定积分在几何中的应用

合集下载

定积分的应用

定积分的应用

定积分的应用定积分是微积分的重要概念之一,它在许多实际问题的求解中起着重要作用。

本文将介绍一些定积分的应用,并探讨它们在不同领域中的具体应用情况。

1. 几何学中的应用在几何学中,我们经常需要计算曲线与坐标轴之间的面积。

通过使用定积分,可以轻松解决这个问题。

以求解曲线 y = f(x) 与 x 轴之间的面积为例,我们可以将其划分为无穷多个宽度非常小的矩形,然后将这些矩形的面积相加,最终得到曲线与 x 轴之间的面积。

这个过程可以通过定积分来表示,即∫[a,b] f(x) dx,其中 a 和 b 分别是曲线的起始点和终止点。

2. 物理学中的应用在物理学中,定积分广泛应用于求解各种与物理量有关的问题。

例如,在动力学中,我们可以通过计算物体的位移和速度的定积分来求解物体的加速度。

同样地,在力学中,定积分可以用于计算物体所受的力的功。

这些应用都需要将物理量表示成关于时间的函数,并使用定积分来求解相关问题。

3. 经济学中的应用经济学也是定积分的应用领域之一。

在经济学中,我们经常需要计算一段时间内的总收益或总成本。

通过将这段时间划分为无数个非常小的时间段,然后计算每个时间段内的收益或成本,最后再将这些值相加,我们可以用定积分来表示这段时间内的总收益或总成本。

这种方法在经济学中有着广泛的应用,例如计算企业的总利润等。

4. 概率统计学中的应用在概率统计学中,定积分可以用于求解概率密度函数下的某个区间的概率。

在概率密度函数中,曲线下的面积表示了该事件发生的概率。

通过将概率密度函数在某个区间上的定积分,我们可以得到该区间内事件发生的概率。

这种方法在概率论和数理统计中具有重要的应用,例如计算正态分布下的概率,或者计算随机变量的期望值等。

综上所述,定积分在几何学、物理学、经济学和概率统计学等各个领域都有着重要的应用。

无论是计算面积、求解物理量、计算总收益还是计算概率,定积分都提供了一种有效的数学工具。

通过理解和掌握定积分的应用,我们可以更好地解决实际问题,并深入研究各个领域中的相关理论。

定积分在几何和物理中的应用

定积分在几何和物理中的应用

定积分在几何和物理中的应用定积分是高等数学中非常重要的一个概念,它可以用于计算曲线、曲面的面积或体积,还可以应用到物理学、工程学中。

在本文中,我们将着重探讨定积分在几何和物理中的应用。

一、计算面积我们首先来看一个简单的例子,如果我们想要计算一个曲线所围成的面积,我们需要怎么做呢?假设曲线为y=f(x),我们可以将这条曲线分成若干个无限小的小矩形,每个小矩形的宽度为Δx,高度为函数值f(x),则该小矩形的面积为f(x)Δx。

我们将所有小矩形的面积相加,得到所求的曲线面积S:S=∫a^b f(x) dx其中a和b分别是曲线的起点和终点。

这里的∫符号代表积分符号,具体的计算方法不在本文中详细说明。

二、计算体积在物理学中,我们经常需要计算物体的体积,定积分也可以帮助我们实现这一目的。

比如我们需要计算一个旋转曲线所围成的立体体积,我们可以依然使用之前的方法将其分解成无限小的小圆柱体积,每个小圆柱的体积可以表示为:V=π[f(x)]^2dx我们将所有小圆柱的体积相加,得到所求的立体体积V:V=∫a^b π[f(x)]^2dx三、计算重心和质心在物理学中,重心和质心是非常重要的概念。

对于一个平面图形或者一个立体体形,它的重心和质心分别表示为:重心:(∫xdS)/(∫dS)质心:(∫xdm)/(∫dm)这里的dS和dm分别表示面元和质量元,x则表示距离中心的距离。

我们可以通过对图形进行分割并使用定积分来计算重心和质心。

四、积分在物理学中的应用定积分在物理学中的应用非常广泛,比如我们可以使用它来计算弹性势能、动能、功、功率等物理量。

举一个简单的例子,假设质量为m的物体从高度为h处自由落下,当它下落到高度为y 时,它的速度为v,我们可以使用动能和势能的转化关系求出v,设重力加速度为g,则它下落过程中失去的重力势能为mgh-mgy,同时增加的动能为(1/2)mv^2,因此:mgh-mgy=(1/2)mv^2v=sqrt(2g(h-y))我们可以使用定积分来求解物体在过程中的运动状态,以及计算其他物理量的值。

