或a=13,故选D20. A [解析]设A(X1,y1),B(X2,y2),联立-可化为5y2-4ay+a2- 2=0,则△ =16a2- 20(a2-2)>0,即a2<10,且y’+y2=—,y’y2 ----------------- .若=0,则X1X2+y1y2=0,即卩(2yy )(2y2-a )+y1y2=0, 5y’y2-2a(y1+y2)+a =0,二5X -2a x—+a =0,解得a=±,故"a= ”是“•=0”的充分不必要条件,故选A.21. C [解析]由题可知直线I :y=-(x+2),即x- _y+2=0.设圆心C(a,0)(a>0),则_ :=a,解得a=2,所以圆C的方程为(x-2) +y =4.将y=—(x+2)代入圆C的方程,可得x - 2x+1=0,所以x<=1,故P(1,0).设M(x,y),2 2则----= ------------ =--------------- ,将x +y =4x代入,得-- =——=4,所以——=2,故选C22. 士2 [解析]由题得/PMO M PN0h M0N90° ,|M0|=|0N|=1,.四边形PMO是正方形,••• |PO|= 一. •••满足以上条件的点P有且只有一个,••• O»l ,. 一=^,.・.b= ±.23. —懈析]若直线丨1与直线丨2垂直,则-2X- =-1?- =,则使得直线丨1丄l 2的{(a,b)}={(1,2),(2,4),(3,6)},故直线丨1丄I 2的概率P —=—.24. 2 —[解析]由得-即直线恒过定点q-1,-2).以C为圆心,5为半径的圆的标准方程为(x+1)2+(y+2)2=25,圆心C(- 1,- 2)到直线3x+4y+1 =0 的距离d=- --- •=—=2,则|AB|= 2 - =2 - =2 (R为圆的半径).25. ①②③[解析]连接BC作CE_LAB于点E,易知|CE|=1,|BE|= 1,则|BC|= 一,则C(1, 一),所以圆C的方程为(x-1) +(y- 一)=2,A(0, _-1),B(0, _+1).因为MN在圆Qx+y=1 上,所以可设M(cos a ,sin a ),N(cos B ,sin B ),所以|NA|= - ,|NB|= - - _ ==2.角度24. A [解析]—=-—=_-1=e-1=2所以-=± 一,所以渐近线方程为y=± "x.5.C [解析]由题易知|PF 2|=b,|0P|=a.过P 向x 轴作垂线,垂足为E,可知|PE|=—,戶£|=—,所以 2 — _ 2 2 — |PF i |=— + -一 =( |0P|)=6a,从而可得e=. 6. D [解析]由题意知A(-a,O),过A 且斜率为一的直线方程为y=—(x+a),设P(x °,y °),则有y o —(x o +a)①.又厶PFF 2为等腰三角形,且/F i F 2P=120 °所以①②③,消去x o ,y o ,得一 =_,即C 的离心率为_. 7. B [解析]由双曲线方程知a= 一卩=1,则F(2,0).不妨设过点F 的直线垂直渐近线x- _y=0于M 交渐 近线 x+ _y=0 于 N.在 Rt △ OM 中,/MOF30 °」OF|= 2,所以 |OM|= 一.在 Rt △ OMF 中,/MON60 °」OM|=- 所以 |MN|=3.角度38. A [解析]•••以线段AA 为直径的圆与直线bx-ay+ 2ab=0相切,•••圆心到此直线的距离 d 等于圆的半径,即 d= =a.2 2又a>b>0,则上式可化简为a =3b .Tb =a-c ,「.a =3(a -c ),即一=-,…e=-=—.9. A [解析]设双曲线的一条渐近线方程为 bx+ay=0,则圆心到该直线的距离.根据已知得= ---- =tan 30 =—②, =一=tan 60° = 一③.联立2 2 21 + — =4,即—=3,所以b =-c ,所以e=-=—:=2.10. D [解析]由题意及双曲线的对称性画岀示意图如图所示,渐近线OBy=_x.设Bx o,_x。

人教版高考数学一轮复习-题组层级快练(含解析)附参考答案

人教版高考数学一轮复习-题组层级快练(含解析)附参考答案

人教版高考数学一轮复习-题组层级快练(含解析)附参考答案(附参考答案)1.y=ln(-x)的导函数为()A.y′=-B.y′=1xC.y′=ln(x) D.y′=-ln(-x)答案B2.若曲线y=x3在点P处的切线的斜率为3,则点P的坐标为()A.(-1,1) B.(-1,-1)C.(1,1)或(-1,-1) D.(1,-1)答案C解析y′=3x2,∴3x2=3.∴x=±1.当x=1时,y=1,当x=-1时,y=-1.3.已知函数y=xlnx,则这个函数在点x=1处的切线方程是()A.y=2x-2 B.y=2x+2C.y=x-1 D.y=x+1答案C解析∵y′=lnx+1,∴x=1时,y′|x=1=1.∵x=1时,y=0,∴切线方程为y=x-1.4.(2015·济宁模拟)已知f(x)=x(2 014+lnx),f′(x0)=2 015,则x0=()A.e2B.1C.ln2 D.e答案B解析 由题意可知f ′(x)=2 014+lnx +x ·=2 015+lnx.由f ′(x0)=2 015,得lnx0=0,解得x0=1.5.若函数f(x)=ax4+bx2+c 满足f ′(1)=2,则f ′(-1)等于()A .-1B .-2C .2D .0答案 B解析 f ′(x)=4ax3+2bx ,∵f ′(x)为奇函数且f ′(1)=2,∴f ′(-1)=-2.6.若函数f(x)=x2+bx +c 的图像的顶点在第四象限,则函数f ′(x)的图像是()答案 A解析 由题意知 即⎩⎪⎨⎪⎧ b <0,b2>4c.又f ′(x)=2x +b ,∴f ′(x)的图像为A.7.f(x)与g(x)是定义在R 上的两个可导函数,若f(x),g(x)满足f ′(x)=g ′(x),则f(x)与g(x)满足()A .f(x)=g(x)B .f(x)=g(x)=0C .f(x)-g(x)为常数函数D .f(x)+g(x)为常数函数答案 C8.若P 为曲线y =lnx 上一动点,Q 为直线y =x +1上一动点,则|PQ|min =()A .0 B.22C.D .2答案 C解析 如图所示,直线l 与y =lnx 相切且与y =x +1平行时,切点P 到直线y =x +1的距离|PQ|即为所求最小值.(lnx)′=,令=1,得x =1.故P(1,0).故|PQ|min==.故选C.9.曲线y=-在点M(,0)处的切线的斜率为()A.- B.12C.- D.22答案B解析∵y′=·[cosx(sin x+cosx)-sinx·(cos x-sinx)]=,∴y′|x==,∴k=y′|x==.10.(2015·山东烟台期末)若点P是函数y=ex-e-x-3x(-≤x≤)图像上任意一点,且在点P处切线的倾斜角为α,则α的最小值是()A.B.3π4C.D.π6答案B解析由导数的几何意义,k=y′=ex+e-x-3≥2-3=-1,当且仅当x=0时等号成立.即tanα≥-1,α∈[0,π),又∵tanα<0,所以α的最小值为,故选B.11.已知y=x3-x-1+1,则其导函数的值域为________.答案[2,+∞)12.已知函数f(x)=f′()cosx+sinx,所以f()的值为________.答案1解析因为f′(x)=-f′()sinx+cosx,所以f′()=-f′()sin+cos,所以f′()=-1.故f()=f′()cos+sin=1.13.(2013·江西文)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=________.答案2解析由题意y′=αxα-1,在点(1,2)处的切线的斜率为k=α,又切线过坐标原点,所以α==2.14.(2015·广东肇庆一模)曲线f(x)=在x=0处的切线方程为________.答案2x+y+1=0解析根据题意可知切点坐标为(0,-1),f′(x)==,故切线的斜率为k=f′(0)==-2,则直线的方程为y-(-1)=(-2)(x-0)⇒2x+y+1=0,故填2x +y+1=0.15.(2015·河北邯郸二模)曲线y=log2x在点(1,0)处的切线与坐标轴所围成三角形的面积等于________.答案log2e解析∵y′=,∴k=.∴切线方程为y=(x-1).∴三角形面积为S△=×1×==log2e.16.若抛物线y=x2-x+c上的一点P的横坐标是-2,抛物线过点P的切线恰好过坐标原点,则实数c的值为________.答案4解析∵y′=2x-1,∴y′|x=-2=-5.又P(-2,6+c),∴=-5.∴c=4.17.已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程;(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.答案(1)y=13x-32(2)切点坐标为(1,-14)或(-1,-18),切线方程为y =4x-18或y=4x-14解析(1)可判定点(2,-6)在曲线y=f(x)上.∵f′(x)=(x3+x-16)′=3x2+1,∴在点(2,-6)处的切线的斜率为k=f′(2)=13.∴切线的方程为y=13(x-2)+(-6),即y=13x-32.(2)∵切线与直线y =-x +3垂直,∴切线的斜率为k =4.设切点的坐标为(x0,y0),则f ′(x0)=3x +1=4.∴x0=±1.∴或⎩⎪⎨⎪⎧ x0=-1,y0=-18.∴切点坐标为(1,-14)或(-1,-18).切线方程为y =4(x -1)-14或y =4(x +1)-18.即y =4x -18或y =4x -14.18.设函数f(x)=ax -,曲线y =f(x)在点(2,f(2))处的切线方程为7x -4y -12=0.(1)求f(x)的解析式;(2)证明:曲线y =f(x)上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.答案 (1)f(x)=x -(2)定值为6解析 (1)方程7x -4y -12=0可化为y =x -3.当x =2时,y =.又f ′(x)=a +,于是解得⎩⎪⎨⎪⎧ a =1,b =3.故f(x)=x -.(2)证明:设P(x0,y0)为曲线上的任一点,由y ′=1+知曲线在点P(x0,y0)处的切线方程为y -y0=(1+)(x -x0),即y -(x0-)=(1+)(x -x0).令x =0得y =-,从而得切线与直线x =0的交点坐标为(0,-). 切线与直线y =x 的交点坐标为(2x0,2x0).所以点P(x0,y0)处的切线与直线x =0,y =x 所围成的三角形面积为|-||2x0|=6.故曲线y=f(x)上任一点处的切线与直线x=0,y=x所围成的三角形的面积为定值,此定值为6.1.若曲线y=lnx(x>0)的一条切线是直线y=x+b,则实数b的值为()A.2 B.ln2+1C.ln2-1 D.ln2答案C解析∵y=lnx的导数为y′=,∴=,解得x=2.∴切点为(2,ln2).将其代入直线y=x+b,得b=ln2-1.2.下列图像中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的导函数f′(x)的图像,则f(-1)=()A.B.-13C.D.-或53答案B解析f′(x)=x2+2ax+a2-1=(x+a)2-1,∴y=f′(x)是开口向上,以x=-a为对称轴,(-a,-1)为顶点的抛物线.∴(3)是对应y=f′(x)的图像.∵由图像知f′(0)=0,对称轴x=-a>0,∴a2-1=0,a<0,∴a=-1.∴y=f(x)=x3-x2+1.∴f(-1)=-,选B.3.y=x2sincos的导数为________.答案y′=xsinx+x2cosx.。

