移项法解一元一次方程练习

合集下载

移项、合并同类项、去分母法则解一些简单的一元一次方程练习

移项、合并同类项、去分母法则解一些简单的一元一次方程练习

移项、合并同类项、去分母法则解一些简单的一元一次方程练习巩固练习一判断正误,并改错:(1)6+x=8,移项得 x =8+6(2)3x=8-2x ,移项得3x+2x=-8 (3) 5x -2=3x+7,移项得5x+3x=7+2(4)方程1024x x --=去分母,得214x x -+= (5)方程1136x x-+=去分母,得122x x +-= (6)方程11263x x --=去分母,得312x x --= (7)方程1123xx -=+去分母,得3261x x -=+(8)由b a =,得xb x a =; (9)由y x =,53=y ,得53=x (10)由x =-2,得2-=x 巩固练习二解下列方程: (1)42112+=+x x ; (2) (3)5x +3=4x +7(4)2(x -2)-(4x -1)=3(1-x ) (5)452168x x +=+23x x =-+当堂检测一、填空1、在等式b a =-32两边都加3,可得等式 ;2、在等式12-=+x 两边都减2,可得等式 ;3、如果b a =-53,那么+=b a 3( );4、如果62=-x y ,那么=y ( )+6;5.由等式152103+=-x x 的两边都________,得到等式25=x ,这是根据_____ _____ 由等式-8331=x 的两边都______ __,得到等式x =_______ ; 6.已知2=x 是方程065=--x ax 的解,则_____=a ; 7、已知方程①3x -1=2x +1 ②x x =-123 ③23231-=+x x ④413743127+-=++x x 中,解为x=2的是方程 ( ) 8、方程312-x =x -2的解是( )二.选择题9.下列各式中,不属于方程的是 ( ) A 、 )2(32+-+x x B. 0)24(13=--+x x C. 2413+=-x x D. 7=x 10.方程513=-x 的解是 ( ) A. 34=x B 35=x C 18=x D 2=x 11.下列结论中正确的是 ( ) A .若73-=+y x ,则4=x B 、若y y 2567-=-,则y y 21767-=+ C. 若425.0-=x , 则1-=x D.若x x 88-=,则88=12.下列变形中,错误的是 ( )A 、062=+x 变形为62-=x B.x x +=+223变形为x x 243+=+ C. 2)4(2=--x 变形为14=-x D.2121x =+-可变形为11=+-x 13.某长方形的长与宽的和是12,长与宽的差是4,这个长方形的长宽分别为 ( ) A. 10和2B. 8和4C. 7和5D. 9和314.小彬的年龄乘以2再减去1是15岁,那么小彬现在的年龄为 ( ) A. 7岁B. 8岁C. 16岁D. 32岁15.下列说法中,正确的个数是 ( )① 若my mx =,则0=-my mx ;②若my mx =,则y x =; ③ 若my mx =,则my my mx 2=+;④若y x =,则my mx = A. 1B. 2C. 3D. 416.下列变形符合等式性质的是 ( ) A. 如果732=-x ,那么372-=x B. 如果123+=-x x ,那么213-=-x x C. 如果52=-x ,那么25+=x D. 如果131=-x ,那么3-=x 三、解下列方程1、6x=3x -122、2y ―21=21y ―33、4-3x = 4x -34、2x -8=3x5、6x -7=4x -5;6、 4-3(2-x)=5x7、8、 ;9、 10、 2x -13 =x+22 +1 11、3142125x x -+=-四、列方程解应用题1.一桶油连桶的重量为8千克,油用去一半后,连桶重量为4.5千克,桶内有油多少千克?设桶内原有油x 千克,则可列出方程________ ___________;2.不明的妈妈今年44岁,是小明年龄的3倍还大2岁,设小明今年x 岁,则可列出方程:____________ _______;x x 43621=-1623+=x x 253231+=-x x3.3年前,父亲的年龄是儿子年龄的4倍,3年后父亲的年龄是儿子年龄的3倍,求父子今年各是多少岁?设3年前儿子年龄为x岁,则可列出方程:______ ______;4.修一段公路,如果每天修21m,13天可以完成,修4天后,加派工人每天多修6m,还要几天才能完成?5.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树多少棵?五、拓展延伸1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.。

六年级上册数学习题课件 4.2.2用移项法解一元一次方程 鲁教版

六年级上册数学习题课件  4.2.2用移项法解一元一次方程  鲁教版

夯实基础
14.【中考·聊城】在如图所示的2016年6月份的月历表中, 任意框出表中竖列上三个相邻的数,这三个数的和不 可能是( )
A.27 B.51
C.69
D.72
夯实基础
【点拨】设框出的三个数中最上面的数为x,则中间的 数为x+7,最下面的数为x+14, 故三个数的和为x+x+7+x+14=3x+21. 当3x+21=27时,x=2;当3x+21=51时,x=10; 当3x+21=69时,x=16;当3x+21=72时,x=17,但 x=17这种情况不存在.故选D. 【答案】D
a(x+1)=12
a+x 的解,则 a 的值是 5 .
夯实基础
7.已知关于 x 的方程 3a-x=x2+3 的解为 x=2,则 式子 a2-2a+1 的值是 1 .
夯实基础
8.解方程 3x-4=3-2x 的过程的正确顺序是( C ) ①合并同类项,得 5x=7; ②移项,得 3x+2x=3+4; ③系数化为 1,得 x=75. A.①②③ B.③②① C.②①③ D.③①②
探究培优
22.【中考·安徽】《九章算术》中有一道阐述“盈不足 术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四. 问人数,物价各几何? 译文为: 现有一些人共同买一个物品,每人出8元,还盈余3 元;每人出7元,则还差4元,问共有多少人?这个 物品的价格是多少?
探究培优
请解答上述问题.
夯实基础
15.解方程:x-3=-12x-4. 错解:移项,得 x-12x=-4-3.合并同类项,得12x =-7.系数化为 1,得 x=-14.
诊断:在解方程移项时,所移的项一定要变号,但 有的学生不管移的项还是没移的项一律都变号或都 不变号,这两种做法都是不正确的.

七年级数学上一次方程与方程组3.1一元一次方程及其解法第3课时用移项法解一元一次方程习题

七年级数学上一次方程与方程组3.1一元一次方程及其解法第3课时用移项法解一元一次方程习题

把方程中某一项___改__变__符__号___________后,从方程的 _一__边__移__到__另__一__边_____,这种变形叫移项.解方程时, 通常将含未知数的项移到等号的左边,不含未知数的 项移到等号的右边.
1.解方程时,移项的依据是( C )
A.加法交换律
B.加法结合律
C.等式的基本性质1
4.把方程2y-6=y+7变形为2y-y=7+6,这种变形叫 ___移__项_______.
5.[2021·安徽模拟]方程1-3y=7的解是( C )
A.y=-12
B.y=12
C.y=-2
D.y=2
6.方程3x-4=3-2x的解答过程的正确顺序是( C ) ①合并同类项,得5x=7; ②移项,得3x+2x=3+4;
D.等式的基本性质2
2.解下列方程时,既要移含未知数的项,又要移常数项
的是( B )
A.2x=6-3x
B.2x-4=3x+1
C.2x-2-x=1
D.x-5=7
3.下列方程中,移项正确的是( C ) A.方程x+5=12,移项,得x=5+12 B.方程10x-3=6-2x,移项,得10x-2x=6+3 C.方程3-2x=4x-9,移项,得3+9=2x+4x D.方程5x+9=4x,移项,得5x-4x=9
(2)[庐江期中]32x-1=72x-3; 解:移项,得32x-72x=-3+1, 合并同类项,得-2x=-2,
系数化为1,得x=1.
(3)5x-3=4x+15; 解:移项,得5x-4x=15+3, 合并同类项,得x=18.
(4)3x+4+x=7x-35.
移项,得3x+x-7x=-35-4, 合并同类项,得-3x=-39, 系数化为1,得x=13.