高中数学-定积分在几何中的应用-课件

高中数学-定积分在几何中的应用-课件

求由一条曲线 y=f(x)和直线 x=a,x=b(a<b)及 y=0 所围成平面图形的面积 S.
①如图 1 所示,f(x)>0, bf(x)dx>0. a
∴S= bf(x)dx. a
②如图 2 所示,f(x)<0, bf(x)dx<0, a
∴S=| bf(x)dx|=- bf(x)dx.
a
a
2×23x32
|
2 0
=136,
8
S2=2 [4-x-(- 2x)]dx
=4x-12x2+2
3
2x32|
8 2
=338,
于是 S=136+338=18.
方法二:选y作为积分变量,
将曲线方程写为x=y22及x=4-y.
则S=2-44-y-y22dy
=4y-y22-y63|
2 -4
=18.
变式训练 1:由曲线 y= x,直线 y=x-2 及 y 轴所围成
解.
由方程组
y2=2x y=4-x
解出抛物线和直线的交
点为(2,2)及(8,-4).
方法一:选 x 作为积分变量,由图可看出 S=S1+S2,
由于抛物线在 x 轴上方的方程为 y= 2x,
在 x 轴下方的方程为 y=- 2x,
2
所以 S1=0 [ 2x-(- 2x)]dx
=2
2 1
20x2 dx=2
❖1.7 定积分的简单应用
❖1.7.1 定积分在几何中的应用
自主学习 新知突破
❖ 1.理解定积分的几何意义.
❖ 2.会通过定积分求由两条或多条曲线 围成的平面图形的面积.
复习回顾
[问题 1]定积分的几何意义.
由三条直线 x=a,x=b(a<b),x 轴及 一条曲线 y=f(x)(f(x)≥0)围成的曲边 梯形的面积 S=________.

定积分在几何学上的应用

定积分在几何学上的应用

成的图形的面积.
解 两曲线的交点
y2 2x y x4
(2 , 2 )(,8 ,4 ).
yx4
y2 2x
选 y为积分变量 y[2,4]
dAy4y2dy
4
A dA18.
2
2
整理ppt
6
如果曲边梯形的曲边为参数方程
x y
(t) (t)
曲边梯形的面积 A t2(t)(t)d.t t1
( 其 中 t 1 和 t 2 对 应 曲 线 起 点 与 终 点 的 参 数 值 )
就得半径为a
的球体的体积
4 3
a3
.
整理ppt
21
2
2
2
例 9 求星形线 x 3 y 3 a 3 (a 0)绕 x轴旋转
构成旋转体的体积.
y
2
2
2
解 y3 a3 x3,
y2
a32
2
x3
3
a
x[a,a]
o
ax
旋 转 体 的 体 积
V
aaa32
2
x3
3
dx
32 a3 105
.
整理ppt
22
25
绕 y 轴 旋 转 的 旋 转 体 体 积 2ayC B xx2(y)
可看作平面图OABC与OBC o xx1(y)
A
2a x
分别绕y轴旋转构成旋转体的体积之差.
Vy
2ax22(y)dt
0
2ax12(y)dt
0
a2(tsit)n 2asitn dt 2 a2(tsit)n 2asitn dt 0
0
整理ppt
28
例 求曲线 y3x21 与 x 轴围成的封闭图形

定积分的应用

定积分的应用

定积分的应用定积分是微积分中的重要内容之一,经常被应用于实际问题的解决中。

本文将从三个方面来论述定积分的应用。

一、定积分在几何中的应用首先,定积分可以用于求曲线下面的面积。

以 y=f(x) 为例,若f(x)>0,则曲线 y=f(x) 与 x 轴的两点 a、b 组成的图形的面积为S=∫baf(x)dx这时,可以将曲线 y=f(x) 分成许多小块,每块宽度为Δx,高度为 f(xi),从而可以得到其面积为ΔS=f(xi)Δx因此,当Δx 趋于 0 时,所有小块的面积之和就等于图形的面积,即∑ΔS→S因此,用定积分就可以求出图形的面积。

其次,定积分还可以用于求旋转体的体积。

以曲线 y=f(x) 在 x 轴上旋转360°为例,其体积为V=π∫baf(x)^2dx这里,π为圆周率。

最后,定积分还可以用于求某些奇特图形的长、面积等等。

二、定积分在物理中的应用物理中也有许多问题可以通过定积分来解决。

比如,运动问题中的速度、加速度,可以通过位移的变化来求得。

若某运动物体的速度为 v(t),则其位移 s(t) 为s(t)=∫v(t)dt同样,若某运动物体的加速度为 a(t),速度为 v(t),则其位移为s(t)=∫v(t)dt=∫a(t)dt最后,定积分还可以用于求密度、质量等物理量。

