等比数列的概念和通项公式(教学设计)

合集下载

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。

1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。

职高数学基础模块下(人教版)教案:等比数列的概念及通项公式

职高数学基础模块下(人教版)教案:等比数列的概念及通项公式

职高数学基础模块下(人教版)教案:等比数列的概念及通项公式知能目标解读1.理解等比数列的定义,能够应用定义判断一个数列是否为等比数列,并能确定等比数列的公比.2.探索并掌握等比数列的通项公式,能够应用它解决等比数列的问题.3.体会等比数列与指数函数的关系.4.掌握等比中项的定义,能够应用等比中项的定义解决问题.重点难点点拨重点:等比数列的定义和通项公式的应用. 难点:等比数列与指函数的关系.学习方法指导1.等比数列的定义要正确理解等比数列的定义,应注意以下几方面:①由于等比数列每一项都可能作分母,故每一项均不为0,因此q 也不能为0. ②“从第2项起”是因为首项没有“前一项”.③nn a a 1均为同一常数,即比值相等,由此体现了公比的意义,同时还要注意公比是每一项与其前一项之比,防止前后次序颠倒.④如果一个数列不是从第2项起而是从第3项或第4项起每一项与它前一项的比都是同一个常数,此数列不是等比数列.这时可以说此数列从第2项起或从第3项起是一个等比数列.⑤如果一个数列从第2项起,每一项与它前一项的比尽管是一个与n 无关的常数,但却是不同的常数,这时此数列不是等比数列.⑥常数列都是等差数列,但却不一定是等比数列.如常数列是各项都为0的数列,它就不是等比数列.当常数列各项不为0时,它是等比数列,且公比q =1. 注意:(1)由等比数列的定义知,要证明一个数列是等比数列,只需证明对任意n ∈N +,n n a a 1+是一个常数或证明对任意n ∈N +且n ≥2,1-n n a a是一个常数,这时所说的常数是指一个与n 无关的常数.(2)要证明一个数列不是等比数列,可证明n n a a 1+或1-n n a a(n ≥2)不是一个常数,也可以采用举反例的方法,举一个反例即可.2.等比数列的通项公式(1)等比数列的通项公式:首项为a 1,公比为q 的等比数列的通项公式是a n =a 1q n-1(a 1≠0,q ≠0).(2)等比数列通项公式的推导教材上是采用的不完全归纳法推导等比数列的通项公式为a n =a 1q n-1.除此之外,还可以用如下方法推导.方法1:累积法:因为12a a =q , 23a a =q ,…21--n n a a =q ,1-n n a a=q , 将这n -1个式子相乘得1a a n =q n-1,所以a n =a 1q n-1. 方法2:迭代法:根据等比数列的定义有a n =a n-1·q =a n-2·q 2=…=a 2·q n -2=a 1·q n-1. (3)通项公式中的基本量:通项公式中涉及的基本量有:a 1,q,n,a n ,知道其中的三个,可以求出第四个量,即“知三求一”问题.注意:由等比数列的通项公式a n =a 1q n-1可知,要写出其通项,必须知道a 1和q ,因此要确定通项公式,需两个独立的条件.(4)等比数列通项公式的变形形式:若{a n }是公比为q 的等比数列,则对任意的m,n ∈N +,有a n =a m ·q n-m . ∵a n =a 1q n-1 ①a m =a 1q m-1 ②由①÷②得m n a a =1111--m q a q a n =q n-m ,∴a n =a m q n-m.这里的a n =a m ·q n-m可以看成是通项公式的另一种形式. 注意:在已知a 1和q 的前提下,利用通项公式a n =a 1q n-1可以求出等比数列中的任意一项;在已知等比数列任意两项的前提下,使用a n =a m q n-m可求等比数列中任意一项. (5)用函数的观点看等比数列的通项等比数列{a n }的通项公式a n =a 1q n-1,可以改写为a n =qa 1·q n .当q >0,且q ≠1时,y=q x 是一个指数函数,而y =qa 1·q x 是一个不为0的常数与指数函数的积,因此等比数列{a n }的图像是函数y =qa 1·q x 的图像上的一群孤立的点. 例如,当a 1=1,q =2时,a n =21·2n ,表示这个数列各项的点就都在函数y =21·2x的图像上,如下图所示:3.等比中项(1)在a,b同号时,a,b的等比中项有两个,它们互为相反数;在a,b异号时,没有等比中项.(2)在一个等比数列中,从第二项起(有穷数列的末项除外)每一项都是它的前一项与后一项的等比中项.(3)若a,b,c成等比数列,则b2=ac;反过来,若b2=ac,则a,b,c不一定成等比数列,如a=b=0.特别地,若a,b,c均不为零时,则a,b,c成等比数列 b2=ac.(4)注意a,b,c成等比数列与b=ac是不等价的.知能自主梳理1.等比数列的定义如果一个数列从起,每一项与它的前一项的比都等于,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母表示.2.等比数列的递推公式与通项公式已知等比数列{a n}的首项为a1,公比为q(q≠0),填表:3.等比中项(1)如果三个数x,G,y组成,则G叫做x和y的等比中项.(2)如果G是x和y的等比中项,那么,即.[答案] 1.第2项同一个常数公比q2.a1q n-13.等比数列G2=xy G=±xy等比数列的概念及通项公式思路方法技巧命题方向等比数列的判断[例1]已知数列{a n}的前n项和S n=2a n+1,求证:{a n}是等比数列,并求出通项公式.[分析]要证数列是等比数列,关键是看a n与a n-1之比是否为一个常数,由题设还须利用a n=S n-S n-1 (n≥2),求得a n.[证明]∵S n=2a n+1,∴S n+1=2a n+1+1.∴S n+1-S n =a n+1=(2a n+1+1)-(2a n +1)=2a n+1-2a n . ∴a n+1=2a n . ① 又∵S 1=a 1=2a 1+1,∴a 1=-1≠0. 由①式可知,a n ≠0,∴由nn a a 1+=2知{a n }是等比数列,a n =-2n -1. [说明] (1)本题证明,关键是用等比数列的定义,其中说明a n ≠0是非常重要的.证明中,也可以写出S n-1=2a n-1+1,从而得到a n =2a n-1,只能得到n ≥2时,{a n }是等比数列,得到n ≥2时,a n =-2n-1,再将n =1代入,验证a 1=-1也满足通项公式的要求.(2)判断一个数列是否是等比数列的常用方法是: ①定义法nn a a 1+=q (q 为常数且不为零)⇔ {a n }为等比数列. ②等比中项法a n+12=a n a n+2 (n ∈N +且a n ≠0) ⇔ {a n }为等比数列. ③通项公式法a n =a 1q n-1 (a 1≠0且q ≠0) ⇔{a n }为等比数列. 变式应用1 判断下列数列是否为等比数列. (1)1,3,32,…,3n-1,…; (2)-1,1,2,4,8,…; (3)a 1,a 2,a 3,…,a n,….[解析] (1)此数列为等比数列,且公比为3. (2)此数列不是等比数列.(3)当a =0时,数列为0,0,0,…,是常数列,不是等比数列;当a ≠0时,数列为a 1,a 2,a 3,a 4,…,a n ,…,显然此数列为等比数列且公比为a . 命题方向 等比数列的通项公式的应用[例2] 在等比数列{a n }中,已知a 5-a 1=15,a 4-a 2=6,求a n .[分析] 本题可以列关于a 1,q 的方程组入手,解出a 1与q ,然后再求a n . [解析] 设等比数列{a n }的首项为a 1,公比为q , a 5-a 1=a 1q 4-a 1=15 ① 因为a 4-a 2=a 1q 3-a 1q =6 ②由②①得q =21或q =2.当q =21时,a 1=-16. 当q =2时,a 1=1, ∴a n =-16×(21)n-1或a n =2n-1. [说明] 首项和公比是等比数列的基本量,只要求出这两个基本量,其他量便可迎刃而解.此类问题求解的通法是根据条件,建立关于首项和公比的方程组,求出首项和公比.变式应用2 已知等比数列{a n }中,a 2+a 5=18,a 3+a 6=9,a n =1,求n . a 1q +a 1q 4=18 a 1=32 [解析] 解法一:由题意得 ,解得 .a 1q 2+a 1q 5=9 q =21∴a n =a 1q n-1=32(21)n-1=1,∴26-n =20,∴n =6.解法二:∵a 3+a 6=q (a 2+a 5), ∴q =21,又∵a 1q +a 1q 4=18, ∴a 1=32, ∴a n =a 1q n-1=32×(21)n-1=1, 解得n =6.命题方向 等比中项的应用[例3] 等比数列{a n }的前三项的和为168,a 2-a 5=42,求a 5,a 7的等比中项.[分析][解析] 设该等比数列的首项为a 1,公比为q ,因为a 2-a 5=42,所以q ≠1,由已知,得a 1+a 1q +a 1q 2=168 a 1(1+q+q 2)=168 ,所以 ,a 1q -a 1q 4=42 a 1q (1-q 3)=42 因为1-q 3=(1-q )(1+q+q 2), 所以由②除以①,得q (1-q )=41. 所以q =21.所以a 1=4)21(2142⋅=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 12q 10=962×(21)10=9. 所以a 5,a 7的等比中项是±3.[说明] 由等比中项的定义可知:a G =Gb⇒G 2=ab ⇒G =±ab .这表明:只有同号的两项才有等比中项,并且这两项的等比中项有两个,它们互为相反数.异号的两数没有等比中项.反之,若G 2=ab (ab ≠0),则a G =Gb,即a,G,b 成等比数列.所以a,G,b 成等比数列⇔G 2=ab (ab ≠0).变式应用3 若a ,2a +2,3a +3成等比数列,求实数a 的值. [解析] 因为a ,2a +2,3a +3成等比数列, 所以(2a +2)2=a (3a +3). 解得a =-1或a =-4.因为当a =-1时,2a +2,3a +3均为0,故应舍去. 故a 的值为-4.探索延拓创新命题方向 等比数列的实际应用[例4] 据《中国青年报》2004年11月9日报导,卫生部艾滋病防治专家徐天民指出:前我国艾滋病的流行趋势处于世界第14位,在亚洲第2位,而且艾滋病毒感染者每年以40%的速度在递增,我国已经处于艾滋病暴发流行的前沿,我国政府正在采取有效措施,防止艾滋病蔓延,公元2004年我国艾滋病感染者至少有80万人,若不采取任何防治措施,则至少到公元 年后,我国艾滋病毒感染者将超过1000万人.(已知lg2=0.3010,lg3=0.4771,lg7=0.8451) [答案] 2012[解析] 设x 年后我国艾滋病毒感染者人数将达到1000万人,则80·(1+40%)x=1000, 即(57)x =801000, ∴lg (57)x =lg 801000, ∴x =57lg 8100lg =210lg 7lg 8lg 100lg --=12lg 7lg 2lg 32-+- =13010.08451.03010.032-+⨯-=1461.0097.1≈7.51(年).故8年后,即公元2012年后,我国艾滋病毒感染者人数将超过1000万人.辨误做答[例5] 在等比数列{a n }中,a 5、a 9是方程7x 2-18x +7=0的两个根,试求a 7. [误解] ∵a 5、a 9是方程7x 2-18x +7=0的两个根, a 5+a 9=718 ∴a 5·a 9=1又∵a 7是a 5、a 9的等比中项,∴a 72=a 5·a 9=1,即a 7=±1.[辨析] 上述解法忽视了对a 7的符号的讨论,由于a 5、a 9均为正数且公比为q =±57a a =±79a a ,所以不论q 取正还是取负,a 7始终与a 5和a 9的符号相同. [正解] ∵a 5、a 9是方程7x 2-18x +7=0的两个根,11 a 5+a 9=718>0∴ ,a 5·a 9=1>0∴a 5>0,a 9>0, 又∵a 7是a 5、a 9的等比中项, ∴a 72=a 5·a 9=1.又a 7与a 5、a 9的符号相同, ∴a 7=1.。

