高一数学函数的综合应用训练(含答案)

合集下载

高一数学必修1函数综合试题(带答案)

高一数学必修1函数综合试题(带答案)

函数单元测试一、选择题:(本题共12题,每小题5分,满分60分) 1.若a 、b 、c ∈R +,则3a =4b =6c,则( )A .b ac 111+= B .b ac 122+=C .ba c 221+=D .ba c 212+=2.集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:,使任意M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射共有( )A .60个B .45个C .27个D .11个3.已知()1a x f x x a -=--的反函数...f -1(x )的图像的对称中心是(—1,3),则实数a 等于 ( )A .2B .3C .-2D .-44.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是( )A .11()(2)()43f f f >>B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >>5.函数f (x )=1-x +2 (x ≥1)的反函数是 ( )A .y =(x -2)2+1 (x ∈R)B .x =(y -2)2+1 (x ∈R)C .y =(x -2)2+1 (x ≥2)D .y =(x -2)2+1 (x ≥1)6.函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么( )A .F ∩G=∅B .F=GC .F GD .G F7.已知函数y =f (2x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是( )A .(0,+∞)B .(0,1)C .[1,2]D .[2,4]8.若()()25log 3log 3xx-≥()()25log 3log 3yy---,则( )A .x y -≥0B .x y +≥0C .x y -≤0D .x y +≤09.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是( )A .0≥bB .0≤bC .0<bD .0>b 10.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞11.将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为 ( ) A .92元B .94元C .95元D .88元12.某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元( )A .2004年B .2005年C .2006年D .2007年二、填空题:(本题共4小题,每小题4分,满分16分) 13.函数xxy +=12[),1((+∞-∈x ]图象与其反函数图象的交点坐标为 . 14.若4log 15a<(0a >且1)a ≠,则a 的取值范围是 . 15.lg25+32lg8+lg5·lg20+lg 22= .16.已知函数221)(x x x f +=,那么=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++41)4(31)3(21)2()1(f f f f f f f ____________.三、解答题:(本题共6小题,满分74分) 17.(本题满分12分)设A ={x ∈R |2≤ x ≤ π},定义在集合A 上的函数y =log a x (a >0,a ≠1)的最大值比最小值大1,求a 的值.18.(本题满分12分)已知f (x )=x 2+(2+lg a )x +lg b ,f (-1)=-2且f (x )≥2x 恒成立,求a 、b 的值.19.(本题满分12分)“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、薪金中应纳税的部分)为x,x=全月总收入-800(元),税率见下表:(1)若应纳税额为f(x),试用分段函数表示1~3级纳税额f(x)的计算公式;(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?20.(本题满分12分)设函数f (x ) =21+x +lg xx +-11 . (1)试判断函数f (x )的单调性 ,并给出证明;(2)若f (x )的反函数为f -1(x ) ,证明方程f -1(x )= 0有唯一解.21.(本题满分13分)某地区上年度电价为0.80元/kW · h ,年用电量为a kW · h .本年度计划将电价降到0.55元/kW ·h 至0.75元/kW ·h 之间,而用户期望电价为0.4元/kW ·h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本为0.3元/kW ·h . (1) 写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式. (2) 设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%? (注:收益=实际用电量×(实际电价-成本价)).22.(本小题满分13分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.参考答案三、解答题:(本题共6小题,满分74分)17.解析: a >1时,y =log a x 是增函数,log a π-log a 2=1,即log a2π=1,得a =2π. 0<a <1时,y =log a x 是减函数,log a 2-log a π=1,即log aπ2=1,得a =π2. 综上知a 的值为2π或π2.18.解析:由f (-1)=-2得:1-(2+lg a )+lg b =-2即lg b =lg a -1①101=a b 由f (x )≥2x 恒成立,即x 2+(lg a )x +lg b ≥0, ∴lg 2a -4lgb ≤0,把①代入得,lg 2a -4lg a +4≤0,(lg a -2)2≤0 ∴lg a =2,∴a =100,b =1019.解:(1)依税率表,有[[13.)0,0(,14.4(0,)(1,)5+∞U ,15.3,16.27]] 第一段:x ·5%第二段:(x -500)·10%+500·5% 第三段:(x -2000)·15%+1500·10%+500·5%即:f (x )=⎪⎩⎪⎨⎧≤<+-≤<+-≤<)50002000( 175)2000(15.0)2000500(25)500(1.0)5000(05.0x x x x x x (2)这个人10月份纳税所得额 x =4000-800=3200f (3200)=0.15(3200-2000)+175=355(元) BBACC DDBAC CC 答:这个人10月份应缴纳个人所得税355元.20.解析:(1)由).1,1()(02011-⎪⎩⎪⎨⎧≠+>+-的定义域为解得函数x f x xx)11lg 11(lg )2121()()(,11:1122122121x x x x x x x f x f x x +--+-++-+=-<<<-则设 )1)(1()1)(1(lg)2)(2(21212121x x x x x x x x +--++++-=.又∵,0,0)2)(2(2121<->++x x x x ).()(0)()(.0)1)(1()1)(1(lg 111)1)(1()1)(1(0,0)1)(1(,0)1)(1(,0)2)(2(1212212121122121212121212121x f x f x f x f x x x x x x x x x x x x x x x x x x x x x x x x <<-∴<+--+⇒<--+--+=+--+<∴>+->-+<++-∴即又故函数f(x)在区间(-1,1)内是减函数.(2)这里并不需要先求出f (x)的反函数f -1(x),再解方程f -1(x)=0∵0)(21,0)21(,21)0(11===∴=--x f x f f 是方程即的一个解. 若方程f -1(x )=0还有另一解x 021≠,则.0)(1=-x f)0(f 又由反函数的定义知21≠,这与已知矛盾.故方程f -1(x)=0有唯一解.21.解析:(1)设下调后的电价为x 元/k W ·h ,用电量增至(4.0-x k+a )依题意知,y=(4.0-x k+a )(x -0.3),(0.55≤x ≤0.75)(2)依题意有⎪⎩⎪⎨⎧≤≤+⨯-⨯≥-+-75.055.0%)201()]3.08.0([)3.0)(4.02.0(x a x a x a整理得⎩⎨⎧≤≤≥+-75.055.003.01.12x x x 解此不等式得0.60≤x ≤0.75答:当电价最低定为0.60元/k W ·h ,仍可保证电力部门的收益比去年至少增长20%. 22.解析:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+ ∵⎩⎨⎧<≥-=-+,2,2,2,22|2|c x c c x c x c x x).,1[]21,0(.1,,.210,,.21121|2|.2|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y。

(完整版)高一函数大题训练含答案解析

(完整版)高一函数大题训练含答案解析

(完整版)高一函数大题训练含答案解析一、解答题1.已知有穷数列{}n a 、{}n b (1,2,,n k =⋅⋅⋅),函数1122()||||||k k f x a x b a x b a x b =-+-+⋅⋅⋅+-.(1)如果{}n a 是常数列,1n a =,n b n =,3k =,在直角坐标系中在画出函数()f x 的图象,据此写出该函数的单调区间和最小值,无需证明;(2)当n n a n b ==,7k m =(m ∈*N )时,判断函数()f x 在区间[5,51]m m +上的单调性,并说明理由; (3)当n a n =,1n b n=,100=k 时,求该函数的最小值. 2.若函数()f x 对任意的x ∈R ,均有()()()112f x f x f x -++≥,则称函数()f x 具有性质P .(1)判断下面两个函数是否具有性质P ,并说明理由.①()1xy a a =>;②3y x =. (2)若函数()f x 具有性质P ,且()()()*002,N f f n n n >∈==,求证:对任意{}1,2,3,,1i n ∈-有()0f i ≤;(3)在(2)的条件下,是否对任意[]0,x n ∈均有()0f i ≤.若成立给出证明,若不成立给出反例.3.已知函数()y f x =,若存在实数(),0m k m ≠,使得对于定义域内的任意实数x ,均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(),m k 称为函数()f x 的“平衡”数对.(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化时,求证:()2f x x =与()2xg x a =+的“平衡”数对相同;(3)若12,m m R ∈,且1,2m π⎛⎫ ⎪⎝⎭、2,4m π⎛⎫ ⎪⎝⎭均为函数()2cos f x x =的“平衡”数对.当04x π<≤时,求2212m m +的取值范围.4.已知定义在R 上的函数()x ϕ的图像是一条连续不断的曲线,且在任意区间上()x ϕ都不是常值函数.设011i i n a t t t t t b -=<<<<<<=,其中分点121n t t t -、、、将区间[],a b 任意划分成()*n n N ∈个小区间[]1,i i t t -,记{}()()()()()()01121,,n n M a b n t t t t t t ϕϕϕϕϕϕ-=-+-++-,称为()x ϕ关于区间[],a b 的n 阶划分“落差总和”.当{},,M a b n 取得最大值且n 取得最小值0n 时,称()x ϕ存在“最佳划分”{}0,,M a b n . (1)已知()x x ϕ=,求{}1,2,2M -的最大值0M ;(2)已知()()a b ϕϕ<,求证:()x ϕ在[],a b 上存在“最佳划分”{},,1M a b 的充要条件是()x ϕ在[],a b 上单调递增.(3)若()x ϕ是偶函数且存在“最佳划分”{}0,,M a a n -,求证:0n 是偶数,且00110i i n t t t t t -+++++=.5.已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1,记()(||)f x g x =,x ∈R ;(1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x ∈R 恒成立,求实数k 的范围;(3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅-将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x 为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;6.已知集合M 是满足下列性质的函数()f x 的全体;在定义域内存在实数t ,使得(2)()(2)f t f t f +=+.(1)判断()32f x x =+是否属于集合M ,并说明理由; (2)若2()lg2af x x =+属于集合M ,求实数a 的取值范围; (3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x M ∈.7.已知函数()242 1.x xf x a =⋅--(1)当1a =时,求函数()f x 在[]3,0x ∈-的值域; (2)若()f x 存在零点,求a 的取值范围.8.已知函数()22f x x x a =+--.(1)当0a =时,求函数()f x 的零点;(2)若不等式()0f x <至少有一个负解,求实数a 的取值范围. 9.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况.10.已知函数()f x ,对任意a ,b R ∈恒有()()()f a b f a f b 1+=+-,且当x 0>时,有()f x 1>.(Ⅰ)求()f 0;(Ⅱ)求证:()f x 在R 上为增函数;(Ⅲ)若关于x 的不等式(()222f[2log x)4f 4t 2log x 2⎤-+-<⎦对于任意11x ,82⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.11.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x 使得()()()0011f x f x f +=+成立.(1)函数()21f x x=+是否属于集合M ?请说明理由; (2)函数()2ln1af x x =∈+M ,求a 的取值范围; (3)设函数()23x f x x =+,证明:函数()f x ∈M .12.已知函数()20182018,0log ,0x x f x x x ⎧≤=⎨>⎩,(1)分别求()()()()1,2018f f f f -的值: (2)讨论()()()f f x m m R =∈的解的个数:(3)若对任意给定的[)1,t ∈+∞,都存在唯一的x R ∈,满足()()222f f x a t at =-,求实数a的取值范围.13.对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数()sin()3f x x π=+,试判断()f x 是否为“M 类函数”?并说明理由;(2)设()2x f x m =+是定义在[1,1]-上的“M 类函数”,求是实数m 的最小值;(3)若22log (2)()3x mx f x ⎧-=⎨-⎩,2,2x x ≥<为其定义域上的“M 类函数”,求实数m 的取值范围.14.一般地,我们把函数1110()()N --=∈n n n n h x a x a x a x a n ++++称为多项式函数,其中系数0a ,1a ,…, n a ∈R .设()f x ,()g x 为两个多项式函数,且对所有的实数x 等式[()][()]f g x g f x =恒成立.(1)若2()3f x x =+,()(0)g x kx b k =+≠. ①求()g x 的表达式; ②解不等式()()5f x g x ->.(2)若方程()()f x g x =无实数根,证明方程[()][()]f f x g g x =也无实数解. 15.若函数()f x 满足:对于任意正数,s t ,都有()()0,0f s f t >>,且()()()f s f t f s t +<+,则称函数()f x 为“L 函数”.(1)试判断函数()21f x x =与()122f x x =是否是“L 函数”; (2)若函数()()3131x xg x a -=-+-为“L 函数”,求实数a 的取值范围;(3)若函数()f x 为“L 函数”,且()11f =,求证:对任意()()12,2N*k kx k -∈∈,都有()122x f x f x x⎛⎫->- ⎪⎝⎭.【参考答案】一、解答题1.(1)图象见解析;递减区间(],2-∞,递增区间[)2,+∞,最小值()22f =;(2)单调递增;理由见解析;(3)292071. 【解析】(1)根据条件采用零点分段的方法作出函数()f x 的图象,根据图象确定出()f x 的单调区间和最小值;(2)写出()f x 的解析式,根据[]5,51x m m ∈+分析函数()f x 的结构,从而判断出()f x 的单调性;(3)先根据条件证明出()f x 的单调性然后即可求解出()f x 的最小值. 【详解】 (1)如图所示,由图象可知:单调递减区间(],2-∞,单调递增区间[)2,+∞,最小值()22f =; (2)因为()112233...77f x x x x m x m =⋅-+-+-++-且[]5,51x m m ∈+, 所以()()()()()()()()()()12233...555151...77f x x x x m x m m m x m m x =-+-+-++-+++-++-, 所以()()()()()()()()()222222155517212...55152 (72)2m m m m m f x x m x m m m +⋅++⋅=-+++-++++++ , 所以()()()()()()()222222222552425152...712 (52)m m m m f x x m m m m +--=++++++-+++,所以()()()()()()()2222222+35152...712 (52)m m f x x m m m m =++++++-+++且2302m m+>, 所以()f x 在[]5,51m m +上单调递增;(3)因为()12131...1001f x x x x x =-+-+-++-,显然当[)1,x ∈+∞时,()f x 单调递增,当(],0x ∈-∞时,()f x 单调递减, 设存在一个值()1*t N t ∈,使得10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,此时最小值即为1f t ⎛⎫⎪⎝⎭,下面证明1t存在:因为若要10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,则有12112100......t t t t t t t t t-+++++>+++,解得:71t ≥,且()1221100 (1111111)t t t t t t t t t t -++++<+++≠------,解得:171t -<, 所以7172t ≤<,所以71t =,所以存在1171t =满足条件,故假设成立,综上可知:()f x 在1,71⎛⎫-∞ ⎪⎝⎭上单调递减,在1+71⎛⎫∞ ⎪⎝⎭,上单调递增, ()()()()()()()min 1112170721731100171f x f x x x x x x ⎛⎫==-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+- ⎪⎝⎭292041971x =+=【点睛】本题考查数列与函数的综合应用,其中着重考查了函数单调性方面的内容,对学生的理解与分析能力要求较高,难度较难.2.(1)①()1xy a a =>具有性质P ;②3y x =不具有性质P ,见解析;(2)见解析(3)不成立,见解析 【解析】 【分析】(1)①根据已知中函数的解析式,结合指数的运算性质,计算出()()()112f x f x f x -++-的表达式,进而根据基本不等式,判断其符号即可得到结论;②由3y x =,举出当1x =-时,不满足()()()112f x f x f x -++≥,即可得到结论; (2)由于本题是任意性的证明,从下面证明比较困难,故可以采用反证法进行证明,即假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,由此推理得到矛盾,进而假设不成立,原命题为真;(3)由(2)中的结论,我们可以举出反例,如()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数,证明对任意[]0,x n ∈均有()0f x ≤不成立.【详解】证明:(1)①函数()()1xf x a a =>具有性质P ,()()()11111222x x x x f x f x f x a a a a a a -+⎛⎫-++-=+-=+- ⎪⎝⎭,因为1a >,120x a a a ⎛⎫+-> ⎪⎝⎭,即()()()112f x f x f x -++≥, 此函数为具有性质P ;②函数()3f x x =不具有性质P ,例如,当1x =-时,()()()()11208f x f x f f -++=-+=-,()22f x =-,所以,()()()201f f f -+<-, 此函数不具有性质P . (2)假设()f i 为()()()1,2,,1f f f n -中第一个大于0的值,则()()10f i f i -->, 因为函数()f x 具有性质P , 所以,对于任意*n ∈N ,均有()()()()11f n f n f n f n +-≥--, 所以()()()()()()11210f n f n f n f n f i f i --≥---≥≥-->,所以()()()()()()110f n f n f n f i f i f i =--+++-+>⎡⎤⎡⎤⎣⎦⎣⎦,与()0f n =矛盾, 所以,对任意的{}1,2,3,,1i n ∈-有()0f i ≤.(3)不成立.例如,()()2,,x x n x f x x x ⎧-=⎨⎩为有理数为无理数证明:当x 为有理数时,1x -,1x +均为有理数,()()()112f x f x f x -++-()()()2221121122x x x n x x x =-++---++-=,当x 为无理数时,1x -,1x +均为无理数,()()()()()2221121122f x f x f x x x x -++-=-++-=所以,函数()f x 对任意的x ∈R , 均有()()()112f x f x f x -++≥, 即函数()f x 具有性质P .而当[]()0,2x n n ∈>且当x 为无理数时,()0f x >. 所以,在(2)的条件下,“对任意[]0,x n ∈均有()0f x ≤”不成立. 如()()()01x f x x ⎧⎪=⎨⎪⎩为有理数为无理数,()()()01x f x x ⎧⎪=⎨⎪⎩为整数为非整数, ()()()2x f x xx ⎧⎪=⎨⎪⎩为整数为非整数等.【点睛】本题考查了函数的新定义及其应用,涉及指数函数和幂函数的性质,反证法,其中在证明全称命题为假命题时,举出反例是最有效,快捷,准确的方法.3.(1)()sin f x x =是“可平衡”函数,详见解析(2)证明见解析(3)221218m m <+≤【解析】 【分析】(1)利用两角和差的正弦公式求解即可.(2)根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,再列式利用恒成立问题求解即可.(3)根据“平衡数对”的定义将12,m m 用关于x 的三角函数表达,再利用三角函数的取值范围求解即可. 【详解】(1)若1m =,则()sin m f x x ⋅=,()()()()sin sin f x k f x k x k x k ++-=++-2sin cos x k =,要使得()f x 为“可平衡”函数,需使故()12cos sin 0k x -⋅=对于任意实数x 均成立,只有1cos 2k =,此时23k n ππ=±,n Z ∈,故k 存在,所以()sin f x x =是“可平衡”函数.(2)()2f x x =及()2xg x a =+的定义域均为R ,根据题意可知,对于任意实数x ,()()22222=22mx x k x k x k ++-=+,即22222mx x k =+,即()22220m x k --=对于任意实数x 恒成立,只有2m =,0k =,故函数()2f x x =的“平衡”数对为()2,0,对于函数()2xg x a =+而言,()222x x k x k m a a a +-⋅+=+++()2222x k k a -=+⋅+, 所以()()22222x x k km a a -⋅+=+⋅+,()()22220xkkm a m -⎡⎤⋅-++⋅-=⎣⎦,()2220k k m a m -⎧=+⎪⎨⋅-=⎪⎩, 即22m m ≥⎧⎨=⎩,故2m =,只有0k =,所以函数()2xg x a =+的“平衡”数对为()2,0, 综上可得函数()2f x x =与()2xg x a =+的“平衡”数对相同.(3)2221cos cos cos 22m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以221cos 2sin m x x =, 2222cos cos cos 44m x x x ππ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,所以22cos 1m x =,由于04x π<≤,所以21cos 12x ≤<,故(]212tan 0,2m x =∈,(]22sec 1,2m x =∈, ()22224121tan 4tan m m x x +=++()22222145tan 2tan 15tan 55x x x ⎛⎫=++=++ ⎪⎝⎭, 由于04x π<≤,所以20tan 1x <≤时,2116tan 555x <+≤,()2212tan 238x <+-≤,所以221218m m <+≤.【点睛】本题主要考查了新定义的函数问题,需要根据题意列出参数满足的关系式,利用恒成立问题或表达出参数满足的解析式再分析求范围等.属于难题. 4.(1)3;(2)见解析;(3)见解析 【解析】 【分析】(1)直接利用题中给的定义求解即可;(2)利用函数的单调性和数列的信息应用求出充要条件;(3)利用函数的奇偶性和存在的最佳划分,进一步建立函数的单调区间,最后求出函数的关系式. 【详解】(1)()()()()010023M ϕϕϕϕ=--+-=; (2)若()x ϕ在[],a b 上单调递增,则{}()()()(){}11,,,,1ni i i M a b n t t b a M a b ϕϕϕϕ-==-=-=⎡⎤⎣⎦∑,故()x ϕ在[],a b 上存在“最佳划分”{},,1M a b若()x ϕ在[],a b 上存在“最佳划分”{},,1M a b ,倘若()x ϕ在[],a b 上不单调递增, 则存在[]()()121212,,,,x x a b x x x x ϕϕ∈<>.由()()()()()()()()1122a b a x x x x b ϕϕϕϕϕϕϕϕ-≤-+-+-(*)等号当且仅当()()()()()()11220,0,0a x x x x b ϕϕϕϕϕϕ-≥->-≥时取得,此时()()()()()()()()()()11220a b a x x x x b a b ϕϕϕϕϕϕϕϕϕϕ-=-+-+-=-<,与题设矛盾,舍去,故(*)式中等号不成立,即:增加分点12,x x 后,“落差总和”会增加,故{},,M a b n 取最大值时n 的最小值大于1,与条件矛盾. 所以()x ϕ在[],a b 上单调递增;(3)由(2)的证明过程可知,在任间区间[],a b 上,若()x ϕ存在最佳划分{},,1a b ,则当()()a b ϕϕ=时,()x ϕ为常值函数(舍);当()()a b ϕϕ<时,()x ϕ单调递增;当()()a b ϕϕ>时,()x ϕ单调递减,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则此时在每个小区间[]()10,1,2,,i i t t i n -=上均为最佳划分{}1,,1i i M t t -.否则,添加分点后可使()x ϕ在[],a b 上的“落差总和”增大,从而{}0,,M a b n 不是“落差总和”的最大值,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都是单调,若()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ,则()x ϕ在相邻的两个区间[][]11,,i i i i t t t t -+、上具有不同的单调性,否则,()()()()()()11111i i i i i t t t t t t ϕϕϕϕϕϕ-+-+-=-+-,减少分点i t ,“落差总和”的值不变,而n 的值减少1,故n 的最小值不是0n ,与“()x ϕ在[],a b 上存在最佳划分{}0,,M a b n ”矛盾,()x ϕ存在“最佳划分”{}0,,M a a n -,故()x ϕ在每个小区间[]()10,1,2,,i i t t i n -=上都单调,而()x ϕ是偶函数,故()x ϕ在y 轴两侧的单调区间对称,共有偶数个单调区间,且当000,1,,2n i j n i ⎛⎫+== ⎪⎝⎭时,0i j t t +=,从而有00120n t t t t ++++=.【点睛】本题是信息给予题,考查了数学阅读能力,考查了函数和数列的综合应用能力,考查了数学运算能力.5.(1)0b =,1a =;(2)1[,8]2;(3)证明见解析,min 4M =;【解析】 【分析】(1)由已知()g x 在区间[2,3]上的最大值为4,最小值为1,结合函数的单调性及最值,易构造关于,a b 的方程组,解得,a b 的值。