第3章 3.2 第2课时 用移项的方法解一元一次方程

第3章 3.2 第2课时 用移项的方法解一元一次方程
解:设手工小组有 x 人,由题意,得 5x+2=6x-8,移项,得 5x-6x =-8-2,合并同类项,得-x=-10,系数化为 1,得 x=10.答:手工小 组有 10 人.
17.已知整式 5x-7 与 4x+9 的值互为相反数,求 x 的值. 解:由题意得 5x-7+4x+9=0.移项,得 5x+4x=7-9.合并同类项, 得 9x=-2.系数化为 1,得 x=-29.
根据“表示同一个量的两个不同的式子相等”列方程解决问

同步考点手册 P24
9.某商品的标价为 200 元,8 折销售仍赚 40 元,则该商品的进价为( B )
A.140 元
B.120 元
C.160 元
D.100 元
10.甲厂库存钢材 100 吨,每月用去 15 吨;乙厂库存钢材 82 吨,每
月用去 9 吨,经过 x 个月后,两厂剩下的钢材相等,则 x 等于( B )
第三章 一元一次方程 3.2 解一元一次方程(一)——合并同类项与移项 第2课时 用移项的方法解一元一次方程
用移项解一元一次方程
同步考点手册 P23
1.解方程时移项的根据是( D )
A.加法的结合律
B.乘法结合律
C.分配律
D.等式的性质 1
2.下列解方程移项正确的是( C ) A.由 3x-2=2x-1,得 3x+2x=1+2 B.由 x-1=2x+2,得 x-2x=2-1 C.由 2x-1=3x-2,得 2x-3x=1-2 D.由 2x+1=3-x,得 2x+x=3+1
①合并同类项,得 5x=7;②移项,得 3x+2x=3+4;③系数化为 1,
得 x=75.
A.①②③
B.③②①
x+2 的值相等,则 x 的值等于( A )

人教版数学七年级上册3.2《用移项法解一元一次方程》训练(有答案)

人教版数学七年级上册3.2《用移项法解一元一次方程》训练(有答案)

课时2用移项法解一元一次方程基础训练知识点1(解一元一次方程----移项)1.下列变形中属于移项的是()A.由5x-2x=2,得3x=2B.由6x-3=x+4,得6x-3=4+xC.由8-x=x-5,得﹣x-x=﹣5-8D.由x+9=3x-1,得3x-1=x+92.把方程4x+4=6-3x进行移项,下列变形正确的是()A.4x-3x=6-4B.4x+3x=6-4C.4x-3x=4-6D.4x+3x=4-63.解方程x-4=x,移项,得__________,合并同类项,得________,系数化为1,得________.4.当x=________时,代数式3x-5与1+2x的值相等.5.解下列方程:(1)5x+2=4x-3;(2)7x-3=4x+6;(3)4y=y+16;(4)x-2=x+5.知识点2(列一元一次方程解决实际问题)6.两个水池共存水40吨.现甲池注进水4吨,乙池放出水8吨,甲池中水的吨数与乙池中水的吨数相等,两个水池原来各有水多少吨?7.[2019黑龙江哈尔滨道外区期末]一个长方形的周长为26厘米.若这个长方形的长减少1厘米,宽增加2厘米,就可成为一个正方形,求这个长方形的长和宽.8.[2019广东东莞期末]2019~2019学年度七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.求该小组计划做多少个“中国结”?参考答案1.C【解析】选项A,属于合并同类项,不属于移项;选项B,等式右边运用了加法交换律,不属于移项;选项C,将等式左边的8变号移到等式右边,等式右边的x变号移到等式左边,属于移项;选项D,等式两边交换了位置,不属于移项.故选C.2.B【解析】选项A,-3x移项后没有变号,所以A错误;选项C,4和-3x移项后都没变号,6没移项却改变了符号,所以C错误;选项D,4移项后没变号,6没移项却改变了符号,所以D错误.故选B.3.x-x=4 x=4x=124.6【解析】根据题意,得3x-5=1+2x,移项,得3x-2x=1+5,合并同类项,得x=6.5.【解析】(1)移项,得5x-4x=-3-2,合并同类项,得x=-5.(2)移项,得7x-4x=6+3,合并同类项,得3x=9,系数化为1,得x=3.(3)移项,得4y-y=16,合并同类项,等-y=16,系数化为1,得y=-6.(4)移项,得x-x=2+5,合并同类项,得x=7.6.【解析】设甲池原有水x吨,则乙池原有水(40-x)吨.根据题意,得x+4=40-x-8,解这个方程.得x=14,所以40-x=26..答:甲池原有水14吨,乙池原有水26吨.7.【解析】设这个长方形的长是x厘米,则宽是(13-x)厘米.根据题意,得x-1=13-x+2,解得x=8,所以13-x=5.答:这个长方形的长为8厘米、宽为5厘米.8.【解析】设小组成员共有x名,则计划做(6x-7)或(5x+13)个“中国结”. 根据题意,得6x-7=5x+13,解得x=20,所以6x-7=113.答:计划做113个“中国结”.课时2用移项法解一元一次方程提升训练1.[2019江西高安中学课时作业]下列方程中,解是负整数的共有()①﹣x=;②x=﹣14;③3x+4=4x+4;④4x-5=﹣5x-8.A.1个B.2个C.3个D.4个2.[2019四川雅安中学课时作业]若﹣2x2m+1y6与x3m-1y10+4n是同类项,则m,n的值分别为()A.2,﹣1B.﹣2,1C.﹣1,2D.﹣2,﹣13.[2019吉林五中课时作业]某同学在解方程5x-1=□x+3时,把□处的数字看错了,解得x=﹣2,则该同学把□看成了()A.4B.7C.﹣7D.﹣144.[2019安徽合肥四十八中课时作业]已知关于x的方程4x-m=3m+12的解是x=2m,则m的值是________.5.[2019江苏南京市中华中学课时作业]解下列方程:(1)x-8x=3-x;(2)0.5x-0.7=6.5-1.3x.6.[2019河北衡水六中课时作业]若关于x的方程2x-a=0的解比方程4x+5=3x +6的解大1,求a的值.7.[2019河北省实验中学课时作业]已知+m=my-m,(1)当m=4时,求y的值;(2)当y=4时,求m的值.8.[2019陕西师大附中课时作业]一个两位数,个位上的数字是十位上的数字的3倍,如果把个位上的数字与十位上的数字对调,那么得到的新数比原数大54,求原来的两位数.参考答案1.A【解析】①系数化为1,得x=﹣;②系数化为1,得x=-4;③移项,得3x-4x=4-4,合并同类项,得-x=0,系数化为1,得x=0;④移项,得4x+5x=-8+5,合并同类项,得9x=-3,系数化为1,得x=-.所以解为负整数的只有②.故选A.2.A【解析】因为-2x2m+1y6与x3m-1y10+4n同类项,所以2m+1=3m-l,6=10+4n,解得m=2,n=﹣1.故选A.3.B【解析】□用a表示,把x=-2代入方程5x-1=ax+3中,得-10-1=-2a +3,解得a=7,所以该同学把□看成了7.故选B.归纳总结方程的解就是使方程中等号左右两边相等的未知数的值,若题目给出方程的解,则将这个数代入到原方程中就可以得到一个含所求字母的方程.4.3【解析】把x=2m代人方程4x-m=3m+12,得8m—m=3m+12,所以7m=3m+12,移项,得7m-3m=12.合并同类项,得4m=12,系数化为1,得m=3.5.【解析】(1)移项,得x+x-8x=3,合并同类项,得﹣3x=3,系数化为1,得x=-1.(2)移项,得0.5x+1.3x=6.5+0.7,合并同类项,得 1.8x=7.2,系数化为1,得x=4.6.【解析】方程2x-a=0的解是x=,方程4x+5=3x+6的解是x=1.由题意,得=1+1,解得a=4.7.【解析】(1)把m=4代人+m=my-m,得+4=4y-4,该方程是关于y的一元一次方程,移项,得-4y=-4-4,合并同类项,得-y=﹣8,系数化为1,得y=.(2)把y=4代入+m=my-m,得2+m=4m-m,该方程是关于m的一元一次方程移项,得2=4m-m-m,合并同类项,得2=2m,系数化为1,得m=l.8.【解析】设这个两位数的十位上的数字是x,则个位上的数字是3x. 根据题意,得10×3x+x=10x+3x+54,移项、合并同类项,得18x=54,系数化为1,得x=3,10×3+3×3=39.答:原来的两位数是39.。

