【压轴卷】九年级数学上期末试卷(带答案)
初三九年级数学上册数学压轴题试卷(word版含答案)
初三九年级数学上册数学压轴题试卷(word 版含答案)一、压轴题1.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.2.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标;(2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.3.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.4.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°.①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.5.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上;①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.6.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 .问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使∠ABC =∠ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,∠ABC =∠ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.7.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)8.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F ,①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.9.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
【压轴卷】九年级数学上期末试题(含答案)
【压轴卷】九年级数学上期末试题(含答案)一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( )A .()1119802x x +=B .()1119802x x -= C .()11980x x +=D .()11980x x -= 2.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和c y x=的图象为( )A .B .C .D .3.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( )A .0<m <1B .1<m ≤2C .2<m <4D .0<m <44.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 5.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°6.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰7.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根 8.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、39.二次函数y=3(x –2)2–5与y 轴交点坐标为( )A .(0,2)B .(0,–5)C .(0,7)D .(0,3)10.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒ 11.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( )A .2017B .2018C .2019D .2020 12.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )A .B .C .D .二、填空题13.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.14.如图,已知抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a 1x 2+b 1x+c 1,则下列结论正确的是_________.(写出所有正确结论的序号)①b >0;②a ﹣b+c <0;③阴影部分的面积为4;④若c=﹣1,则b 2=4a .15.在平面直角坐标系中,已知点P 0的坐标为(2,0),将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,则点P 3的坐标是_____.16.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 17.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm .18.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.19.若二次函数y =x 2﹣3x +3﹣m 的图象经过原点,则m =_____.20.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则AB =__________.三、解答题21.如图,以△ABC 的边AB 为直径画⊙O ,交AC 于点D ,半径OE//BD ,连接BE ,DE ,BD ,设BE 交AC 于点F ,若∠DEB=∠DBC.(1)求证:BC 是⊙O 的切线;(2)若BF=BC=2,求图中阴影部分的面积.22.在平面直角坐标系中,已知二次函数y =ax 2﹣2ax ﹣3a (a >0)图象与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A ,B 的坐标;(2)若M 为对称轴与x 轴交点,且DM =2AM .①求二次函数解析式;②当t ﹣2≤x ≤t 时,二次函数有最大值5,求t 值;③若直线x =4与此抛物线交于点E ,将抛物线在C ,E 之间的部分记为图象记为图象P (含C ,E 两点),将图象P 沿直线x =4翻折,得到图象Q ,又过点(10,﹣4)的直线y =kx +b 与图象P ,图象Q 都相交,且只有两个交点,求b 的取值范围.23.如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE(1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.24.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每每次下降的百分率相同.(1)求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?25.今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x元.请解答以下问题:(1)填空:每天可售出书本(用含x的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.C解析:C【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线cyx=在二、四象限.【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线cyx=在二、四象限,∴C是正确的.故选C.【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.3.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.4.D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.C解析:C【解析】试题分析:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【考点】圆周角定理.6.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解析:A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a,b的值.【详解】解:∵P(-b,2)与点Q(3,2a)关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A.【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.9.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.10.D解析:D【分析】根据旋转的性质可得∠B ′=∠B =30°,∠BOB ′=52°,再由三角形外角的性质即可求得A CO ∠'的度数.【详解】∵△A ′OB ′是由△AOB 绕点O 顺时针旋转得到,∠B =30°,∴∠B ′=∠B =30°,∵△AOB 绕点O 顺时针旋转52°,∴∠BOB ′=52°,∵∠A ′CO 是△B ′OC 的外角,∴∠A ′CO =∠B ′+∠BOB ′=30°+52°=82°.故选D .【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.11.D解析:D【解析】【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根,∴+a b =-3;又∵2320170a a +-=,∴232017a a +=,∴22a a b +-=(2a 3a +)-(+a b )=2017-(-3)=2020即22a a b +-的值为2020.故选:D .【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.12.D解析:D【分析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求.故选B .二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE 在直角三角形ADE 中根据勾股定理求得AE 长即可得【详解】∵四边形ABCD 是矩形∴∠D=90°BC=AD=3∵将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG解析:【解析】【分析】根据旋转的性质知AB=AE ,在直角三角形ADE 中根据勾股定理求得AE 长即可得.【详解】∵四边形ABCD 是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,∴EF=BC=3,AE=AB ,∵DE=EF ,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判解析:③④【解析】【分析】①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2b a>0,可得b <0,据此判断即可.②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是2424ac b a-=-,判断出c=﹣1时,a 、b 的关系即可. 【详解】解:∵抛物线开口向上,∴a >0,又∵对称轴为x=﹣2b a>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确; ∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确; ∵2424ac b a-=-,c=﹣1,∴b 2=4a ,∴结论④正确. 故答案为:③④.【点睛】本题考查二次函数图象与几何变换;二次函数图象与系数的关系.15.(﹣22)【解析】【分析】利用旋转的性质得到OP2=2OP1=OP3=4∠xOP2=∠P2OP3=60°作P3H⊥x 轴于H 利用含30度的直角三角形求出OHP3H 从而得到P3点坐标【详解】解:如图∵点解析:(﹣2,23).【解析】【分析】利用旋转的性质得到OP 2=2OP 1=OP 3=4,∠xOP 2=∠P 2OP 3=60°,作P 3H ⊥x 轴于H ,利用含30度的直角三角形求出OH 、P 3H ,从而得到P 3点坐标.【详解】解:如图,∵点P 0的坐标为(2,0),∴OP 0=OP 1=2,∵将点P 0绕着原点O 按逆时针方向旋转60°得点P 1,延长OP 1到点P 2,使OP 2=2OP 1,再将点P 2绕着原点O 按逆时针方向旋转60°得点P 3,∴OP 2=2OP 1=OP 3=4,∠xOP 2=∠P 2OP 3=60°,作P 3H ⊥x 轴于H ,OH=12OP 3=2,P 3∴P 3(-2,故答案为(-2,【点睛】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.16.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式. 【详解】 ∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】 此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.17.【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系列方程求解【详解】设此圆锥的底面半径为r 根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr 解得:r=1故答案为:1【点睛】本题考查了圆锥 解析:【解析】【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r .根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr 1203180π⨯=,解得:r=1.故答案为:1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.18.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k的方程然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k2﹣2)x解析:﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k的值即可.【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+3k=0,解得k1=0,k2=﹣3,因为k≠0,所以k的值为﹣3.故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m得:3-m=0解得:m=解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x2-3x+3-m,求得m的值即可.【详解】由于二次函数y=x2-3x+3-m的图象经过原点,把(0,0)代入y=x2-3x+3-m,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.20.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13解析:【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB 的长.详解:连接AD 、AE 、OA 、OB ,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题21.(1)证明见解析;(2)332π- 【解析】【分析】(1)求出∠ADB 的度数,求出∠ABD+∠DBC=90︒,根据切线判定推出即可;(2)连接OD ,分别求出三角形DOB 面积和扇形DOB 面积,即可求出答案.【详解】(1)AB Q 是O e 的直径, 90ADB ∴∠=︒,90A ABD ∴∠+∠=︒,A DEB ∠=∠Q ,DEB DBC ∠=∠,A DBC ∴∠=∠,90DBC ABD ∠+∠=︒Q ,BC ∴是O e 的切线;(2)连接OD ,2BF BC ==Q ,且90ADB ∠=︒,CBD FBD ∴∠=∠,//OE BD Q ,FBD OEB ∴∠=∠,OE OB Q =,OEB OBE ∴∠=∠,11903033CBD OEB OBE ADB ∴∠=∠=∠=∠=⨯︒=︒, 60C ∴∠=︒,323AB BC ∴==,O ∴e 3,∴阴影部分的面积=扇形DOB 的面积-三角形DOB 的面积13333362ππ=⨯= 【点睛】本题考查了切线判定的定理和三角形及扇形面积的计算方法,熟练掌握该知识点是本题解题的关键.22.(1)A (﹣1,0)、B (3,0);(2)①y =x 2﹣2x ﹣3;②t 值为0或4;③﹣1≤b <11或b =﹣4.【解析】【分析】(1)令y =0,即:ax 2﹣2ax ﹣3a =0,解得:x =﹣1或3,即可求解;(2)①DM =2AM =4,即点D 的坐标为(1,﹣4),将点D 的坐标代入二次函数表达式,即可求解;②分x =t 和x =t ﹣2在对称轴右侧、左侧或两侧三种情况,讨论求解即可;③如下图所示,直线m 、l 、n 都是直线y =kx +b 与图象P 、Q 都相交,且只有两个交点的临界点,即可求解.【详解】解:(1)令y =0,即:ax 2﹣2ax ﹣3a =0,解得:x =﹣1或3,即点A 、B 的坐标分别为(﹣1,0)、(3,0),函数的对称轴12b x a=-=;(2)①DM =2AM =4,即点D 的坐标为(1,﹣4),将点D 的坐标代入二次函数表达式得:﹣4=a ﹣2a ﹣3a ,解得:a =1,即函数的表达式为:y =x 2﹣2x ﹣3;②当x =t 和x =t ﹣2在对称轴右侧时,函数在x =t 处,取得最大值,即:t 2﹣2t ﹣3=5,解得:t =﹣2或4(舍去t =﹣2),即t =4;同理当x =t 和x =t ﹣2在对称轴左侧或两侧时,解得:t =0,故:t 值为0或4;③如下图所示,直线m 、l 、n 都是直线y =kx +b 与图象P 、Q 都相交,且只有两个交点的临界点,点E 、R 、C '坐标分别为(4,5)、(10,﹣4)、(8,﹣3),直线l 的表达式:把点E 、R 的坐标代入直线y =kx +b 得:54410,k b k b =+⎧⎨-=+⎩ 解得:3211,k b ⎧=-⎪⎨⎪=⎩ 同理可得直线m 的表达式为:112y x =--, 直线n 的表达式为:y =﹣4,故:b 的取值范围为:﹣1≤b <11或b =﹣4.【点睛】本题考查的是二次函数知识的综合运用,其中(2)③是本题的难点,主要通过作图的方式,通过数形结合的方法即可解决问题.23.(1)证明见解析;(2)阴影部分的面积为8833π. 【解析】【分析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案.【详解】解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA ,∵AC 平分∠BAE , ∴∠OAC=∠CAE ,∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E ,∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD ,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S△OCD=43422⋅⨯=CD OC=83,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=16×π×OC2=83π,∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣83π,∴阴影部分的面积为83﹣83π.24.(1)每次下降的百分率为20%;(2)该商场要保证每天盈利6000元,那么每千克应涨价5元.【解析】【分析】(1)设每次降价的百分率为a,(1﹣a)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.【详解】解:(1)设每次下降的百分率为a,根据题意,得:50(1﹣a)2=32,解得:a=1.8(舍)或a=0.2,答:每次下降的百分率为20%;(2)设每千克应涨价x元,由题意,得(10+x)(500﹣20x)=6000,整理,得x2﹣15x+50=0,解得:x1=5,x2=10,因为要尽快减少库存,所以x=5符合题意.答:该商场要保证每天盈利6000元,那么每千克应涨价5元.【点睛】本题主要考查了一元二次方程应用,关键是根据题意找准等量关系列出方程是解答本题的关键.25.(1)(300﹣10x).(2)每本书应涨价5元.【解析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x元,则每天就会少售出10x本,所以每天可售出书(300﹣10x)本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解.试题解析:(1)∵每本书上涨了x元,∴每天可售出书(300﹣10x)本.故答案为300﹣10x.(2)设每本书上涨了x元(x≤10),根据题意得:(40﹣30+x)(300﹣10x)=3750,整理,得:x2﹣20x+75=0,解得:x1=5,x2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.。
初三九年级数学上册 压轴解答题测试卷(含答案解析)
初三九年级数学上册 压轴解答题测试卷(含答案解析)一、压轴题1.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标;(2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.2.如图,等边ABC 内接于O ,P 是AB 上任一点(点P 不与点A 、B 重合),连接AP 、BP ,过点C 作CM BP 交PA 的延长线于点M .(1)求APC ∠和BPC ∠的度数;(2)求证:ACM BCP △≌△;(3)若1PA =,2PB =,求四边形PBCM 的面积;(4)在(3)的条件下,求AB 的长度.3.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =;(2)若O的半径为8,弧BD的度数为120︒,求四边形ABCD的面积;⊥于M,请猜测OM与AD的数量关系,并证明你的结论.(3)如图2,作OM BC4.在长方形ABCD中,AB=5cm,BC=6cm,点P从点A开始沿边AB向终点B以cm s的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2/cm s的速度移1/动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为t秒.(1)填空:______=______,______=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于5cm?26cm?若存在,请求出此时t的(3)是否存在t的值,使得五边形APQCD的面积等于2值;若不存在,请说明理由.5.我们知道,如图1,AB是⊙O的弦,点F是AFB的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P为边BC上一个动点(可以包括点C但不包括点B),以P为圆心PB为半径作⊙P交AB于点D过点D作⊙P的切线交边AC于点E,(1)求证:AE=DE;(2)若PB=2,求AE的长;(3)在P点的运动过程中,请直接写出线段AE长度的取值范围.7.已知抛物线y=﹣14x2+bx+c经过点A(4,3),顶点为B,对称轴是直线x=2.(1)求抛物线的函数表达式和顶点B 的坐标;(2)如图1,抛物线与y 轴交于点C ,连接AC ,过A 作AD ⊥x 轴于点D ,E 是线段AC 上的动点(点E 不与A ,C 两点重合);(i )若直线BE 将四边形ACOD 分成面积比为1:3的两部分,求点E 的坐标;(ii )如图2,连接DE ,作矩形DEFG ,在点E 的运动过程中,是否存在点G 落在y 轴上的同时点F 恰好落在抛物线上?若存在,求出此时AE 的长;若不存在,请说明理由.8.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围∠为锐角,且(3)在图3中,M为抛物线1C在第一象限内的一点,若MCBtan MCB∠>,直接写出点M横坐标M x的取值范围___________39.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D 的坐标为(−3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF.设菱形ABCD平移的时间为t秒(0<t<3.....)①是否存在这样的t,使7FB?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x.轴与..抛物线...在.x.轴上方的部分围成的图形中....).时,求t的取值范围.(直接写出答案即可)............(.包括边界10.对于线段外一点和这条线段两个端点连线所构成的角叫做这个点关于这条线段的视角.如图1,对于线段AB及线段AB外一点C,我们称∠ACB为点C关于线段AB的视角.如图2,点Q在直线l上运动,当点Q关于线段AB的视角最大时,则称这个最大的“视角”为直线l关于线段AB的“视角”.(1)如图3,在平面直角坐标系中,A(0,4),B(2,2),点C坐标为(﹣2,2),点C关于线段AB的视角为度,x轴关于线段AB的视角为度;(2)如图4,点M是在x轴上,坐标为(2,0),过点M作线段EF⊥x轴,且EM=MF =1,当直线y=kx(k≠0)关于线段EF的视角为90°,求k的值;(3)如图5,在平面直角坐标系中,P(3,2),Q(3+1,1),直线y=ax+b(a>0)与x轴的夹角为60°,且关于线段PQ的视角为45°,求这条直线的解析式.11.如图,在⊙O中,弦AB、CD相交于点E,AC=BD,点D在AB上,连接CO,并延长CO交线段AB于点F,连接OA、OB,且OA=5,tan∠OBA=12.(1)求证:∠OBA=∠OCD;(2)当△AOF是直角三角形时,求EF的长;(3)是否存在点F,使得S△CEF=4S△BOF,若存在,请求EF的长,若不存在,请说明理由.12.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点B(3,4),点C(﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析.【解析】【分析】(1)由中心对称的性质可得OB=OC=5,点C(﹣a,﹣a﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB,AC,BC的长,利用勾股定理的逆定理可求解;(3)由旋转的性质可得DO=BO=CO,可得△BCD是直角三角形,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,由圆周角定理和角平分线的性质可得∠HBC=∠CDE =45°=∠BDE=∠BCH,可证CH=BH,∠BHC=90°,由两点距离公式可求解.【详解】解:(1)∵A(﹣5,0),OA=OC,∴OA=OC=5,∵点B、C关于原点对称,点B(a,a+1)(a>0),∴OB=OC=5,点C(﹣a,﹣a﹣1),∴5∴a=3,∴点B(3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=,AC=∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=2,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.2.(1)∠APC=60°,∠BPC=60°;(2)见解析;(315344)219【解析】【分析】(1)由△ABC是等边三角形,可知∠ABC=∠BAC=∠ACB=60°,由圆周角定理可知∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)利用上题中得到的相等的角和等边三角形中相等的线段利用AAS证得两三角形全等即可;(3)根据CM∥BP说明四边形PBCM是梯形,利用上题证得的两三角形全等判定△PCM为等边三角形,进而求得PH的长,利用梯形的面积公式计算四边形的面积即可;(4)过点B作BQ⊥AP,交AP的延长线于点Q,过点A作AN⊥BC于点N,连接OB,利用勾股定理求出AB的长,在△ABC中,利用等边三角形的性质求出BN,在△BON中利用勾股定理求出OB,最后根据弧长公式求出弧AB的长.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵=BC BC,=AC AC,∴∠APC=∠ABC=60°,∠BPC=∠BAC=60°;(2)证明:∵CM∥BP,∴∠BPM+∠M=180°,∠PCM=∠BPC,∵∠BPC=∠BAC=60°,∴∠PCM=∠BPC=60°,∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,∴∠M=∠BPC=60°,又∵A、P、B、C四点共圆,∴∠PAC+∠PBC=180°,∵∠MAC+∠PAC=180°∴∠MAC=∠PBC∵AC=BC,在△ACM和△BCP中,M BPCMAC PBCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACM≌△BCP(AAS);(3)∵CM∥BP,∴四边形PBCM为梯形,作PH⊥CM于H,∵△ACM≌△BCP,∴CM=CP,AM=BP,又∠M=60°,∴△PCM为等边三角形,∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,∴PH=2,∴S四边形PBCM=12(PB+CM)×PH=12(2+3)×2=4;(4)过点B 作BQ ⊥AP ,交AP 的延长线于点Q ,过点A 作AN ⊥BC 于点N ,连接OB , ∵∠APC=∠BPC=60°,∴∠BPQ=60°,∴∠PBQ=30°, ∴PQ=12PB=1, ∴在△BPQ 中,2221=3-∴在△AQB 中,()()2222=113=7AQ BQ +++ ∵△ABC 为等边三角形,∴AN 经过圆心O ,∴BN=12AB=72, ∴22212AB BN -, 在△BON 中,设BO=x ,则ON=212x -, ∴222721=x x ⎫+-⎪⎪⎝⎭⎝⎭, 解得:21 ∵∠BOA =2∠BCA =120°,∴AB =211202213=1809ππ⨯.【点睛】本题考查了圆周角定理,全等三角形的判定与性质,等边三角形的判定,四边形的面积,勾股定理,弧长公式,是一道比较复杂的几何综合题,解题关键是能够掌握并灵活运用全等三角形的判定与性质等知识.3.(1)见解析;(2)96;(3)AD=2OM,理由见解析【解析】【分析】(1)根据弦、弧、圆心角的关系证明;(2)根据弧BD的度数为120°,得到∠BOD=120°,利用解直角三角形的知识求出BD,根据题意计算即可;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,则可证明△BOM≌△OAE得到OM=AE,证明结论.【详解】解:(1)证明:∵AC=BD,∴AC BD,则AB DC,∴AB=CD;(2)如图1,连接OB、OD,作OH⊥BD于H,∵弧BD的度数为120°,∴∠BOD=120°,∴∠BOH=60°,则33∴BD=3则四边形ABCD的面积=12×AC×BD=96;(3)AD=2OM ,连结OB 、OC 、OA 、OD ,作OE ⊥AD 于E ,如图2,∵OE ⊥AD ,∴AE=DE ,∵∠BOC=2∠BAC ,而∠BOC=2∠BOM ,∴∠BOM=∠BAC ,同理可得∠AOE=∠ABD ,∵BD ⊥AC ,∴∠BAC+∠ABD=90°,∴∠BOM+∠AOE=90°,∵∠BOM+∠OBM=90°,∴∠OBM=∠AOE ,在△BOM 和△OAE 中,OMB OEA OBM OAE OB OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOM ≌△OAE (AAS ),∴OM=AE ,∴AD=2OM .【点睛】本题考查了圆的综合题:熟练掌握圆周角定理、垂径定理、等腰三角形的性质和矩形的性质、会利用三角形全等解决线段相等的问题是解题的关键.4.(1)BQ ,2tcm ,PB ,()5t cm -;(2)当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由见解析.【解析】【分析】(1)根据点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,可以求得BQ ,PB .(2)用含t 的代数式分别表示PB 和BQ 的值,运用勾股定理求得PQ 为22(5)(2)t t -+=25据此求出t 值.(3)根据题干信息使得五边形APQCD 的面积等于226cm 的t 值存在,利用长方形ABCD 的面积减去PBQ △的面积即可,有PBQ △的面积为4,由此求得t 值.【详解】解:(1)点Q 从点B 开始沿边BC 向终点C 以2/cm s 的速度移动,故BQ 为2tcm ,点P 从点A 开始沿边AB 向终点B 以1/cm s 的速度移动,AB =5cm ,故PB 为()5t cm -.(2)由题意得:22(5)(2)t t -+=25,解得:1t =0,2t =2;当t =0秒或2秒时,PQ 的长度等于5cm ;(3)存在t =1秒,能够使得五边形APQCD 的面积等于226cm .理由如下:长方形ABCD 的面积是:56⨯=()230cm ,使得五边形APQCD 的面积等于226cm ,则PBQ △的面积为3026-=()24cm ,()15242t t -⨯⨯=, 解得:1t =4(不合题意舍去),2t =1.即当t =1秒时,使得五边形APQCD 的面积等于226cm .【点睛】本题结合长方形考查动点问题,其本质运用代数式求值,利用含t 的代数式表示各自线段的直接,根据题干数量关系即可确立等量关系式,从而求出t 值.5.(1)见解析;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,见解析;(3)AH ﹣1+1.【解析】【分析】(1)在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,证明△FAG ≌△FBC ,根据全等三角形的性质得到FG =FC ,根据等腰三角形的性质得到EG =EC ,即可证明.(2)在CA 上截取CG =CB ,连接FA ,FB ,FC ,证明△FCG ≌△FCB ,根据全等三角形的性质得到FG =FB ,得到FA =FG ,根据等腰三角形的性质得到AE =GE ,即可证明.(3)分点P 在弦AB 上方和点P 在弦AB 下方两种情况进行讨论.【详解】解:(1)如图2,在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,∵点F 是AFB 的中点,FA =FB ,在△FAG 和△FBC 中,,FA FB FAG FBC AG BC =⎧⎪∠=∠⎨⎪=⎩∴△FAG ≌△FBC (SAS ),∴FG =FC ,∵FE ⊥AC ,∴EG =EC ,∴AE =AG+EG =BC+CE ;(2)结论AE =EC+CB 不成立,新结论为:CE =BC+AE ,理由:如图3,在CA 上截取CG =CB ,连接FA ,FB ,FC ,∵点F 是AFB 的中点,∴FA =FB , FA FB =,∴∠FCG =∠FCB ,在△FCG 和△FCB 中,,CG CB FCG FCB FC FC =⎧⎪∠=∠⎨⎪=⎩∴△FCG ≌△FCB (SAS ),∴FG=FB,∴FA=FG,∵FE⊥AC,∴AE=GE,∴CE=CG+GE=BC+AE;(3)在Rt△ABC中,AB=2OA=4,∠BAC=30°,∴12232BC AB AC===,,当点P在弦AB上方时,如图4,在CA上截取CG=CB,连接PA,PB,PG,∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,∠PCG=∠PCB,在△PCG和△PCB中,,CG CBPCG PCBPC PC=⎧⎪∠=∠⎨⎪=⎩∴△PCG≌△PCB(SAS),∴PG=PB,∴PA=PG,∵PH⊥AC,∴AH=GH,∴AC=AH+GH+CG=2AH+BC,∴2322AH=+,∴31AH=,当点P在弦AB下方时,如图5,在AC上截取AG=BC,连接PA,PB,PC,PG∵∠ACB=90°,∴AB为⊙O的直径,∴∠APB=90°,∵∠PAB=45°,∴∠PBA=45°=∠PAB,∴PA=PB,在△PAG和△PBC中,,AG BCPAG PBCPA PB=⎧⎪∠=∠⎨⎪=⎩∴△PAG≌△PBC(SAS),∴PG=PC,∵PH⊥AC,∴CH=GH,∴AC=AG+GH+CH=BC+2CH,∴2322CH,=+∴31CH=-,∴()233131AH AC CH=-=--=+,即:当∠PAB=45°时,AH的长为31-或3 1.+【点睛】考查弧,弦的关系,全等三角形的判定与性质,等腰三角形的判定与性质等,综合性比较强,注意分类讨论思想方法在解题中的应用.6.(1)详见解析;(2)AE=194;(3)74≤AE<254.【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2+BC2=BE2,∴(8-x)2+62=x2,解得:x=254,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2=DC2+DE2,∴(8-x)2=62+x2,解得:x=74,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:74≤AE<254.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.7.(1)y=﹣14x2+x+3,顶点B的坐标为(2,4);(2)(i)点E的坐标为(85,3)或(125,3);(ii)存在;当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【解析】【分析】(1)由题意得出21441,43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩,解得1,3,bc=⎧⎨=⎩,得出抛物线的函数表达式为:y=﹣14x2+x+3=﹣14(x﹣2)2+4,即可得出顶点B的坐标为(2,4);(2)(i)求出C(0,3),设点E的坐标为(m,3),求出直线BE的函数表达式为:y=12m--x+462mm--,则点M的坐标为(4m﹣6,0),由题意得出OC=3,AC=4,OM=4m﹣6,CE=m,则S矩形ACOD=12,S梯形ECOM=15182m-,分两种情况求出m的值即可;(ii)过点F作FN⊥AC于N,则NF∥CG,设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,证△EFN≌△DGO(ASA),得出NE=OD=AC=4,则AE=NC=﹣a,证△ENF∽△DAE,得出NF NEAE AD=,求出a=﹣43或0,当a=0时,点E与点A重合,舍去,得出AE=NC=﹣a=43,即可得出结论.【详解】(1)∵抛物线y=﹣14x2+bx+c经过点A(4,3),对称轴是直线x=2,∴21441, 43,124b cb⎧-⨯++=⎪⎪⎨-=⎪⎛⎫⨯-⎪ ⎪⎝⎭⎩解得1,3, bc=⎧⎨=⎩∴抛物线的函数表达式为:y=﹣14x2+x+3,∵y=﹣14x2+x+3=﹣14(x﹣2)2+4,∴顶点B的坐标为(2,4);(2)(i)∵y=﹣14x2+x+3,∴x=0时,y=3,则C点的坐标为(0,3),∵A(4,3),∴AC∥OD,∵AD⊥x,∴四边形ACOD是矩形,设点E的坐标为(m,3),直线BE的函数表达式为:y=kx+n,直线BE交x轴于点M,如图1所示:则24,3, k nmk n+=⎧⎨+=⎩解得:1,246,2kmmnm-⎧=⎪⎪-⎨-⎪=⎪-⎩,∴直线BE的函数表达式为:y=12m--x+462mm--,令:y=12m--x+462mm--=0,则x=4m﹣6,∴点M的坐标为(4m﹣6,0),∵直线BE将四边形ACOD分成面积比为1:3的两部分,∴点M在线段OD上,点M不与点O重合,∵C(0,3),A(4,3),M(4m﹣6,0),E(m,3),∴OC=3,AC=4,OM=4m﹣6,CE=m,∴S矩形ACOD=OC•AC=3×4=12,S梯形ECOM=12(OM+EC)•OC=12(4m﹣6+m)×3=15182m-,分两种情况:①S ECOMS ACOD梯形矩形=14,即1518212m-=14,解得:m=85,∴点E的坐标为:(85,3);②S ECOMS ACOD梯形矩形=34,即1518212m-=34,解得:m=125,∴点E的坐标为:(125,3);综上所述,点E的坐标为:(85,3)或(125,3);(ii)存在点G落在y轴上的同时点F恰好落在抛物线上;理由如下:由题意得:满足条件的矩形DEFG在直线AC的下方,过点F作FN⊥AC于N,则NF∥CG,如图2所示:设点F的坐标为:(a,﹣14a2+a+3),则NF=3﹣(﹣14a2+a+3)=14a2﹣a,NC=﹣a,∵四边形DEFG与四边形ACOD都是矩形,∴∠DAE=∠DEF=∠N=90°,EF=DG,EF∥DG,AC∥OD,∴∠NEF=∠ODG,∠EMC=∠DGO,∵NF∥CG,∴∠EMC=∠EFN,∴∠EFN=∠DGO,在△EFN和△DGO中,∠NEF=∠ODG,EF=DG,∠EFN=∠DGO,∴△EFN≌△DGO(ASA),∴NE=OD=AC=4,∴AC﹣CE=NE﹣CE,即AE=NC=﹣a,∵∠DAE=∠DEF=∠N=90°,∴∠NEF+∠EFN=90°,∠NEF+∠DEA=90°,∴∠EFN=∠DEA,∴△ENF∽△DAE,∴NE NFAD AE=,即43=214a aa--,整理得:34a2+a=0,解得:a=﹣43或0,当a=0时,点E与点A重合,∴a=0舍去,∴AE=NC=﹣a=43,∴当点G落在y轴上的同时点F恰好落在抛物线上,此时AE的长为43.【点睛】本题是二次函数综合题目,考查了二次函数解析式的求法、二次函数的性质、一次函数解析式的求法、坐标与图形性质、矩形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、梯形面积公式等知识;本题综合性强,属于中考压轴题型.8.(1)()221y x =--;(2)1023n <<;(3)552M x << 【解析】【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A 点坐标可求B 点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P ,由题意可得ACB BCP ∠>∠,过点C 作//l x 轴.