复变函数(第四版)课后习题答案
《复变函数》第四版习题解答第5章
1 z2 +1
2
是有理函数,故奇点只是极点,满足
z
z2
+1
2
=0,故
z
=
0
,与
z
=
±i
为
其奇点, z = 0 为一级极点,而 z = ± i 为其二级极点。
(2)因 lim z→0
sin z z3
=
∞
则
z
=
0
为其极点。再确定极点的级,有两种方法:
a.
z
=
0
为
sin
z
为的一级零点;而
z
=
0
为
z3
的三级零点。故
证 因 f (z) 和 g(z) 是以 z0 为零点的两个 不恒等于零 的解析函数 ,可设 f (z) = (z − z0 )ϕ(z) , g(z) = (z − z0 )ψ (z) ,ϕ(z),ψ (z) 为解析函数,则
f (z) = (z − z0 )ϕ(z) = ϕ(z) , f '(z) = ϕ(z) + (z − z0 )ϕ '(z) , g(z) (z − z0 )ψ (z) ψ (z) g '(z) ψ (z) + (z − z0 )ψ '(z) 故 lim f (z) = lim ϕ(z) , lim f '(z) = lim ϕ(z) + (z − z0 )ϕ '(z) = lim ϕ(z) ,即 z→z0 g (z) z→z0 ψ (z) z→z0 g '(z) z→z0 ψ (z) + (z − z0 )ψ '(z) z→z0 ψ (z)
2
dz
;
(5) v∫ tan (π z) dz ; |z|=3
复变函数论第四版答案钟玉泉
复变函数论第四版答案钟玉泉(1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。
怎么样计算复数的平方根,极坐标与xy 坐标的转换,复数的模之类的。
这些在高中的时候基本上都会学过。
(2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到复平面里面,从而引出解析函数的定义。
那么研究解析函数的性质就是关键所在。
最关键的地方就是所谓的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。
(3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎是一致的。
在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。
这个是复分析的第一个重要定理。
(4)既然是解析函数,那么函数的定义域就是一个关键的问题。
可以从整个定义域去考虑这个函数,也可以从局部来研究这个函数。
这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。
(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和零点极点的性质。
与之类似的幅角定理也展示了类似的关系。
(6)除了积分,导数也是解析函数的一个研究方向。
导数加上收敛的概念就可以引出Taylor 级数和Laurent 级数的概念。
除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。
(7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照定理。
这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。
研究Mobius 变换的保角和交比之类的性质。
(8)椭圆函数,经典的双周期函数。
这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的微分方程,以及该函数的性质。
以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。
复变函数课后习题答案(全)
创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。
《复变函数》第四版习题解答第3章
-1-
∫ ∫
C
Re[ f (z )]dz = Im[ f (z )]dz =
∫ ∫
2π
0 2π
Re e iθ de iθ = cos θ (− sin θ + i cos θ )dθ = π i ≠ 0
[ ]
∫
2π
0
C
0
Im e iθ deiθ = sin θ (− sin θ + i cos θ )dθ = −π ≠ 0
3.设 f ( z ) 在单连域 D 内解析,C 为 D 内任何一条正向简单闭曲线,问
∫
解
C
Re[ f (z )]dz =
∫
C
Im[ f (z )]dz = 0
是否成立,如果成立,给出证明;如果不成立,举例说明。 未必成立。令 f ( z ) = z , C : z = 1 ,则 f ( z ) 在全平面上解析,但是
e z dz v ∫C z 5 , C :| z |= 1
= 2πe 2 i
解
(1)由 Cauchy 积分公式, ∫ 解 1: ∫ 解 2: ∫
C
ez dz = 2π i e z z−2
z =2
(2)
C
1 dz 1 = ∫ z + a dz = 2π i 2 2 C z−a z+a z −a
2
=
z =a
=0
(8)由 Cauchy 积分公式, (9)由高阶求导公式, ∫
v ∫
C
sin zdz = 2π i sin z |z =0 = 0 z
2
sin z
C
π⎞ ⎛ ⎜z − ⎟ 2⎠ ⎝
dz = 2π i(sin z )'
复变函数课后习题答案(全)