移项(4)一元一次方程解法

移项(4)一元一次方程解法
解下列方程
(1)3x 7 32 2 x
3 (2) x 3 x 1 2
(3)、2.4y +2 = -2y (4)、8 – 5x = x + 2
一个两位数的个位上的数字,这个两位数是多 少?
例4 某制药厂制造一批药品,如用旧 工艺,则废水排量要比环保限制的最大 量还多200t,如用新工艺,则废水的排 量比环保限制的最大量少100t, 新旧工 艺的废水排量比为2:5,两种工艺的废 水排量是多少?
有关比的知识,你知道 哪些?
已知某校共有1200名学生,男生人数与 女生人数的比为7:8,,请问女生有多 少人?
已知某校全体学生中男生人数与女生人 数的比为7:8,且男生比女生多80人, 请问全校共有多少名学生,其中女生有 多少人?
某校在暑假举办一次夏令营活动,安排 学生住宿时每间房住7人还余9人,于是 有一部分房间安排住8人,这样住7人房 间与住8人房间数的比为5:3,求这次参 加夏令营的学生人数。

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

第2课时 用移项的方法解一元一次方程 教材知能精练知识点:移项1. 方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-62. 下列解方程中,移项正确的是( )A .由5+x =18得x =18+5B .由5x +31=3x 得5x -3x =31 C .由21x +3=-23x -4得21x +23x =-4-3 D .由3x -4=6x 得3x +6x =43. 在解方程2314-=+x x 时,下列移项正确的是( )A .2134-=+x xB .1234--=-x xC .1234-=-x xD .1234--=+x x4. 已知当b =1,c =-2时,代数式ab +bc =10-ca ,则a 的值是( )A .12B .6C .-6D .-125.某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是( ).A.20日B.21日C.22日D.23日6. 4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是__________. 7. 方程2x-0.3=1.2+3x 移项得 .8.当=x _____时,代数式24+x 与93-x 的值互为相反数.9.已知y 1=2x+3,y 2=215-x ,如果y 1=2y 2,则x=_______.10.若2(1)0x y y -++=,则22x y +=___.11. 解方程:4227-=+-x x12. 张老师给学生分练习本,若每人分4本,则余8本,若每人分5本,则缺2本, 求有多少名学生和多少本练习本.学科能力迁移13.【易错题】解下面的方程时,既要移含未知数的项,又要移常数项的是( ).A.372x x =-B.3521x x -=+C.3321x x --=D.1511x +=14.【新情境题】小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:11222y y -=+■.怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是53y =,于是很快补上了这个常数,并迅速完成了作业.同学们,你能补出这个常数吗?它应是( ).A1 B.2 C.3 D.415.【变式题】若132x y =-,224x y =+,当y =_______时,12x x =.16.【多解法题】若32x -=,则x 的值为_____.课标能力提升17. 【探究题】设“●■▲”分别表示三种不同的物体(如图3-2-5),前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4C.3D.218. 【开放题】已知2)53(1--m 有最大值,则方程2345+=-x m 的解是( )A.79B.97C.79-D.97- 19.【综合题】若2x n+1与3x 2n-1是同类项,则n=______.20.【解决问题型题目】2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.品味中考典题21.有一个两位数,它的十位数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是( )A .41B .42C .43D .44 B22.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为x 元,则可列出的方程为 .迷途知返___________________________________________________________________________________________________________________________________________________________________________课外精彩空间数学冤案人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢.古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了.在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法.在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺.那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样.数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana). 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一.由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思.后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳.经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法.这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲.但是冯塔纳不愿意将他的这个重要发现公之于世.当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣.他几次诚恳地登门请教,希望获得冯塔纳的求根公式.可是冯塔纳始终守口如瓶,滴水不漏.虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”.后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺.冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密.卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字.随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法.由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”.卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页.这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的.但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度.3.2解一元一次方程(二)1. C ;2. C ;3. B ;4. A ;5. A ;6. 移项,等式基本性质(1);7. 2x-3x=1.2+0.3;8. 1;9. 21;10. 2;11. 32=x ; 12.有学生10人,有练习本48本.13. B ;14. B ;15. 6;16. 5或1;17. A ;18. A ;19. 2;20. 解:设列车提速后行驶时间为x 小时,根据题意,得264442644x x +=,解得 2.4x =.故到站时刻为4︰24,历时2.4小时.21. B ;22. 80%300100x -=.。