人教版最新高考数学一轮复习-题组层级快练(含解析)(1)Word版

人教版最新高考数学一轮复习-题组层级快练(含解析)(1)Word版

高考复习题组层级快练(附参考答案)1.若椭圆x 216+y 2b2=1过点(-2,3),则其焦距为( )A .2 5B .2 3C .4 5D .4 3答案 D解析 ∵椭圆过(-2,3),则有416+3b 2=1,b 2=4,c 2=16-4=12,c =23,2c =4 3.故选D.2.已知焦点在x 轴上的椭圆的离心率为12,且它的长轴长等于圆C :x 2+y 2-2x -15=0的半径,则椭圆的标准方程是( )A.x 24+y 23=1B.x 216+y 212=1 C.x 24+y 2=1 D.x 216+y 24=1 答案 A解析 圆C 的方程可化为(x -1)2+y 2=16. 知其半径r =4,∴长轴长2a =4,∴a =2.又e =c a =12,∴c =1,b 2=a 2-c 2=4-1=3.∴椭圆的标准方程为x 24+y 23=1.3.已知曲线C 上的动点M (x ,y ),向量a =(x +2,y )和b =(x -2,y )满足|a |+|b |=6,则曲线C 的离心率是( )A.23B. 3C.33D.13答案 A解析 因为|a |+|b |=6表示动点M (x ,y )到两点(-2,0)和(2,0)距离的和为6,所以曲线C 是椭圆且长轴长2a =6,即a =3.又c =2,∴e =23.4.已知椭圆x 25+y 2m =1的离心率e =105,则m 的值为( )A .3B .3或253C.15D.15或5153答案 B解析 若焦点在x 轴上,则有⎩⎪⎨⎪⎧5>m ,5-m 5=105.∴m =3.若焦点在y 轴上,则有⎩⎪⎨⎪⎧m >5,m -5m=105.∴m =253. 5.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线答案 B解析 点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,∴|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.6.(2015·广东韶关调研)已知椭圆与双曲线x 24-y 212=1的焦点相同,且椭圆上任意一点到两焦点的距离之和为10,那么椭圆的离心率等于( )A.35B.45C.54D.34 答案 B解析 因为双曲线的焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),因为椭圆上任意一点到两焦点的距离之和为10,所以根据椭圆的定义可得2a =10⇒a =5,则c =4+12=4,e =c a =45,故选B.7.(2015·广东广州二模)设F 1,F 2分别是椭圆C :x 2a +y 2b=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 1的中点在y 轴上,若∠PF 1F 2=30°,则椭圆的离心率为( )A.16B.13C.36D.33答案 D解析 设PF 1的中点为M ,连接PF 2,由于O 为F 1F 2的中点,则OM 为△PF 1F 2的中位线,所以OM ∥PF 2.所以∠PF 2F 1=∠MOF 1=90°.由于∠PF 1F 2=30°,所以|PF 1|=2|PF 2|. 由勾股定理,得|F 1F 2|=|PF 1|2-|PF 2|2=3|PF 2|.由椭圆定义,得2a =|PF 1|+|PF 2|=3|PF 2|⇒a =3|PF 2|2,2c =|F 1F 2|=3|PF 2|⇒c =3|PF 2|2.所以椭圆的离心率为e =ca =3|PF 2|2·23|PF 2|=33.故选D. 8.(2015·河北邯郸一模)已知P 是椭圆x 225+y 2b2=1(0<b <5)上除顶点外一点,F 1是椭圆的左焦点,若|OP→+OF 1→|=8,则点P 到该椭圆左焦点的距离为( )A .6B .4C .2 D.52答案 C解析 取PF 1的中点M ,连接OM ,OP →+OF 1→=2OM →,∴|OM |=4.在△F 1PF 2中,OM 是中位线,∴|PF 2|=8.∴|PF 1|+|PF 2|=2a =10,解得|PF 1|=2,故选C.9.(2015·北京海淀期末练习)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,椭圆C 上的点A满足AF 2⊥F 1F 2,若点P 是椭圆C 上的动点,则F 1P →·F 2A →的最大值为( )A.32B.332 C.94 D.154 答案 B解析 由椭圆方程知c =4-3=1,所以F 1(-1,0),F 2(1,0).因为椭圆C 上点A 满足AF 2⊥F 1F 2,则可设A (1,y 0),代入椭圆方程可得y 20=94,所以y 0=±32.设P (x 1,y 1),则F 1P →=(x 1+1,y 1),F 2A →=(0,y 0), 所以F 1P →·F 2A →=y 1y 0.。

2020版高考数学(理科)一轮总复习快练第八章立体几何作业57Word版含解析

2020版高考数学(理科)一轮总复习快练第八章立体几何作业57Word版含解析

题组层级快练(五十七)1.(2019·皖南八校联考)四棱锥V -ABCD 中,底面ABCD 是边长为2的正方形,其他四个侧面是腰长为3的等腰三角形,则二面角V -AB -C 的余弦值的大小为( ) A.23 B.24C.73D.223答案 B解析 如图所示,取AB 中点E ,过V 作底面的垂线,垂足为O ,连接OE ,VE ,根据题意可知,∠VEO 是二面角V -AB -C 的平面角.因为OE =1,VE =32-12=22,所以cos ∠VEO =OE VE =122=24,故选B.2.(2019·福州质量检测)三棱锥A -BCD 中,△ABC 为等边三角形,AB =23,∠BDC =90°,二面角A -BC -D 的大小为150°,则三棱锥A -BCD 的外接球的表面积为( ) A .7π B .12π C .16π D .28π答案 D解析 本题考查空间直线与平面的位置关系、球的表面积.设球心为F ,过点A 作AO ⊥平面BCD ,垂足为O ,取BC 的中点E ,连接AE ,OE ,EF ,则∠AEO =30°,AE =3,AO =32,OE =332,EC =3,外接球球心F 在过E 且平行于AO 的直线上,设FE =x ,外接球半径为R ,则R 2=3+x 2=(332)2+(32-x)2,解得x =2,R 2=7,则外接球的表面积为4πR 2=28π,故选D.3.(2019·浙江温州中学模拟)如图,四边形ABCD ,AB =BD =DA =2,BC =CD = 2.现将△ABD 沿BD 折起,当二面角A -BD -C 处于[π6,5π6]的过程中,直线AB 与CD 所成角的余弦值的取值范围是( ) A .[-528,28]B .[28,528]C .[0,28] D .[0,528]答案 D解析 如图所示,取BD 中点E ,连接AE ,CE ,∴∠AEC 即为二面角A -BD -C 的平面角.而AC 2=AE 2+CE 2-2AE·CE·cos ∠AEC =4-23cos ∠AEC ,又∠AEC ∈[π6,5π6],∴AC ∈[1,7],∴AB →·CD →=22cos 〈AB →,CD →〉=AB →·(BD →-BC →)=-2+AB·BC·AB 2+BC 2-AC 22AB ·BC=1-AC 22∈[-52,12],设异面直线AB ,CD 所成的角为θ,∴0≤cos θ≤122·52=528,故选D.4.(2019·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( ) A. 2 B. 3 C .2 D.22答案 A解析 分别以CA ,CB ,CC 1为x ,y ,z 轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a),∴CD →=(1,0,a),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得n =(a ,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m·n|m|·|n|,得1a 2+2=12,∴a =2,故选A. 5.(2019·河南信阳模拟)已知梯形CEPD 如图所示,其中PD =8,CE =6,A 为线段PD 的中点,四边形ABCD 为正方形,现沿AB 进行折叠,使得平面PABE ⊥平面ABCD ,得到如图所示的几何体.已知当点F 满足AF →=λAB →(0<λ<1)时,平面DEF ⊥平面PCE ,则λ的值为( )A.12B.23 C.35 D.45答案 C解析 因为四边形ABCD 为正方形,且平面PABE ⊥平面ABCD ,所以PA ,AB ,AD 两两垂直,且PA ∥BE ,所以建立空间直角坐标系(如图所示),又因为PD =8,CE =6,所以P(0,0,4),C(4,4,0),E(4,0,2),D(0,4,0),B(4,0,0),则F(4λ,0,0),DE →=(4,-4,2),DF →=(4λ,-4,0),CE →=(0,-4,2),EP →=(-4,0,2),设平面DEF 的法向量为m =(x ,y ,z),则由⎩⎪⎨⎪⎧m ·DE →=0,m ·DF →=0,得⎩⎪⎨⎪⎧4x -4y +2z =0,4λx -4y =0,取m =(1,λ,2λ-2),平面PCE 的法向量为n =(x ,y ,z),则由⎩⎪⎨⎪⎧n ·CE →=0,n ·EP →=0,得⎩⎪⎨⎪⎧-4y +2z =0,-4x +2z =0,取n =(1,1,2),因为平面DEF ⊥平面PCE ,所以m ·n =1+λ+2(2λ-2)=5λ-3=0,解得λ=35.故选C.6.如图,棱长都相等的平行六面体ABCD -A′B′C′D′中,∠DAB =∠A′AD =∠A′AB =60°,则二面角A′-BD -A 的余弦值为( )A.13 B .-13C.33D .-33答案 A解析 棱长都相等的平行六面体ABCD -A′B′C′D′中,∠DAB =∠A′AD=∠A′AB=60°,则四面体A′BDA为正四面体,如图,取BD的中点E,连接AE,A′E.设四面体的棱长为2,则AE=A′E=3,且AE⊥BD,A′E⊥BD,则∠AEA′即为二面角A′-BD-A的平面角,在△AA′E中,cos∠AEA′=AE2+A′E2-A′A22AE·A′E=13.故二面角A′-BD-A的余弦值为13.7.(2019·成都检测)如图,在长方体ABCD-A1B1C1D1中,AB=4,BC=AA1=3,则二面角C1-BD-C的余弦值为()A.415 B.3415C.34141 D.44141答案 D解析在矩形ABCD内过点C作CH⊥BD于点H,连接C1H.在长方体ABCD-A1B1C1D1中,CC1⊥平面ABCD,所以CC1⊥BD.又CH⊥BD,CH∩CC1=C,所以BD⊥平面C1CH,故BD⊥C1H,所以∠C1HC为二面角C1-BD-C的平面角.在Rt△BCD中,BD=DC2+CB2=42+32=5,因为CH⊥BD,所以CH=DC×BCBD=4×35=125.在Rt△C1CH中,C1H=CH2+CC12=(125)2+32=3415,所以cos∠C1HC=CHC1H=1253415=44141,即二面角C1-BD-C的余弦值等于44141.8.(2019·沧州七校联考)三棱锥A-BCD的三视图如图所示:则二面角B -AD -C 的正弦值为________. 答案48241解析 如图,把三棱锥A -BCD 放到长方体中,长方体的长、宽、高分别为5,3,4,△BCD 为直角三角形,直角边分别为5和3,三棱锥A -BCD 的高为4,建立如图空间直角坐标系,则B(0,0,0),A(3,0,4),C(3,5,0),D(0,5,0), ∴DA →=(3,-5,4),DB →=(0,-5,0),DC →=(3,0,0). 设n 1=(x 1,y 1,z 1)是平面ABD 的一个法向量,∴n 1⊥DA →,n 1⊥DB →.∴⎩⎪⎨⎪⎧3x 1-5y 1+4z 1=0,-5y 1=0,∴⎩⎪⎨⎪⎧3x 1+4z 1=0,y 1=0.可取n 1=(4,0,-3). 设n 2=(x 2,y 2,z 2)是平面ADC 的一个法向量,∵n 2⊥DA →,n 2⊥DC →,∴⎩⎪⎨⎪⎧3x 2-5y 2+4z 2=0,3x 2=0,∴⎩⎪⎨⎪⎧5y 2=4z 2,x 2=0.可取n 2=(0,4,5). cos 〈n 1,n 2〉=-155·41=-341.∴sin 〈n 1,n 2〉=4241=48241.即二面角B -AD -C 的正弦值为48241.9.(2019·洛阳第一次统考)如图,四边形ABEF 和四边形ABCD 均是直角梯形,∠FAB =∠DAB =90°,二面角F -AB -D 是直二面角,BE ∥AF ,BC ∥AD ,AF =AB =BC =2,AD =1.(1)证明:在平面BCE 上,一定存在过点C 的直线l 与直线DF 平行; (2)求二面角F -CD -A 的余弦值. 答案 (1)略 (2)66 解析 (1)由已知得,BE ∥AF ,AF ⊂平面AFD ,BE ⊄平面AFD , ∴BE ∥平面AFD.同理可得,BC ∥平面AFD.又BE ∩BC =B ,∴平面BCE ∥平面AFD. 设平面DFC ∩平面BCE =l ,则l 过点C.∵平面BCE ∥平面ADF ,平面DFC ∩平面BCE =l ,平面DFC ∩平面AFD =DF , ∴DF ∥l ,即在平面BCE 上一定存在过点C 的直线l ,使得DF ∥l.(2)∵平面ABEF ⊥平面ABCD ,FA ⊂平面ABEF ,平面ABCD ∩平面ABEF =AB , 又∠FAB =90°,∴AF ⊥AB ,∴AF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴AF ⊥AD.∵∠DAB =90°, ∴AD ⊥AB.以A 为坐标原点,AD ,AB ,AF 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图.由已知得,D(1,0,0),C(2,2,0),F(0,0,2),∴DF →=(-1,0,2),DC →=(1,2,0). 设平面DFC 的法向量为n =(x ,y ,z),则⎩⎪⎨⎪⎧n ·DF →=0,n ·DC →=0,⇒⎩⎪⎨⎪⎧x =2z ,x =-2y ,不妨取z =1,则n =(2,-1,1),不妨取平面ACD 的一个法向量为m =(0,0,1), ∴cos 〈m ,n 〉=m ·n |m ||n |=16=66,由于二面角F -CD -A 为锐角, 因此二面角F -CD -A 的余弦值为66. 10.(2019·安徽师大附中模拟)已知四棱锥P -ABCD 中,底面ABCD 是梯形,BC ∥AD ,AB ⊥AD ,且AB =BC =1,AD =2,顶点P 在平面ABCD 内的射影H 在AD 上,PA ⊥PD. (1)求证:平面PAB ⊥平面PAD ;(2)若直线AC 与PD 所成角为60°,求二面角A -PC -D 的余弦值. 答案 (1)见解析 (2)-13解析 (1)∵PH ⊥平面ABCD ,AB ⊂平面ABCD ,∴PH ⊥AB. ∵AB ⊥AD ,AD ∩PH =H ,AD ,PH ⊂平面PAD ,。