作PD l ⊥,可得ACO PCD ∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, 由两点间距离公式可得2MN = 2213222t t ⎛⎫- ⎪⎝⎭;2CN =2215222t t ⎛⎫- ⎪⎝⎭;由3MN CN =可得:52t =,进而可得满足已知条件的点M 横坐标M x 的取值范围.【详解】解:()1对称轴为422a x a-=-= ()3,0B ∴()0,1C ∴代入()224321y x x x ∴=-+=-- ()()222:21C x n ---()2423x n x =-++CAP ∆的内心I 在CAB △内部,ACB BCP ∴∠>∠∴当ACB BCP ∠=∠时过C 作//l x 轴.作PD l ⊥,ACB BCP ∠=∠90,OCD ∠=45,DCB ∠=,ACO PCD ∴∠=∠13tan ACD tan PCD ∠=∠= 设()2,43P t t t -+ 13PD CD ∴= 3p y DP OC +==214333t t t ∴-++= 113t = 将P 代入2C 解析式中 103n ∴=又P 在第一象限内h AB ∴>2n ∴>1023n ∴<<(3) 552M x <<; 当MCB ∠为直角时,如下图所示:由(1)(2)可得:直线CB 的解析式为:y=-x+3,MCB ∠为直角,C(0,3),∴直线CM 的解析式为:y=x+3,则CM 与抛物线的交点坐标M 横坐标为:2343x x x +=-+,解得:x=5或0(舍去),所以,当MCB ∠为直角时,5M x =;当MCB ∠为锐角且3tan MCB ∠=时,如下图所示:过点M 作MN CB ⊥于N,则3MN CN=,设M 点坐标为()2,43t t t -+, MN CB ⊥,直线CB 解析式为y=-x+3,∴MN 解析式可设:y=x+b,将P ()2,43t t t -+代入解析式可得:b=253t t -+,则直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得: N 点坐标为221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, ∴2MN =2222215154332222t t t t t t t ⎛⎫⎛⎫+-+-+-+- ⎪ ⎪⎝⎭⎝⎭ = 2213222t t ⎛⎫- ⎪⎝⎭; 2CN = 222215152222t t t t ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭ =2215222t t ⎛⎫- ⎪⎝⎭; 由3MN CN=可得: 2213221522t t t t --=3; 解得:52t =或0(舍去) ; ∴MCB ∠为锐角,且3tan MCB ∠>时,点M 的横坐标M x 的取值范围为:552M x <<. 【点睛】本题综合考查了二次函数的图像和性质,题目较难,熟练掌握二次函数的图像和性质,运用数形结合解决二次函数综合问题是解题的关键.9.(1)y=−x 2+3;(2)①或⩽t【解析】【分析】(1)根据已知条件求出AB 和CD 的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);则有DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据DF=7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为(−3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t2⩽3,解得t⩽6 2.∵3∴C′点的横坐标为3∴3)2,又C′N=BE′=BE−EE′=3−2t2由MN⩾C′N,得32⩾3−2t2,解得t63或t⩽63舍去).∴t63t6【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键. .10.(1)45,45;(2)k=3±;(3)y=3x+3﹣2【解析】【分析】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,即可求解;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx (k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,OQ=1,OM=2,故直线的倾斜角为30°,即可求解;(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′(3-1,1),即可求解.【详解】(1)如图3,连接AC,则∠ABC=45°;设M是x轴的动点,当点M运动到点O时,∠AOB=45°,该视角最大,由此可见:当△ABC为等腰三角形时,视角最大;故答案为:45,45;(2)如图4,以点M为圆心,长度1为半径作圆M,当圆与直线y=kx相切时,直线y=kx(k≠0)关于线段EF的视角为90°,即∠EQF=90°,则MQ⊥直线OE,MQ=1,OM=2,故直线的倾斜角为30°,故k=33±(3)直线PQ的倾斜角为45°,分别作点Q、P作x轴、y轴的平行线交于点R,RQ=RP=1,以点R为圆心以长度1为半径作圆R,由(1)知,设直线与圆交于点Q′,由(1)知,当PQ′Q为等腰三角形时,视角为45°,则QQ=2RQ=2,故点Q′31,1),直线y=ax+b(a>0)与x轴的夹角为60°,则直线的表达式为:y3,将点Q′的坐标代入上式并解得:直线的表达式为:y332【点睛】本题考查的是一次函数综合运用,涉及到解直角三角形、圆的基本知识等,此类新定义题目,通常按照题设的顺序求解,一般比较容易.11.(1)见解析;(2)EF=32或512;(3)存在【解析】【分析】(1)先判断出∠ECB=∠EBC,再判断出∠OCB=∠OBC,即可得出结论;(2)先求出EF,再分两种情况,利用锐角三角函数和相似三角形的性质即可得出结论;(3)先利用面积关系得出53COFO=,进而利用△OAF∽△EFC得出比例式,即可得出结论.【详解】解:(1)如图1,连接BC,∵AC BD=,∴∠ECB=∠EBC,∵OB=OC,∴∠OCB=∠OBC,∴∠OCD=∠ECF=∠ECB﹣∠OCB=∠EBC﹣∠OBC=∠OBA;(2)∵OA=OB,∴∠OAF=∠OBA,∴∠OAF=∠ECF,①当∠AFO=90°时,∵OA5tan∠OBA=12,∴OC=OA5OF=1,AB=4,∴EF=CF•tan∠ECF=CF•tan∠OBA 51 +②当∠AOF =90°时,∵OA =OB ,∴∠OAF =∠OBA ,∴tan ∠OAF =tan ∠OBA =12, ∵OA∴OF =OA •tan ∠OAF, ∴AF =52, ∵∠OAF =∠OBA =∠ECF ,∠OFA =∠EFC ,∴△OFA ∽△EFC ,∴EF CF OC OF OF AF AF +=== ∴EFOF =32, 即:EF =32或12; (3)存在,如图2,连接OE ,∵∠ECB =∠EBC ,∴CE =EB ,∵OE =OE ,OB =OC ,∴△OEC ≌△OEB ,∴S △OEC =S △OEB ,∵S △CEF =4S △BOF ,∴S △CEO +S △EOF =4(S △BOE ﹣S △EOF ), ∴53CEO EFO S S ∆∆=, ∴53CO FO =, ∴FO =35CO, ∵△OFA ∽△EFC , ∴53CE AD CO EF FO FO ===, ∴BF =BE ﹣EF =CE ﹣EF =23EF ,∴AF=AB﹣BF=4﹣23EF,∵△OAF∽△EFC,∴CF EF FA FO=,∴85523543EF=-,∴EF=3﹣35.【点睛】圆的综合题,主要考查了圆的性质,锐角三角函数,全等三角形的判定和性质,相似三角形的判定和性质,分类讨论的思想,判断出53CE AD COEF FO FO===是解本题的关键.12.(1)t=3;(2)P(35t+2,45t﹣4);(3)t的值为209秒或4秒或16秒或1609秒【解析】【分析】(1)如图1,过点C作CP⊥OA,交x轴于点P.就可以求出OP的值,由勾股定理就可以求出的OP值,进而求出结论;(2)t<10时,P在OA或AB上运动,所以分两种情况:①当0≤t≤5时,如图1,点P在OA上,OP=t,可得P的坐标;②当5<t<10时,如图2,点P在AB上,构建直角三角形,根据三角函数定义可得P的坐标;(3)设切点为G,连接PG,分⊙P与四边相切,其中P在AB和BC时,与各边都不相切,所以分两种情况:①当P在OA上时,根据三角函数列式可得t的值;②当P在OC上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P与直线AB相切,∵OC∥AB,∴∠AOC=∠OAG,∴sin∠AOC=sin∠OA45PGGAP==,t45-t5 =,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG⊥BC,∵BC∥AO,∴∠AOC=∠GCP,∴sin∠AOC=sin∠GC45PGPPC==,∵OP=PG=20﹣t,∴42051tt-=-,∴1609t=,综上所述,t的值2016041699为秒或秒或秒或秒【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.。
初三九年级数学上册上册数学压轴题试题(Word版 含答案)
初三九年级数学上册上册数学压轴题试题(Word 版 含答案)一、压轴题1.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x =(1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长. (3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.2.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F , ①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.3.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE∽;(2)若23AC ,求AB的长;(3)在(2)的条件下,求出ABC的外接圆圆心与CEF△的外接圆圆心之间的距离?4.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.5.如图,⊙M与菱形ABCD在平面直角坐标系中,点M的坐标为(﹣3,1),点A的坐标为(2,0),点B的坐标为(1,﹣3),点D在x轴上,且点D在点A的右侧.(1)求菱形ABCD的周长;(2)若⊙M沿x轴向右以每秒2个单位长度的速度平移,菱形ABCD沿x轴向左以每秒3个单位长度的速度平移,设菱形移动的时间为t(秒),当⊙M与AD相切,且切点为AD的中点时,连接AC,求t的值及∠MAC的度数;(3)在(2)的条件下,当点M与AC所在的直线的距离为1时,求t的值.6.某校网球队教练对球员进行接球训练,教练每次发球的高度、位置都一致.教练站在球场正中间端点A的水平距离为x米,与地面的距离为y米,运行时间为t秒,经过多次测试,得到如下部分数据:t秒0 1.5 2.54 6.57.59…x米04810121620…y米2 4.56 5.846 5.84 4.562…(1)当t 为何值时,网球高度达到最大值? (2)网球落在地面时,与端点A 的水平距离是多少? (3)网球落在地面上弹起后,y 与x 满足()256y a x k =-+①用含a 的代数式表示k ;②球网高度为1.2米,球场长24米,弹起后是否存在唯一击球点,可以将球沿直线扣杀到A 点,若有请求出a 的值,若没有请说明理由.7.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.8.如图1(注:与图2完全相同)所示,抛物线212y x bx c =-++经过B 、D 两点,与x 轴的另一个交点为A ,与y 轴相交于点C . (1)求抛物线的解析式.(2)设抛物线的顶点为M ,求四边形ABMC 的面积(请在图1中探索)(3)设点Q 在y 轴上,点P 在抛物线上.要使以点A 、B 、P 、Q 为顶点的四边形是平行四边形,求所有满足条件的点P 的坐标(请在图2中探索)9.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值. 10.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:如果矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C 的最优覆盖矩形. (1)已知A (﹣2,3),B (5,0),C (t ,﹣2). ①当t =2时,点A ,B ,C 的最优覆盖矩形的面积为 ;②若点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式; (2)已知点D (1,1).E (m ,n )是函数y =4x(x >0)的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.11.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.12.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】 【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP . 【详解】解:(1)∵:3:4AQ AB =,3AQ x = ∴4AB x =∴在Rt ABQ △中,5BQ x ==∵OD m ⊥,m l ⊥ ∴//OD l ∵OB OQ = ∴122AH BH AB x === ∴2CD x = ∴332FD CD x == (2)∵点P 关于点A 的对称点为Q ∴3AP AQ x == ∵4PC = ∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒ ∴//OM AB ∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形 ∴13x =,25x =-(不合题意,舍去) ∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9. (3)若矩形DEGF 是正方形,则DE DF = ①点P 在A 点的右侧时,如图:∴243x x += ∴4x = ∴312AP x == ②点P 在A 点的左侧时 I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x = ∴473x x -= ∴25x =∴635AP x x == ii.当4273x ≤<时,如图:∵74DE x =-,3DF x = ∴743x x -=∴1x =(不合题意,舍去) II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x = ∴743x x -= ∴1x = ∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题. 2.(1)详见解析;(2)①详见解析;②8 【解析】 【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度. 【详解】(1)证明: ∵AB 是⊙O 的直径, ∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠, ∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒, ∴90CAB ∠=︒, ∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠, ∴CFA CAF ∠=∠ ∴CA CF =; ② 设CA CF x ==, 在Rt ABC ∆中,2BC x =+,CA x =,6AB =, 由勾股定理可得222(2)6x x +=+,解得:8x =, ∴8AC =. 【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.3.(1)详见解析;(2)3)12【解析】 【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度. 【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒, ∴90AEF AFE ∠+∠=︒, ∵EC EF ⊥, ∴90FEC ∠=︒, ∴90AEF BEC ∠+∠=︒, ∴AFE BEC =∠∠, ∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC , ∵E 、F 分别是AB 、AD 的中点, ∴22,2AB AE BE AD AF ===; ∵AEF BCE ∽, ∴AE AFBC BE=,∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =; (3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处, 同理,△CEF 的外接圆的圆心在CF 的中点N 处, ∴线段MN 为△ACF 的中位线, ∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴2AD AB =, ∴22122882MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解. 4.(1)OD=4, (2)证明过程见详解(3)5043π- 【解析】 【分析】(1)根据AB 与圆O 相切,在Rt △OBD 中运用tan ∠BOD=34,即可求出OD 的长, (2)作辅助线证明四边形ADOG 是矩形,得DO ∥AC,sin ∠OCG=35,在Rt△OCG 中,求出OG 的长等于半径即可解题,(3)利用S 阴影=S Rt △BAC -S 正方形ADOG -14S 圆O ,求出AC 长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.5.(1)菱形的周长为8;(2)t=65,∠MAC=105°;(3)当t=1﹣35或t=1+315时,圆M与AC相切.【解析】试题分析:(1)过点B 作BE ⊥AD ,垂足为E .由点A 和点B 的坐标可知:BE=3,AE=1,依据勾股定理可求得AB 的长,从而可求得菱形的周长;(2)记 M 与x 轴的切线为F ,AD 的中点为E .先求得EF 的长,然后根据路程=时间×速度列出方程即可;平移的图形如图3所示:过点B 作BE ⊥AD ,垂足为E ,连接MF ,F 为 M 与AD 的切点.由特殊锐角三角函数值可求得∠EAB=60°,依据菱形的性质可得到∠FAC=60°,然后证明△AFM 是等腰直角三角形,从而可得到∠MAF 的度数,故此可求得∠MAC 的度数;(3)如图4所示:连接AM ,过点作MN ⊥AC ,垂足为N ,作ME ⊥AD ,垂足为E .先求得∠MAE=30°,依据特殊锐角三角函数值可得到AE 的长,然后依据3t+2t=5-AE 可求得t 的值;如图5所示:连接AM ,过点作MN ⊥AC ,垂足为N ,作ME ⊥AD ,垂足为E .依据菱形的性质和切线长定理可求得∠MAE=60°,然后依据特殊锐角三角函数值可得到EA=33,最后依据3t+2t=5+AE .列方程求解即可. 试题解析:(1)如图1所示:过点B 作BE AD ⊥,垂足为E ,∵()B 1,3-,()A 2,0, ∴BE 3=,AE 1=, ∴22AB AE BE 2=+=,∵四边形ABCD 为菱形, ∴AB BC CD AD ===, ∴菱形的周长248=⨯=.(2)如图2所示,⊙M 与x 轴的切线为F ,AD 中点为E ,∵()M 3,1-, ∴()F 3,0-,∵AD 2=,且E 为AD 中点,∴()E 30,,EF 6=, ∴2t 3t 6+=, 解得6t 5=. 平移的图形如图3所示:过点B 作BE AD ⊥,垂足为E ,连接MF ,F 为⊙M 与AD 切点, ∵由(1)可知,AE 1=,BE 3=, ∴tan EAB 3∠=, ∴EAB 60∠=︒, ∴FAB 120∠=︒, ∵四边形ABCD 是菱形, ∴11FAC FAB 1206022∠∠==⨯︒=︒, ∵AD 为M 切线, ∴MF AD ⊥, ∵F 为AD 的中点, ∴AF MF 1==,∴AFM 是等腰直角三角形, ∴MAF 45∠=︒,∴MAC MAF FAC 4560105∠∠∠=+=︒+︒=︒.(3)如图4所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒, ∴DAC 60∠=︒. ∵AC 、AD 是圆M 的切线 ∴MAE 30∠=︒, ∵ME MN 1==. ∴EA 3=, ∴3t 2t 53+=-, ∴3t 1=-. 如图5所示:连接AM ,过点作MN AC ⊥,垂足为N ,作ME AD ⊥,垂足为E ,∵四边形ABCD 为菱形,DAB 120∠=︒, ∴DAC 60∠=︒, ∴NAE 120∠=︒,∵AC 、AD 是圆M 的切线, ∴MAE 60∠=︒, ∵ME MN 1==, ∴3EA =∴33t 2t 53+=+, ∴3t 115=+. 综上所述,当3t 1=-3t 1=+时,圆M 与AC 相切. 点睛:此题是一道圆的综合题.圆中的方法规律总结:1、分类讨论思想:研究点、直线和圆的位置关系时,就要从不同的位置关系去考虑,即要全面揭示点、直线和元的各种可能的位置关系.这种位置关系的考虑与分析要用到分类讨论思想.1、转化思想:(1)化“曲面”为“平面”(2)化不规则图形面积为规则图形的面积求解.3、方程思想:再与圆有关的计算题中,除了直接运用公式进行计算外,有时根据图形的特点,列方程解答,思路清楚,过程简捷.6.(1)10;(2)10+米;(3)①100k a =-;②不存在,理由见解析 【解析】 【分析】(1)利用表格中数据直接得出网球达到最大高度时的时间及最大值; (2)首先求出函数解析式,进而求出网球落在地面时,与端点A 的水平距离; (3)①由(2)得网球落在地面上时,得出对应点坐标,代入计算即可; ②由球网高度及球桌的长度可知其扣杀路线解析式为110y x =,若要击杀则有(2110010a x a x --=,根据有唯一的击球点即该方程有唯一实数根即可求得a 的值,继而根据对应x 的值取舍可得. 【详解】 (1)由表格中数据可得4t =,(秒),网球达到最大高度,最大高度为6;(2)以A 为原点,以球场中线所在直线为x 轴,网球发出的方向为x 轴的正方向,竖直运动方向为y 方向,建立平面直角坐标系.由表格中数据,可得y 是x 的二次函数,且顶点坐标为(10,6), 可设2(10)6y m x =-+, 将(0,2)代入,可得:125m =-, ∴21(10)625y x =--+,当0y =,得10x =±(负值舍去),∴网球落在地面上时,网球与端点A 的距离为10+米;(3)①由(2)得网球落在地面上时,对应的点为(10+,0)代入(2y a x k =-+,得100k a =-;②不存在.∵网高1.2米,球网到A 的距离为24122=米, ∴扣杀路线在直线经过(0,0)和(12,1.2)点,∴扣杀路线在直线110y x =上,令(2110010a x a x --=,整理得:2150010ax x a ⎛⎫-+= ⎪⎝⎭, 当0=时符合条件,221106200010a a ⎛⎫=+-= ⎪⎝⎭,解得126400a -=,226a --=.开口向下,0a <, ∴1a ,2a 都可以, 将1a ,2a 分别代入()215610010a x a x --=,得到得解都是负数,不符合实际. 【点睛】本题主要考查了二次函数的实际应用,由实际问题建立起二次函数的模型并将二次函数的问题转化为一元二次方程求解是解题的关键. 7.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 992m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN 的长,再根据根与系数关系,列出方程即可解决问题.【详解】 (1),,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD 、BD,对称轴交x 轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则,设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.8.(1)21322y x x =-++;(2)92;(3)点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【解析】 【分析】(1)由图可知点B 、点D 的坐标,利用待定系数法,即可求出抛物线的解析式; (2)过点M 作ME ⊥AB 于点E ,由二次函数的性质,分别求出点A 、C 、M 的坐标,然后得到OE 、BE 的长度,再利用切割法求出四边形的面积即可;(3)由点Q 在y 轴上,设Q (0,y ),由平行四边形的性质,根据题意可分为:①当AB 为对角线时;②当BQ 2为对角线时;③当AQ 3为对角线时;分别求出三种情况的点P 的坐标,即可得到答案. 【详解】解:(1)根据题意,抛物线212y x bx c =-++经过B 、D 两点, 点D 为(2-,52-),点B 为(3,0),则2215(2)22213302b c b c ⎧-⨯--+=-⎪⎪⎨⎪-⨯++=⎪⎩,解得:132b c =⎧⎪⎨=⎪⎩,∴抛物线的解析式为21322y x x =-++; (2)∵22131(1)2222y x x x =-++=--+,∴点M 的坐标为(1,2)令213022x x -++=, 解得:11x =-,23x =,∴点A 为(1-,0);令0x =,则32y =, ∴点C 为(0,32); ∴OA=1,OC=32, 过点M 作ME ⊥AB 于点E ,如图:∴2ME =,1OE =,2BE =,∴111()222ABMC S OA OC OC ME OE BE ME =•++•+•四边形, ∴131313791(2)122222222442ABMC S =⨯⨯+⨯+⨯+⨯⨯=++=四边形; (3)根据题意,点Q 在y 轴上,则设点Q 为(0,y ),∵点P 在抛物线上,且以点A 、B 、P 、Q 为顶点的四边形是平行四边形,如图所示,可分为三种情况进行分析:①AB 为对角线时,则11PQ 为对角线;由平行四边形的性质,∴点E 为AB 和11PQ 的中点,∵E 为(1,0),∵点Q 1为(0,y ),∴点P 1的横坐标为2;当2x =时,代入21322y x x =-++, ∴32y =,∴点13(2,)2P ;②当BQ 2是对角线时,AP 也是对角线,∵点B (3,0),点Q 2(0,y ),∴BQ 2中点的横坐标为32,∵点A 为(1-,0),∴点P 2的横坐标为4,当4x =时,代入21322y x x =-++, ∴52y =-, ∴点P 2的坐标为(4,52-); ③当AQ 3为对角线时,BP 3也是对角线;∵点A 为(1-,0),点Q 3(0,y ),∴AQ 3的中点的横坐标为12-, ∵点B (3,0),∴点P 3的横坐标为4-,当4x =-时,代入21322y x x =-++, ∴212y =-, ∴点P 3的坐标为(4-,212-); 综合上述,点P 的坐标为:3(2,)2或(4,52-)或(4-,212-). 【点睛】本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.9.(1) 见解析;(2) 2,2 ;(3)0或2或2x <<【解析】【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个;()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=, 综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(1)35,5784y x =+ ;(21722r ≤. 【解析】【分析】(1)①由矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形,得出最优覆盖矩形的长为:2+5=7,宽为3+2=5,即可得出结果;②由定义可知,t=-3或6,即点C 坐标为(-3,-2)或(6,-2),设AC 表达式为y=kx+b ,代入即可求出结果;(2)OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,OD所在的直线表达式为y=x,得出点E的坐标为(2,2),⊙P的半径最小r=2,当点E的纵坐标为1时,⊙P的半径最大r=17,即可得出结果.【详解】(1)①∵A(﹣2,3),B(5,0),C(2,﹣2),矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形,∴最优覆盖矩形的长为:2+5=7,宽为3+2=5,∴最优覆盖矩形的面积为:7×5=35;②∵点A,B,C的最优覆盖矩形的面积为40,∴由定义可知,t=﹣3或6,即点C坐标为(﹣3,﹣2)或(6,﹣2),设AC表达式为y=kx+b,∴3223k bk b=-+⎧⎨-=-+⎩或3226k bk b=-+⎧⎨-=+⎩∴513kb=⎧⎨=⎩或5874kb⎧=-⎪⎪⎨⎪=⎪⎩∴y=5x+13或5784y x=-+;(2)①OD所在的直线交双曲线于点E,矩形OFEG是点O,D,E的一个面积最小的最优覆盖矩形,如图1所示:∵点D(1,1),∴OD所在的直线表达式为y=x,∴点E的坐标为(2,2),∴OE222+2=22∴⊙P的半径最小r2②当DE∥x轴时,即:点E的纵坐标为1,如图2所示:∵点D (1,1).E (m ,n )是函数y =4x (x >0)的图象上一点 ∴1=4x ,解得x =4, ∴OE ═224+117, ∴⊙P 的半径最大r 17, 172r ≤. 【点睛】 本题是圆的综合题目,考查了矩形的性质、勾股定理、待定系数法求直线的解析式、坐标与图形性质、反比例函数等知识;本题综合性强,有一定难度.11.(1)t =3;(2)P (35t +2,45t ﹣4);(3)t 的值为209秒或4秒或16秒或1609秒 【解析】【分析】(1)如图1,过点C 作CP ⊥OA ,交x 轴于点P .就可以求出OP 的值,由勾股定理就可以求出的OP 值,进而求出结论;(2)t <10时,P 在OA 或AB 上运动,所以分两种情况:①当0≤t≤5时,如图1,点P 在OA 上,OP=t ,可得P 的坐标;②当5<t <10时,如图2,点P 在AB 上,构建直角三角形,根据三角函数定义可得P 的坐标;(3)设切点为G ,连接PG ,分⊙P 与四边相切,其中P 在AB 和BC 时,与各边都不相切,所以分两种情况:①当P 在OA 上时,根据三角函数列式可得t 的值;②当P 在OC 上时,同理可得结论.【详解】(1)如图1,当CP ⊥OA 时,sin ∠AO 45CP C OC==, 4455CP CP 即=,=, 在Rt △OPC 中,OC =5,PC =4,则OP =3,∴331t ==(2)当0≤t ≤5时,如图1,点P 在OA 上,∴P (t ,0);当5<t <10时,如图2,点P 在AB 上,过P 作PH ⊥x 轴,垂足为H ,则∠AOC =∠PAH ,∴sin ∠PAH =sin ∠AO 45C =, 44 4555PH PH t t ∴=-即=﹣, ∴333255HA t OH OA AH t ++=﹣,==,∴34P t+2t 455(,﹣);(3)设切点为G ,连接PG ,分两种情况:①当P 在OA 上时,如图3,⊙P与直线AB相切,∵OC∥AB,∴∠AOC=∠OAG,∴sin∠AOC=sin∠OA45PGGAP==,t45-t5 =,∴209t=;⊙P与BC相切时,如图4,则PG=t=OP=4;②当点P在OC上时,⊙P与AB相切时,如图5,∴OP=PG=4,∴4×5﹣t=4,t=16,⊙P与直线BC相切时,如图6,∴PG ⊥BC ,∵BC ∥AO ,∴∠AOC =∠GCP ,∴sin ∠AOC =sin ∠GC 45PG P PC ==, ∵OP =PG =20﹣t , ∴42051t t -=-, ∴1609t =, 综上所述,t 的值2016041699为秒或秒或秒或秒 【点睛】本题考查了菱形的性质、直角三角形的性质、勾股定理、锐角三角函数等知识,解答时运用等角的三角函数列方程是关键,并注意运用分类讨论的思想,做到不重不漏.12.(1)12;(2)tan EAD ∠=13;(3)51DE CD -= 【解析】【分析】(1)先证明△ADP ≌△CDP ,得到∠DAP=∠DCP ,再证明△ADE ≌△CDO ,得到DE=DO ,根据O 是AD 的中点,AD=CD ,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,5x ,得到25x ,求出35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,5x ,可得PC=OC-5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD ==+,即可得到结论.【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=,AD DC =,90FAD ODC ∠=∠=︒,FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP a ∴=,25PD a =, 5DF a =,35PF a ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ y x =x (舍弃),∴ 12y x +=,∴ DE y CD x y ===+. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.。
【压轴卷】初三数学上期末试卷及答案
【压轴卷】初三数学上期末试卷及答案一、选择题1.若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a (x -2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6=C .13x 2=,25x 2=D .1x 4=-,2x 0= 2.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .20193.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=3004.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >45.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .86.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )A .AC BCAB AC= B .2·BC AB BC = C .51AC AB -=D .0.618≈BCAC7.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .78.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( ) A .有两个不相等实数根 B .有两个相等实数根 C .有且只有一个实数根D .没有实数根9.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74-B .3或3-C .2或3-D .2或3-或74-10.如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点P ,若CD =AP =8,则⊙O 的直径为( )A .10B .8C .5D .311.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( ) A .0,4 B .-3,5C .-2,4D .-3,112.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题13.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为 .14.如图,AB 是⊙O 的直径,∠AOE =78°,点C 、D 是弧BE 的三等分点,则∠COE =_____.15.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .16.函数y =x 2﹣4x +3的图象与y 轴交点的坐标为_____. 17.一元二次方程22x 20-=的解是______.18.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有_____个. 19.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P=20°,则∠A=___________°.20.如图,在Rt △ABC 中,∠ACB =90°,CB =4,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为_____.三、解答题21.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x 米.(1)若苗圃园的面积为72平方米,求x ;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;22.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE ⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.23.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为 .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.24.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.25.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】二次函数y=ax 2+1的图象经过点(-2,0),得到4a+1=0,求得a=-,代入方程a (x-2)2+1=0即可得到结论.【详解】解:∵二次函数y=ax 2+1的图象经过点(-2,0), ∴4a+1=0, ∴a=-14, ∴方程a (x-2)2+1=0为:方程-(x-2)2+1=0,解得:x 1=0,x 2=4, 故选:A . 【点睛】本题考查了二次函数与x 轴的交点问题,二次函数图象上点的坐标特征,一元二次方程的解,正确的理解题意是解题的关键.2.A解析:A 【解析】 【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解. 【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A . 【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.3.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.4.D解析:D【解析】【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.5.A解析:A【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt △COD 中,OC=4,∠COD=60°,∴CD=2,∴. 故选A . 【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.6.B解析:B 【解析】 【详解】 ∵AC >BC , ∴AC 是较长的线段,根据黄金分割的定义可知:AC BC AB AC ==12≈0.618, 故A 、C 、D 正确,不符合题意; AC 2=AB •BC ,故B 错误,符合题意; 故选B .7.B解析:B 【解析】 【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a ≤193且a ≠6,然后找出此范围内的最大整数即可. 【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0, 解得a ≤193且a ≠6, 所以整数a 的最大值为5. 故选B. 【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.8.A解析:A 【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有两个不相等的实数根,故选A.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣故选C.10.A解析:A【解析】【分析】连接OC,先根据垂径定理求出PC的长,再根据勾股定理即可得出OC的长.【详解】连接OC,∵CD ⊥AB ,CD=8, ∴PC=12CD=12×8=4, 在Rt △OCP 中,设OC=x ,则OA=x , ∵PC=4,OP=AP-OA=8-x , ∴OC 2=PC 2+OP 2, 即x 2=42+(8-x )2, 解得x=5, ∴⊙O 的直径为10. 故选A . 【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.B解析:B 【解析】 【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+= ∴整理方程即得:160a c += ∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --= 解得:13x =-,25x = 故选:B . 【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.12.D解析:D 【解析】 【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.二、填空题13.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式解析:【解析】试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.考点:概率公式14.68°【解析】【分析】根据∠AOE的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵AB是⊙O的直径∴劣弧的度数为180°﹣78°=1解析:68°【解析】【分析】根据∠AOE的度数求出劣弧¶AE的度数,得到劣弧¶BE的度数,根据圆心角、弧、弦的关系定理解答即可.【详解】∵∠AOE=78°,∴劣弧¶AE的度数为78°.∵AB是⊙O的直径,∴劣弧¶BE的度数为180°﹣78°=102°.∵点C、D是弧BE的三等分点,∴∠COE23=⨯102°=68°.故答案为:68°.【点睛】本题考查了圆心角、弧、弦的关系定理,掌握在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解题的关键.15.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB223040+50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.16.