一元一次方程专题训练

一元一次方程专题训练

专题一:一元一次方程的解法1.解方程:(1)5x+5=9-3x;解:移项、合并同类项得8x=4,解得x=1 2 .(2)5x=3(2+x);解:去括号得5x=6+3x.移项、合并同类项得2x=6,解得x=3.(3)7-2x=3-4(x-2);解:去括号得7-2x=3-4x+8,移项、合并同类项得2x=4,解得x=2.(4)3(2x+1)=9-2(x-1);解:去括号得6x+3=9-2x+2,移项、合并同类项得8x=8,解得x=1.(5)753 48x-=;解:去分母得14x-10=3,移项、合并同类项得14x=13,解得x=13 14.(6)2154 36x x-+=;解:去分母得2(2x-1)=5x+4,去括号得4x-2=5x+4,移项、合并同类项得-x=6,解得x=-6.(7)4353146x x-+-=;解:去分母得12-3(4-3x)=2(5x+3),去括号得12-12+9x=10x+6,移项、合并同类项得-x=6,解得x=-6.(8)34=1.6 0.50.2x x-+-;解:方程整理得10305x--10402x+=1.6,去分母得2(10x-30)-5(10x+40)=16,去括号得20x-60-50x-200=16,移项、合并同类项得-30x=276,解得x=-9.2.(9)1+2=224x xx---;解:去分母得4x-2(x-1)=8-(x+2),去括号得4x-2x+2=8-x-2,移项、合并同类项得3x=4,解得x=4 3 .(10)(x-4)-(4)12x--=3-(4)23x-+.解:方法一:令x-4=y,则原方程可变形为y-12y-=3-23y+.去分母得6y-3(y-1)=18-2(y+2),去括号得6y-3y+3=18-2y-4,移项、合并同类项得5y=11,解得y=115,则x-4=115,解得x=315.方法二:方程整理得x-52x-=7-23x-,去分母得6x-3(x-5)=42-2(x-2),去括号得6x-3x+15=42-2x+4,移项、合并同类项得5x =31,解得x =315. 2.方程2(x -1)-3(x +1)=0的解与关于x 的方程2k x +-3k -2=2x 的解互为相反数,求k 的值.解:方程2(x -1)-3(x +1)=0,去括号得2x -2-3x -3=0,移项、合并同类项得-x =5,解得x =-5. 由题意得2k x +-3k -2=2x 的解为x =5. 把x =5代入得52k +-3k -2=10, 去分母得k +5-6k -4=20,移项、合并同类项得-5k =19,解得k =-195. 3.已知关于x 的一元一次方程4x +2m =3x -1.(1)求这个方程的解;解:(1)移项,得4x -3x =-1-2m .所以x =-1-2m .(2)若这个方程的解与关于x 的方程3(x +m )=-(x -1)的解相同,求m 的值.(2)去括号,得3x +3m =-x +1.移项、合并同类项,得4x =1-3m .解得x =134m -. 由于两个方程的解相同, 所以-1-2m =134m -. 去分母、去括号得-4-8m =1-3m ,移项、合并同类项,得-5m =5.解得m =-1.4.已知m 为整数,且满足关于x 的方程(2m +1)x =3mx -1.(1)当m =2时,求方程的解;解:(1)当m =2时,原方程为5x =6x -1,解得x =1.(2)该方程的解能否为3,请说明理由;(2)方程的解不能为3.理由如下:将x=3代入原方程,得3(2m+1)=9m-1,解得m=4 3 .∵m为整数,∵方程的解不可能为3.(3)当x为正整数时,请求出m的值.(3)(2m+1)x=3mx-1,移项、合并同类项,得(m-1)x=1.∵x为正整数,∵m-1为正数且为1的约数.∵m为整数,∵m-1=1.∵m=2.5.小王在解关于x的方程2-243x-=3a-2x时,误将-2x看作+2x,得方程的解为x=1. (1)求a的值;解:(1)把x=1代入2-243x-=3a+2x,得2+23=3a+2,解得a=29.(2)求此方程正确的解.(2)把a=29代入原方程得2-243x-=23-2x.去分母得6-(2x-4)=2-6x.去括号得6-2x+4=2-6x.移项得-2x+6x=-10+2.合并同类项得4x=-8.解得x=-2.6.定义:若关于x的一元一次方程ax=b的解为x=b+a,则称该方程为“和解方程”.例如:2x=-4的解为x=-2,且-2=-4+2,则方程2x=-4是“和解方程”.(1)判断-3x=94是否是“和解方程”,说明理由;解:(1)∵-3x=94,∵x=-3 4 .∵94-3=-34,∵-3x=94是“和解方程”.(2)若关于x的一元一次方程5x=m-2是“和解方程”,求m的值.(2)∵关于x的一元一次方程5x=m-2是“和解方程”,∵m-2+5=25m. 解得m=-174.故m的值为-174.专题二:方程中与的字母问题1.已知关于x的方程(m+2)x|m+1|-3=0是一元一次方程,则m的值是( B)A.-2B.0C.1D.0或-22.若(|m|-1)x2-(m-1)x-8=0是关于x的一元一次方程,则m的值为( A)A.-1B.1C.±1D.不能确定3.已知关于x的方程ax-1=x为一元一次方程,则|a-1|的值一定为( A)A.正数B.非负数C.零D.不能确定4.若(m-4)x2|m|-7-4m=0是关于x的一元一次方程,求m2-2m+1996的值.解:∵(m -4)x 2|m |-7-4m =0是关于x 的一元一次方程,∵m -4≠0且2|m |-7=1.解得m =-4.∵原式=16+8+1996=2020.5.已知关于x 的方程2x -93a -=0的解是x =-2,则a 的值为( C ) A.-21 B.21 C.-3 D.38.已知关于x 的方程x -46ax -=43x +-1的解是正整数,则符合条件的所有整数a 的积是 . 9.在做解方程练习时,学习卷中有一个方程“2y -13=13y +W ”中的W 没印清晰,小聪问老师,老师只是说:“W 是个有理数,该方程的解与方程3(x -1)-2(x -2)=3的解相同.”小聪很快补上了这个常数,聪明的你能补上这个常数吗? 解:解方程3(x -1)-2(x -2)=3得x =2.由题意知y =x =2.将y =2代入2y -13=13y +W 中, 得2×2-13=13×2+W , 解得W =3.10.如果a ,b 为常数,且不论k 取何值时,关于x 的方程2kx a --1=24x bk -的解总是x =-1,求a b 的值. 解:把x =-1代入2kx a --1=24x bk -, 得2k a ---1=24bk --. 整理,得(b -2)k -2a -2=0.∵无论k 取何值时,关于x 的方程的解总是x =-1,∵b -2=0,-2a -2=0.解得b =2,a =-1.∵a b =(-1)2=1.11.若a ,b 互为相反数(a ≠0),则关于x 的方程ax +b =0的解是( A )A.x=1B.x=-1C.x=1,或x=-1D.不能确定12.已知|n+2|+(5m-3)2=0,求关于x的方程10mx+4=3x+n的解.解:因为|n+2|+(5m-3)2=0,所以n+2=0,5m-3=0.解得m=35,n=-2.将m=35,n=-2代入方程10mx+4=3x+n,得6x+4=3x-2.移项、合并同类项得3x=-6.解得x=-2.专题三:一元一次方程的应用1.我国一航空母舰始终以60千米/时的速度由西向东航行,飞机以500千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行3个小时,那么它在起飞几小时后就必须返航,才能安全停在舰上?解:设飞机在起飞x小时后就必须返航,才能安全停在舰上.根据题意得500(3-x)-500x=60×3,解得x=1.32.答:飞机在起飞1.32小时后就必须返航,才能安全停在舰上.2.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解:设有x 位客人,则2x +3x +4x =65, 解得x =60.答:有60位客人.3.如图,一块长4厘米、宽1厘米的长方形纸板∵,一块长5厘米、宽2厘米的长方形纸板∵与一块正方形纸板∵以及另两块长方形纸板∵和∵,恰好拼成一个大正方形,求大正方形的面积.