高考数学一轮复习 题组层级快练68(含解析)-人教版高三全册数学试题

高考数学一轮复习 题组层级快练68(含解析)-人教版高三全册数学试题

题组层级快练(六十八)1.若过抛物线y =2x 2的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则x 1x 2=( ) A .-2B .-12C .-4D .-116答案 D解析 由y =2x 2,得x 2=12y .其焦点坐标为F (0,18),取直线y =18,则其与y =2x 2交于A (-14,18),B (14,18),∴x 1x 2=(-14)·(14)=-116.2.设离心率为e 的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 过焦点F ,且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是( )A .k 2-e 2>1 B .k 2-e 2<1 C .e 2-k 2>1 D .e 2-k 2<1答案 C解析 l 与双曲线的左、右两支都相交的充要条件是-b a <k <b a ,即k 2<c 2-a 2a2=e 2-1,即e 2-k 2>1,故选C.3.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3 C.303D.326 答案 C解析 设y -1=k (x -1),∴y =kx +1-k . 代入椭圆方程,得x 2+2(kx +1-k )2=4. ∴(2k 2+1)x 2+4k (1-k )x +2(1-k )2-4=0. 由x 1+x 2=4kk -12k 2+1=2,得k =-12,x 1x 2=13. ∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=4-43=83.∴|AB |=1+14·263=303.4.已知抛物线y =2x 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,那么m 的值等于( )A.32B.52 C .2 D .3答案 A解析 因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减,得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2.因为直线AB 与直线y =x +m 互相垂直,所以y 1-y 2x 1-x 2=-1,所以x 1+x 2=-12.而x 1x 2=-12,解得x 1=-1,x 2=12,设线段AB 的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54.因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32.5.已知双曲线x 2-y 24=1,过点A (1,1)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1答案 A解析 ①斜率不存在时,方程为x =1符合. ②设斜率为k ,y -1=k (x -1),kx -y -k +1=0.⎩⎪⎨⎪⎧4x 2-y 2=4,y =kx -k +1, (4-k 2)x 2+(2k 2-2k )x -k 2+2k -5=0.当4-k 2=0,k =±2时符合;当4-k 2≠0,Δ=0,亦有一个答案,∴共4条.6.(2015·东北三校)设抛物线y 2=4x 的焦点为F ,过点M (-1,0)的直线在第一象限交抛物线于A ,B ,且满足AF →·BF →=0,则直线AB 的斜率k =( )A. 2B.22C. 3D.33答案 B解析 依题意,设直线AB 的方程为y =k (x +1)(k ≠0),代入抛物线方程y 2=4x 并整理,得k 2x 2+(2k2-4)x +k 2=0.因为直线与抛物线有两个不同的交点,所以Δ=(2k 2-4)2-4k 4>0.设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=4-2k 2k 2,x 1x 2=1.又因为AF →·BF →=0,所以(x 1-1)(x 2-1)+y 1y 2=0,(x 1-1)(x 2-1)+k 2(x 1+1)(x 2+1)=0,(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+k 2+1=0.把⎩⎪⎨⎪⎧x 1+x 2=4-2k 2k 2,x 1x 2=1,代入并整理,得k 2=12.又k >0,所以k =22,故选B.7.已知抛物线y 2=8x ,过动点M (a,0),且斜率为1的直线l 与抛物线交于不同的两点A ,B ,|AB |≤8,则实数a 的取值X 围是________.答案 -2<a ≤-1解析 将l 的方程y =x -a 代入y 2=8x , 得x 2-2(a +4)x +a 2=0. 则|AB |=2[x 1+x 22-4x 1x 2]=324+2a ≤8,又∵|AB |>0, ∴-2<a ≤-1.8.(2015·某某静安一模)已知椭圆C :x 22+y 24=1,过椭圆C 上一点P (1,2)作倾斜角互补的两条直线PA ,PB ,分别交椭圆C 于A ,B 两点.则直线AB 的斜率为________.答案2解析 设A (x 1,y 1),B (x 2,y 2),同时设PA 的方程为y -2=k (x -1),代入椭圆方程化简得(k 2+2)x2-2k (k -2)x +k 2-22k -2=0,显然1和x 1是这个方程的两解.因此x 1=k 2-22k -2k 2+2,y 1=-2k 2-4k +22k 2+2.由-k 代替x 1,y 1中的k ,得x 2=k 2+22k -2k 2+2,y 2=-2k 2+4k +22k 2+2,所以y 2-y 1x 2-x 1= 2. 9.(2015·某某某某质检)已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若双曲线左支上存在一点P 与点F 2关于直线y =b ax 对称,则该双曲线的离心率为________.答案5解析 由题意可知双曲线左支上存在一点P 与点F 2关于直线y =bx a 对称,则PF 1⊥PF 2.又|PF 2||PF 1|=ba,联立|PF 2|-|PF 1|=2a ,|PF 2|2+|PF 1|2=(2c )2,可得b 3+a 2b =2c 2a .所以b =2a ,e = 5.10.抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值. 答案 (1)±2 2 (2)4解析 (1)依题意知F (1,0),设直线AB 的方程为x =my +1. 将直线AB 的方程与抛物线的方程联立,消去x ,得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2.② 联立①和②,消去y 1,y 2,得m =±24. 所以直线AB 的斜率是±2 2.(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点.从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB . 因为2S △AOB =2×12·|OF |·|y 1-y 2|=y 1+y 22-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4.11.(2015·某某某某七中适应性训练)如图所示,设抛物线C 1:y 2=4x 的准线与x 轴交于点F 1,焦点F 2.椭圆C 2以F 1和F 2为焦点,离心率e =12.设P 是C 1与C 2的一个交点.(1)求椭圆C 2的方程;(2)直线l 过C 2的右焦点F 2,交C 1于A 1,A 2两点,且|A 1A 2|等于△PF 1F 2的周长,求直线l 的方程. 答案 (1)x 24+y 23=1(2)y =2(x -1)或y =-2(x -1)解析 (1)由条件,F 1(-1,0),F 2(1,0)是椭圆C 2的两焦点,故半焦距为1,再由离心率为12知长半轴长为2,从而C 2的方程为x 24+y 23=1.(2)由(1)可知△PF 1F 2的周长|PF 1|+|PF 2|+|F 1F 2|=6.又C 1:y 2=4x ,而F 2(1,0).若l 垂直于x 轴,易得|A 1A 2|=4,矛盾,故l 不垂直于x 轴,可设其方程为y =k (x -1),与C 1方程联立可得k 2x 2-(2k 2+4)x +k 2=0,从而|A 1A 2|=k 2+1|x 1-x 2|=k 2+1·2k 2+42-4k4k 2=4k 2+1k 2.令|A 1A 2|=6可解出k 2=2,故l 的方程为y =2(x -1)或y =-2(x -1).12.(2014·某某文)已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 答案 (1)x 24+y 23=1(2)y =-12x +33或y =-12x -33思路 (1)构造关于a ,b ,c 的方程组;(2)利用直线与圆的位置关系得|CD |,直线的方程与椭圆方程联立得方程组,利用根与系数的关系得|AB |,构造关于m 的方程求m ,进而得出直线l 的方程.解析 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎨⎧a =2,b =3,c =1.∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5. 由d <1,得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0.由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2.由|AB ||CD |=534,得4-m 25-4m 2=1,解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.13.(2014·某某理)圆x 2+y 2=4的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图).双曲线C 1:x 2a 2-y 2b2=1过点P 且离心率为 3.(1)求C 1的方程;(2)椭圆C 2过点P 且与C 1有相同的焦点,直线l 过C 2的右焦点且与C 2交于A ,B 两点,若以线段AB 为直径的圆过点P ,求l 的方程.答案 (1)x 2-y 22=1(2)x -(362-1)y -3=0或x +(62-1)y -3=0思路 (1)先求切线方程,再利用条件列出方程组求解字母的值;(2)利用关系设出椭圆方程,再利用直线与椭圆的位置关系求解.解析 (1)设切点坐标为(x 0,y 0)(x 0>0,y 0>0),则切线斜率为-x 0y 0,切线方程为y -y 0=-x 0y 0(x -x 0),即x 0x +y 0y =4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S =12·4x 0·4y 0=8x 0y 0.由x 20+y 20=4≥2x 0y 0知当且仅当x 0=y 0=2时,x 0y 0有最大值,即S 有最小值,因此点P 的坐标为(2,2).由题意知⎩⎪⎨⎪⎧2a 2-2b2=1,a 2+b 2=3a 2,解得⎩⎪⎨⎪⎧a 2=1,b 2=2.故C 1的方程为x 2-y 22=1.(2)由(1)知C 2的焦点坐标为(-3,0),(3,0),由此设C 2的方程为x 23+b 21+y 2b 21=1,其中b 1>0.由P (2,2)在C 2上,得23+b 21+2b 21=1.解得b 21=3,因此C 2的方程为x 26+y 23=1.显然,l 不是直线y =0.设l 的方程为x =my +3,点A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my +3,x 26+y 23=1,得(m 2+2)y 2+23my -3=0.又y 1,y 2是方程的根,因此⎩⎪⎨⎪⎧y 1+y 2=-23mm 2+2, ①y 1y 2=-3m 2+2. ②由x 1=my 1+3,x 2=my 2+3,得⎩⎪⎨⎪⎧x 1+x 2=m y 1+y2+23=43m 2+2, ③x 1x 2=m 2y 1y 2+3my 1+y 2+3=6-6m 2m 2+2. ④因为AP →=(2-x 1,2-y 1),BP →=(2-x 2,2-y 2), 由题意知AP →·BP →=0,所以x 1x 2-2(x 1+x 2)+y 1y 2-2(y 1+y 2)+4=0.⑤ 将①②③④代入⑤整理,得2m 2-26m +46-11=0. 解得m =362-1或m =-62+1.因此直线l 的方程为x -(362-1)y -3=0或x +(62-1)y -3=0.。