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次解析:(0,3).【解析】【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.17.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x1=1,x2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.18.2【解析】试题解析:∵袋中装有6个黑球和n个白球∴袋中一共有球(6+n)个∵从中任摸一个球恰好是黑球的概率为∴解得:n=2故答案为2解析:2【解析】试题解析:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为34,∴63 64n=+,解得:n=2.故答案为2.19.35【解析】【分析】【详解】解:∵PC与⊙O相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为35解析:35【解析】【分析】【详解】解:∵PC与⊙O相切,∴∠OCP=90°,∴∠COP=90°-∠P=90°-20°=70°,∵OA=OC,∴∠A=∠ACO,∵∠A+∠ACO=∠COP,∴∠A=35°,故答案为35.20.【解析】【分析】根据题意用的面积减去扇形的面积即为所求【详解】由题意可得AB =2BC ∠ACB =90°弓形BD 与弓形AD 完全一样则∠A =30°∠B =∠BCD =60°∵CB =4∴AB =8AC =4∴阴影部解析:83π. 【解析】【分析】根据题意,用ABC n 的面积减去扇形CBD 的面积,即为所求.【详解】由题意可得,AB =2BC ,∠ACB =90°,弓形BD 与弓形AD 完全一样,则∠A =30°,∠B =∠BCD =60°,∵CB =4,∴AB =8,AC =,2604360π⨯⨯-=83π,故答案为:83π. 【点睛】本题考查不规则图形面积的求法,属中档题. 三、解答题21.(1)12(2)当x=11时,y 最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y ,根据题意得到二次函数的解析式y=x (30-2x )=-2x 2+30x ,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(30-2x )米.依题意可列方程 x (30-2x )=72,即x 2-15x +36=0.解得x 1=3(舍去),x 2=12.(2)依题意,得8≤30-2x ≤18.解得6≤x ≤11.面积S =x (30-2x )=-2(x -152)2+2252(6≤x ≤11). ①当x =152时,S 有最大值,S 最大=2252; ②当x =11时,S 有最小值,S 最小=11×(30-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.22.(1)证明见解析;(2)阴影部分的面积为83π.【解析】【分析】(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD ﹣S扇形OBC即可得到答案.【详解】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC∴S△OCD=43422⋅⨯=CD OC=83,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=16×π×OC2=83π,∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣83π,∴阴影部分的面积为83﹣83π.23.(1)13(2)13【解析】【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A、B、C,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)小智被分配到A“全程马拉松”项目组的概率为13,故答案为:1 3 .(2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为31 = 93.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.24.(1)相切,证明见解析;(2)62.【解析】【分析】(1)欲证明CD是切线,只要证明OD⊥CD,利用全等三角形的性质即可证明;(2)设⊙O的半径为r.在Rt△OBE中,根据OE2=EB2+OB2,可得(8﹣r)2=r2+42,推出r=3,由tan∠E=OB CDEB DE=,推出348CD=,可得CD=BC=6,再利用勾股定理即可解决问题.【详解】解:(1)相切,理由如下,如图,连接OC,∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线;(2)设⊙O的半径为r,在Rt △OBE 中,∵OE 2=EB 2+OB 2,∴(8﹣r )2=r 2+42,∴r=3,AB=2r=6,∵tan ∠E=OB CD EB DE=, ∴348CD =, ∴CD=BC=6,在Rt △ABC 中,= 【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键.25.(1)50,25;(2)20【解析】【分析】(1)先将10.5万元化为105000元,设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得一元一次方程,求解即可;(2)以“2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元”为等量关系,列出方程,然后设a%=t ,化为关于t 的一元二次方程,求解出t ,再根据a%=t ,求得a 即可.【详解】(1)10.5万元=105000元设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得: 20023006105000x x ⨯+⨯=解得:25x =∴250x =∴该乡镇分别有50名初中学生和25名高中学生获得了资助.(2)由题意得:5030%13%2001%2540%1%30012%10800a a a a ⨯⨯+⨯++⨯⨯+⨯+=∴1013%1%101%12%36a a a a ⨯+⨯++⨯+⨯+=设%a t =,则方程化为:22101431013236t t t t +++++=∴2253580t t +=﹣解得 1.6t =﹣(舍)或20%t =∴20a =.【点睛】本题主要考查了由实际问题抽象出一元二次方程和一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。
九年级(上)期末数学试卷含答解析
九年级(上)期末数学试卷一、选择题1.下列交通标志中,是中心对称图形的是()A.B.C.D.2.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=23.如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体4.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C.D.6.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>48.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.410.已知抛物线y=﹣x2+4x+5与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD 的长为()A. B. C. D.7二、填空题11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.12.如果将抛物线y=x2+2x﹣1向上平移3个单位,那么所得的新抛物线的表达式是.13.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为m(结果保留根号).14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD 的长为.15.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是.三、解答题17.(2015秋•江门校级期末)已知α,β均为锐角,且满足,求α+β的值.18.(2013•海珠区校级一模)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.19.(2015秋•江门校级期末)已知关于x的一元二次方程ax2+2x﹣1=0.(1)若该方程无解,求a的取值范围;(2)当a=1时,求该方程的解.20.(2015秋•江门校级期末)如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)21.(2009•陕西)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.22.(2015秋•江门校级期末)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.四、解答题23.(2015•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.24.(2015•滕州市校级模拟)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.25.(2015秋•滦县期末)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.参考答案与试题解析一、选择题1.下列交通标志中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【解答】解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.【点评】此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.2.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.3.如图,是某几何体的俯视图,该几何体可能是()A.圆柱 B.圆锥 C.球D.正方体【考点】由三视图判断几何体.【分析】根据几何体的俯视图是从上面看,所得到的图形分别写出各个几何体的俯视图判断即可.【解答】解:圆柱的俯视图是圆,A错误;圆锥的俯视图是圆,且中心由一个实点,B正确;球的俯视图是圆,C错误;正方体的俯视图是正方形,D错误.故选:B.【点评】本题考查了三视图的概念,掌握主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形是解题的关键.4.如图的四个转盘中,C、D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.【考点】几何概率.【分析】利用指针落在阴影区域内的概率是:,分别求出概率比较即可.【解答】解:A、如图所示:指针落在阴影区域内的概率为:=;B、如图所示:指针落在阴影区域内的概率为:=;C、如图所示:指针落在阴影区域内的概率为:;D、如图所示:指针落在阴影区域内的概率为:,∵>>>,∴指针落在阴影区域内的概率最大的转盘是:.故选:A.【点评】此题考查了几何概率,计算阴影区域的面积在总面积中占的比例是解题关键.5.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C.D.【考点】锐角三角函数的定义;勾股定理;勾股定理的逆定理.【专题】压轴题;网格型.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.6.如图,⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,则的长是()A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】根据圆周角得出圆心角为90°,再利用弧长公式计算即可.【解答】解:因为⊙O是△ABC的外接圆,⊙O的半径为3,∠A=45°,所以可得圆心角∠BOC=90°,所以的长==π,故选B.【点评】此题考查弧长公式,关键是根据圆周角得出圆心角为90°.7.如图,二次函数y=ax2+bx+c的图象与x轴相交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<﹣2 B.﹣2<x<4 C.x>0 D.x>4【考点】抛物线与x轴的交点.【分析】利用当函数值y>0时,即对应图象在x轴上方部分,得出x的取值范围即可.【解答】解:如图所示:当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选:B.【点评】此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CPB,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.一次函数y=﹣x+a﹣3(a为常数)与反比例函数y=﹣的图象交于A、B两点,当A、B两点关于原点对称时a的值是()A.0 B.﹣3 C.3 D.4【考点】反比例函数与一次函数的交点问题;关于原点对称的点的坐标.【专题】计算题;压轴题.【分析】设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.【解答】解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.10.已知抛物线y=﹣x2+4x+5与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD 的长为()A. B. C. D.7【考点】抛物线与x轴的交点.【分析】根据y=﹣x2+4x+5可以求得此抛物线与x轴的交点A和点B的坐标,与y轴交点C的坐标,从而可以求得点D的坐标,进而可以求得CD的长.【解答】解:∵y=﹣x2+4x+5=﹣(x﹣5)(x+1),∴点A的坐标为(3,0),点B的坐标为(﹣1,0),点C的坐标为(0,5).又∵D为AB的中点,∴点D的坐标为(1,0).∴CD==.故选:C.【点评】本题主要考查了抛物线与x轴的交点坐标,此题利用抛物线的三种形式间的相互转换得到点A、B的坐标,求出线段AB中点D的坐标是解决问题的关键.二、填空题11.若点(a,1)与(﹣2,b)关于原点对称,则a b=.【考点】关于原点对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴a b=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.12.如果将抛物线y=x2+2x﹣1向上平移3个单位,那么所得的新抛物线的表达式是y=x2+2x+2.【考点】二次函数图象与几何变换.【分析】直接根据抛物线向上平移的规律求解.【解答】解:抛物线y=x2+2x﹣1向上平移3个单位得到y=x2+2x﹣1+3=x2+2x+2.故答案为y=x2+2x+2.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为10m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】由题意得,在直角三角形ACB中,知道了已知角的邻边求对边,用正切函数计算即可.【解答】解:∵自楼的顶部A看地面上的一点B,俯角为30°,∴∠ABC=30°,∴AC=AB•tan30°=30×=10(米).∴楼的高度AC为10米.故答案为:10.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.14.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD 的长为4.【考点】垂径定理;勾股定理.【专题】压轴题.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.15.如图,等边三角形AOB的顶点A的坐标为(﹣4,0),顶点B在反比例函数y=(x<0)的图象上,则k=﹣4.【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(﹣4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;【解答】解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4;故答案为﹣4.【点评】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.16.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多是5.【考点】由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故答案为:5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题17.(2015秋•江门校级期末)已知α,β均为锐角,且满足,求α+β的值.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】根据非负数的性质列出算式,根据特殊角的三角函数值计算即可.【解答】解:由题意得,sinα=0,tanβ﹣1=0,则sinα=,tanβ=1,解得α=30°,β=45°,则α+β=75°.【点评】本题考查的是特殊角的三角函数值、非负数的性质,熟记特殊角的三角函数值、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2013•海珠区校级一模)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=,BC=6,求切线BD的长.【考点】切线的判定与性质.【分析】(1)如图,连接OD,欲证明直线BD与⊙O相切,只需证明OD⊥BD即可;(2)连接DE.利用圆周角定理和三角形中位线定理易求DE的长度,而AD:AE=,在直角△ADE中,利用勾股定理即可求得AE的长度;最后利用切割线定理来求切线BD的长度.【解答】(1)证明:∵OA=OD,∴∠A=∠ADO(等边对等角).又∵∠A+∠CDB=90°(已知),∴∠ADO+∠CDB=90°(等量代换),∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,即BD⊥OD.又∵OD是圆O的半径.∴BD是⊙O切线;(2)解:连接DE,则∠ADE=90°(圆周角定理).∵∠C=90°,∴∠ADE=∠C,∴DE∥BC,又∵D是AC中点,∴DE是△ABC的中位线,∴DE=BC=3,AE=BE.∵AD:AE=,在直角△ADE中,利用勾股定理求得AE=3,则AB=6.∴BD2=AB•BE=6×3=54,∴BD=3.【点评】本题主要考查了切线的判定与性质.其中要证某直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.19.(2015秋•江门校级期末)已知关于x的一元二次方程ax2+2x﹣1=0.(1)若该方程无解,求a的取值范围;(2)当a=1时,求该方程的解.【考点】根的判别式.【分析】(1)根据一元二次方程的定义和根的判别式的意义得到a≠0且△=22﹣4×a×(﹣1)<0,然后求出a的取值范围;(2)把a=1代入,原方程化为x2+2x﹣1=0,根据公式法即可得到结论.【解答】解:(1)∵关于x的一元二次方程ax2+2x﹣1=0无解,∴a≠0且△=22﹣4×a×(﹣1)<0,解得a<﹣1,∴a的取值范围是a<﹣1;(2)当a=1时,原方程化为x2+2x﹣1=0,∴x==﹣1,∴该方程的解为:x1=﹣1+,x2=﹣1﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.20.(2015秋•江门校级期末)如图,在山顶上有一座电视塔,在塔顶B处,测得地面上一点A的俯角α=60°,在塔底C处测得的俯角β=45°,已知BC=60m,求山高CD(精确到1m,≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形△DBA、△ADC,应利用其公共边AD构造等量关系,借助BC=DB﹣DC构造方程关系式,进而可求出答案.【解答】解:设山高CD=x(米),∵∠CAD=∠β=45°,∠BAD=∠α=60°,∠ADB=90°,∴AD=CD=x,BD=AD•tan60°=x.∵BD﹣CD=BC=60,∴x﹣x=60.∴x==30(+1).∴CD=30×(1.732+1)≈82(米).答:山高CD约为82米.【点评】本题考查了学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(2009•陕西)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:这个游戏不公平,游戏所有可能出现的结果如下表:3 4 5 6第二次第一次3 33 34 35 364 43 44 45 465 53 54 55 566 63 64 65 66表中共有16种等可能结果,小于45的两位数共有6种.(5分)∴P(甲获胜)=,P(乙获胜)=.(7分)∵,∴这个游戏不公平.(8分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(2015秋•江门校级期末)如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.【考点】反比例函数综合题.【专题】综合题.【分析】(1)由S△AOC=xy=2,设反比例函数的解析式y=,则k=xy=4;(2)连接AB,过点B作BE⊥x轴,交x轴于E点,通过分割面积法S△AOB=S△AOC+S梯形﹣S△BOE 求得.【解答】解:(1)∵S△AOC=2,∴k=2S△AOC=4;∴y=;(2)连接AB,过点B作BE⊥x轴,S△AOC=S△BOE=2,∴A(a,),B(2a,);S梯形ACEB=(+)×(2a﹣a)=3,∴S△AOB=S△AOC+S梯形ACEB﹣S△BOE=3.【点评】此题重点考查了函数性质的应用和图形的分割转化思想.同学们要熟练掌握这类题型.四、解答题23.(2015•阜新)如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.【考点】作图-旋转变换;弧长的计算.【分析】(1)在平面直角坐标系中画出△ABC,然后根据网格结构找出点B、C的对应点B′,C′的位置,然后顺次连接即可;(2)根据图形即可得出点A的坐标;(3)利用AC的长,然后根据弧长公式进行计算即可求出点B转动到点B′所经过的路程.【解答】解:(1)△AB′C′如图所示;(2)点B′的坐标为(3,2),点C′的坐标为(3,5);(3)点C经过的路径为以点A为圆心,AC为半径的圆弧,路径长即为弧长,∵AC=4,∴弧长为:==2π,即点C经过的路径长为2π.【点评】本题考查了利用旋转变换作图,弧长的计算,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.24.(2015•滕州市校级模拟)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点M的坐标及△ACM的最小周长.【考点】二次函数综合题.【分析】(1)直接将(﹣1,0),代入解析式进而得出答案,再利用配方法求出函数顶点坐标;(2)分别得出AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,进而利用勾股定理的逆定理得出即可;(3)利用轴对称最短路线求法得出M点位置,再求△ACM周长最小值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1 )2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为y=x2﹣x﹣2.y=(x﹣)2﹣,∴顶点D的坐标为:(,﹣);(2)当x=0时y=﹣2,∴C(0,﹣2),OC=2.当y=0时,x2﹣x﹣2=0,解得:x1=﹣1,x2=4,∴B (4,0),∴OA=1,OB=4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)如图所示:连接AM,点A关于对称轴的对称点B,BC交对称轴于点M,根据轴对称性及两点之间线段最短可知,MC+MA的值最小,即△ACM周长最小,设直线BC解析式为:y=kx+d,则,解得:,故直线BC的解析式为:y=x﹣2,当x=时,y=﹣,∴M(,﹣),△ACM最小周长是:AC+AM+MC=AC+BC=+2=3.【点评】此题主要考查了二次函数综合以及利用轴对称求最短路线和勾股定理的逆定理等知识,得出M点位置是解题关键.25.(2015秋•滦县期末)(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD•BC=AP•BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=12,AD=BD=10.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.【考点】圆的综合题.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=6,根据勾股定理可得DE=8,由题可得DC=DE=8,则有BC=10﹣8=2.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t 的值.【解答】(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:证明:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴AD•BC=AP•BP;(3)解:如下图,过点D作DE⊥AB于点E,∵AD=BD=10,AB=12,∴AE=BE=6∴DE==8,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=8,∴BC=10﹣8=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=12﹣t,∴t(12﹣t)=10×2,∴t=2或t=10,∴t的值为2秒或10秒.【点评】本题是对K型相似模型的探究和应用,考查了相似三角形的判定与性质、切线的性质、等腰三角形的性质、勾股定理、等角的余角相等、三角形外角的性质、解一元二次方程等知识,以及运用已有经验解决问题的能力,渗透了特殊到一般的思想.。
九年级(上)期末数学试卷(含答案)
九年级(上)期末数学试卷一.相信你的选择(每小题3分,共30分)1.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B. C.D.2.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个3.下面三视图表示的可能是宜昌四种特产:西瓜、蜜橘、梨、土豆中的()A.西瓜B.蜜橘C.土豆 D.梨4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)6.二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=()A.1 B.﹣1 C.﹣2 D.07.如图,为了测量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是()A.200m B.m C.m D.100m8.(3)(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米10.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米二.试试你的身手(每小题3分,共30分)11.在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=.12.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有桶.13.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C 的北偏东30°方向上,则AB=km.14.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为米.15.如图所示的两个三角形是位似图形,它们的位似中心是点.16.复习课上,张老师念了这样一道题目:已知二次函数y=ax2+bx+c的图象如图所示,“三位同学”分别说出了它的一些结论.“可心”说:①a+b+c<0;②a﹣b+c>1;“童谣”说:③abc>0;④4a﹣2b+c<0;“思宇”说:⑤c﹣a>1.请你根据图找出其中正确结论的序号是.17.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.18.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图象上(如图所示),则6楼房子的价格为元/平方米.19.如图,大楼高30m,远处有一塔BC,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°.则塔高BC为m.20.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)三.挑战你的能力(共40分)21.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.22.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子;(2)求标杆EF的影长.23.如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=,BC=;(2)判断△ABC与△DEF是否相似?并证明你的结论.24.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.25.北京的6月绿树成荫花成海,周末小明约了几个同到户外活动.当他们来到一座小亭子时,一位同学提议测量一下小亭子的高度,大家很高兴.于是设计出了这样一个测量方案:小明在小亭子和一棵小树的正中间点A的位置,观测小亭子顶端B的仰角∠BAC=60°,观测小树尖D的仰角∠DAE=45°.已知小树高DE=2米.请你也参与到这个活动中来,帮他们求出小亭子高BC的长.(结果精确到0.1.,)26.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?参考答案与试题解析一.相信你的选择(每小题3分,共30分)1.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是()A.B. C.D.【考点】平行投影.【分析】平行投影特点:在同一时刻,不同物体的影子同向,且不同物体的物高和影长成比例.【解答】解:A、影子平行,且较高的树的影子长度大于较低的树的影子,正确;B、影子的方向不相同,错误;C、影子的方向不相同,错误;D、相同树高与影子是成正比的,较高的树的影子长度小于较低的树的影子,错误.故选A.【点评】本题考查了平行投影特点.2.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【专题】常规题型.【分析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.【解答】解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x<3时,y随x的增大而减小,正确;综上所述,说法正确的有④共1个.故选A.【点评】本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.下面三视图表示的可能是宜昌四种特产:西瓜、蜜橘、梨、土豆中的()A.西瓜B.蜜橘C.土豆 D.梨【考点】由三视图判断几何体.【专题】图表型.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是蜜橘.故选B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.本题着重应从柱体这个概念去思考.4.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.【考点】锐角三角函数的定义;旋转的性质.【专题】压轴题.【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.【点评】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示).则小鱼上的点(a,b)对应大鱼上的点()A.(﹣2a,﹣2b)B.(﹣a,﹣2b)C.(﹣2b,﹣2a)D.(﹣2a,﹣b)【考点】位似变换;坐标与图形性质.【专题】压轴题.【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,位似变换是以原点为位似中心,相似比为1:2.【解答】解:根据题意图形易得,两个图形的位似比是1:2,∴对应点是(﹣2a,﹣2b).故选A.【点评】本题主要考查位似变换中对应点的坐标的变化规律.6.二次函数y=﹣x2+2x+k的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+k=0的一个解x1=3,另一个解x2=()A.1 B.﹣1 C.﹣2 D.0【考点】抛物线与x轴的交点.【专题】数形结合.【分析】先把x1=3代入关于x的一元二次方程﹣x2+2x+k=0,求出k的值,再根据根与系数的关系即可求出另一个解x2的值.【解答】解:∵把x1=3代入关于x的一元二次方程﹣x2+2x+k=0得,﹣9+6+k=0,解得k=3,∴原方程可化为:﹣x2+2x+3=0,∴x1+x2=3+x2=﹣=2,解得x2=﹣1.故选B.【点评】本题考查的是抛物线与x轴的交点,解答此类题目的关键是熟知抛物线与x轴的交点与一元二次方程根的关系.7.如图,为了测量河的宽度,王芳同学在河岸边相距200m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是()A.200m B.m C.m D.100m【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】根据P在N的北偏西30°的方向,可求得∠P=∠N,再根据三角函数即可求得PM的值.【解答】解:由已知得,∠P=∠N=30°.在直角△PMN中,PM==200.故选A.【点评】本题主要考查了方向角含义,正确记忆三角函数的定义是解决本题的关键.8.如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.【解答】解:由已知,得∠A=30°,∠B=45°,CD=100,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=,∴AD===100在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=100米,∴AB=AD+DB=100+100=100(+1)米.故选D.【点评】本题考查了解直角三角形的应用,解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.9.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米【考点】二次函数的应用.【专题】应用题;压轴题;数形结合.【分析】根据题意可以得到喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,利用配方法或公式法求得其顶点坐标的纵坐标即为本题的答案.【解答】解:∵水在空中划出的曲线是抛物线y=﹣x2+4x,∴喷水的最大高度就是水在空中划出的抛物线y=﹣x2+4x的顶点坐标的纵坐标,∴y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点坐标为:(2,4),∴喷水的最大高度为4米,故选A.【点评】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.10.如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【考点】相似三角形的应用.【专题】应用题.【分析】由已知得△ABP∽△CDP,则根据相似形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故选:B【点评】本题综合考查了平面镜反射和相似形的知识,是一道较为简单的题,考查相似三角形在测量中的应用.二.试试你的身手(每小题3分,共30分)11.在△ABC中,若∠A、∠B满足|cosA﹣|+(sinB﹣)2=0,则∠C=75°.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.【分析】首先根据绝对值与偶次幂具有非负性可知c osA﹣=0,sinB﹣=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C的度数即可.【解答】解:∵|cosA﹣|+(sinB﹣)2=0,∴cosA﹣=0,sinB﹣=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°,故答案为:75°.【点评】此题主要考查了非负数的性质,特殊角的三角函数值,三角形内角和定理,关键是要熟练掌握特殊角的三角函数值.12.若干桶方便面摆放在桌子上.实物图片左边所给的是它的三视图.则这一堆方便面共有6桶.【考点】由三视图判断几何体.【分析】从俯视图中可以看出最底层方便面的个数及摆放的形状,从主视图可以看出每一层方便面的层数和个数,从左视图可看出每一行方便面的层数和个数,从而算出总的个数.【解答】解:三摞方便面是桶数之和为:3+1+2=6.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.13.如图,C、D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C 的北偏东30°方向上,则AB=3km.【考点】解直角三角形的应用-方向角问题.【专题】压轴题.【分析】过C作CE⊥BD于E,根据题意及三角函数可求得CE的长,从而得到AB的长.【解答】解:过C作CE⊥BD于E,则CE=AB.直角△CED中,∠ECD=30°,CD=6,则CE=CD•cos30°=3=AB.∴AB=3(km).【点评】此题的关键是添加辅助线构造直角三角形,再运用三角函数定义求解.14.如图,某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为9米.【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵DE∥AB,DF∥AC,∴△DEF∽△ABC,∴=,即=,∴AC=6×1.5=9米.故答案为:9.【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.15.如图所示的两个三角形是位似图形,它们的位似中心是点P.【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:∵位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,所以位似中心在M、N所在的直线上,因为点P在直线MN上,所以点P为位似中心.故答案为:P.【点评】此题主要考查了位似变换的性质,利用位似图形的位似中心位于对应点连线所在的直线上,点M、N为对应点,得出位似中心在M、N所在的直线上是解题关键.16.复习课上,张老师念了这样一道题目:已知二次函数y=ax2+bx+c的图象如图所示,“三位同学”分别说出了它的一些结论.“可心”说:①a+b+c<0;②a﹣b+c>1;“童谣”说:③abc>0;④4a﹣2b+c<0;“思宇”说:⑤c﹣a>1.请你根据图找出其中正确结论的序号是①②③⑤.【考点】二次函数图象与系数的关系.【分析】由二次函数的图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,再结合图象判断各结论.【解答】解:由图象可得:a<0,b<0,c=1>0,对称轴x=﹣1,①x=1时,a+b+c<0,正确;②x=﹣1时,a﹣b+c>1,正确;③abc>0,正确;④4a﹣2b+c<0,错误,x=﹣2时,4a﹣2b+c>0;⑤x=﹣1时,a﹣b+c>1,又﹣=﹣1,b=2a,c﹣a>1,正确,综上可知其中正确结论的序号是①②③⑤,故答案为:①②③⑤.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点.抛物线与y轴交于(0,c).17.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为22.5米.【考点】相似三角形的应用.【分析】根据题意,河两岸平行,故可根据平行线分线段成比例来解决问题,列出方程,求解即可.【解答】解:如图,设河宽为h,∵AB∥CD由平行线分线段成比例定理得:=,解得:h=22.5,∴河宽为22.5米.故答案为:22.5.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.18.兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y(元/平方米)随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数的图象上(如图所示),则6楼房子的价格为2080元/平方米.【考点】二次函数的应用.【专题】操作型;函数思想.【分析】从图象中找出顶点坐标、对称轴,利用对称性即可解答.【解答】解:由图象可知(4,2200)是抛物线的顶点,∵x=4是对称轴,∴点(2,2080)关于直线x=4的对称点是(6,2080).∴6楼房子的价格为2080元.【点评】要求熟悉二次函数的对称性,并准确的找到所求的点与那个已知点是对称点,此题的关键是能找到顶点是(4,2200).19.如图,大楼高30m,远处有一塔BC,某人在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°.则塔高BC为45m.【考点】解直角三角形的应用-仰角俯角问题.【分析】用AC表示出BE,BC长,根据BC﹣BE=30得方程求AC,进而求得BC长.【解答】解:根据题意得:BC==AC,∵BE=DEtan30°=ACtan30°=AC.∴大楼高AD=BC﹣BE=(﹣)AC=30.解得:AC=15.∴BC=AC=45.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.20.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)【考点】二次函数的应用.【专题】压轴题.【分析】由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E的横坐标即为EF的长.【解答】解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).【点评】以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.三.挑战你的能力(共40分)21.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)ctan30°=;(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.【考点】锐角三角函数的定义;勾股定理.【专题】压轴题;新定义.【分析】(1)根据直角三角形的性质用AC表示出A B及AC的值,再根据锐角三角函数的定义进行解答即可;(2)由于tanA=,所以可设BC=3,AC=4,则AB=5,再根据锐角三角函数的定义进行解答即可.【解答】解:(1)∵Rt△ABC中,α=30°,∴BC=AB,∴AC===AB,∴ctan30°==.故答案为:;(2)∵tanA=,∴设BC=3,AC=4,∴ctanA==.【点评】本题考查的是锐角三角函数的定义及直角三角形的性质,熟知锐角三角函数的定义是解答此题的关键.22.如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM=1.6 m,DN=0.6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子;(2)求标杆EF的影长.【考点】相似三角形的应用.【专题】计算题;作图题.【分析】解此题要借助于相似三角形的性质,相似三角形的对应边成比例,还要注意数形结合思想与方程思想的应用.【解答】解:(1)如右图.(2)过O作OH⊥MG于点H,设DH=xm,由AB∥CD∥OH得,即,解得x=1.2.设FG=ym,同理得,即,解得y=0.4.所以EF的影长为0.4m.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了方程的思想.23.如图所示,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°,BC=2;(2)判断△ABC与△DEF是否相似?并证明你的结论.【考点】相似三角形的判定;勾股定理.【专题】压轴题;网格型.【分析】(1)根据已知条件,结合网格可以求出∠ABC的度数,根据,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC与△DEF相似.【解答】(1)解:∠ABC=90°+45°=135°,BC===2;故答案为:135°;2.(2)△ABC∽△DEF.证明:∵在4×4的正方形方格中,∠ABC=135°,∠DEF=90°+45°=135°,∴∠ABC=∠DEF.∵AB=2,BC=2,FE=2,DE=∴==,==.∴△ABC∽△DEF.【点评】此题主要考查学生对勾股定理和相似三角形的判定的理解和掌握,解答此题的关键是认真观察图形,得出两个三角形角和角,边和边的关系.24.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.【考点】待定系数法求二次函数解析式;二次函数图象上点的坐标特征.【分析】(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.【解答】解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).【点评】本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.25.北京的6月绿树成荫花成海,周末小明约了几个同到户外活动.当他们来到一座小亭子时,一位同学提议测量一下小亭子的高度,大家很高兴.于是设计出了这样一个测量方案:小明在小亭子和一棵小树的正中间点A的位置,观测小亭子顶端B的仰角∠BAC=60°,观测小树尖D的仰角∠DAE=45°.已知小树高DE=2米.请你也参与到这个活动中来,帮他们求出小亭子高BC的长.(结果精确到0.1.,)【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题.【分析】在Rt△ADE中,由小树的高度以及∠DAE的大小,可求解AE的长,即AC的长,进而再在Rt△ABC中,由边角关系∠BAC=60°特殊角,即可求解亭子高度BC的长.【解答】解:根据题意得:∠C=∠E=90°.在Rt△ADE中,∠DAE=45°,∠E=90°,∴∠D=∠DAE=45°.∵DE=2,∴AE=DE=2.∵A为CE的中点,∴AC=AE=2.(2分)在Rt△ACB中,∠BAC=60°,∠C=90°,∴.∴BC=.∴BC≈2×1.73≈3.5.答:小亭子高约为3.5米.【点评】本题主要考查了解直角三角形的问题,又涉及仰角、俯角的实际应用,其中重点还是直角三角形的求解问题.26.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x 为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?【考点】二次函数的应用.【专题】销售问题.【分析】(1)销售利润=每件商品的利润×(180﹣10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可;(3)让(1)中的y=1920求得合适的x的解即可.【解答】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;(3)1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,∴30+2=32(元)∴售价为32元时,利润为1920元.【点评】考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.。