等比数列的概念和通项公式(教学设计)

等比数列的概念和通项公式(教学设计)
设计意图:培养学生的自学能力和探索精神,体会类比思想在数学中的应用,提高学生的知识迁移能力。
(四)例题解析
例1课本第51页例3.
解:略
设计意图:通过这道例题,加深学生对等比数列的通项公式的理解,同时养成学生良好的动手习惯和规范解题习惯,提高学生的计算能力。
例题后的练习1和2可让学生自己动手完成,以便学生熟练应用通项公式。
例2课本第51页 例4
解:略
设计意图:通过让学生举例、不完全归纳和证明,得到两个等比数列的积仍是等比数列,增强学生的归纳总结能力。
(五)、回顾小结
1.等比数列的概念和通项公式;
2.用类比的思想研究数学问题;
3.注重等差数列和等比数列的区别与联系。
(小结ቤተ መጻሕፍቲ ባይዱ先由学生叙述,教师进行补充和整理)
设计意图:让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力,为学生以后解决问题提供经验和教训.
3.对等比数列概念的深化理解
给出几个数列让学生判断是否是等比数列,以加深对概念的理解。
问题1:等比数列的项可以为零吗?
问题2:等比数列的公比可以为零吗?
问题3:若,等比数列的项有什么特点?呢?特别地,若,数列的项有什么特点?
问题4:形如,,,…()的数列既是等差数列,又是等比数列吗?
设计意图:通过让学生分析讨论,加深学生对概念的深层次理解,培养学生严谨的思维习惯和良好的自主探究能力。
1.回顾等差数列的相关性质
设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。
2.情境展示
情境1:“一尺之棰,日取其半,万世不竭。”
情境2:一张纸的折叠问题

最新完整版等比数列_教学设计

最新完整版等比数列_教学设计
教师追问理由,引出对的认识
六、教学评价设计
(2)对公式的认识
四、学习者特征分析
五、教学过程
教师活动
预设学生活动
设计意图
请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题.
请学生指出②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是.学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如 的数列都满足既是等差又是,让学生讨论后得出结论:当 时,数列 既是等差又是,当 时,它只是等差数列,而不是.
①与等差数列一样,也是特殊的数列,二者有许多相同的性质,但也有明显的区别,可根据定义与通项公式得出的特性,这些是教学的重点.
②虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍然不熟悉;在推导过程中,需要学生有一定的观察分析猜想能力;第一项是否成立又须补充说明,所以通项公式的推导是难点.
③对等差数列、的综合研究离不开通项公式,因而通项公式的灵活运用既是重点又是难点.
教学设计模板:
教学设计
课题名称:等比数列
学科年级:
高一
教材版本:
人教A版
一、教学内容分析
是另一个简单常见的数列,研比中项的概念,最后是通项公式的应用.
二、教学目标
三、教学重难点
教学重点是的定义和对通项公式的认识与应用,教学难点 在于通项公式的推导和运用.