人教A版第三章函数的应用综合测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

人教A版第三章函数的应用综合测试题(解析版)-高一数学寒假补差训练(人教A版必修1+必修2)

专题6:人教A 版第三章函数的应用综合测试题(解析版)一、单选题1.设()ln 2f x x x =+-,则函数()f x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)1.B【分析】根据()f x 的单调性,结合零点存在性定理,即可得出结论.【详解】 ()ln 2f x x x =+-在(0,)+∞单调递增,且(1)10,(2)ln20f f =-<=>,根据零点存在性定理,得()f x 存在唯一的零点在区间(1,2)上.故选:B【点睛】本题考查判断函数零点所在区间,结合零点存在性定理的应用,属于基础题. 2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图象表示为( )A .B .C .D . 2.B【解析】依题设可知,蜡烛高度h 与燃烧时间t 之间构成一次函数关系,又∵函数图象必过点(0,20)、(4,0)两点,且该图象应为一条线段.∴选B.3.利用二分法求方程3log 5x x =-的近似解,可以取得一个区间( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.D【分析】根据零点存在定理判断.【详解】设3()log 5f x x x =-+,则函数单调递增由于3(3)log 35310f =-+=-<,33(4)log 454log 410f =-+=->,∴()f x 在(3,4)上有零点.故选:D.【点睛】本题考查方程的解与函数零点问题.掌握零点存在定理是解题关键.4.若函数()27x f x x =+-的零点所在的区间为(,1)()k k k +∈Z ,则k =( )A .3B .4C .1D .24.D【分析】结合零点存在性定理和函数()f x 的单调性,求得k 的值.【详解】 ∵(2)4270,(3)8370,f f =+-<⎧⎨=+->⎩且()f x 单调递增,∴()f x 的零点所在的区间为(2,3),∴2k =. 故选:D【点睛】本小题主要考查零点存在性定理的运用,考查函数的单调性,属于基础题.5.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是( )A .x 1B .x 2C .x 3D .x 45.C【解析】 观察图象可知:点x 3的附近两旁的函数值都为负值,∴点x 3不能用二分法求,故选C.6.函数21()f x x x =+,(0,)x ∈+∞的零点个数是( ). A .0B .1C .2D .36.A【分析】 根据函数定义域,结合零点定义,即可容易判断和求解.【详解】由于20x >,10x>, 因此不存在(0,)x ∈+∞使得21()0f x x x=+=, 因此函数没有零点.故选:A .【点睛】本题考查函数零点的求解,属简单题. 7.用二分法求函数()f x 的一个正实数零点时,经计算:()()0.640,0.720f f <>,()0.680f <,()0.740f >,则函数()f x 的一个精确度为0.1的正实数零点的近似值为A .0.64B .0.8C .0.7D .0.67.C【分析】由题意根据函数零点的判定定理可得,函数零点所在的区间为(0.68,0.72),从而得出结论.【详解】因为()0.680f <,()0.720f >,即()()0.680.720f f ⋅<,所以函数()f x 的零点在区间()0.68,0.72内.又0.720.680.040.1-=<,观察各选项可知函数()f x 的一个精确度为0.1的正实数零点的近似值为0.7.故选C .【点睛】本题主要考查函数零点的判定定理的应用,属于基础题.8.已知函数()221,11,1x x f x log x x ⎧-=⎨+>⎩,则函数()f x 的零点为( )A .1,02B .2-,0C .12D .08.D【分析】函数()f x 的零点,即令()0f x =分段求解即可.【详解】函数221,1()1,1x x f x log x x ⎧-=⎨+>⎩当1x 时,令()210x f x =-=,解得0x =当1x >时,令2()1log 0f x x =+=,解得12x =(舍去) 综上函数的零点为0故选:D .【点睛】本题考查函数的零点个数,考查分段函数的知识,属于基础题.9.设f (x )=3x +3x –8,用二分法求方程3x +3x –8在x ∈(1,2)内方程的近似解,则方程的根落在区间(参考数据31.25≈3.95)A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定9.B【分析】显然函数单调递增,然后利用二分法求(1,2)的中间值f (1.5)0>,再将范围限制(1,1.5),再利用二分法继续下次知道和选项逼近即可【详解】显然函数单调递增,f (1)<0,f (2)>0,f (1.5)=31.5+3×1.5–8=323 4.58+-=4.58->4.580->,f (1.25)=31.25+3×1.25–8<0,∴f (1.25)•f (1.5)<0,∴方程的根落在区间(1.25,1.5),故选B .【点睛】利用二分法判断函数零点的区间,首先确保函数在所给区间内连续,然后利用二分法算出所给区间的中间值,进而一步步将区间范围缩小10.已知碳14是一种放射性元素,在放射过程中,质量会不断减少.已知1克碳14经过5730年,质量经过放射消耗到0.5克,则再经过多少年,质量可放射消耗到0.125克( ) A .5730B .11460C .17190D .22920 10.B【分析】根据由题意可知再经过2个半衰期可消耗到0.125克.【详解】由题意可得:碳14的半衰期为5730年,则再过5730年后,质量从0.5克消耗到0.25克,过11460年后,质量可消耗到0.125克.故选:B.【点睛】本题考查指数函数的应用,属于基础题.11.已知二次函数22()(5)6(0)f x ax a x a a =+-+-≠的图象与x 轴交于()1,0M x ,()2,0N x 两点,且12112x x -<<<<,则a 的取值范围是( )A .(2,1+B .()1C .()1++∞D .(,2-∞- 11.B【分析】讨论0a >、0a <,根据零点的范围,结合二次函数的性质列不等式组求解即可得a 的取值范围.【详解】若0a >,则(1)0(1)0(2)0f f f ->⎧⎪<⎨⎪>⎩,即2221021106160a a a a a ⎧->⎪+-<⎨⎪+->⎩,解得21a <<;若0a <,则(1)0(1)0(2)0f f f -<⎧⎪>⎨⎪<⎩,即2221021106160a a a a a ⎧-<⎪+->⎨⎪+-<⎩,不等式组无解.故a的取值范围是()1.故选:B 12.已知函数()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩若函数()()2y f x f x m =+--()m R ∈恰有2个零点,则m 的取值范围是( )A .()2,+∞B .7,24⎛⎫ ⎪⎝⎭C .()0,2D .(),2-∞12.A【分析】求得函数()()2y f x f x =+-的解析式,画出()()2y f x f x =+-的图象,由此求得m 的取值范围.【详解】 由()()()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩得()()()2,02,0x x f x x x ⎧≥⎪-=⎨<⎪⎩, 所以()()()()()222,022,0234,2x x x y f x f x x x x x ⎧-+<⎪=+-=≤≤⎨⎪-+>⎩,所以函数()()2y f x f x m =+--恰有2个零点等价于函数y m =与函数()()2y f x f x =+-的图象有2个公共点,由图象可知2m >.故选:A二、填空题13.在平面直角坐标系xOy 中,若直线y a =与函数2y x a a =-+-的图象有且只有一个公共点,则实数a 的值为______.13.1【分析】在同一坐标系中作出函数y a =与函数2y x a a=-+-的图象,根据只有一个公共点,利用数形结合法求解.【详解】在同一坐标系中作出函数y a =与函数2y x a a =-+-的图象,如图所示:因为只有一个公共点,所以2a a -=,解得1a =.故答案为:114.已知函数()1,2,x x x a f x x a+≤⎧=⎨>⎩,若存在两个不相等的实数12,x x ,使得()()12f x f x =,则实数a 的取值范围是__________.14.01a <<【分析】根据1y x =+与2xy =交于(0,1)和(1,2)点,即可求解结论.【详解】解:因为存在两个不相等的实数1x ,2x ,使得12()()f x f x =,故函数不是单调函数,又因为1y x =+与2x y =交于(0,1)和(1,2)点,故须01a <<.故答案为:(0,1).15.方程243x x m -+-=有四个互不相等的实数根,则实数m 的取值范围为_________. 15.()3,1-【分析】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点,作出函数图象可得实数m 的取值范围.【详解】 方程243x x m -+-=有四个互不相等的实数根即243y x x =-+与y m =-的图象有四个不同的交点 作出22243,04343,0x x x y x x x x x ⎧-+>=-+=⎨++≤⎩的函数图象如图所示:当2x =时,1y =-;0x =时,3y =,∴13m -<-<,()3,1m ∈-故答案为:()3,1-16.已知1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1,则实数k 的取值范围是___________.16.02k <<【分析】根据二次函数的零点分布情况,得到()10f >,求解对应不等式,即可得出结果.【详解】因为1x ,2x 是函数()()2221f x x k x k =-++的两个零点且一个大于1,一个小于1, 二次函数()()2221f x x k x k =-++开口向上, 所以只需()()2211012f k k -++<=,即220k k -<, 解得02k <<.故答案为:02k <<.三、解答题17.已知函数32()2()3x f x x ax a R =--∈.(1)若()y f x =在()3,+∞上为增函数,求实数a 的取值范围; (2)若12a =-,设()ln(1)()g x x f x =-+,且方程3(1)(1)3xb g x x --=+有实根,求实数b 的最大值.17.(1)32a ≤(2)0 【解析】试题分析:(1)求导()'2220fx x x a =--≥在区间(3,+∞)上恒成立,从而转化为最值问题求解即可;(2)化简方程可得2ln b x x x x+-=,从而化为2(ln )b x x x x =+-在(0,+∞)上有解,从而讨论函数2()(ln )p x x x x x =+-的值域即可试题解析:(1)∵()f x 在区间()3,+∞上为增函数, ∴2'()220f x x x a =--≥即222a x x ≤-在区间()3,+∞上恒成立. ∵在()3,+∞内223x x -< ∴23a ≤即32a ≤(2)方程3(1)(1)3x b g x x --=+可化为2ln b x x x x +-=. ∴条件转化为2(ln )b x x x x =+-在()0,+∞上有解, 令2()(ln )p x x x x x =+-,∴即求函数2()(ln )p x x x x x =+-在()0,+∞上的值域. 令2()ln h x x x x =+-, 则1(21)(1)'()12x x h x x x x +-=+-=,∴当01x <<时'()0h x >,从而()h x 在()0,1上为增函数, 当1x >时'()0h x <,从而()h x 在()1,+∞上为减函数, 因此()(1)0h x h ≤=.又∵0x >,故()()0p x x h x =⋅≤,∴0b ≤因此当1x =时,b 取得最大值0.考点:根的存在性及根的个数判断;利用导数研究函数的单调性18.已知函数()lg f x kx =,()()lg 1g x x =+.(Ⅰ)当=1k 时,求函数()()y f x g x =+的单调区间;(Ⅱ)若方程()2()f x g x =仅有一个实根,求实数k 的取值集合.18.(1)单调递增区间为(0,)+∞,不存在单调递减区间;(2)0k <或4k =;【解析】试题分析:(1)由题可知,将=1k 代入,可得()()lg lg(1)lg (1)y f x g x x x x x =+=++=+,由于真数x (x+1)>0,可知x (x+1)在定义域上始终递增,外层对数函数始终递增,即单调递增区间为(0,)+∞,不存在单调递减区间;(2)由题可知,由()2()f x g x =,即lg 2lg(1)kx x =+,根据真数大于0,真数相等,可列出不等式组,对k 进行讨论,即可得出k 的取值; 试题解析:(Ⅰ)当=1k 时,()()lg lg(1)lg (1)y f x g x x x x x =+=++=+ (其中0x >),由复合函数单调性可知内层函数x (x+1)在定义域上始终递增,外层对数函数始终递增,所以,()()y f x g x =+的单调递增区间为(0,)+∞,不存在单调递减区间;(Ⅱ)由()2()f x g x =,即lg 2lg(1)kx x =+.该方程可化为不等式组 ()20101kx x kx x ⎧>⎪⎪+>⎨⎪=+⎪⎩(1)若0k >时,则0x >,原问题即为:方程2(1)kx x =+在(0,)+∞上有根,解得4k =;(2)若0k <时,则10x -<<,原问题即为:方程2(1)kx x =+在(1,0)-上有根,解得0k <.综上可得0k <或4k =为所求.考点:①复合函数的单调性②对数函数单调性的应用19.已知函数221()11x m f x x x x x -=----- (Ⅰ)若函数()f x 无零点,求实数m 的取值范围;(Ⅱ)若函数()f x 在(2,2)-有且仅有一个零点,求实数m 的取值范围.19.(Ⅰ) 47|{<m m 或2}m =;(Ⅱ)7{|4m m =或48}m ≤<。