习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2.将下列复数化为三角表达式和指数表达式:(1)i(2)1-+(3)(sin cos)r iθθ+(4)(cos sin)r iθθ-(5)1cos sin (02)iθθθπ-+≤≤解:(1)2cossin22ii i e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin )33)sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-)sin()](cos2sin 2)1212i i ππθθ=-+-+(2)12)sin(2)]1212ii πθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+-(5=11cos (2)sin (2)3232k i k ππππ=+++1, 0221, 122, 2i k i k i k +=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin (2)]2424k i k ππππ=+++88, 0, 1i i e k e k ππ==⎪=⎩4.设12 ,z z i ==-试用三角形式表示12z z 与12z z 解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+z x y≤≤+证明:首先,显然有z x y =≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+从而z =≥。
复变函数课后习题答案(全)
复变函数课后习题答案(全)习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (3) 13i(4).8 21 .i 4i ii 1 i13 2i 解: (1) z3 2i 131 3i .3 3i 3 5i(3) z -ii 1 i2 2 因此, Rez 35 Im z532(4).8 z i 4i 21 i1 4i i1 3i因此, Rez 1, Im z 3,2.将下列复数化为二角表达式和指数表达式:(1)i (2) 1 Vi (3)r(si ni cos )(4) r(cosisin )( 5) 1 cos i sin(02 )解: (1) i cosi sin - —i-e 22 22一i(2) 1 2(cosi..2 isin32e 3 (3) r(sin icos ) r[cos (-i sin(-)](1)13~2\(2) \ (\ 1)(\ 2)因此:Rez3 13 Im z2 13(2)zi (i 1)(i 2)i 1 3i 3 i 10因此,Rez3 10Im z 1 10(4) r(cos isin ) r[cos( ) i sin( )] re(5) 1 cos isin 2sin 2i sin — cos-2 23.求下列各式的值:(1) (\3 i)5(2)(1 100i) (1 100i)(3) (1 \3i)(cos(1 i)(cos isin )i sin ) 2(cos5 isin5 )3(cos3 isin 3(5) (6) d i解: (1) (七i)5[2(cos(舌)isin( -))]5 6(2) (1 100i) (1 100 50i) (2i) (2i)502(2)50251(3) (1 i sin ) (1 i)(cos isin )(4)2 (cos5 isin5 )(cos3 isin3 )3(5) cos— isin —2 2\ 2(cos —isin )44.设z-ii,试用三角形式表示z1z2与-ZZ2解:z1 cos i sin , z24 42[cos( ) i sin()],所以6 6弓勺2[cosq g is"(4 6)]5.解下列方程:(1) (z i)5 1 (2) z4 a40 (a 0) 解:(1)z i 51,由此从而z由此,左端=右端,即原式成立。
《复变函数与积分变换》(西安交大-第四版)课后答案解析
网 c ⎜⎝⎛i8 − 4i21 + i⎟⎠⎞ = 1+ 3i ,| i8 − 4i21 + i |= 10 案 . ( ) ( ) Arg i8 − 4i21 + i = arg i8 − 4i21 + i + 2kπ = arg(1− 3i)+ 2kπ
9.将下列坐标变换公式写成复数的形式:
1)平移公式:
⎧ ⎨ ⎩
x y
= =
x1 y1
+ +
a1, b1;
2)旋转公式:
⎧ ⎨ ⎩
x y
= =
x1 x1
cosα sin α
− +
y1 y1
sinα , cos α .
解:设 A = a1 + ib1 , z1 = x1 + iy1 , z = x + iy ,则有 1) z = z1 + A ;2) z = z1(cosα + i sinα ) = z1eiα 。
故 n = 4k, k = 0, ±1, ±2,"。
16.(1)求方程 z3 + 8 = 0 的所有根 (2)求微分方程 y'''+8y = 0 的一般解。
( )1
π i
(1+
2k
)
解 (1) z = −8 3 = 2e 3 ,k=0,1,2。
即原方程有如下三个解:
1 + i 3, −2, 1 − i 3 。
−
5π 6
⎞ ⎟⎠
+
《复变函数与积分变换》(西安交大_第四版)课后答案
5(x + 1) + 3(y − 3) + i[− 3(x + 1) + 5(y − 3)] 34 1 = [5x + 3y − 4] + i(− 3x + 5y − 18) = 1 + i 34
1 1 ( z + z ), Im( z ) = ( z − z ) 2 2i
w.
)
案
8 21 8 21 ⎛ ⎜ i − 4i + i ⎞ ⎟ = 1 + 3i , | i − 4i + i |= 10 ⎝ ⎠
5
)
5
(
)
5
答
w.