等比数列教学案

等比数列教学案

等比数列教学案篇一:等比数列第一课时教案等比数列的定义教案内容:等比数列教学目标:1.理解和掌握等比数列的定义;2.理解和掌握等比数列的通项公式及其推导过程和方法;3.运用等比数列的通项公式解决一些简单的问题。

授课类型:课时安排:1教学重点:等比数列定义、通项公式的探求及运用。

教学难点:等比数列通项公式的探求。

教具准备:多媒体课件教学过程:(一)复习导入1.等差数列的定义2.等差数列的通项公式及其推导方法3.公差的确定方法.4.问题:给出一张书写纸,你能将它对折10次吗?为什么?(二)探索新知1.引入:观察下面几个数列,看其有何共同特点?(1)-2,1,4,7,10,13,16,19,(2)8,16,32,64,128,256,(3)1,1,1,1,1,1,1,(4)1,2,4,8,16,263请学生说出数列上述数列的特性,教师指出实际生活中也有许多类似的例子,如细胞分裂问题.假设每经过一个单位时间每个细胞都分裂为两个细胞,再假设开始有一个细胞,经过一个单位时间它分裂为两个细胞,经过两个单位时间就有了四个细胞,,一直进行下去,记录下每个单位时间的细胞个数得到了一列数这个数列也具有前面的几个数列的共同特性,这就是我们将要研究的另一类数列——等比数列.2.等比数列定义:一般地,如果一个数列从第二项起,每一项与它的前一....项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列..的公比;公比通常用字母q表示(q0),3.递推公式:an1∶anq(q0)对定义再引导学生讨论并强调以下问题(1)等比数列的首项不为0;(2)等比数列的每一项都不为0;(3)公比不为0.(4)非零常数列既是等比数列也是等差数列;问题:一个数列各项均不为0是这个数列为等比数列的什么条件?3.等比数列的通项公式:【傻儿子的故事】古时候,有一个人不识字,他不希望儿子也像他这样,他就请了个教书先生来教他儿子认字,他儿子见老师第一天写“一”就是一划,第二天“二”就是二划,第三天“三”就是三划,他就跑去跟他父亲说:“爸爸,我会写字了,请你叫老师走吧!”这人听了很高兴,就给老师结算了工钱叫他走了。

高中数学等比数列教案

高中数学等比数列教案

高中数学等比数列教案
一、教学目标:
1. 掌握等比数列的定义及判断方法;
2. 掌握等比数列的通项公式及前 n 项和公式;
3. 能够灵活应用等比数列解决实际问题。

二、教学重点:
1. 等比数列的定义及判断方法;
2. 等比数列的通项公式及前 n 项和公式。

三、教学难点:
1. 灵活运用等比数列解决复杂问题;
2. 培养学生数学思维和逻辑推理能力。

四、教学内容:
1. 等比数列的定义及性质;
2. 等比数列通项公式及前 n 项和公式的推导;
3. 等比数列的应用实例。

五、教学过程:
1. 引入:通过生活中的实例引入等比数列的概念,让学生了解等比数列的特点和应用场景。

2. 学习等比数列的性质和判断方法,让学生能够判断一个数列是否为等比数列。

3. 学习等比数列的通项公式及前 n 项和公式的推导,让学生掌握这两个公式的用法和计算
方法。

4. 练习与巩固:让学生通过练习题巩固所学知识,培养他们的解题能力和推理思维。

5. 应用实例:通过一些实际问题,让学生运用等比数列解决实际问题,培养他们的数学建
模能力。

六、作业布置:
1. 课后练习:布置一些等比数列相关的习题,巩固学生所学知识。

2. 探究性问题:布置一些拓展性问题,让学生能够进一步应用所学知识解决问题。

七、课堂反馈:
1. 通过课堂讨论和作业批改,及时纠正学生的错误,加深他们对等比数列的理解和掌握。

八、教学总结:
1. 总结本节课所学知识,梳理等比数列的性质和应用场景,巩固学生的学习成果。

2. 展望下一节课内容,引导学生进行自主学习和提前预习。

《等比数列》教学设计

《等比数列》教学设计

《等比数列》教学设计一、目的要求1.理解等比数列的概念。

2.掌握等比数列的通项公式,并会根据它进行有关计算。

二、内容分析1.等比数列与等差数列在内容上是完全平行的,包括定义、性质(等差还是等比)、通项公式、前n项和的公式、两个数的等差(等比)中项、两种数列在函数角度下的解释、具体问题里成等差(等比)数列的三个数的设法等。

因此在教学与复习时可用对比方法,以便于弄清它们之间的联系与区别。

这里指出,如果一个数列既是等差数列又是等比数列,其充要条件是它为非0的常数列。

事实上,由等比数列的定义可知这个数列是非0数列。

取这个数列中的任意连续3项,由题设知这个数列是非0的常数列。

2.数列的学习中,等差数列与等比数列是两种最重要的数列模型。

事实上,等差数列描述的是一种绝对均匀的变化,等比数列描述的是一种相对均匀的变化。

因为非均匀变化通常要转化或近似成均匀变化来进行研究,所以本章里重点研究等差数列和等比数列。

3.从函数的角度看,如果说等差数列可以与一次函数联系起来,那么等比数列则可以与指数函数联系起来。

事实上,由等比数列的通项公式可得,当q>0,且q≠1时,是一个指数函数,而上式则是一个不为0的常数与指数函数的积,因此等比数列{}的图象是函数的图象上的一些孤立点。

4.本课内容的重点是等比数列的概念及其通项公式。

与等差数列一样,在讲等比数列的概念时,关键是要讲清“等比”的意义,即数列中任一项与前一项的比是同一个常数。

等比数列的定义,是我们判断一个数列是否为等比数列的基本方法。

与等差数列一样,等比数列也具有一种对称性。

对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍。

类似地,对于等比数列来说,与数列中任一项等距离的两项之积等于该项的平方。

利用上面的性质,常可使一些问题变得简便。

例如在具体问题里设成等差数列的3个数时,常设成a-d,a,a+d;三、教学过程1.提出教科书中的数列①、②、③,让学生观察其特点。

《等比数列的概念》教学设计

《等比数列的概念》教学设计

等比数列教案一、教学目标知识目标:通过教学使学生理解等比数列的概念,推导并掌握通项公式. 能力目标:使学生进一步体会类比、归纳思想,培养学生的观察、概括能力. 情感目标:培养学生勤于思考,实事求是的精神及严谨的科学态度.二、教学重点和难点重点:等比数列的定义,通项公式的猜想过程、理解.难点:等比数列的通项公式的应用.三、教学用具多媒体.四、教学过程(一) 复习旧知等差数列的定义,数学表达式,通项公式.(二)创设情境情景引入生活中实际的例子.1, 细胞分裂问题,可以记作数列:1,2,4,8,. ①2, 取木棒问题可以记作数列: .,81,41,21,1 ②3, 计算机病毒感染可以记作数列 : 2341,20,20,20,20观察三组数列的共同特征.从第2项起, 每一项与前一项的比都等于同一常数.(三)讲解新课一、等比数列的定义一般地,如果一个数列从第二项起,每一项与它前一项之比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做这个数列的公比,用q 表示,(q ≠0). 1, 等比数列的数学表达式:()*10,.n na q q n N a +=≠∈ 2, 对定义的认识(1)等比数列的首项不为0; (2)等比数列的每一项都不为0; 二、等比数列的通项公式.结合等比数列的定义可知,有:2341231,,,.n n a a a a q q q q a a a a -==== 即有: ()21213111,,0,0,2n n a a q a a q a a q a q n -===≠≠≥等比数列的通项公式为: ()1*110,0,n n a a q a q n N -=≠≠∈ 变形公式为: ()*0,,n m n m a a q q m n N -=≠∈三、等比中项:若,,a G b 成等比数列,那么G 叫做a 与b 的等比中项. 2G ab =四、例题讲解 例1 一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.解:设这个等比数列的第1项是1a ,公比是q ,那么21311218a q a q ⎧=⎨=⎩ 解得,1316,23q a == 因此21163832a a q ==⨯= 答:这个数列的第1项与第2项分别是163与8。