【压轴卷】初三数学上期末试题(含答案)
【压轴卷】初三数学上期末试题(含答案)一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( )A .2023B .2021C .2020D .20192.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3π C .2π-12D .123.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >44.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( ) A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=5.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( ) A .0,4B .-3,5C .-2,4D .-3,16.下列诗句所描述的事件中,是不可能事件的是( ) A .黄河入海流 B .锄禾日当午 C .大漠孤烟直 D .手可摘星辰7.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°8.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >29.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 210.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( ) A .﹣3B .﹣1C .1D .311.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150二、填空题13.抛物线y =(x ﹣1)2﹣2与y 轴的交点坐标是_____.14.如图,AB 为O e 的直径,弦CD AB ⊥于点E ,已知8CD =,3OE =,则O e 的半径为______.15.如图,已知射线BP BA ⊥,点O 从B 点出发,以每秒1个单位长度沿射线BA 向右运动;同时射线BP 绕点B 顺时针旋转一周,当射线BP 停止运动时,点O 随之停止运动.以O 为圆心,1个单位长度为半径画圆,若运动两秒后,射线BP 与O e 恰好有且只有一个公共点,则射线BP 旋转的速度为每秒______度.16.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.17.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.18.一元二次方程22x 20-=的解是______.19.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则AB =__________.20.若1x 、2x 是方程22x 2mx m m 10-+--=的两个实数根,且x 1+x 2=1-x 1⋅x 2,则 m 的值为________.三、解答题21.4张相同的卡片上分别写有数字1、2、3、4,将卡片背面朝上,洗匀后从中任意抽取1张,将卡片上的数字作为被减数;一只不透明的袋子中装有标号为1、2、3的3个小球,这些球除标号外都相同,搅匀后从中任意摸出1个球,将摸到的球的标号作为减数.(1)求这两个数的差为0的概率;(2)游戏规则规定:当抽到的这两个数的差为非负数时,甲获胜;否则,乙获胜.这样的规则公平吗?如果不公平,请设计一个公平的规则,并说明理由.22.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?23.关于x的一元二次方程x2﹣2x﹣(n﹣1)=0有两个不相等的实数根.(1)求n的取值范围;(2)若n为取值范围内的最小整数,求此方程的根.24.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?25.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】 【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解. 【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A . 【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.2.A解析:A 【解析】 【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD . 【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE , ∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A. 【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.3.D解析:D 【解析】 【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x <4时,y 1>y 2,从而得到当y 2>y 1时,自变量x 的取值范围. 【详解】∵当x=0时,y 1=y 2=0;当x=4时,y 1=y 2=5;∴直线与抛物线的交点为(-1,0)和(4,5), 而-1<x <4时,y 1>y 2,∴当y 2>y 1时,自变量x 的取值范围是x <-1或x >4. 故选D . 【点睛】本题考查了二次函数与不等式:对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.4.B解析:B 【解析】 【分析】根据平均年增长率即可解题. 【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B. 【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键.5.B解析:B 【解析】 【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+= ∴整理方程即得:160a c += ∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --= 解得:13x =-,25x = 故选:B . 【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.6.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.D解析:D【解析】【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.9.D解析:D【解析】【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.故选D.【点睛】本题考查了抛物线的形状与a的关系,比较简单.10.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.11.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得A CO∠'的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.12.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.二、填空题13.(0﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2计算即可求得抛物线与y轴的交点坐标【详解】解:将x=0代入y=(x﹣1)2﹣2得y=﹣1所以抛物线与y轴的交点坐标是(0﹣1)故答案为:(0解析:(0,﹣1)【解析】【分析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.14.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB 于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O 的半径为5故答案为:解析:5 【解析】 【分析】连接OD ,根据垂径定理求出DE ,根据勾股定理求出OD 即可. 【详解】 解:连接OD ,∵CD ⊥AB 于点E , ∴DE=CE=12CD= 12×8=4,∠OED=90°, 由勾股定理得:2222345OE DE +=+=, 即⊙O 的半径为5. 故答案为:5. 【点睛】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE 的长是解此题的关键.15.30或60【解析】【分析】射线与恰好有且只有一个公共点就是射线与相切分两种情况画出图形利用圆的切线的性质和30°角的直角三角形的性质求出旋转角然后根据旋转速度=旋转的度数÷时间即得答案【详解】解:如解析:30或60 【解析】 【分析】射线BP 与O e 恰好有且只有一个公共点就是射线BP 与O e 相切,分两种情况画出图形,利用圆的切线的性质和30°角的直角三角形的性质求出旋转角,然后根据旋转速度=旋转的度数÷时间即得答案. 【详解】解:如图1,当射线BP 与O e 在射线BA 上方相切时,符合题意,设切点为C ,连接OC ,则OC ⊥BP ,于是,在直角△BOC 中,∵BO =2,OC =1,∴∠OBC =30°,∴∠1=60°, 此时射线BP 旋转的速度为每秒60°÷2=30°;如图2,当射线BP与Oe在射线BA下方相切时,也符合题意,设切点为D,连接OD,则OD⊥BP,于是,在直角△BOD中,∵BO=2,OD=1,∴∠OBD=30°,∴∠MBP=120°,此时射线BP旋转的速度为每秒120°÷2=60°;故答案为:30或60.【点睛】本题考查了圆的切线的性质、30°角的直角三角形的性质和旋转的有关概念,正确理解题意、熟练掌握基本知识是解题的关键.16.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n=90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90【解析】【分析】根据弧长公式列式计算,得到答案.【详解】设这个扇形的圆心角为n°,则6180nπ⋅=3π,解得,n=90,故答案为:90.【点睛】考核知识点: 弧长的计算.熟记公式是关键.17.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线可得△E′C B是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE旋转的度数【详解】解:∵三角板是两块大小解析:30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.18.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x1=1,x2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.19.【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍可以求得∠AOB的度数然后根据勾股定理即可求得AB的长详解:连接ADAEOAOB∵⊙O的半径为2△ABC内接于⊙O∠ACB=13解析:【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB 的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O 的半径为2,△ABC 内接于⊙O ,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.1【解析】【分析】【详解】若x1x2是方程x2-2mx+m2-m-1=0的两个实数根;∴x 1+x2=2m ;x1·x2=m2−m −1∵x1+x2=1-x1x2∴2m=1-(m2−m −1)解得:m1=- 解析:1【解析】【分析】【详解】若x 1,x 2是方程x 2-2mx+m 2-m-1=0的两个实数根;∴x 1+x 2=2m ;x 1·x 2= m 2−m−1, ∵x 1+x 2=1-x 1x 2,∴2m=1-(m 2−m−1),解得:m 1=-2,m 2=1.又∵一元二次方程有实数根时,△ 0≥,∴22(2)4(1)0m m m ----≥,解得m≥-1,∴m=1.故答案为1.【点睛】(1)若方程()20?0ax bx c a ++=≠的两根是12x x 、,则1212bc x x x x a a+=-⋅=,,这一关系叫做一元二次方程根与系数的关系;(2)使用一元二次方程根与系数关系解题的前提条件是方程要有实数根,即各项系数的取值必须满足根的判别式△=24b ac -0≥.三、解答题21.(1)P (两个数的差为0)14=;(2)游戏不公平,设计规则:当抽到的这两个数的差为正数时,甲获胜;否则,乙获胜,理由见解析.【解析】【分析】(1)利用列表法列举出所有可能,进而求出概率;(2)利用概率公式进而得出甲、乙获胜的概率即可得出答案.【详解】(1)用列表法表示为:∴P(两个数的差为0)31 124 ==;(2)由列表法或树状图可知:共有12种等可能的结果,其中“两个数的差为非负数”的情况有9种,∴P(两个数的差为非负数)93124==;其中“两个数的差为负数”的情况有3种,∴P(两个数的差为负数)31124==,∴游戏不公平.设计规则:当抽到的这两个数的差为正数时,甲获胜;否则,乙获胜.因为P(两个数的差为正数)61122==,∴P(两个数的差为非正数)61122==.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)20%;(2)每千克应涨价5元.【解析】【分析】(1)设每次下降的百分率为x,根据相等关系列出方程,可求每次下降的百分率;(2)设涨价y元(0<y≤8),根据总盈余=每千克盈余×数量,可列方程,可求解.【详解】解:(1)设每次下降的百分率为x根据题意得:50(1﹣x)2=32解得:x1=0.2,x2=1.8(不合题意舍去)答:每次下降20%(2)设涨价y元(0<y≤8)6000=(10+y )(500﹣20y )解得:y 1=5,y 2=10(不合题意舍去)答:每千克应涨价5元.【点睛】此题主要考查了一元二次方程应用,关键是根据题意找到蕴含的相等关系,列出方程,解答即可.23.(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.24.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.【解析】【分析】(1)待定系数法列方程组求一次函数解析式.(2)列一元二次方程求解.(3)总利润=单件利润⨯销售量:w =(x -20)(-2x +80),得到二次函数,先配方,在定义域上求最值.【详解】(1)设y 与x 的函数关系式为y =kx +b .把(22,36)与(24,32)代入,得22362432.k b k b +=⎧⎨+=⎩解得280. kb=-⎧⎨=⎩∴y=-2x+80(20≤x≤28).(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x元,根据题意,得(x-20)y=150,即(x-20)(-2x+80)=150.解得x1=25,x2=35(舍去).答:每本纪念册的销售单价是25元.(3)由题意,可得w=(x-20)(-2x+80)=-2(x-30)2+200.∵售价不低于20元且不高于28元,当x<30时,y随x的增大而增大,∴当x=28时,w最大=-2×(28-30)2+200=192(元).答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.25.(1)证明见解析;(2)29【解析】【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD ⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【详解】解:(1)连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴【点睛】本题考查切线的判定.。
初三九年级数学上册上册数学压轴题试卷(word版含答案)
初三九年级数学上册上册数学压轴题试卷(word 版含答案)一、压轴题1.如图1,△ABC 中,AB=AC=4,∠BAC=100,D 是BC 的中点.小明对图1进行了如下探究:在线段AD 上任取一点E ,连接EB .将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ,连接BF ,小明发现:随着点E 在线段AD 上位置的变化,点F 的位置也在变化,点F 可能在直线AD 的左侧,也可能在直线AD 上,还可能在直线AD 的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F 在直线AD 上时,连接CF ,猜想直线CF 与直线AB 的位置关系,并说明理由.(2)若点F 落在直线AD 的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E 在线段AD 上运动时,直接写出AF 的最小值.2.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围. 3.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由.4.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.5.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A CB →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.6.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.7.如图,已知AB 是⊙O 的直径,AB =8,点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,连结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F .(1)若ED =BE ,求∠F 的度数:(2)设线段OC =a ,求线段BE 和EF 的长(用含a 的代数式表示); (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 8.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径. 9.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.10.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点. (1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.11.如图,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,其中点A 坐标为(1,0),与y 轴交于点C (0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC ,点Q 为x 轴下方抛物线上任意一点,点D 是抛物线对称轴与x 轴的交点,直线AQ 、BQ 分别交抛物线的对称轴于点M 、N .请问DM +DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标. 12.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GDGO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)//CF AB ,证明见解析;(2)成立,证明见解析;(3)AF 的最小值为4 【解析】 【分析】(1)结合题意,根据旋转的知识,得BE EF =,80BEF ∠= ,再根据三角形内角和性质,得50BFD ∠=;结合AB=AC=4,D 是BC 的中点,推导得CFD BAD ∠=∠,即可完成解题;(2)由(1)可知:EB=EF=EC ,得到B ,F ,C 三点共圆,点E 为圆心,得∠BCF=12∠BEF=40°,从而计算得ABC BCF ∠=∠,完成求解; (3)由(1)和(2)知,CF ∥AB ,因此得点F 的运动路径在CF 上;故当点E 与点A 重合时,AF 最小,从而完成求解. 【详解】(1)∵将线段EB 绕点E 逆时针旋转80°,点B 的对应点是点F ∴BE EF =,80BEF ∠=∴180502BEFEBF BFE -∠∠=∠== ,即50BFD ∠=∵AB=AC=4,D 是BC 的中点 ∴BD DC =,AD BC ⊥∴BF CF =,ABD ACD △≌△ ∴FBD FCD △≌△,1005022BAC BAD CAD ∠∠=∠=== ∴50BFD CFD ∠=∠= ∴50CFD BAD ∠=∠= ∴//CF AB(2)如图,连接BE 、EC 、BF 、EF由(1)可知:EB=EF=EC∴B ,F ,C 三点共圆,点E 为圆心 ∴∠BCF=12∠BEF=40° ∵50BAD ∠=,AD BC ⊥ ∴9040ABC BAD ∠=-∠= ∴ABC BCF ∠=∠∴//CF AB ,(1)中的结论仍然成立 (3)由(1)和(2)知,//CF AB ∴点F 的运动路径在CF 上 如图,作AM ⊥CF 于点M∵8090BEF ∠=<∴点E 在线段AD 上运动时,点B 旋转不到点M 的位置 ∴故当点E 与点A 重合时,AF 最小 此时AF 1=AB=AC=4,即AF 的最小值为4.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.2.(1)2+;(2)610t ≤≤-或1016-≤≤-3)325m ≤-或0m ≥ 【解析】 【分析】 (1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,根据只有一个交点可求出b ,再联立求出P 的坐标,从而判断出PQ 平分∠AOB ,再利用直线1l 表达式求A 、B 坐标证明OA=OB ,从而证出PQ 即为最小距离,最后利用勾股定理计算即可;(2)过点T 作TH ⊥直线2l ,可判断出T 上的点到直线2l的最大距离为TH +后根据最大距离的范围求出TH 的范围,从而得到FT 的范围,根据范围建立不等式组求解即可;(3)把点P 坐标带入表达式,化简得到关于a 、b 的等式,从而推出直线3l 的表达式,根据点E 的坐标可确定点E 所在直线表达式,再根据最小距离为0,推出直线3l 一定与图形K 相交,从而分两种情况画图求解即可. 【详解】解:(1)作直线:y x b =-+平行于直线1l ,且与H 相交于点P ,连接PO 并延长交直线1l 于点Q ,作PM ⊥x 轴,∵ 直线:y x b =-+与H 相交于点P , ∴2x b x-+=,即220x bx -+=,只有一个解, ∴24120b ∆=-⨯⨯=,解得b =∴y x =-+联立2y x y x ⎧=-+⎪⎨=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩P ,∴PM OM ==P 在第一、三象限夹角的角平分线上,即PQ 平分∠AOB ,∴Rt POM 为等腰直角三角形,且OP=2, ∵直线1l :2y x =--,∴当0y =时,2x =-,当0x =时,2y =-, ∴A(-2,0),B(0,-2), ∴OA=OB=2,又∵OQ 平分∠AOB , ∴OQ ⊥AB ,即PQ ⊥AB ,∴PQ 即为H 上的点到直线1l 的最小距离, ∵OA=OB ,∴45OAB OBA AOQ ∠=∠=∠=︒, ∴AQ=OQ ,∴在Rt AOQ 中,OA=2,则OQ=2,∴22PQ OP OQ =+=+,即()1,22min D H l =+;(2)由题过点T 作TH ⊥直线2l ,则T 上的点到直线2l 的最大距离为3TH + ∵()max 243,63ABC l D V ≤≤ 即43363TH ≤ ∴3353TH ≤≤ 由题60HFO ∠=︒,则3FT =, ∴610FT ≤≤, 又∵3FT t =,∴610t ≤≤,解得610t ≤≤1016-≤≤-; (3)∵直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,∴把点P 代入得:2111211184184k k a b c a b c k k --⎛⎫+-+=++ ⎪--⎝⎭, 整理得:()()2416828162828a b c k a b c a b c k a b c +-+--+-=++---,∴2416828281628a b c a b c a b c a b c +-+=++⎧⎨--+-=---⎩,化简得224801a b c c +-+=⎧⎨=⎩,∴182b a =-+, 又∵点(),D a b 恒在直线3l 上, ∴直线3l 的表达式为:182y x =-+, ∵()min 3,0D K l =,∴直线3l 一定与以点E 为顶点,原点为对角线交点的正方形图形相交, ∵(),28E m m +,∴点E 一定在直线28y x =+上运动,情形一:如图,当点E 运动到所对顶点F 在直线3l 上时,由题可知E 、F 关于原点对称, ∵(),28E m m +, ∴(),28m m F ---, 把点F 代入182y x =-+得:18282m m +=--,解得:325m =-, ∵当点E 沿直线向上运动时,对角线变短,正方形变小,无交点, ∴点E 要沿直线向下运动,即325m ≤-;情形二:如图,当点E运动到直线3l上时,把点E代入182y x=-+得:18282m m-+=+,解得:0m=,∵当点E沿直线向下运动时,对角线变短,正方形变小,无交点,∴点E要沿直线向上运动,即0m≥,综上所述,325m≤-或0m≥.【点睛】本题考查新型定义题,弄清题目含义,正确画出图形是解题的关键.3.(1)作图见解析;(2)49π.【解析】试题分析:(1)作出∠B的角平分线BD,再过X作OX⊥AB,交BD于点O,则O点即为⊙O的圆心;(2)由于⊙P与△ABC哪两条边相切不能确定,故应分⊙P与Rt△ABC的边AB和BC相切;⊙P与Rt△ABC的边AB和AC相切时;⊙P与Rt△ABC的边BC和AC相切时三种情况进行讨论.试题解析:(1)如图所示:①以B为圆心,以任意长为半径画圆,分别交BC、AB于点G、H;②分别以G、H为圆心,以大于23GH为半径画圆,两圆相交于D,连接BD;③过X作OX⊥AB,交直线BD于点O,则点O即为⊙O的圆心.(2)①当⊙P与Rt△ABC的边AB和BC相切时,由角平分线的性质可知,动点P是∠ABC的平分线BM上的点,如图1,在∠ABC的平分线BM上任意确定点P1(不为∠ABC 的顶点)∵OX=BOsin∠ABM,P1Z=BPsin∠ABM,当BP1>BO时,P1Z>OX即P与B的距离越大,⊙P 的面积越大,这时,BM与AC的交点P是符合题意的、BP长度最大的点;如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上,∴以P为圆心、PC为半径作圆,则⊙P与CB相切于C,与边AB相切于E,即这时⊙P是符合题意的圆,时⊙P的面积就是S的最大值,∵AC=1,BC=2,∴AB=5,设PC=x,则PA=AC-PC=1-x在直角△APE中,PA2=PE2+AE2,∴(1-x)2=x2+(5-2)2,∴x=25-4;②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则(2-y)2=y2+5)2,∴y=512-; ③如图4,同理可得,当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF=z ,∵△APF ∽△PBE ,∴PF :BE=AF :PE ,∴, ∴z=49. 由①、②、③可知,49>512->∴z >y >x , ∴⊙P 的面积S 的最大值为π.考点:1. 切线的性质;2.角平分线的性质;3.勾股定理;4.作图—复杂作图. 4.(1)(C 8,43;(2)t=18s ;(3)t 1513=【解析】【分析】(1)如图1中,作CH ⊥AB 于H .解直角三角形求出CH ,OH 即可.(2)如图1﹣1中,设⊙M 与直线BC 相切于点N ,作MH ⊥AB 于H .求出OH 的长即可解决问题.(3)设M (﹣5+t ,3),EF 12=AB =8,由∠EMF =90°,可得EM 2+MF 2=EF 2,由此构建方程即可解决问题.【详解】(1)如图1中,作CH ⊥AB 于H .∵A(20,0),AB=16,∴OA=20,OB=4.在Rt△ABC中,∵∠ACB=90°,AB=16,∠CAB=30°,∴BC12=AB=8,CH=BC•sin60°=43,BH=BC•cos60°=4,∴OH=8,∴C (8,43).(2)如图1﹣1中,设⊙M与直线BC相切于点N,作MH⊥AB于H.∵MN=MH3MN⊥BC,MH⊥BA,∴∠MBH=∠MBN=30°,∴BH3==9,∴点M的运动路径的长为5+4+9=18,∴当点M在∠ABC的内部且⊙M与直线BC相切时,t的值为18s.(3)∵C(8,3B(4,0),A(20,0).∵CE=EB,CF=FA,∴E(6,3),F(14,3),设M(﹣5+t,3),EF12=AB=8.∵∠EMF=90°,∴EM2+MF2=EF2,∴(6+5﹣t)2+32+(14+5﹣t)2+32=82,整理得:t2﹣30t+212=0,解得:t=1513【点睛】本题是圆的综合题,考查了平移变换,解直角三角形,切线的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.5.(1)7-t(2)()()()22904;25{1674725t tSt tππ<≤=-<<(3)516,23t t==【解析】【分析】(1)先判断出点P在BC上,即可得出结论;(2)分点P在边AC和BC上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论.【详解】(1)∵AC =4,BC =3,∴AC +BC =7.∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t .故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB .∵∠A =∠A ,∴△APH ∽△ACB ,∴PH AP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<); (3)分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,由(2)知,⊙P 的半径PH 35=t . ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边BC 相切,∴PC =PH .∵PC =4﹣t ,∴4﹣t 35=t ,∴t 52=秒; ②当点P 在边BC 上时,即:4<t <7,由(2)知,⊙P 的半径PG 45=(7﹣t ). ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边AC 相切,∴PC =PG .∵PC =t ﹣4,∴t ﹣445=(7﹣t ),∴t 163=秒. 综上所述:在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,t 的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键.6.(1)详见解析;(2)45【解析】【分析】(1)通过证明OE∥AD得出结论OE⊥CD,从而证明CD是⊙0的切线;(2)在Rt△ADE中,求出AD,DE,利用勾股定理即可解决问题.【详解】(1)证明:∵AE平分∠DAC,∴∠CAE=∠DAE.∵OA=OE,∴∠OEA=∠OAE.∴∠DAE=∠AEO,.∴AD∥OE.∵AD⊥CD,∴OE⊥CD.∴CD是⊙O的切线.(2)解:连接BF交OE于K.∵AB是直径,∴∠AFB=90°,∵AB=10,AF=6,∴BF228,106∵OE∥AD,∴∠OKB=∠AFB=90°,∴OE ⊥BF ,∴FK =BK =4,∵OA =OB ,KF =KB ,∴OK =12AF =3, ∴EK =OE ﹣OK =2,∵∠D =∠DFK =∠FKE =90°,∴四边形DFKE 是矩形,∴DE =KF =4,DF =EK =2,∴AD =AF+DF =8,在Rt △ADE 中,AE =22AD DE +=2284+=45 .【点睛】本题考查切线的判定和性质,勾股定理,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.7.(1)30°;(2)EF=;(3)CO 的长为或时,△PEB 为等腰三角形.【解析】试题分析:(1)利用圆周角定理以及三角形内角和定理得出即可;(2)首先证明△HBO ≌△COD (AAS ),进而利用△COD ∽△CBF ,得出比例式求出EF 的长;(3)分别利用①当PB=PE ,不合题意舍去;②当BE=EP ,③当BE=BP ,求出即可. 试题解析:(1)如图1,连接EO ,∵∴∠BOE=∠EOD ,∵DO ∥BF ,∴∠DOE=∠BEO ,∵BO=EO ,∴∠OBE=∠OEB ,∴∠OBE=∠OEB=∠BOE=60°,∵CF ⊥AB ,∴∠FCB=90°,∴∠F=30°;(2)如图1,作HO⊥BE,垂足为H,∵在△HBO和△COD中,∴△HBO≌△COD(AAS),∴CO=BH=a,∴BE=2a,∵DO∥BF,∴△COD∽△CBF,∴∴,∴EF=;(3)∵∠COD=∠OBE,∠OBE=∠OEB,∠DOE=∠OEB,∴∠COD=∠DOE,∴C关于直线OD的对称点为P在线段OE上,若△PEB为等腰三角形,设CO=x,∴OP=OC=x,则PE=EO-OP=4-x,由(2)得:BE=2x,①当PB=PE,不合题意舍去;②当BE=EP,2x=4-x,解得:x=,③当BE=BP,作BM⊥EO,垂足为M,∴EM=PE=,∴∠OEB=∠COD,∠BME=∠DCO=90°,∴△BEM∽△DOC,∴,∴,整理得:x2+x-4=0,解得:x=(负数舍去),综上所述:当CO的长为或时,△PEB为等腰三角形.考点:圆的综合题.8.(1)PA13O的半径为393;(2)见解析;(3)⊙O的半径为2或477【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=12AB=2,AH=AB•sin60°=3∴HP=BP﹣BH=1,∴在Rt△AHP中,AP22AH HP+13∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=APsin60︒133=393,∴⊙O39,即PA13⊙O的半径为393;(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=12AB=2;②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF=5,在Rt△BFE中,BE,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r=5;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ =DN =23, 设QE =x ,则PE =23﹣x ,在Rt △AEQ 中,∠QAE =∠BAD ﹣BAE =30°, ∴AE =2QE =2x ,∵PE ∥DN ,∴△BPE ∽△BND ,∴PE DN =BP BN , ∴2323x -=BP 10, ∴BP =10﹣533x , 在Rt △ABE 与Rt △BPE 中,AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣53x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3, ∴AE =23,∴BE =22AB AE +=224(23)+=27, ∴r =7,∴⊙O 的半径为2或47或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.9.(1)15°;(2)见解析;(3)16 【解析】 【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=. 【详解】 (1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠= 453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥ //OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠= 290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E. 