(2)-1;
2i (5) ; −1+ i
案
网
⎛ i arg a ⎞ | z + a| = ⎜ e n ⎟ + |a|e i arg a = (1 + a )e i arg a = 1 + |a| ⎜ ⎟ ⎝ ⎠
解: (1) i = cos
π i ⎛1 3⎞ π π⎞ ⎛ ⎜ ⎟ (3) 1 + i 3 = 2⎜ + i = 2⎜ cos + isin ⎟ = 2e 3 ; 2 ⎟ 3 3⎠ ⎝ ⎝2 ⎠
3 i iπ/2 3 i + , e = i , ei i 5π/6 = − + 2 2 2 2 3 i 3 i − , e i 3π/ 2 = − i , e i11π/ 4 = − 。 2 2 2 2
(4) (1 − i )
1/ 3
1 3
⎡ ⎛ 1 i ⎞⎤ 3 ⎟ = ⎢ 2⎜ − ⎜ ⎟⎥ = 2 ⎠⎦ ⎣ ⎝ 2
(
2e −i π/ 4
《复变函数》第四版习题解答第2章
(2)由于 ∂u = 6x2 , ∂u = 0 , ∂v = 0 , ∂v = 9 y2
∂x
∂y
∂x
∂y
在 z 平面上处处连续,且当且仅当 2x2 = 3y2 ,即 2x ± 3y = 0 时,u,v 才满足 C-R 条件,故
f ( z ) = u + i v = 2x3 + 3y3i 仅在直线 2x ± 3y = 0 上可导,在 z 平面上处处不解析。
解 (1)由于 ∂u = 2x, ∂u = 0, ∂v = 0, ∂v = −1
∂x
∂y ∂x ∂y
在 z 平面上处处连续,且当且仅当 x = − 1 时,u,v 才满足 C-R 条件,故 f (z) = u + i v = x − i y 仅在
2
直线 x = − 1 上可导,在 z 平面上处处不解析。 2
(5)命题假。如函数 f (z) = z Re z = x2 + i xy 仅在点 z=0 处满足 C-R 条件,故 f (z)仅在点 z=0
处可导。
(6)命题真。由 u 是实常数,根据 C-R 方程知 v 也是实常数,故 f (z) 在整个 D 内是常数;
后面同理可得。
7.如果 f (z) = u + i v 是 z 的解析函数,证明:
解
(1)命题假。如函数 f (z) =| z |2 = x 2 + y 2 在 z 平面上处处连续,除了点 z=0 外处处不可导。 (2)命题假,如函数 f (z) =| z |2 在点 z=0 处可导,却在点 z=0 处不解析。
(3)命题假,如果 f (z)在z0点不解析,则z0称为f (z)的奇点。如上例。 (4)命题假,如 f (z) = sin x ch y, g(z) = i cos x sh y , z = (π / 2, 0) 为它们的奇点,但不 是 f (z) + g(z) 的奇点。
复变函数(第四版)课后习题答案
3i 1−
i
⎫ ⎬ ⎭
=
−
5 2
⎜⎛ 1 − 3i ⎟⎞ = 3 + i 5 , 1 − 3i = ⎜⎛ 3 ⎟⎞2 + ⎜⎛ − 5 ⎟⎞2 = 34 , ⎝ i 1−i⎠ 2 2 i 1−i ⎝ 2⎠ ⎝ 2⎠ 2
Arg⎜⎛ ⎝
1 i
−
3i 1−i
⎟⎞ ⎠
=
arg⎜⎛ ⎝
1 i
−
3i 1−
i
⎟⎞ ⎠
2.如果等式 x + 1 + i(y − 3) = 1 + i 成立,试求实数 x, y 为何值。
5 + 3i
解:由于
x
+
1+ i(y
5 + 3i
−
3)
=
[x
+1 + i(y − 3)](5 − (5 + 3i)(5 − 3i)
3i)
= 5(x +1)+ 3(y − 3)+ i[− 3(x +1)+ 5(y − 3)]
= 2 i sin nt
14.求下列各式的值
( ) (1) 3 − i 5 ; (2) (1 + i)6 ; (3) 6 −1 ;
1
(4) (1 − i)3
( ) ( ) 解
(1)
3 − i 5 = ⎢⎢⎣⎡2⎜⎜⎝⎛
3 2
−
i 2
⎟⎟⎠⎞⎥⎥⎦⎤5
=
2e−iπ / 6 5 = 32e−i5π / 6
=
32
⎡ ⎢⎣cos
⎛ ⎜⎝
−
5π 6
⎞ ⎟⎠
+
第四版复变函数答案2
习题一解答1.求下列复数的实部与虚部、共轭复数、模与辐角。