2019-2020年高中数学 第二第9课时《等比数列的概念和通项公式》教案 (学生版)苏教版必修5

2019-2020年高中数学 第二第9课时《等比数列的概念和通项公式》教案 (学生版)苏教版必修5

2019-2020年高中数学 第二第9课时《等比数列的概念和通项公式》教案(学生版)苏教版必修5【学习导航】知识网络学习要求1.体会等比数列是用来刻画一类离散现象的重要数学模型,理解等比数列的概念;2.类比等差数列的通项公式,探索发现等比数列的通项公式, 掌握求等比数列通项公式的方法;3. 掌握等比数列的通项公式,并能运用公式解决一些简单的实际问题. 【自学评价】1.等比数列:一般地,如果一个数列从__________,每一项与它的前一项的比等于________,那么这个数列就叫做等比数列.这个常数叫做等比数列的_____;公比通常用字母q 表示(q ≠0),即:=q (q ≠0) 注:⑴“从第二项起”与“前一项”之比为常数q ,{}成等比数列=q (,q ≠0) ⑵ 隐含:任一项⑶______________时,{a n }为常数列. 2.等比数列的通项公式: ⑴ ______________________ ⑵ 3.既是等差又是等比数列的数列:_______. 4.等比中项的定义:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.且 5.证明数列为等比数列: ⑴定义:证明=常数; ⑵中项性质:212121n n n n n n n a a a a a a a +++++==或; 【精典范例】【例1】判断下列数列是否为等比数列: (1)1,1,1,1,1; (2)0,1,2,4,8; (3)1,,,,. 【解】【例2】求出下列等比数列中的未知项: (1)2,a,8; (2)-4,b,c,. 【解】【例3】在等比数列{a n }中,(1)已知a1=3,q=-2,求a6; (2)已知a3=20,a6=160,求an. 【解】【例4】在243和3中间插入3个数,使这5个数成等比数列. 【解】追踪训练一1. 求下列等比数列的公比、第5项和第n项:(1)2,6,18,54,…; (2)7,,,(3)0.3,-0.09,0.027,-0.0081,…; (4)5, ,,.听课随笔2. 数列m ,m ,m ,…m , ( ) A. 一定是等比数列B.既是等差数列又是等比数列C.一定是等差数列,不一定是等比数列D.既不是等差数列,又不是等比数列3.已知数列{a n }是公比q ≠±1的等比数列,则在{a n +a n +1},{a n +1-a n },{}na n 这四个数列中,是等比数列的有( )A.1个B.2个C.3个D.4个 【选修延伸】【例5】成等差数列的三个正数之和为15,若这三个数分别加上1,3,9后又成等比数列,求这三个数. 【解】【例6】已知数列{a n }满足:lg a n =3n +5,试用定义证明{a n }是等比数列.【证明】【点评】 若{a n }是等差数列,b n =b an 可以证明数列{b n }为等比数列,反之若{a n }为等比数列且a n >0,则可证明{lg a n }为等差数列. 追踪训练二 1.在等比数列{a n }中,a 3·a 4·a 5=3,a 6·a 7·a 8=24,则a 9·a 10·a 11的值等于( ) A.48 B.72 C.144 D.192 2.在等比数列中,已知首项为,末项为,公比为,则项数n 等于___ __.3.已知等比数列{a n }的公比q =-,则=___ ___.4.已知数列{a n }为等比数列,(1)若a n >0,且a 2a 4+2a 3a 5+a 4a 6=25, 求a 3+a 5.(2)a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .2019-2020年高中数学第二讲参数方程本讲小结新人教A版选修4-4一、基本内容简介1.参数方程.2.几种常见曲线的参数方程及相应的普通方程: (1)过点M (x 0,y 0),倾斜角为α的直线l :⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数). 普通方程:y -y 0=tan α(x -x 0)或x =x 0.t 的几何意义:直线l 上任一点P (不同于M 点)为终点,M 为起点的有向线段MP 的长度.(2)以原点为圆心,半径为r 的圆:⎩⎪⎨⎪⎧x =r cos φ,y =r sin φ(φ为参数). 普通方程:x 2+y 2=r 2.(3)中心在原点,长轴长为2a ,短轴长为2b ,焦点在x 轴上的椭圆:⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数). 普通方程:x 2a 2+y 2b2=1(a >b >0).(4)中心在原点,实轴长为2a ,虚轴长为2b ,焦点在x 轴上的双曲线:⎩⎪⎨⎪⎧x =a sec φ,y =b tan φ(φ为参数). 普通方程:x 2a 2-y 2b2=1(a >0,b >0).(5)顶点在原点,x 轴为对称轴,开口向右且焦点到准线的距离为p 的抛物线:⎩⎪⎨⎪⎧x =2pt 2,y =2pt (p >0,t 为参数). 普通方程:y 2=2px (p >0). (6)圆的渐开线方程:⎩⎪⎨⎪⎧x =r (cos φ+φsin φ),y =r (sin φ-φcos φ)(φ为参数). (7)摆线的参数方程:⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ为参数). 3.直线参数方程的一般形式及应用:过定点M (x 0,y 0)的直线l 的一般形式:⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt ,其中t 为参数,a 、b 为常数且满足a 2+b 2≠0.当a 2+b 2=1时,t 才具有几何意义.①求直线l 被二次曲线f (x ,y )=0截得的弦长|PQ |. 将直线l 的参数方程代入曲线方程得到关于t 的二次方程:At 2+Bt +C =0(A ≠0), 则|PQ |=a 2+b 2·B 2-4AC|A |.②普通方程:当a =0时,x =x 0; 当a ≠0时,y -y 0=b a(x -x 0). 二、学习参数方程重点注意的几点1.关于参数方程的学习,首先要正确理解曲线的参数方程的概念,注意掌握课本中讲到的曲线的参数方程、直线的参数方程、圆的参数方程、椭圆的参数方程(这三个内容新教材中也有)、双曲线的参数方程、抛物线的参数方程.2.由于同学们对曲线的普通方程有着较深刻的理解和掌握,因此要善于消去参数,把参数方程化为普通方程,进而可以再研究曲线的几何性质.消去参数的常用方法有:①代入消参法;②三角消参法;③根据参数方程的特征,采用消参的手段.3.参数方程的一个优点是曲线上的动点坐标(x,y)中的x和y分别用第三个变量t来表示,因此在利用参数方程解答数学问题时就可以消去x和y,转化为t的方程或t的函数问题了.4.参数的方法在求曲线的方程等方面有着广泛的应用,要注意合理选参、巧妙消参.5.参数既是刻画变化状态的工具,又是揭示问题中内在联系的媒介,确立参数思想是提高数学能力的重要环节,一些解析几何问题,适当地引进参数后,问题的难度明显降低.但参数方程只是曲线方程多种形式的一种,利用参数方程研究曲线或建立轨迹参数方程有它的简便之处,但也不是任何问题参数法就比其他解法优越,因此,复习中应要求恰当,既不能简单处理,也不宜要求过高.在求动点轨迹方程的综合问题中,常用参数法.其步骤为:(1)选参数并确定参数的取值范围;(2)建立参数与x、y的函数关系;(3)消参数并整理得普通方程.6.在选择参数时,要注意以下几点:(1)参数应与动点坐标x、y有直接关系,且x、y便于用参数表示.(2)选择的参数要便于使问题中的条件解析化.(3)对于所选定的参数,要注意其取值范围,并能确定参数对x、y取值范围的制约.(4)若求轨迹,应尽量使所得的参数方程便于消去参数得普通方程.7.提高利用转化解题的意识.建立曲线方程时,可先引入参数,建立起参数方程,再化为普通方程;同样地,在根据参数方程确定曲线的形状和研究性质时,又往往化为普通方程来求解.这一转化过程能降低解题难度,是一个有效的过程,在解题时应善于应用.。