设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠=180NBM MBN '︒∠+∠= A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==, NE MM '⊥于点E.11()22ME EM MM a b ''∴===+, ()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=,16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键. 10.(1)2y x 2x 3=-++;(2)3(1,)2;(3)14m <≤或78m = 【解析】 【分析】(1)根据题意可得出点B 的坐标,将点B 、C 的坐标分别代入二次函数解析式,求出b 、c 的值即可.(2)在对称轴上取一点E ,连接EC 、EB 、EA ,要使得EAB 的周长最小,即要使EB+EA 的值最小,即要使EA+EC 的值最小,当点C 、E 、A 三点共线时,EA+EC 最小,求出直线AC 的解析式,最后求出直线AC 与对称轴的交点坐标即可.(3)求出直线CD 以及射线BD 的解析式,即可得出平移后顶点的坐标,写出二次函数顶点式解析式,分类讨论,如图:①当抛物线经过点B 时,将点B 的坐标代入二次函数解析式,求出m 的值,写出m 的范围即可;②当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得关于x 的一元二次方程,要使平移后的抛物线与射线BD 只有一个公共点,即要使一元二次方程有两个相等的实数根,即0∆=,列式求出m 的值即可. 【详解】 (1)矩形OABC ,∴OC=AB ,A(2,0),C(0,3),∴OA=2,OC=3, ∴B(2,3),将点B ,C 的坐标分别代入二次函数解析式,4233b c c -++=⎧⎨=⎩, ∴23b c =⎧⎨=⎩, ∴抛物线解析式为:2y x 2x 3=-++.(2)如图,在对称轴上取一点E,连接EC 、EB 、EA ,当点C 、E 、A 三点共线时,EA+EC 最小,即EAB 的周长最小, 设直线解析式为:y =kx +b , 将点A 、C 的坐标代入可得:203k b b +=⎧⎨=⎩, 解得:323k b ⎧=-⎪⎨⎪=⎩,∴一次函数解析式为:3=32y x -+. 2y x 2x 3=-++=2(1)4x -+-, ∴D(1,4),令x =1,y =332-+=32. ∴E(1,32).(3)设直线CD 解析式为:y =kx +b , C(0,3),D(1,4),∴43k b b +=⎧⎨=⎩,解得13k b =⎧⎨=⎩, ∴直线CD 解析式为:y =x +3,同理求出射线BD 的解析式为:y =-x +5(x ≤2), 设平移后的顶点坐标为(m ,m +3), 则抛物线解析式为:y =-(x -m )2+m +3, ①如图,当抛物线经过点B 时, -(2-m )2+m +3=3, 解得m =1或4,∴当1<m ≤4时, 平移后的抛物线与射线只有一个公共点;②如图,当抛物线与射线恰好只有一个公共点H 时,将抛物线解析式与射线解析式联立可得:-(x -m )2+m +3=-x +5, 即x 2-(2m +1)x +m 2-m +2=0,要使平移后的抛物线与射线BD 只有一个公共点, 即要使一元二次方程有两个相等的实数根,∴22[(21)]4(2)0m m m ∆=-+⨯-+=-,解得78m =. 综上所述,14m <≤或78m =时,平移后的抛物线与射线BD 只有一个公共点.【点睛】本题为二次函数、一次函数与几何、一元二次方程方程综合题,一般作为压轴题,主要考查了图形的轴对称、二次函数的平移、函数解析式的求解以及二次函数与一元二次方程的关系,本题关键在于:①将三角形的周长最小问题转化为两线段之和最小问题,利用轴对称的性质解题;②将二次函数与一次函数的交点个数问题转化为一元二次方程实数根的个数问题.11.(1)223y x x =+-;(2)是,定值为8;(3)1557,416⎛⎫-⎪⎝⎭或939,416⎛⎫-- ⎪⎝⎭【解析】 【分析】(1)把点A 、C 坐标代入抛物线解析式即可求得b 、c 的值.(2)设点Q 横坐标为t ,用t 表示直线AQ 、BN 的解析式,把x =1-分别代入即求得点M 、N 的纵坐标,再求DM 、DN 的长,即得到DM +DN 为定值.(3)点P 可以在x 轴上方或下方,需分类讨论.①若点P 在x 轴下方,延长AP 到H ,使AH =AB 构造等腰△ABH ,作BH 中点G ,即有∠PAB =2∠BAG =2∠ACO ,利用∠ACO 的三角函数值,求BG 、BH 的长,进而求得H 的坐标,求得直线AH 的解析式后与抛物线解析式联立,即求出点P 坐标.②若点P 在x 轴上方,根据对称性,AP 一定经过点H 关于x 轴的对称点H ',求得直线AH '的解析式后与抛物线解析式联立,即求出点P 坐标. 【详解】解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,-3), ∴10003b c c ++=⎧⎨++=-⎩解得:23b c =⎧⎨=-⎩,∴抛物线的函数表达式为y =x 2+2x -3. (2)结论:DM +DN 为定值.理由:∵抛物线y =x 2+2x -3的对称轴为:直线x =-1, ∴D (﹣1,0),x M =x N =﹣1, 设Q (t ,t 2+2t ﹣3)(﹣3<t <1), 设直线AQ 解析式为y =dx +e ∴223d e dt e t t +=⎧⎨+=+-⎩解得:33d t e t =+⎧⎨=--⎩,∴直线AQ :y =(t +3)x ﹣t ﹣3,当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6, ∴DM =0﹣(﹣2t ﹣6)=2t +6, 设直线BQ 解析式为y =mx +n ,∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩, ∴直线BQ :y =(t ﹣1)x +3t ﹣3,当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2, ∴DN =0﹣(2t ﹣2)=﹣2t +2,∴DM +DN =2t +6+(﹣2t +2)=8,为定值.(3)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I .∵当x 2+2x ﹣3=0,解得:x 1=﹣3,x 2=1, ∴B (﹣3,0),∵A (1,0),C (0,﹣3),∴OA =1,OC =3,AC 221310+=AB =4, ∴Rt △AOC 中,sin ∠ACO =010A AC =,cos ∠ACO =310OC AC =, ∵AB =AH ,G 为BH 中点, ∴AG ⊥BH ,BG =GH ,∴∠BAG =∠HAG ,即∠PAB =2∠BAG , ∵∠PAB =2∠ACO , ∴∠BAG =∠ACO ,∴Rt △ABG 中,∠AGB =90°,sin ∠BAG =1010BG AB =, ∴BG=10210AB =, ∴BH =2BG =410, ∵∠HBI +∠ABG =∠ABG +∠BAG =90°, ∴∠HBI =∠BAG =∠ACO , ∴Rt △BHI 中,∠BIH =90°,sin ∠HBI =HI BH =10,cos ∠HBI =310BI BH =, ∴HI =1010BH =43,BI =31010BH =125,∴x H =411355-+=-,y H =125-,即1112,55H ⎛⎫-- ⎪⎝⎭,设直线AH 解析式为y =kx +a ,∴0111255k a k a +=⎧⎪⎨-+=-⎪⎩,解得:3434k a ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线AH :3344y x =-, ∵2334423y x y x x ⎧=-⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或943916x y ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴939,416P ⎛⎫-- ⎪⎝⎭. ②若点P 在x 轴上方,如图2,在AP 上截取AH '=AH ,则H '与H 关于x 轴对称.∴1112,55H ⎛'⎫-⎪⎝⎭, 设直线AH '解析式为y k x a ='+',∴0111255k a k a +='''⎧-'⎪⎨+=⎪⎩,解得:3434k a ⎧=-⎪⎪⎨''⎪=⎪⎩, ∴直线AH ':3344y x =-+, ∵2334423y x y x x ⎧=-+⎪⎨⎪=+-⎩解得:10x y =⎧⎨=⎩(即点A )或1545716x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1557,416P ⎛⎫- ⎪⎝⎭. 综上所述,点P 的坐标为939,416⎛⎫-- ⎪⎝⎭或1557,416⎛⎫- ⎪⎝⎭. 【点睛】本题属于二次函数综合题,考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.运用到分类讨论的数学思想,理清线段之间的关系为解题关键.12.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 992m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G 在线段BC 上,只要证明是等腰直角三角形,即可得到直线GO 与抛物线的交点即为所求的点P .利用方程组即可解决问题. (3)如图2中,将绕点O 顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y 得到,由,推出,,M 、N 关于直线对称,所以,设,则,利用勾股定理求出a 以及MN的长,再根据根与系数关系,列出方程即可解决问题.【详解】(1), ,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD、BD,对称轴交x轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,, ,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则, 设平移后的抛物线的解析式为,由消去y得到,,,∴M、N关于直线对称,,设,则,,(负根已经舍弃),,,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.。
最新初三九年级上册上册数学压轴题试卷(word版含答案)
最新初三九年级上册上册数学压轴题试卷(word 版含答案)一、压轴题1.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ.(1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.2.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切?3.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).4.如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q .以AQ 为边作Rt ABQ △,使90BAQ ∠=︒,:3:4AQ AB =,作ABQ △的外接圆O .点C 在点P 右侧,4PC =,过点C 作直线m l ⊥,过点O 作OD m ⊥于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使32DF CD =,以DE 、DF 等邻边作矩形DEGF ,设3AQ x = (1)用关于x 的代数式表示BQ 、DF .(2)当点P 在点A 右侧时,若矩形DEGF 的面积等于90,求AP 的长.(3)在点P 的整个运动过程中,当AP 为何值时,矩形DEGF 是正方形.5.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上;①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.6.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83. (1)求⊙O 的半径OD ;(2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.7. 如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,P 为边BC 上一个动点(可以包括点C 但不包括点B ),以P 为圆心PB 为半径作⊙P 交AB 于点D 过点D 作⊙P 的切线交边AC 于点E ,(1)求证:AE=DE ;(2)若PB=2,求AE 的长;(3)在P 点的运动过程中,请直接写出线段AE 长度的取值范围.8.如图,B 是O 的半径OA 上的一点(不与端点重合),过点B 作OA 的垂线交O 于点C ,D ,连接OD ,E 是O 上一点,CE CA =,过点C 作O 的切线l ,连接OE 并延长交直线l于点F.(1)①依题意补全图形.②求证:∠OFC=∠ODC.(2)连接FB,若B是OA的中点,O的半径是4,求FB的长.9.如图,已知在矩形ABCD中,AB=2,BC=23.点P,Q分别是BC,AD边上的一个动点,连结BQ,以P为圆心,PB长为半径的⊙P交线段BQ于点E,连结PD.(1)若DQ=3且四边形BPDQ是平行四边形时,求出⊙P的弦BE的长;(2)在点P,Q运动的过程中,当四边形BPDQ是菱形时,求出⊙P的弦BE的长,并计算此时菱形与圆重叠部分的面积.10.如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)如图1,连接AC,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(3)如图2,点P 为抛物线上一动点,且满足∠PAB =2∠ACO .求点P 的坐标.11.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为(1,0)A ,(30)B ,.抛物线的对称轴和x 轴交于点M .(1)求这条抛物线对应函数的表达式;(2)若P 点在该抛物线上,求当PAB △的面积为8时,求点P 的坐标.(3)点G 是抛物线上一个动点,点E 从点B 出发,沿x 轴的负半轴运动,速度为每秒1个单位,同时点F 由点M 出发,沿对称轴向下运动,速度为每秒2个单位,设运动的时间为t .①若点G 到AE 和MF 距离相等,直接写出点G 的坐标.②点C 是抛物线的对称轴上的一个动点,以FG 和FC 为边做矩形FGDC ,直接写出点E 恰好为矩形FGDC 的对角线交点时t 的值.12.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) ☉O 的半径是32;(2)AB ∥ON ,证明见解析. 【解析】【分析】(1) 连接AB ,根据题意可AB 为直径,再用勾股定理即可.(2) 连接OA , OB , OQ ,根据圆周角定理可得Q 2APQ,B0Q 2BPO AO ∠=∠∠=∠,从而证出OC AB ⊥,延长PO 交☉0于点R ,则有2OPN QOR ∠=∠,再根据三角形内角和定理求得OQN ∠=90︒得证.【详解】解:(1)连接AB ,在☉0中,o APQ BPQ 45∠=∠=,o APB APQ BPQ 90∴∠=∠+∠=AB ∴是☉0的直径.Rt APB ∴∆在中,22AB AP BP =+AB=3∴∴☉0的半径是32(2)AB//ON证明:连接OA , OB , OQ ,在☉0中, AQ AQ =, BQ BQ =,Q 2APQ,B0Q 2BPO AO ∴∠=∠∠=∠.又APQ BPQ ∠=∠,AOQ BOQ ∴∠=∠.在AOB ∆中,OA OB =, AOQ BOQ ∠=∠,OC AB ∴⊥,即o OCA 90∠=连接OQ ,交AB 于点C在☉0中,OP OQ =OPN OQP.∴∠=∠延长PO 交☉0于点R ,则有2OPN QOR ∠=∠o NOP 2OPN 90∴∠+∠=,又:o NOP NOQ QOR 180∠+∠+∠=,NOQ 90O ∴∠=NOQ OCA 180O ∴∠+∠= .AB//ON ∴【点睛】本题考查了圆周角定理,勾股定理、等腰三角形的性质以及三角形的内角和定理,是一道综合题,灵活运用相关知识是解题的关键.2.(1)4;(2)t 为4s ,203s ,283s 时,⊙P 与⊙Q 外切. 【解析】试题分析:(1)四边形APQD 为矩形,也就是AP=DQ ,分别用含t 的代数式表示,解即可;(2)主要考虑有四种情况,一种是P 在AB 上,一种是P 在BC 上时.一种是P 在CD 上时,又分为两种情况,一种是P 在Q 右侧,一种是P 在Q 左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ 时,四边形APQD 为矩形.此时,4t=20-t ,解得t=4(s ).答:t 为4时,四边形APQD 为矩形(2)当PQ=4时,⊙P 与⊙Q 外切.①如果点P 在AB 上运动.只有当四边形APQD 为矩形时,PQ=4.由(1),得t=4(s ); ②如果点P 在BC 上运动.此时t ≥5,则CQ ≥5,PQ ≥CQ ≥5>4,∴⊙P 与⊙Q 外离;③如果点P 在CD 上运动,且点P 在点Q 的右侧.可得CQ=t ,CP=4t-24.当CQ-CP=4时,⊙P 与⊙Q 外切.此时,t-(4t-24)=4,解得t=203(s ); ④如果点P 在CD 上运动,且点P 在点Q 的左侧.当CP-CQ=4时,⊙P 与⊙Q 外切.此时,4t-24-t=4,解得t=283(s ), ∵点P 从A 开始沿折线A-B-C-D 移动到D 需要11s ,点Q 从C 开始沿CD 边移动到D 需要20s ,而283<11, ∴当t 为4s ,203s ,283s 时,⊙P 与⊙Q 外切. 考点:1.矩形的性质;2.圆与圆的位置关系. 3.(1)证明见解析;(2)213;(3)23a 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明;(2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6,∴BG=113 22BC AC==,∴在Rt△ABG中,333AG BG==,∵BF⊥EC,∴BF∥AG,∴AF BGEF EB=,∵AF:EF=3:2,∴BE=23BG=2,∴EG=BE+BG=3+2=5,在Rt△AEG中,()2222335213AE AG EG=+=+= (3)解:如图所示,过点O作OM⊥BC于点M,由题(2)知AF BGEF EB=,CG=BG=1122AC a=,∴3=2AF BGEF EB=,∴22113323EB BG a a==⨯=,∴EC=CG+BG+BE=11142233a a a a++=,∴EM=12EC=23a,∴BM=EM-BE=211333a a a-=,∵BF∥AG,∴△EBF∽△EGA,∴123=11532aBF BEAG EG a a==+,∵2AG a ==,∴25BF ==,∴△OFB 的面积=211223BF BM a a ⋅=⨯=. 【点睛】 本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.4.(1)(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【解析】【分析】(1)由:3:4AQ AB =、3AQ x =,易得4AB x =,由勾股定理得BQ ,再由中位线的性质得12AH BH AB ==,求得CD 、FD ; (2)利用(1)的结论,易得CQ 的长,作OM AQ ⊥于点M ,则//OM AB ,由垂径定理得32QM AM x ==,由矩形性质得OD MC =,利用矩形面积求得x ,得出结论; (3)点P 在A 点的右侧时,利用(1)、(2)的结论和正方形的性质得243x x +=,得AP ;点P 在A 点的左侧时,当点C 在Q 右侧,当407x <<时,473x x -=,解得x ,易得AP ;当4273x ≤<时,743x x -=,得AP ;当点C 在Q 的左侧时,即23x ≥,同理得AP .【详解】解:(1)∵:3:4AQ AB =,3AQ x =∴4AB x =∴在Rt ABQ △中,5BQ x == ∵OD m ⊥,m l ⊥∴//OD l∵OB OQ = ∴122AH BH AB x === ∴2CD x = ∴332FD CD x == (2)∵点P 关于点A 的对称点为Q∴3AP AQ x ==∵4PC =∴64CQ x =+过点O 作OM AQ ⊥于点M ,如图:∵90BAQ ∠=︒∴//OM AB∵O 是ABQ △的外接圆,90BAQ ∠=︒∴点O 是BQ 的中点 ∴1322QM AM AQ x === ∴3964422OD MC CQ QM x x ==-=+-=+ ∵1522OE BQ x == ∴9542422DE OD OE x x x =-=+-=+ ∴()32490DEGF S DF DE x x =⋅=⋅+=矩形∴13x =,25x =-(不合题意,舍去)∴39AP x ==∴当点P 在点A 右侧时,若矩形DEGF 的面积等于90,AP 的长为:9.(3)若矩形DEGF 是正方形,则DE DF =①点P 在A 点的右侧时,如图:∴243x x +=∴4x =∴312AP x ==②点P 在A 点的左侧时I.当点C 在Q 右侧时i.当 407x <<时,如图:∵47DE x =-,3DF x =∴473x x -=∴25x = ∴635AP x x ==ii.当4273x ≤<时,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =(不合题意,舍去)II. 当点C 在Q 的左侧时,即23x ≥,如图:∵74DE x =-,3DF x =∴743x x -=∴1x =∴33AP x ==∴综上所述,当12AP =或65AP =或3AP =时,矩形DEGF 是正方形. 故答案是:(1)5BQ x =;3FD x =(2)9AP =(3)12AP =或65AP =或3AP = 【点睛】本题考查了分类讨论思想、矩形的性质、正方形的性质、圆的性质等,综合性强,难度大,正确的画出相应的图形可以更顺利地解决问题.5.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD 与△BCF 中,AC BC ACD ACB CD CF =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCF (SAS )∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE ⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME ∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM ====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.6.(1)OD=4,(2)证明过程见详解(3)504 3π-【解析】【分析】(1)根据AB与圆O相切,在Rt△OBD中运用tan∠BOD=34,即可求出OD的长,(2)作辅助线证明四边形ADOG是矩形,得DO∥AC,sin∠OCG=35,在Rt△OCG中,求出OG的长等于半径即可解题,(3)利用S阴影=S Rt△BAC-S正方形ADOG-14S圆O,求出AC长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.7.(1)详见解析;(2)AE=194;(3)74≤AE<254.【解析】【分析】(1)首先得出∠ADE+∠PDB=90°,进而得出∠B+∠A=90°,利用PD=PB得∠EDA=∠A进而得出答案;(2)利用勾股定理得出ED2+PD2=EC2+CP2=PE2,求出AE即可;(3)分别根据当D(P)点在B点时以及当P与C重合时,求出AE的长,进而得出AE的取值范围.【详解】(1)证明:如图1,连接PD.∵DE切⊙O于D.∴PD⊥DE.∴∠ADE+∠PDB=90°.∵∠C=90°.∴∠B+∠A=90°.∵PD=PB.∴∠PDB=∠B.∴∠A=∠ADE.∴AE=DE;(2)解:如图1,连接PE,设DE=AE=x,则EC=8-x,∵PB=PD=2,BC=6.∴PC=4.∵∠PDE=∠C=90°,∴ED2+PD2=EC2+CP2=PE2.∴x2+22=(8-x)2+42.解得x=194.∴AE=194;(3)解:如图2,当P点在B点时,此时点D也在B点,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2+BC2=BE2,∴(8-x)2+62=x2,解得:x=254,如图3,当P与C重合时,∵AE=ED,设AE=ED=x,则EC=8-x,∴EC2=DC2+DE2,∴(8-x)2=62+x2,解得:x=74,∵P为边BC上一个动点(可以包括点C但不包括点B),∴线段AE长度的取值范围为:74≤AE<254.【点睛】本题主要考查圆的综合应用、切线的性质与判定以及勾股定理等知识,利用数形结合以及分类讨论的思想得出是解题关键.8.(1)①补图见解析;②证明见解析;(2)FB=21【解析】【分析】(1)①根据题意,补全图形即可;②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得AD AC,利用等量代换可得AD CE=,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;(2)连接BF,作BG⊥l于G,根据OB=12OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB 的长即可.【详解】(1)①延长OE,交直线l于F,如图即为所求,②∵OA⊥CD,OA为⊙O半径,∴AD AC=,∵CE CA=,∴AD CE=,∴∠EOC=∠AOD,∵FC是⊙O的切线,∴OC⊥FC,∴∠OFC+∠FOC=90°,∴∠OFC=∠ODC.(2)连接BF,作BG⊥l于G,∵B是OA的中点,⊙O半径为4,∴OB=12OA=12OC=2,∵OA⊥CD,∴∠OCD=30°,22OC OB-2242-3∴CD=2BC=43由(1)可知∠OFC=∠ODC,∴FC=CD=3∵BG⊥l,OC⊥l,∴OC//BG,∴∠CBG=∠OCD=30°,∴CG=12BC=3,BG=22BC CG-=3,∴FG=FC+CG=53,∴BF=22FG BG+=221.【点睛】本题考查切线的性质、垂径定理、含30°角的直角三角形的性质及勾股定理,圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,并且平分弦所对的两条弧;30°角所对的直角边,等于斜边的一半;熟练掌握相关性质及定理是解题关键.9.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即,∴BT=33 7,∴BE=2BT=637.(2)设菱形BPDQ的边长为x,则AQ=23﹣x,在Rt△ABQ中,根据勾股定理,得AB2+AQ2=BQ2,即4+(23﹣x)2=x2,解得x=43 3.∵四边形BPDQ为菱形,∴BP=DP=43 3,又CP=BC-BP=233,即DP=2CP,∴∠DPC=60°,∴∠BPD=120°,∴连接PQ,易得△BPQ为等边三角形,∴PQ=BP,∴点Q也在圆P上,圆P经过点B,D,Q,如图.∴点E、Q重合,∴BE 43 3∴菱形与圆重叠部分面积即为菱形的面积,∴S菱形833.【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识.10.(1)223y x x =+-;(2)是,定值为8;(3)1557,416⎛⎫- ⎪⎝⎭或939,416⎛⎫-- ⎪⎝⎭ 【解析】【分析】(1)把点A 、C 坐标代入抛物线解析式即可求得b 、c 的值.(2)设点Q 横坐标为t ,用t 表示直线AQ 、BN 的解析式,把x =1-分别代入即求得点M 、N 的纵坐标,再求DM 、DN 的长,即得到DM +DN 为定值.(3)点P 可以在x 轴上方或下方,需分类讨论.①若点P 在x 轴下方,延长AP 到H ,使AH =AB 构造等腰△ABH ,作BH 中点G ,即有∠PAB =2∠BAG =2∠ACO ,利用∠ACO 的三角函数值,求BG 、BH 的长,进而求得H 的坐标,求得直线AH 的解析式后与抛物线解析式联立,即求出点P 坐标.②若点P 在x 轴上方,根据对称性,AP 一定经过点H 关于x 轴的对称点H ',求得直线AH '的解析式后与抛物线解析式联立,即求出点P 坐标.【详解】解:(1)∵抛物线y =x 2+bx +c 经过点A (1,0),C (0,-3),∴10003b c c ++=⎧⎨++=-⎩解得:23b c =⎧⎨=-⎩, ∴抛物线的函数表达式为y =x 2+2x -3.(2)结论:DM +DN 为定值.理由:∵抛物线y =x 2+2x -3的对称轴为:直线x =-1,∴D (﹣1,0),x M =x N =﹣1,设Q (t ,t 2+2t ﹣3)(﹣3<t <1),设直线AQ 解析式为y =dx +e∴2023d e dt e t t +=⎧⎨+=+-⎩解得:33d te t =+⎧⎨=--⎩, ∴直线AQ :y =(t +3)x ﹣t ﹣3,当x =﹣1时,y M =﹣t ﹣3﹣t ﹣3=﹣2t ﹣6,∴DM =0﹣(﹣2t ﹣6)=2t +6,设直线BQ 解析式为y =mx +n ,∴23023m n mt n t t -+=⎧⎨+=+-⎩解得:133m t n t =-⎧⎨=-⎩, ∴直线BQ :y =(t ﹣1)x +3t ﹣3,当x =﹣1时,y N =﹣t +1+3t ﹣3=2t ﹣2,∴DN =0﹣(2t ﹣2)=﹣2t +2,∴DM +DN =2t +6+(﹣2t +2)=8,为定值.(3)①若点P 在x 轴下方,如图1,延长AP 到H ,使AH =AB ,过点B 作BI ⊥x 轴,连接BH ,作BH 中点G ,连接并延长AG 交BI 于点F ,过点H 作HI ⊥BI 于点I .∵当x2+2x﹣3=0,解得:x1=﹣3,x2=1,∴B(﹣3,0),∵A(1,0),C(0,﹣3),∴OA=1,OC=3,AC221310+=AB=4,∴Rt△AOC中,sin∠ACO=01010AAC=,cos∠ACO=31010OCAC=,∵AB=AH,G为BH中点,∴AG⊥BH,BG=GH,∴∠BAG=∠HAG,即∠PAB=2∠BAG,∵∠PAB=2∠ACO,∴∠BAG=∠ACO,∴Rt△ABG中,∠AGB=90°,sin∠BAG=10 BGAB=,∴BG=1010 105AB=,∴BH=2BG=105,∵∠HBI+∠ABG=∠ABG+∠BAG=90°,∴∠HBI=∠BAG=∠ACO,∴Rt△BHI中,∠BIH=90°,sin∠HBI=HIBH10,cos∠HBI=310BIBH=,∴HI 10BH=43,BI310BH=125,∴x H=411355-+=-,y H=125-,即1112,55H⎛⎫--⎪⎝⎭,设直线AH解析式为y=kx+a,∴0 1112 55 k ak a+=⎧⎪⎨-+=-⎪⎩,解得:3434ka⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AH:3344y x=-,∵2334423y xy x x⎧=-⎪⎨⎪=+-⎩解得:1xy=⎧⎨=⎩(即点A)或943916xy⎧=-⎪⎪⎨⎪=-⎪⎩,∴939,416P⎛⎫--⎪⎝⎭.②若点P在x轴上方,如图2,在AP上截取AH'=AH,则H'与H关于x轴对称.∴1112,55H⎛'⎫-⎪⎝⎭,设直线AH'解析式为y k x a='+',∴111255k ak a+='''⎧-'⎪⎨+=⎪⎩,解得:3434ka⎧=-⎪⎪⎨''⎪=⎪⎩,∴直线AH':3344y x=-+,∵2334423y xy x x⎧=-+⎪⎨⎪=+-⎩解得:1xy=⎧⎨=⎩(即点A)或1545716xy⎧=-⎪⎪⎨⎪=⎪⎩,∴1557,416P⎛⎫-⎪⎝⎭.综上所述,点P的坐标为939,416⎛⎫--⎪⎝⎭或1557,416⎛⎫-⎪⎝⎭.【点睛】本题属于二次函数综合题,考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.运用到分类讨论的数学思想,理清线段之间的关系为解题关键.11.(1)243y x x =-+-;(2)点P 坐标为(-1,-8),(5,-8);(3)①G 的坐标.31()22,51(22-,51(22--+;②54t +=或54t -= 【解析】【分析】(1)将A 、B 两点坐标代入抛物线解析式,可确定抛物线解析式;(2)根据A 、B 两点坐标得AB=3-1=2,由三角形面积公式求P 点纵坐标的绝对值,得出P 点纵坐标的两个值,代入抛物线解析式求P 点横坐标;(3)①根据题意,可分为两种情况进行分析:当点G 在对称轴右侧;当点G 在对称轴左侧;结合图像,分别求出点G 的坐标即可;②根据题意,可分为两种情况进行分析:当点G 在对称轴左侧;当点G 在对称轴右侧;结合图像,分别列出方程,求出t 的值即可.【详解】解:(1)把点(1,0)A ,(3,0)B 代入抛物线2y x bx c =-++上,求得:4b =,3c =-,∴243y x x =-+-;(2)依题意,得312AB =-=,设P 点坐标为(,)a n ,当0n >时,则8n =,故2–438x x +-=,即24110x x ++=,∴441111644280∆=-⨯⨯=-=-<2(-), 方程24110x x -++=无实数根;当0n <时,则8n =-故2438x x -+-=-,即2450x x -+-=,解得:11x =-,25x =所求点P 坐标为(-1,-8),(5,-8).(3)①分两种情况当点G 在对称轴右侧,设点G D 的横坐标为m ,则点D 到对称轴的距离为2m -,∵点D 到x 轴和到对称轴的距离相等所以点D 的纵坐标为2m -或2m -﹐当点D 的坐标为(,2)m m -,有2243m m m -=-+-,解得:135m +=,235m -=(不符题意舍去), 此时点D 的坐标为:3551(,)+-. 当点D 的坐标为(,2)m m -时,有 2243m m m -=-+-,解得:155m +=,255m -=(不符题意舍去), 此时点D 的坐标为:5515(,)+--. 当点G 在对称轴左侧,设点D 的横坐标为m ,则点D 到对称轴的距离为2m -﹐因为点D 到x 轴和到对称轴的距离相等所以点D 的纵坐标为2m -或2m -,分别代入解析式可求出点D 的坐标分别为:3551---,5515)--+. 综上所述点D 的坐标为:3551(+-﹐5515(+--,3551()22,5515()22--+.②分两种情况当点G 在对称轴左侧,此时有1EN t =-,2NF t =﹐因为//EN GF ,点E 为CG 的中点,所以222GF EN t ==-,所以点G 的坐标为(42,2)t t --,将(42,2)t t --代入243y x x =-+-中,得 2(42)4(42)3t t t -=--+-2-, 解得:1513t +=,2513t -=(不合题意舍去). 当点G 在对称轴右侧,此时有1EN t =-,2NF t =,因为//EN GF ,点E 为CG 的中点,所以222GF EN t ==-,所以点G 的坐标为(42,2)t t --,将(42,2)t t --代入243y x x =-+-中,得 2(42)4(42)3t t t -=--+-2-,解得:15134t +=(不合题意舍去),25134t -=. 综上所述:5134t +=或5134t -=. 【点睛】本题考查了待定系数法求抛物线解析式,三角形面积公式的运用.关键是熟练掌握求二次函数解析式的方法,掌握三角形的高与P 点纵坐标的关系,注意运用数形结合和分类讨论的思想进行解题. 12.(1)详见解析;(2)333CD =+或3;(3)详见解析.【解析】【分析】(1)只要证明△EAF ∽△FEG 即可解决问题;(2)如图3中,作DE ⊥BA 交BA 的延长线于E .设AE=a .在Rt △BDE 中,利用勾股定理构建方程求出a ,分两种情形构建方程求解即可;(3)①当△AFE ∽△EFC 时,连接BC ,AC ,BD .②当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .③当△AFE ∽△CEF 时,分别求解即可,注意答案不唯一.【详解】解:(1)如图1,∵正方形ABCD 中4AB AD CD ===,90A D ∠=∠=,E 为AD 中点∴2AE ED ==,∵1AF DH ==,∴12AF DE AE CD == ∴AEF DCE ∆∆∽∴AEF DCE ∠=∠,AFE DEC ∠=∠∵//AF DH ,∴四边形AFHD 为平行四边形∴AD FH ,∴AEF EFG ∠=∠,DEC EGF AFE ∠=∠=∠∴AEF EFG ∆∆∽∴EF 为四边形AFGE 的相似对角线.(2)如图2,过点D 作DE BA ⊥,垂足为E ,设AE a =∵120A CBD ∠=∠=,∴60EAD ∠=,∴3DE a =∵2AB =,6BD =∴()22236a a ++=31a -=(负根已经舍弃), ∴31AD =-分为两种情况:①如图3,当ABD BCD ∆∆∽时,AD BD BD CD=∴()316CD -=,∴333CD =+②如图4,当ABD BDC ∆∆∽时,AB BD BD CD= ∴26CD =,∴3CD =综上,333CD =+或3(3)①如图5,∵∠FEC=∠A=90°,∠BEF=∠BEC+∠FEC=∠A+∠AEF ,∴AFE BEC ∠=∠,AF EF AF AE EC BE==,∴AFE BEC ∆∆∽,∴90B ∠= 由“一线三等角”得83AF =.②如图,当△AFE ∽△FEC 时,作CH ⊥AD 交AD 的延长线于H ,作OM ⊥AD 于M ,连接OA .∵△AFE ∽△FEC ,∴∠AFE=∠FEC ,∴AD ∥EC ,∴∠CEB=∠DAB=90°,∵∠OMA=∠AHC=90°,∴四边形AEOM ,四边形AECH 都是矩形,∵OM⊥AD,∴AM=MD=3,∴AM=OE=3,∵OE⊥AB,∴AE=EB=4,∴OA=2234+=5,∴CE=AH=8,设AF=x,则FH=8-x,CH=AE=4,由△AEF∽△HFC,可得AFCH=AEFH,∴448xx =-,解得x=4,经检验x=4是分式方程的解,∴AF=4.③如图当△AFE∽△CEF时易证四边形AECF是矩形,AF=EC=8.综上所述,满足条件的AF的长为83或4或8.(答案不唯一)【点睛】本题属于圆综合题,考查正方形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.。
【压轴卷】九年级数学上期末试题含答案
【压轴卷】九年级数学上期末试题含答案一、选择题1.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .43.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点4.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表: x … -1 0 2 4 5 … y 1 … 0 1 3 5 6 … y 2…-159…当y 2>y 1时,自变量x 的取值范围是 A .-1<x <2 B .4<x <5 C .x <-1或x >5 D .x <-1或x >4 5.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( )A .k >﹣1B .k ≥﹣1C .k >﹣1且k ≠0D .k ≥﹣1且k ≠06.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( ) A .x(x -1)=2070B .x(x +1)=2070C.2x(x+1)=2070D.(1)2x x-=20707.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件 B.必然事件 C.不可能事件 D.不确定事件8.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.359.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列各式子:①abc>0;②a+b+c>0;③a+c>b;④2a+b=0;⑤∆=b2-4ac<0中,成立的式子有( )A.②④⑤B.②③⑤C.①②④D.①③④11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若CD=AP=8,则⊙O的直径为( )A.10B.8C.5D.312.与y=2(x﹣1)2+3形状相同的抛物线解析式为()A.y=1+12x2B.y=(2x+1)2C.y=(x﹣1)2D.y=2x2二、填空题13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.14.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.15.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).16.一元二次方程2420x x -+=的两根为1x ,2x ,则2111242x x x x -+的值为____________ .17.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.18.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.19.已知二次函数y =a (x +3)2﹣b (a ≠0)有最大值1,则该函数图象的顶点坐标为_____. 20.函数 2y 24x x =-- 的最小值为_____.三、解答题21.已知二次函数y=2x 2+m .(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1_________y 2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD 的顶点C 、D 在x 轴上,A 、B 恰好在二次函数的图象上,求图中阴影部分的面积之和.22.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W 2至少为多少万元.23.如图,已知二次函数23y x ax =++的图象经过点()2,3P -.(1)求a 的值和图象的顶点坐标。
【压轴卷】九年级数学上期末试题带答案