高中数学(新人教A版)必修第一册同步习题:同角三角函数关系与诱导公式的综合运用(习题)【含答案及解析

高中数学(新人教A版)必修第一册同步习题:同角三角函数关系与诱导公式的综合运用(习题)【含答案及解析

专题强化练8 同角三角函数关系与诱导公式的综合运用一、选择题1.(2019广东中山一中高一下段考,)已知sin α·cos α=18,π4<α<π2,则cosα-sin α的值为( )A.√32B.-√32C.34D.-342.(2019福建福州长乐高中高一期末,)在△ABC 中,下列结论错误的是( ) A.sin(A+B)=sin C B.sinB+C 2=cos A2C.tan(A+B)=-tan C (C ≠π2)D.cos(A+B)=cos C3.(2019甘肃武威一中高一下段考,)化简2sin4√1-cos 24+√1-sin 23cos3的结果为( )A.-3B.-1C.1 D .34.(2019福建八县(市)一中高一上期末联考,)已知tan θ=3,则sin (3π2+θ)+2cos(π+θ)sin (π2-θ)-sin(π-θ)等于( )A.-32B.32C.0 D .235.(2019河北唐山高三二模,)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有一点A(2sin α,3),则cos α=( ) A.12B.-12C.√32D.-√326.(2019河南安阳高三一模,)9sin 2α+1cos 2α的最小值为()A.18B.16C.8 D .6 二、填空题7.(2020吉林长春第二中学高一期末,)若角A 是三角形ABC 的内角,且tan A=-13,则sin A+cos A= . 8.(2019江西临川第一中学等九校高三联考,)已知α∈(0,π),且cosα=-1517,则sin (π2+α)·tan(π+α)=.三、解答题9.(2020河南安阳第一中学高一月考,)已知f(α)=sin 2(π-α)·cos(2π-α)·tan(-π+α)sin(-π+α)·tan(-α+3π).(1)化简f(α);(2)若f(α)=18,且π4<α<π2,求cos α-sin α的值; (3)若α=-31π3,求f(α)的值.易错10.(2020山东日照高一上期末,)已知角α的始边与x 轴的非负半轴重合,终边经过点P(m,-m-1),且cos α=m 5. (1)求实数m 的值;(2)若m>0,求sin(3π+α)cos (3π2-α)cos(α-π)sin (π2+α)的值.答案全解全析一、选择题1.B 由题意得(cos α-sin α)2=1-2sin αcos α=1-2×18=34. ∵π4<α<π2,∴cos α-sin α<0,∴cos α-sin α=-√32.2.D 在△ABC 中,有A+B+C=π,则sin(A+B)=sin(π-C)=sin C,A 结论正确; sinB+C 2=sin (π2-A 2)= cos A2,B 结论正确;tan(A+B)=tan(π-C)=-tan C (C ≠π2),C 结论正确;cos(A+B)=cos(π-C)=-cos C,D 结论错误.故选D. 3.A √2+√1-sin 23cos3=√2+√cos 23cos3,因为sin 4<0,cos 3<0,所以原式=2sin4-sin4+-cos3cos3=-2-1=-3.4.B ∵tan θ=3, ∴sin (3π2+θ)+2cos(π+θ)sin (π2-θ)-sin(π-θ)=-3cosθcosθ-sinθ=-31-tanθ=32.故选B.5.A 易知sin α≠0,由三角函数定义得tan α=32sinα,即sinαcosα=32sinα,得3cosα=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去). 6.B 由题意得,9sin 2α+1cos 2α=(sin 2α+cos 2α)·(9sin 2α+1cos 2α)≥9+1+2√9cos 2αsin 2α·sin 2αcos 2α=16,当且仅当sin 2α=34,cos 2α=14时,等号成立. 二、填空题 7.答案 -√105解析 由题得{sin 2A +cos 2A =1,sinA cosA =-13,π2<A <π,∴sin A=√1010,cos A=-3√1010, ∴sin A+cos A=-√105.8.答案817解析 sin (π2+α)·tan(π+α)=cos α·tan α=sin α,因为α∈(0,π),且cos α=-1517,所以sin α=√1-cos 2α=√1-(-1517)2=817.三、解答题 9.解析 (1)f(α)=sin 2α·cosα·tanα(-sinα)(-tanα)=sin αcos α.(2)由f(α)=sin αcos α=18可知(cos α-sin α)2=cos 2α-2sin αcosα+sin 2α=1-2sin αcos α=1-2×18=34. 又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0, ∴cos α-sin α=-√32.(3)∵α=-31π3=-6×2π+5π3,∴f (-31π3)=cos (-31π3)·sin (-31π3)=cos (-6×2π+5π3)·sin (-6×2π+5π3)=cos 5π3·sin 5π3=cos (2π-π3)·sin (2π-π3)=cos π3·(-sin π3) =12×(-√32) =-√34. 易错警示 诱导公式在解题中的运用要注意两点:一是逐步诱导,如将sin(-π+α)化为-sin α分两步,先用公式sin[-(π-α)]=-sin(π-α),再用公式sin(π-α)=sin α,才能达到目的;二要层次清楚,先变角、再用公式.解题时要防止因逻辑混乱导致的错误.10.解析 (1)根据三角函数的定义可得cos α=√22=m5,解得m=0或m=3或m=-4.(2)由(1)知m=0或m=3或m=-4,因为m>0,所以m=3,所以cos α=35,sinα=-45,由诱导公式,可得sin(3π+α)cos (3π2-α)cos(α-π)sin (π2+α)=-sinα·(-sinα)-cosαcosα=-sin 2αcos 2α=-169.。

高一数学函数专题(含答案)

高一数学函数专题(含答案)

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学函数的应用测试题(含答案)

高一数学函数的应用测试题(含答案)

高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。

小编准备了高一数学函数的应用测试题,具体请看以下内容。

一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)一、单选题1.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率为x ,则x 满足的方程为( )A .210(1)42x +=B .21010(1)42x ++=C .1010(1)10(12)42x x ++++=D .21010(1)10(1)42x x ++++=2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元3.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为2121L x x=-+和22L x =.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元4.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A .233cm 2B .24cmC .232cmD .223cm5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .306.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米8.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则下列说法错误的是( )A .乙的速度为300米/分钟B .25分钟后甲的速度为400米/分钟C .乙比甲晚14分钟到达B 地D .A 、B 两地之间的路程为29400米二 、多选题 9.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=√x x <A,√A x ⩾A(A,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,下列结果正确的是( )A. A =16B. c =60C. A =4D. c =3010.对任意两个实数a ,b ,定义max{ a,b}={a,a >b,若f(x)=2−x 2,g(x)=x 2下列关于函数F(x)=max{ f(x),g(x)}的说法正确的有( )A. 函数F(x)是偶函数B. 函数F(x)有四个单调区间C. 方程F(x)=2有四个不同的根D. 函数F(x)的最大值为1,无最小值11.函数y =[x]的函数值表示不超过x 的最大整数.例如[1.1]=1,[2.3]=2设函数f(x)={1−x 2,x <0,x −[x],x ⩾0,则下列说法正确的是( )A. 函数f(x)的值域为(−∞,0]B. 若x ⩾0,则[f(x)]=0C. 方程f(x)=1有无数个实数根D. 若方程f(x)=−x +a 有两个不等的实数根,则实数a 的取值范围是[0,+∞)12.已知函数f(x)={x 2,x ⩽0,−x 2,x >0,则下列结论中正确的是( ) A. f(√2)=2B. 若f(m)=9,则m ≠±3C. f(x)是奇函数D. 在f(x)上R 单调递减三、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算. 可以享受折扣优惠金额折扣优惠率 不超过500元的部分5% 超过500元的部分 10% 某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__________元.14.函数()()222323y x x x x =---+零点的个数为_____________.15.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).四、解答题16..如图,某灌溉渠的横断面是等腰梯形,底宽2m ,渠深为1.8m ,斜坡的倾斜角是45°(无水状态不考虑).(1)试将横断面中水的面积()A h (2m )表示成水深h (m )的函数;(2)当水深为1.2m 时,求横断面中水的面积.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;(2)当x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大?并求出最大值.18.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+ ,且处理每吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?19.吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:5 2.236) 参考答案1.D 2.B3.C4.D5.C6.B7.B8.C9.AB;10.AB;11.BD;12.CD;13.112014.215.1616.(1)依题意,横断面中的水面是下底为2m ,上底为()22h +m ,高为h m 的等腰梯形,所以()()()222220 1.82h A h h h h h ++=⋅=+<≤. (2)由(1)知()()220 1.8A h h h h =+<≤ ()21.2 1.22 1.2 3.84h =+⨯=所以当水深为1.2m 时,横断面水中的面积为3.842m .17.(1)依题意,当04x <≤时()2v x =;当420x <≤时,()v x 是关于x 的一次函数,假设()(0)v x ax b a =+≠则42200a b a b +=⎧⎨+=⎩,解得0.1252.5a b =-⎧⎨=⎩所以()2,040.125 2.5,420x v x x x <≤⎧=⎨-+<≤⎩. (2)当04x <≤时()()()2028v x f x x v x x =⇒<=⋅=≤;当420x <≤时()()20.125 2.50.125 2.5v x x f x x x =-+⇒=-+当()2.51020.125x =-=⨯-时,()f x 取得最大值()1012.5f =. 因为12.58>,所以当x =10时,鱼的年生长量()f x 可以达到最大,最大值为12.53/千克米.18.(1)由题意知,平均每吨二氧化碳的处理成本为180000180000200220020022y x x x x x=+-≥⋅-=; 当且仅当1800002x x = ,即400x = 时等号成立 故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =--- 因为[]400,600x ∈,则[]80000,40000S ∈--故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.19.(1)当产量小于或等于50万盒时20020018010020300y x x x =---=-当产量大于50万盒时222002006035001403700y x x x x x =----=-+-故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时2050300700y ≤⨯-=;当50x >时21403700y x x =-+-当140702x ==时,21403700y x x =-+-取到最大值,为1200. 因为7001200<,所以当产量为70万盒时,该企业所获利润最大.20.(1)解:由题意知当120x =(辆/千米)时,0v =(千米/小时)代入80150k v x=--,解得2400k = 所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩. 当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤. 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.(2)解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时 ()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦ 4800(35)3667≤-≈. 当且仅当4500150150x x-=-,即30(55)83x =-≈时等号成立. 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.。

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)

高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。

然后根据分式的定义,分母不能为零,即 $x\neq0$。

同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。

综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。

⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。

然后根据分式的定义,分母不能为零,即 $x\neq-1$。

同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。

综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。

2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。

_。

_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。

综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。

对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。

因此定义域为 $\{x|2\leq x\leq3\}$。

3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。

答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。

综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。

对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。

高一数学-函数应用 培优专练-北师大版(含答案)

高一数学-函数应用 培优专练-北师大版(含答案)

函数应用一、选择题1.已知函数f(x)满足:①定义域为R;②对于任意的x∈R,有f(x+2)=2f(x);③当x∈[0,2]时,f(x)=2-|2x-2|.记φ(x)=f(x)-|U(x∈[-8,8]).根据以上信息,可以得到函数φ(x)的零点个数为()A.15B.10C.9D.82.[2020全国Ⅲ卷理]Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t)=1+e−0.23(K53),其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为(ln19≈3)()A.60B.63C.66D.693.已知函数y=f(x)和y=g(x)的定义域及值域均为[-a,a](a>0),它们的图象如图所示,则函数y=f(g(x))的零点的个数为()A.2B.3C.5D.64.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T 近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天5.函数f(x)=1|U−1的图象类似于汉字“囧”,故被称为“囧函数”,则下列关于函数f(x)的说法中正确的个数为()①函数f(x)的定义域为{x|x≠1};②f(f(2022))=-20212020;③函数f(x)的图象关于直线x=1对称;④当x∈(-1,1)时,f(x)max=-1;⑤函数g(x)=f(x)-x2+4有四个零点.A.2B.3C.4D.56.对于定义在R上的函数y=f(x),若f(m)·f(n)>0(m,n∈R,且m<n),则函数y=f(x)在(m,n)上()A.只有一个零点B.至少有一个零点C.无零点D.无法确定有无零点7.已知函数f(x)在区间[a,b]上单调,且图象是连续不断的,若f(a)·f(b)<0,则方程f(x)=0在区间[a,b]上()A.至少有一个实数根B.至多有一个实数根C.没有实数根D.必有唯一的实数根8.定义运算:x⊗y=|U,≥s<,已知函数f(x)=(x2-3)⊗(x-1),若函数y=f(x)-c恰有两个零点,则实数c 的取值范围是()A.[-3,-2)B.[-3,-2]∪[2,+∞)C.[-2,2]D.(-3,-2)∪[2,+∞)9.[2022辽宁重点高中协作体高一上期末考试]已知函数f(x)=−2−6−5,<0|(12)−1|,≥0,若关于x 的方程[f(x)]2+(2a-1)f(x)+a2-a=0有5个不同的实数根,则实数a的取值范围为()A.(-1,1]B.(-1,0]C.[0,1]D.[-1,1]二、非选择题10.如图,有一块矩形空地ABCD,要在这块空地上开辟一个内接四边形EFGH为绿地,使其四个顶点分别落在矩形ABCD的四条边上.已知|AB|=a(a>2),|BC|=2,且|AE|=|AH|=|CF|=|CG|,设|AE|=x,绿地EFGH的面积为y.(1)写出y关于x的函数解析式,并求出它的定义域.(2)当|AE|为何值时,绿地面积y最大?并求出最大值.11.已知函数f(x)=ax2-2x+1.(1)当a=34时,求f(x)在区间[1,2]上的值域.(2)当a≤12时,是否存在这样的实数a,使得关于x的方程f(x)-log24=0在区间[1,2]上有且只有一个根?若存在,求出实数a的取值范围;若不存在,请说明理由.12.已知函数f(x)=2x2-8x+m+3(m∈R)为R上的连续函数.(1)若函数f(x)在区间[-1,1]上存在零点,求实数m的取值范围.(2)若m=-4,判断函数f(x)在区间(-1,1)上是否存在零点.若存在,请在精确度为0.2的条件下,用二分法求出该零点x0存在的区间;若不存在,请说明理由.参考答案一、选择题1.B2.C3.D4.B5.B6.D7.D 8.D 9.A 二、非选择题10.(1)由题意,得S △AEH =S △CFG =12x 2,S △BEF =S △DGH =12(a -x )(2-x ),所以y =S 矩形ABCD -2S △AEH -2S △BEF =-2x 2+(a +2)x .由>0−>02−≥0>2,得0<x ≤2.故y =-2x 2+(a +2)x ,定义域为(0,2].(2)y =-2x 2+(a +2)x =-2(x -r24)2+(r2)28.当r24<2且a >2,即2<a <6时,当x =r24时,y max =(r2)28;当r24≥2,即a ≥6时,y =-2x 2+(a +2)x 在(0,2]上单调递增,则当x =2时,y max =2a -4.综上所述,当2<a <6时,|AE |=r24时绿地面积最大,最大值为(r2)28;当a ≥6时,|AE |=2时绿地面积最大,最大值为2a -4.11.(1)当a =34时,f (x )=34x 2-2x +1,f (x )图象的对称轴方程为x =43,易知43∈[1,2],又f (43)=-13,f (1)=-14<f (2)=0,所以f (x )在区间[1,2]上的值域为[-13,0].(2)存在实数a ∈[-1,12],使方程f (x )-log 24=0在区间[1,2]上有且只有一个根.当a =0时,函数f (x )=-2x +1在区间[1,2]上单调递减;当0<a ≤12时,1≥2,函数f (x )=ax 2-2x +1在区间[1,2]上单调递减;当a <0时,1<0,函数f (x )=ax 2-2x +1在区间[1,2]上单调递减.综上所述,当a ≤12时,函数f (x )在区间[1,2]上单调递减.令h (x )=log 24,x ∈[1,2],则h (x )在区间[1,2]上单调递增,原命题等价于函数f (x )与h (x )的图象在区间[1,2]上有唯一交点,则o1)≥ℎ(1)o2)≤ℎ(2),即−1≥log2144−3≤log224,解得a∈[-1,12].所以存在实数a∈[-1,12],使得关于x的方程f(x)-log24=0在区间[1,2]上有且只有一个根.12.(1)易知函数f(x)在区间[-1,1]上单调递减,∵f(x)在区间[-1,1]上存在零点,∴o−1)≥0o1)≤0,即2+8++3≥02−8++3≤0,∴-13≤m≤3.∴实数m的取值范围是[-13,3].(2)当m=-4时,f(x)=2x2-8x-1,易求出f(-1)=9,f(1)=-7.∵f(-1)·f(1)<0,f(x)在区间(-1,1)上单调递减,∴函数f(x)在区间(-1,1)上存在唯一零点x0.∵f(0)=-1<0,∴f(-1)·f(0)<0,∴x0∈(-1,0).∵f(-12)=72>0,∴f(-12)·f(0)<0,∴x0∈(-12,0).∵f(-14)=98>0,∴f(-14)·f(0)<0,∴x0∈(-14,0).∵f(-18)=132>0,∴f(-18)·f(0)<0,∴x0∈(-18,0).∵|-18-0|=18<15=0.2,∴所求区间为(-18,0).。

高一数学必修一第三章测试题及答案:函数的应用

高一数学必修一第三章测试题及答案:函数的应用

高一数学必修一第三章测试题及答案:函数的应用数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高一数学必修一第三章测试题及答案,具体请看以下内容。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=r,A={x|x0},b={x|x1},则AUb=()A{x|01} b.{x|0c.{x|x0}D.{x|x1}【解析】 Ub={x|x1},AUb={x|0【答案】 b2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()A.log2xb.12xc.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxb.f(x)=1xc.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+).故选A.【答案】 A4.已知函数f(x)满足:当x4时,f(x)=12x;当x4时,f(x)=f(x+1).则f(3)=()A.18b.8c.116D.16【解析】 f(3)=f(4)=(12)4=116.【答案】 c5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点b.有一个零点c.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,函数在[3,5]上只有一个零点4.【答案】 b6.函数y=log12(x2+6x+13)的值域是()A.rb.[8,+)c.(-,-2]D.[-3,+)【解析】设u=x2+6x+13=(x+3)2+44y=log12u在[4,+)上是减函数,ylog124=-2,函数值域为(-,-2],故选c.7.定义在r上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1b.y=|x|+1c.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选c.【答案】 c8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)b.(1,2)c(2,3)D.(3,4)【解析】由函数图象知,故选b.【答案】 b9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是()A.a-3b.a3c.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)(-,-3a+12)即-3a+124,a-3,故选A.10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xb.y=50x2-50x+100c.y=502xD.y=100log2x+100【解析】对c,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选c. 【答案】 c11.设log32=a,则log38-2log36可表示为()A.a-2b.3a-(1+a)2c.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lgx)f(1),则x的取值范围是()A.110,1b.0,110(1,+)c.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lgx)f(1)01,或lgx0-lgx1110,或0或110x的取值范围是110,10.故选c.【答案】 c二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},b=(-,a),若Ab,则实数a的取值范围是(c,+),其中c=________.【解析】 A={x|0【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},b={x|ax-1=0,ar},若Ab=A,则a的取值集合为{-1,13};④集合A={非负实数},b={实数},对应法则f:求平方根,则f是A到b的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为Ab=A,所以bA,若b=,满足bA,这时a=0;若b,由bA,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使Ab=,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VcD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是r上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是r上的偶函数,f(x)-f(-x)=0.exa+aex-e-xa-ae-x=0,即1a-aex+a-1ae-x=01a-a(ex-e-x)=0.由于ex-e-x不可能恒为0,当1a-a=0时,式子恒成立.又a0,a=1.(2)证明:∵由(1)知f(x)=ex+1ex,在(0,+)上任取x1f(x1)-f(x2)=ex1+1ex1-ex2-1ex2=(ex1-ex2)+(ex2-ex1)1ex1+x2.∵e1,0ex1+x21,(ex1-ex2)1-1ex1+x20,f(x1)-f(x2)0,即f(x1)f(x)在(0,+)上是增函数.高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高一数学必修一第三章测试题及答案,希望大家喜欢。

高一数学必修1《第三章 函数的应用》单元测试题(含答案)