等比数列性质课程设计

等比数列性质课程设计

等比数列性质课程设计一、课程目标知识目标:1. 学生能理解并掌握等比数列的定义及通项公式。

2. 学生能运用等比数列的性质解决相关问题,如求和、求项等。

3. 学生能了解等比数列在实际问题中的应用,如人口增长、复利计算等。

技能目标:1. 学生能通过观察、分析等比数列的规律,培养逻辑思维和抽象思维能力。

2. 学生能运用等比数列的性质,解决具有一定难度的数学问题,提高解题能力。

3. 学生能运用等比数列知识,解决实际问题,培养数学应用能力。

情感态度价值观目标:1. 学生在学习等比数列的过程中,培养对数学的兴趣和热情,增强自信心。

2. 学生通过合作交流,培养团队精神和沟通能力,形成积极向上的学习态度。

3. 学生认识到数学与现实生活的联系,体会数学的价值,树立正确的价值观。

课程性质:本课程为数学学科课程,以等比数列性质为主要内容,注重知识掌握与实际应用。

学生特点:学生处于高中年级,具备一定的数学基础,逻辑思维能力逐渐成熟,但需加强抽象思维和数学应用能力的培养。

教学要求:教师应结合学生特点,运用多样化教学手段,激发学生学习兴趣,注重培养数学思维和实际应用能力。

在教学过程中,将课程目标分解为具体学习成果,便于教学设计和评估。

二、教学内容1. 等比数列的定义及基本性质- 等比数列的概念- 等比数列的通项公式- 等比数列的公比及其对数列的影响2. 等比数列的运算- 等比数列的求和公式- 等比数列的乘法法则- 等比数列的除法法则3. 等比数列的应用- 实际问题中的等比数列模型- 人口增长与衰减问题- 复利计算问题4. 等比数列的性质证明- 等比数列通项公式的推导- 等比数列求和公式的推导- 等比数列性质的证明方法5. 综合练习与拓展- 各类等比数列问题的解题方法与技巧- 等比数列与其他数列的结合问题- 等比数列在实际问题中的拓展应用教学大纲安排:第一课时:等比数列的定义及基本性质第二课时:等比数列的运算第三课时:等比数列的应用第四课时:等比数列的性质证明第五课时:综合练习与拓展教学内容进度:第一周:1、2课时第二周:3、4课时第三周:5课时三、教学方法为了提高等比数列性质课程的教学效果,充分激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:- 对于等比数列的基本概念、性质、公式等理论知识,采用讲授法进行教学,使学生明确知识点,为后续学习打下基础。

示范教案(等比数列概念及通项公式)

示范教案(等比数列概念及通项公式)