【压轴卷】九年级数学上期末试题带答案一、选择题1.关于x 的方程(m ﹣3)x 2﹣4x ﹣2=0有两个不相等的实数根,则实数m 的取值花围是( ) A .m≥1B .m >1C .m≥1且m≠3D .m >1且m≠32.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°3.二次函数236yx x =-+变形为()2y a x m n =++的形式,正确的是( )A .()2313y x =--+ B .()2313y x =--- C .()2313y x =-++ D .()2313y x =-+-4.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等5.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 A .点A 在圆外 B .点A 在圆上 C .点A 在圆内D .不能确定6.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .127.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12B .14C .16D .1128.抛物线2y ax bx c =++经过点(1,0),且对称轴为直线1x =-,其部分图象如图所示.对于此抛物线有如下四个结论:①abc <0; ②20a b +=;③9a-3b+c=0;④若0m n >>,则1x m =-时的函数值小于1x n =-时的函数值.其中正确结论的序号是( )A .①③B .②④C .②③D .③④9.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( ) A .4B .5C .6D .710.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 211.如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F .P 是⊙A 上一点,且∠EPF =40°,则图中阴影部分的面积是( )A .4-9πB .4-89π C .8-49π D .8-89π 12.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .45二、填空题13.如图,已知抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a 1x 2+b 1x+c 1,则下列结论正确的是_________.(写出所有正确结论的序号)①b >0;②a ﹣b+c <0;③阴影部分的面积为4;④若c=﹣1,则b 2=4a .14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路3035t≤≤3540t<≤4045t<≤4550t<≤合计A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.16.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.17.三角形两边长分别是4和2,第三边长是2x2﹣9x+4=0的一个根,则三角形的周长是_____.18.如图,P是⊙O的直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A=___________°.19.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.20.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题21.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC 以点C 为旋转中心旋转180°,得到△A 1B 1C ,请画出△A 1B 1C 的图形. (2)平移△ABC ,使点A 的对应点A2坐标为(-2,-6),请画出平移后对应的△A 2B 2C 2的图形. (3)若将△A 1B 1C 绕某一点旋转可得到△A 2B 2C 2,请直接写出旋转中心的坐标.22.若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为a 、十位上的数字为b ,三位数t 是“差数”,我们就记:()()F t b a b =⨯-,其中,19a ≤≤,09b ≤≤.例如三位数514.∵514-=,∴514是“差数”,∴()()5141514F =⨯-=.(1)已知一个三位数m 的百位上的数字是6,若m 是“差数”,()9F m =,求m 的值;(2)求出小于300的所有“差数”的和,若这个和为n ,请判断n 是不是“差数”,若是,请求出()F n ;若不是,请说明理由.23.如图,PA ,PB 是圆O 的切线,A,B 是切点,AC 是圆O 的直径,∠BAC=25°,求∠P 的度数.24.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的宜兴﹣我最喜爱的宜兴小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题 (1)请补全条形统计图;(2)若全校有1000名同学,请估计全校同学中最喜爱“笋干”的同学有多少人? (3)在一个不透明的口袋中有4个元全相同的小球,把它们分别标号为四种小吃的序号A ,B ,C ,D ,随机地把四个小球分成两组,每组两个球,请用列表或画树状图的方法,求出A ,B 两球分在同一组的概率.25.如图,在平面直角坐标系xOy 中,A (﹣2,0),B (0,3),C (﹣4,1).以原点O 为旋转中心,将△ABC 顺时针旋转90°得到△A 'B 'C ',其中点A ,B ,C 旋转后的对应点分别为点A ',B ',C '.(1)画出△A 'B 'C ',并写出点A ',B ',C '的坐标; (2)求经过点B ',B ,A 三点的抛物线对应的函数解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可. 【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3. 故答案为D. 【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.2.C解析:C 【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.3.A解析:A 【解析】 【分析】根据配方法,先提取二次项的系数-3,得到()232y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】解:()()()222236=323211313y x x x x x x x =-+--=--+-=--+,故选:A . 【点睛】本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.4.A解析:A 【解析】选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C ,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D ,三角形的外心到三角形各顶点的距离相等,正确;故选A.5.C解析:C 【解析】 【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d=r 时,点在圆上;当d <r 时,点在圆内判断出即可. 【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,故选C.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况, ∴两次都摸到白球的概率是:21126. 故答案为C . 【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.D解析:D 【解析】 【分析】①根据抛物线开口方向、对称轴、与y 轴的交点即可判断; ②根据抛物线的对称轴方程即可判断;③根据抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1可得抛物线与x 轴的另一个交点坐标为(﹣3,0),即可判断;④根据m >n >0,得出m ﹣1和n ﹣1的大小及其与﹣1的关系,利用二次函数的性质即可判断. 【详解】解:①观察图象可知: a <0,b <0,c >0,∴abc >0, 所以①错误;②∵对称轴为直线x =﹣1, 即﹣2ba=﹣1,解得b =2a ,即2a ﹣b =0, 所以②错误;③∵抛物线y =ax 2+bx +c 经过点(1,0),且对称轴为直线x =﹣1, ∴抛物线与x 轴的另一个交点为(﹣3,0), 当a =﹣3时,y =0,即9a ﹣3b +c =0, 所以③正确; ∵m >n >0, ∴m ﹣1>n ﹣1>﹣1,由x >﹣1时,y 随x 的增大而减小知x =m ﹣1时的函数值小于x =n ﹣1时的函数值,故④正确; 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数的图象和性质及点的坐标特征.9.B解析:B【解析】 【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a ≤193且a ≠6,然后找出此范围内的最大整数即可. 【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0, 解得a ≤193且a ≠6, 所以整数a 的最大值为5. 故选B. 【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.10.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C11.B解析:B 【解析】试题解析:连接AD ,∵BC 是切线,点D 是切点, ∴AD ⊥BC ,∴∠EAF=2∠EPF=80°,∴S 扇形AEF =280?283609ππ=, S △ABC =12AD•BC=12×2×4=4, ∴S 阴影部分=S △ABC -S 扇形AEF =4-89π. 12.B解析:B 【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25. 故选B. 考点:概率.二、填空题13.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判解析:③④ 【解析】 【分析】①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣2ba>0,可得b <0,据此判断即可.②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是2424ac b a-=-,判断出c=﹣1时,a 、b 的关系即可.【详解】解:∵抛物线开口向上, ∴a >0,又∵对称轴为x=﹣2ba>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵2424ac ba-=-,c=﹣1,∴b2=4a,∴结论④正确.故答案为:③④.【点睛】本题考查二次函数图象与几何变换;二次函数图象与系数的关系.14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.C【解析】分析:样本容量相同观察统计表可以看出C线路上的公交车用时超过分钟的频数最小即可得出结论详解:样本容量相同C线路上的公交车用时超过分钟的频数最小所以其频率也最小故答案为C点睛:考查用频率估计解析:C【解析】分析:样本容量相同,观察统计表,可以看出C线路上的公交车用时超过45分钟的频数最小,即可得出结论.详解:样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故答案为C.点睛:考查用频率估计概率,读懂统计表是解题的关键.16.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次解析:(0,3).【解析】【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.17.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可.【详解】解:方程2x2﹣9x+4=0,分解因式得:(2x﹣1)(x﹣4)=0,解得:x=12或x=4,当x=12时,12+2<4,不能构成三角形,舍去;则三角形周长为4+4+2=10.故答案为:10.【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键. 18.35【解析】【分析】【详解】解:∵PC与⊙O相切∴∠OCP=90°∴∠COP=90°-∠P=90°-20°=70°∵OA=OC∴∠A=∠ACO∵∠A+∠ACO=∠COP∴∠A=35°故答案为35 解析:35【解析】【分析】【详解】解:∵PC与⊙O相切,∴∠OCP=90°,∴∠COP=90°-∠P=90°-20°=70°,∵OA=OC,∴∠A=∠ACO,∵∠A+∠ACO=∠COP,∴∠A=35°,故答案为35.19.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1 男2 女1 女2 男1 (男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:5 6【解析】【分析】【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5 6故答案为:56.三、解答题21.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A 1B 1C 即为所求; (2)如图所示:△A 2B 2C 2即为所求; (3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.22.(1)633m =;(2)小于300的“差数”有101,110,202,211,220,n 是“差数”,()16F n =【解析】 【分析】(1)设三位数m 的十位上的数字是x ,根据()=(6)F m x x -进行求解; (2)根据“差数”的定义列出小于300的所有“差数”,进而求解. 【详解】解:(1)设三位数m 的十位上的数字是x , ∴()=(6)9F m x x -=, 解得,3x =,∴个位上的数字为:633-=, ∴633m =;(2)小于300的“差数”有101,110,202,211,220, ∴101110202211220844n =++++=,显然n 是“差数”,()()8444(84)16F n F ==⨯-=. 【点睛】本题是新定义问题,考查了解一元二次方程,理解新的定义是解题的关键. 23.∠P=50° 【解析】 【分析】根据切线性质得出PA=PB ,∠PAO=90°,求出∠PAB 的度数,得出∠PAB=∠PBA ,根据三角形的内角和定理求出即可. 【详解】∵PA 、PB 是⊙O 的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°-25°=65°,∴∠P=180°-∠PAB-∠PBA=180°-65°-65°=50°.【点睛】本题考查了切线长定理,切线性质,三角形的内角和定理,等腰三角形的性质的应用,主要考查学生运用定理进行推理和计算的能力,题目具有一定的代表性,难度适中,熟记切线的性质定理是解题的关键.24.(1)详见解析;(2)280人;(3).【解析】【分析】(1) 由总人数以及条形统计图求出喜欢“豆腐干” 的人数,补全条形统计图即可;(2) 求出喜欢“笋干”的百分比, 乘以1000即可得到结果;(3) 列表得出所有等可能的情况数, 找出A,B两球分在同一组的情况数, 即可求出所求的概率.【详解】解:(1)喜爱豆腐干的人数为50﹣14﹣21﹣5=10,条形图如图所示:(2)根据题意得:1000××100%=280(人),所以估计全校同学中最喜爱“笋干”的同学有280人.(3)列表如下:A B C DA A,B A,C A,DB B,A B,C B,DC C,A C,B C,DD D,A D,B D,C共有12种等可能结果,其中A,B在同一组有4种,∴A、B两球分在同一组的概率为=.【点睛】本题主要考查条形统计图、用样本估计总体及列表法或树状图求概率.25.(1)见解析;(2)抛物线的解析式为y=﹣12x2+12x+3.【解析】【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入求出a即可.【详解】解:(1)如图△A'B'C'即为所求.A′(0,2),B′(3,0),C′(1,4)(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入得到a=﹣12,∴抛物线的解析式为y=﹣12x2+12x+3.【点睛】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.。
初三九年级数学上册 压轴解答题试卷(word版含答案)
初三九年级数学上册 压轴解答题试卷(word 版含答案)一、压轴题1.如图①,A (﹣5,0),OA =OC ,点B 、C 关于原点对称,点B (a ,a +1)(a >0). (1)求B 、C 坐标; (2)求证:BA ⊥AC ;(3)如图②,将点C 绕原点O 顺时针旋转α度(0°<α<180°),得到点D ,连接DC ,问:∠BDC 的角平分线DE ,是否过一定点?若是,请求出该点的坐标;若不是,请说明理由.2.已知在ABC 中,AB AC =.在边AC 上取一点D ,以D 为顶点、DB 为一条边作BDF A ∠=∠,点E 在AC 的延长线上,ECF ACB ∠=∠.(1)如图(1),当点D 在边AC 上时,请说明①FDC ABD ∠=∠;②DB DF =成立的理由.(2)如图(2),当点D 在AC 的延长线上时,试判断DB 与DF 是否相等?3.如图,在矩形ABCD 中,E 、F 分别是AB 、AD 的中点,连接AC 、EC 、EF 、FC ,且EC EF ⊥.(1)求证:AEF BCE ∽; (2)若23AC =AB 的长;(3)在(2)的条件下,求出ABC 的外接圆圆心与CEF △的外接圆圆心之间的距离? 4.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A运动到B,点Q运动到点B停止,连接PQ,取PQ的中点O,连接OC,OB.(1)若△ABC∽△APQ,求BQ的长;(2)在整个运动过程中,点O的运动路径长_____;(3)以O为圆心,OQ长为半径作⊙O,当⊙O与AB相切时,求△COB的面积.5.如图,Rt△ABC,CA⊥BC,AC=4,在AB边上取一点D,使AD=BC,作AD的垂直平分线,交AC边于点F,交以AB为直径的⊙O于G,H,设BC=x.(1)求证:四边形AGDH为菱形;(2)若EF=y,求y关于x的函数关系式;(3)连结OF,CG.①若△AOF为等腰三角形,求⊙O的面积;②若BC=3,则30CG+9=______.(直接写出答案).6.如图,在Rt△ABC中,∠A=90°,0是BC边上一点,以O为圆心的半圆与AB边相切于点D,与BC边交于点E、F,连接OD,已知BD=3,tan∠BOD=34,CF=83.(1)求⊙O的半径OD;(2)求证:AC是⊙O的切线;(3)求图中两阴影部分面积的和.7.如图,在▱ABCD中,AB=4,BC=8,∠ABC=60°.点P是边BC上一动点,作△PAB的外接圆⊙O交BD于E.(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径. 8.MN 是O 上的一条不经过圆心的弦,4MN =,在劣弧MN 和优弧MN 上分别有点A,B (不与M,N 重合),且AN BN =,连接,AM BM .(1)如图1,AB 是直径,AB 交MN 于点C ,30ABM ︒∠=,求CMO ∠的度数; (2)如图2,连接,OM AB ,过点O 作//OD AB 交MN 于点D ,求证:290MOD DMO ︒∠+∠=;(3)如图3,连接,AN BN ,试猜想AM MB AN NB ⋅+⋅的值是否为定值,若是,请求出这个值;若不是,请说明理由.9.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.10.如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点,A 点的坐标为(1,0)-,过点C 的直线334y x t=-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由. 11.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.12.如图,抛物线y =﹣(x +1)(x ﹣3)与x 轴分别交于点A 、B (点A 在B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)点B (3,4),点C (﹣3,﹣4);(2)证明见解析;(3)定点(4,3);理由见解析. 【解析】 【分析】(1)由中心对称的性质可得OB =OC =5,点C (﹣a ,﹣a ﹣1),由两点距离公式可求a 的值,即可求解;(2)由两点距离公式可求AB ,AC ,BC 的长,利用勾股定理的逆定理可求解; (3)由旋转的性质可得DO =BO =CO ,可得△BCD 是直角三角形,以BC 为直径,作⊙O ,连接OH ,DE 与⊙O 交于点H ,由圆周角定理和角平分线的性质可得∠HBC =∠CDE =45°=∠BDE =∠BCH ,可证CH =BH ,∠BHC =90°,由两点距离公式可求解. 【详解】解:(1)∵A (﹣5,0),OA =OC , ∴OA =OC =5,∵点B 、C 关于原点对称,点B (a ,a +1)(a >0), ∴OB =OC =5,点C (﹣a ,﹣a ﹣1), ∴5()()220+10a a -+-∴a =3, ∴点B (3,4),∴点C(﹣3,﹣4);(2)∵点B(3,4),点C(﹣3,﹣4),点A(﹣5,0),∴BC=10,AB=45,AC=25,∵BC2=100,AB2+AC2=80+20=100,∴BC2=AB2+AC2,∴∠BAC=90°,∴AB⊥AC;(3)过定点,理由如下:∵将点C绕原点O顺时针旋转α度(0°<α<180°),得到点D,∴CO=DO,又∵CO=BO,∴DO=BO=CO,∴△BCD是直角三角形,∴∠BDC=90°,如图②,以BC为直径,作⊙O,连接OH,DE与⊙O交于点H,∵DE平分∠BDC,∴∠BDE=∠CDE=45°,∴∠HBC=∠CDE=45°=∠BDE=∠BCH,∴CH=BH,∠BHC=90°,∵BC=10,∴BH=CH=2,OH=OB=OC=5,设点H(x,y),∵点H在第四象限,∴x<0,y>0,∴x2+y2=25,(x﹣3)2+(y﹣4)2=50,∴x=4,y=3,∴点H(4,﹣3),∴∠BDC的角平分线DE过定点H(4,3).【点睛】本题是几何变换综合题,考查了中心对称的性质,直角三角形的性质,角平分线的性质,圆的有关知识,勾股定理的逆定理,两点距离公式等知识,灵活运用这些性质解决问题是本题的关键.2.(1)见解析;(2)DB DF=【解析】【分析】(1)①直接利用三角形的外角性质,即可得到;②过D作DG BC交AB于点G,由等腰三角形的性质,平行线的性质和等边对等角,得到BG DC=,DGB FCD∠=∠,然后证明三角形全等,即可得到结论成立;(2)连接BF,根据题意,可证得BCF BDF A∠=∠=∠,则B、C、D、F四点共圆,即可证明结论成立.【详解】解:(1)①∵BDC A ABD∠=∠+∠,即BDF FDC A ABD∠+∠=∠+∠,∵BDF A∠=∠,∴FDC ADB∠=∠;②过D作DG BC交AB于点G,∴ADG ACB∠=∠,AGD ABC∠=∠,又AB AC=,∴AABC CB=∠∠,∴AGD ADG∠=∠,∴AD AG=,∴AB AG AC AD-=-,∴BG DC=,又ECF ACB AGD∠=∠=∠,∴DGB FCD∠=∠,在GDB△与CFD△中,,,DGB FCDGB CDGBD FDC∠=∠⎧⎪=⎨⎪∠=∠⎩∴()GDB CFD ASA△≌△∴DB DF=;(2)证明:如图:连接BF ,由(1)可知,A ABC CB =∠∠, ∵ECF ACB ∠=∠, ∴ABC ECF ∠=∠,∵BC A C A BCF E F =∠+∠∠+∠, ∴A BCF ∠=∠, ∴BDF A BCF ∠=∠=∠, ∴B 、C 、D 、F 四点共圆,∴180DCB DFB ∠+∠=︒,DBF ECF ∠=∠, ∴ACB DFB ∠=∠, ∵BC EC AC A F B =∠=∠∠, ∴DBF DFB ∠=∠, ∴DB DF =. 【点睛】本题考查了四点共圆的知识,等腰三角形的性质,全等三角形的判定和性质,平行线的性质,以及三角形外角性质,解题的关键是熟练掌握所学的知识,正确作出辅助线,从而得到角的关系,再进行证明.3.(1)详见解析;(2)23)12【解析】 【分析】(1)由矩形的性质得到90EAF CBE ∠=∠=︒,再根据同角的余角相等,得到AFE BEC =∠∠,即可证明相似;(2)根据矩形的性质和相似三角形的性质,得到222AB BC =,再利用勾股定理,即可求出AB 的长度;(3)分别找出两个三角形外接圆的圆心M 、N ,利用三角形中位线定理,即可求出MN 的长度. 【详解】(1)证明:在矩形ABCD 中,有90EAF CBE ∠=∠=︒, ∴90AEF AFE ∠+∠=︒, ∵EC EF ⊥, ∴90FEC ∠=︒, ∴90AEF BEC ∠+∠=︒,∴AFE BEC =∠∠, ∴AEF BCE ∽;(2)在矩形ABCD 中,有AD=BC , ∵E 、F 分别是AB 、AD 的中点, ∴22,2AB AE BE AD AF ===; ∵AEF BCE ∽, ∴AE AFBC BE=, ∴222AB BC =,在Rt △ABC 中,由勾股定理得,222AB BC AC +=,∴221122AB AB +=, 解得:22AB =; (3)如图:∵△ABC 是直角三角形,∴△ABC 的外接圆的圆心在AC 中点M 处, 同理,△CEF 的外接圆的圆心在CF 的中点N 处, ∴线段MN 为△ACF 的中位线, ∴1124MN AF AD ==, 由(2)知,22222AB BC AD ==, ∴22AD AB =, ∴221222MN AB ===. 【点睛】本题考查了求三角形外接圆的圆心距,矩形的性质,相似三角形的判定和性质,勾股定理解直角三角形,三角形中位线定理,解题的关键是熟练利用所学性质进行证明和求解. 4.(1)BQ=8.2cm ;(2)5cm ;(3)S △BOC =39625. 【解析】 【分析】(1)根据ABC APQ ∆~∆得AC ABAQ AP=,从而得到AQ 的长即可求出BQ 的长; (2)由点Q 与点A 重合和点Q 与点B 重合时,可以确定点O 的位置,再根据点Q 位于AB 上除端点外的任意一点时,由点O 是PQ 的中点,点F 是PB 的中点可知OF 是PBQ ∆的中位线,从而得到点O 的运动轨迹是APB ∆的 中位线,即线段EF ,即可求得答案;(3)连接AO ,过点O 作ON AC ⊥ ,先证明APQ ABC ∆~∆得到AQ AP PQAC AB BC== ,所以求得,AQ PQ 的值,且OP OQ =,再证明PON PAQ ∆~∆得到ON POAQ PA=,求得ON 的值,再根据BOC ABC AOB AOC S S S S ∆∆∆∆=--即可求得答案;【详解】解:(1)如图1所示,∵90,6,8C AC cm BC cm ∠=== ∴10AB cm = 又∵点P 为AC 的中点, ∴3AP cm = ∵ABC APQ ∆~∆∴AC AB AQ AP = ,即6103AQ = 解之得: 1.8AQ = 则8.2BQ AB AQ cm =-= (2)如图2,当点Q 与点A 重合时,点O 位于点E 的位置, 当点Q 与点B 重合时,点O 位于点F 的位置, 则EF 是△APB 的中位线,∴EF∥AB,且EF=12AB=5,152EF AB==而当点Q位于AB上除端点外的任意一点时,∵点O是PQ中点,点F是PB 的中点,∴OF是△PBQ的中位线,∴OF∥BQ,∴点O的运动轨迹是线段EF,则点O的运动路径长是5cm;故答案为5cm.(3)如图3,连接AO,过点O作ON AC⊥于点N,∵⊙O与AB相切,∴PQ AB⊥,即90AQP∠=,∵,90PAQBAC ACB AQP∠=∠∠=∠=∴APQ ABC∆~∆∴AQ AP PQAC AB BC==,即36108AQ PQ==解之得:912,55AQ PQ==则65OP OQ==∵ON AC⊥∴90PNO PQA∠=∠=又∵OPN APQ∠=∠∴PON PAQ∆~∆,∴ON POAQ PA=,即65935ON=,解之得:1825ON=则BOC ABC AOB AOCS S S S∆∆∆∆=--111•••222BC AC AB OQ AC ON =-- 11611868106225225=⨯⨯-⨯⨯-⨯⨯ 39625= 【点睛】本题主要考查了相似三角形和圆的综合问题,掌握圆的切线判定、三角形中位线定理、相似三角形的判定和性质、割补法求面积等知识点是解题关键.5.(1)证明见解析;(2)y =18x 2(x >0);(3)①163π或8π或()π;②【解析】【分析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH 即可; (2)只要证明△AEF ∽△ACB ,可得AE EF AC BC=解决问题; (3)①分三种情形分别求解即可解决问题; ②只要证明△CFG ∽△HFA ,可得GF AF =CG AH ,求出相应的线段即可解决问题; 【详解】(1)证明:∵GH 垂直平分线段AD ,∴HA =HD ,GA =GD ,∵AB 是直径,AB ⊥GH ,∴EG =EH ,∴DG =DH ,∴AG =DG =DH =AH ,∴四边形AGDH 是菱形.(2)解:∵AB 是直径,∴∠ACB =90°,∵AE ⊥EF ,∴∠AEF =∠ACB =90°,∵∠EAF =∠CAB ,∴△AEF ∽△ACB , ∴AE EF AC BC=, ∴124x y x=,∴y =18x 2(x >0). (3)①解:如图1中,连接DF .∵GH 垂直平分线段AD ,∴FA =FD ,∴当点D 与O 重合时,△AOF 是等腰三角形,此时AB =2BC ,∠CAB =30°,∴AB =83, ∴⊙O 的面积为163π. 如图2中,当AF =AO 时,∵AB 22AC BC +216x +∴OA =2162x +, ∵AF 22EF AE +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭ 216x +2221182x ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭解得x =4(负根已经舍弃),∴AB=42,∴⊙O的面积为8π.如图2﹣1中,当点C与点F重合时,设AE=x,则BC=AD=2x,AB=2164x+,∵△ACE∽△ABC,∴AC2=AE•AB,∴16=x•2164x+,解得x2=217﹣2(负根已经舍弃),∴AB2=16+4x2=817+8,∴⊙O的面积=π•14•AB2=(217+2)π综上所述,满足条件的⊙O的面积为163π或8π或(217+2)π;②如图3中,连接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=52,∴AE=32,∴OE=OA﹣AE=1,∴EG=EH2,∵EF=18x2=98,∴FG=2﹣98,AF158,AH2,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴GF CG AF AH=,∴9 28158-=∴CG=5﹣10,=.故答案为【点睛】本题考查圆综合题、相似三角形的判定和性质、垂径定理、线段的垂直平分线的性质、菱形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题.6.(1)OD=4,(2)证明过程见详解(3)504 3π-【解析】【分析】(1)根据AB与圆O相切,在Rt△OBD中运用tan∠BOD=34,即可求出OD的长,(2)作辅助线证明四边形ADOG是矩形,得DO∥AC,sin∠OCG=35,在Rt△OCG中,求出OG的长等于半径即可解题,(3)利用S阴影=S Rt△BAC-S正方形ADOG-14S圆O,求出AC长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.7.(1)PA13O 392)见解析;(3)⊙O的半径为2或4757【解析】【分析】(1)过点A作BP的垂线,作直径AM,先在Rt△ABH中求出BH,AH的长,再在Rt△AHP中用勾股定理求出AP的长,在Rt△AMP中通过锐角三角函数求出直径AM的长,即求出半径的值;(2)证∠APB=∠PAD=2∠PAE,即可推出结论;(3)分三种情况:当AE⊥BD时,AB是⊙O的直径,可直接求出半径;当AE⊥AD时,连接OB,OE,延长AE交BC于F,通过证△BFE∽△DAE,求出BE的长,再证△OBE是等边三角形,即得到半径的值;当AE⊥AB时,过点D作BC的垂线,通过证△BPE∽△BND,求出PE,AE的长,再利用勾股定理求出直径BE的长,即可得到半径的值.【详解】(1)如图1,过点A作BP的垂线,垂足为H,作直径AM,连接MP,在Rt△ABH中,∠ABH=60°,∴∠BAH=30°,∴BH=1AB=2,AH=AB•sin60°=2∴HP=BP﹣BH=1,∴在Rt△AHP中,AP∵AB是直径,∴∠APM=90°,在Rt△AMP中,∠M=∠ABP=60°,∴AM=AP,sin60︒2∴⊙O的半径为,3即PA⊙O(2)当∠APB=2∠PBE时,∵∠PBE=∠PAE,∴∠APB=2∠PAE,在平行四边形ABCD中,AD∥BC,∴∠APB=∠PAD,∴∠PAD=2∠PAE,∴∠PAE=∠DAE,∴AE平分∠PAD;(3)①如图3﹣1,当AE⊥BD时,∠AEB=90°,∴AB是⊙O的直径,∴r=1AB=2;2②如图3﹣2,当AE⊥AD时,连接OB,OE,延长AE交BC于F,∵AD∥BC,∴AF⊥BC,△BFE∽△DAE,∴BFAD =EFAE,在Rt△ABF中,∠ABF=60°,∴AF=AB•sin60°=BF=12AB=2,∴28,∴EF,在Rt△BFE中,BE5,∵∠BOE=2∠BAE=60°,OB=OE,∴△OBE是等边三角形,∴r;③当AE⊥AB时,∠BAE=90°,∴AE为⊙O的直径,∴∠BPE=90°,如图3﹣3,过点D作BC的垂线,交BC的延长线于点N,延开PE交AD于点Q,在Rt△DCN中,∠DCN=60°,DC=4,∴DN=DC•sin60°=CN=12CD=2,∴PQ=DN=设QE=x,则PE=x,在Rt△AEQ中,∠QAE=∠BAD﹣BAE=30°,∴AE=2QE=2x,∵PE∥DN,∴△BPE∽△BND,∴PEDN =BPBN,∴BP 10,∴BP=10x,在Rt △ABE 与Rt △BPE 中, AB 2+AE 2=BP 2+PE 2,∴16+4x 2=(10﹣533x )2+(23﹣x )2, 解得,x 1=63(舍),x 2=3,∴AE =23,∴BE =22AB AE +=224(23)+=27,∴r =7,∴⊙O 的半径为2或475或7.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、勾股定理及相似三角形的判定与性质.8.(1)15°;(2)见解析;(3)16【解析】【分析】(1)先求得45AMN BMN ︒∠=∠=,再由OM OB =得到30OMB OBM ︒∠=∠=,于是可解;(2)连接,,OA OB ON .可证AON BON ∠=∠,ON AB ⊥,由//OD AB 可知90DON ︒∠=,在MON ∆中用内角和定理可证明;(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E.证明AMN BM N '≅,得到'MM N ∆是等腰三角形,然后在MNE ∆中用勾股定理即可求出16AM MB AN NB ⋅+⋅=.【详解】(1)AB 是O 的直径,90AMB ︒∴∠=AN BN =45AMN BMN ︒∴∠=∠=OM OB =30OMB OBM ︒∴∠=∠=453015CMO ︒︒︒∴∠=-=(2)连接,,OA OB ON .AN BN =AON BON ∴∠=∠,ON AB ⊥//OD AB90DON ︒∴∠=OM ON =OMN ONM ∴∠=∠180OMN ONM MOD DON ︒∠+∠+∠+∠= 290MOD DMO ︒∴∠+∠=(3)延长MB 至点M ',使BM AM '=,连接NM ',作NE MM '⊥于点E. 设AM a =,BM b =.四边形AMBN 是圆内接四边形180A MBN ︒∴∠+∠= 180NBM MBN '︒∠+∠= A NBM '∴∠=∠AN BN =AN BN ∴=(SAS)AMN BM N '∴≅MN NM '∴=,BM AM a '==, NE MM '⊥于点E.11()22ME EM MM a b ''∴===+,()2222ME BN BE MN +-=22211()()1622a b BN b a ⎡⎤⎡⎤∴++--=⎢⎥⎢⎥⎣⎦⎣⎦化简得216ab NB +=,16AM MB AN NB ∴⋅+⋅=【点睛】本题考查了圆的综合题,涉及的知识点有圆周角定理和垂径定理以及圆内接四边形的性质,综合性质较强,能够做出相应的辅助线是解题的关键.9.(1)2114y x =-;(2)点P 37(,)216-;(3)()222,222M --+ 【解析】 【分析】(1)根据题意得到AB=4,根据函数对称轴x=0,得到OA=OB=2,得到A 、B 坐标,代入函数解析式即可求解;(2)首先求得直线OD 解析式,然后设P (21,14t t -),得到PQ 关于t 的解析式,然后求出顶点式即可求解; (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,然后求得直线CM 的解析式,得到EM 的表达式,然后根据CMNCNEMNESSS=+即可求解.【详解】(1)∵AB =4OC ,且C (0,-1) ∴AB=4∴OA=OB=2,即A 点坐标()2,0-,B 点坐标()2,0 代入A 点坐标得2021a =- 解得14a =∴G 的解析式为2114y x =- 故答案为2114y x =-(2)当1x =-时,34y =-,即:点D 为(31,4--)∴直线OD 为:34y x = 设P (21,14t t -),则Q 为(22141,1334t t --),则: 22214141325()()33333212PQ t t t t t =--=-++=--+∴当32t =时,PQ 取得最大值2512,此时点P 位37(,)216- (3)设点21,14M m m ⎛⎫- ⎪⎝⎭,则N ()214,414m m ⎛⎫++- ⎪⎝⎭∵C 点坐标为(0,1)-∴可设直线CM 为1y kx =-,带入M 点坐标得:14k m = ∴直线CM 为114y mx =- 过点N 作NE y ∥轴交CM 于点E ,则E 点为()14,414m m m ⎛⎫++- ⎪⎝⎭∴4EN m =-- ∵()()12CMNCNE MNEC N N M S SSx x x x EN ⎡⎤=+=-+-•⎣⎦ ∴()()104=22m m --- ∴2440m m +-=解得:1222m =--,2222m =-+(舍去) ∴M (222,222--+ 【点睛】本题考查了待定系数法求函数解析式,二次函数综合应用,是二次函数部分的压轴题,题目较难,应画出示意图,然后进行讨论分析. 10.(1)()90,3,4--;(2)48QH t =- ;(321或732或2532【解析】 【分析】 (1)由于直线y =34tx -3过C 点,因此C 点的坐标为(0,-3),那么抛物线的解析式中c=-3,然后将A 点的坐标代入抛物线的解析式中即可求出b 的值;(2)求QH 的长,需知道OQ ,OH 的长.根据CQ 所在直线的解析式即可求出Q 的坐标,也就得出了OQ 的长,然后求OH 的长.在(1)中可得出抛物线的解析式,那么可求出B 的坐标.在直角三角形BPH 中,可根据BP=5t 以及∠CBO 的正弦值(可在直角三角形COB 中求出),得出BH 的长,根据OB 的长即可求出OH 的长.然后OH ,OQ 的差的绝对值就是QH 的长;(3)本题要分①当H 在Q 、B 之间.②在H 在O ,Q 之间两种情况进行讨论;根据不同的对应角得出的不同的对应成比例线段来求出t 的值. 【详解】 (1)由于直线y =34tx -3过C 点,C 点在y 轴上,则C 点的坐标为(0,-3), 将A 点坐标代入解析式中,得0=34-b -3,解得b =-94;故答案为 ()0,3-,94-; (2)由(1),得y =34x 2-94x -3,它与x 轴交于A ,B 两点,得B (4,0).∴OB =4, 又∵OC =3, ∴BC =5.由题意,得△BHP ∽△BOC , ∵OC ∶OB ∶BC =3∶4∶5, ∴HP ∶HB ∶BP =3∶4∶5, ∵PB =5t ,∴HB =4t ,HP =3t . ∴OH =OB -HB =4-4t . 由y =34tx -3与x 轴交于点Q ,得Q (4t ,0). ∴OQ =4t .①当H 在Q 、B 之间时, QH =OH -OQ=(4-4t )-4t =4-8t . ②当H 在O 、Q 之间时, QH =OQ -OH=4t -(4-4t )=8t -4. 综合①,②得QH =|4-8t |;(3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似.t 11,t 2=732,t 3=2532解析:①当H 在Q 、B 之间时,QH =4-8t , 若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得48334t tt-=, ∴t =732. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得34834t t t-=, 即t 2+2t -1=0.∴t 11,t 2=1-(舍去). ②当H 在O 、Q 之间时,QH =8t -4. 若△QHP ∽△COQ ,则QH ∶CO =HP ∶OQ ,得84334t tt-=, ∴t =2532. 若△PHQ ∽△COQ ,则PH ∶CO =HQ ∶OQ ,得38434t t t-=, 即t 2-2t +1=0. ∴t 1=t 2=1(舍去).综上所述,存在t 的值,t 11,t 2=732,t 3=2532.故答案为(1)()90,3,4--;(2)48QH t =- ;(31或732或2532.【点睛】本题是二次函数的综合题,此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.11.(1) 见解析;(2) 2,2 ;(3)0或2或2x << 【解析】 【分析】()1根据等腰三角形的定义,用分类讨论的思想解决问题即可;()2通过画图分析可得,当190∠=时,符合()1中条件的点C 有2个,当160∠=时,符合()1中条件的点C 有2个; ()3分三种情形讨论求解即可.【详解】解:()1如图1中,点1C ,2C ,3C ,4C 即为所求.()2如图一,当190∠=时,符合()1中条件的点C 有2个;如图二,当160∠=时,符合()1中条件的点C 有2个,当∠1=90°或∠1=60°时,符合条件的点C 都是在点B 左右各一个,当∠1=60°时,符合条件的点C 如图所示:故答案为2,2.()3①如图31-中,当x 0=时,当PM PN =时,有点1P ,当ON OP =时,有点2P ,当NO NP =时,有点3P ,此时有3个P 点.②如图32-中,当N 与OB 相切于点1P 时,1OP N 是等腰直角三角形,1ON 2NP 22∴==,OM ON MN 222∴=-=-,此时有3个P 点.③如图33-中,当M 经过点O 时,此时只有2个P 点,如图34-中,M 与OB 相交时,此时有3个P 点,如图35-中,当M 与OB 相切时,只有2个P 点.此时OM 22=,综上所述,当2x 22<<3个P 点.∴满足条件的x 的值为0或222或2x 22<<【点睛】本题考查等腰三角形的判定和性质,尺规作图,直线与圆的位置关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(1)点B 的坐标为(﹣1,0),点A 的坐标为(3,0),点C 的坐标为(0,3);抛物线的对称轴为直线x =1;(2)⊙P 5;(3)1<y <2;(4)3﹣322. 【解析】 【分析】(1)分别代入y =0、x =0求出与之对应的x 、y 的值,进而可得出点A 、B 、C 的坐标,再由二次函数的对称性可找出抛物线的对称轴;(2)连接CP 、BP ,在Rt △BOC 中利用勾股定理可求出BC 的长,由等腰直角三角形的性质及圆周角定理可得出∠BPC =90°,再利用等腰直角三角形的性质可求出BP 的值即可; (3)设点D 的坐标为(1,y),当∠BDC =90°时,利用勾股定理可求出y 值,进而可得出:当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,根据旋转的性质可找出点C′的坐标及∠AC′O′=45°,进而可找出线段C′O′所在直线的解析式,由点E在CO上可得出点F在C′O′上,过点O作OF⊥C′O′于点F,则△OC′F 为等腰直角三角形,此时线段OF取最小值,利用等腰直角三角形的性质即可求出此时OF 的长即可.【详解】(1)当y=0时,﹣(x+1)(x﹣3)=0,解得:x1=﹣1,x2=3,∴点B的坐标为(﹣1,0),点A的坐标为(3,0);当x=0时,y=﹣(0+1)×(0﹣3)=3,∴点C的坐标为(0,3);∵抛物线与x轴交于点(﹣1,0)、(3,0),∴抛物线的对称轴为直线x=1;(2)连接CP、BP,如图1所示,在Rt△BOC中,BC=∵∠AOC=90°,OA=OC=3,∴∠OAC=∠OCA=45°,∴∠BPC=2∠OAC=90°,BC∴CP=BP=2∴⊙P(3)设点D的坐标为(1,y),当∠BDC=90°时,BD2+CD2=BC2,∴[(﹣1﹣1)2+(0﹣y)2]+[(0﹣1)2+(3﹣y)2]=10,整理,得:y2﹣3y+2=0,解得:y1=1,y2=2,∴当1<y<2时,∠BDC>90°;(4)将△ACO绕点A逆时针方向旋转45°,点C落在点C′处,点O落在点O′处,如图2所示.∵AC=ACO=45°,∴点C′的坐标为(3﹣,0),∠AC′O′=45°,∴线段C′O′所在直线的解析式为y=﹣x+3﹣∵点E在线段CO上,∴点F在线段C′O′上.过点O作OF⊥C′O′于点F,则△OC′F为等腰直角三角形,此时线段OF取最小值,∵△OC′F为等腰直角三角形,∴OF=22OC′=22(32﹣3)=3﹣322.【点睛】本题考查了二次函数图象上点的坐标特征、二次函数的性质、圆周角定理、勾股定理、旋转以及等腰直角三角形,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B、C的坐标;(2)利用圆周角定理找出∠BPC=90°;(3)利用极限值法求出点D纵坐标;(4)利用点到直线之间垂直线段最短确定点F的位置.。