高一数学必修1《第三章 函数的应用》单元测试题(含答案)

高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版

高一数学(必修一)《第四章 函数的应用》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、单选题1.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点为( ) A .0或12-B .0C .12-D .0或122.设()f x 在区间[],a b 上是连续变化的单调函数,且()()0f a f b ⋅<,则方程()0f x =在[],a b 内( ) A .至少有一实根 B .至多有一实根 C .没有实根D .必有唯一实根3.已知函数()22log 6f x x x =--,用二分法求()f x 的零点时,则其中一个零点的初始区间可以为( )A .()1,2B .()2,2.5C .()2.5,3D .()3,3.54.设函数()26x f x e x =+-, 在用二分法求方程()0f x =在()12x ∈,内的近似解过程中得(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,,,则方程的解所在的区间是( )A .()01,B .()11.25,C .()1.251.5,D .()1.52,5.函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,56.若23691log 3log log 62m ⨯⨯=,则实数m 的值为( ) A .4B .6C .9D .127.若函数f (x )唯一零点同时在(0,4),(0,2),(1,2),3(1,)2内,则与f (0)符号相同的是( )A .f (4)B .f (2)C .f (1)D .f 3()28.通过下列函数的图象,判断能用“二分法”求其零点的是( )A .B .C. D .二、多选题9.某同学求函数()ln 26f x x x =+-的零点时,用计算器算得部分函数值如表所示:则方程ln 260x x +-=的近似解(精确度0.1)可取为A .2.52B .2.56C .2.66D .2.75三、填空题10.若函数()0y kx b k =+≠有一个零点是2,则函数2y bx kx =+的零点是______.11.定义方程()()f x f x '=的实根0x 叫做函数()f x 的“新驻点”,若函数()2e 1xg x =+,()ln h x x =和()31x x ϕ=-的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为_______.12.已知函数()226xf x x =+-的零点为0x ,不等式04x x ->的最小整数解为k ,则k =______.13.定义在R 上的奇函数()f x 满足(1)()f x f x +=-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时()4f x x =,则方程1()=01f x x +-在[]2,4-上的所有根之和为____.四、解答题14.已知A 地到B 地的电话线路发生故障(假设线路只有一处发生故障),这是一条10km 长的线路,每隔50m 有一根电线杆,如何迅速查出故障所在(精确到50m )?15.已知函数()2283f x x x m =-++为R 上的连续函数.(1)若函数()f x 在区间[]1,1-上存在零点,求实数m 的取值范围.(2)若4m =-,判断()f x 在()1,1-上是否存在零点?若存在,请在误差不超过0.1的条件下,用二分法求出这个零点所在的区间;若不存在,请说明理由. 16.设函数32()613123g x x x x =----.(1)证明:()g x 在区间(-1,0)内有一个零点;(2)借助计算器,求出()g x 在区间(-1,0)内零点的近似解.(精确到0.1) 17.已知函数()e 23x f x mx =-+的图象为曲线C ,若曲线C 存在与直线13y x =垂直的切线,求实数m 的取值范围.参考答案与解析1.A【分析】根据函数f (x )=ax +b 有一个零点是2,得到b =-2a ,再令g (x )=0求解. 【详解】因为函数f (x )=ax +b 有一个零点是2 所以b =-2a所以g (x )=-2ax 2-ax =-a (2x 2+x ). 令g (x )=0,得x 1=0,x 2=-12. 故选:A 2.D【分析】根据零点存在性定理及函数的单调性判断即可.【详解】解:因为()f x 在区间[],a b 上连续的单调函数,且()()0f a f b ⋅<所以函数()f x 的图象在[],a b 内与x 轴只有一个交点,即方程()0f x =在[],a b 内只有一个实根. 故选:D 3.C【分析】根据函数解析式,结合二次函数与对数函数单调性,分别判断ABD 都不正确,再结合零点存在性定理,即可得出结果.【详解】因为函数()22log 6f x x x =--在()0,∞+上显然是连续函数2yx 和2log 6y x =+在()0,∞+上都是增函数当()1,2x ∈时,则2222246log 16log 6x x <=<=+<+,所以()22log 60f x x x =--<在()1,2x ∈上恒成立; 当()2,2.5x ∈时,则22222.5 6.257log 26log 6x x <=<=+<+,所以()22log 60f x x x =--<在()2,2.5x ∈上也恒成立;当()3,3.5x ∈时,则222239log 3.56log 6x x >=>+>+,所以()22log 60f x x x =-->在()3,3.5x ∈上恒成立又22(2.5) 2.5log 2.560f =--< 2(3)9log 360f =-->根据函数零点存在性定理,可得()f x 的其中一个零点的初始区间可为()2.5,3. 故选:C.【点睛】方法点睛:判断零点所在区间的一般方法:先根据题中条件,判断函数在所给区间是连续函数,再由零点存在性定理,即可得出结果. 4.C【分析】先判断函数()f x 的单调性,再根据已知条件确定方程的解所在的区间即可. 【详解】函数()26x f x e x =+-在R 上为增函数又(0)0(1)0(1.25)0(1.5)0(2)0f f f f f <<<>>,,,, 则方程的解所在的区间为()1.251.5,. 故选:C.【点睛】本题主要考查了利用二分法求方程的解所在的区间问题.属于较易题. 5.B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<- ()23ln 3ln 31031f =-=->- 所以()()230f f <所以函数的零点所在的区间是()2,3. 故选:B 6.A【分析】由换底公式对原式变型即可求解.【详解】∵2369lg3lg lg 6log 3log log 6lg 2lg36lg9m m ⨯⨯=⨯⨯ 2lg3lg lg 6lg 11log lg 22lg 62lg34lg 242m m m =⨯⨯=== ∴2log 2m =,∴4m =. 故选:A . 7.C【分析】根据零点存在定理判断,注意零点的唯一性.【详解】由题意()f x 的唯一零点在3(1,)2上,因此(1)f 与(0)f 符号相同,3()2f ,(2)f 和(4)f 符号相同且与(0)f 符号相反故选:C . 8.C【解析】利用二分法的定义依次判断选项即可得到答案. 【详解】在A 中,函数无零点,故排除A在B 和D 中,函数有零点,但它们在零点左右的函数值符号相同 因此它们都不能用二分法来求零点.而在C 中,函数图象是连续不断的,且图象与x 轴有交点并且在交点两侧的函数值符号相反,所以C 中的函数能用二分法求其零点. 故选:C【点睛】本题主要考查二分法的定义,同时考查学生分析问题的能力,属于简单题. 9.AB【分析】根据表格中函数值在0的左右两侧,最接近的值,即()2.50.084f ≈-,()2.56250.066f ≈可知近似根在()2.5,2.5625之内,再在四个选项中进行选择,得到答案.【详解】由表格函数值在0的左右两侧,最接近的值,即()2.50.084f ≈- ()2.56250.066f ≈ 可知方程ln 260x x +-=的近似根在()2.5,2.5625内 因此选项A 中2.52符合,选项B 中2.56也符合 故选AB .【点睛】本题考查利用二分法求函数零点所在的区间,求函数零点的近似解,属于简单题.10.0或12【分析】先求得,k b 的关系式,然后求得函数2y bx kx =+的零点. 【详解】由于函数()0y kx b k =+≠有一个零点是2 所以20k b += 2b k =-所以()22221y bx kx kx kx kx x =+=-+=--由于0k ≠,所以()2100kx x x --=⇒=或12x =. 故答案为:0或12 11.c b a >>【分析】先根据函数的新定义分别求出a ,b ,c ,然后再比较大小【详解】由()2e 1x g x =+,得()22e xg x '=所以由题意得22e 12e a a +=,解得0a = 由()ln h x x =,得()1h x x'= 所以由题意得1ln b b=令1()ln t x x x=-,(0x >),则211()0t x x x '=+>所以()t x 在(0,)+∞上递增因为(1)10t =-< ()1212ln 2ln 202t lne =-=->所以存在0(1,2)x ∈,使0()0t x =,所以(1,2)b ∈由()31x x ϕ=-,得()23x x ϕ'=所以由题意得3213c c -=令32()31m x x x =--,则2()36m x x x '=- 令()0m x '=,则0x =或2x =当0x <或2x >时()0m x '>,当02x << ()0m x '< 所以()m x 在(,0)-∞和()2,+∞上递增,在()0,2上递减所以()m x 的极大值为(0)1m =-,极小值为()283415m =-⨯-=-因为(3)2727110m =--=-< (4)64121510m =--=> 所以()m x 存在唯一零点0(3,4)x ∈,所以(3,4)c ∈ 所以c b a >> 故答案为:c b a >> 12.6【分析】利用()f x 单调性和零点存在定理可知012x <<,由此确定04x +的范围,进而得到k .【详解】函数()226xf x x =+-为R 上的增函数,()120f =-< ()220f =>∴函数()226x f x x =+-的零点0x 满足012x << 0546x ∴<+<04x x ∴->的最小整数解6k =. 故答案为:6. 13.6【分析】由奇函数()f x 满足(1)()f x f x +=-,可知函数的周期性与对称性,作出函数图象,判断函数()f x 与函数11y x =--的交点情况. 【详解】因为函数()f x 满足(1)()f x f x +=-,所以函数()f x 的对称轴为直线12x = 又因为函数()f x 为奇函数,所以()()f x f x =--又(1)()f x f x +=-,所以(1)()f x f x +=-,所以函数()f x 的周期为2又因为当10,2x ⎡⎤∈⎢⎥⎣⎦时,()4f x x =,作出函数()f x 和()11y g x x ==--的简图如图所示由411y x y x =⎧⎪⎨=-⎪-⎩可得122x y ⎧=⎪⎨⎪=⎩故当102x ≤≤时,线段4y x =与曲线11y x =--仅有一个交点 故由图可知,有6个交点,这6个交点是关于点()1,0对称的,且关于点()1,0对称的两个点的横坐标之和为2则所有根之和为326⨯=. 故答案为:6. 14.见解析【解析】利用二分法取线段的中点即可迅速查出故障所在. 【详解】如图:可首先从中点C 开始检查,若AC 段正常,则故障在BC 段; 再到BC 段中点D 检查,若CD 段正常,则故障在BD 段;再到BD 段中点E 检查……每检查一次就可以将待查的线路长度缩短一半 经过8次查找,可将故障范围缩小到50m 之内,即可迅速找到故障所在. 【点睛】本题考查了二分法在生活中的应用,理解二分法的定义,属于基础题. 15.(1)[]13,3-; (2)存在,区间为1,08⎛⎫- ⎪⎝⎭.【分析】(1)根据()2283f x x x m =-++,结合二次函数的图象与性质,可知()f x 在区间[]1,1-上单调递减,结合条件()f x 在区间[]1,1-上存在零点,则有()()1010f f ⎧-≥⎪⎨≤⎪⎩,解不等式组即可求出实数m 的取值范围;(2)当4m =-时,得()2281f x x x =--,可知()f x 在区间()1,1-上单调递减,并求得()()110f f -⋅<,根据零点存在性定理可知()f x 在()1,1-上存在唯一零点0x ,最后利用二分法和零点存在性定理,求出在误差不超过0.1的条件下的零点所在的区间. (1) 解:()2283f x x x m =-++为二次函数,开口向上,对称轴为2x =可知函数()f x 在区间[]1,1-上单调递减∵()f x 在区间[]1,1-上存在零点,∴()()1010f f ⎧-≥⎪⎨≤⎪⎩即28302830m m +++≥⎧⎨-++≤⎩,解得:133m -≤≤∴实数m 的取值范围是[]13,3-. (2)解:当4m =-时,()2281f x x x =--为二次函数,开口向上,对称轴为2x =所以()f x 在区间()1,1-上单调递减()19f ∴-=,()17f =-则()()110f f -⋅<∴函数()f x 在()1,1-上存在唯一零点0x 又()f x 为R 上的连续函数∵()010f =-<,∴()()100f f -⋅<,∴()01,0x ∈- ∵17022f ⎛⎫-=> ⎪⎝⎭,∴()1002f f ⎛⎫-⋅< ⎪⎝⎭,∴01,02x ⎛⎫∈- ⎪⎝⎭ ∵19048f ⎛⎫-=> ⎪⎝⎭,∴()1004f f ⎛⎫-⋅< ⎪⎝⎭,∴01,04x ⎛⎫∈- ⎪⎝⎭∵110832f ⎛⎫-=> ⎪⎝⎭,∴()1008f f ⎛⎫-⋅< ⎪⎝⎭,∴01,08x ⎛⎫∈- ⎪⎝⎭此时误差为10.1610218-=<-,即满足误差不超过0.1 ∴零点所在的区间为1,08⎛⎫- ⎪⎝⎭.16.(1)证明见解析;(2)0.4-.【分析】(1)令32()6131230g x x x x =----=,转化为函数()()326,13123h x x r x x x =-=++的交点问题,利用数形结合法证明;(2)利用函数零点存在定理,根据(1)的建立求解. 【详解】(1)令32()6131230g x x x x =----= 则32613123x x x -=++令()()326,13123h x x r x x x =-=++在同一坐标系中作出函数()(),h x r x 的图象,如图所示:因为()()()()11,00h r h r ><,即(1)0,(0)0g g ->< 所以()g x 在区间(-1,0)内有零点再由图象知()g x 在区间(-1,0)内有一个零点.(2)由()0(0.5)00.5,0(0)30g x g ->⎧⇒∈-⎨=-<⎩; 由()0(0.25)00.5,0.25(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.375)00.5,0.375(0.5)0g x g -<⎧⇒∈--⎨->⎩; 由()0(0.4375)00.4375,0.375(0.375)0g x g ->⎧⇒∈--⎨-<⎩ 所以00.4x ≈-. 17.3,2⎛⎫+∞ ⎪⎝⎭【分析】求出导函数()e 2xf x m '=-,由题意,原问题等价于2e 3x m =+有解,从而即可求解.【详解】解:函数()f x 的导数()e 2xf x m '=-由题意,若曲线C 存在与直线13y x =垂直的切线,则()1e 213x m -=-,即2e 3x m =+有解第 11 页 共 11 页 又因为e 33x +>,所以23m >,即32m >所以实数m 的取值范围是3,2⎛⎫+∞ ⎪⎝⎭.。

必修一数学《函数的应用》经典习题(含答案解析)

必修一数学《函数的应用》经典习题(含答案解析)