(3)(3 + 4i )(2 − 5i ) ; 1(2)1 − ; 3i (4)i 8 − 4i 21 + i(1); 3 + 2ii 1 − i 2i 1 = 3 − 2i = 1(1) (3 3 + 2i (3 + 2i )(3 − 2i ) 13− 2i )解 所以3 1 2 Re ⎧ 1 ⎫ ⎬ = , Im ⎧ ⎫ = − , ⎨⎨ ⎬ ⎩3 + 2 i ⎭ 13 ⎩3 + 2i ⎭ 132 21 = 1 (3 + 2i ) , 3 3 ⎜ ⎟ + ⎜ − ⎟ 13 , ⎛ ⎞ ⎛ ⎞ = = 3 + 2i 13 3 2i 13 13 ⎠ 13 ⎝⎠ ⎝ ⎛ 1 ⎞ ⎛ 1 ⎞Arg ⎜ ⎟ = arg ⎜ ⎟ + 2k π⎝ 3 + 2 i ⎠ ⎝ 3 + 2 i ⎠= − arctan 2+ 2k π , k = 0,±1,±2,31 3i − i 3i (1 + i ) 1 3 5(2) − = − = −i − (− 3 + 3i ) = − i,i 1 − i i (− i ) (1 − i )(1 + i) 2 2 2所以Re ⎧1 3i⎬ = ,⎫ ⎨ i − 1 − i ⎭ 2 ⎩ Im ⎧1 − ⎬ = − 53i ⎫ ⎨ ⎩i 1 − i ⎭ 2 ⎛ 3 ⎞2⎛ 5 ⎞2⎛ 1 3 5 ⎜ − ⎟= + i , 3i ⎞ 1 34 , − = ⎜ ⎟ + ⎜− ⎟= ⎝ i 1 − i ⎠ 2 2 i ⎝ 2 ⎠ ⎝ 2 ⎠2 Arg ⎜ 1 − = arg ⎜ 1 − ⎟ + 2k π3 i 3 i ⎛ ⎞ ⎛ ⎞⎝ i 1 − i ⎠ ⎝ i 1 − i ⎠= − arctan 5+ 2k π, k = 0,±1,±2, .3 (3) (3 + 4i )(2 − 5i ) = (3 + 4i )(2 − 5i )(− 2i ) =(26 − 7i )(− 2i ) (2i )(− 2i ) 2i 4= −7 − 26i = − 7 − 13i2 2所以⎧ (3 + 4i )(2 − 5i )⎫ 7 ⎬ = − ,Re ⎨ 2i 2 ⎩ ⎭ ⎧(3 + 4i )(2 − 5i )⎫ ⎬ = −13 ,⎭Im ⎨ ⎩ 2i 3i 1 − i 1 +⎡(3 + 4i )(2 −5i )⎤7⎥= −+ l3i ⎢⎣2i 2⎦,=2⎡(3+ 4i)(2−5i)⎤⎡(3+ 4i)(2−5i)⎤26 Arg⎢⎥= arg⎢⎥+ 2kπ= 2 arctan −π+ 2kπ2i 2i 7⎣⎦⎣⎦= arctan26+(2k−1)π, k = 0,±1,±2,.7(4)i8 −4i21 +i = (i 2 )4 −4(i2 )10 i +i = (−1)4 −4(−1)10 i +i=1 −4i +i =1 −3i所以Re{i8 −4i21 +i}=1,Im{i8 −4i21 +i}=−3⎜⎛i8 −4i21 +i ⎟=1 +3i ,| i8 −4i21 +i |=10⎝⎠Arg(i8−4i21 +i)=arg(i8−4i21 +i)+2kπ = arg(1−3i)+ 2kπ= −arctan3+ 2kπk = 0,±1,±2,.2.如果等式x +1+i(y−3)=1+i 成立,试求实数x, y 为何值。
复变函数习题四参考答案
习题四4.1判别下列复数列的收敛性,若收敛求其极限。
(1)11n ni z n +=+;(2)()cos +sin 1n nn i n z i =+;(3)cos n in z n =;(4)nin z e = 解:(1)1lim lim1n n n niz i n→∞→∞+==+所以复数列11nin++收敛。
(2)()()cos +sin 111nnii n nnn i ne e z i i i ⎛⎫=== ⎪+++⎝⎭, 11i e i <+,所以复数列()cos +sin 1n n i ni +收敛,且lim 0n n z →∞=。
(3)cos =2n nn in e e z n n-+=,复数列cos in n 不收敛。
(4)cos +sin ni n z e n i n ==,cos n ,sin n 都不收敛,所以复数列ni e 不收敛。
4.4判别下列级数的收敛性(1)1n n i n ∞=∑;(2)()1658n n n i ∞=+∑;(3)()012nnn i ∞=-+∑;(4)011n i n ∞=++∑ 解:(1)由于1n i n n =,所以1n n i n ∞=∑发散,但是1n n i n∞=∑收敛,所以原级数条件收敛;(2)6518i +<,所以()1658nn n i ∞=+∑绝对收敛; (3)()12nnn ∞=-∑和012n n ∞=∑均绝对收敛,所以()012nn n i ∞=-+∑绝对收敛; (4)一般项的实部,虚部为11n +,都发散,所以011n in ∞=++∑发散。