解:设小正方形∵的边长为x 厘米.依题意得1+x +2=4+5-x ,解得x =3.则1+x +2=6.∵大正方形的边长为6厘米.∵大正方形的面积是6×6=36(平方厘米).4.一鞋店老板以每件60元的价格购进了一种品牌的布鞋360双,并以每双100元的价格销售了240双.冬季来临,老板为了清库存,决定促销.请你帮老板算一下,每双鞋降价多少元时,销售完这批鞋正好能达到盈利50%的目标.解:设每双鞋降价x 元.依题意有(100-60)×240+(100-x -60)×(360-240)=360×60×50%,解得x =30.答:每双鞋降价30元时,销售完这批鞋正好能达到盈利50%的目标.5.在国庆节社会实践活动中,盐城某校甲、乙、丙三位同学一起调查了高峰时段盐靖高速、盐洛高速和沈海高速的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“盐靖高速车流量为每小时2000辆.”乙同学说:“沈海高速的车流量比盐洛高速的车流量每小时多400辆.”丙同学说:“盐洛高速车流量的5倍与沈海高速车流量的差是盐靖高速车流量的2倍.”请你根据他们所提供的信息,求出高峰时段盐洛高速和沈海高速的车流量分别是多少?解:设盐洛高速车流量为每小时x辆.由题意得5x-(x+400)=2000×2,解得x=1100.则x+400=1500.答:高峰时段盐洛高速和沈海高速的车流量分别是每小时1100辆、1500辆. 6.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如下表:(1)A、B两种商品分别购进多少件?解:(1)设购进A种商品a件,则购进B种商品(100-a)件.由题意得25a+35(100-a)=3100,解得a=40.则100-a=60.答:A、B两种商品分别购进40件、60件.(2)两种商品售完后共获取利润多少元?(2)(30-25)×40+(45-35)×60=800(元).答:两种商品售完后共获取利润800元.7.为了鼓励节约用电,某地用电标准规定:如果每户每月用电不超过a度,那么每度按0.55元缴纳;超过部分则按每度0.85元缴纳.(1)某户5月份用电200度,共交电费125元,求a的值;解:(1)因为200×0.55=110<125,所以该用户用电量超过a度.由题意可知0.55a+0.85(200-a)=125,解得a=150.(2)在(1)的条件下,若该户6月份的电费平均每度0.6元,则6月份共用电多少度?应交电费多少元?(2)设6月份共用电x度.由题意得150×0.55+0.85×(x-150)=0.6x,解得x=180.∵应交电费0.6x=108(元).答:6月份共用电180度,应交电费108元.8.完成一项工作,如果由两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?解:(1)设开始安排了x名工人.根据题意,得24(1)11621622x x++=⨯⨯,解得x=2.答:开始安排了2名工人.(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?(2)设还需再增加y名工人.根据题意,得314322y+⨯=. 解得y=1.答:还需再增加1名工人.9.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?解:(1)设一个暖瓶x元,则一个水杯(38-x)元.根据题意得2x+3(38-x)=84,解得x=30,则38-x=8.答:一个暖瓶的售价是30元,一个水杯的售价是8元.(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.(2)这个单位在甲商场购买更合算.理由:在甲商场购买所需费用为(4×30+16×8)×85%=210.8(元);在乙商场购买所需费用为4×30+(16-4)×8=216(元).因为210.8<216,所以这个单位在甲商场购买更合算.综合训练四:一元一次方程的解法一、选择题(每小题3分,共24分)1.方程x-14x-=-1去分母正确的是( C)A.x-1-x=-1B.4x-1-x=-4C.4x-1+x=-4D.4x-1+x=-12.方程2-3x=4-2x的解是( B)A.x=1B.x=-2C.x=2D.x=-13.如果3ab2m-1与9ab m+1是同类项,那么m等于( A)A.2B.1C.-1D.04.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是( A)A.x=0B.x=3C.x=-3D.x=25.将一根长为12 cm的铁丝围成一个长与宽之比为2∵1的长方形,则此长方形的面积为( C)A.2 cm2B.4.5 cm2C.8 cm2D.32 cm26.若关于x的一元一次方程23x k--32x k-=1的解是x=-1,则k的值是( B)A.27B.1C.-37D.07.若a、b表示非零常数,整式ax+b的值随x的取值而发生变化,如下表:则关于x的一元一次方程-ax-b=-3的解为( C)A.x=-3B.x=-1C.x=0D.x=38.已知关于x的方程52x-a=3x-14,若a为正整数,方程的解也为正整数,则a的最大值是( B)A.12B.13C.14D.15二、填空题(每小题4分,共24分)9.方程3x=5x-14的解是x=.10.当x=时,式子x-1与式子214x的值相等.11.若关于x的方程x+k=1与2x-3=1的解相同,则k的值为.12.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.13.在有理数范围内定义一种新运算“∵”,其运算规则为:a∵b=-2a+3b,如1∵5=-2×1+3×5=13,则方程2x∵4=0的解为.14.若关于x的方程12019x+2019=2x+m的解是x=2019,则关于y的方程12019y+2019+12019=2y+m+2的解是y=.解析:12019y+2019+12019=2y+m+2可整理为12019(y+1)+2019=2(y+1)+m,则由题可得y+1=2019,∵y=2018.三、解答题(共52分)15.(16分)解下列方程:(1)9x+6=6x-2;解:x=-83.(4分)(2)13x-14=23x+34;解:x=-3.(8分)(3)6(2x-5)+15=4(1-2x)-5;解:x=710.(12分)(4)1241 262x x x+---=-.解:x=15.(16分)16.(8分)当x为何值时,整式(2x-1)的值比(x+3)的值的3倍少5?解:由题意得2x-1=3(x+3)-5,(2分)解得x=-5,(6分)即当x=-5时,整式(2x-1)的值比(x+3)的值的3倍少5.(8分)17.(8分)聪聪在对方程315362x mx x+---=∵去分母时,错误地得到了方程2(x+3)-mx-1=3(5-x)∵,因而求得的解是x=52,试求m的值,并求方程的正确解.解:把x=52代入方程∵得25+32⎛⎫⎪⎝⎭-52m-1=3552⎛⎫-⎪⎝⎭,解得m=1.(4分)把m=1代入方程∵得315362x x x+---=,解得x=2,则方程的正确解为x=2.(8分)18.(10分)(1)解关于x的方程:2(-2x+a)=3x;解:(1)去括号得-4x+2a=3x,移项、合并同类项得7x=2a,解得x=27a.(4分)(2)若(1)中方程的解与关于x的方程x-13x-=6x a+的解互为相反数,求a的值.(2)由题意知方程x-13x-=6x a+的解为x=-27a.解方程x-13x-=6x a+得x=27a+.(7分)则27a+=-27a,解得a=-23.(10分)19.(10分)阅读以下例题.解方程:|3x|=1.解:∵当3x>0时,原方程可化为3x=1,它的解为x=13;∵当3x<0时,原方程可化为-3x=1,它的解为x=-1 3 .所以原方程的解为x1=13,x2=-13.仿照例题解方程:|2x+1|=5.解:当2x+1>0时,原方程可化为2x+1=5,(3分)解得x=2.(5分)当2x+1<0时,原方程可化为-(2x+1)=5,解得x=-3.(9分)∵原方程的解为x1=2,x2=-3.(10分)。