2022版高考数学一轮复习考案8理 8文第八章解析几何综合过关规范限时检测含解析新人教版

2022版高考数学一轮复习考案8理 8文第八章解析几何综合过关规范限时检测含解析新人教版

第八章 综合过关规范限时检测(时间:120分钟 满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2021·吉林长春实验中学期末)设△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线方程分别为x =0,y =x ,则直线BC 的方程为( B )A .y =2x +5B .y =2x -5C .y =3x +5D .y =12x +52[解析] A 关于y =x 的对称点为A 1(1,-3),A 关于x =0的对称点为A 2(3,1),又A 1、A 2都在BC 上,∴k BC =2.∴BC 的方程为y +3=2(x -1),即y =2x -5.故选B.2.(2021·四川南充模拟)已知直线x -my +4m -2=0与圆x 2+y 2=4相切,则m =( D ) A .0 B .-43C .0或-43D .0或43[解析] 由题意可知|4m -2|1+m2=2,解得m =0或43,故选D.3.(2021·云南昆明一中摸底)抛物线y 2=4x 的焦点到双曲线x 2-y 2=1的渐近线的距离为( B )A .12B .22C .32D .2[解析] 因为抛物线的焦点为(1,0),双曲线的渐近线为x ±y =0, 所以抛物线的焦点到双曲线的渐近线的距离为 d =|1±0|12+12=22,故选B. 4.(2021·广西钦州一中月考)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( C )A .72B .52C .3D .2[解析] 如图所示:过点Q 作QQ ′⊥l 交l 于点Q ′,因为FP →=4FQ →, 所以|PQ ||PF |=34,又焦点F 到准线l 的距离为4,所以|QF |=|QQ ′|=3.故选C.5.(2021·四川达州诊断)直线2x +y -a =0被圆x 2+y 2+2x -4y =0所截得弦长为4,则实数a =( A )A .5或-5B .0或 5C .0或-5D .5或55[解析] 由题意知圆(x +1)2+(y -2)2=5的圆心到直线的距离为5-4=1,即|-2+2-a |5=1,解得a =±5,故选A . 6.(理)(2021·安徽皖南八校联考)已知双曲线的渐近线方程是3x ±y =0,且与椭圆x 2+2y 2=8有共同焦点,则双曲线的方程为( B )A .2x 2-2y 23=1 B .x 2-y 23=1 C .x 2-y 24=1 D .x 2-y 29=1 (文)(2021·三湘名校联盟联考)已知双曲线x 2a 2-y 25=1(a >0)的一个焦点为(-3,0),则其渐近线方程为( D )A .y =±54xB .y =±45xC .y =±255xD .y =±52x[解析] (理)椭圆x 2+2y 2=8,即x 28+y 24=1的焦点为(±2,0).可设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),可得a 2+b 2=4.由渐近线方程是3x ±y =0,可得ba=3,解得a =1,b =3,则双曲线的方程为x 2-y 23=1.故选B.(文)a 2+5=9,a =2,∴渐近线方程为y =±52x .故选D.7.(2021·陕西百校联盟联考)已知椭圆C :x 28+y 22=1的左、右焦点分别为F 1,F 2,直线l 过点F 2且与椭圆C 交于M ,N 两点,且MA →=AN →,若|OA |=|AF 2|,则直线l 的斜率为( B )A .±1B .±12C .±13D .±14[解析] 设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧x 218+y 212=1,x 228+y222=1两式相减可得(x 1-x 2)(x 1+x 2)8+(y 1-y 2)(y 1+y 2)2=0,则k OA ·k MN =-14;因为|OA |=|AF 2|,故k OA =-k MN ,解得是k MN =±12,故直线l 的斜率为±12.8.(2019·高考天津卷)已知抛物线y 2=4x的焦点为F ,准线为l ,若l 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( D )A .2B .3C .2D . 5[解析] 抛物线y 2=4x 的准线l 的方程为x =-1, 双曲线的渐近线方程为y =±ba x ,则有A ⎝⎛⎭⎫-1,b a ,B ⎝⎛⎭⎫-1,-b a , ∴|AB |=2b a ,2ba=4,b =2a , ∴e =c a=a 2+b 2a= 5.故选D. 9.(2021·黑龙江哈尔滨模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点与圆M :(x-2)2+y 2=5的圆心重合,且圆M 被双曲线的一条渐近线截得的弦长为22,则双曲线的离心率为( A )A .2B .2C .3D .3[解析] 由已知,c =2,渐近线方程为bx ±ay =0,因为圆M 被双曲线的一条渐近线截得的弦长为22,所以圆心M 到渐近线的距离为r 2-(2)2=3=2b a 2+b 2=2bc=b ,故a =c 2-b 2=1,所以离心率为e =ca=2.故选A .10. (2021·广东实验中学阶段测试)1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c ,下列结论错误的是( C )A .卫星向径的取值范围是[a -c ,a +c ]B .卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间C .卫星向径的最小值与最大值的比值越大,椭圆轨道越扁D .卫星运行速度在近地点时最大,在远地点时最小[解析] 由题意可得卫星的向径是椭圆上的点到右焦点的距离,所以最小值为a -c ,最大值为a +c ,所以A 正确;根据在相同时间内扫过的面积相等,卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间,故B 正确;卫星向径的最小值与最大值的比值越小,即a -c a +c =1-e 1+e =-1+21+e 越小,则e 越大,椭圆越扁,故C 不正确;因为运行速度是变化的,向径是变化的,所以卫星运行速度在近地点时向径越小,在远地点时向径越大,卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等,则向径越大,速度越小,所以卫星运行速度在近地点时最大,在远地点时最小,故D 正确;故选C.11.(2021·广东联考)已知圆C 1:x 2+(y -2)2=4,抛物线C 2:y 2=2px (p >0),C 1与C 2相交于A ,B 两点,且|AB |=23,则抛物线C 2的方程为( C )A .y 2=3xB .y 2=2xC .y 2=33xD .y 2=8x[解析] 如图,OC 1=2,AB =23,取AB 的中点H ,连C 1H ,则C 1H ⊥AB ,且OH =3,∴∠C 1OB =30°,从而C 1H =1,∴∠BOx =60°,∴B (3,3),又点B 在抛物线y 2=2px 上,∴P =y 22x =923=332,∴抛物线C 2的方程为y 2=33x ,故选C.12.(2021·湖南省六校联考)已知F 1,F 2是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且|PF 1|>|PF 2|,线段PF 1的垂直平分线过F 2,若椭圆的离心率为e 1,双曲线的离心率为e 2,则2e 1+e 22的最小值为( C )A .6B .3C .6D . 3[解析] 设椭圆长轴2a 1,双曲线实轴2a 2,由题意可知:|F 1F 2|=|F 2P |=2c , 又∵|F 1P |+|F 2P |=2a 1,|F 1P |-|F 2P |=2a 2, ∴|F 1P |+2c =2a 1,|F 1P |-2c =2a 2, 两式相减,可得:a 1-a 2=2c ,∵2e 1+e 22=2a 1c +c 2a 2=4a 1a 2+c 22ca 2, ∴2e 1+e 22=4(2c +a 2)a 2+c 22ca 2=8ca 2+4a 22+c 22ca 2=4+2a 2c +c 2a 2≥4+22a 2c ·c2a 2=6, 当且仅当2a 2c =c2a 2时取等号,∴2e 1+e 22的最小值为6,故选C. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上) 13.(理)(2021·广东广州综合测试)斜率为33的直线l 过抛物线y 2=2px (p >0)的焦点,若直线l 与圆(x -2)2+y 2=4相切,则p = 12 .(文)(2021·河北石家庄五校联合体质检)圆心在x 轴负半轴上,半径为4,且与直线x +3y -5=0相切的圆的方程为 (x +3)2+y 2=16 .[解析] (理)斜率为33的直线l 过抛物线C :y 2=2px (p >0)的焦点F ⎝⎛⎭⎫p 2,0, 直线l 的方程为y =33⎝⎛⎭⎫x -p 2,即x -3y -p2=0, ∵直线l 与圆M :(x -2)2+y 2=4相切,圆心为(2,0),半径为2,∴⎪⎪⎪⎪2-p 23+1=2,解得p =12或p =-4(舍去).故答案为:12.(文)设圆心坐标为(a,0)(a <0),则由题意知|a -5|12+(3)2=4,解得a =-3,故所求圆的方程为(x +3)2+y 2=16.14.(2021·山西八校联考改编)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的左支交于A ,B 两点,且AF 1→=3F 1B →,∠ABF 2=90°,则C 的离心率是102. [解析] 如图,不妨设|F 1B |=1,则|AB |=4,|F 2B |=2a +1,|F 2A |=2a +3,在Rt △ABF 2中,由勾股定理得16+(2a +1)2=(2a +3)2,解得a =1.在Rt △F 1BF 2中,|F 1B |=1,|F 2B |=2a +1=3, |F 1F 2|=2c ,∴1+9=4c 2, ∴c =102,∴e =c a =102. 15.(2020·安徽1号卷A10联前盟联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 、N 在抛物线上,且M 、N 、F 三点共线,点P 在准线l 上,若PN →=NM →,则p |MF |= 23.[解析] 分别过点M ,N 作准线的垂线,垂足分别为M 1,N 1,则|MM 1|=|MF |,|NN 1|=|NF |,∴|PN ||PM |=|NN 1||MM 1|=|NF ||MF |=12设|NF |=m ,则|MF |=2m ,从而|PN |=3m , ∴m p =3m 4m =34,则m =34p , ∴p |MF |=p 2m =23. 16.(2021·山东日照联考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n 2=1(m >0,n >0).若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M N 的离心率为 2 .[解析] 由正六边形性质得椭圆上一点到两焦点距离之和为c +3c ,再根据椭圆定义得c +3c =2a ,所以椭圆M 的离心率为c a =21+3=3-1.双曲线N 的渐近线方程为y =±nm x ,由题意得双曲线N 的一条渐近线的倾斜角为π3,∴n 2m 2=tan 2π3=3,∴e 2=m 2+n 2m 2=m 2+3m 2m 2=4,∴e =2.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(2021·江苏徐州学情调研)在①离心率为3,且经过点(3,4);②离心率为12,且焦距为 2.这两个条件中任选一个,补充在下面的问题中,若问题中的直线l存在,求出l 的方程;若问题中的直线l 不存在,说明理由.问题:已知曲线C :mx 2+ny 2=1(m ,n ≠0)的焦点在x 轴上, ,是否存在过点P (-1,1)的直线l ,与曲线C 交于A ,B 两点,且P 为线段AB 的中点?注:若选择条件①和条件②分别解答,按第一个解答计算.[解析] 选条件①:由题设得曲线C 为焦点在x 轴上的双曲线, 设m =1a 2,n =-1b 2(a >0,b >0),所以C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),由题设得⎩⎪⎨⎪⎧a 2+b 2a2=39a 2-16b 2=1,解得a 2=1,b 2=2,所以C 的方程为x 2-y 22=1, 1°当直线l 的斜率不存在时,直线l 的方程为x =-1, 与曲线C 有且仅有一个交点(-1,0),不符合题意; 2°当直线l 的斜率存在时,设A (x 1,y 1),B (x 2,y 2), 直线l 的方程为y -1=k (x +1),即y =k (x +1)+1, 入x 2-y 22=1得(2-k 2)x 2-2k (k +1)x -(k 2+2k +3)=0(*), 若2-k 2=0,即k =±2时,方程(*)有且仅有一解,不符合题意; 若2-k 2≠0,即k ≠±2时,其判别式Δ=[2k (k +1)]2-4(k 2-2)(k 2+2k +3)=8(2k +3)>0,则k >-32,所以方程(*)有两个不同实数解时, k >-32且k ≠±2,于是x 1+x 2=--2k (k +1)2-k 2=2·(-1)=-2,解得k =-2,与k >-32且k ≠±2矛盾!所以,不存在直线l ,与曲线C 交于A ,B 两点,且P 为线段AB 的中点. 