⽰范教案(等⽐数列概念及通项公式)2.4等⽐数列2.4.1等⽐数列的概念及通项公式从容说课本节内容先由师⽣共同分析⽇常⽣活中的实际问题来引出等⽐数列的概念,再由教师引导学⽣与等差数列类⽐探索等⽐数列的通项公式,并将等⽐数列的通项公式与指数函数进⾏联系,体会等⽐数列与指数函数的关系,既让学⽣感受到等⽐数列是现实⽣活中⼤量存在的数列模型,也让学⽣经历了从实际问题抽象出数列模型的过程.教学中应充分利⽤信息和多媒体技术,给学⽣以较多的感受,激发学⽣学习的积极性和思维的主动性.准备丰富的阅读材料,为学⽣提供⾃主学习的可能,进⽽达到更好的理解和巩固课堂所学知识的⽬的.教学重点1.等⽐数列的概念;2.等⽐数列的通项公式.教学难点1.在具体问题中抽象出数列的模型和数列的等⽐关系;2.等⽐数列与指数函数的关系.教具准备多媒体课件、投影胶⽚、投影仪等三维⽬标⼀、知识与技能1.了解现实⽣活中存在着⼀类特殊的数列;2.理解等⽐数列的概念,探索并掌握等⽐数列的通项公式;3.能在具体的问题情境中,发现数列的等⽐关系,并能⽤有关的知识解决相应的实际问题;4.体会等⽐数列与指数函数的关系.⼆、过程与⽅法1.采⽤观察、思考、类⽐、归纳、探究、得出结论的⽅法进⾏教学;2.发挥学⽣的主体作⽤,作好探究性活动;3.密切联系实际,激发学⽣学习的积极性.三、情感态度与价值观1.通过⽣活中的⼤量实例,⿎励学⽣积极思考,激发学⽣对知识的探究精神和严肃认真的科学态度,培养学⽣的类⽐、归纳的能⼒;2.通过对有关实际问题的解决,体现数学与实际⽣活的密切联系,激发学⽣学习的兴趣.教学过程导⼊新课师现实⽣活中,有许多成倍增长的实例.如,将⼀张报纸对折、对折、再对折、…,对折了三次,⼿中的报纸的层数就成了8层,对折了5次就成了32层.你能举出类似的例⼦吗?⽣⼀粒种⼦繁殖出第⼆代120粒种⼦,⽤第⼆代的120粒种⼦可以繁殖出第三代120×120粒种⼦,⽤第三代的120×120粒种⼦可以繁殖出第四代120×120×120粒种⼦,…师⾮常好的⼀个例⼦!现实⽣活中,我们会遇到许多这类的事例.教师出⽰多媒体课件⼀:某种细胞分裂的模型.师细胞分裂的个数也是与我们上述提出的问题类似的实例.细胞分裂有什么规律,将每次分裂后细胞的个数写成⼀个数列,你能写出这个数列吗?⽣通过观察和画草图,发现细胞分裂的规律,并记录每次分裂所得到的细胞数,从⽽得到每次细胞分裂所得到的细胞数组成下⾯的数列:1,2,4,8,…①教师出⽰投影胶⽚1:“⼀尺之棰,⽇取其半,万世不竭.”师这是《庄⼦·天下篇》中的⼀个论述,能解释这个论述的含义吗?⽣思考、讨论,⽤现代语⾔叙述.师 (⽤现代语⾔叙述后)如果把“⼀尺之棰”看成单位“1”,那么得到的数列是什么样的呢?⽣发现等⽐关系,写出⼀个⽆穷等⽐数列:1,21,41,81,161,… ②教师出⽰投影胶⽚2:计算机病毒传播问题.⼀种计算机病毒,可以查找计算机中的地址簿,通过邮件进⾏传播.如果把病毒制造者发送病毒称为第⼀轮,邮件接收者发送病毒称为第⼆轮,依此类推.假设每⼀轮每⼀台计算机都感染20台计算机,那么在不重复的情况下,这种病毒感染的计算机数构成⼀个什么样的数列呢?师 (读题后)这种病毒每⼀轮传播的计算机数构成的数列是怎样的呢?引导学⽣发现“病毒制造者发送病毒称为第⼀轮”“每⼀轮感染20台计算机”中蕴涵的等⽐关系.⽣发现等⽐关系,写出⼀个⽆穷等⽐数列:1,20,202,203,204,… ③教师出⽰多媒体课件⼆:银⾏存款利息问题.师介绍“复利”的背景:“复利”是我国现⾏定期储蓄中的⼀种⽀付利息的⽅式,即把前⼀期的利息和本⾦加在⼀起算作本⾦,再计算下⼀期的利息,也就是通常说的“利滚利”.我国现⾏定期储蓄中的⾃动转存业务实际上就是按复利⽀付利息的.给出计算本利和的公式:本利和=本⾦×(1+本⾦)n ,这⾥n 为存期.⽣列出5年内各年末的本利和,并说明计算过程.师⽣合作讨论得出“时间”“年初本⾦”“年末本利和”三个量之间的对应关系,并写出:各年末本利和(单位:元)组成了下⾯数列:10 000×1.019 8,10 000×1.019 82,10 000×1.019 83,10 000×1.019 84,10 000×1.019 85. ④师回忆数列的等差关系和等差数列的定义,观察上⾯的数列①②③④,说说它们有什么共同特点?师引导学⽣类⽐等差关系和等差数列的概念,发现等⽐关系.引⼊课题:板书课题 2.4等⽐数列的概念及通项公式推进新课[合作探究]师从上⾯的数列①②③④中我们发现了它们的共同特点是:具有等⽐关系.如果我们将具有这样特点的数列称之为等⽐数列,那么你能给等⽐数列下⼀个什么样的定义呢?⽣回忆等差数列的定义,并进⾏类⽐,说出:⼀般地,如果把⼀个数列,从第2项起,每⼀项与它前⼀项的⽐等于同⼀个常数,那么这个数列叫做等⽐数列.[教师精讲]师同学们概括得很好,这就是等⽐数列( geometric seque n ce)的定义.有些书籍把等⽐数列的英⽂缩写记作G .P.(Geometric Progressio n ).我们今后也常⽤G.P.这个缩写表⽰等⽐数列.定义中的这个常数叫做等⽐数列的公⽐(commo n r a tio),公⽐通常⽤字母q 表⽰(q≠0). 请同学们想⼀想,为什么q≠0呢?⽣独⽴思考、合作交流、⾃主探究.师假设q=0,数列的第⼆项就应该是0,那么作第⼀项后⾯的任⼀项与它的前⼀项的⽐时就出现什么了呢?⽣分母为0了.师对了,问题就出在这⾥了,所以,必须q≠0.师那么,等⽐数列的⾸项能不能为0呢?⽣等⽐数列的⾸项不能为0.师是的,等⽐数列的⾸项和公⽐都不能为0,等⽐数列中的任⼀项都不会是0. [合作探究]师类⽐等差中项的概念,请同学们⾃⼰给出等⽐中项的概念.⽣如果在a 与b 中间插⼊⼀个数G ,使a 、G 、b 成等⽐数列,那么G 叫做a 、b 的等⽐中项.师想⼀想,这时a 、b 的符号有什么特点呢?你能⽤a 、b 表⽰G 吗?⽣⼀起探究,a 、b 是同号的Gb a G ,G=±ab ,G 2=ab . 师观察学⽣所得到的a 、b 、G 的关系式,并给予肯定.补充练习:与等差数列⼀样,等⽐数列也具有⼀定的对称性,对于等差数列来说,与数列中任⼀项等距离的两项之和等于该项的2倍,即a n -k +a n +k =2a n .对于等⽐数列来说,有什么类似的性质呢?⽣独⽴探究,得出:等⽐数列有类似的性质:a n -k ·a n +k =a n 2.[合作探究]探究:(1)⼀个数列a 1,a 2,a 3,…,a n ,…(a 1≠0)是等差数列,同时还能不能是等⽐数列呢?(2)写出两个⾸项为1的等⽐数列的前5项,⽐较这两个数列是否相同?写出两个公⽐为2的等⽐数列的前5项,⽐较这两个数列是否相同?(3)任⼀项a n 及公⽐q 相同,则这两个数列相同吗?(4)任意两项a m 、a n 相同,这两个数列相同吗?(5)若两个等⽐数列相同,需要什么条件?师引导学⽣探究,并给出(1)的答案,(2)(3)(4)可留给学⽣回答.⽣探究并分组讨论上述问题的解答办法,并交流(1)的解答.[教师精讲]概括总结对上述问题的探究,得出:(1)中,既是等差数列⼜是等⽐数列的数列是存在的,每⼀个⾮零常数列都是公差为0,公⽐为1的既是等差数列⼜是等⽐数列的数列.概括学⽣对(2)(3)(4)的解答.(2)中,⾸项为1,⽽公⽐不同的等⽐数列是不会相同的;公⽐为2,⽽⾸项不同的等⽐数列也是不会相同的.(3)中,是指两个数列中的任⼀对应项与公⽐都相同,可得出这两个数列相同;(4)中,是指两个数列中的任意两个对应项都相同,可以得出这两个数列相同;(5)中,结论是:若两个数列相同,需要“⾸项和公⽐都相同”.(探究的⽬的是为了说明⾸项和公⽐是决定⼀个等⽐数列的必要条件;为等⽐数列的通项公式的推导做准备)[合作探究]师回顾等差数列的通项公式的推导过程,你能推导出等⽐数列的通项公式吗?⽣推导等⽐数列的通项公式.[⽅法引导]师让学⽣与等差数列的推导过程类⽐,并引导学⽣采⽤不完全归纳法得出等⽐数列的通项公式.具体的,设等⽐数列{a n }⾸项为a 1,公⽐为q ,根据等⽐数列的定义,我们有: a 2=a 1q,a 3=a 2q=a 1q 2,…,a n =a n -1q=a 1q n -1,即a n =a 1q n -1.师根据等⽐数列的定义,我们还可以写出q a a a a a a a a n n =====-1342312..., 进⽽有a n =a n -1q=a n -2q 2=a n -3q 3=…=a 1q n -1.亦得a n =a 1q n -1.师观察⼀下上式,每⼀道式⼦⾥,项的下标与q 的指数,你能发现有什么共同的特征吗?⽣把a n 看成a n q 0,那么,每⼀道式⼦⾥,项的下标与q 的指数的和都是n .师⾮常正确,这⾥不仅给出了⼀个由a n 倒推到a n 与a 1,q 的关系,从⽽得出通项公式的过程,⽽且其中还蕴含了等⽐数列的基本性质,在后⾯我们研究等⽐数列的基本性质时将会再提到这组关系式.师请同学们围绕根据等⽐数列的定义写出的式⼦q a a a a a a a a n n =====-1342312...,再思考. 如果我们把上⾯的式⼦改写成q a a q a a q a a q a a n n ====-1342312,...,,,. 那么我们就有了n -1个等式,将这n -1个等式两边分别乘到⼀起(叠乘),得到的结果是11-=n n q a a ,于是,得a n =a 1q n -1. 师这不⼜是⼀个推导等⽐数列通项公式的⽅法吗?师在上述⽅法中,前两种⽅法采⽤的是不完全归纳法,严格的,还需给出证明.第三种⽅法没有涉及不完全归纳法,是⼀个完美的推导过程,不再需要证明.师让学⽣说出公式中⾸项a 1和公⽐q 的限制条件.⽣ a 1,q 都不能为0.[知识拓展]师前⾯实例中也有“细胞分裂”“计算机病毒传播”“复利计算”的练习和习题,那⾥是⽤什么⽅法解决问题的呢?教师出⽰多媒体课件三:前⾯实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的练习或习题.某种储蓄按复利计算成本利息,若本⾦为a 元,每期利率为r ,设存期是x,本利和为y 元.(1)写出本利和y 随存期x 变化的函数关系式;(2)如果存⼊本⾦1 000元,每期利率为2.25%,试计算5期后的本利和.师前⾯实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的问题是⽤函数的知识和⽅法解决问题的.⽣⽐较两种⽅法,思考它们的异同.[教师精讲]通过⽤不同的数学知识解决类似的数学问题,从中发现等⽐数列和指数函数可以联系起来.(1)在同⼀平⾯直⾓坐标系中,画出通项公式为a n =2 n -1的数列的图象和函数y=2x-1的图象,你发现了什么?(2)在同⼀平⾯直⾓坐标系中,画出通项公式为1)21(-=n n a 的数列的图象和函数y=(21)x-1的图象,你⼜发现了什么?⽣借助信息技术或⽤描点作图画出上述两组图象,然后交流、讨论、归纳出⼆者之间的关系.师出⽰多媒体课件四:借助信息技术作出的上述两组图象.观察它们之间的关系,得出结论:等⽐数列是特殊的指数函数,等⽐数列的图象是⼀些孤⽴的点.师请同学们从定义、通项公式、与函数的联系3个⾓度类⽐等差数列与等⽐数列,并填充下列表格:【例1】某种放射性物质不断变化为其他物质,每经过⼀年,剩留的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年)?师从中能抽象出⼀个数列的模型,并且该数列具有等⽐关系.【例2】根据右图中的框图,写出所打印数列的前5项,并建⽴数列的递推公式,这个数列是等⽐数列吗?师将打印出来的数依次记为a 1(即A ),a 2,a 3,….可知a 1=1;a 2=a 1×21;a 3=a 2×21.于是,可得递推公式 ??==-)1(21,111>n a a a n n . 由于211=-n n a a ,因此,这个数列是等⽐数列. ⽣算出这个数列的各项,求出这个数列的通项公式.练习:1.⼀个等⽐数列的第3项和第4项分别是12和18,求它的第1项和第2项.师启发、引导学⽣列⽅程求未知量.⽣探究、交流、列式、求解.2.课本第59页练习第1、2题.课堂⼩结本节学习了如下内容:1.等⽐数列的定义.2.等⽐数列的通项公式.3.等⽐数列与指数函数的联系.布置作业课本第60页习题2.4 A 组第1、2题.板书设计。