最新初三九年级上册数学 压轴解答题测试卷附答案
最新初三九年级上册数学 压轴解答题测试卷附答案一、压轴题1.如图,在四边形ABCD 中,9054ABC BCD AB BC cm CD cm ∠=∠=︒===,,点P 从点C 出发以1/cm s 的速度沿CB 向点B 匀速移动,点M 从点A 出发以15/cm s 的速度沿AB 向点B 匀速移动,点N 从点D 出发以/acm s 的速度沿DC 向点C 匀速移动.点P M N 、、同时出发,当其中一个点到达终点时,其他两个点也随之停止运动,设移动时间为ts . (1)如图①,①当a 为何值时,点P B M 、、为顶点的三角形与PCN △全等?并求出相应的t 的值; ②连接AP BD 、交于点E ,当AP BD ⊥时,求出t 的值; (2)如图②,连接AN MD 、交于点F .当3883a t ==,时,证明:ADF CDF S S ∆∆=.2.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD 2⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.3.如图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点p 从A 开始折线A ——B ——C ——D 以4cm/秒的 速度 移动,点Q 从C 开始沿CD 边以1cm/秒的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动的时间t (秒)(1)t 为何值时,四边形APQD 为矩形.(2)如图(2),如果⊙P 和⊙Q 的半径都是2cm ,那么t 为何值时,⊙P 和⊙Q 外切? 4.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.5.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想. 6.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)7.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.8.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x,….【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M,N,P为⊙O上的三点,且∠P=β,sinβ=35,求sin2β的值.9.如图,一次函数122y x=-+的图象交y轴于点A,交x轴于点B点,抛物线2y x bx c=-++过A、B两点.(1)求A,B两点的坐标;并求这个抛物线的解析式;(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.10.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 11.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.12.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)① 2.5t =, 1.1a =或2t =,0.5a =;②1t =;(2)见解析 【解析】 【分析】(1)①当PBM PCN ≅△△时或当MBP PCN ≅△△时,分别列出方程即可解决问题; ②当AP BD ⊥时,由ABP BCD ≅△△,推出BP CD =,列出方程即可解决问题; (2)如图②中,连接AC 交MD 于O 只要证明AOM COD ≅△△,推出OA OC =,可得ADO CDO S S ∆∆=,AFO CFO S S ∆∆=,推出ADO AFO CDO CFO S S S S ∆∆∆∆-=-,即ADF CDF S S ∆∆=;【详解】解:(1)①90ABC BCD ∠=∠=︒,∴当PBM PCN ≅△△时,有BM NC =,即5t t -=①5 1.54t at -=-②由①②可得 1.1a =, 2.5t =.当MBP PCN ≅△△时,有BM PC =,BP NC =,即5 1.5t t -=③ 54t at -=-④,由③④可得0.5a =,2t =.综上所述,当 1.1a =, 2.5t =或0.5a =,2t =时,以P 、B 、M 为顶点的三角形与PCN △全等; ②AP BD ⊥, 90BEP ∴∠=︒,90APB CBD ∴∠+∠=︒,90ABC ∠=︒,90APB BAP ∴∠+∠=︒, BAP CBD ∴∠=∠,在ABP △和BCD 中,BAP CBD AB BCABC BCD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABP BCD ASA ∴≅△△,BP CD ∴=, 即54t -=, 1t ∴=;(2)当38a =,83t =时,1DN at ==,而4CD =,DN CD ∴<,∴点N 在点C 、D 之间, 1.54AM t ==,4CD =, AM CD ∴=,如图②中,连接AC 交MD 于O , 90ABC BCD ∠=∠=︒, 180ABC BCD ∴∠+∠=︒, //AB BC ∴,AMD CDM ∴∠=∠,BAC DCA ∠=∠, 在AOM 和COD △中, AMD CDM AM CDBAC DCA ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOM COD ASA ∴≅△△,OA OC ∴=,ADO CDO S S ∆∆∴=,AFO CFO S S ∆∆=,ADO AFO CDO CFO S S S S ∆∆∆∆∴-=-, ADF CDF S S ∆∆∴=.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.2.(1)CD 2+BD 2=2AD 2,见解析;(2)BD 2=CD 2+2AD 2,见解析;(3)①2,②最大值为4414,半径为104【解析】 【分析】(1)先判断出∠BAD =CAE ,进而得出△ABD ≌△ACE ,得出BD =CE ,∠B =∠ACE ,再根据勾股定理得出DE 2=CD 2+CE 2=CD 2+BD 2,在Rt △ADE 中,DE 2=AD 2+AE 2=2AD 2,即可得出结论;(2)同(1)的方法得,ABD ≌△ACE (SAS ),得出BD =CE ,再用勾股定理的出DE 2=2AD 2,CE 2=CD 2+DE 2=CD 2+2AD 2,即可得出结论;(3)先根据勾股定理的出DE 2=CD 2+CE 2=2CD 2,再判断出△ACE ≌△BCD (SAS ),得出AE =BD ,①将AD =6,BD =8代入DE 2=2CD 2中,即可得出结论;②先求出CD =2,再将AD+BD =14,CD =2代入2AD BD ⎛⎫⋅ ⎪ ⎪⎝⎭,化简得出﹣(AD ﹣212)2+4414,进而求出AD ,最后用勾股定理求出AB 即可得出结论. 【详解】解:(1)CD 2+BD 2=2AD 2,理由:由旋转知,AD =AE ,∠DAE =90°=∠BAC , ∴∠BAD =∠CAE , ∵AB =AC ,∴△ABD ≌△ACE (SAS ),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=故答案为72;②∵AD+BD=14,∴CD=72,∴2AD BD CD⎛⎫⋅+⎪⎪⎝⎭=AD•(BD+22×72)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣212)2+4414,∴当AD=212时,22AD BD CD⎛⎫⋅+⎪⎪⎝⎭的最大值为4414,∵AD+BD=14,∴BD=14﹣212=72,在Rt△ABD中,根据勾股定理得,AB=22710AD BD+=,∴⊙O的半径为OA=12AB=7104.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.3.(1)4;(2)t为4s,203s,283s时,⊙P与⊙Q外切.【解析】试题分析:(1)四边形APQD为矩形,也就是AP=DQ,分别用含t的代数式表示,解即可;(2)主要考虑有四种情况,一种是P 在AB 上,一种是P 在BC 上时.一种是P 在CD 上时,又分为两种情况,一种是P 在Q 右侧,一种是P 在Q 左侧.并根据每一种情况,找出相等关系,解即可.试题解析:(1)根据题意,当AP=DQ 时,四边形APQD 为矩形.此时,4t=20-t ,解得t=4(s ).答:t 为4时,四边形APQD 为矩形(2)当PQ=4时,⊙P 与⊙Q 外切.①如果点P 在AB 上运动.只有当四边形APQD 为矩形时,PQ=4.由(1),得t=4(s ); ②如果点P 在BC 上运动.此时t ≥5,则CQ ≥5,PQ ≥CQ ≥5>4,∴⊙P 与⊙Q 外离;③如果点P 在CD 上运动,且点P 在点Q 的右侧.可得CQ=t ,CP=4t-24.当CQ-CP=4时,⊙P 与⊙Q 外切.此时,t-(4t-24)=4,解得t=203(s ); ④如果点P 在CD 上运动,且点P 在点Q 的左侧.当CP-CQ=4时,⊙P 与⊙Q 外切.此时,4t-24-t=4,解得t=283(s ), ∵点P 从A 开始沿折线A-B-C-D 移动到D 需要11s ,点Q 从C 开始沿CD 边移动到D 需要20s ,而283<11, ∴当t 为4s ,203s ,283s 时,⊙P 与⊙Q 外切. 考点:1.矩形的性质;2.圆与圆的位置关系. 4.(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.【解析】【分析】(1)根据AD BD ⊥得到AB 是直径,连接OC 、OD ,发现等边三角形,再根据圆周角定理求得30EBD ∠=︒,再进一步求得E ∠的度数;(2)分别画出三种图形,图2中,根据圆周角定理和圆内接四边形的性质可以求得;图3中,根据三角形的外角的性质和圆周角定理可以求得;图4中,根据切线的性质发现直角三角形,根据直角三角形的两个锐角互余求得.【详解】解:(1)连接OC 、OD ,如图:∵AD BD ⊥∴AB 是直径∴1OC OD CD === ∴OCD 是等边三角形∴60COD ∠=︒∴30DBE ∠=︒∴60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:连接OD 、OC 、AC ,如图:∵1OD OC CD === ∴OCD 为等边三角形∴60COD ∠=︒∴30DAC ∠=︒∴30EBD ∠=︒∵90ADB ∠=︒∴903060E ∠=︒-︒=︒②结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:连接OC 、OD ,如图:∵AD BD ⊥∴AB 是直径 ∴1OC OD CD ===∴OCD 是等边三角形∴60COD ∠=︒∴30DBE ∠=︒∴903060BED ∠=︒-︒=︒③结论:直线AD 、BC 相交所成锐角的大小不发生改变依然是60︒证明:如图:∵当点B 与点C 重合时,则直线BE 与O 只有一个公共点 ∴EB 恰为O 的切线∴90ABE ∠=︒∵90ADB ∠=︒,1CD =,2AD =∴30A ∠=︒∴60E ∠=︒.故答案是:(1)60E ∠=︒(2)①结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.②结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD 、BC 相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.【点睛】本题考查了圆周角定理、等边三角形的判定、圆内接四边形的性质.此题主要是能够根据圆周角定理的推论发现AB 是直径,进一步发现等边COD △,从而根据圆周角定理以及圆内接四边形的性质求解.5.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD与△BCF中,AC BCACD ACBCD CF=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCF(SAS)∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE,取AB的中点M,连接MC,ME∵△ABC和△ABE都是直角三角形∴12MC ME AB AM BM====,∴点A,B,C,E四点在同一个圆M上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.6.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°,综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC ∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,∴180BDC BPC ∠+∠=∵180BPD APB ∠+∠=∴BPC APB ∠=∠∴P 是ABC ∆的等角点(3)作BC的中垂线MN,以C为圆心,BC的长为半径作弧交MN与点D,连接BD,根据垂直平分线的性质和作图方法可得:BD=CD=BC∴△BCD为等边三角形∴∠BDC=∠BCD=∠DBC=60°作CD的垂直平分线交MN于点O以O为圆心OB为半径作圆,交AD于点Q,圆O即为△BCD的外接圆∴∠BQC=180°-∠BDC=120°∵BD=CD∴∠BQD=∠CQD∴∠BQA=∠CQA=12(360°-∠BQC)=120°∴∠BQA=∠CQA=∠BQC如图③,点Q即为所求.(4)③⑤.①如下图所示,在RtABC中,∠ABC=90°,O为△ABC的内心假设∠BAC=60°,∠ACB=30°∵点O是△ABC的内心∴∠BAO=∠CAO=12∠BAC=30°,∠ABO=∠CBO=12∠ABC=45°,∠ACO=∠BCO=12∠ACB=15°∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°显然∠AOC ≠∠AOB ≠∠BOC ,故①错误;②对于钝角等腰三角形,它的外心在三角形的外部,不符合等角点的定义,故②错误; ③正三角形的每个中心角都为:360°÷3=120°,满足强等角点的定义,所以正三角形的中心是它的强等角点,故③正确;④由(3)可知,点Q 为△ABC 的强等角,但Q 不在BC 的中垂线上,故QB ≠QC ,故④错误;⑤由(3)可知,当ABC ∆的三个内角都小于120时,ABC ∆必存在强等角点Q . 如图④,在三个内角都小于120的ABC ∆内任取一点'Q ,连接'Q A 、'Q B 、'Q C ,将'Q AC ∆绕点A 逆时针旋转60到MAD ∆,连接'Q M ,∵由旋转得'Q A MA =,'Q C MD =,'60Q AM ∠=∴'AQ M ∆是等边三角形.∴''Q M Q A =∴'''''Q A Q B Q C Q M Q B MD ++=++∵B 、D 是定点,∴当B 、'Q 、M 、D 四点共线时,''Q M Q B MD ++最小,即'''Q A Q B Q C ++最小.而当'Q 为ABC ∆的强等角点时,'''120AQ B BQ C CQ A AMD ∠=∠=∠==∠, 此时便能保证B 、'Q 、M 、D 四点共线,进而使'''Q A Q B Q C ++最小.故答案为:③⑤.【点睛】此题考查的是新定义类问题、圆的基本性质、圆周角定理、圆的内接多边形综合大题,掌握“等角点”和“强等角点”的定义、圆的基本性质、圆周角定理、圆的内接多边形中心角公式和分类讨论的数学思想是解决此题的关键.7.(1)OD=4,(2)证明过程见详解(3)5043π- 【解析】【分析】(1)根据AB与圆O相切,在Rt△OBD中运用tan∠BOD=34,即可求出OD的长,(2)作辅助线证明四边形ADOG是矩形,得DO∥AC,sin∠OCG=35,在Rt△OCG中,求出OG的长等于半径即可解题,(3)利用S阴影=S Rt△BAC-S正方形ADOG-14S圆O,求出AC长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.8.(1)sin2α=429;(2)sin2β=sin∠MON=2425.【解析】试题分析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.利用面积法求出CD,在Rt△COD中,根据sin2α=CDOC,计算即可.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.首先证明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=35MNNQ=,设MN=3k,则NQ=5k,易得OM=12NQ=52k,可得MQ=22QN MN-=4k,由12•MN•MQ=12•NQ•MR,求出在Rt△MRO中,根据sin2β=sin∠MON=MROM,计算即可.试题解析:(1)如图1中,⊙O中,AB是直径,点C在⊙O上,所以∠ACB=90°,作CD⊥AB于D.设∠BAC=α,则sinα=13BCAB=,可设BC=x,则AB=3x.∴22AB BC-22(3)x x-2x,∵12•AC•BC=12•AB•CD,∴CD=22x,∵OA=OC,∴∠OAC=∠OCA=α,∴∠COB=2α,∴sin2α=CDOC=29.(2)如图2中,连接NO,并延长交⊙O于点Q,连接MQ,MO,过点M作MR⊥NO于点R.在⊙O中,∠NMQ=90°,∵∠Q=∠P=β,∴∠MON=2∠Q=2β,在Rt△QMN中,∵sinβ=35 MNNQ=,∴设MN=3k,则NQ=5k,易得OM=12NQ=52k,∴22QN MN-=4k,∵1122NMQS MN MQ NQ MR∆==,∴3k•4k=5k•MR∴MR=12k 5,在Rt△MRO中,sin2β=sin∠MON=122455252kMRkOM==.考点:圆的综合题.9.(1) A(0,2),B(4,0),272 2y x x=-++;(2)当t=2时,MN有最大值4;(3) D点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】(1)首先求得A、B的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN的表达式,这个表达式是关于t的二次函数,利用二次函数的极值求线段MN的最大值;(3)本问要点是明确D点的可能位置有三种情况,如答图2所示,其中D1、D2在y轴上,利用线段数量关系容易求得坐标;D3点在第一象限是直线D1N和D2M的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x=-+的图象交y轴于点A,交x轴于点B点,∴A、B点的坐标为:A(0,2),B(4,0),将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72, ∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+, D 2M 的解析式为:322y x =-,联立两个方程得:D3(4,4),故所求的D点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.10.(1)y=−x2+3;(2)①t=2或t=5;②6−3⩽t⩽6【解析】【分析】(1)根据已知条件求出AB和CD的中点坐标,然后利用待定系数法求该二次函数的解析式;(2)①由D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);则有DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2,再根据DF=7FB,即可求得t;②如图3所示,画出旋转后的图形,认真分析满足题意要求时,需要具备什么样的限制条件,然后根据限制条件列出不等式,求出的取值范围,确定限制条件是解题的关键【详解】(1)由题意得AB的中点坐标为(−3,0),CD的中点坐标为(0,3),分别代入y=ax2+b得:3a b0b3+=⎧⎨=⎩,解得a1b3=-⎧⎨=⎩,∴y=−x2+3.(2)①D(−3,3),则平移后坐标为D´(−3+t,3),F(t,-t2+3);DF2=(−3+t-t)2+(-t2+3-3)2;FB2=(-t2+3)2DF=7FB,则(−3+t-t)2+(-t2+3-3)2=7(-t2+3)2解得:t2=2或5,则t=2或t=5;②如图3所示,依题意作出旋转后的三角形△FE′C′,过C′作MN⊥x轴,分别交抛物线、x轴于点M、点N.观察图形可知,欲使△FE′C′落在指定区域内,必须满足:EE′⩽BE且MN⩾C′N.∵F(t,3−t2),∴EF=3−(3−t2)=t2,∴EE′=2EF=2t2,由EE′⩽BE,得2t 2⩽3,解得t⩽2. ∵∴C′点的横坐标为∴)2,又C′N=BE′=BE−EE′=3−2t 2由MN ⩾C′N,得2⩾3−2t 2,解得t或t ⩽舍去).∴tt【点睛】本题是动线型中考压轴题,综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点,难度较大,对考生能力要求很高,灵活应用所学知识是解答本题的关键..11.(1)214y x x =-;(2)①122y x =-+,②1,见解析,定值为1 【解析】【分析】(1)利用待定系数法把点(4,0)、(2,3)-代入解析式,再结合抛物线对称轴方程得到三元一次方程组,解方程组即可.(2)①先求出平移后的抛物线解析式,设出直线MA 的解析式1y kx =-,再联立抛物线解析式2114y kx y x =-⎧⎪⎨=⎪⎩,得到21104x kx -+=,令210k ∆=-=,求出k 的值,得出APM ∆为等腰直角三角形,运用APM ∆与BQO ∆相似得出90BQO APM ∠=∠=,故AB :y mx n =+,则2144m n m n +=⎧⎨-+=⎩即可求出AB 函数关系式. ②当M 在y 轴上时,m=0,再根据图像对称性可得A 、B 两点关于y 轴对称,得出a ,b 的关系,即可求出答案;当M 不在与轴上时,设MA :111y k x k m =--,联立抛物线解析式112114y k x k m y x =--⎧⎪⎨=⎪⎩,得出2114440x k x k m -++=,令212=16(1)0k k m ∆--=,同理设出MB ,令22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,得出12k k m +=,即可求出答案.【详解】解:(1)设2y=ax +bx+c a (≠0),把点(4,0)、(2,3)-代入 ∵对称轴为x=2∴164042322a b c a b c b a ⎧⎪++=⎪-+=⎨⎪⎪-=⎩解得1410a b c ⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线解析式214y x x =-. (2)①(0,1)M -,平移后抛物线214y x =设MA :1y kx =- 则联立2114y kx y x =-⎧⎪⎨=⎪⎩,21104x kx -+= 210k ∆=-=1k ∴=±又由图,A 在y 轴右侧故1k =,(2,1)A2AP PM ∴==,APM ∆为等腰直角三角形又APM ∆与BQO ∆相似∴△BQO 为等腰直角三角形,设B (﹣x ,x ),带入抛物线解析式得:214x x = 解得x=4或x=0(舍去)∴B (﹣4,4)设AB :y mx n =+,把(2,1)A ,B (﹣4,4)带入得: 则2144m n m n +=⎧⎨-+=⎩,122m n ⎧=-⎪⎨⎪=⎩ ∴AB 解析式为:122y x =-+. ②(i )∵214y x =关于y 轴对称,M 在y 轴上,且MA ,MB 与抛物线只有一个交点 ∴A 、B 两点关于y 轴对称,∴a=﹣b∴m a m b --=0+b 0b-=1, 故答案是:1;(ii )设MA :111y k x k m =--, 则联立112114y k x k m y x =--⎧⎪⎨=⎪⎩, 2114440x k x k m -++=,此方程仅一个根, 故11422k a k ==, 且212=16(1)0k k m ∆--=,同理设MB :221y k x k m =--,亦有22b k =,22216(1)0k k m ∆=--=,故1k ,2k 为方程210x mx --=不相等两个实数根,12k k m +=, ()111122122m k m k m a m b m m k k m---∴===----, 即m a m b --为一定值1, ∴当点M 不在y 轴上时,m a m b--为一个定值1. 【点睛】 本题考查的是二次函数综合题型,二次函数待定系数法求函数解析式,二次函数与一元二次方程的综合应用,二次函数与相似三角形的综合应用,解题关键在于理解题意,正确分析题目,运用数形结合思想进行解题.12.(1)证明见解析;(2)①21(3)21029y x =【解析】【分析】 ()1由圆内接四边形性质知ABC CDE ∠∠=,由AB AC =知ABC ACB ∠∠=,从而得ADB ACB ABC CDE ∠∠∠∠===;()2①由BAD DCE ∠∠=,ADB CDE ∠∠=可证ADB ∽CDE.从而得AD DB CD DE =; ②连接AO 并延长交BD 于点M ,连接CM ,证MAF ≌DAF 得MF DF =,据此知BM CM CD 3===,MF DF 2==,求得22CF CD DF 5=-=,利用三角函数的定义可得答案;()3证ABD ∽AEB 得2AB AD AE.=⋅证ABD ∽CED 得BD CD AD DE.⋅=⋅从而得2ABC BCD 111S S AB AC sin BAC BD CD sin BDC x sin BAC 222∠∠∠-=⋅⋅-⋅⋅=,再由5tan ABC tan CDE 2∠∠==,可设BM 2a =,知AM 5a =,AB 29a =,由面积法可得BN a 29=,即20sin BAC 29∠=,据此得出答案. 【详解】解:()1四边形ABCD 是圆O 的内接四边形,ABC 180ADC CDE ∠∠∠∴=-=.AB AC =,ABC ACB ∠∠∴=.ADB ACB ABC CDE ∠∠∠∠∴===;()2①四边形ABCD 内接于圆,BAD 180BCD DCE ∠∠∠∴=-=.又ADB CDE ∠∠=,ADB ∴∽CDE .AD DB CD DE∴=, AD DE BD CD 7321∴⋅=⋅=⨯=;②连接AO 并延长交BD 于点M ,连接CM ,AM 平分BAC ∠,AM BC ∴⊥,CAD CBD 90ACB MAF ∠∠∠∠∴==-=.MAF ∴≌()DAF ASA .MF DF ∴=,即AC 是线段MD 的中垂线. BM CM CD 3∴===,MF DF 2∴==,在Rt CDF 中,2222CF CD DF 325=-=-=,BF tan ACB 5CF 5∠∴===. ()3BAD EAB ∠∠=,ADB ACB ABE ∠∠∠==,ABD ∴∽AEB ,AB AD AE AB∴=,即2AB AD AE =⋅. CDE ADB ∠∠=,DCE BAD ∠∠=ABD ∴∽CED ,BD AD DE CD∴=,即BD CD AD DE ⋅=⋅. ABC BCD 11S S AB AC sin BAC BD CD sin BDC 22∠∠-=⋅⋅-⋅⋅, ()1sin BAC AD AE AD DE 2∠=⋅-⋅. 21x sin BAC 2∠=,又5tan ABC tan CDE 2∠∠==, 如图2,设BM 2a =,则AM 5a =,AB 29a =, 由面积法可得BN 29=,即20sin BAC 29∠=, 22ABC BCD 12010S S x x 22929y ∴-==⨯=. 【点睛】本题是圆的综合问题,解题的关键是掌握圆内接四边形的性质、圆周角定理、相似三角形和全等三角形的判定与性质、等腰三角形的性质及三角函数的应用等知识点.。
最新初三九年级数学上册 压轴解答题测试卷(含答案解析)
最新初三九年级数学上册 压轴解答题测试卷(含答案解析)一、压轴题1.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).2.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上;①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.3.如图, AB 是⊙O 的直径,点D 、E 在⊙O 上,连接AE 、ED 、DA ,连接BD 并延长至点C ,使得DAC AED ∠=∠.(1)求证: AC 是⊙O 的切线;(2)若点E 是BC 的中点, AE 与BC 交于点F ,①求证: CA CF =;②若⊙O 的半径为3,BF =2,求AC 的长.4.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着A C B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<).(1)当47t <<时,BP = ;(用含t 的式子表示)(2)求S 与t 的函数表达式;(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.5.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83. (1)求⊙O 的半径OD ;(2)求证:AC 是⊙O 的切线;(3)求图中两阴影部分面积的和.6.如图,已知在矩形ABCD 中,AB =2,BC =3P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD .(1)若DQ 3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.7.如图 1,抛物线21:4C y ax ax c =-+交x 轴正半轴于点()1,0,A B ,交y 轴正半轴于C ,且OB OC =.(1)求抛物线1C 的解析式;(2)在图2中,将抛物线1C 向右平移n 个单位后得到抛物线2C ,抛物线2C 与抛物线1C 在第一象限内交于一点P ,若CAP ∆的内心在CAB △内部,求n 的取值范围(3)在图3中,M 为抛物线1C 在第一象限内的一点,若MCB ∠为锐角,且3tan MCB ∠>,直接写出点M 横坐标M x 的取值范围___________8.如图,抛物线y =ax 2-4ax +b 交x 轴正半轴于A 、B 两点,交y 轴正半轴于C ,且OB =OC =3.(1) 求抛物线的解析式;(2) 如图1,D 为抛物线的顶点,P 为对称轴左侧抛物线上一点,连接OP 交直线BC 于G ,连GD .是否存在点P ,使2GD GO=?若存在,求点P 的坐标;若不存在,请说明理由; (3) 如图2,将抛物线向上平移m 个单位,交BC 于点M 、N .若∠MON =45°,求m 的值.9.如图,一次函数122y x =-+的图象交y 轴于点A ,交x 轴于点B 点,抛物线2y x bx c =-++过A 、B 两点.(1)求A ,B 两点的坐标;并求这个抛物线的解析式;(2)作垂直x 轴的直线x =t ,在第一象限交直线AB 于M ,交这个抛物线于N .求当t 取何值时,MN 有最大值?最大值是多少?(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,求第四个顶点D 的坐标.10.如图,扇形OMN 的半径为1,圆心角为90°,点B 是上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)当点B 移动到使AB :OA=:3时,求的长;(2)当点B 移动到使四边形EPGQ 为矩形时,求AM 的长.(3)连接PQ ,试说明3PQ 2+OA 2是定值.11.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F ,(1)如图①,当点F 与点B 重合时,DE DC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DE DC 的值; (3)如图③,若DE CF ,求DE DC的值.12.如图,PA 切⊙O 于点A ,射线PC 交⊙O 于C 、B 两点,半径OD ⊥BC 于E ,连接BD 、DC 和OA ,DA 交BP 于点F ;(1)求证:∠ADC+∠CBD =12∠AOD ; (2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)证明见解析;(2)213;(3)23a 【解析】【分析】(1)根据△ABC 是等边三角形,从而可以得出∠BAC=∠C ,结合圆周角定理即可证明;(2)过点A 作AG ⊥BC 于点G ,根据△ABC 是等边三角形,可以得到BG 、AG 的值,由BF ∥AG 可得到AF BG EF EB=,求出BE ,最后利用勾股定理即可求解; (3)过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =,可以得到BM 的值,根据BF ∥AG ,可证得△EBF ∽△EGA ,列比例式求出BF ,从而表示出△OFB 的面积.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠C=60°,∵∠DEB=∠BAC=60°,∠D=∠C=60°,∴∠DEB=∠D ,∴BD=BE ;(2)解:如图所示,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC=6, ∴BG=11322BC AC ==, ∴在Rt △ABG 中,333AG BG ==,∵BF ⊥EC , ∴BF ∥AG ,∴AF BG EF EB=, ∵AF :EF=3:2, ∴BE=23BG=2, ∴EG=BE+BG=3+2=5,在Rt △AEG 中,()2222335213AE AG EG =+=+=(3)解:如图所示,过点O 作OM ⊥BC 于点M ,由题(2)知AF BG EF EB =,CG=BG=1122AC a =, ∴3=2AF BG EF EB =, ∴22113323EB BG a a ==⨯=, ∴EC=CG+BG+BE=11142233a a a a ++=, ∴EM=12EC =23a , ∴BM=EM-BE=211333a a a -=, ∵BF ∥AG ,∴△EBF ∽△EGA ,∴123=11532a BF BE AG EG a a ==+,∵2AG a ==,∴25BF ==, ∴△OFB的面积=211223BF BM a a ⋅=⨯=. 【点睛】本题主要考查了圆的综合题,关键是根据等边三角形的性质,勾股定理和相似三角形的判定和性质求解.2.(1)①详见解析;②图见解析,猜想∠BEC=45°;(2)详见解析【解析】【分析】(1)①证明△ACD ≌△BCF ,得到∠CAD=∠CBF 即可得到∠AEF=∠BCF=90°即可; ②根据已知条件画图即可;(2)取AB 的中点M ,根据直角三角形斜边上的中线等于斜边的一半可得到点A ,B ,C ,E 四点在同一个圆M 上,再利用圆周角定理即可证明.【详解】解:(1)①∵,90AC BC ACB ︒=∠=,CD CF =∴在△ACD 与△BCF 中,AC BC ACD ACB CD CF =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCF (SAS )∴∠CAD=∠CBF又∵∠AFE=∠BFC∴∠AEF=∠BCF=90°,∴BE ⊥AD②图如下所示:猜想∠BEC=45°,(2)选择图1证明,连接CE ,取AB 的中点M ,连接MC ,ME∵△ABC 和△ABE 都是直角三角形∴12MC ME AB AM BM ====, ∴点A ,B ,C ,E 四点在同一个圆M 上,∴∠BEC=∠BAC=45°,∴∠BEC=45°【点睛】本题考查了全等三角形的判定和性质、圆周角定理等知识点,解题的关键是根据已知条件选择全等三角形的判定定理,并充分利用数形结合的思想解答.3.(1)详见解析;(2)①详见解析;②8【解析】【分析】(1)先得到90ADB ∠=︒,利用圆周角定理得到DBA DAC ∠=∠,即可证明AC 是切线;(2)①利用等弧所对的圆周角相等,得到BAE DAE ∠=∠,然后得到CFA CAF ∠=∠,即可得到结论成立;②设AC CF x ==,利用勾股定理,即可求出AC 的长度.【详解】(1)证明: ∵AB 是⊙O 的直径,∴90ADB ∠=︒,∴90DBA DAB ∠+∠=︒,∵DEA DBA ∠=∠,DAC DEA ∠=∠,∴DBA DAC ∠=∠,∴90DAC DAB ∠+∠=︒,∴90CAB ∠=︒,∴AC 是⊙O 的切线;(2)① ∵点E 是弧BD 的中点,∴BAE DAE ∠=∠,∵CFA DBA BAE ∠=∠+∠,CAF CAD DAE ∠=∠+∠,∴CFA CAF ∠=∠∴CA CF =;② 设CA CF x ==,在Rt ABC ∆中,2BC x =+,CA x =,6AB =,由勾股定理可得222(2)6x x +=+,解得:8x =,∴8AC =.【点睛】本题考查了切线的判定,等角对等边,以及勾股定理,要证直线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.4.(1)7-t (2)()()()22904;25{1674725t t S t t ππ<≤=-<<(3)516,23t t == 【解析】【分析】(1)先判断出点P 在BC 上,即可得出结论;(2)分点P 在边AC 和BC 上两种情况:利用相似三角形的性质得出比例式建立方程求解即可得出结论;(3)分点P 在边AC 和BC 上两种情况:借助(2)求出的圆P 的半径等于PC ,建立方程求解即可得出结论.【详解】(1)∵AC =4,BC =3,∴AC +BC =7.∵4<t <7,∴点P 在边BC 上,∴BP =7﹣t .故答案为:7﹣t ;(2)在Rt △ABC 中,AC =4,BC =3,根据勾股定理得:AB =5,由运动知,AP =t ,分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,如图1,记⊙P 与边AB 的切点为H ,连接PH ,∴∠AHP =90°=∠ACB . ∵∠A =∠A ,∴△APH ∽△ACB,∴PHAP BC AB =,∴35PH t =,∴PH 35=t ,∴S 925=πt 2; ②当点P 在边BC 上时,即:4<t <7,如图,记⊙P 与边AB 的切点为G ,连接PG ,∴∠BGP =90°=∠C .∵∠B =∠B ,∴△BGP ∽△BCA ,∴PG BP AC AB =,∴745PG t -=,∴PG 45=(7﹣t ),∴S 1625=π(7﹣t )2. 综上所述:S 22904251674725t t t t ππ⎧≤⎪⎪=⎨⎪-⎪⎩(<)()(<<);(3)分两种情况讨论:①当点P 在边AC 上时,即:0<t ≤4,由(2)知,⊙P 的半径PH 35=t . ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边BC 相切,∴PC =PH . ∵PC =4﹣t ,∴4﹣t 35=t ,∴t 52=秒; ②当点P 在边BC 上时,即:4<t <7,由(2)知,⊙P 的半径PG 45=(7﹣t ). ∵⊙P 与△ABC 的另一边相切,即:⊙P 和边AC 相切,∴PC =PG . ∵PC =t ﹣4,∴t ﹣445=(7﹣t ),∴t 163=秒. 综上所述:在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,t 的值为52秒或163秒.【点睛】本题是圆的综合题,主要考查了切线的性质,勾股定理,相似三角形的判定和性质,用分类讨论的思想解决问题是解答本题的关键. 5.(1)OD=4,(2)证明过程见详解(3)504 3π-【解析】【分析】(1)根据AB与圆O相切,在Rt△OBD中运用tan∠BOD=34,即可求出OD的长,(2)作辅助线证明四边形ADOG是矩形,得DO∥AC,sin∠OCG=35,在Rt△OCG中,求出OG的长等于半径即可解题,(3)利用S阴影=S Rt△BAC-S正方形ADOG-14S圆O,求出AC长度即可解题.【详解】解:(1)∵AB与圆O相切,∴OD⊥AB,在R t△OBD中,BD=3,tan∠BOD=BDOD=34,∴OD=4,(2)过点O作OG垂直AC于点G,∵∠A=90°,AB与圆O相切,∴四边形ADOG是矩形,∴DO∥AC,∴∠BOD=∠OCG,∵tan∠BOD=BDOD=34,∴sin∠OCG=3 5 ,∵CF=83,OF=4,∴OG=OGsin∠OCG=4=r,∴AC是⊙O的切线(3)由前两问可知,四边形ADOG是边长为4的正方形,扇形DOE和扇形GOF的面积之和是四分之一圆的面积,在R t△ABC中,tan∠C=34,AB=4+3=7,∴AC=ABtan C∠=734=283,∴S阴影=S Rt△BAC-S正方形ADOG-14S圆O=212817444234π⨯⨯-⨯-=5043π-【点睛】本题考查了三角函数的应用和直线与圆的位置关系,中等难度,熟悉三角函数并熟练应用是解题关键.6.(1)637;(2)BE=433;菱形与圆重叠部分的面积为833.