选条件②:由题设得曲线C 为焦点在x 轴上的椭圆, 设m =1a 2,n =1b2(a >b >0),所以C 的方程为x 2a 2+y 2b2=1(a >b >0),由题设得⎩⎨⎧a 2-b 2a 2=142a 2-b 2=2,解得a 2=4,b 2=3,所以C 的方程为x 24+y 23=1,1°当直线l 的斜率不存在时,直线l 的方程为x =-1, 代入x 24+y 23=1得y =±32,P (-1,1)不是线段AB 的中点,不符合题意; 2°当直线l 的斜率存在时,设A (x 1,y 1),B (x 2,y 2), 直线l 的方程为y -1=k (x +1),即y =k (x +1)+1, 代入x 24+y 23=1得(3+4k 2)x 2+8k (k +1)x +4(k 2+2k -2)=0,其判别式Δ=[8k (k +1)]2-4·(3+4k 2)·4(k 2+2k -2)=16(5k 2-6k +6)>0, 于是x 1+x 2=-8k (k +1)3+4k 2=2·(-1)=-2,解得k =34,故y =34(x +1)+1=34x +74,即3x -4y +7=0,所以存在直线l :3x -4y +7=0,与曲线C 交于A ,B 两点,且P 为线段AB 的中点. 18.(本小题满分12分)(2021·安徽蚌埠质检)已知抛物线C :y 2=2px (p >0),过抛物线C 的焦点F 且垂直于x 轴的直线交抛物线C 于P ,Q 两点,|PQ |=4.(1)求抛物线C 的方程,并求其焦点F 的坐标和准线l 的方程;(2)过点F 的直线与抛物线C 交于不同的两点A ,B ,直线OA 与准线l 交于点M .连接MF ,过点F 作MF 的垂线与准线l 交于点N .求证:O ,B ,N 三点共线(O 为坐标原点).[解析] (1)|PQ |=2p =4,则p =2, 故抛物线C 的方程为y 2=4x , 其焦点F 坐标为(1,0), 准线l 方程为x =-1.(2)设直线AB :x =ty +1,联立⎩⎪⎨⎪⎧x =ty +1y 2=4x,得y 2-4ty -4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,y 1y 2=-4, 直线OA :y =y 1x 1x ,由y 21=4x 1得y =4y 1x , 故M ⎝⎛⎭⎪⎫-1,-4y 1.直线MF 的斜率k MF =-4y 1-0-1-1=2y 1,直线FN 的斜率k FN =-y 12.直线FN :y =-y 12(x -1),则N (-1,y 1),直线ON 的斜率k ON =-y 1, 直线OB 的斜率k OB =y 2x 2,由y 22=4x 2得k OB =4y 2, 则k OB -k ON =4y 2-(-y 1)=4+y 1y 2y 2=4-4y 2=0.∴O ,B ,N 三点共线.19.(本小题满分12分)(2019·天津高考卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.[解析] (1)设椭圆的半焦距为c ,依题意,2b =4, c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1. 所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0). 设直线PB 的斜率为k (k ≠0),又B (0,2), 则直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x 2+20kx =0,可得x P =-20k4+5k 2,代入y =kx +2得y P =8-10k 24+5k2,进而直线OP 的斜率y P x P =4-5k2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝⎛⎭⎫-k 2=-1, 化简得k 2=245,从而k =±2305.所以,直线PB 的斜率为2305或-2305.20.(本小题满分12分)(理)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,离心率为12,点A 在椭圆C 上,|AF 1|=2,∠F 1AF 2=60°,过F 2与坐标轴不垂直的直线l 与椭圆C 交于P ,Q 两点.(1)求椭圆C 的方程;(2)若P ,Q 的中点为N ,在线段OF 2上是否存在点M (m,0),使得MN ⊥PQ ?若存在,求实数m 的取值范围;若不存在,说明理由.(文)(2021·广西钦州、崇左质检)如图,已知焦点在x 轴上的椭圆C 的长轴长为4,离心率为12.(1)求椭圆C 的方程;(2)设O 为原点,椭圆C 的左、右两个顶点分别为A 、B ,点P 是椭圆上与A ,B 不重合的任意一点,点Q 和点P 关于x 轴对称,直线AP 与直线BQ 交于点M ,求证:P ,M 两点的横坐标之积为定值.[解析] (理)(1)由e =12得a =2c ,|AF 1|=2,|AF 2|=2a -2,由余弦定理得,|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 60°=|F 1F 2|2, 解得c =1,a =2,b 2=a 2-c 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)存在这样的点M .设P (x 1,y 1),Q (x 2,y 2),N (x 0,y 0), 由F 2(1,0),设直线PQ 的方程为y =k (x -1), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -1)得(4k 2+3)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得x 1+x 2=8k 24k 2+3,故x 0=x 1+x 22=4k 24k 2+3,又点N 在直线PQ 上,所以y 0=-3k 4k 2+3,所以N ⎝ ⎛⎭⎪⎫4k 24k 2+3,-3k 4k 2+3.因为MN ⊥PQ ,所以k MN =0--3k4k 2+3m -4k 24k 2+3=-1k, 整理得m =k 24k 2+3=14+3k 2∈⎝⎛⎭⎫0,14,所以存在点M (m,0),使得MN ⊥PQ , m 的取值范围为⎝⎛⎭⎫0,14. (文)(1)由题意知⎩⎪⎨⎪⎧ a =2c a =12a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2c =1b =3,由于椭圆焦点在x 轴上,所以椭圆C 的方程为x 24+y 23=1.(2)设P (m ,n ),则Q (m ,-n ), m 24+n 23=1⇒n 2=3⎝⎛⎭⎫1-m 24. 依题意可知-2<m <2,且m ≠0. 直线AP 的方程为y =nm +2(x +2),直线BQ 的方程为y =n2-m (x -2). 由⎩⎪⎨⎪⎧ y =n m +2(x +2)y =n2-m(x -2)解得⎩⎨⎧x =4m ,y =2nm,即M ⎝⎛⎭⎫4m ,2n m .所以P ,M 两点的横坐标之积为m ·4m =4.即P 1M 两点的横坐标之积为定值.21.(本小题满分12分)(理)(2021·浙江金色联盟百校联考)设抛物线y 2=2px (p >0)的焦点为F ,点F 到抛物线准线的距离为2,若椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点也为F ,离心率为12.(1)求抛物线方程和椭圆方程;(2)若不经过F 的直线l 与抛物线交于A ,B 两点,且OA →·OB →=-3(O 为坐标原点),直线l 与椭圆交于C ,D 两点,求△CDF 面积的最大值.(文)(2021·河南洛阳期中联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左,右焦点分别是F 1,F 2,过F 1的直线AB 与椭圆相交于A ,B 两点,且△ABF 2的周长为8.(1)求椭圆C 的方程;(2)直线l :y =x +t 与椭圆相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求t 的取值范围.[解析] (理)(1)由已知得,p =2,F (1,0), ∴c =1,e =c a =12,∴a =2,b 2=a 2-c 2=3,所以抛物线方程为y 2=4x , 椭圆方程为x 24+y 23=1.(2)设直线l 方程为:my =x +n ,由⎩⎪⎨⎪⎧y 2=4x ,my =x +n ,消去x 得,y 2-4my +4n =0, 由Δ=(4m )2-4·4n =16m 2-16n >0即m 2-n >0,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 1+y 2=4m ,y 1y 2=4n ,因为OA →·OB →=x 1x 2+y 1y 2=(y 1y 2)216+y 1y 2=16n 216+4n =n 2+4n =-3,所以n =-3或n =-1(舍去), 所以直线l 方程为:my =x -3.由⎩⎪⎨⎪⎧x 24+y 23=1,my =x -3,消去x 得,(3m 2+4)y 2+18my +15=0. 设C (x C,y C),D (x D,y D),则⎩⎪⎨⎪⎧y C+y D=-18m3m 2+4,y C y D=153m 2+4,所以S △CDF =12|EF |·|y C -y D |=12×2×|y C -y D |=|y C -y D |=(y C +y D)2-4yC yD =⎝ ⎛⎭⎪⎫-18m 3m 2+42-603m 2+4=43·3m 2-53m 2+4.令3m 2-5=t (t >0),则m 2=t 2+53,所以S (t )=43·t t 2+9=43t +9t ≤436=233,当且仅当t =3时,即m =±423时,取最大值233. (文)(1)由椭圆的定义知4a =8,∴a =2. ∵c a =12,∴c =1. 从而b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =x +t ,3x 2+4y 2-12=0.得7x 2+8tx +4t 2-12=0, ∴x 1+x 2=-8t 7,x 1x 2=4t 2-127,由Δ=642-28(4t 2-12)>0,解得t 2<7.①∵坐标原点O 位于以MN 为直径的圆外, ∴OM →·ON →>0,即x 1x 2+y 1y 2>0.则x 1x 2+y 1y 2=x 1x 2+(x 1+t )(x 2+t )=2x 1x 2+t (x 1+x 2)+t 2=7t 2-247>0,解得t 2>247.②综合①②可知247<t 2<7,解得-7<t <-2427或2427<t <7.∴t 的取值范围是⎝⎛⎭⎫-7,-2427∪⎝⎛⎭⎫2427,7.22.(本小题满分12分)(理)(2021·云南玉溪质检)如图,在平面直角坐标系中,已知点F (-2,0),直线l :x =-4,过动点P 作PH ⊥l 于点H ,∠HPF 的平分线交x 轴于点M ,且|PH |=2|MF |,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点N (0,2)作两条直线,分别交曲线C 于A ,B 两点(异于N 点).当直线NA ,NB 的斜率之和为2时,直线AB 是否恒过定点?若是,求出定点的坐标;若不是,请说明理由.(文)(2021·山西八校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫3,12,且两个焦点为F 1(-3,0),F 2(3,0).(1)求C 的方程;(2)设圆D :x 2+y 2=r 2(b <r <a ),若直线l 与椭圆C ,圆D 都相切,切点分别为A 和B ,求|AB |的最大值.[解析] (理)(1)设P (x ,y ),由已知PH ∥FM , ∴∠HPM =∠FMP ,∵∠HPM =∠FPM ,∴∠FMP =∠FPM ,∴|MF |=|PF |,∴|PF ||PH |=|MF ||PH |=22,即(x +2)2+y 2|x +4|=22, 化简得x 28+y 24=1,∴曲线C 的方程为x 28+y 24=1(y ≠0).(2)当直线AB 的斜率存在时, 设其方程为y =kx +m (k ≠0,m ≠2), 且设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +m ,x 28+y 24=1,得(1+2k 2)x 2+4kmx +2m 2-8=0, 由已知Δ>0,∴x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-81+2k2,由已知k NA +k NB =2,得kx 1+m -2x 1+kx 2+m -2x 2=2,整理得2(k -1)x 1x 2+(m -2)(x 1+x 2)=0, ∴2(k -1)2m 2-81+2k 2+(m -2)⎝ ⎛⎭⎪⎫-4km 1+2k 2=0, 整理得(m -2)(4k -2m -4)=0. ∵m ≠2,∴m =2k -2,∴直线AB 的方程为y =kx +2k -2,即y +2=k (x +2). ∴直线AB 过定点(-2,-2).当直线AB 的斜率不存在时,设其方程为x =n , 且设A (n ,y 1),B (n ,y 2), 其中y 1=-y 2. 由已知k NA +k NB =2,得y 1-2n +y 2-2n =y 1+y 2-4n =-4n=2,∴n =-2,∴直线AB 的方程为x =-2, 此时直线AB 也过定点(-2,-2). 综上所述,直线AB 恒过定点(-2,-2). (文)(1)由题意c =3,所以a 2=b 2+3, C 的方程可化为x 2b 2+3+y 2b2=1(b >0).因为C 经过点⎝⎛⎭⎫3,12,所以3b 2+3+14b 2=1, 解得b 2=1或b 2=-34(舍去).所以a 2=4,于是C 的方程为x 24+y 2=1.(2)设l :y =kx +m ,代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0.由Δ=64k 2m 2-4(4k 2+1)(4m 2-4)=16(4k 2+1-m 2)=0, 得m 2=1+4k 2①,设A (x 0,y 0),则x 0=-4km 4k 2+1=-4k m ,y 0=kx 0+m =1m .因为l 与圆D 相切,所以圆心D 到l 距离为|m |1+k 2=r ,即m 2=r 2(1+k 2)②,由①②得m 2=3r 24-r 2,k 2=r 2-14-r 2.所以圆D 的切线长|AB |=x 20+y 20-r 2=⎝⎛⎭⎫-4k m 2+⎝⎛⎭⎫1m 2-r 2=5-⎝⎛⎭⎫4r 2+r 2.因为4r 2+r 2≥24r 2·r 2=4,当r =2时取等号,因为r =2∈(1,2),所以|AB |的最大值为1.。