三、定积分在工程中的应用定积分在工程中的应用也非常广泛。

比如,在流体力学中,对于一条管道中的液体,可以通过惯性和重力等因素,求出其中液体的流量和压力。

而这些流量和压力可以通过定积分计算得出。

在电学中,电量、电荷、电流和电势等都可以通过定积分来求解。

在结构设计中,定积分也常常被用来计算约束力、杠杆比例等。

总之,定积分在几何、物理和工程等领域中都有着广泛应用。

熟练地掌握定积分的方法和应用,对于科学研究和实际问题的解决都有着非常积极的帮助。

定积分的几何应用

定积分的几何应用

定积分的几何应用定积分是微积分中的重要概念,它有着广泛的应用。

其中之一就是在几何学中的应用。

本文将探讨定积分在几何学中的具体应用,并解释其背后的原理和意义。

一、平面图形的面积通过定积分,我们可以计算出复杂平面图形的面积。

假设有一个曲线方程y=f(x),该曲线与x轴所围成的图形为A。

我们可以将A分解成无限个极小的矩形条,然后通过求和的方式来逼近A的面积。

具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。

然后,在每个小区间中,选择一个x值作为代表点,记作xi。

根据代表点xi和函数f(x)的值,我们可以计算出相应小矩形的高度为f(xi)。

由于每个小矩形的宽度Δx非常小,因此在计算总面积时,可以通过求和的方式逼近。

即可以得到如下的定积分表达式:A = ∫[a,b] f(x) dx其中[a,b]表示x的取值范围。

通过对上述定积分进行求解,即可得到图形A的面积。

二、曲线的弧长除了计算平面图形的面积外,定积分还可以用来计算曲线的弧长。

假设有一个曲线L,其方程为y=f(x)。

我们希望计算出曲线L的弧长。

与计算面积类似,我们同样可以将曲线L分解为无限个极小的线段,然后通过求和的方式来逼近曲线L的弧长。

具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。

然后,在每个小区间中,选择一个x值作为代表点,记作xi。

根据代表点xi和函数f(x)的值,我们可以计算出相应线段的长度为Δs。

同样地,由于每个小线段的长度Δs非常小,因此在计算总弧长时,可以通过求和的方式逼近。

即可以得到如下的定积分表达式:L = ∫[a,b] √(1 + [f'(x)]^2) dx其中[a,b]表示x的取值范围,f'(x)表示函数f(x)的导数。

通过对上述定积分进行求解,即可得到曲线L的弧长。

三、体积与质量除了平面图形的面积和曲线的弧长外,定积分还可以用来计算体积和质量。

当我们需要计算一个曲线绕某个轴旋转一周所形成的立体的体积时,定积分就派上用场了。

1.7定积分的几何应用

1.7定积分的几何应用

2
2
围成图形的面积.
解:作出y2=x,y=x2的图象如图所示:
解方程组 x 0 x 1 y x 或 2 y 0 y 1 y x
y
y
y xx
2
B
2
即两曲线的交点为(0,0),(1,1)
S = S曲 边 梯 形 OABC - S曲 边 梯 形 OABD
B(1,- 1). ∴围成图形 (阴影部分 )面积为
S=
-2
1
(- x2- x+ 2)dx 9 = . 2
1 3 1 2 = (- x - x + 2x) 3 2
9 答案: (1) 2
例 2 计算由曲线 y 围成的图形的面积.
2x
,直线 y
x 4 以及
y 2x
x 轴所
解:
两曲线的交点
2
|0 8
8
X型求解法
40 3
x 1 2 y
2
16 2 8
1 2
3
2

[( 4 y )
y ]d y
4
(4 y
44
1 2 1
2
y
2
2
1 6
x 4 y
y ) |0
1 6
3
4
4
40 3
Y型求解法
练习 1(例 2 变式题) : 计算由曲线 y 2 x 和直线 y x 4 所围成的图形的面积
2π 4 A. B. 5 3 3 π C. D. 2 2 解析:选 B.由图象可知二次函数的表达式为 f(x)= 1- x2,∴ S= 1 3 1 1 4 1 2 = (1- )-(- 1+ )= . -1 (1- x )dx= (x-3x ) 3 3 3

第五章 定积分的几何应用

第五章 定积分的几何应用



) ( r r
d
例 5
求双纽线 a cos 2 所围平面图形
2 2
的面积.
解 由对称性知总面 积=4倍第一象限 部分面积
A 4A1
y x
2 a 2 cos 2
A 40
4
1 2 a cos 2d a 2 . 2
例 6 求心形线r a(1 cos )所围平面图形的 面积 (a 0).
小结
求在直角坐标系下、参数方程形式 下、极坐标系下平面图形的面积. 求旋转体的体积
(注意恰当的选择积分变量有助于简化 积分运算)
思考题
1. 设 曲 线 y f ( x ) 过 原 点 及 点( 2,3) , 且 f ( x ) 为单调函数,并具有连续导数,今在曲线 上任取一点作两坐标轴的平行线,其中一条平 行线与 x 轴和曲线 y f ( x ) 围成的面积是另一 条平行线与 y 轴和曲线 y f ( x ) 围成的面积的 两倍,求曲线方程.
练习题答案 32 一、1、1; 2、 ; 3、2; 3 1 1 4、y ; 5、 e 2 ; 6、 . e 2 3 7 2 二、1、 ln 2 ; 2、 ; 3、 a ; 2 6 5 3 2 2 4、3a ; 5、 ; 6、 a . 2 4 9 e 8 2 三、 . 四、 . 五、 a . 4 2 3
其上相应的窄条左、右曲边分别为 1 2 x y ,x y4 2 4 1 2 A ( y 4 y )dy 18 2 2
由此可见在面积计算中应根据平面区域的具体 特征恰当地选择积分变量找出相应的面积微元可使 计算简化
上述问题的一般情况是
d
y
x ( y)

定积分在几何中的应用

定积分在几何中的应用

782020年第 5 期中定积分在几何中的应用杨姜维一、平面图形的面积(一)以为积分变量的情形1.在直角坐标中,设曲线()与直线及轴所围成的平面图形面积为,则面积元素,面积。