一元一次方程的解法的练习题

一元一次方程的解法的练习题

一元一次方程的解法的练习题篇1:一元一次方程的解法的练习题一元一次方程的解法的练习题基础训练一、选择题1.若a=1,则方程=x-a的解是A、x=1B、x=2C、x=3D、x=4.2.方程+10=k去分母后得()A、1-k+10=kB、1-k+10=6kC、1+k+10=6kD、1-k+60=6k.3.把方程+10=-m去分母后得()A、1-m+10=-mB、1-m+10=-12mC、1+m+10=-12mD、1-m+120=-12m.4.把方程1-=-去分母后,正确的是()A、1-2x-3=-3x+5B、1-2(x-3)=-3x+5C、4-2(x-3)=-3x+5D、4-2(x-3)=-(3x+5).5.方程x=5-x的解是()A、B、C、D、20.二、天空题6.数5、4、3的.最小公倍数是________________.7.方程-1=去分母,得_________________.三、解答题8.下面方程的解法对吗?若不对,请改正.-1=解:去分母,得:3(x-1)-1=4x去括号,得:3x-1-1=4x移项,得:3x+4x=-1-1∴7x=-2,即x=-学练点拨:去分母时要注意(1)不要漏乘不含分母的项;(2)分子是多项式时,分子必须添加括号.综合提高一、选择题9.解方程1-=-去分母后,正确的是()A、1-5(3x+5)=-4(x+3)B、20-5×3x+5=-4x+3C、20-15x-25=-4x+3D、20-15x-25=-4x-12.10.把方程=1-去分母后,有错误的是()A、4x-2=8-(3-x)B、2(2x-1)=1-3+xC、2(2x-1)=8-(3-x)D、2(2x-1)=8-3+x.11.解方程+=0.1时,把分母化成整数,正确的是()A、+=10B、+=0.1C、+=0.1D、+=10.二、填空题12.若代数式与-1的值相等,则x=____________.13.若关于x的方程3x=x-4和x-2ax=x+5有相同的解,则a=__________.三、解答题14.解方程:(1)=(2)(4-y)=(y+3)(3)=x-(4)1-=.15.解方程:-=0.516.当x为何值时,x-与1-的值相等.17.已知方程-=1的解是x=-5,求k的值.18.已知关于x的方程3x-2m+1=0与2-m=2x的解互为相反数,试求这两个方程的解及m的值.探究创新19.解方程:++---+=.20.已知关于x的方程ax+5=的解x与字母系数a都是正整数,求a的值.篇2:一元一次方程解法教学设计教学目标:1、经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题。

一元一次方程的解法(一)移项、去括号(1)

一元一次方程的解法(一)移项、去括号(1)
合并同类项 乘法分配律
x 45
系数化为1 等式性质2
x 45
知识点一
用移项解一元一次方程
【示范题1】(12分)解方程:(1)3y+7=-3y-5. (2)
3 5 1 x 3x . 2 2
解方程: (1)3y+7=-3y-5
3 5 (2) 1 x 3x . 2 2
(2)若3s = 2s+5,则-3s-2s = 5;
不对,应为3s-2s=5 (3)若5w-2 = 4w+1,则5w-4w = 1+2; 对 (4)若8+x= 2x,则8-2x = 2x-x. 不对,应为8=2x-x
3x 20 4 x 25
它与上题遇到的方程有何不同?
怎样才能使它向x=a的形式转化 呢?
必须牢记:移项要变号.


1. 解下列方程,并检验.(口算)
( 1) x + 4 = 5 ;
( 2) - 5 + 2x = - 4;
(3)13y+8=12y;(4)7u-3=6u-4 .


2. 下面的移项对吗?如不对,请改正. (1)若x -4 = 8,则x = 8-4; 不对,移项没有变号,应为x = 8+4
解带括号的一元一次方程
【示范题2】解方程:(1)(2015·广州中考)5x=3(x-4). (2)4(x+16)=-2(x+1).
【思路点拨】按照移项法则和去括号法则进行. 【自主解答】(1)去括号,得5x=3x-12.
移项,得5x-3x=-12.
合并同类项,得2x=-12. 方程两边同除以2,得x=-6.
注意:去括号要特别注意,当括号外的因数为负数时, 括号内的每一项都应变符号;去括号时,括号外的因数

一元一次方程的解法典型例题

一元一次方程的解法典型例题

典型例题例1 判断下面的移项对不对,如果不对,应怎样改正?(1)从得到;(2)从得到;(3)从得到;(4)从得到;分析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变.解:(1)不对,等号左边的7移到等号右边应改变符号.正确应为:(2)对.(3)不对.等号左端的-2移到等号右边改变了符号,但等号右边的移到等号左边没有改变等号.正确应为:(4)不对.等号右边的移到等号左边,变为是对的,但等号右边的-2仍在等号的右边没有移项,不应变号.正确应为:选题角度:关于利用移项法则判断移项是否正确的题目例2 判断下列各式哪些是一元一次方程.(1);(2);(3);(4);(5);(6)分析:判断一个数学式子是不是一元一次方程,首先看它是不是方程,其次再看它含有几个未知数,并且未知数的最高次数是多少.解:(1)是,因为是方程,且方程只含有一个未知数,且含未知数的项最高次数是1.(2)不是.不是方程.(3)不是.因为虽然是方程但含有两个未知数、.(4)不是.因为不是方程.(5)不是.因为含有两个未知数.(6)不是.因为中未知数最高次数为2次.例3 解方程:(1);(2)(3);(4)分析:本题都是简单的方程,只要根据等式的性质2.把等号左边未知的系数化为1,即可得到方程的解.解:(1)把的系数化为1,根据等式的性质2.在方程两边同时除以3得,检验左边,右边左边=右边.所以是原方程的解.(2)把的系数化为1,根据等式的性质2,在方程两边同时除以4得,.检验:左边,右边=2,左边=右边所以是原方程的解.(3)把的系数化为1.根据等式性质2,在方程的两边同时乘以得,检验,左边右边左边=-右边,所以是原方程的解;(4)把的系数化为1,根据等式的性质2,在方程两边同时乘以-2得:检验:左边,右边,左边=右边.所以是原方程的解.说明:①在应用等式的性质2把未知数的系数化为1时,什么情况适宜用“乘”,什么情况下适宜用“除”,要根据未知数的系数而定.一般情况来说.当未知数的系数是整数时,适宜用除;当未知数的系数是分数(或小数)适宜用乘.(乘以未知数系数的倒数).②要养成进行检验的习惯,但检验可不必书面写出.选题角度:关于判断方程是不是一元一次方程的题目例4 解方程分析:题给方程不是一元一次方程的标准形式,我们利用移项法则把含x的项全部移到等式左边,把常数项全部移到等式右边.转化成标准形式就容易求解了.解:移项,得合并同类项,得方程两边同除以一5,得。