高考数学一轮复习 第八章 立体几何层级快练51 文-人教版高三全册数学试题

高考数学一轮复习 第八章 立体几何层级快练51 文-人教版高三全册数学试题

层级快练(五十一)1.(2018·某某某某一中月考)已知直线l⊥平面α,直线m⊂平面β,给出下列命题:①α⊥β⇒l∥m;②α∥β⇒l⊥m;③l⊥m⇒α∥β;④l∥m⇒α⊥β,其中正确命题的序号是( )A.①②③B.②③④C.①③D.②④答案 D解析①中l与m可能相交、平行或异面;②中结论正确;③中两平面α,β可能平行,也可能相交;④中结论正确.2.设a,b,c是三条不同的直线,α,β是两个不同的平面,则a⊥b的一个充分不必要条件是( )A.a⊥c,b⊥c B.α⊥β,a⊂α,b⊂βC.a⊥α,b∥αD.a⊥α,b⊥α答案 C解析对于C,在平面α内存在c∥b,因为a⊥α,所以a⊥c,故a⊥b;A,B中,直线a,b可能是平行直线,相交直线,也可能是异面直线;D中一定推出a∥b.3.(2018·某某某某模拟)如图,在四面体ABCD中,已知AB⊥AC,BD⊥AC,那么D在平面ABC内的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部答案 A解析由AB⊥AC,BD⊥AC,又AB∩BD=B,则AC⊥平面ABD,而AC⊂平面ABC,则平面ABC⊥平面ABD,因此D在平面ABC内的射影H必在平面ABC与平面ABD的交线AB上,故选A. 4.设a,b是夹角为30°的异面直线,则满足条件“a⊂α,b⊂β,且α⊥β”的平面α,β( )A.不存在B.有且只有一对C.有且只有两对D.有无数对答案 D解析过直线a的平面α有无数个,当平面α与直线b平行时,两直线的公垂线与b确定的平面β与α垂直,当平面α与b相交时,过交点作平面α的垂线,此垂线与b确定的平面β与α垂直.故选D.5.(2018·某某模拟)如图,在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论不成立的是( )A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC答案 D解析因BC∥DF,DF⊂平面PDF,BC⊄平面PDF,所以BC∥平面PDF,A成立;易证BC⊥平面PAE,BC∥DF,所以结论B,C均成立;点P在底面ABC内的射影为△ABC的中心,不在中位线DE上,故结论D不成立.6.已知直线PA垂直于以AB为直径的圆所在的平面,C为圆上异于A,B的任一点,则下列关系中不正确的是( )A.PA⊥BC B.BC⊥平面PACC.AC⊥PB D.PC⊥BC答案 C解析AB为直径,C为圆上异于A,B的一点,所以AC⊥BC.因为PA⊥平面ABC,所以PA⊥BC.因为PA∩AC=A,所以BC⊥平面PAC,从而PC⊥BC.故选C.7.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是( )A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE答案 C解析因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.8.(2017·某某七校联考)如图所示,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC.则下列结论不正确的是( )A.CD∥平面PAF B.DF⊥平面PAFC.CF∥平面PAB D.CF⊥平面PAD答案 D解析A中,∵CD∥AF,AF⊂面PAF,CD⊄面PAF,∴CD∥平面PAF成立;B中,∵ABCDEF为正六边形,∴DF⊥AF.又∵PA⊥面ABCDEF,∴DF⊥平面PAF成立;C中,CF∥AB,AB⊂平面PAB,CF⊄平面PAB,∴CF∥平面PAB;而D中CF与AD不垂直,故选D.9.(2018·某某秀山高级中学期中)如图,点E为矩形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有( )①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行;③平面ABCE内存在直线与平面SAE平行;④存在点E使得SE⊥BA.A.1个B.2个C.3个D.4个答案 A解析①若直线SA⊥平面SBC,则SA⊥SC,又SA⊥SE,SE∩SC=S,∴SA⊥平面SEC,又平面SEC∩平面SBC=SC,∴点S,E,B,C共面,与已知矛盾,故①错误;②∵平面SBC∩直线SA=S,故平面SBC内的直线与SA相交或异面,故②错误;③在平面ABCD内作CF∥AE,交AB于点F,由线面平行的判定定理,可得CF∥平面SAE,故③正确;④若SE⊥BA,过点S作SF⊥AE于点F,∵平面SAE⊥平面ABCE,平面SAE∩平面ABCE=AE,∴SF⊥平面ABCE,∴SF⊥AB,又SF∩SE=S,∴AB⊥平面SEC,∴AB⊥AE,与∠BAE是锐角矛盾,故④错误.10.(2016·课标全国Ⅱ)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β;②如果m⊥α,n∥α,那么m⊥n;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号).答案②③④解析对于命题①,可运用长方体举反例证明其错误:如图,不妨设AA′为直线m,CD为直线n,ABCD所在的平面为α,ABC′D′所在的平面为β,显然这些直线和平面满足题目条件,但α⊥β不成立.命题②正确,证明如下:设过直线n的某平面与平面α相交于直线l,则l∥n,由m⊥α知m⊥l,从而m⊥n,结论正确. 由平面与平面平行的定义知命题③正确. 由平行的传递性及线面角的定义知命题④正确.11.(2017·某某模拟)点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,给出下列命题:①三棱锥A -D 1PC 的体积不变; ②A 1P ∥平面ACD 1; ③DB ⊥BC 1;④平面PDB 1⊥平面ACD 1.其中正确的命题序号是________. 答案 ①②④解析 对于①,VA -D 1PC =VP -AD 1C 点P 到面AD 1C 的距离,即为线BC 1与面AD 1C 的距离,为定值故①正确,对于②,因为面A 1C 1B ∥面AD 1C ,所以线A 1P ∥面AD 1C ,故②正确,对于③,DB 与BC 1就成60°角,故③错.对于④,由于B 1D ⊥面ACD 1,所以面B 1DP ⊥面ACD 1,故④正确.12.(2018·某某某某一模)已知在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,AB =2AD =2CD =2,将直角梯形ABCD 沿AC 折叠成三棱锥D -ABC ,当三棱锥D -ABC 的体积取最大值时,其外接球的体积为________. 答案 43π解析 当平面DAC⊥平面ABC 时,三棱锥D -ABC 的体积取最大值.此时易知BC⊥平面DAC ,∴BC ⊥AD ,又AD⊥DC,∴AD ⊥平面BCD ,∴AD ⊥BD ,取AB 的中点O ,易得OA =OB =OC =OD =1,故O 为所求外接球的球心,故半径r =1,体积V =43πr 3=43π.13.(2018·某某某某双基测试)如图所示,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于E ,AF ⊥DC 交DC 于F ,且AD =AB =2,则三棱锥D -AEF 体积的最大值为________. 答案26解析 因为DA⊥平面ABC ,所以DA⊥BC,又BC⊥AC,DA ∩AC =A ,所以BC⊥平面ADC ,所以BC⊥AF,又AF⊥CD,BC ∩CD =C ,所以AF⊥平面DCB ,所以AF⊥EF,AF ⊥DB ,又DB⊥AE,AE ∩AF =A ,所以DB⊥平面AEF ,所以DE 为三棱锥D -AEF 的高.因为AE 为等腰直角三角形ABD 斜边上的高,所以AE =2,设AF =a ,FE =b ,则△AEF 的面积S =12ab ≤12·a 2+b 22=12×22=12,所以三棱锥D -AEF 的体积V≤13×12×2=26(当且仅当a =b =1时等号成立). 14.(2018·某某某某模拟)在正三棱柱ABC -A 1B 1C 1中,BC =2BB 1,E ,F ,M 分别为A 1C 1,AB 1,BC 的中点. (1)求证:EF∥平面BB 1C 1C ; (2)求证:EF⊥平面AB 1M. 答案 (1)略 (2)略 证明 (1)连接A 1B ,BC 1.因为E ,F 分别为A 1C 1,AB 1的中点, 所以F 为A 1B 的中点.所以EF∥BC 1. 因为BC 1⊂平面BB 1C 1C ,EF ⊄平面BB 1C 1C , 所以EF∥平面BB 1C 1C.(2)在矩形BCC 1B 1,BC =2BB 1, 所以tan ∠CBC 1=22,tan ∠B 1MB = 2. 所以tan ∠CBC 1·tan ∠B 1MB =1. 所以∠CBC 1+∠B 1MB =π2.所以BC 1⊥B 1M.因为EF∥BC 1,所以EF⊥B 1M.在正三棱柱ABC -A 1B 1C 1中,底面ABC⊥平面BB 1C 1C. 因为M 为BC 的中点,AB =AC ,所以AM⊥BC. 因为平面ABC∩平面BB 1C 1C =BC , 所以AM⊥平面BB 1C 1C.因为BC 1⊂平面BB 1C 1C ,所以AM ⊥BC 1 因为EF∥BC 1,所以EF⊥AM.又因为AM∩B 1M =M ,AM ⊂平面AB 1M ,B 1M ⊂平面AB 1M ,所以EF⊥平面AB 1M. 15.(2018·某某某某模拟)如图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =AD =2EC =2,N 为线段PB 的中点. (1)证明:NE⊥PD;(2)求三棱锥E -PBC 的体积. 答案 (1)略 (2)23解析 (1)证明:连接AC ,与BD 交于点F ,连接NF ,则F 为BD 的中点. ∴NF ∥PD ,且NF =12PD.又EC∥PD 且EC =12PD ,∴NF ∥EC 且NF =EC.∴四边形NFCE 为平行四边形, ∴NE ∥FC ,即NE∥AC.又∵PD⊥平面ABCD ,AC ⊂平面ABCD , ∴AC ⊥PD.∵NE ∥AC ,∴NE ⊥PD.(2)解:∵PD⊥平面ABCD ,PD ⊂平面PDCE , ∴平面PDCE⊥平面ABCD.∵BC ⊥CD ,平面PDCE∩平面ABCD =CD ,BC ⊂平面ABCD , ∴BC ⊥平面PDCE.∴三棱锥E -PBC 的体积V E -PBC =V B -PEC =13S △PEC ·BC =13×(12×1×2)×2=23.16.(2018·某某马某某一模)如图①,在直角梯形ABCD 中,AB ⊥BC ,BC ∥AD ,AD =2AB =4,BC =3,E 为AD 的中点,EF ⊥BC ,垂足为F.沿EF 将四边形ABFE 折起,连接AD ,AC ,BC ,得到如图②所示的六面体ABCDEF.若折起后AB 的中点M 到点D 的距离为3.(1)求证:平面ABFE⊥平面CDEF ; (2)求六面体ABCDEF 的体积. 答案 (1)略 (2)83解析 (1)如图,取EF 的中点N ,连接MN ,DN ,MD. 根据题意可知,四边形ABFE 是边长为2的正方形, ∴MN ⊥EF.由题意,得DN =DE 2+EN 2=5,MD =3, ∴MN 2+DN 2=22+(5)2=9=MD 2, ∴MN ⊥DN ,∵EF ∩DN =N , ∴MN ⊥平面CDEF.又MN ⊂平面ABFE ,∴平面ABFE⊥平面CDEF. (2)连接CE ,则V 六面体ABCDEF =V 四棱锥C -ABFE +V 三棱锥A -CDE .由(1)的结论及CF⊥EF,AE ⊥EF 得, CF ⊥平面ABFE ,AE ⊥平面CDEF , ∴V 四棱锥C -ABFE =13·S 正方形ABFE ·CF =43,V 三棱锥A -CDE =13·S △CDE ·AE =43,∴V 六面体ABCDEF =43+43=83.17.(2018·潍坊质检)直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是直角梯形,∠BAD =∠ADC=90°,AB =2AD =2CD =2. (1)求证:AC⊥平面BB 1C 1C ;(2)在A 1B 1上是否存在一点P ,使得DP 与平面BCB 1和平面ACB 1都平行?证明你的结论. 答案 (1)略(2)P 为A 1B 1的中点时,DP 与平面BCB 1和平面ACB 1都平行.解析 (1)∵直四棱柱ABCD -A 1B 1C 1D 1中,BB 1⊥平面ABCD ,∴BB 1⊥AC. 又∵∠BAD=∠ADC=90°,AB =2AD =2CD =2, ∴AC =2,∠CAB =45°.∴BC = 2.∵BC 2+AC 2=AB 2,∴BC ⊥AC. 又BB 1∩BC =B ,BB 1⊂平面BB 1C 1C , BC ⊂平面BB 1C 1C ,∴AC ⊥平面BB 1C 1C. (2)存在点P ,P 为A 1B 1的中点.由P 为A 1B 1的中点,有PB 1∥AB ,且PB 1=12AB.又∵DC∥AB,DC =12AB ,∴DC ∥PB 1,且DC =PB 1.∴DCB 1P 为平行四边形,从而CB 1∥DP. 又CB 1⊂平面ACB 1,DP ⊄平面ACB 1, ∴DP ∥平面ACB 1.同理,DP ∥平面BCB 1.1.(2017·某某模拟)正方体ABCD -A ′B ′C ′D ′中,E 为A ′C ′的中点,则直线CE 垂直于( ) A .A ′C ′ B .BD C .A ′D ′ D .AA ′答案 B解析 连接B ′D ′,∵B ′D ′⊥A ′C ′,B ′D ′⊥CC ′, 且A ′C ′∩CC ′=C ′, ∴B ′D ′⊥平面CC ′E. 而CE ⊂平面CC ′E , ∴B ′D ′⊥CE.又∵BD∥B′D ′,∴BD ⊥CE.2.(2018·某某某某检测)如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC 上(端点除外)一动点,现将△AFD 沿AF 折起,使平面ABD⊥平面ABCF.在平面ABD 内过点D 作DK⊥AB,K 为垂足,设AK =t ,则t 的取值X 围是( )A .(12,2)B .(12,1)C .(32,2) D .(32,1) 答案 B解析 当点F 与点E 无限接近时,不妨令二者重合,可得t =1, 当点C 与点F 无限接近时,不妨令二者重合,此时有CD =2, ∵CB ⊥AB ,CB ⊥DK ,∴CB⊥平面ADB ,即有CB⊥BD,对于CD =2,BC =1,在直角三角形CBD 中,得BD =3, 又AD =1,AB =2,由勾股定理可得∠BDA 是直角,∴AD ⊥BD. 由DK⊥AB,可得△ADB∽△AKD,可得t =12,∴t 的取值X 围是(12,1),故选B.3.如图所示,已知PA⊥矩形ABCD 所在平面,M ,N 分别是AB ,PC 的中点.(1)求证:MN⊥CD;(2)若∠PDA=45°,求证:MN⊥平面PCD. 答案 (1)略 (2)略证明 (1)连接AC ,∵PA ⊥平面ABCD , ∴PA ⊥AC ,在Rt △PAC 中,N 为PC 中点.∴AN =12PC.∵PA ⊥平面ABCD ,∴PA ⊥BC. 又BC⊥AB,PA ∩AB =A , ∴BC ⊥平面PAB ,∴BC ⊥PB.从而在Rt △PBC 中,BN 为斜边PC 上的中线, ∴BN =12PC.∴AN =BN ,∴△ABN 为等腰三角形.又M 为底边的中点,∴MN ⊥AB ,又AB∥CD,∴MN ⊥CD. (2)∵∠PDA=45°,PA ⊥AD ,∴AP =AD. ∵ABCD 为矩形,∴AD =BC ,∴PA =BC. 又∵M 为AB 的中点,∴AM =BM. 而∠PAM=∠CBM=90°,∴PM =CM ,又N 为PC 的中点,∴MN ⊥PC. 由(1)知MN⊥CD,PC ∩CD =C ,∴MN ⊥平面PCD.4.(2018·某某某某一诊)如图①,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,点G ,R 分别在线段DH ,HB 上,且DG GH =BRRH .将△AED,△CFD ,△BEF 分别沿DE ,DF ,EF 折起,使点A ,B ,C 重合于点P ,如图②所示.(1)求证:GR⊥平面PEF ;(2)若正方形ABCD 的边长为4,求三棱锥P -DEF 的内切球的半径. 答案 (1)略 (2)12解析 (1)依题意,得在三棱锥P -DEF 中,PE ,PF ,PD 两两垂直. ∴PD ⊥平面PEF.∵DG GH =BR RH ,即DG GH =PRRH ,∴在△PDH 中,GR ∥PD. ∴GR ⊥平面PEF.(2)由题意知,PE =PF =2,PD =4,EF =22,DF =2 5. ∴S △PEF =2,S △DPF =S △DPE =4,S △DEF =12×22×(25)2-(2)2=6.设三棱锥P -DEF 的内切球的半径为r ,则三棱锥的体积V P -DEF =V D -PEF =13×12×2×2×4=13(S △PEF +2S △DPF +S △DEF )·r,解得r =12.∴三棱锥P -DEF 的内切球的半径为12.5.(2018·某某某某一中月考)如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,DB =BC ,DB ⊥AC ,点M 是棱BB 1上一点. (1)求证:B 1D 1∥平面A 1BD ; (2)求证:MD⊥AC;(3)试确定点M 的位置,使得平面DMC 1⊥平面CC 1D 1D. 答案 (1)略 (2)略 (3)略解析 (1)由ABCD -A 1B 1C 1D 1是直四棱柱,得BB 1∥DD 1,且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形,所以B 1D 1∥BD.又BD ⊂平面A 1BD ,B 1D 1⊄平面A 1BD ,所以B 1D 1∥平面A 1BD. (2)因为BB 1⊥平面ABCD ,AC ⊂平面ABCD ,所以BB 1⊥AC.因为BD⊥AC,且BD∩BB 1=B ,所以AC⊥平面BB 1D 1D. 而MD ⊂平面BB 1D 1D ,所以MD⊥AC.(2)当点M 为棱BB 1的中点时,平面DMC 1⊥平面CC 1D 1D. 证明如下:取DC 的中点N ,D 1C 1的中点N 1, 连接NN 1交DC 1于点O ,连接BN ,OM ,如图. 因为N 是DC 的中点,BD =BC ,所以BN⊥DC. 因为DC 是平面ABCD 与平面DCC 1D 1的交线, 而平面ABCD⊥平面DCC 1D 1,所以BN⊥平面DCC 1D 1. 易得O 是NN 1的中点, 所以BM∥ON 且BM =ON ,所以四边形BMON 是平行四边形,所以BN∥OM,所以OM⊥平面CC 1D 1D. 因为OM ⊂平面DMC 1,所以平面DMC 1⊥平面CC 1D 1D.。