等比数列的概念(教案)

等比数列的概念(教案)

§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。

而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。

所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。

等比数列的通项公式(教案)

等比数列的通项公式(教案)

等比数列的通项公式(教案)一、公式研究1. 等比数列的定义:()21≥=-n q a a n n注:(1)等比数列的每一项均不为0,公比也不为0.(2)等比数列中所有奇数项符号相同,所有偶数项符号相同. 2.等比中项的概念若a ,G ,b 成等比数列,则称G 为a 和b 的等比中项,且ab G ab G ±==,23.证明等比数列的方法: (1)定义法 (2)等比中项法问题1:观察等比数列 ,16,8,4,2,1如何写出它的第10项 呢? 问题2:设 {}n a 是一个首项为 1a ,公比为 q 的等比数列,你能写出它的第n 项n a 吗?方法一: 方法二:11113423121342312,,,,----=∴=⋅⋅⋅⋅∴====n nn n n n n q a a q a a a a a a a a q a a q a aq a a q a a 1113134212312,,,--==⋯⋯=====n n n q a q a a q a q a a q a q a a q a a11-=n n q a a注意:要检验推导出的通项公式对n =1也成立 主要应用:(1)求通项公式,需知道首项和公比; (2)公式中有 q n a a n ,,,1,可知三求一。

例1 在等比数列 {}n a 中, (1) 已知2,31-==q a ,求6a(2) 已知160,2063==a a ,求n a例2 在243和3中间插入3个数,使这5个数成等比数列变式:已知数列c b a ,32243,,23,--这5个数成等比数列,.,,c b a 求二、性质研究回顾等差数列的性质等比数列的性质: (1)m n m n q a a -=(2)等比数列 n a 满足q p n m +=+,且),,,(+∈N q p n m 时q p n m a a a a ∙=∙ (3)等比中项:若a ,G ,b 成等差数列,则 ab G =2(4) .)0,(,,,*232也成等比数列则项和等比数列的前≠∈⋯--k k k k k k n S N k S S S S S S n例1 在等比数列 {}n a 中,若,15,367382=+=⋅a a a a .q 求公比例2 等比数列 {}n a 满足: ,4153106=+a a a a .,48484a a a a +=求且例3 已知各项都为正数的等比数列{}n a 中,,362735351=+-a a a a a a ,1002646242=++a a a a a a求数列的通项公式. 课堂练习1. 在等比数列 {}n a 中,若24a =,532a =,则公比为2. 在等比数列 {}n a 中,若123440,60a a a a +=+=,则78______a a +=3. 已知1,,,921--a a 四个实数成等差数列,1,b ,b ,b ,9321--五个实数成等比数列,则()122a a b - 的值等于_________4. 若等比数列 {}n a 满足20,2742321=+=⋅⋅a a a a a ,求首项和公比等比数列【基础知识】1.一般地,如果一个数列从第_____项起,每一项与它前一项的比值都等于____________,那么这个数列就叫做____________,这个常数叫做等比数列的____ _,其通项公式为 _____________或______________.从函数的观点看,n a 是关于n 的_____函数2.若c b a ,,为等比数列,则称b 为a 与c 的 ____ ,且=2b _ ;c b a ,,成等比数列是ac b =2的 条件.3.在等比数列{}n a 中,若q p n m +=+,则=⋅n m a a _____________.4.判断一个数列为等比数列的常用方法有: . 【基本训练】1.若c b a ,,成等比数列,则函数c bx ax y ++=2的图象与x 轴交点的个数是______个.2.在等比数列}{n a 中,121=+a a ,943=+a a , 则=+65a a .3.在等比数列}{n a 中,,0>n a 且10026410253=++a a a a a a ,则64a a +=_______4.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积是5.项数为奇数的等差数列{}n a 中,奇数项之和为80,偶数项之和为75,求此数列的中间项为 ,项数为 .6.已知等差数列{}n a 的前n 项和为,n S 且,3184=S S 那么______168=S S .7.已知正项等比数列)(log ,8,}{21*∈==N n a b a a n n n 设中.(1)求证:数列}{n b 是等差数列;(2)如果数列}{n b 的前7项和S 7是它的前n 项和S n 的最大值,且6787,S S S S ≠≠.求数列}{n a 的公比q 的取值范围.。

等比数列教学设计教案

等比数列教学设计教案

等比数列教学设计教案一、教学目标1.了解等比数列的定义和基本性质;2.掌握通项公式和求和公式的推导和应用;3.能够应用等比数列的知识解决实际问题;4.培养学生的数学思维能力和解决问题的能力,激发数学兴趣。

二、教学内容第一部分:引入1.通过生活中的例子,引出等比数列的概念;2.学生回顾等差数列的知识,引导学生思考等比数列和等差数列的关系。

第二部分:概念介绍2.引导学生掌握等比数列的特点和基本性质。

第三部分:公式推导2.案例分析和练习巩固应用。

第四部分:应用举例1.引导学生联系实际应用,掌握等比数列的应用方法;2.案例分析和练习,加深对等比数列的理解。

第五部分:课堂互动与思考1.对学生提出的问题进行回答;2.鼓励学生思考和探究,促进课堂交流和合作。

第六部分:练习与巩固1.课后布置相关练习和作业;2.课堂检查和解答,帮助学生解决疑惑和困惑。

三、教学方法1.讲解和演示相结合的教学方法;3.课堂互动和思考,激发学生的数学兴趣和探究欲望。

四、教学手段1.多媒体课件和投影仪;2.教师板书和讲解;3.教学案例和练习题集。

五、评价方法1.课堂表现评价;2.小组合作评价;3.作业和考试评价。

六、教学流程1.讲解等比数列的概念和定义,引导学生理解等比数列的特点和基本性质,如“公比为正数时,数列单调递增或单调递减”。

2.通过练习让学生自己验证等比数列的性质,如“判断数列a1=2,a2=4,a3=8,a4=16是否为等比数列,确定其公比”。

1.讲解等比数列的通项公式和求和公式的推导过程,引导学生掌握公式的使用方法和推导思路;2.通过练习和实例,让学生巩固公式的应用,如“已知数列和为105,公比为2,求数列的首项和项数”。

2.通过案例分析和练习,加深学生对等比数列的理解,如“某校人数为800人,每年增长20%,问6年后该校有多少学生”。

1.布置相关练习和作业,要求认真分析问题和思考解题方法;七、教学时数2课时八、课后作业2.根据所学知识,思考并回答生活中的一些问题。

等比数列的概念和通项公式教学设计

等比数列的概念和通项公式教学设计

等比数列的概念和通项公式教学设计重点:1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用.一、[学习导入]1、下面我们来看这样几个数列,看其又有何共同特点?①1,2,4,8,16,…,263; ②1,21,41,81,…; ③1,3220,20,20,…; 对于数列①,n a =12-n ; 1-n n a a =2(n ≥2).对于数列②, .对于数列③, .共同特点:从第二项起,第一项与前一项的比都等于 .2、等比数列的定义: .这个常数叫等比数列的 ,用字母q 表示(q ≠0),即:1-n n a a =q (q ≠0). 思考:(1)等比数列中有为0的项吗? (2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)常数列都是等比数列吗?3、等比数列的通项公式1: )0,(111均不为q a q a a n n -⋅=观察法:由等比数列的定义,有:q a a 12=;2123q a q a a ==;…;)0(111≠⋅=-q a q a a n n ,. 迭乘法:由等比数列的定义,有:q a a =12;q a a =23;q a a =34;…;q a a n n =-1. 所以 ,即)0(111≠⋅=-q a q a a n n ,.4、等比数列的通项公式2: )0(≠⋅=-q a q a a m m n m n ,二、[例题分析]例1.一个等比数列的第3项与第4项分别是12与18,求它的第1项与第2项.例2.求下列各等比数列的通项公式:;8,2 )1(31-=-=a a n n a a a 32,5 )2(11-==+且例3.教材P50面的例1。