例1:求曲线与直线及轴所围成的平面图形的面积。

解:如图1,面积元素,图形面积=2.设曲线与直线及轴所围成的图形面积为,则面积元素,面积。

3.设由,所围成的平面图形的面积:函数由大减小(上减下),积分从左到右;那么,第一种情况里面的面积公式,也可以看作是,轴即直线。

例2:求直线与抛物线所围成的平面图形的面积。

解:由图2分析可知,交点面积元素,图形面积4.任意由所围成的平面图形(图3)的面积。

例3:求抛物线,与轴及直线在第一象限所围成的平面图形的面积。

解:如图4,由交点面积+(二)以为积分变量的情形1.由曲线、直线及轴围成的平面图形面积:。

2.由曲线、直线及轴围成的平面图形面积:。

3.由曲线直线及轴围成的平面图形面积:若,。

可看作是函数由大减小(右减左),积分从下到上。

例4:计算抛物线与直线所围成的图形的面积。

定积分在几何中的应用,主要体现在求解平面图形的面积和旋转体的体积等,文中主要介绍了求解平面图形面积的几种情形,即分别以为积分变量来讨论;求旋转体体积的两种情况,即曲线分别围绕轴和轴旋转一周所得的立体体积。

JIAO HAI TAN HANG/教海探航解:如图5,由交点为方便计算,选取为积分变量,则有4.任意由曲线直线及轴围成的平面图形面积:。

二、旋转体的体积一个平面图形围绕其所在平面上的一条直线旋转一周而成的立体即为旋转体,常见的旋转体有圆柱体、圆锥、圆台、球体等,这些都有对应的体积公式,面对日常生活中所用到的水杯、花瓶等立体物件,求解体积时可考虑以下情况:(一)曲线绕轴旋转的情形由连续曲线与直线及轴所围成的曲边梯形绕轴旋转一周而成的立体,选为积分变量,该旋转体的体积元素,体积为。

(二)曲线绕轴旋转的情形由曲线、直线及轴围成的平面图形绕轴旋转一周所得的立体,选为积分变量,该旋转体的体积元素,体积为。

定积分在几何计算中的应用

定积分在几何计算中的应用

定积分在几何计算中的应用定积分是高等数学中的一个重要概念,它在几何计算中有着广泛的应用。

在几何学中,定积分可以用来计算曲线的长度、曲面的面积、体积等等。

下面我们就来看看定积分在几何计算中的应用。

定积分可以用来计算曲线的长度。

对于一条曲线,我们可以将其分成无数个小段,然后对每个小段的长度进行求和,最终得到整条曲线的长度。

这个过程可以用定积分来表示,即:L = ∫a^b √(1+(dy/dx)^2) dx其中,a和b分别表示曲线的起点和终点,dy/dx表示曲线在每个点的斜率。

这个式子的意义是,将曲线分成无数个小段,每个小段的长度为√(1+(dy/dx)^2) dx,然后对所有小段的长度进行求和,最终得到整条曲线的长度。

定积分可以用来计算曲面的面积。

对于一个曲面,我们可以将其分成无数个小面元,然后对每个小面元的面积进行求和,最终得到整个曲面的面积。

这个过程可以用定积分来表示,即:S = ∫∫D √(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy其中,D表示曲面的投影区域,z表示曲面在每个点的高度,∂z/∂x和∂z/∂y分别表示曲面在每个点在x和y方向上的斜率。

这个式子的意义是,将曲面分成无数个小面元,每个小面元的面积为√(1+(∂z/∂x)^2+(∂z/∂y)^2) dxdy,然后对所有小面元的面积进行求和,最终得到整个曲面的面积。