必修一数学(第三章函数的应用)单元检测(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2020·洛阳高一检测)函数f(x)的图象如图所示,函数f(x)零点的个数为( )A.1个B.2个C.3个D.4个2.(2020·宜昌高一检测)若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=03.已知方程x=3-lgx,下列说法正确的是( )A.方程x=3-lgx的解在区间(0,1)内B.方程x=3-lgx的解在区间(1,2)内C.方程x=3-lgx的解在区间(2,3)内D.方程x=3-lgx的解在区间(3,4)内4.(2020·长沙高一检测)已知f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,那么下面命题错误的是( )A.函数f(x)在(1,2)或[2,3]内有零点B.函数f(x)在(3,5)内无零点C.函数f(x)在(2,5)内有零点D.函数f(x)在(2,4)内不一定有零点5.(2020·临川高一检测)设x0是方程lnx+x=4的解,则x0在下列哪个区间内( )A.(3,4)B.(0,1)C.(1,2)D.(2,3)6.(2020·新余高一检测)下列方程在区间(0,1)存在实数解的是( )A.x2+x-3=0B.x+1=0C.x+lnx=0D.x2-lgx=07.(2020·郑州高一检测)函数f(x)=3x-log2(-x)的零点所在区间是( )A. B.(-2,-1)C.(1,2)D.8.某种型号的手机自投放市场以来,经过两次降价,单价由原来的2000元降到1280元,则这种手机的价格平均每次降低的百分率是( )A.10%B.15%C.18%D.20%9.向高为H的圆锥形漏斗注入化学溶液(漏斗下方口暂时关闭),注入溶液量V与溶液深度h的函数图象是( )10.若方程a x-x-a=0有两个解,则a的取值范围是( )A.(1,+∞)B.(0,1)C.(0,+∞)D.∅11.(2020·福州高一检测)若函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,则f可以是( )A.f=4x-1B.f=(x-1)2C.f=e x-1D.f=ln12.如图表示一位骑自行车者和一位骑摩托车者在相距80km的两城镇间旅行的函数图象,由图可知:骑自行车者用了6小时,沿途休息了1小时,骑摩托车者用了2小时,根据这个函数图象,推出关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发了1.5小时后,追上了骑自行车者.其中正确信息的序号是( )A.①②③B.①③C.②③D.①②二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2020·南昌高一检测)用“二分法”求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点为x0=2.5,那么下一个有根的区间是.14.已知函数f(x)=若关于x的方程f(x)-k=0有唯一一个实数根,则实数k的取值范围是.15.若函数f(x)=lgx+x-3的近似零点在区间(k,k+1)(k∈Z)内,则k= .16.定义在R上的偶函数y=f(x),当x≥0时,y=f(x)是单调递减的,f(1)·f(2)<0,则y=f(x)的图象与x轴的交点个数是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020·杭州高一检测)已知函数f(x)的图象是连续的,有如下表格,判断函数在哪几个区间上有零点.x -2 -1.5 -1 -0.5 0 0.5 1 1.5 2f(x) -3.51 1.02 2.37 1.56 -0.38 1.23 2.77 3.45 4.89 18.(12分)设f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3,2.(1)求f(x).(2)当函数f(x)的定义域为[0,1]时,求其值域.19.(12分)用二分法求方程2x+x-8=0在区间(2,3)内的近似解.(精确度为0.1,参考数据:22.5≈5.657,22.25≈4.757,22.375≈5.187,22.4375≈5.417,22.75≈6.727) 20.(12分)(2020·潍坊高一检测)已知二次函数f(x)的图象过点(0,3),它的图象的对称轴为x=2,且f(x)的两个零点的平方和为10,求f(x)的解析式.21.(12分)(2020·徐州高一检测)在经济学中,函数f(x)的边际函数为Mf(x),定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润的函数等于收入与成本之差.求出利润函数p(x)及其边际利润函数Mp(x);判断它们是否具有相同的最大值;并写出本题中边际利润函数Mp(x)最大值的实际意义.22.(12分)A地某校准备组织学生及学生家长到B地进行社会实践,为便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2∶1,从A到B的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买单程火车票至少要花多少钱?最多要花多少钱?参考答案与解析1【解析】选D.由图象知与x轴有4个交点,则函数f(x)共有4个零点.2【解析】选C.f(a)f(b)<0时,存在实数c∈(a,b)使得f(c)=0,f(a)f(b)>0时,可能存在实数c∈(a,b)使得f(c)=0.3【解析】选C.2<3-lg2,3>3-lg3,又f(x)=x+lgx-3在(0,+∞)上是单调递增的,所以方程x=3-lgx的解在区间(2,3)内.4【解析】选C.f(x)唯一的零点在区间(1,3),(1,4),(1,5)内,则区间(1,3)内必有零点,(2,5)内不一定有零点,(3,5)内无零点,所以选C.5【解析】选D.令f(x)=lnx+x-4,由于f(2)=ln2+2-4<0,f(3)=ln3+3-4>0,f(2)·f(3)<0,又因为函数f(x)在(2,3)内连续,故函数f(x)在(2,3)内有零点,即方程lnx+x=4在(2,3)内有解.6【解题指南】先从好判断的一次方程、二次方程入手,不好求解的利用函数图象的交点进行判断.【解析】选 C.x2+x-3=0的实数解为x=和x=,不属于区间(0,1);x+1=0的实数解为x=-2,不属于区间(0,1);x2-lgx=0在区间(0,1)内无解,所以选C,图示如下:7【解析】选 B.f(x)=3x-log2(-x)的定义域为(-∞,0),所以C,D不能选;又f(-2)·f(-1)<0,且f(x)在定义域内是单调递增函数,故零点在(-2,-1)内.8【解析】选D.设平均每次降低的百分率为x,则2000(1-x)2=1280,解得x=0.2,故平均每次降低的百分率为20%.9【解析】选A.注入溶液量V随溶液深度h的增加增长越来越快,故选A.10【解析】选A.画出y1=a x,y2=x+a的图象知a>1时成立.11【解析】选A.f=4x-1的零点为x=,f=(x-1)2的零点为x=1,f=e x-1的零点为x=0,f=ln的零点为x=.现在我们来估算g=4x+2x-2的零点,因为g(0)= -1,g=1,g<0,且g(x)在定义域上是单调递增函数,所以g(x)的零点x∈,又函数f的零点与g=4x+2x-2的零点之差的绝对值不超过0.25,只有f=4x-1的零点适合.12【解析】选A.由图象可得:①骑自行车者比骑摩托车者早出发了3小时,晚到1小时,正确;②骑自行车者是变速运动,骑摩托车者是匀速运动,正确;③骑摩托车者在出发了1.5小时后,追上了骑自行车者,正确.13【解析】令f(x)=x3-2x-5,f(2.5)·f(2)<0所以下一个有根的区间是(2,2.5). 答案:(2,2.5)14【解析】关于x的方程f(x)-k=0有唯一一个实数根,等价于函数y=f(x)与y=k 的图象有唯一一个交点,在同一个平面直角坐标系中作出它们的图象.由图象可知实数k的取值范围是[0,1)∪(2,+∞).答案:[0,1)∪(2,+∞)15【解析】由lgx+x-3=0,可得lgx=-x+3,令y1=lgx,y2=-x+3,结合两函数的图象,可大体判断零点在(1,3)内,又因为f(2)=lg2-1<0,f(3)=lg3>0,f(x)=lgx+x-3是单调递增函数,所以k=2.答案:216【解析】f(1)·f(2)<0,y=f(x)在区间(1,2)内有一个零点,由偶函数的对称性知,在区间(-2,-1)内也有一个零点,所以共有2个零点.答案:217【解析】因为函数的图象是连续不断的,并且由对应值表可知f·f<0,f·f(0)<0,f·f<0,所以函数f在区间(-2,-1.5),(-0.5,0)以及(0,0.5)内有零点.18【解析】(1)因为f(x)的两个零点分别是-3,2,所以即解得a=-3,b=5,f(x)=-3x2-3x+18.(2)由(1)知f(x)=-3x2-3x+18的对称轴x=-,函数开口向下,所以f(x)在[0,1]上为减函数,f(x)的最大值f(0)=18,最小值f(1)=12,所以值域为[12,18].19【解析】设函数f(x)=2x+x-8,则f(2)=22+2-8=-2<0,f(3)=23+3-8=3>0,所以f(2)·f(3)<0,说明这个函数在区间(2,3)内有零点x0,即原方程的解. 用二分法逐次计算,列表如下:区间中点的值中点函数近似值(2,3)2.50.157(2,2.5)2.25-0.993(2.25,2.5)2.375-0.438(2.375,2.5)2.437 5-0.145 5由表可得x0∈(2,2.5),x0∈(2.25,2.5),x0∈(2.375,2.5),x0∈(2.4375,2.5).因为|2.4375-2.5|=0.0625<0.1,所以方程2x+x-8=0在区间(2,3)内的近似解可取为2.4375.20【解析】设二次函数为f(x)=ax2+bx+c(a≠0).由题意知:c=3,-=2.设x1,x2是方程ax2+bx+c=0的两根,则+=10,所以(x1+x2)2-2x1x2=10,所以-=10,所以16-=10,所以a=1.代入-=2中,得b=-4.所以f(x)=x2-4x+3.21【解析】p(x)=R(x)-C(x)=-20x2+2500x-4000,x∈[1,100],x∈N,所以Mp(x)=p(x+1)-p(x)=[-20(x+1)2+2500(x+1)-4000]-(-20x2+2500x-4000),=2480-40x,x∈[1,100],x∈N;所以p(x)=-20+74125,x∈[1,100],x∈N,故当x=62或63时,p(x)max=74120(元),因为Mp(x)=2480-40x为减函数,当x=1时有最大值2440.故不具有相等的最大值.边际利润函数取最大值时,说明生产第二台机器与生产第一台的利润差最大.22【解析】(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座火车票,依题意得:解得则2m=20,答:参加社会实践的老师、家长与学生各有10人、20人与180人.(2)由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x-180)名成年人买二等座火车票,(210-x)名成年人买一等座火车票.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x-180)+81(210-x),即y=-13x+13950(180≤x<210).②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长、老师一起购买一等座火车票共(210-x)张.所以火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210-x),即y=-30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=-13x+13950,由此可见,当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=-30x+17010,由此可见,当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买单程火车票至少要花11233元,最多。

高一数学寒假作业同步练习题函数的应用含解析

高一数学寒假作业同步练习题函数的应用含解析

函数的应用1.函数()1x f x e x =++零点所在的区间是( )A .()0,1B .()1,0-C .()2,1--D .()1,2【答案】C 【详解】()00120f e =+=>,()11120f e e =++=+>,()111110f e e ---=-+=>,()2222110f e e ---=-+=-<,()2222130f e e =++=+>()()210f f ∴-⋅-< ()f x ∴零点所在区间为()2,1--故选:C 。

2.函数()11,01,0x f x x x x ⎧+>⎪=⎨⎪+≤⎩的零点是()A .1-B .0C .1D .2【答案】A【详解】当0x >时,令0f x ,则110x+=,解得1x =-,不满足0x >,舍去;当0x ≤时,令0fx,则10x +=,解得1x =-,满足0x ≤.所以,函数()f x 的零点是1-.故选:A.3.下列函数中,在()1,1-内有零点且单调递增的是( ) A .212y x =-B .3y x =-C .13log y x =D .31xy =-【答案】D 【详解】对于A ,212y x =-,为二次函数,在(1,0)-上为减函数,不符合题意;对于B ,3y x =-,在(1,1)-上为减函数,不符合题意;对于C,13y log x =,其定义域为(0,)+∞,在(1,0)-上没有定义,不符合题意;对于D,31x y =-,在(1,1)-上有零点0x =,且在(1,1)-为增函数,符合题意;故选:D4.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系( 2.718kx by ee +==⋯为自然对数的底数,k b ,为常数)。

若该食品在0℃的保鲜时间是192h ,在22℃的保鲜时间是48h ,则该食品在33℃的保鲜时间是( ) A .16h B .20h C .24h D .26h【答案】C【详解】由题可知当0x =时,192y =;当22x =时,48y =,2219248bk b e e +⎧=∴⎨=⎩,解得1119212b k e e ⎧=⎪⎨=⎪⎩,则当33x =时,()3333111192242k bk b y e ee +⎛⎫==⋅=⨯= ⎪⎝⎭.故选:C.5.某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,杂志的单价每提高0。

新教材高一数学必修第一册三角函数综合检测答案解析

新教材高一数学必修第一册三角函数综合检测答案解析

新教材高一数学必修第一册三角函数综合检测答案解析一、单选题1.若()tan 2πα+=,则()()2sin 4sin cos 2παπαα⎛⎫----= ⎪⎝⎭( )A .95- B .75-C .75D .9575=-2.已知角α的终边在直线2y x =上,则sin cos αα=( ) A .25B .25-C .45D .45-3.函数22sin 2cos 3y x x =+-的最大值是( ) A .1- B .12C .12-D .5-【答案】C【分析】结合同角三角函数的基本关系式、二次函数的性质,求得函数的最大值. 【详解】()222sin 2cos 321cos 2cos 3y x x x x =+-=-+-1122-, 的最大值是12-的二次式求最值,属于基础题4()2x x π⎛⎫+- ⎪⎝⎭的结果为( )A .6x π⎛⎫+ ⎪⎝⎭B .3x π⎛⎫+ ⎪⎝⎭C .6x π⎛⎫+ ⎪⎝⎭D .3x π⎛⎫+ ⎪⎝⎭5.将函数()()sin 0,0g x A x A ωω=>>,的图象向左平移中()0ϕϕπω<<个单位后得到函数()y f x =的图象,若()y f x =的图象关于y 轴对称,且()()130f f -==,则ω的可能取值为( ) A .3 B .13C .32π D .π6.设z ∵C ,且|z |=1,当|(z ﹣1)(z ﹣i )|最大时,z =( )A .﹣1B .﹣iC D7.已知()sin (0)3f x x ωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:∵()()122f x f x -=时,12x x -的最小值为2π;∵3y f x π⎛⎫=- ⎪⎝⎭是奇函数;∵(0)6f f π⎛⎫< ⎪⎝⎭.若()f x 在[0,)t 上没有最小值,则实数t 的取值范围是 A .50,12π⎛⎤⎥⎝⎦B .50,6π⎛⎤ ⎥⎝⎦C .511,1212ππ⎛⎤ ⎥⎝⎦D .511,612ππ⎛⎤⎥⎝⎦8.已知1x ,2x ,是函数()()()tan 0,0f x x ωϕωϕπ=-><<的两个零点,且12x x -的最小值为3π,若将函数()f x 的图象向左平移12π个单位长度后得到的图象关于原点对称,则ϕ的最大值为( ) A .34πB .4π C .78π D .8π二、多选题9.设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A .若α,r 确定,则L ,S 唯一确定 B .若α,l 确定,则L ,S 唯一确定 C .若S ,L 确定,则α,r 唯一确定 D .若S ,l 确定,则α,r 唯一确定10.已知函数()sin f x x x =,则下列说法中正确的有( ) A .函数()f x 的值域为[1,2] B .直线是6x π=函数()f x 图象的一条对称轴C .函数()f x 的最小正周期为πD .函数()f x 在910109ππ⎡⎤⎢⎥⎣⎦,上是增函数11.已知函数()sin()0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为π2B .函数()y f x =的图象关于直线19π12x =对称 C .函数()y f x =在区间2ππ,36⎡⎤--⎢⎥⎣⎦上单调递增D .函数()1y f x =-在区间[]0,2π上有4个零点2112.若函数()()2ln 1=-+f x x ax 在区间[)2,+∞上单调递增,则下列实数可以作为a 值的是( )A .4B .52C .2D .0三、填空题13.若1cos 35πα⎛⎫+= ⎪,0,2πα⎛⎫∈ ⎪,则sin α=__________________.14.已知02πα<<,1cos 63α⎛⎫+= ⎪⎝⎭,则sin 23α⎛⎫+= ⎪⎝⎭______.15.若函数()()sin 0f x x ωω=>在()0π,上单调递增,则ω的取值范围是________________.16.已知()sin()4f x x ωϕ=+-(0,02ωϕ><<)为奇函数,且()y f x =的图像与x 轴的两个相邻交点之间的距离为π,设矩形区域Ω是由直线2x π=±和1y =±所围成的平面图形,区域D 是由函数()2y f x π=+、2x π=±及1y =-所围成的平面图形,向区域Ω内随机地抛掷一粒豆子,则该豆子落在区域D 的概率是___________.2π四、解答题 17.已知tan α=2. (1)求sin 3cos sin cos αααα-+的值;(2)求2sin 2α-sin αcos α+cos 2α的值.18.已知,(0,)αβπ∈,且11tan(),tan 27αββ-==-,求2αβ-的值.【详解】tan tan[(α=)tan[(β-=11tan 1,0,tan ,3472ππααββ=<∴<<=-∴<故答案为:34π-. 19.已知函数2()cos 3sin cos (0,)ωωωω=++>∈R f x x x x m m .再从条件∵、条件∵、条件∵这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件∵:函数()f x 的最小正周期为π;条件∵:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件∵:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.112cos222ωω+++x x m π1sin(2)62ω=+++x m .选择∵∵: 因为2ππ2T ω==,所以1ω=. 又因为1(0)12f m =+=,所以12m =-.所以π()sin(2)6f x x =+.当ππ22π62x k +=-,Z k ∈,即ππ3x k =-,Z k ∈时,()1f x =-. 所以函数()f x 的最小值为1-. 选择∵∵: 因为2ππ2T ω==,所以1ω=. 又因为函数()f x 的最大值为3322m +=, 所以0m =.所以π1()sin(2)62f x x =++.当ππ22π62x k +=-,Z k ∈,即ππ3x k =-,Z k ∈时, πsin(2)16x +=-,所以函数()f x 的最小值为11122. 选择∵∵:因为1(0)12f m =+=,所以12m =-,因为函数()f x 的最大值为3322m +=,所以0m =m 的取值不可能有两个,∴无法求出解析式,舍去.(2) 选择∵∵: 令πsin(2)06x +=, 则π2π6x k +=,Z k ∈, 所以ππ212k x =-,Z k ∈. 当1,2k =时,函数()f x 的零点为5π11π,1212, 由于函数()f x 在区间[0,]t 上有且仅有1个零点, 所以5π11π1212t ≤<. 所以t 的取值范围是5π11π,1212⎡⎫⎪⎢⎣⎭. 选择∵∵:令π1sin(2)062++=x ,则π722π+π66+=x k ,Z k ∈,或π1122π+π66+=x k ,Z k ∈, 所以ππ+2=x k ,Z k ∈,或5π+π6=x k ,Z k ∈. 当0k =时,函数()f x 的零点分别为π5π,26, 由于函数()f x 在区间[0,]t 上有且仅有1个零点, 所以π5π26t ≤<. 所以t 的取值范围是π5π,26⎡⎫⎪⎢⎣⎭.20.已知函数()ππ2cos 233f x x x ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,(∵)求π6f ⎛⎫⎪⎝⎭的值;(∵)求函数()f x 的最小正周期和单调递增区间.21.已知函数()f x 是R 上的奇函数,且()f x 的图象关于直线=1x 对称,当[0,1]x ∈时,()21x f x =-.(1)求()f x 的最小正周期,并用函数的周期性的定义证明;(2)当[1,2]∈x 时,求()f x 的解析式; (3)计算(0)(1)(2)(2018)f f f f ++++的值.【答案】(1)见解析 (2)2()21x f x -=- (3)1【分析】(1)结合已知条件,利用函数的对称关系即可求解; (2)利用函数的对称关系即可求解;(3)利用周期性和()f x 在[0,2]上的解析式即可求解. (1)因为函数()f x 是R 上的奇函数,且()f x 的图象关于直线=1x 对称, 所以()(2)()f x f x f x =-=--,不妨令t x =-,则(2)()f t f t +=-,即()(2)f t f t =-+, 从而(2)(22)(4)f t f t f t +=-++=-+,即()(4)f t f t =+, 即()f x 的一个周期为4,因为当[0,1]x ∈时,()21x f x =-,即()f x 在[0,1]上的单调递增, 所以由奇函数性质可知,()f x 在[]1,1-上单调递增, 又由对称性可知,()f x 在[1,3]单调递减, 从而()f x 的最小正周期为4. (2)当[1,2]∈x 时,则2[0,1]x -∈,因为当[0,1]x ∈时,()21x f x =-,且()f x 的图象关于直线=1x 对称, 所以当[1,2]∈x 时,2()(2)21x f x f x -=-=-. (3)由(1)(2)和()f x 的周期性可知,(0)=0f ,(1)1=f ,(2)0f =,(3)(1)(1)1f f f =-=-=-, 因为()f x 的最小正周期为4, 所以(0)(1)(2)(2018)505[(0)(1)(2)(3)](3)1f f f f f f f f f ++++=+++-=.22.如图,某自来水公司要在公路两侧安装排水管,公路为东西方向,在路北侧沿直线1l 排,在路南侧沿直线2l 排,现要在矩形区域ABCD 内沿直线将1l 与2l 接通.已知60AB m =,80BC m =,公路两侧排水管费用为每米1万元,穿过公路的EF 部分的排水管费用为每米2万元,设EF与AB所成的小于90︒的角为α.(∵)求矩形区域ABCD内的排水管费用W关于α的函数关系;(∵)求排水管的最小费用及相应的角α.cosαcos cos cosαααα-⎛⎫sin24f x,()f x为增函数;。