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (39)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案) (39)

人教版七年级数学上册第三章解一元一次方程——合并同类项与移项复习题(含答案)先看例子,再解类似的题目.例:解方程:||14x -=.解法一:当0x 时,原方程化为14x -=.解方程,得5x =.当0x <时,原方程化为14x --=.解方程,得5x =-.所以原方程的解是5x =或5x =-.解法二:移项,得||41x =+.合并同类项,得||5x =.由绝对值的意义,得5x =或5x =-.所以原方程的解是5x =或5x =-.问题:用你发现的规律解方程:2||35x -=.【答案】4x =或4x =-【解析】【分析】解法一:讨论x ≥0与x <0时,两种情况即可求出解;解法二:方程变形后,利用绝对值的代数意义化简,即可求出解.【详解】解法一:当x ⩾0时,原方程化为2x −3=5,解得:x=4;当x<0时,原方程化为−2x −3=5,解得:x=-4;解法二:方程变形为2|x|=8,即|x|=4,解得:x=±4.则方程的解为4或−4.【点睛】本题考查解含绝对值符号的一元一次方程,熟练掌握计算法则是解题关键82.已知5x =是关于x 的方程820kx k -=+的解,求k 的值.【答案】7【解析】【分析】把5x =代入方程,可得5820k k -=+,解得方差即可得出k 的值【详解】将5x =代入820kx k -=+,得5820k k -=+4k=28k=7【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.83.解下列方程:(1)21x x -+=-;(2)5326x x -=+.【答案】(1)32x =(2)3x = 【解析】【分析】(1) 先移项,再合并同类项,把x 的系数化为1即可;(2) 先移项,再合并同类项,把x 的系数化为1即可;【详解】(1) 原式=-21x x -=--,-23x =-,32x =(2) 原式=5263x x -=+,3x=9,x=3【点睛】本题考查解一元一次方程-移项,熟练掌握计算法则是解题关键.84.下面是两位同学的作业.请你用曲线把出错误的步骤画出来,并把正确的写在右边.(1)解方程: 215x x -=-+.解:215x x -=+,6x =.(2)解方程:715y y =+. 解: 71y y =+,71y y -=,61y =,16y =. 【答案】(1)见解析;(2)见解析.【解析】【分析】根据解一元一次方程的步骤:移项,合并同类项,系数化为1,进行解方程即可求解.【详解】解:⑴215x x -=+ 改正:215x x +=+ 2x =(2) 71y y =+ 改正:755y y =+ 52y =【点睛】本题主要考查解一元一次方程的步骤,解决本题的关键是要熟练掌握解一元一次方程的步骤.85.已知12x =是关于x 的方程1382m x x +=+的解,求关于x 的方程223m x m x +=-的解.【答案】答案见解析【解析】【分析】 先将12x =代入1382m x x +=+得到m=-1。

七年级上册数学同步练习题库:解一元一次方程(一)——合并同类项与移项(简答题:一般)

七年级上册数学同步练习题库:解一元一次方程(一)——合并同类项与移项(简答题:一般)

解一元一次方程(一)——合并同类项与移项(简答题:一般)1、用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a的值;(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.2、已知A=2x2+3xy-2x-1,B=-x2+xy-1.若3A+6B的值与x的值无关,求y的值.3、(2015秋•鞍山期末)已知|a﹣3|+(b+1)2=0,代数式的值比的值多1,求m的值.4、已知x=﹣1是关于x的方程8x3﹣4x2+kx+9=0的一个解,求3k2﹣15k﹣95的值.5、若关于的方程的解是,求的值.6、马小哈在解一元一次方程“☉x-3=2x+9”时,一不小心将墨水泼在作业本上了,其中有一个未知数x的系数看不清了,他便问邻桌,邻桌不愿意告诉他,并用手遮住解题过程,但邻桌的最后一步“所以原方程的解为x=-2”(邻桌的答案是正确的)露在手外被马小哈看到了,马小哈由此就知道了被墨水遮住的系数,请你帮马小哈算一算,被墨水遮住的系数是多少?7、如果方程5(x-3)=4x-10的解与方程4x-(3a+1)=6x+2a-1的解互为相反数,求a的值.(1);(2);(3);(4).9、解方程:(1);(2)+1=3-x.10、解方程或解比例.① 5+0.7x =103 ② X ∶= 2 ∶11、已知关于 x 的方程和有相同的解,求 a 的值.12、某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?13、解下列方程:(1)0.25y-0.75y=8+3;(2);(3);(4).(1)7x+6x=39;(2)-2x-4x+5x=7;(3);(4).15、方程2﹣3(x+1)=0的解与关于x的方程的解互为倒数,求k的值.16、方程2-3(x+1)=0的解与关于x的方程-3k-2=2x的解互为倒数,求k的值.17、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶18、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶19、小明同学在计算60-a时,错把“-”看成是“+”,结果得到-20,那么60-a的正确结果应该是多少?20、求未知数①-=10 ②:4 =0.25 ③3∶2.5=2∶21、若新规定这样一种运算法则:a*b=a2+2ab,例如3*(-2)=32+2×3×(-2)=-3 (1)试求(-1)*2的值;(2)若3*x=2 , 求x的值;(3)(-2)*(1+x)=-x+6,求x的值.22、化简:(1)( x2-7x-2)-(-2x2+4x-1) (2)8x=4x+1(解方程)23、若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.(1)试求(﹣2)※3的值;(2)若(﹣5)※x=﹣2﹣x,求x的值.24、“*”是新规定的这样一种运算法则:a*b=a2+2ab.比如3*(﹣2)=32+2×3×(﹣2)=﹣3(1)试求2*(﹣1)的值;(2)若2*x=2,求x的值;(3)若(﹣2)*(1*x)=x+9,求x的值.25、如图,已知∠AOC:∠BOC=1:4,OD平分∠AOB,且∠COD=36°,求∠AOB的度数.26、解下列方程或方程组:(1)(2)(3)(4)27、求当m为何值时,关于x的方程的解比的解多2?28、关于x的方程:3x+m=2的解也是方程:x- (1-x) =1的解,求m的值.29、解方程:⑴(2)(3).(4)(5)30、解下方程(组)。

专题 解一元一方程计算题(50题)(解析版)

专题  解一元一方程计算题(50题)(解析版)