定积分可以用来计算体积。

对于一个立体图形,我们可以将其分成无数个小体元,然后对每个小体元的体积进行求和,最终得到整个立体图形的体积。

这个过程可以用定积分来表示,即:V = ∫∫∫E dxdydz其中,E表示立体图形的空间区域。

这个式子的意义是,将立体图形分成无数个小体元,每个小体元的体积为dxdydz,然后对所有小体元的体积进行求和,最终得到整个立体图形的体积。

定积分在几何计算中有着广泛的应用,可以用来计算曲线的长度、曲面的面积、体积等等。

这些应用不仅在数学中有着重要的意义,也在实际生活中有着广泛的应用,例如在建筑设计、工程计算等领域中都有着重要的作用。

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用

定积分在几何,物理学中的简单应用
定积分是一种常见的数学工具,用来解决许多几何和物理问题。

它可以在几何学、物理学中解决积分、面积和容积计算题中应用。

首先,定积分在几何学中的简单应用。

比如,如果我们要计算一个几何图形的面积,则可以通过定积分来计算。

它可以计算任意形状的几何图形的面积,比如三角形、椭圆、圆形等。

它的应用范围非常广泛,比如可以用它来计算面积、周长、体积等。

其次,定积分也可以用在物理学中。

比如,如果我们要计算一个物体在多次不同力作用之下移动的路程,可以用定积分来计算。

它可以帮助我们精确地计算物体受力作用前后的距离,也可以帮助我们精确计算弹性作用力等。

最后,定积分也可以应用于物理学的温度问题中。

比如,我们可以通过定积分求出一个物体在单位温差下的热量传递,也可以求出一个物体的总热量。

还可以用它求解温度场、热传导率、热导率等问题。

以上是定积分在几何、物理学中的简单应用。

定积分是一种通用而有效的数学工具,在几何、物理学中都有着广泛的应用,不仅可以用来解决相关的面积、容积计算题,而且还可以用来解决物理热力学、温度等问题。

只要我们掌握它的基本使用方法以及它的一些特性和用途,就可以在几何、物理学中更好地应用它来解决其它问题。

- 1 -。

微积分定积分在几何中应用

微积分定积分在几何中应用

(二)定积分在几何中的应用(1)求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。

由此可知通过求函数的定积分就可求出曲边梯形的面积。

例如:求曲线2f x =和直线x=l ,x=2及x 轴所围成的图形的面积。

分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。

所以该曲边梯形的面积为2233222112173333x f x dx ===-=⎰ (2)求旋转体的体积(I)由连续曲线y=f(x)与直线x=a 、x=b(a<b) 及x 轴围成的平面图形绕x 轴旋转一周而成的旋转体的体积为2()()ba V f x d x π=⎰。

(Ⅱ)由连续曲线y=g(y)与直线y=c 、y=d(c<d)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()dc V g yd y π=⎰。

(III)由连续曲线y=f(x)( ()0f x ≥)与直线x=a 、x=b(0a ≤ <b)及y 轴围成的平面图形绕y 轴旋转一周而成的旋转体的体积为2()()ba V xf x d x π=⎰。

例如:求椭圆22221x y a b+=所围成的图形分别绕x 轴和y 轴旋转一周而成的旋转体的体积。

分析:椭圆绕x 轴旋转时,旋转体可以看作是上半椭圆2()y x a x a =-≤≤,与x 轴所围成的图形绕轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕x 轴旋转一周而成的旋转体的体积为2222232214()33a a y a a a a b v dx dx ab a x x ab a ππππ---===-=⎰⎰椭圆绕y轴旋转时,旋转体可以看作是右半椭圆)x b y b =-≤≤,与y 轴所围成的图形绕y 轴旋转一周而成的,因此椭圆22221x y a b+=所围成的图形绕y 轴旋转一周而成的旋转体的体积为2222232214()33b b y b b b b a v dy dy b a b y y a b b ππππ---===-=⎰⎰(3)求平面曲线的弧长(I)、设曲线弧由参数方程(){()()x t t y t ϕαβφ=≤≤= 给出其中''(),()t t ϕφ在[,]αβ上连续,则该曲线弧的长度为()s x βα=⎰。

定积分的应用

定积分的应用
y f (x) g(x) 在区间[a, b]上的定 积分
b
S a [ f (x)-g(x)]dx
y
a
O
y = f (x)
bx y = g(x)
例1 计算由曲线 y x2 及直线 y x 所围成的平面图形
的面积。
例1 计算由曲线 y x2 及直线 y x 所围成的平面图形
的面积。
解:作出所围成的平面图形
解:在弹性限度内,拉伸(或压
缩)弹簧所需的力F(x)与弹
簧拉伸(或压缩)的长度x成正
比.
即:F(x)=kx
所以据变力作功公式有
W
L
F(x)dx
0
L 0
kxdx
1kx2 2
|0L
1 2
kL2
作业:
课本58页练习(1)(2) 课本59页练习1,2
的面积为 ( )
(A) 2 (C) 2 2
e
(B) 2 e (D) e 1 2
e
二、物理中的应用
1、变速直线运动的路程
设物体运动的速度vv(t),则此物体在时 间间[a, b]内运动的路程s为
b
s a v(t)dt
例 1 一辆汽车的速度一时间曲线如图所示,求
汽车在这 1 min 行驶的路程。
y x
y
x2
解方程组,得交点的横坐标为x=0
和x=1, 即区间为[0,1]。于是,
平面图形的面积
A
1(x x2)dx
0
(1 2
x2
1 3
x3)
1 0
1 6
例 2 求 y = sinx, y = cos x, x 0, x
2
所围成的平面图形的面积。

1.7.1 定积分在几何中的简单应用

1.7.1 定积分在几何中的简单应用

a
O a
b
f (x )d x f (x )d x
a
c
b
a
b
f (x )d x -S f (x )d x
a
c
f
c
f (x )d x 。
c
yf (x)
b x
当f(x)0时,由yf (x)、xa、xb 与 x 轴所围成
的曲边梯形位于 x 轴的下方,
一、复习回顾
2、牛顿—莱布尼茨公式
2 2
-1
O
1A
x
-1

2 3
3
1
x
2
0
1 3
x
3
1 0

2 3
-
1 3

1 3
归纳
定 积 分 的 简 单 应 用
求由曲线围成的平面图形面积的解题步骤:
(1)画草图,求出曲线的交点坐标
(2)将曲边形面积转化为曲边梯形面积 (3)确定被积函数及积分区间 (4)计算定积分,求出面积
四、例题实践求曲边形面积
1.7.1定积分在几何中的简单应用
定 积 分 的 简 单 应 用
一、复习回顾 1、定积分的几何意义:
当 f(x ) 0 时 , 积 分
a f ( x ) dx
b
在 几 何 上 表 示 由 y = f (x )、
xa、xb与 x轴所围成的曲边梯形的面积。
y yf (x) O a b y
x
b
思考
如图, 一桥拱的形状为抛 定 积 物线, 已知该抛物线拱的高为 分 常数h, 宽为常数b. 的 2 简 求证: 抛物线拱的面积 S bh 3 单 应 用 建立平面直角坐标系 确定抛物线方程