高一数学 函数的应用练习题难题带答案

高一数学 函数的应用练习题难题带答案

高一数学必修一函数的应用一.选择题(共30小题)1.已知函数,关于x的方程f(x)=a存在四个不同实数根,则实数a的取值范围是()A.(0,1)∪(1,e)B.C.D.(0,1)2.某码头有总重量为13.5吨的一批货箱,对于每个货箱重量都不超过0.35吨的任何情况,都要一次运走这批货箱,则至少需要准备载重1.5吨的卡车()A.12辆B.11辆C.10辆D.9辆3.已知函数f(x)=和g(x)=a(a∈R且为常数).有以下结论:①当a=4时,存在实数m,使得关于x的方程f(x)=g(x)有四个不同的实数根;②存在m∈[3,4],使得关于x的方程f(x)=g(x)有三个不同的实数根;③当x>0时,若函数h(x)=f2(x)+bf(x)+c恰有3个不同的零点x1,x2,x3,则x1x2x3=1;④当m=﹣4时,关于x的方程f(x)=g(x)有四个不同的实数根x1,x2,x3,x4,且x1<x2<x3<x4,若f(x)在[x,x4]上的最大值为ln4,则sin(3x1+3x2+5x3+4x4)π=1.其中正确结论的个数是()A.1个B.2个C.3个D.4个4.已知函数f(x)=,若函数g(x)=[f(f(x))]2﹣(a+1)•f(f(x))+a(a∈R)恰有8个不同零点,则实数a的取值范围是()A.(0,1)B.[0,1]C.(0,+∞)D.[0,+∞)5.已知,方程有三个实根x1<x2<x3,若x3﹣x2=2(x2﹣x1),则实数a=()A.B.C.a=﹣1D.a=16.已知函数,若方程f(x)=ax有三个不同的实数根x1,x2,x3,且x1<x2<x3,则x1﹣x2的取值范围是()A.B.C.D.7.已知函数y=f(x﹣1)的图象关于直线x=1对称,则方程f(2020﹣x)=f(log2020|x|)的解至少有多少个()A.2B.3C.4D.58.函数f(x)是定义在R上的奇函数,且函数f(x﹣1)为偶函数,当x=[0,1]时,,若g(x)=f(x)﹣x﹣b有三个零点,则实数b的取值集合是()A.,k∈Z B.,k∈ZC.,k∈Z D.,k∈Z9.已知函数,若函数g(x)=f(x)﹣kx﹣1恰有三个零点,则实数k的取值范围为()A.B.C.D.10.已知函数,若关于x的方程|f(x)﹣a|+|f(x)﹣a﹣1|=1,有且仅有三个不同的整数解,则实数a的取值范围是()A.B.[0,8]C.D.11.已知函数f(x)=,g(x)=f(x)﹣b,h(x)=f[f(x)]﹣b,记函数g(x)和h(x)的零点个数分别是M,N,则()A.若M=1,则N≤2 B.若M=2,则N≥2C.若M=3,则N=4 D.若N=3,则M=212.已知f(x)=a(e x﹣e﹣x)﹣sinπx(a>0)存在唯一零点,则实数a的取值范围()A.B.C.D.13.若函数f(x)=ae2x+(a﹣2)e x﹣x,a>0,若f(x)有两个零点,则a的取值范围为()A.(0,1)B.(0,1]C.D.14.已知函数f(x)=函数g(x)=kx.若关于x的方程f(x)﹣g(x)=0有3个互异的实数根,则实数k的取值范围是()A.B.C.D.15.已知函数f(x)=min{x|x﹣2a|,x2﹣6ax+8a2+4}(a>1),其中min(p,q)=,若方程f(x)=恰好有3个不同解x1,x2,x3(x1<x2<x3),则x1+x2与x3的大小关系为()A.x1+x2>x3B.x1+x2=x3C.x1+x2<x3D.不能确定16.关于x的方程有四个不同的实数根,且x1<x2<x3<x4,则(x4﹣x1)+(x3﹣x2)的取值范围()A.B.C.D.17.已知函数,g(x)=ax3﹣f(x).若函数g(x)恰有两个非负零点,则实数a的取值范围是()A.B.C.D.18.已知函数f(x)=9(lnx)2+(a﹣3)•xlnx+3(3﹣a)x2有三个不同的零点x1,x2,x3,且x1<1<x2<x3,则的值为()A.81B.﹣81C.﹣9D.919.已知函数f(x)=x2+ax+b(a,b∈R)在区间[2,3]上有零点,则a2+ab的取值范围是()A.(﹣∞,4]B.C.[4,]D.20.已知三次函数0)有两个零点,若方程f′[f(x)]=0有四个实数根,则实数a的范围为()A.B.C.D.21.已知函数f(x)=x2﹣2x﹣1,若函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k(其中a>1)有三个不同的零点,则实数k 的取值范围为()A.(,]B.()C.(]D.()22.已知方程xe x﹣a(e2x﹣1)=0只有一个实数根,则a的取值范围是()A.a≤0或a≥B.a≤0或a≥C.a≤0D.a≥0或a≤﹣23.已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣|x|,又,则函数F(x)=g(x)﹣f(x)在区间[﹣2017,2017]上零点的个数为()A.2015B.2016C.2017D.201824.已知函数f(x)=,若函数F(x)=f(x)﹣b有四个不同的零点x1,x2,x3,x4(x1<x2<x3<x4),则的取值范围是()A.(2,+∞)B.C.D.[2,+∞)25.已知函数f(x)=lnx+(1﹣a)x+a(a>0),若有且只有两个整数x1,x2使得f(x1)>0,且f(x2)>0,则a的取值范围是()A.B.(0,2+ln2)C.D.26.已知函数f(x)=|x2﹣4x|,x∈R,若关于x的方程f(x)=m|x+1|﹣2恰有4个互异的实数根,则实数m的取值范围为()A.(0,)B.(0,)C.(2,)D.(2,)27.已知函数,则函数F(x)=f(f(x))﹣ef(x)的零点个数为()(e是自然对数的底数).A.6B.5C.4D.328.已知关于x的方程为=3e x﹣2+(x2﹣3),则其实根的个数为()A.2B.3C.4D.529.定义在R上的偶函数f(x)满足f(x﹣2)=f(x),且当x∈[1,2]时,f(x)=﹣4x2+18x﹣14,若函数g(x)=f (x)﹣mx有三个零点,则正实数m的取值范围为()A.(,18﹣4)B.(2,18﹣4)C.(2,3)D.(,3)30.已知函数f(x)=|log2x|,g(x)=,则方程|f(x)﹣g(x)|=1的实根个数为()A.2个B.3个C.4个D.5个二.填空题(共5小题)31.已知关于x的方程xlnx﹣a(x2﹣1)=0在(0,+∞)上有且只有一个实数根,则a的取值范围是.32.已知函数有且仅有三个零点,并且这三个零点构成等差数列,则实数a的值为.33.若函数f(x)=﹣﹣a存在零点,则实数a的取值范围是.34.已知函数f(x)=1+x﹣+﹣+…+,g(x)=1﹣x+﹣++…﹣,设F(x)=f(x+3)g(x﹣4)且F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b﹣a的最小值是.35.已知函数,正实数a、b、c成公差为正数的等差数列,且满足f(a)f(b)f(c)<0,若实数d是方程f(x)=0的一个解,那么下列四个判断:①d<a;②d>b;③d<c;④d>c中,有可能成立的个数为.三.解答题(共5小题)36.已知函数f(x)=lnx﹣ax(a>0),设.(1)判断函数h(x)=f(x)﹣g(x)零点的个数,并给出证明;(2)首项为m的数列{a n}满足:①a n+1+a n≠;②f(a n+1)=g(a n).其中0<m<.求证:对于任意的i,j∈N*,均有a i﹣a j<﹣m.37.已知m>0,函数f(x)=e x﹣mx,直线l:y=﹣m.(1)讨论f(x)的图象与直线l的交点个数;(2)若函数f(x)的图象与直线l:y=﹣m相交于M(x1,y1),N(x2,y2)两点(x1<x2),证明:.38.已知a∈R,函数f(x)=x﹣ae x+1有两个零点x1,x2(x1<x2).(Ⅰ)求实数a的取值范围;(Ⅱ)证明:e+e>2.39.已知函数在(﹣∞,+∞)上是增函数.(1)求实数a的值;(2)若函数g(x)=f(x)﹣kx有三个零点,求实数k的取值范围.40.今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).(1)若a=,求一天中哪个时刻该市的空气污染指数最低;(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a 应控制在什么范围内?参考答案与试题解析一.选择题(共30小题)1.【解答】解:由题意,a>0,令t=,则f(x)=a⇔⇔⇔⇔.记g(t)=.当t<0时,g(t)=2ln(﹣t)﹣(t﹣)单调递减,且g(﹣1)=0,又g(1)=0,∴只需g(t)=0在(0,+∞)上有两个不等于1的不等根.则⇔=,记h(t)=(t>0且t≠1),则h′(t)==.令φ(t)=,则φ′(t)==<0.∵φ(1)=0,∴φ(t)=在(0,1)大于0,在(1,+∞)上小于0.∴h′(t)在(0,1)上大于0,在(1,+∞)上小于0,则h(t)在(0,1)上单调递增,在(1,+∞)上单调递减.由,可得,即a<1.∴实数a的取值范围是(0,1).故选:D.2.【解答】解:【解法1】从第1辆卡车开始依次装上货物,每车一直装到再装一箱就超过1.5吨为止,把多出的这一箱先单独留出来不往后面装,因为13.5÷(1.5+0.35)≈7.3,所以这样至少能装到第7辆卡车(包括单独留出)之后还有剩余;①如果装到第7辆卡车剩余的已经不足1.5吨,那么第8辆卡车可以把剩余的装走,此时前7辆卡车单独留出的7个货箱可以分成两组,一组3个,一组4个,每组不超过0.35×4=1.4吨,这样再找2辆卡车就可以拉完,一共最多需要10辆卡车;②如果装到第7辆车剩余的货箱超过1.5吨,可以继续装第8辆卡车,此时8辆卡车上单独留出8个货箱可以分成两组,每组4个,每组都不超过0.35×4=1.4吨,再找2辆卡车就可以拉走;上面10辆卡车一共装了超过1.5×8=12吨货箱,所剩货箱不超过13.5﹣12=1.5吨,最多还需要1辆卡车就可以拉走,所以一共最多需要11辆卡车;综上,要保证任何情况都能一次性拉走,则至少需要11辆卡车.【解法二】由题意,将所有货箱任意排定顺序;首先将货箱依次装上第1辆卡车,并直到再装1个就超过载重量为止,并将这最后不能装上的货箱放在第1辆卡车之旁;然后按同样办法装第2辆、第3辆、…,直到第8辆车装完并在车旁放了1个货箱为止;显然前8辆车中每辆所装货箱及车旁所放1箱的重量和超过1.5吨;所以所余货箱的重量和不足1.5吨,可以全部装入第9辆卡车;然后把前8辆卡车旁所放的各1货箱分别装入后2辆卡车,每车4个货箱,显然不超载;这样装车就可用8+1+2=11辆卡车1次把这批货箱运走.故选:B.3.【解答】解:①当x≤0时,f(x)=﹣x2+mx=﹣(x2﹣mx)=﹣(x﹣)2+,当对称轴<0且>4,即m<0且m2>16,即m<﹣4时,f(x)=g(x)=4有四个不同的实数根,故①正确,②若m>0,则函数的对称轴>0,此时当x≤0时,函数f(x)为增函数,且f(x)≤0,此时当m∈[3,4],使得关于x的方程f(x)=g(x)不可能有三个不同的实数根,故②错误③当x>0时,设t=f(x)=|lnx|,若f2(x)+bf(x)+c=0有三个不同的根,则t2+bt+c=0有两个不同的实根,其中t1=0,t2>0,当t1=0时,对应一个根x1=1,当t2>0时,对应两个根x2,x3,且0<x2<1<x3,则|lnx2|=|lnx3|,即﹣lnx2=lnx3,则lnx2+lnx3=0,即ln(x2x3)=0,则x2x3=1,即x1x2x3=1,故③正确,④当m=﹣4时,作出f(x)的图象如图,由对数的性质知x3x4=1,x<<x3,即f(x)在[x,x4]上的最大值为f(x)=|lnx|=2|lnx3|=﹣2lnx3=ln4=2ln2,得lnx3=﹣ln2,得x3=,则x4=2,由对称性知,即x1+x2=﹣4,则sin(3x1+3x2+5x3+4x4)π=sin(﹣12++8)π=sin(﹣4π+π)=sinπ=sin=1,故④正确,故正确的是①③④,共3个,故选:C.4.【解答】解:由g(x)=[f(f(x))]2﹣(a+1)•f(f(x))+a=0得[f(f(x))﹣1][f(f(x)﹣a]=0,则f(f(x))=1或f(f(x))=a,作出f(x)的图象如图,则若f(x)=1,则x=0或x=2,设t=f(x),由f(f(x))=1得f(t)=1,此时t=0或t=2,当t=0时,f(x)=t=0,有两个根,当t=2时,f(x)=t=2,有1个根,则必须有f(f(x))=a,(a≠1)有5个根,设t=f(x),由f(f(x))=a得f(t)=a,若a=0,由f(t)=a=0得t =﹣1,或t=1,f(x)=﹣1有一个根,f(﹣x)=1有两个根,此时有3个根,不满足条件.若a>1,由f(t)=a得t>2,f(x)=t有一个根,不满足条件.若a<0,由f(t)=a得﹣2<t<﹣1,f(x)=t有一个根,不满足条件.若0<a<1,由f(t)=a得﹣1<t1<0,或0<t2<1或1<t3<2,当﹣1<t1<0时,f(x)=t1,有一个根,当0<t2<1时,f(x)=t2,有3个根,当1<t3<2时,f(x)=t3,有一个根,此时有1+3+1=5个根,满足条件.故0<a<1,即实数a的取值范围是(0,1),故选:A.5.【解答】解:由1﹣x2≥0得x2≤1,则﹣1≤x≤1,当x<0时,由f(x)=2,即﹣2x=2.得1﹣x2=x2,即2x2=1,x2=,则x=﹣,①当﹣1≤x≤﹣时,有f(x)≥2,原方程可化为f(x)+2+f (x)﹣2﹣2ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x=﹣,由﹣1≤﹣≤﹣解得:0≤a≤2﹣2.②当﹣<x≤1时,f(x)<2,原方程可化为4﹣2ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x=﹣,又0≤a≤2﹣2,∴﹣<﹣<0.∴x1=﹣,x2=﹣,x3=0.由x3﹣x2=2(x2﹣x1),得=2(+),解得a=﹣(舍)或a=.因此,所求实数a=.故选:B.6.【解答】解:当y=ax与y=lnx相切时,设切点为(x0,lnx0),,∴,,由得再由图知方程f(x)=ax的三个不同的实数根x1,x2,x3满足,1<x2<e<x3因此,即x1﹣x2的取值范围是()故选:B.7.【解答】解:∵f(x﹣1)是f(x)向右平移一个单位的图象,且函数y=f(x﹣1)的图象关于直线x=1对称,所以函数f(x)关于直线x=0对称,即f(x)为偶函数,因此当“f(2020﹣x)=f(log2020|x|)”是“|2020﹣x|=|f(log2020|x|)|”充要条件时,此时方程f(2020﹣x)=f(log2020|x|)的解的个数最少,接下来讨论方程|2020﹣x|=|log2020|x||的解的个数,因为|2020﹣x|=|log2020|x||等价于或,①当时,方程的解的个数即函数y=2020﹣x的图象和函数y=log2020|x|的图象的交点个数,画出两函数图象如下图所示:易知两函数在x∈(0,+∞)上存在一个交点,故方程有1解;②当时,下面分两种情况进行讨论,若x<0,等价于,令g(x)=,易得函数g(x)在(﹣∞,0)上单调递减,又因为,,由零点存在定理可得函数g(x)在(﹣∞,0)上存在唯一零点,即方程在(﹣∞,0)上有且只有一个解;若x>0时,等价于,下面我们证明当a∈(0,)时,函数y=a x与函数y=log a x图象有三个交点,假设A点在指数函数y=a x上,且指数函数过该点的切线斜率为﹣1,B点在对数函数y=log a x上,且对数函数过该点的切线斜率也为﹣1,当A、B重合时,它们会有一个交点,此时就是一个界点.图象如下图所示,指数函数为y=a x,求导y′=a x lna,即指数函数切线的斜率,,∴,与指数函数y=a x对应的反函数,对数函数为y=log a x,求导,即对数函数斜率,,∴x B=﹣log a e,A,B重合,即x A =x B,∴log a(﹣log a e)=﹣log a e,∴,即a=,∴,即是一个分界点,结合指数函数数及对数函数的变化趋势可知,当a∈(0,)时,函数y=a x与函数y=log a x图象有三个交点,又因为,所以,于是方程在(0,+∞)上有三个解,即方程在(0,+∞)上有三个解,综上所述方程|2020﹣x|=|log2020|x||一共有5个解,于是方程f(2020﹣x)=f(log2020|x|)的解至少5个,故选:D.8.【解答】解:由已知得,f(﹣x)=﹣f(x),f(x﹣1)=f(﹣x﹣1),则f(x+1)=﹣f(﹣x﹣1)=﹣f(x﹣1)=f(1﹣x),所以函数f(x)的图象关于直线x=1对称,关于原点对称,又f(x+2)=f((x+1)+1)=﹣f((x+1)﹣1)=﹣f(x),进而有f(x+4)=﹣f(x+2)=f(x),所以得函数f(x)是以4为周期得周期函数,由g(x)=f (x)﹣x﹣b有三个零点可知,函数f(x)与函数y=x+b得图象有三个交点,当直线y=x+b与函数f(x)图象在[0,1]上相切时,由,即2x2+(2b﹣2)x+b2=0,故方程2x2+(2b﹣2)x+b2=0有两个相等得实根,由△=0⇒(2b﹣2)2﹣4•2•b2=0,解得b=﹣1±,当x∈[0,1]时,f(x)=,作出函数f(x)与函数y=x+b的图象如图:由图知当直线y=x+b与函数f(x)图象在[0,1]上相切时,b=﹣1+,数形结合可得g(x)在[﹣2,2]上有三个零点时,实数b满足,再根据函数f(x)的周期为4,可得所求的实数b的范围为,k∈Z.故选:C.9.【解答】解:当2<x<4时,y=,则y≤0,等式两边平方得y2=﹣x2+6x﹣8,整理得(x﹣3)2+y2=1,所以曲线y=表示圆(x﹣3)2+y2=1的下半圆,如下图所示,由题意可知,函数y=g(x)有三个不同的零点,等价于直线y=kx+1与曲线y=f(x)的图象有三个不同交点,直线y=kx+1过定点P(0,1),当直线y=kx+1过点A(4,0)时,则4k+1=0,可得k=;当直线y=kx+1与圆(x﹣3)2+y2=1相切,且切点位于第三象限时,k<0,此时,解得k=.由图象可知,当时,直线y=kx+1与曲线y=f(x)的图象有三个不同交点.因此,实数k取值范围是.故选:B.10.【解答】解:∵|f(x)﹣a|+|f(x)﹣a﹣1|=,∴函数f(x)位于直线y=a和y=a+1的图象上有三个横坐标为整数的点,当x<0时,且f(x)<0,由双勾函数的单调性可知,函数y=f(x)在区间(﹣∞,﹣)上单调递减,在区间(﹣,0)上单调递增,于是当x<0时,,∵f(﹣1)=,f(﹣2)=,f(﹣3)=,f(﹣4)=,且f(﹣4)>f (﹣3)>f(﹣2),如下图所示,要使得函数f(x)位于直线y=a和y=a+1的图象上有三个横坐标为整数的点,则f(﹣3)≤a+1<f(﹣4),即,解得.因此,实数a的取值范围是.故选:A.11.【解答】解:若f(x)=2e2x﹣e x时,令f′(x)=4e2x﹣e x=0,解得x=ln,易知此时f(x)在(﹣∞,ln)上单调递减,在(ln,+∞)上单调递增;作出函数y=2e2x﹣e x及函数y=x的图象如下图所示,由图象可知,函数f(x)最多有两个零点x=0或x=ln,不妨令b=0,则①当a≤ln时,此时函数g(x)的零点为x=0,则M=1,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有1个解,f(x)=ln有1个解,则N=2;②当ln<a≤0时,此时函数g(x)的零点为0,ln,则M=2,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有两个解,f(x)=ln无解,则N=2;③当a>0时,此时函数g(x)的零点为ln,则M=1,此时函数h(x)的零点满足f(x)=0,或f(x)=ln,显然f(x)=0有1个解,f(x)=ln无解,则N=1;由以上分析可知,故选:A.12.【解答】解:由题意知f(0)=0,∵f(x)=a(e x﹣e﹣x)﹣sinπx(a>0)存在唯一零点,∴f(x)只有一个零点0.∵f(﹣x)=sinπx+a(e﹣x﹣e x)=﹣f(x),∴f(x)是奇函数,故只考虑当x>0时,函数f(x)无零点即可.当x>0时,有πx>sinπx,∴f(x)=a(e x﹣e﹣x﹣sinπx)>a(e x﹣e﹣x﹣).令g(x)=e x﹣e﹣x﹣,x >0,则g(0)=0,∵g′(x)=e x+e﹣x﹣,x>0,g″(x)=e x﹣e﹣x>0,∴g′(x)在(0,+∞)上单调递增,∵g(0)=0,∴g′(x)>g′(0)=2﹣≥0,解得a≥.故选:B.13.【解答】解:f′(x)=2ae2x+(a﹣2)e x﹣1=(2e x+1)(ae x﹣1).a≤0时,f′(x)<0,函数f(x)在R上单调递减,此时函数f(x)最多有一个零点,不满足题意,舍去.a>0时,f′(x)=2ae2x+(a﹣2)e x﹣1=(2e x+1)(ae x﹣1).令f′(x)=0,∴e x=,解得x=﹣lna.∴x∈(﹣∞,﹣lna)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣lna)上单调递减;x∈(﹣lna,+∞)时,f′(x)>0,∴函数f(x)在(﹣lna,+∞)上单调递增.∴x=﹣lna时,函数f(x)取得极小值,∵f(x)有两个零点,∴f(﹣lna)=a×+(a﹣2)×+lna=1﹣+lna<0,令u(a)=1﹣+lna,u(1)=0.u′(a)=+>0,∴函数u(x)在(0,+∞)上单调递增,∴0<a<1.