4.5判断下列命题是否正确。
(1)每个幂级数在它的收敛圆上处处收敛。
(2)每个幂级数的和函数在收敛圆内可能有奇点。
(3)每个在0z 连续的函数必能在0z 的邻域能展开成泰勒级数。
解:(1)错,幂级数在它的收敛圆上可能收敛,也可能发散。
(2)错,每个幂级数的和函数在收敛圆内不可能有奇点。
复变函数课后习题答案(全)第四版
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+22sin [cossin]2sin 2222ii e πθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+ (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=> 解:(1)51,z i+= 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则2x y z x y +≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。
复变函数课后习题答案
复变函数课后习题答案习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)(2)(3)(4)解:(1),因此:,(2),因此,,(3),因此,,(4)因此,,2.将下列复数化为三角表达式和指数表达式:(1)(2)(3)(4)(5)解:(1)(2)(3)(4)(5)3.求下列各式的值:(1)(2)(3)(4)(5)(6)解:(1)(2)(3)(4)(5)(6)4.设试用三角形式表示与解:,所以,5.解下列方程:(1)(2)解:(1)由此,(2),当时,对应的4个根分别为:6.证明下列各题:(1)设则证明:首先,显然有;其次,因固此有从而。
(2)对任意复数有证明:验证即可,首先左端,而右端,由此,左端=右端,即原式成立。
(3)若是实系数代数方程的一个根,那么也是它的一个根。
证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,,由此得到:由此说明:若为实系数代数方程的一个根,则也是。
结论得证。
(4)若则皆有证明:根据已知条件,有,因此:,证毕。
(5)若,则有证明:,,因为,所以,,因而,即,结论得证。
7.设试写出使达到最大的的表达式,其中为正整数,为复数。
解:首先,由复数的三角不等式有,在上面两个不等式都取等号时达到最大,为此,需要取与同向且,即应为的单位化向量,由此,,8.试用来表述使这三个点共线的条件。
解:要使三点共线,那么用向量表示时,与应平行,因而二者应同向或反向,即幅角应相差或的整数倍,再由复数的除法运算规则知应为或的整数倍,至此得到:三个点共线的条件是为实数。
9.写出过两点的直线的复参数方程。
解:过两点的直线的实参数方程为:,因而,复参数方程为:其中为实参数。
10.下列参数方程表示什么曲线?(其中为实参数)(1)(2)(3)解:只需化为实参数方程即可。
(1),因而表示直线(2),因而表示椭圆(3),因而表示双曲线11.证明复平面上的圆周方程可表示为,其中为复常数,为实常数证明:圆周的实方程可表示为:,代入,并注意到,由此,整理,得记,则,由此得到,结论得证。
数学物理方法第四版课后答案
数学物理方法第四版课后答案《数学物理方法第四版课后答案》第一章:复变函数1.1 复数与复平面题目1:将以下复数写成极坐标形式:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) r = √(3^2 + 4^2) = 5, θ = arctan(4/3)∴ z = 5(cos(arctan(4/3)) + i*sin(arctan(4/3)))b) r = √((-2)^2 + (-5)^2) = √(4 + 25) = √29, θ = arctan((-5)/(-2)) = arctan(5/2)∴ z = -√29(cos(arctan(5/2)) + i*sin(arctan(5/2)))c) r = √(0^2 + 5^2) = 5, θ = arctan(0/5) = 0∴ z = 5(cos(0) + i*sin(0)) = 5i题目2:计算以下复数的共轭:a) z = 3 + 4ib) z = -2 - 5ic) z = 5i解答:a) z* = 3 - 4ib) z* = -2 + 5ic) z* = -5i...