定积分的意义及其在几何中的应用

定积分的意义及其在几何中的应用

定积分的意义及其在几何中的应用定积分是微积分中的一种重要概念,它是反映了函数在一些区间上面积的大小。

定积分的含义非常丰富,不仅可以用于求函数的面积、周长、体积等几何问题,还广泛应用于物理学、经济学、生物学等领域的计算与分析中。

首先,定积分的最基本的含义是求函数在一些区间上的面积。

对于非负连续函数f(x),可以将其图像以下方的函数图形为界,通过分割区间,构造出一系列较窄的矩形,然后求出这些矩形的面积之和,即可近似地得到曲线下面积的值。

随着分割区间的无穷细小,这个近似的面积将趋近一个确切的值,即定积分。

如果函数是负值或者非连续的情况,面积的计算则需要对函数图像进行分段处理,并分别计算每个部分的面积。

所以,定积分在几何中的应用可以明确地用于求曲线与坐标轴之间的面积。

其次,定积分也可以用于求曲线的弧长。

由于曲线的形状较为复杂,无法直接计算其弧长,但通过将曲线分成许多较小的线段,并每个线段用直线段来代替,再对这些直线段进行求和的方式,可以用定积分来近似计算曲线的长度。

当分割的线段无限细小时,这个近似的弧长将趋近于曲线的实际弧长。

这种方法虽然只能得到近似值,但对于一些无法获得解析解的复杂曲线来说,这种近似是非常有用的。

此外,在三维几何中,定积分可以应用于计算旋转体的体积。

对于一个曲线沿着坐标轴旋转形成的立体,可以将其分成许多非常薄的盘状元素,并计算每个盘状元素的体积,然后通过定积分将这些体积相加,即可得到整个旋转体的体积。

这个方法适用于各种形状的旋转体,能够有效地求解这些体积。

除了在几何中的应用,定积分在物理学、经济学、生物学等领域也有广泛的应用。

在物理学中,定积分可以用于计算各种形状物体的质心、重心等。

在经济学中,定积分常用于求解定量经济模型中的微积分方程,如求解需求曲线、利润函数等。

在生物学中,定积分可以用于计算生物体的体积、质量、功率等。

总之,定积分是微积分中一个重要的概念,不仅在几何中用于求解曲线的面积、弧长、旋转体的体积等问题,还在许多学科中都有广泛的应用。

定积分在几何上的应用

定积分在几何上的应用
0
2
a
y x2 y 2 2 1 2 b a b
4ab sin tdt ab.
2 0
2019/4/7 第六章 定积分的应用
2
o
图6-2-5
a x
8
2.极坐标情形
设由曲线 ( ) 及射线
d
()
d 、 围成一曲边扇 ( ) 形,求其面积.这里, 在[ , ]上连续,且 ( ) 0 . 1 o 面积元素 dA [ ( )]2 d x 2 图6-2-6
3
a
o
a x
旋转体的体积
V a x a
2 3
图6-2-12
2019/4/7
第六章 定积分的应用
32 3 dx a . 105
16
类似地,如果旋转体是由连续曲线
x ( y ) 、直线 y c 、 y d 及y 轴所围 成的曲边梯形绕y 轴旋转一周而成的立体,
第六章 定积分的应用
1
b
例 1 计算由两条抛物线y 2 x 和 y x 2 所围成的 图形的面积.

两曲线的交点
(0,0) (1,1)
选 x 为积分变量 x [0,1]
面积元素 dA ( x x 2 )dx
2 3 x 1 2 A 0 ( x x )dx x . 3 0 3 3
R 2 2
1 2 R x dx R h. 2
23
第六章 定积分的应用
三、平面曲线的弧长
设 A、 B 是曲线弧上的两 个端点,在弧上插入分点
y
M2
M1
A M0
M n1

4(8)定积分在几何学上的应用

4(8)定积分在几何学上的应用

y g(x)
7
定积分的几何应用
(2) 如果 f (x), g(x) 的相对位置不定,则
y y f (x) y g(x)
b
A a f (x) g(x) dx
(3) 特别 g(x) 0 时,有 O a
bx
b
A f (x) dx
注意:
a
此时的A表示图形的面积真值,而
b
f (x)dx 表示曲边梯形面积的代数和. a
a2 (1 2 cos cos2 )d 0

a
2

3
2
2sin

1 4
sin
2
0

3 a 2
2
15
定积分的几何应用
例4 求由圆 r 2 sin 和双纽线
r2 cos 2 所围成的公共部分的面积.
A

2

1 2
第八节 定积分在几何上的应用
建立积分模型的微元法
求平面图形的面积 求空间立体的体 积 求平面曲线的弧长与曲率
旋转体的侧面积 小结 思考题 作业
第六章 定积分的应用
1
定积分的几何应用
一、建立积分模型的微元法
究竟哪些量可用定积分来计算呢. 首先讨论这个问题. 结合曲边梯形面积的计算 及定积分的定义
可知,用定积分计算的量应具有如下两个特点:
与y=0所围成的图形分别绕x轴、y轴旋转而成的
ቤተ መጻሕፍቲ ባይዱ
旋转体的体积.
y
解 绕 x轴旋转的旋转体体积
Vx 2a y2 ( x)dx 变量代换
O
2a x
2x0a a( t sin t )