又x→﹣∞时,f(x)→+∞;x→+∞时,f(x)→+∞.∴满足函数f(x)有两个零点.∴a的取值范围为(0,1),故选:A.14.【解答】解:作出函数g(x)和f(x)的图象如图:由图可知,当k≤0时,不满足题意,则k>0;当直线y=kx经过点B时,k==,此时y=x与函数f(x)图象有3个交点,满足;当y=kx为y=lnx的切线时,设切点(x0,lnx0),则k=,故有lnx0=•x0=1,解得x0=e,即有切点为A(e,1),此时g(x)=x与f(x)有3个交点,满足题意;综上:当k∈[,],故选:B.15.【解答】解:f(x)=,易知f(a)=a2(极大值);f(2a)=0(极小值);(极大值);f(3a)=4﹣a2(极小值).要使f(x)=恰好有3个不同解,结合图象得:①当,即时,解得,不存在这样的实数a.②当,即时,解得;此时2a<,又因为x2与x3关于x=3a对称,∴x3﹣3a=3a﹣x2<a<2a<x1.∴x3<4a <x1+x2.③当,即时,解得a>2.此时,x1,x2是方程﹣x2+2ax=的两实根,所以x1+x2=2a,而x3>3a,所以x1+x2<x3,故选:D.16.【解答】解:依题意可知,|x2﹣4x+1|=t2+1,由方程有四个根,所以函数y=t2+1与y=|x2﹣4x+1|的图象有四个交点,由图可知,x1+x4=4,x2+x3=4,1≤t2+1<3,解得t2∈(0,2),由x2﹣4x+1=t2+1解得x1=2﹣;由﹣(x2﹣4x+1)=t2+1解得x2=2﹣;所以(x4﹣x1)+(x3﹣x2)=8﹣2(x1+x2)=2(+)设m =t2∈(0,2),n=+,n2=m+4+2﹣m+2=6+2∈(6,6+4),即m∈(,2+),所以(x4﹣x1)+(x3﹣x2)的取值范围是(2,4+2).故选:B.17.【解答】解:显然,x=0满足g(x)=0,因此,只需再让g(x)=0有另外一个唯一正根即可.ax3﹣f(x)=0,即为ax3=f(x).作出h(x)=ax3,y=f(x)图象如下:说明:射线与线段是y=f(x)的部分图象,因为要分三种情况分析,故y=h(x)的图象作了三个(只做出y轴右侧部分),分别对应①、②、③.(1)对于第一种情况:因为h′(0)=0<1,所以当y=h(x)(如图象①)与y=f(x)=x在[0,1)上的图象有交点A时,只需h(1)=a>1即可;(2)对于第二种情况:y=h(x)(图象②)与y=f(x)=x﹣1在[1,2)上的图象切于点B,设切点为(m,m﹣1),因为h′(x)=3ax2,则,解得;(3)当y=h(x)(图象③)与y=x﹣1(1≤x<2)相交于点C,且满足h(2)≤1,即时,只需x∈[2,3)时,g(x)≥0恒成立即可.所以ax3≥x﹣2,x∈[0,2]恒成立即可,且只能在x=3处取等号,即,,在[2,3]上恒成立,故u(x)在[2,3]上递增,所以u(x)max=u(3)=,.故此时即为所求.综上可知,a的范围是.故选:C.18.【解答】解:f(x)=9(lnx)2+(a﹣3)•xlnx+3(3﹣a)x2=0⇒(a﹣3)(xlnx﹣3x2)=﹣9(lnx)2⇒a﹣3=,令t=3﹣,则,t∈[3﹣,+∞),⇒a﹣3=⇒9t2﹣(51+a)t+81=0.设关于t的一元二次方程有两实根t1,t2,∴△=(51+a)2﹣4×9×81>0,可得a>3或a<﹣105.∴>=6,t1t2=9.又∵t1+t2=,当且仅当t1=t2=3时等号成立,由于t1+t2≠6,∴t1>3,<3(不妨设t1>t2).∵x1<1<x2<x3,∴>3,<3,3﹣<3.则可知=t1,=3﹣=t2.∴=.故选:A.19.【解答】解:不妨设x1,x2为函数f(x)的两个零点,其中x1∈[2,3],x2∈R,则x1+x2=﹣a,x1x2=b.则a2+ab =(x1+x2)2﹣(x1+x2)•x1x2=(1﹣x1)x22+(2x1﹣x12)x2+x12,由1﹣x1<0,x2∈R,所以(1﹣x1)x22+(2x1﹣x12)x2+x12≤=,可令g(x1)=,g′(x1)=,当x1∈[2,3],g′(x1)>0恒成立,所以g(x1)∈[g(2),g(3)]=[4,].则g(x1)的最大值为,此时x1=3,还应满足x2=﹣=﹣,显然x1=3,x2=﹣时,a=b=﹣,a2+ab=.故选:B.20.【解答】解:三次函数0)有两个零点,且由f′(x)=x2+2ax﹣3a2=0得x=a 或﹣3a.故必有.又若方程f′[f(x)]=0有四个实数根,则f(x)=a或f(x)=﹣3a共有四个根.①当前一组混合组成立时,做出图象(图①)可知,只需0<a<f(﹣3a)即可,即,解得②;②当后一组混合组成立时b=﹣9a3,做出图象(图②)可知图②只需f(a)<﹣3a<0即可,即,解得③.取②③的并集可知,当时.方程f′[f(x)]=0有四个根.故选:C.21.【解答】解:令t=|a x﹣1|,t≥0,则函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k可换元为:h(t)=t2+(k﹣2)t+4k﹣1.若g(x)有三个不同的零点,则方程h(t)=0有两个不同的实数根t1,t2,且解的情况有如下三种:①t1∈(1,+∞),t2∈(0,1),此时,解得;②t1=0,t2∈(0,1),此时由h(0)=0,求得k=,∴h(t)=,即,不合题意;③t1=1,t2∈(0,1),此时由h(1)=0,得k=,∴h(t)=,解得,符合题意.综上,实数k的取值范围为(].故选:C.22.【解答】解:令t=e x,t>0,x=lnt,则原方程转化成tlnt﹣a(t2﹣1)=0,即,令,显然f(1)=0,问题转化成函数f(t)在(0,+∞)上只有一个零点1,,若a=0,则f(t)=lnt在(0,+∞)单调递增,f(1)=0,此时符合题意;若a<0,则f′(t)>0,f(t)在(0,+∞)单调递增,f(1)=0,此时符合题意;若a>0,记h(t)=﹣at2+t﹣a,则函数h(t)开口向下,对称轴,过(0,﹣a),△=1﹣4a2,当△≤0 即1﹣4a2≤0,即时,f′(t)≤0,f(t)在(0,+∞)单调递减,f(1)=0,此时符合题意;当△>0 即1﹣4a2>0,即时,设h(t)=0有两个不等实根t1,t2,0<t1<t2,又h(1)>0,对称轴,所以0<t1<1<t2,则f(t)在(0,t1)单调递减,(t1,t2)单调递增,(t2,+∞)单调递增,由于f(1)=0,所以f(t2)>0,取,,记令,则,所以f(t0)<0,结合零点存在性定理可知,函数f(t)在(t1,t2)存在一个零点,不符合题意;综上,符合题意的a的取值范围是a≤0 或,故选:A.23.【解答】解:因为f(x+2)=f(x),所以f(x)的一个周期为2,当x>1时,g(x)=,所以g′(x)=,所以x∈(1,e),g′(x)>0,函数是增函数,g(x)>g(1)=0,x∈(e,+∞),g′(x)<0,函数是减函数,g(x)>0,g(x)的最大值为1,f(x)与g(x)的图象如下:在区间[﹣1,1]内有一个根,在[1,2017]内有1008个周期,每个周期内均有2个根,所以F(x)共有2017个零点.故选:C.24.【解答】解:作出f(x)的函数图象如图所示:由图象知x1+x2=﹣4,x3x4=1,0<b≤1,解不等式0<﹣log2x≤1得:≤x3<1,∴=+,令t=x32,则≤t<1,令g(t)=t+,则g(t)在[,1]上单调递减,g(1)=2,g()=,∴g(1)<g(t)≤g(),即2<t+≤,故选:C.25.【解答】解:由f(x)=lnx+(1﹣a)x+a>0,得lnx>(a﹣1)x﹣a,作出函数y=lnx与y=(a﹣1)x﹣a的图象如图:直线y=(a﹣1)x﹣a过定点(1,﹣1),当x=2时,曲线y=lnx上的点为(2,ln2),当x=3时,曲线y=lnx上的点为(3,ln3).过点(1,﹣1)与(2,ln2)的直线的斜率k=,过点(1,﹣1)与(3,ln3)的直线的斜率k=.由a﹣1=ln2+1,得a=ln2+2,由a﹣1=,得a=.∴若有且只有两个整数x1,x2使得f(x1)>0,且f(x2)>0,则a的取值范围是.故选:C.26.【解答】解:作出f(x)=|x2﹣4x|与f(x)=m|x+1|﹣2的图象如图,由图可知,f(x)=m|x+1|﹣2恒过(﹣1,﹣2),且为2条射线,斜率分别为m,﹣m,当f(x)=m|x+1|﹣2过(0,0)以及与抛物线相切时时临界情况,当f(x)=m|x+1|﹣2过(0,0)时,m==2,当f(x)=m|x+1|﹣2与y=﹣x2+4x相切时,联立,得x2+(m﹣4)x+m﹣2=0,则△=(m﹣4)2﹣4(m﹣2)=0,解得m=6﹣2(6+2舍去),故m的取值范围为(2,6﹣2),故选:C.27.【解答】解:不妨设,,易知,f1(x)<0在(﹣∞,0]上恒成立,且在(﹣∞,0]单调递增;,设,由当x→0+时,g(x)→﹣∞,g(1)=e﹣1>0,且函数g(x)在(0,+∞)上单增,故函数g(x)存在唯一零点x0∈(0,1),使得g(x0)=0,即,则,故当x∈(0,x0)时,g(x)<0,f2'(x)<0,f2(x)单减;当x∈(x0,+∞)时,g(x)>0,f2'(x)>0,f2(x)单增,故=0,故f2(x)≥0;令t=f(x),F(t)=f(t)﹣et=0,当t≤0时,﹣e﹣t﹣et=0,解得t=﹣1,此时易知f(x)=t=﹣1有一个解;当t>0时,te t﹣t﹣1﹣lnt﹣et=0,即te t﹣t﹣1﹣lnt=et,作函数f2(t)与函数y=et如下图所示,由图可知,函数f2(t)与函数y=et有两个交点,设这两个交点为t1,t2,且t1>0,t2>0,而由图观察易知,f(x)=t1,f(x)=t2均有两个交点,故此时共有四个解;综上,函数F(x)=f(f(x))﹣ef(x)的零点个数为5.故选:B.28.【解答】解:x=不是方程=3e x﹣2+(x2﹣3)的根,所以方程可变形为﹣=,原问题等价于考查函数y=﹣与函数g(x)=的交点个数,令h(x)=,则h′(x)=,列表可得:x(﹣∞,﹣(﹣,﹣1)(﹣1,)(,3)(3,+∞))h′(x)++﹣﹣+h(x)单调递增单调递增单调递减单调递减单调递增函数y=在有意义的区间内单调递增,故g(x)的单调性与函数h(x)的单调性一致,且g(x)的极值g (﹣1)=g(3)=﹣+2e,绘制函数图象如图所示,观察可得,y=﹣与函数g(x)恒有3个交点,即方程实数根的个数是3,故选:B.29.【解答】解:根据f(x﹣2)=f(x),可知函数的一个周期为2,作出x∈[1,2]时,f(x)=﹣4x2+18x﹣14的图象再根据函数f(x)为偶函数,f(﹣x)=f(x)=f(x+2),所以函数f(x)的图象关于直线x=1对称,利用周期性,可以作出函数f(x)的图象,函数g(x)=f(x)﹣mx有三个零点,所以函数y=f(x)的图象与直线y=mx 有三个交点,由图可知,当直线位于直线l1与直线l2之间时可以满足题意.当直线l2与y=f(x)的图象相切时,联立得,4x2+(m﹣18)x+14=0,∴△=(m﹣18)2﹣4×4×14=0,解得m=18﹣4,m=19+4(舍去)∴<m<18﹣4.故选:A.30.【解答】解:方程|f(x)﹣g(x)|=1⇔f(x)=g(x)±1,y=g(x)+1=,y=g(x)﹣1=.分别画出y=f(x),y=g(x)+1的图象.由图象(1)可得:0<x≤1时,两图象有一个交点;1<x≤2时,两图象有一个交点;x>2时,两图象有一个交点.分别画出y=f(x),y=g(x)﹣1的图象.由图象(2)可知:x>时,两图象有一个交点.综上可知:方程|f(x)﹣g(x)|=1实数根的个数为4.故选:C.二.填空题(共5小题)31.【解答】解:当x=1时,方程等价为ln1﹣a(1﹣1)=0,即x=1是方程的一个根,若当x>0时,方程只有一个根,则由xlnx﹣a(x2﹣1)=0得x>0,且xlnx=a(x2﹣1),即lnx=a(x﹣),当x≠时,方程无解,即函数g(x)=lnx与h(x)=a(x﹣),在x≠1时无解,函数g(x)=lnx为增函数,g′(x)=,h′(x)=a(1+),则当a=0时,h(x)=0,此时h(x)与函数g(x)只有一个交点(1,0),若a<0,则h′(x)<0,即h(x)为减函数,且h(1)=0,此时两个函数图象只有一个交点(1,0)满足条件,若a>0,要使g(x)与h(x)只有一个交点(1,0),则只需要h′(1)≥g′(1),即可则2a≥1,即a≥,综上a≥或a≤0,故答案为:a≥或a≤032.【解答】解:函数=0,得|x+a|﹣﹣a=3,设g(x)=|x+a|﹣﹣a,h(x)=3,则函数g (x)=,不妨设f(x)=0的3个根为x1,x2,x3,且x1<x2<x3,当x>﹣a时,由f(x)=0,得g(x)=3,即x﹣=3,得x2﹣3x﹣4=0,得(x+1)(x﹣4)=0,解得x=﹣1,或x=4;若①﹣a≤﹣1,即a≥1,此时x2=﹣1,x3=4,由等差数列的性质可得x1=﹣6,由f(﹣6)=0,即g(﹣6)=3得6+﹣2a =3,解得a=,满足f(x)=0在(﹣∞,﹣a]上有一解.若②﹣1<﹣a≤4,即﹣4≤a<1,则f(x)=0在(﹣∞,﹣a]上有两个不同的解,不妨设x1,x2,其中x3=4,所以有x1,x2是﹣x﹣﹣2a=3的两个解,即x1,x2是x2+(2a+3)x+4=0的两个解.得到x1+x2=﹣(2a+3),x1x2=4,又由设f(x)=0的3个根为x1,x2,x3成差数列,且x1<x2<x3,得到2x2=x1+4,解得:a=﹣1+(舍去)或a=﹣1﹣.③﹣a>4,即a<﹣4时,f (x)=0最多只有两个解,不满足题意;综上所述,a=,或﹣1﹣.33.【解答】解:由题意得,a=﹣=﹣;表示了点A(﹣,)与点C(3x,0)的距离,表示了点B(,)与点C(3x,0)的距离,如下图,结合图象可得,﹣|AB|<﹣<|AB|,即﹣1<﹣<1,故实数a的取值范围是(﹣1,1).故答案为:(﹣1,1).34.【解答】解:∵f(x)=1+x﹣+﹣+...﹣+,f′(x)=1﹣x+x2﹣ (x2012)=>0,此时函数单调递增,∵f(0)=1>0,f(﹣1)=﹣﹣<0,∴函数f(x)存在一个唯一的零点,设函数f(x)的零点为x1,∴根据根的存在性定理可知x1∈(﹣1,0).∵g(x)=1﹣x+﹣+…+﹣,g′(x)=﹣1+x﹣x2﹣…﹣x2012==﹣<0,即函数单调递减,∵g(1)=>0,g(2)=,设函数g(x)存在唯一的一个零点x2,∴根据根的存在性定理可知x2∈(1,2).由F(x)=f(x+3)g(x﹣4)=0,则f(x+3)=0或g(x﹣4)=0.由x+3∈(﹣1,0).得﹣1<x+3<0,即﹣4<x<﹣3,∴函数f(x+3)的零点在(﹣4,﹣3).由x﹣4∈(1,2).,得1<x﹣4<2,即5<x<6,∴函数g(x﹣4)的零点在(5,6).即函数F(x)=f(x+3)•g(x﹣4)的零点在(﹣4,﹣3)和(5,6)内,∵F(x)的零点均在区间[a,b],(a<b,a,b∈Z),∴b≥6,a≤﹣4,∴b﹣a≥10,即b﹣a的最小值是10.35.【解答】解:,是由和y=﹣log2x,两个函数中,每个函数都是减函数,所以,函数为减函数.∵正实数a,b,c是公差为正数的等差数列,∴不妨设0<a<b<c∵f(a)f(b)f(c)<0则f(a)<0,f(b)<0,f(c)<0 或者f(a)>0,f(b)>0,f(c)<0综合以上两种可能,恒有f(c)<0所以可能有①d<a;②d<b;④d<c,正确.故答案为:3.三.解答题(共5小题)36.【解答】解:(1)函数h(x)=f(x)﹣g(x)在上有且仅有一个零点.证明如下:函数f(x)=lnx﹣ax 的定义域为(0,+∞),由,可得函数g(x)的定义域为(﹣∞,),∴函数h(x)=f(x)﹣g (x)的定义域为(0,).h(x)=f(x)﹣g(x)=lnx﹣ax﹣ln()+2﹣ax.h′(x)=,当且仅当时等号成立,因此h(x)在上单调递增,又,故函数h(x)=f(x)﹣g(x)在上有且仅有一个零点;证明:(2)由(1)可知h(x)在上单调递增,且,故当时,h(x)<0,即f(x)<g(x);当时,h(x)>0,即f(x)>g(x).∵,∴f(a1)<g(a1)=f(a2),若,则由,且f(x)在上单调递减,知,即,这与矛盾,故,而当时,f(x)单调递增,故;同理可证,…,,故数列{a n}为单调递增数列且所有项均小于,因此对于任意的i,j∈N*,均有.37.【解答】解:(1)由題意,令g(x)=e x﹣mx+m,(m>0)则g'(x)=e x﹣m,令g'(x)>0,解得x>lnm.所以g(x)在(lnm,+∞)上单调递增,令g'(x)<0,解得x<lnm,所以g(x)在(﹣∞,lnm)上单调递减,则当x=lnm时,函数取得极小值,同时也是最小值g(x)min=g(lnm)=m﹣mlnm+m=m(2﹣lnm)①当m(2﹣lnm)>0,即0<m<e2时,f(x)的图象与直线l无交点,②当m(2﹣lnm)=0,即m=e2时f(x)的图象与直线l只有一个交点.③当m(2﹣lnm)<0,即m>e2时f(x)的图象与直线l有两个交点.综上所述,当0<m<e2时,f(x)的图象与直线l无交点;m=e2时f(x)的图象与直线l只有一个交点,m>e2时f(x)的图象与直线l有两个交点.(2)证明:令φ(x)=g(lnm+x)﹣g(lnm﹣x)=me x﹣me﹣x﹣2mx,(x>0)φ′(x)=m(e x+e﹣x﹣2)∵e x+e ﹣x≥2=2,∴φ'(x)≥0,即φ(x)在(0,+∞)上单调递增,∴φ(x)>φ(0)=0∴x>0时,g(lnm+x)>g(lnm﹣x)恒成立,又0<x1<lnm<x2,∴lnm﹣x1>0,∴g(lnm+lnm﹣x1)>g(lnm﹣lnm+x1)即g(2lnm﹣x1)>g(x1),又g(x1)=g(x2)∴g(x2)<g(2lnm﹣x1)∵2lnm﹣x2>lnm,x2>lnm,y=g(x)在(lnm,+∞)上单调递增,∴x2<2lnm﹣x1即x1+x2<2lnm.38.【解答】解:(Ⅰ)f′(x)=1﹣ae x,①a≤0时,f′(x)>0,f(x)在R上递增,不合题意,舍去,②当a>0时,令f′(x)>0,解得x<﹣lna;令f′(x)<0,解得x>﹣lna;故f(x)在(﹣∞,﹣lna)单调递增,在(﹣lna,+∞)上单调递减,由函数y=f(x)有两个零点x1,x2(x1<x2),其必要条件为:a>0且f(﹣lna)=﹣lna>0,即0<a<1,此时,﹣1<﹣lna<2﹣2lna,且f(﹣1)=﹣1﹣+1=﹣<0,令F(a)=f(2﹣2lna)=2﹣2lna﹣+1=3﹣2lna﹣,(0<a<1),则F′(a)=﹣+=>0,F(a)在(0,1)上单调递增,所以,F(a)<F(1)=3﹣e2<0,即f(2﹣2lna)<0,故a的取值范围是(0,1).(Ⅱ)令f(x)=0⇒a=,令g(x)=,g′(x)=﹣xe﹣x,则g(x)在(﹣∞,0)单调递增,在(0,+∞)单调递减,由(Ⅰ)知0<a<1,故有﹣1<x1<0<x2,令h(x)=g(﹣x)﹣g(x),(﹣1<x<0),h(x)=(1﹣x)e x﹣(1+x)e﹣x,(﹣1<x<0),h′(x)=﹣xe x+xe﹣x=x(e﹣x﹣e x)<0,所以,h(x)在(﹣1,0)单调递减,故h(x)>h(0)=0,故当﹣1<x<0时,g(﹣x)﹣g(x)>0,所以g(﹣x1)>g(x1),而g(x1)=g(x2)=a,故g(﹣x1)>g(x2),又g(x)在(0,+∞)单调递减,﹣x1>0,x2>0,所以﹣x1<x2,即x1+x2>0,故e+e≥2=2e>2.39.【解答】解:(1)当x<0时,f(x)=﹣x2.是增函数,且f(x)<0=f(0),故当x≥0时,f(x)为增函数,即f′(x)≥0恒成立,函数的导数f′(x)=+2ax﹣2a=+2a(x﹣1)=(1﹣x)(﹣2a)≥0恒成立,当x≥1时,1﹣x≤0,此时相应﹣2a≤0恒成立,即2a≥恒成立,即2a≥()max=恒成立,当x≤1时,1﹣x≥0,此时相应﹣2a≥0恒成立,即2a≤恒成立,即2a≤()min=恒成立,则2a=,即a=.(2)若k≤0,则g(x)在R上是增函数,此时g(x)最多有一个零点,不可能有三个零点,则不满足条件.故k>0,当x<0时,g(x)=﹣x2﹣kx有一个零点﹣k,g(0)=f(0)﹣0=0,故0也是故g(x)的一个零点,故当x>0时,g(x)有且只有一个零点,即g(x)=0有且只有一个解,即+﹣﹣kx=0,得+﹣=kx,(x>0),则k=+﹣,在x>0时有且只有一个根,即y=k与函数h(x)=+﹣,在x >0时有且只有一个交点,h′(x)=﹣+,由h′(x)>0得﹣+>0,即<得e x>2e,得x>ln2e=1+ln2,此时函数递增,由h′(x)<0得﹣+<0,即>得e x<2e,得0<x<ln2e=1+ln2,此时函数递减,即当x=1+ln2时,函数取得极小值,此时极小值为h(1+ln2)=+﹣=++﹣=++﹣=,h(0)=1+0﹣=1﹣,作出h(x)的图象如图,要使y=k与函数h(x)=+﹣,在x>0时有且只有一个交点,则k=或k≥1﹣,即实数k的取值范围是{}∪[1﹣,+∞).40.【解答】解:(1)a =时,f(x)=|log25(x+1)﹣|+2,x∈[0,24],令|log25(x+1)﹣|=0,解得x=4,因此:一天中第4个时刻该市的空气污染指数最低.(2)令f(x)=|log25(x+1)﹣a|+2a+1=,当x∈(0,25a﹣1]时,f(x)=3a+1﹣log25(x+1)单调递减,∴f(x)<f(0)=3a+1.当x∈[25a﹣1,24)时,f(x)=a+1+log25(x+1)单调递增,∴f(x)≤f(24)=a+1+1.联立,解得0<a ≤.可得a ∈.因此调节参数a应控制在范围.第21页(共21页)。