高考数学(人教A版理科)一轮复习真题演练集训:第八章立体几何8-6Word版含答案

高考数学(人教A版理科)一轮复习真题演练集训:第八章立体几何8-6Word版含答案

高考数学(人教A版理科)一轮复习真题演练集训:第八章立体几何8-6Word版含答案
课外拓展阅读
“两向量同向”意义不清致误剖析
已知向量 a=(1,2,3),b=(x,x2+y-2,y),而且a,b同向,则x,y的值分别为________.将 a, b 同向和 a∥b混杂,没有搞清a∥b的意义: a, b 方向同样或相反.
由题意知, a∥b,
x x2+ y-2 y
因此1=2=3,
即y=3x,①
x2+ y-2=2x.②
把①代入②,得
2
x + x-2=0,( x+2)( x-1)=0,
当 x=-2时, y=-6;
当 x=1, y=3.
x=-2,
当时, b=(-2,-4,-6)=-2a,
y=-6
两向量 a, b 反向,不切合题意,因此舍去.
x=1,
当时, b=(1,2,3)=a,
y=3
x=1,
a 与
b 同向,因此
y=3.
1,3
温馨提示
1.两向量平行和两向量同向不是等价的,同向是平行的一种状况,两向量同向能推出两
向量平行,但反过来不建立,也就是说,“两向量同向”是“两向量平行”的充足不用要条
件.
2.若两向量a, b 知足 a=λ b( b≠0)且λ>0,则 a, b 同向;在 a,b 的坐标都是非零的条件下, a, b 的坐标对应成比率且比值为正当.。