定积分在几何计算中的应用

定积分在几何计算中的应用

定积分在几何计算中的应用1.引言定积分是微积分中的一个重要概念,也是几何计算中的重要工具之一。

从几何角度来看,定积分可以用于计算图形的面积、体积、质心等问题,具有很强的实用价值。

本文将从定积分的基本定义入手,逐步探讨它在几何计算中的具体应用,希望能为读者提供一些参考。

2.定积分的基本定义定积分是对一个区间内函数在该区间内的面积求和所计算的极限值。

换句话说,如果在其定义区间上将函数的图象分成无穷多个狭长的矩形,那么这些矩形的面积之和即为该函数在该区间上的面积,而定积分就是对这些矩形面积之和求极限所得到的一个实数。

3.计算面积计算面积是定积分最基本的应用之一。

假设有一个函数f(x),将其在[a,b]区间内用x轴分割成n个矩形,每个矩形宽度为Δx,则矩形的高度f(xi),面积为f(xi)Δx,最后将所有矩形的面积相加,得到近似面积:Sn = Σf(xi)Δx当n趋近于无限大时,Sn的极限值就是f(x)在[a,b]上的面积:∫ab f(x)dx=S=a∫b f(x)dx其中S表示函数f(x)在[a,b]上的面积,a和b分别表示积分区间的端点。

4.计算体积定积分还可以用于计算三维空间中物体的体积。

例如,假设一个圆柱的横截面为半径为r的圆形,长度为h,则其体积V可以表示为:V = Πr²h如果将圆柱沿其中心轴线切割成无穷多个大量趋近于长方体的小块,然后将这些小块向上叠加,可以得到一个近似的立体体积。

叠加的过程即为对小块的体积进行定积分运算:V = ∫h0 Πr²dy5.计算质心质心是一个物体重心所在的位置,也是物体受力时的平衡点。

例如,一个平面图形的质心是指该图形的所有部分都按照各自的面积对重心发生的贡献计算,最终得到的点就是该图形的质心。

假设一个平面图形可以分成无穷多个小的矩形,每个矩形面积为ΔA,其重心的纵坐标y为f(x),则该图形的质心的纵坐标为:y = (1/A)∑yiΔA,其中A表示该图形的总面积将每个小矩形的面积相加,用定积分表示,可以得到该图形的总面积:A = ∫ab f(x)dx再将每个小矩形的贡献相加,也用定积分表示,可以得到该图形的质心纵坐标:y = (1/A)∫ab xf(x)dx6.结语本文介绍了定积分在几何计算中的具体应用,包括计算面积、体积、质心等,其原理都是将物体分成无穷多小的组成部分,然后对每个小部分进行计算,最后将结果相加。

定积分的几何学原理及应用

定积分的几何学原理及应用

定积分的几何学原理及应用一、定积分的概念定积分是微积分中的一个重要概念,用于描述曲线下面积、空间体积以及曲线长度等几何问题。

定积分的计算依赖于黎曼和的理论,通过将曲线或曲面分割成若干个小块,然后对这些小块的面积或体积进行求和来进行计算。

二、定积分的几何学原理定积分的几何学原理有以下三个方面的内容:1.曲线下面积的计算:对于一个实数区间[a, b]上的函数f(x),我们可以将其图像与x轴围成的曲线下的面积用定积分来表示。

通过将[a, b]区间分割成n个小区间,选取每个小区间上的一点,然后以这些小区间上的任意一点作为高,将每个小区间上的矩形面积进行求和,得到的极限就是曲线下面积的近似值。

当再令n趋于无穷大时,就得到了定积分表示的曲线下面积的准确值。

2.曲线长度的计算:类似于曲线下面积的计算,曲线的长度也可以用定积分来表示。

通过将曲线分割成若干个小线段,并将每个小线段的长度进行求和,就可以得到曲线的长度的近似值。

当分割的线段越来越小,小线段的数量趋近于无穷大时,得到的极限就是曲线的长度的准确值。

3.空间体积的计算:除了用于计算平面曲线的面积和长度外,定积分还可以用于计算空间中曲面下面体积的大小。

通过将曲面分割为许多小面元,并将每个小面元的体积进行求和,可以得到曲面下面体积的近似值。

当分割的小面元越来越小,小面元的数量趋近于无穷大时,得到的极限就是曲面下面体积的准确值。

三、定积分的几何学应用定积分作为微积分中的重要工具,广泛应用于几何学中的各种问题求解。

以下是几个典型的应用案例:1.求解平面区域面积:通过将平面分割成若干个小矩形或小三角形,然后计算每个小矩形或小三角形的面积,并将其进行求和,可以得到给定平面区域的面积。