[必刷题]2024高一数学上册函数专项专题训练(含答案)

[必刷题]2024高一数学上册函数专项专题训练(含答案)

[必刷题]2024高一数学上册函数专项专题训练(含答案)试题部分一、选择题:1. 设函数f(x) = (x^2 1)/(x + 1),则f(x)的定义域为()A. x ≠ 1B. x ≠ 0C. x ≠ 1D. x ≠ 1 且x ≠ 12. 若函数f(x) = 2x + 3在R上单调递增,则f(x)的图像()A. 经过一、三象限B. 经过二、四象限C. 经过原点D. 经过y轴3. 下列函数中,奇函数是()A. y = x^3B. y = x^2C. y = |x|D. y = x^2 + 14. 已知函数f(x) = 2x 3,那么f(2)的值是()A. 1B. 1D. 25. 若函数f(x) = (1/2)^x,则f(x)在区间(0,+∞)上的单调性是()A. 单调递增B. 单调递减C. 增减性不确定D. 先增后减6. 设函数g(x) = |x 1|,那么g(x)在x = 1处的导数是()A. 1B. 1C. 0D. 不存在7. 下列函数中,既是奇函数又是偶函数的是()A. y = cos(x)B. y = sin(x)C. y = x^3 xD. y = x^2 + x8. 若函数f(x) = log2(x),则f(1/2)的值是()A. 1B. 0C. 1D. 29. 已知函数f(x) = x^2 2x + 1,那么f(x)的最小值是()B. 1C. 1D. 210. 若函数g(x) = 3x^3 4x^2 + 2x在x = 1处取得极值,则g'(1)的值是()A. 1B. 5C. 0D. 1二、判断题:1. 函数f(x) = x^3 x是奇函数。

()2. 若函数f(x)在区间[a, b]上单调递增,则f'(x) ≥ 0。

()3. 函数f(x) = |x|在x = 0处的导数不存在。

()4. 两个单调递增函数的和仍然是单调递增函数。

()5. 函数f(x) = 1/x在区间(0, +∞)上单调递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节函数的综合应用【回顾与思考】函数应用【例题经典】一次函数与反比例函数的综合应用例1(2006年南充市)已知点A(0,-6),B(-3,0),C(m,2)三点在同一直线上,试求出图象经过其中一点的反比例函数的解析式并画出其图象.(要求标出必要的点,•可不写画法).【点评】本题是一道一次函数和反比例函数图象和性质的小综合题,题目设计新颖、巧妙、难度不大,但能很好地考查学生的基本功.一次函数与二次函数的综合应用例2(2005年海门市)某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,•若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用780元,其中,纯净水的销售价(元/桶)与年购买总量y(桶)之间满足如图所示关系.(1)求y与x的函数关系式;(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:•该班学生集体改饮桶装纯净水与个人买材料,哪一种花钱更少?(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算?从计算结果看,•你有何感想(不超过30字)?【点评】这是一道与学生生活实际紧密联系的试题,由图象可知,一次函数图象经过点(4,400)、(5,320)可确定y与x关系式,同时这也是一道确定最优方案题,可利用函数知识分别比较学生个人购买饮料与改饮桶装纯净水的费用,分析优劣.二次函数与图象信息类有关的实际应用问题例3一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y与上市时间x的关系可用图(a)1与上市时间x的关系可用图(b)的一条线段表示;•它的种植成本y2中的抛物线的一部分来表示.(1)求出图(a)中表示的市场售价y1与上市时间x的函数关系式.(2)求出图(b)中表示的种植成本y2与上市时间x的函数关系式.(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?(市场售价和种植成本的单位:元/千克,时间单位:天)【点评】本题是一道函数与图象信息有关的综合题.学生通过读题、读图.从题目已知和图象中获取有价值的信息,是问题求解的关键.【考点精练】基础训练1.在函数y=,y=x+5,y=x2的图象中是中心对称图形,且对称中心是原点的有()A.0个 B.1个 C.2个 D.3个2.下列四个函数中,y随x的增大而减少的是()A.y=2x B.y=-2x+5 C.y=- D.y=-x2-2x-13.函数y=ax2-a与y=(a≠0)在同一直角坐标系中的图象可能是()4.函数y=kx-2与y=(k≠0)在同一坐标系内的图象可能是()5.如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x的取值范围__________.(第5题) (第6题)6.(2006年旅顺口)如图是一次函数y1=kx+b和反比例函数y2=的图象,•>y2时,x的取值范围是_________.观察图象写出y17.(2005年十堰市)在同一平面直角坐标系中,函数y=kx+k,y=(k>0)•的图像大致是()8.(2005年太原市)在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=kx2+2kx的图像大致是()能力提升9.如图,已知反比例函数y1=(m≠0)的图象经过点A(-2,1),一次=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数函数y2的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.10.如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A、B两点,与x轴交于点C,与y轴交于点D.已知OA=,tan∠AOC=,点B 的坐标为(,-4).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.11.(2005年扬州市)近几年,扬州市先后获得“中国优秀旅游城市”和“全国生态建设示范城市”等十多个殊荣.到扬州观光旅游的客人越来越多,某景点每天都吸引大量游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价40元,现设浮动票价为x元,且40≤x≤70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元①试用x的代数式表示w;②试问:当票价定为多少时,该景点一天的门票收入最高?最高门票收入是多少?12.(2006年荆门市)某环保器材公司销售一种市场需求较大的新型产品.已知每件产品的进价为40元.经销过程中测出销售量y(万件)与销售单价x(元)•存在如图所示的一次函数关系.每年销售该种产品的总开支z(万元)(不含进价)与年销售量y(万件)存在函数关系z=10y+42.5.(1)求y关于x的函数关系.(2)试写出该公司销售该种产品年获利w(万元)关于销售单价z(元)•的函数关系式(年获利=年销售总金额-年销售产品的总进价-年总开支金额)当销售单价为x为何值,年获利最大?最大值是多少?(3)若公司希望该种产品一年的销售获利不低于57.5万元,请你利用(2)•小题中的函数图象帮助该公司确定这种产品的销售单价的范围.•在此条件下使产品的销售量最大,你认为销售单价应为多少元?应用与探究13.(2006年潍坊市)为保证交通完全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.下表是某款车在平坦行驶速度(千米/时)40 60 80 …停止距离(米)16 30 48 …(1x(千米/时)的函数.•给出以下三个函数①y=ax+b;②y=(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.答案:例题经典例1:解:设直线AB的解析式为y=kx+b,则解得k1=-2,b=-6.•1所以直线AB的解析式为y=-2x-6.∵点C(m,2)在直线y=-2x-6上,∴-2m-6=2,∴m=-4,即点C的坐标为C(-4,2),由于A(0,6),B(-3,0)都在坐标轴上,反比例函数的图象只能经过点C(-4,2),设经过点C的反比例函数的解析式为y=.则2=,∴k=-8.即经过点C•的反比例函数的解析式为y=-.2例2:(1)设y=kx+b,∵x=4时,y=400;x=5时,y=320,∴∴y与x的函数关系式为y=-80x+720.(2)该班学生买饮料每年总费用为50×120=6000(元),当y=380时,380=-80x+720,得x=4.25.该班学生集体饮用桶装纯净水的每年总费用为380×4.25+780=2395(元),显然,从经济上看饮用桶装纯净水花钱少.(3)设该班每年购买纯净水的费用为W元,则W=xy=x(-80x+720)=-80(x-)2+•1620.∴当x=时,W最大值=1620.要使饮用桶装纯净水对学生一定合算,则50a≥W最大值+780,•即50a•≥1620+780.解之得,a≥48.所以a至少为48元时班级饮用桶装纯净水对学生一定合算,由此看出,饮用桶装纯净水不仅能省钱,而且能养成勤俭节约的好习惯.=mx+n,因为函数图象过点(0,5.1),(50,2.1),例3:(1)设y1∴解得:m=-,n=5.1,=-x+5.1(0≤x≤50).∴y1(2)又由题目已知条件可设y=a(x-25)2+2.因其图象过点(15,3),2∴3=a(15-25)2+2,∴a=,∴y=x2-x+(或y=(x-25)2+2)(0≤x≤50)2(3)第x天上市的这种绿色蔬菜的纯利润为:y-y2=(x2-44x+315(01≤x≤55).-y2=0,即x2-44x+315=0,∴(x-9)(x-35)=0,解得:x1=9,x2=25.依题意:y1所以从5月1日起的第9天或第35天出售的这种绿色蔬菜,既不赔本也不赚钱.考点精练1.B 2.B 3.A 4.B 5.-2≤x≤1 6.x>3或-2<x<0 7.D 8.D9.(1)反比例函数解析式为y=,一次函数的解析式为y=x+3.(2)点B的坐标为B(-1,2)10.(1)反比例函数解析式为y=-,一次函数为y=-2x-3.(2)S△=个平方单位.AOB11.(1)设函数解析式为y=kx+b,由图象知:直线经过(50,3500),(60,3000)两点.则,∴函数解析式为y=6000-50x.(2)①w=xy=x(6000-50x),即w=-50x2+6000x.•②w=-50x2+6000x=-50(x2-120x)=-50(x-60)2+180000,∴当票价定为60元时,•该景点门票收入最高,此时门票收入为180000元.12.(1)由题意,设y=kx+b,图象过点(70,5),(90,3),∴∴y=-x+12.(2)由题意,得w=y(x-40)-z=y(x-40)-(10y+42.5)=(-+12)(x-40)-10×(-x+12)-42.5=-0.1x2+17x-642.5=-(x-85)2+80.当x=85时,年获利的最大值为80万元.(3)令w=57.5,得-0.1x2+17x-642.5=57.5,整理,得x2-170x+7000=0.解得x1=70,x2=100.由图象可知,要使年获利不低于57.5万元,销售单价为70元到100元之间.又因为销售单位越低,销售量越大,所以要使销售量最大,又使年获利不低于57.5万元,销售单价应定为70元.13.解:(1)若选择y=ax+b,把x=40,y=16与x=60,y=30分别代入得,而把x=80代入y=0.7x-12得y=44<48,所以选择y=ax+b不恰当;若选择y=(k≠0),由x,y对应值表看出y随x的增大而增大.而y=(k≠0)在第一象限y随x的增大而减小,所以不恰当;•若选择y=ax2+bx,把x=40,y=16与x=60,y=30分别代入得,而把x=80代入y=0.005x2+0.2x•得y=48成立.所以选择y=ax2+bx恰当,解析式为y=0.005x2+0.2.(2)把y=70代入y=0.005x2+0.2x得70=0.005x2+0.2x,即x2+40x-14000=0,解得x=100或x=-140(舍去),所以,•当停止距离为70米,汽车行驶速度为100千米/时.。

相关文档
最新文档