2022届高三数学(理)一轮总复习课时规范训练:第八章 平面解析几何 8-6 Word版含答案

2022届高三数学(理)一轮总复习课时规范训练:第八章 平面解析几何 8-6 Word版含答案

课时规范训练[A 级 基础演练]1.(2021·广东惠州调研)若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线的斜率为( )A .±2B .± 2C .±12D .±22解析:选B.∵双曲线x 2a 2-y 2b 2=1的离心率为3,∴e =ca=1+b 2a 2=3,解得ba=2,∴其渐近线的斜率为±2,故选B.2.(2021·开封模拟)中心在原点,焦点在x 轴上的双曲线的一条渐近线与直线y =12x +1平行,则它的离心率为( )A. 5 B . 6 C.62D .52解析:选D.设中心在原点,焦点在x 轴上的双曲线的方程为x 2a 2-y 2b 2=1,渐近线方程为y =±bax ,由于双曲线的一条渐近线与直线y =12x +1平行,则12=b a .令a =2t ,b =t (t >0),则c =a 2+b 2=5t ,则离心率e=c a =52.故选D. 3.(2021·青岛一模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :x +2y +5=0,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x220-y25=1 B .x25-y220=1C.3x 225-3y2100=1 D .3x 2100-3y225=1 解析:选A.∵双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :x +2y +5=0,双曲线的一个焦点在直线l 上,∴⎩⎪⎨⎪⎧-b a =-12,-c =-5,a 2+b 2=c 2.解得a =25,b =5,∴双曲线方程为x 220-y 25=1.故选A.4.以椭圆x 2169+y 2144=1的右焦点为圆心,且与双曲线x 29-y 216=1的渐近线相切的圆的方程是( )A .x 2+y 2-10x +9=0 B .x 2+y 2-10x -9=0 C .x 2+y 2+10x +9=0D .x 2+y 2+10x -9=0解析:选A.由于右焦点(5,0)到渐近线4x -3y =0的距离d =205=4,所以所求的圆是圆心坐标为(5,0),半径为4的圆.即圆的方程为x 2+y 2-10x +9=0.5.已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x2sin 2θtan 2θ=1的( ) A .实轴长相等 B .虚轴长相等 C .焦距相等D .离心率相等解析:选D.双曲线C 1:e 21=sin 2θ+cos 2θcos 2θ=1cos 2θ, 双曲线C 2:e 22=sin 2θ+sin 2θtan 2θsin 2θ=1+tan 2θ=1cos 2θ, ∴C 1,C 2离心率相等.6.已知(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,则b = .解析:由题意得,双曲线焦点在x 轴上,且c =2.依据双曲线的标准方程,可知a 2=1.又c 2=a 2+b 2,所以b 2=3.又b >0,所以b = 3.答案: 37.已知双曲线的渐近线方程为2x ±3y =0,且焦距是213,则双曲线方程为 . 解析:设双曲线方程为x 29-y 24=λ(λ≠0).若λ>0,则a 2=9λ,b 2=4λ,c 2=a 2+b 2=13λ.由题设知2c =213,∴λ=1, 故所求双曲线方程为x 29-y 24=1;若λ<0,则a 2=-4λ,b 2=-9λ,c 2=a 2+b 2=-13λ.由2c =213,∴λ=-1,故所求双曲线方程为y 24-x 29=1.综上,所求双曲线方程为x 29-y 24=1或y 24-x 29=1.答案:x 29-y 24=1或y 24-x 29=18.双曲线x 24-y 2=1的顶点到其渐近线的距离等于 . 解析:双曲线的渐近线为直线y =±12x ,即x ±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255.答案:2559.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程; (2)已知直线y =33x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.解:(1)由题意知a =23, ∴一条渐近线为y =b23x .即bx -23y =0.∴|bc |b 2+12= 3.∴b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程代入双曲线方程得x 2-163x +84=0, 则x 1+x 2=163,y 1+y 2=12.∴⎩⎪⎨⎪⎧x 0y 0=433,x 212-y 203=1.∴⎩⎨⎧x 0=43,y 0=3.∴t =4,点D 的坐标为(43,3).10.已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255.(1)求此双曲线方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=PB →,求△AOB 的面积.解:(1)依题意得⎩⎪⎨⎪⎧a b =2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2.b =1,故双曲线的方程为y 24-x 2=1.(2)由(1)知双曲线的渐近线方程为y =±2x , 设A (m ,2m ),B (-n ,2n ),其中m >0,n >0, 由AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n . 将点P 的坐标代入y 24-x 2=1,整理得mn =1. 设∠AOB =2θ,∵tan ⎝ ⎛⎭⎪⎫π2-θ=2, 则tan θ=12,从而sin 2θ=45.又|OA |=5m ,|OB |=5n , ∴S △AOB =12|OA ||OB |sin 2θ=2mn =2.[B 级 力量突破]1.(2022·高考全国乙卷)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)解析:选A.由题意得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.2.已知双曲线x 2m -y 2n =1的离心率为3,有一个焦点与抛物线y =112x 2的焦点相同,那么双曲线的渐近线方程为( )A .22x ±y =0B .x ±22y =0C .x ±2y =0D .2x ±y =0解析:选B.由抛物线方程x 2=12y 知其焦点为(0,3),∵双曲线有一个焦点与抛物线焦点相同,∴双曲线的焦点在y 轴上,∴n <0,m <0,∴渐近线方程为y =±n m x ,又e =3,∴1+-m -n =9,∴n m =18,∴渐近线方程为y =±x 22,故选B. 3.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为( )A .-2B .-8116C .1D .0解析:选A.由已知可得A 1(-1,0),F 2(2,0),设点P 的坐标为(x ,y )(x ≥1),则PA 1→·PF 2→=(-1-x ,-y )·(2-x ,-y )=x 2-x -2+y 2,由于x 2-y 23=1,即y 2=3(x 2-1),所以PA 1→·PF 2→=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,故当x =1时,PA 1→·PF 2→有最小值-2. 4.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为 .解析:不妨设点P 在双曲线C 的右支上,由双曲线定义知|PF 1|-|PF 2|=2a ,① 又由于|PF 1|+|PF 2|=6a ,②由①②得|PF 1|=4a ,|PF 2|=2a ,由于c >a , 所以在△PF 1F 2中,∠PF 1F 2为最小内角,因此∠PF 1F 2=30°,在△PF 1F 2中,由余弦定理可知,|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1|·|F 1F 2|·cos 30°,即4a 2=16a 2+4c 2-83ac . 所以c 2-23ac +3a 2=0,两边同除以a 2得,e 2-23e +3=0.解得e = 3.答案: 35.已知F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P 和Q .且△F 1PQ 为正三角形,则双曲线的渐近线方程为 .解:法一:设F 2(c ,0)(c >0),P (c ,y 0),代入方程得y 0=±b 2a.∵PQ ⊥x 轴,∴|PQ |=2b2a.在Rt △F 1F 2P 中,∠PF 1F 2=30°, ∴|F 1F 2|=3|PF 2|,即2c =3·b2a.又∵c 2=a 2+b 2,∴b 2=2a 2或2a 2=-3b 2(舍去), ∵a >0,b >0,∴ba= 2.故所求双曲线的渐近线方程为y =±2x . 法二:∵在Rt △F 1F 2P 中,∠PF 1F 2=30°, ∴|PF 1|=2|PF 2|.由双曲线定义知|PF 1|-|PF 2|=2a , ∴|PF 2|=2a ,由已知易得|F 1F 2|=3|PF 2|, ∴2c =23a ,∴c 2=3a 2=a 2+b 2, ∴2a 2=b 2,∵a >0,b >0,∴b a=2,故所求双曲线的渐近线方程为y =±2x . 答案:y =±2x6.如图,在直角坐标系xOy 中,始终角三角形ABC ,∠C =90°,B ,C 在x 轴上且关于原点O 对称,D 在边BC 上,BD =3DC ,△ABC 的周长为12.若一双曲线E 以B ,C 为焦点,且经过A ,D 两点.(1)求双曲线E 的方程;(2)若过一点P (m ,0)(m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M ,N ,且MP →=λPN →,问在x 轴上是否存在定点G ,使BC →⊥(GM →-λGN →)?若存在,求出全部定点G 的坐标;若不存在,请说明理由.解:(1)设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则B (-c ,0),D (a ,0),C (c ,0).由BD =3DC ,得c +a =3(c -a ),即c =2a .∴⎩⎪⎨⎪⎧|AB |2-|AC |2=16a 2,|AB |+|AC |=12-4a ,|AB |-|AC |=2a . 解得a =1,∴c =2,b = 3.∴双曲线E 的方程为x 2-y 23=1.(2)设在x 轴上存在定点G (t ,0),使BC →⊥(GM →-λGN →). 设直线l 的方程为x -m =ky ,M (x 1,y 1),N (x 2,y 2).由MP →=λPN →,得y 1+λy 2=0,即λ=-y 1y 2.①∵BC →=(4,0),GM →-λGN →=(x 1-t -λx 2+λt ,y 1-λy 2), ∴BC →⊥(GM →-λGN →)⇔x 1-t =λ(x 2-t ). 即ky 1+m -t =λ(ky 2+m -t ).②把①代入②,得2ky 1y 2+(m -t )(y 1+y 2)=0.③ 把x -m =ky 代入x 2-y 23=1并整理得(3k 2-1)y 2+6kmy +3(m 2-1)=0.其中3k 2-1≠0且Δ>0,即k 2≠13且3k 2+m 2>1.y 1+y 2=-6km 3k 2-1,y 1y 2=3(m 2-1)3k 2-1. 代入③,得6k (m 2-1)3k 2-1-6km (m -t )3k 2-1=0, 化简得kmt =k .当t =1m时,上式恒成立.因此,在x 轴上存在定点G ⎝ ⎛⎭⎪⎫1m ,0,使BC →⊥(GM →-λGN →).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题组层级快练(八)
1.若函数f (x )=ax 2+bx +c 满足f (4)=f (1),则( )
A .f (2)>f (3)
B .f (3)>f (2)
C .f (3)=f (2)
D .f (3)与f (2)的大小关系不确定
答案 C
解析 ∵f (4)=f (1),∴对称轴为52
,∴f (2)=f (3). 2.若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,则f (x )的表达式为( )
A .f (x )=-x 2-x -1
B .f (x )=-x 2+x -1
C .f (x )=x 2-x -1
D .f (x )=x 2-x +1 答案 D
解析 设f (x )=ax 2+bx +c (a ≠0),由题意得
⎩⎪⎨⎪⎧ c =1,a x +2+b x ++c -ax 2+bx +c =2x .
故⎩⎪⎨⎪⎧ 2a =2,a +b =0,
c =1,
解得⎩⎪⎨⎪⎧ a =1,b =-1,c =1, 则f (x )=x 2-x +1.故选D.
3.如图所示,是二次函数y =ax 2
+bx +c 的图像,则|OA |·|OB |等于( )
A.c a
B .-c a
C .±c a
D .无法确定 答案 B
解析 ∵|OA |·|OB |=|OA ·OB |=|x 1x 2|=|c a |=-c a
(∵a <0,c >0).
4.(2015·上海静安期末)已知函数f (x )=-x 2+4x ,x ∈[m,5]的值域是[-5,4],则实数m 的取值范围是( )
A .(-∞,-1)
B .(-1,2]
C .[-1,2]
D .[2,5) 答案 C
解析 二次函数f (x )=-x 2
+4x 的图像是开口向下的抛物线,最大值为4,且在x =2时取得,而当x =5或-1时,f (x )=-5,结合图像可知m 的取值范围是[-1,2].
5.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图像大致是( )
答案 C
6.(2015·山东济宁模拟)设函数f (x )=⎩⎪⎨⎪⎧ x 2+bx +c x ,2 x ,若f (-4)=f (0),f (-2)=-2,
则关于x 的方程f (x )=x 的解的个数为( )
A .4
B .2
C .1
D .3
答案 D
解析 由解析式可得f (-4)=16-4b +c =f (0)=c ,解得b =4. f (-2)=4-8+c =-2,可求得c =2.
∴f (x )=⎩
⎪⎨⎪⎧ x 2+4x +2 x ,2 x 又f (x )=x , 则当x ≤0时,x 2+4x +2=x ,解得x 1=-1,x 2=-2.
当x >0时,x =2,综上可知有三解.
7.二次函数f (x )的二次项系数为正数,且对任意的x ∈R 都有f (x )=f (4-x )成立,若f (1-2x 2)<f (1+2x -x 2),则实数x 的取值范围是( )
A .(2,+∞)
B .(-∞,-2)∪(0,2)
C .(-2,0)
D .(-∞,-2)∪(0,+∞)
答案 C
解析 由题意知,二次函数的开口向上,对称轴为直线x =2,图像在对称轴左侧为减函数.而1-2x 2<2,1+2x -x 2=2-(x -1)2≤2,所以由f (1-2x 2)<f (1+2x -x 2),得1-2x 2>1+2x -x 2,解得-2<x <0.
8.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则实数b 的取值范围是( )
A .-1<b <0
B .b >0
C .b <-1或b >2
D .不能确定 答案 C
解析 由f (1-x )=f (1+x ),得对称轴方程为x =1=a 2
. ∴a =2,f (x )在[-1,1]上是增函数.
∴要使x ∈[-1,1],f (x )>0恒成立.
只要f (x )min =f (-1)=b 2-b -2>0,∴b >2或b <-1.
9.(2015·上海虹口二模)函数f (x )=-x 2+4x +1(x ∈[-1,1])的最大值等于________. 答案 4
解析 因为对称轴为x =2∉[-1,1],所以函数在[-1,1]上单调递增,因此当x =1时,函数取最大值4.
10.设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________. 答案 (-4,0]
11.设函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图像关于直线x =1对称,则b =________. 答案 6
12.已知函数f (x )=x 2-6x +5,x ∈[1,a ],并且函数f (x )的最大值为f (a ),则实数a 的取值范围是________.
答案 a ≥5
解析 ∵f (x )的对称轴为x =3,要使f (x )在[1,a ]上f (x )max =f (a ),由图像对称性知a ≥5.
13.已知y =(cos x -a )2-1,当cos x =-1时,y 取最大值,当cos x =a 时,y 取最小值,则实数a 的范围是________.
答案 0≤a ≤1
解析 由题意知⎩
⎪⎨⎪⎧ -a ≤0,-1≤a ≤1,∴0≤a ≤1. 14.若函数f (x )=x 2-2x +3在区间[0,m ]上的最小值是2,最大值是3,则实数m 的取值范围是
________.
答案 [1,2]
解析 ∵f (x )=(x -1)2
+2≥2,
∴x =1∈[0,m ].∴m ≥1.①
∵f (0)=3,而3是最大值.
∴f (m )≤3⇒m 2-2m +3≤3⇒0≤m ≤2.②
由①②知:1≤m ≤2,故应填[1,2].
15.在函数f (x )=ax 2+bx +c 中,若a ,b ,c 成等比数列且f (0)=-4,则f (x )有最________值(填“大”或“小”),且该值为________.
答案 大 -3 解析 ∵f (0)=c =-4,a ,b ,c 成等比,∴b 2
=a ·c ,∴a <0.∴f (x )有最大值,最大值为c -b 2
4a =-3.。

相关文档
最新文档