这在工程测量、物体表面积的计算等方面有重要应用。

2.求解线段长度:对于给定的曲线或曲面,通过将其分割成若干个小线段,然后计算每个小线段的长度,并将其进行求和,可以得到曲线或曲面的长度。

这种方法在导航、路径规划等领域中被广泛应用。

定积分在几何中的应用-文档资料

定积分在几何中的应用-文档资料
4
直线与x轴交点为(4,0)
SS S x [ 2 x d x (x 4 ) d x ] 1 2 2xd
0 4 4 8 8
x d x 4 ) d x ( x d x x d x ) ( x 4 ) d x 2 (x 2 2
0 4 4
0 4
4
确 定的 f () x 原 函 数 F () x
1、平面图形的面积
y
y f( x )
y
y f ( x ) 2
y f ( x ) 1
o
a
b x
o
Байду номын сангаас
a
b x
曲边梯形的面积
曲边梯形的面积
A f(x ) dx a
b
A [ f( x ) f ( x )] dx 1 a 2
b
1、平面图形的面积
2 y x 4 及其在点 ( 2 , 0) 和 ( 2 , 0 ) 处 2. 求抛物线 的切线所围成的图形的面积 .
x d x x d x
2 0 0
1
1
D
2 y xx
A

1
2
例 2 计算由曲线 y 2x , 直线 y x 4以及 x 轴所围 成的图形的面积.
解 两曲线的交点
( 0 ,0 ) ,( 8 ,4 ) .
y 2x
S2
S1
y x 4
y 2x y x4
3
y x2
A 6 x x) d x 1 (x
3 2 2
0
3 yx 6 x
A x 6) xd x 2 (x
2 3 0
3
于是所求面积
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.7定积分的简单应用1.7.1定积分在几何中的应用双基达标(限时20分钟)
1.由y=1
x,x=1,x=2,y=0所围成的平面图形的面积为
().
A.ln 2 B.ln 2-1 C.1+ln 2 D.2ln 2
解析画出曲线y=1
x(x>0)及直线x=1,x=2,y=0,
则所求面积S为如图所示阴影部分面积.
=ln 2-ln 1=ln 2.故选A.
答案 A
2.在下面所给图形的面积S及相应表达式中,正确的有
().
A .①③
B .②③
C .①④
D .③④
答案 D
3.由曲线y =x 2与直线y =2x 所围成的平面图形的面积为
( ).
A.163
B.83
C.43
D.23
解析 画出曲线y =x 2和直线y =2x ,则所求面积S 为图中阴影部分的面积.
解方程组⎩⎪⎨⎪⎧ y =2x ,y =x 2,得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧
x =2,
y =4.
∴A (2,4),O (0,0).
=4-⎝ ⎛⎭⎪⎫83-0=4
3.故选C.
答案 C
4.由曲线y =2x 2,及x =0,x =3,y =0所围成图形的面积为________. 解析 由题意画草图:
答案 18
5.直线x =π2,x =3π
2,y =0及曲线y =cos x 所围成图形的面积________. 解析 由题意画草图:
由图形面积为
答案 2
6.求由曲线y =x 3及直线y =2x 所围成的图形面积. 解 由⎩⎨⎧
y =x 3,
y =2x , 解得x 1=0,x 2=2,x 3=- 2.
交点为(-2,-22),(0,0),(2,22). 所求面积S 为:
综合提高 (限时25分钟)
7.若y =f (x )与y =g (x )是[a ,b ]上的两条光滑曲线的方程,则这两条曲线及直线x =a ,x =b 所围成的平面区域的面积为
( ).
解析 当f (x )>g (x )时,
所求面积为;
当f (x )≤g (x )时,所求面积为
.
综上,所求面积为.
答案 C
8.曲线y =x 2+2x 与直线x =-1,x =1及x 轴所围图形的面积为
( ).
A .2 B.83 C.43
D.23
=23+4
3=2. 答案 A
9.抛物线y =-x 2+4x -3及其在点A (1,0)和点B (3,0)处的切线所围成图形的面积为________.
解析 由y ′=-2x +4得在点A 、B 处切线的斜率分别为2和-2,则两直线方程分别为y =2x -2和y =-2x +6,
由⎩⎪⎨⎪⎧
y =2x -2,y =-2x +6,
得两直线交点坐标为C (2,2), ∴S =S △ABC -
(-x 2+4x -3)d x
=12×2×2-⎝ ⎛⎭⎪⎫
-13x 3+2x 2-3x ⎪⎪⎪
31
=2-43=23.
答案 2
3
10.已知函数f (x )=3x 2+2x +1,若
f (x )d x =2f (a )成立,则a 的值为________.
所以2(3a 2+2a +1)=4, 即3a 2+2a -1=0, 解得a =-1或a =1
3. 答案 -1或1
3
11.直线y =k x 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 值及直线方程.
解 由⎩⎨⎧ y =k x ,y =x -x 2,得⎩⎨⎧ x =0,y =0,或⎩
⎨⎧
x =1-k ,
y =k -k 2
.(0<k <1)
即⎝ ⎛⎭⎪⎫1-k 2x 2-13x 3⎪⎪⎪
1
-k
=12⎝ ⎛⎭⎪⎫12x 2-13x 3⎪⎪⎪
1
. ∴(1-k )36=1
12,
∴(1-k )3
=12,k =1-3
42. ∴直线方程为y =⎝
⎛⎭⎪⎪⎫1-342x .
12.(创新拓展)已知函数f (x )=⎩⎨⎧
x 3,x ∈[0,1],
x ,x ∈[1,2],求曲线y =f (x )与x 轴、直线x
=0、x =2所围成的图形的面积.。

相关文档
最新文档