例4.已知数列{a n }满足12,111+==+n n a a a ,(1)求证数列{a n +1}是等比数列;(2)求n a 的表达式。

三、[自选练习]:教材第52页第1、2题.四、[课堂小结]:五、[前置作业]:等比数列的概念和通项公式(练习)等比数列的概念和通项公式(练习)【分层训练】1.在数列{}n a 中,对任意n N *∈,都有120n n a a +-=,则123422a a a a ++等于( ) A.14 B.13 C.12D.1 2.{}n a 是公比为2的等比数列,且147a a a ++28100a +=,则36930a a a a ++++等于( )A.25B.50C.125D.4003.已知,,a b c 依次成等比数列,那么函数()f x 2ax bx c =++的图象与x 轴的交点的个数为( )A.0B.1C.2D.1或24. 若{}n a 是等差数列,公差0d ≠,236,,a a a 成等比数列,则公比为( )A.1B. 2C. 3D. 45.设23,26,212a b c ===,那么,,a b c ( ).A.既是等差数列,又是等比数列B.是等差数列,但不是等比数列C.是等比数列,但不是等差数列D.既不是等差数列,也不是等比数列6.在等比数列{}n a 中,对任意n N *∈,都有12n n n a a a ++=+,则公比q =____.【拓展延伸】7.培育水稻新品种,如果第一代得到120粒种子,并且从第一代起,以后各代的每一粒种子都可以得到下一代的120粒种子,到第五代大约可以得到这种新品种的种子________粒(保留两个有效数字).8.已知数列{}n a 是等比数列,,,m n p N *∈,且,,m n p 成等差数列,求证:,,m n p a a a 依次成等比数列.9.有四个数,前三个数成等比数列,它们的和为19,后三个数成等差数列,它们的和为12.求这四个数.10.在数列{}n a 中,其前n 项和322n nn n S -=,()n N *∈,求证数列{}n a 是等比数列.。

高一数学《等比数列的性质及应用》教案设计【8篇】

高一数学《等比数列的性质及应用》教案设计【8篇】

高一数学《等比数列的性质及应用》教案设计【8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!高一数学《等比数列的性质及应用》教案设计【8篇】等比数列的性质是什么呢?是什么意思?等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。

高中数学等比的教案

高中数学等比的教案

高中数学等比的教案
教学目标:
1. 理解等比数列的概念及性质;
2. 能够求出等比数列的通项公式;
3. 能够计算等比数列中任意一项的值;
4. 能够应用等比数列解决实际问题。

教学重点和难点:
重点: 等比数列的概念、通项公式及性质;
难点: 理解等比数列的通项公式的推导过程。

教学准备:
1. 教师准备黑板、彩色粉笔等教学用具;
2. 学生准备笔记本、笔等学习用具。

教学过程:
1. 通过引导学生回顾等差数列的相关内容,引出等比数列的概念。

2. 讲解等比数列的定义及性质,并引导学生理解等比数列的通项公式。

3. 通过示例演示如何求解等比数列的通项公式,并让学生进行练习。

4. 给学生一些实际问题,让他们应用等比数列解决问题,并指导他们掌握解题方法。

5. 总结今天的学习内容,强化等比数列的概念、性质及应用。

教学延伸:
1. 给学生更多的等比数列练习题,加深他们对该知识点的理解。

2. 引导学生思考等比数列在生活中的应用,拓展他们的思维。

3. 让学生探究等比数列在数学中的更多应用场景,加深他们对该知识点的理解。

教学反思:
1. 教学内容是否符合学生的知识水平和学习能力;
2. 教学方法是否灵活多样,能够激发学生的学习兴趣;
3. 如何提高学生的学习效果,让他们更好地掌握等比数列的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等比数列》(第1课时)教学设计
授课地点:武威八中
授课时间:20XX年4月22日
授课人:武威六中杨志隆
一、教学目标
知识与技能
1.理解等比数列的概念;
2.掌握等比数列的通项公式;
3.会应用定义及通项公式解决一些实际问题。

过程与方法
培养运用归纳类比的方法去发现并解决问题的能力。

通过实例,归纳并理解等比数列的概念,探索并掌握等比数列的通项公式,培养学生严密的思维习惯。

情感态度与价值观
充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。

二、教学重点、难点
教学重点:
等比数列的概念及通项公式;
教学难点:
通项公式的推导及初步应用。

三、教学方法
发现式教学法,类比分析法
四、教学过程
(一)旧知回顾,情境导入
1. 回顾等差数列的相关性质
设计意图:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点,为等比数列的学习做铺垫。

2.情境展示
情境1:“一尺之棰,日取其半,万世不竭。


情境2:一张纸的折叠问题
把以上实例表示为数学问题,并引导学生通过观察、联想,得到两个数列:
① ⋅⋅⋅⋅⋅⋅16
1,81,41,21,1 ② 1,2,4,8,16,32,64⋅⋅⋅⋅⋅⋅
设计意图:让学生通过观察,得到两个数列的共同特点:从第二项起,每一项与它前面一项的比都等于同一个常数.由此引入等比数列。

(二)概念探究
1.引导学生通过联想并类比等差数列给出该数列的名称:等比数列
2.归纳总结,形成等比数列的概念.
一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫等比数列,这个常数叫做等比数列的公比(引导学生经过类比等差数列的定义得出)。

同时给出等比中项的定义,并和等差中项做比较,加深学生对概念的理解。

3.对等比数列概念的深化理解
给出几个数列让学生判断是否是等比数列,以加深对概念的理解。

问题1:等比数列的项可以为零吗?
问题2:等比数列的公比可以为零吗?
问题3:若0>q ,等比数列的项有什么特点?0<q 呢?特别地,若1=q ,数列的项有什么特点?
问题4:形如a ,a ,a ,…(R a ∈)的数列既是等差数列,又是等比数列吗?
设计意图:通过让学生分析讨论,加深学生对概念的深层次理解,培养学生严谨的思维习惯和良好的自主探究能力。

(三) 通项公式推导
1.定义的代数式表达
引导学生由等比数列的定义写出其递推式,并得到:
(1)判定:对于数列{}n a ,若1n n a q a +=(*
∈N n ,q 为常数 ),则称这个数列为等比数列,常数q 叫做等比数列的公比.
(2)性质:{}
n
a
是等比数列⇒
1
n
n
a
q
a
+=
(*
∈N
n,q为常数)
设计意图:通过探索,发现一个概念可以作为判定,又可以得到它的性质,提高学生的自主探究能力。

2. 回顾由等差数列的递推式求其通项公式的方法:叠加法和迭代法。

让学生类比等差数列的通项公式的推导思路和方法,自主探究等比数列的通项公式的求法,然后教师再做补充,引导学生归纳两种方法:叠乘法和迭代法。

设计意图:培养学生的自学能力和探索精神,体会类比思想在数学中的应用,提高学生的知识迁移能力。

(四)例题解析
例1 课本第51页例3.
解:略
设计意图:通过这道例题,加深学生对等比数列的通项公式的理解,同时养成学生良好的动手习惯和规范解题习惯,提高学生的计算能力。

例题后的练习1和2可让学生自己动手完成,以便学生熟练应用通项公式。

例2 课本第51页例4
解:略
设计意图:通过让学生举例、不完全归纳和证明,得到两个等比数列的积仍是等比数列,增强学生的归纳总结能力。

(五)、回顾小结
1.等比数列的概念和通项公式;
2.用类比的思想研究数学问题;
3.注重等差数列和等比数列的区别与联系。

(小结可先由学生叙述,教师进行补充和整理)
设计意图:让学生将获得的知识进一步条理化、系统化,同时培养学生的归纳总结能力,为学生以后解决问题提供经验和教训.
(六)课后作业
1.课本53页:A组1、2
2.课后思考:类比等差数列,试猜想等比数列的性质。

设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,在数学上得到不同的发展,同时为下一节等比数列的性质的学习打基础。

(七)教后反思。

相关文档
最新文档