第二章:常微分方程2.1 一阶微分方程题目1:求解以下一阶线性非齐次微分方程:a) \\frac{dy}{dx} + 2y = e^xb) \\frac{dy}{dx} - y = 3x^2解答:a) 首先求齐次方程的解,即 \\frac{dy}{dx} + 2y = 0观察到该方程的解为 y = Ce^{-2x},其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} + 2y = e^x令 y = A e^{-2x},其中 A 为待定常数\\frac{dy}{dx} = -2A e^{-2x},代入方程得到 -2A e^{-2x} + 2A e^{-2x} = e^x解得 A = -\\frac{1}{4}∴ 非齐次方程的解为 y = -\\frac{1}{4} e^{-2x},加上齐次方程的解得到最终解 y = Ce^{-2x} - \\frac{1}{4} e^{-2x}b) 首先求齐次方程的解,即 \\frac{dy}{dx} - y = 0观察到该方程的解为 y = Ce^x,其中 C 为任意常数然后考虑非齐次方程的解,即 \\frac{dy}{dx} - y = 3x^2令 y = A e^x + B,其中 A、B 为待定常数\\frac{dy}{dx} = A e^x,代入方程得到 A e^x - (A e^x + B) = 3x^2解得 B = -3x^2∴ 非齐次方程的解为 y = A e^x - 3x^2,加上齐次方程的解得到最终解 y = Ce^x - 3x^2...通过以上两个例题,可以看出在解一阶线性非齐次微分方程时,首先解齐次方程得到通解,然后根据非齐次项的形式确定待定系数,最后将通解与待定解相加得到最终解。
复变函数第四版余家荣答案
复变函数第四版余家荣答案【篇一:1第一章复数与复变函数】京1第一章复数与复变函数1 复数及其代数运算1.复数的概念①在解方程时,有时会遇到负数开方的问题,但在实数范围内负数是不能开平方的。
为此,需要扩大数系。
我们给出如下的代数形式的复数定义:复数的代数定义:把有序实数对(x,y)作代数组合所确定的形如x?iy的数称为(代数形式的)复数,记为z?x?iy,2其中,i满足i??1。
我们称i为虚单位;实数x和y分别称为复数z 的实部和虚部,并记为x?rez,y?imz。
特别地,当imz?0时,z?x?i0?rez?x是实数;当rez?0时且imz?0时,z?iimz?iy称为纯虚数;虚部不为零的复数称为虚数(即不为实数的复数称为虚数);z?0当且仅当rez?0且imz?0,即复数0?0?i?0。
z1?z2当且仅当rez1?rez2且imz1?imz2。
2.复数的代数运算2.1 四则运算设z1?x1?iy1,z2?x2?iy2为任意两个复数,它们的四则运算定义为: 加法:z1?z2?(x1?x2)?i(y1?y2) 减法:z1?z2?(x1?x2)?i(y1?y2) 乘法:z1z2?(x1x2?y1y2)?i(x1y2?x2y1) 除法:z1x1x2?y1y2y1x2?x1y2(z2?0) ??i2222z2x2?y2x2?y22【注】:(1).可见,复数的四则运算,可以按照多项式的四则运算进行,只要注意将i换成?1。
(2).关于除法的具体操作可以按两种方法来进行:①.先看成分式的形式,然后分子分母同乘以一个与分母的实部相等而虚部只相差一个正负号的复数(在后面将会看到,这被定义为共轭复数),再进行简化;②.用复数z1?x1?iy1除以非零复数z2?x2?iy2,就是要求出这样一个复数z?x?iy,使得z1?z2?z。
按乘法的定义,为求出z需要解方程组?x2x?y2y?x1??x2y?xy2?y12.2 共轭复数复数x?iy和x?iy互称为对方的共轭复数,如果记z?x?iy,则用记其共轭复数,即?x?iy?x?iy。