七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。

七年级数学上册解一元一次方程 移项与合并提高练习题

七年级数学上册解一元一次方程 移项与合并提高练习题

-4
=18 ,则
x=(

cd
x1
A.-1
B.2
C.3
D.4
8.张红在某月日历的一个竖列上圈了三个相邻的数,这三个数的和恰好是 33,则这三个数中 最大的一个数是___________.
9.若某数的 3 倍等于这个数的一半与 1 的和,则这个数是___________.
10. 已知 2m-3=3n+1,则 4m-6n =
B.由 3 m-0.125m=0,得 m=0 8
C.x=-3 是方程 x-3=0 的解
D.以上说法都不对
4.方程 x +x+2x=210 的解为( ) 2
A.x=20
B.x=40
C.x=60
D.x=80
5. 解下列方程:
(1)7x —4x =9 ;
(2) x 3x 7; 22
(3)3x-0.5x =-10;
=ad﹣bc,例如
=5×(﹣3)
17.若关于 x 的方程
的解是非负数,则 k 的取值范围为______ .
18.已知不等式组
的解集是
,则关于 x 的方程
的解为______.
19.已知关于 y 的方程
的解 y=3,则
的值为_________。
20.一组数:2,1,3,x,7,y,23,…,满足“从第三个数起,前两个数依次为 a、b,紧随 其后的数就是 2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中 y 表 示的数为 .
B. 3x-2x=1 C. 5y+2y=3y+7
D. x 1 1 71 24
3.解下列方程:
(1)x+3x-2x=4
(2)3x-4x=-25-20

解一元一次方程一——合并同类项与移项习题

解一元一次方程一——合并同类项与移项习题

3.2 解一元一次方程(一)——合并同类项与移项第1课时 合并同类项要点感知 将方程中的同类项进行 ,把以x 为未知数的一元一次方程变形为 (a ≠0,a 、b 为已知数)的形式,然后利用 ,方程两边同时 ,从而得到 .预习练习1-1 x -2x +4x = ,5y +3y -4y = ,4y -2.5y -3.5y = . 1-2 解方程-7x +2x =9-4的步骤是:①合并同类项得 ;②系数化为1得 .1-3 解方程:5x -2x =-9.知识点1 利用合并同类项解简单的一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C .-4x =8D .2x =82.方程x +2x =-6的解是( )A .x =0B .x =1C .x =2D .x =-23.下列是小明同学的四道解方程题,其中错误的是( )A .5x +4x =9→x =1B .-2x -3x =5→x =1C .3x -x =-1+3→x =1D .-4x +6x =-2-8→x =-54.方程12x +13x =10的解是 . 5.解下列方程:(1)6x -5x =3;(2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.知识点2 列方程解决:总量=各部分量之和6.若三个连续偶数的和是24,则它们的积是( )A .48B .480C .240D .1207.已知x 的4倍比x 的23多5,则列出的方程是 . 8.一个两位数,个位上的数字是十位上数字的3倍,且它们的和为12,则这个两位数是 .9.有这样一列数,按一定规律排列成1,2,4,8,16,……,其中某三个相邻数的和是448,则这三个数是 .10.某工厂的产值连续增长,去年是前年的2倍,今年是去年的2.5倍,这三年的总产值为320万元,则去年的产量是 万元.11.三个连续奇数的和为27,则这三个数分别为 . 12.一鸣10岁那年,他父亲38岁,现在父亲的年龄是一鸣的2倍,求现在一鸣的年龄.13.某人把720 cm 长的铁丝分成2段,分别做两个正方形的数学模型,已知两个正方形的边长比是4∶5,则这两个正方形的边长分别是多少?14.如果x =m 是关于x 的方程12x -m =1的解,那么m 的值是( ) A .0 B .2 C .-2 D .-615.一个三角形三边长之比为3∶4∶5,最短边比最长边短6 cm ,这个三角形的周长 为 cm.16.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,你能补出这个常数是 .17.在一张普通的日历中,相邻三行里同一列的三个日期之和为30,这三个日期分别为 .18.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).19.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?20.(苏州中考)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?挑战自我21.有这样一列数,按一定规律排列成-1,2,-4,8,-16,……,其中某三个相邻数的和是768,则这三个数各是多少?参考答案要点感知 合并,ax =b ,等式的性质2,除以a ,x =b a预习练习1-1 3x ,4y ,-2y1-2 -5x =5;x =-11-3 x =-31.B 2.D 3.B 4.x =125.(1)合并同类项,得x =3.(2)合并同类项,得2x =6,系数化为1,得x =3.(3)合并同类项,得3x =9,系数化为1,得x =3.(4)合并同类项,得9y =18,系数化为1,得y =2.6.B 7.4x -23x =5 8.39 9.64,128,256 10.80 11.7、9、1112.设现在一鸣的年龄为x 岁,则其父亲为2x 岁.由题意得2x -x =38-10.解得x =28.答:一鸣现在的年龄为28岁.13.设每份长度为x cm ,则两个正方形的边长各为4x cm 、5x cm ,则4x ·4+5x·4=720,x =20.所以两个长方形的边长分别为4x =4×20=80(cm),5x =5×20=100(cm).答:这两个正方形的边长分别是80 cm ,100 cm.14.C 15.36 16.3 17.3,10,1718.(1)合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)合并同类项,得6x =-10.系数化为1,得x =-53. (3)合并同类项,得35x =9.系数化为1,得x =15. (4)合并同类项,得6x =12.系数化为1,得x =2.19.设黑色皮有3x 块,白色皮有5x 块.根据“足球表面一共有32块皮”,可得 3x +5x =32.解得x =4.所以3x=3×4=12,5x=5×4=20.答:黑色皮有12块,白色皮有20块.20.设中国人均淡水资源占有量为x m3,则美国人均淡水资源占有量为5x m3.根据题意,得x+5x=13 800,解得x=2 300.则5x=11 500.答:中国人均淡水资源占有量为2 300 m3,美国人均淡水资源占有量为11 500 m3.挑战自我21.设所求三个数分别为-x,2x,-4x,由题意得-x+2x+(-4x)=768.合并同类项,得-3x=768.解得x=-256.所以-x=256,2x=2×(-256)=-512,-4x=-4×(-256)=1 024.答:这三个数分别是256,-512,1 024.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是() A.x=y B.ax+1=ay-1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b >0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

3.3一元一次方程的解法(一.移项)

3.3一元一次方程的解法(一.移项)

3x+20=4x-25
移项 3x-4x=-25-20
移项的依据是等式的性质1
提问4: “移项”起了什么作用?
合并同类项 -x=-45
系数化为1
通过移项,使等号左边仅含未知 数的项,等号右边仅含常数的项, 使方程更接近x=a的形式.
x=45
从变形前后的两个方程可以看出,这种变形, 就是把方程中的某一项改变符号后,从方程的一边 移到另一边,我们把这种变形叫做移项.
解 (1) 原方程为2.5x+318 = 1068
移项,得
2.5x= 1068-318
化简,得
x = 300
检验:把x=300代入原方程的左边和右边,
左边= 2.5×300+318=1068,
左边=右边
所以 x=300 是原方程的解.
(2) 原方程为 2.4y + 2y+2.4 = 6.8
移项,得 2.4y+2y = 6.8-2.4
移项,得 7u-6u = 3-4
化简,得
u = -1
检验:把u=-1代入原方程的左边和右边,
左边= 7×(-1)-3=-10,右边=6×(-1)-4=-10,
左边=右边
所以 u=-1 是原方程的解.
3. 解下列方程:
(1) 2.5x+318 =1068; (2) 2.4y + 2y+2.4 = 6.8.
2345 + 12x = 5129.

利用等式的性质,在方程①两边都减去2345,

2345+12x-2345= 5129-2345,

12x=2784.

方程②两边都除以12,得x=232 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档