【解析】【分析】(1)作PT⊥BE于点T,根据垂径定理和勾股定理求BQ的值,再根据相似三角形的判定和性质即可求解;(2)根据菱形性质和勾股定理求出菱形边长,此时点E和点Q重合,再根据扇形面积公式即可求解.【详解】解:(1)如图:过点P作PT⊥BQ于点T,∵AB=2,AD=BC=3,DQ3∴AQ3在Rt△ABQ中,根据勾股定理可得:BQ7.又∵四边形BPDQ是平行四边形,∴BP=DQ3,∵∠AQB=∠TBP,∠A=∠BTP,∴△AQB∽△TBP,∴3,37 BT BDAQ BQ==即∴BT 33 7∴BE=2BT 63 7(2)设菱形BPDQ 的边长为x , 则AQ =23﹣x ,在Rt △ABQ 中,根据勾股定理,得 AB 2+AQ 2=BQ 2, 即4+(23﹣x )2=x 2, 解得x =433. ∵四边形BPDQ 为菱形,∴BP=DP=433, 又CP=BC-BP=233,即DP=2CP, ∴∠DPC=60°,∴∠BPD=120°, ∴连接PQ,易得△BPQ 为等边三角形, ∴PQ=BP,∴点Q 也在圆P 上,圆P 经过点B,D,Q,如图.∴点E 、Q 重合, ∴BE 433∴菱形与圆重叠部分面积即为菱形的面积,∴S 菱形833. 【点睛】本题考查了平行四边形、矩形、菱形的性质、垂径定理、勾股定理、相似三角形的判定和性质、扇形面积公式,解决本题的关键是综合运用以上知识. 7.(1)()221y x =--;(2)1023n <<;(3)552M x << 【解析】 【分析】(1)由题意可得对称轴方程,有二次函数对称性,由A 点坐标可求B 点坐标,代入解析式可得;(2)根据函数图像平移可得新抛物线解析式,画出图像可得交点P ,由题意可得ACB BCP ∠>∠,过点C 作//l x 轴.作PD l ⊥,可得ACO PCD ∠=∠,设()2,43P t t t -+,由13tan ACD tan PCD ∠=∠=可得关于t 的方程,解得t, 再将P 代入2C 解析式中得n 的值,根据Q,P 在第一象限内得n 的取值范围;(3) 当MCB ∠为直角时,可求直线CB 的解析式为:y=-x+3,直线CM 的解析式为:y=x+3,运用直线与曲线联立,可求CM 与抛物线的交点M 横坐标为:x=5;当MCB ∠为锐角且3tan MCB ∠=时,过点M 作MN CB ⊥于N,则3MNCN=,设M 点坐标为()2,43t tt -+,直线CB 解析式为y=-x+3,可求直线MN 解析式为:253y x t t =+-+,将直线MN 与直线CB 解析式联立可得:N 221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭, 由两点间距离公式可得2MN = 2213222t t ⎛⎫- ⎪⎝⎭;2CN =2215222t t ⎛⎫- ⎪⎝⎭;由3MN CN =可得:52t =,进而可得满足已知条件的点M 横坐标M x 的取值范围. 【详解】解:()1对称轴为422ax a-=-= ()3,0B ∴ ()0,1C ∴代入()224321y x x x ∴=-+=--()()222:21C x n ---()2423x n x =-++CAP ∆的内心I 在CAB △内部,ACB BCP ∴∠>∠ ∴当ACB BCP ∠=∠时过C 作//l x 轴.作PD l ⊥,ACB BCP ∠=∠90,OCD ∠= 45,DCB ∠= ,ACO PCD ∴∠=∠13tan ACD tan PCD ∠=∠=设()2,43P t t t -+13PD CD ∴= 3p y DP OC +==214333t t t ∴-++=113t = 将P 代入2C 解析式中103n ∴=又P 在第一象限内 h AB ∴>2n ∴>1023n ∴<<(3)552M x <<; 当MCB ∠为直角时,如下图所示:由(1)(2)可得:直线CB 的解析式为:y=-x+3,MCB ∠为直角,C(0,3),∴直线CM 的解析式为:y=x+3,则CM 与抛物线的交点坐标M 横坐标为:2343x x x +=-+,解得:x=5或0(舍去),所以,当MCB ∠为直角时,5M x =;当MCB ∠为锐角且3tan MCB ∠=时,如下图所示: 过点M 作MN CB ⊥于N,则3MNCN=,设M 点坐标为()2,43t t t -+,MN CB ⊥,直线CB 解析式为y=-x+3, ∴MN 解析式可设:y=x+b,将P ()2,43t t t -+代入解析式可得: b=253t t -+,则直线MN 解析式为:253y x t t =+-+, 将直线MN 与直线CB 解析式联立可得:N 点坐标为221515,32222t t t t ⎛⎫-+-+ ⎪⎝⎭,∴2MN =2222215154332222t t t t t t t ⎛⎫⎛⎫+-+-+-+- ⎪ ⎪⎝⎭⎝⎭= 2213222t t ⎛⎫- ⎪⎝⎭; 2CN = 222215152222t t t t ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭=2215222t t ⎛⎫- ⎪⎝⎭; 由3MNCN=可得: 2213221522t t t t --=3; 解得:52t =或0(舍去) ;∴MCB ∠为锐角,且3tan MCB ∠>时,点M 的横坐标M x 的取值范围为:552M x <<. 【点睛】本题综合考查了二次函数的图像和性质,题目较难,熟练掌握二次函数的图像和性质,运用数形结合解决二次函数综合问题是解题的关键. 8.(1)y =x 2-4x +3 ;(2) P(36626--,);(3) 9922m -+= 【解析】 【分析】 (1)把,,代入,解方程组即可.(2)如图1中,连接OD 、BD,对称轴交x 轴于K,将绕点O 逆时针旋转90°得到△OCG,则点G在线段BC上,只要证明是等腰直角三角形,即可得到直线GO与抛物线的交点即为所求的点P.利用方程组即可解决问题. (3)如图2中,将绕点O顺时针旋转得到,首先证明,设,,则,设平移后的抛物线的解析式为,由消去y得到,由,推出,,M、N关于直线对称,所以,设,则,利用勾股定理求出a以及MN的长,再根据根与系数关系,列出方程即可解决问题.【详解】(1), ,,代入,得,解得,∴抛物线的解析式为(2)如图1中,连接OD、BD,对称轴交x轴于K.由题意,,,,,,,将绕点O逆时针旋转90°得到,则点G在线段BC上,,,,是等腰直角三角形,,∴直线GO与抛物线的交点即为所求的点P.设直线OD的解析式为,把D点坐标代入得到,,,∴直线OD的解析式为,,∴直线OG的解析式为,由解得或, 点P在对称轴左侧,点P坐标为(3)如图2中,将绕点O顺时针旋转90°得到,,,,,,,,,,设,,则, 设平移后的抛物线的解析式为,由消去y得到,,, ∴M 、N 关于直线对称, ,设,则, ,(负根已经舍弃), , ,【点睛】本题考查了二次函数的综合题、一次函数、全等三角形的判定与性质、根与系数的关系、勾股定理等知识点,解题的关键是灵活运用所学知识,学会利用旋转添加辅助线,构造全等三角形,学会利用方程组及根与系数的关系,构建方程解决问题,本题难度较大.9.(1) A (0,2),B(4,0),2722y x x =-++;(2)当t=2时,MN 有最大值4;(3) D 点坐标为(0,6),(0,-2)或(4,4).【解析】【分析】(1)首先求得A 、B 的坐标,然后利用待定系数法求抛物线的解析式;(2)本问要点是求得线段MN 的表达式,这个表达式是关于t 的二次函数,利用二次函数的极值求线段MN 的最大值;(3)本问要点是明确D 点的可能位置有三种情况,如答图2所示,其中D 1、D 2在y 轴上,利用线段数量关系容易求得坐标;D 3点在第一象限是直线D 1N 和D 2M 的交点,利用直线解析式求得交点坐标即可.【详解】解:(1)∵122y x =-+的图象交y 轴于点A ,交x 轴于点B 点, ∴A 、B 点的坐标为:A (0,2),B(4,0), 将x=0,y=2代入2y x bx c =-++得c=2,将x=4,y=0,代入2y x bx c =-++得b=72,∴抛物线解析式为:2722y x x =-++; (2)如答图1所示,设MN 交x 轴于点E ,则E(t ,0),则M(t ,122t -),又N 点在抛物线上,且x N =t ,∴2722N y t t =-++, ∴()22271224=2422N M MN y y t t t t t t ⎛⎫=-=-++--=-+--+ ⎪⎝⎭, ∴当t=2时,MN 有最大值4.(3)由(2)可知A (0,2)、M(2,1)、N(2,5),以A 、M 、N 、D 为顶点做平行四边形,D 点的可能位置有三种情况,如答图2所示,当D 在y 轴上时,设D 的坐标为(0,a ),由AD=MN ,得|a-2|=4,解得a 1=6,a 2=-2,从而D 点坐标为(0,6)或D (0,-2),当D 不在y 轴上时,由图可知D 3为D 1N 与D 2M 的交点,分别求出D 1N 的解析式为:162y x =-+, D 2M 的解析式为:322y x =-, 联立两个方程得:D 3(4,4),故所求的D 点坐标为(0,6),(0,-2)或(4,4).【点睛】本题主要考查的是二次函数综合,经常作为压轴题出现,正确的掌握二次函数的性质是解题的关键.10.(1)证明见解析(2)当AM的长为(1﹣)时,四边形EPGQ是矩形(3)定值【解析】【分析】(1)先利用三角函数求出∠AOB=30°,再用弧长公式即可得出结论;(2)易得△AED∽△BCE,根据相似三角形的对应边成比例与勾股定理,即可求得OA的长,即可得出结论;(3)连接GE交PQ于O′,易得O′P=O′Q,O′G=O'E,然后过点P作OC的平行线分别交BC、GE于点B′、A′,由△PCF∽△PEG,根据相似三角形的对应边成比例与勾股定理,即可求得3PQ2+OA2的值.【详解】解:(1)证明:连接OB,如图①,∵四边形OABC是矩形,∴∠AOC=∠OAB=90°,在Rt△AOB中,tan∠AOB==,∴∠AOB=30°,∴==;(2)如图②,∵▱EPGQ是矩形.∴∠CED=90°∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE.∴△AED∽△BCE,∴.设OA=x,AB=y,则=,得y2=2x2,又 OA2+AB2=OB2,即x2+y2=12.∴x2+2x2=1,解得:x=.∴AM=OM﹣OA=1﹣当AM的长为(1﹣)时,四边形EPGQ是矩形;(3)如图③,连接GE交PQ于O′,∵四边形EPGQ是平行四边形,∴O′P=O′Q,O′G=O′E.过点P作OC的平行线分别交BC、GE于点B′、A′.由△PCF∽△PEG得, =2,∴PA′=A′B′=AB,GA′=GE=OA,∴A′O′=GE﹣GA′=OA.在Rt△PA′O′中,PO′2=PA′2+A′O′2,即=+,又 AB2+OA2=1,∴3PQ2=AB2+,∴OA2+3PQ2=OA2+(AB2+)=是定值.【点睛】此题是圆的综合题,主要考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的判定与性质以及勾股定理,锐角三角函数,弧长公式等知识,解题的关键是注意准确作出辅助线,注意数形结合思想与方程思想的应用.11.(1)12;(2)tan EAD∠=13;(3)51DECD-=【解析】【分析】(1)先证明△ADP≌△CDP,得到∠DAP=∠DCP,再证明△ADE≌△CDO,得到DE=DO,根据O是AD的中点,AD=CD,即可得到答案;(2)先证明△AFD ≌△DOC ,得到∠AFD=∠DOC ,进而得到∠OPD=90°,即可得到△OPD ∽△FAD ,根据对应边成比例得到DP OD AD DF =,设AF=OD=x ,则AD=2x ,DF=5x ,得到DP=25x ,求出PF=35x ,再证明△DEP ∽△FAP ,得到23DE AF =,根据AF=12CD ,即可得到答案;(3)先证明△FCD ≌△EDA ,得到∠EAD=∠FDC ,进而得到∠EPD=∠APD=90°,根据直角三角形的性质可得OP=OD=12AD ,设OD=OP=x ,则CD=2x ,OC=5x ,可得PC=OC-OP=5x x -,根据△DPO ∽△FPC ,得到51OD FC +=,进而得到51251CF CD -==+,即可得到结论. 【详解】(1)如图①中,∵四边形ABCD 是正方形,PDA PDC ∴∠=∠,DP DP =,DA DC =,PDA ∴≌()PDC SAS ,DAE DCO ∴∠=∠,90ADE CDO ∠=∠=︒,AD CD =,ADE ∴≌()CDO ASA ,OD DE ∴=,AO OD ∴=,CE DE ∴=,12DE DC ∴=. (2)如图②中,连接OF .设OA OD a ==.AF FB =,OA OD =,AB AD =,AF OD ∴=, AD DC =,90FAD ODC ∠=∠=︒, FAD ∴≌()ODC SAS ,FDA OCD ∴∠=∠,90FDA CDP ∠=∠=︒,∴ 90OCD CDP ∠=∠=︒,90CPD ∴∠=︒,90FAO FPO ∠=∠=︒,∴A ,F ,P ,O 四点共圆,PAO PFO ∴∠=∠,1tan 2OP OPD PD∠==, 5OP ∴=,25PD =, 5DF a =,35PF ∴=, 1tan tan 3OP PFO PAO PF ∴∠=∠==, tan EAD ∴∠= 13DE DE AD CD ==. (3)如图③中,连接EF .设CF DE y ==,EC x =.CF DE =,90FCD EDA ∠=∠=︒,CD DA =,∴ FCD ≌EDA ()SAS ,CDF EAD ∴∠=∠,90CDF ADP ∠=∠=︒,∴ 90DAE ADP ∠+∠=︒,∴ 90APD ∠=︒,OA OD =,∴ OP OA OD ==,∴ OAP OPA CPE ∠=∠=∠,90ECF EPF ∠=∠=︒,∴E ,C ,F ,P 四点共圆,∴ CFE EPC ∠=∠,∴ CFE DCF ∠=∠,ECF DCF ∠=∠,∴ FCE ∽DCF ,∴ 2·CF CE CD =,∴ ()2y x x y =+,∴ 220y xy x --=,∴ 15y x +=15x -(舍弃), ∴ 15y x +=, ∴ 155135DE y CD x y +-===++. 【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定与性质,求根公式法解一元二次方程,锐角三角函数及四点共圆等知识,用到的知识点较多,难度较大,解题的关键是学会利用参数解决问题,属于中考压轴题.12.(1)详见解析;(2)详见解析;【分析】()1根据垂径定理得到BD CD =,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=,求得90OAD DAP ∠+∠=,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥,BD CD ∴=, CBD DCB ∴∠=∠,90DFE EDF ∠+∠=,90EDF DFE ∴∠=-∠,OD OA =,()111809022ODA AOD AOD ∴∠=-∠=-∠, 190902DFE AOD ∴-∠=-∠, 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥,BE CE ∴=,BD CD =,BD CD ∴=,OA OD =,ADO OAD ∴∠=∠,PA 切O 于点A ,90PAO ∴∠=, 90OAD DAP ∴∠+∠=, PFA DFE ∠=∠,90PFA ADO ∴∠+∠=,PAF PFA ∴∠=∠,PA PF ∴=.本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.。
【压轴卷】初三数学上期末试题含答案
【压轴卷】初三数学上期末试题含答案一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R 2.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023B .2021C .2020D .20193.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( ) A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点 4.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°5.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1D .不存在实数根6.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位 B .向右平移3个单位 C .向上平移3个单位D .向下平移3个单位7.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根8.如图,二次函数2y ax bx c =++的图象与x 轴相交于(﹣2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )A .x <﹣2B .﹣2<x <4C .x >0D .x >4 9.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =210.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3511.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 212.如图,AB 为⊙O 的直径,四边形ABCD 为⊙O 的内接四边形,点P 在BA 的延长线上,PD 与⊙O 相切,D 为切点,若∠BCD =125°,则∠ADP 的大小为( )A .25°B .40°C .35°D .30°二、填空题13.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________. 14.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.15.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2m ,水面宽度增加______m.16.△ABC 中,∠A =90°,AB =AC ,以A 为圆心的圆切BC 于点D ,若BC =12cm ,则⊙A 的半径为_____cm .17.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.18.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.19.请你写出一个有一根为0的一元二次方程:______.20.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题21.如图,BC 是半圆O 的直径,D 是弧AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E .(1)求证:△DCE ∽△DBC ;(2)若CE =5,CD =2,求直径BC 的长.22.请你依据下面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:(1)用树状图(或表格)表示出所有可能的寻宝情况;(2)求在寻宝游戏中胜出的概率.23.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y(吨)与销售价x(万元)之间的函数关系为y=-x+2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?24.汽车产业的发展,有效促进我国现代建设.某汽车销售公司2007年盈利3000万元,到2009年盈利4320万元,且从2007年到2009年,每年盈利的年增长率相同,该公司2008年盈利多少万元?25.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC 于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【解析】 【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB ,BC 的垂直平分线即可得到答案. 【详解】解:作AB 的垂直平分线,作BC 的垂直平分线,如图, 它们都经过Q ,所以点Q 为这条圆弧所在圆的圆心. 故选:C . 【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.A解析:A 【解析】 【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解. 【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A . 【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.3.D解析:D 【解析】 【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误. 【详解】当1a =-时,()224125=--+=-++y x x x , ∴当2x =-时,函数取得最大值5,故A 正确; 当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =, ∴当2x ≥时,y 随x 的增大而增大,故B 正确; 当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误; 故选D. 【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键.4.C解析:C 【解析】试题分析:如图,连接OC .∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C .【考点】圆周角定理.5.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.6.A【解析】 【分析】先确定抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况. 【详解】解:抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0), 因为点(0,0)向左平移3个单位长度后得到(-3,0), 所以把抛物线y=x 2向左平移3个单位得到抛物线y=(x+3)2. 故选:A . 【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.8.B解析:B 【解析】【详解】当函数值y>0时,自变量x的取值范围是:﹣2<x<4.故选B.9.B解析:B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.10.A解析:A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:∴63P 2010==两次红, 故选A.11.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C12.C解析:C 【解析】 【分析】连接AC ,OD ,根据直径所对的圆周角是直角得到∠ACB 是直角,求出∠ACD 的度数,根据圆周角定理求出∠AOD 的度数,再利用切线的性质即可得到∠ADP 的度数. 【详解】 连接AC ,OD . ∵AB 是直径, ∴∠ACB =90°,∴∠ACD =125°﹣90°=35°, ∴∠AOD =2∠ACD =70°. ∵OA =OD , ∴∠OAD =∠ADO , ∴∠ADO =55°. ∵PD 与⊙O 相切, ∴OD ⊥PD ,∴∠ADP =90°﹣∠ADO =90°﹣55°=35°.故选:C.【点睛】本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.二、填空题13.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 14.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x﹣3设y=0∴0=x2﹣2x﹣3解得:x1=3x2=﹣1即A点的坐标是(﹣10解析:8【解析】【分析】首先求出A、B的坐标,然后根据坐标求出AB、CD的长,再根据三角形面积公式计算即可.【详解】解:∵y=x2﹣2x﹣3,设y=0,∴0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,即A点的坐标是(﹣1,0),B点的坐标是(3,0),∵y=x2﹣2x﹣3,=(x﹣1)2﹣4,∴顶点C的坐标是(1,﹣4),∴△ABC 的面积=12×4×4=8, 故答案为8.【点睛】 本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中.15.4-4【解析】【分析】根据已知建立平面直角坐标系进而求出二次函数解析式再通过把代入抛物线解析式得出水面宽度即可得出答案【详解】建立平面直角坐标系设横轴x 通过AB 纵轴y 通过AB 中点O 且通过C 点则通过画 解析:42-4【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.- 代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±, 所以水面宽度增加到242 4.故答案是:42 4.【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.16.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.17.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.18.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题 解析:1a 4>-且a 0≠ 【解析】【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围.【详解】 Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,解得:1a 4>-, Q 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 19.【解析】【分析】根据一元二次方程定义只要是一元二次方程且有一根为0即可【详解】可以是=0等故答案为:【点睛】本题考核知识点:一元二次方程的根解题关键点:理解一元二次方程的意义解析:240x x -=【解析】【分析】根据一元二次方程定义,只要是一元二次方程,且有一根为0即可.【详解】可以是240x x -=,22x x -=0等.故答案为:240x x -=【点睛】本题考核知识点:一元二次方程的根. 解题关键点:理解一元二次方程的意义.20.-1【解析】由题意得ABBC 于DBC 于EBC 交BC 于FAB=勾股定理得AE=AD=1DB=-1 解析:2-1 【解析】 由题意得, AB ⊥B’C’于D ,BC 'AC ⊥于E ,BC 交B’C’于F .Q AB =2,勾股定理得∴AE =AD=1,∴DB =2-122112122ABE DBF S S S AE BD =-=-=-V V 阴影.三、解答题21.(1)见解析;(2)5【解析】 【分析】(1)由等弧所对的圆周角相等可得∠ACD =∠DBC ,且∠BDC =∠EDC ,可证△DCE ∽△DBC ;(2)由勾股定理可求DE =1,由相似三角形的性质可求BC 的长.【详解】 (1)∵D 是弧AC 的中点,∴¶¶AD CD=, ∴∠ACD =∠DBC ,且∠BDC =∠EDC ,∴△DCE ∽△DBC ;(2)∵BC 是直径,∴∠BDC =90°,∴DE 2254CE CD -=-=1.∵△DCE ∽△DBC ,∴DE EC DC BC =, ∴152= ∴BC 5【点睛】本题考查了圆周角定理、相似三角形的判定和性质、勾股定理等知识,证明△DCE ∽△DBC 是解答本题的关键.22.(1)答案见解析;(2)1 6【解析】【分析】列举出所有情况,让寻宝游戏中胜出的情况数除以总情况数即为所求的概率.【详解】(1)树状图如下:(2)由(1)中的树状图可知:P(胜出)【点睛】本题考查的是用画树状图法求概率,解答本题的关键是熟练掌握概率=所求情况数与总情况数之比.同时熟记用树状图或表格表达事件出现的可能性是求解概率的常用方法23.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.24.2008年盈利3600万元.【解析】【分析】设该公司从2007年到2009年,每年盈利的年增长率是x ,根据题意列出方程进行求解即可求出年增长率;然后根据2007年的盈利,即可算出2008年的盈利.【详解】解:设每年盈利的年增长率为x ,由题意得:3000(1+x )2=4320,解得:10.2x =,2 2.2x =-(不合题意,舍去),∴年增长率20%,∴3000×(1+20%)=3600,答:该公司2008年盈利3600万元.【点睛】本题考查了一元二次方程的应用,解题的关键是求出从2007年到2009年,每年盈利的年增长率.25.(1)相切,理由见解析;(2)DE=125. 【解析】【分析】(1)连接AD ,OD ,根据已知条件证得OD ⊥DE 即可;(2)根据勾股定理计算即可. 【详解】解:(1)相切,理由如下:连接AD ,OD ,∵AB 为⊙O 的直径,∴∠ADB=90°.∴AD ⊥BC .∵AB=AC ,∴CD=BD=12BC . ∵OA=OB ,∴OD ∥AC .∴∠ODE=∠CED .∵DE ⊥AC ,∴∠ODE=∠CED=90°.∴OD ⊥DE .∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,==4.∵S ACD=12AD•CD=12AC•DE,∴12×4×3=12×5DE.∴DE=125.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.。
【压轴卷】九年级数学上期末试题(附答案)
【压轴卷】九年级数学上期末试题(附答案)一、选择题1.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32°B .31°C .29°D .61°2.下列命题错误..的是 ( ) A .经过三个点一定可以作圆B .经过切点且垂直于切线的直线必经过圆心C .同圆或等圆中,相等的圆心角所对的弧相等D .三角形的外心到三角形各顶点的距离相等3.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .124.下列诗句所描述的事件中,是不可能事件的是( )A .黄河入海流B .锄禾日当午C .大漠孤烟直D .手可摘星辰5.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( ) A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位 6.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .1127.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k ≥﹣1C .k >﹣1且k ≠0D .k ≥﹣1且k ≠0 8.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9- 9.二次函数2y (x 3)2=-++图象的开口方向、对称轴和顶点坐标分别为( )A .向下,直线x 3=,()3,2B .向下,直线x 3=-,()3,2C .向上,直线x 3=-,()3,2D .向下,直线x 3=-,()3,2- 10.若20a ab -=(b ≠0),则a a b +=( ) A .0 B .12 C .0或12 D .1或 211.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( )A .顶点坐标为(﹣3,2)B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小12.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .24二、填空题13.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.14.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为 .15.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长是__.16.抛物线21(2)43y x =++关于x 轴对称的抛物线的解析式为_______ 17.一个等边三角形边长的数值是方程x 2﹣3x ﹣10=0的根,那么这个三角形的周长为_____.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.19.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.20.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_________.三、解答题21.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件 (1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A 、B 两种营销方案方案A :该文具的销售单价高于进价且不超过30元;方案B :每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由22.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x … 1-12- 0 1 2 3 … y … 3 54 0 1- 0 m …(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m= ;(4)在平面直角坐标系xOy中,画出此二次函数的图象.23.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?24.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原点O为旋转中心,将△ABC顺时针旋转90°得到△A'B'C',其中点A,B,C旋转后的对应点分别为点A',B',C'.(1)画出△A 'B 'C ',并写出点A ',B ',C '的坐标;(2)求经过点B ',B ,A 三点的抛物线对应的函数解析式.25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.2.A解析:A【解析】选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C ,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D ,三角形的外心到三角形各顶点的距离相等,正确;故选A.3.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°,∴n =360°÷30°=12;故选:D .【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.4.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.A解析:A【解析】【分析】先确定抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.7.C解析:C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.8.C解析:C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.9.D解析:D【解析】【分析】已知抛物线解析式为顶点式,根据二次项系数可判断开口方向,根据解析式可知顶点坐标及对称轴.【详解】解:由二次函数y=-(x+3)2+2,可知a=-1<0,故抛物线开口向下;顶点坐标为(-3,2),对称轴为x=-3.故选:D .【点睛】顶点式可判断抛物线的开口方向,对称轴,顶点坐标,最大(小)值,函数的增减性.10.C解析:C【解析】【分析】【详解】解:∵20a ab -= ()0b ≠,∴a(a-b)=0,∴a=0,b=a .当a=0时,原式=0;当b=a 时,原式=12,故选C 11.C解析:C【解析】∵ y=2(x ﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3, ∴当3x ≥时,y 随x 的增大而增大.∴选项A 、B 、D 中的说法都是错误的,只有选项C 中的说法是正确的.故选C.12.C解析:C【解析】【分析】连结AC ,先由△AGH ≌△ADH 得到∠GHA =∠AHD ,进而得到∠AHD =∠HAP ,所以△AHP 是等腰三角形,所以PH =PA =PC ,所以∠HAC 是直角,再在Rt △ABC 中由勾股定理求出AC 的长,然后由△HAC ∽△ADC ,根据=求出AH 的长,再根据△HAC ∽△HDA 求出DH 的长,进而求得HP 和AP 的长,最后得到△APH 的周长.【详解】∵P 是CH 的中点,PH =PC ,∵AH =AH ,AG =AD ,且AGH 与ADH 都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC ==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.二、填空题13.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB ′+S扇形ABB′﹣S半圆AB而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.【点睛】本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.14.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式解析:【解析】试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.考点:概率公式15.1+【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形所以猜想到要求BM可能需要构造直角三角形由旋转的性质可知AC=AM∠CAM=60°故△ACM是等边三角形可证明△ABM与△CB解析:3【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形,所以猜想到要求BM,可能需要构造直角三角形.由旋转的性质可知,AC=AM,∠CAM=60°,故△ACM是等边三角形,可证明△ABM与△CBM全等,可得到∠ABM=45°,∠AMB=30°,再证△AFB和△AFM是直角三角形,然后在根据勾股定理求解【详解】解:连结CM,设BM与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°∴∠BCA=∠BAC=45°∵Rt△ABC绕点A逆时针旋转60°与Rt△ANM重合,∴∠BAC=∠NAM=45°,AC=AM又∵旋转角为60°∴∠BAN=∠CAM=60°,∴△ACM是等边三角形∴AC=CM=AM=4在△ABM与△CBM中,BA BC AM CM BM BM=⎧⎪=⎨⎪=⎩∴△ABM≌△CBM (SSS)∴∠ABM=∠CBM=45°,∠CMB=∠AMB=30°∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°∴∠AFB=∠AFM=90°在Rt△ABF中,由勾股定理得,BF=AF=2212AB BC+=又在Rt△AFM中,∠AMF=30°,∠AFM=90°33∴3故本题的答案是:3点评:此题是旋转性质题,解决此题,关键是思路要明确:“构造”直角三角形.在熟练掌握旋转的性质的基础上,还要应用全等的判定及性质,直角三角形的判定及勾股定理的应用16.【解析】【分析】由关于x 轴对称点的特点是:横坐标不变纵坐标变为相反数可求出抛物线关于x 轴对称的抛物线解析式【详解】∵∴关于x 轴对称的抛物线解析式为-即故答案为:【点睛】此题考查了二次函数的图象与几何 解析:()21243y x =-+- 【解析】【分析】由关于x 轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线21(2)43y x =++关于x 轴对称的抛物线解析式. 【详解】 ∵21(2)43y x =++, ∴关于x 轴对称的抛物线解析式为-21(2)43y x =++,即()21243y x =-+-, 故答案为:()21243y x =-+-. 【点睛】 此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴、y 轴对称点的特点.17.15【解析】【分析】先解方程求出方程的根再确定等边三角形的边长然后求等边三角形的周长【详解】解:x2﹣3x ﹣10=0(x ﹣5)(x+2)=0即x ﹣5=0或x+2=0∴x1=5x2=﹣2因为方程x2﹣解析:15【解析】【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【详解】解:x 2﹣3x ﹣10=0,(x ﹣5)(x +2)=0,即x ﹣5=0或x +2=0,∴x 1=5,x 2=﹣2.因为方程x 2﹣3x ﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点睛】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.18.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20【解析】【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20.【详解】抛物线的解析式为y=x 2-6x-16,则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2b a=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10, 圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.19.13【解析】【分析】【详解】试题分析:有6种等可能的结果符合条件的只有2种则完成的图案为轴对称图案的概率是考点:轴对称图形的定义求某个事件的概率解析:.【解析】【分析】【详解】试题分析:有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是..考点:轴对称图形的定义,求某个事件的概率 .20.【解析】【分析】【详解】解:从袋子中随机取出1个球总共有6种等可能结果这个球为红球的结果有5中所以从袋子中随机取出1个球则它是红球的概率是故答案为:解析:5 6【解析】【分析】【详解】解:从袋子中随机取出1个球,总共有6种等可能结果,这个球为红球的结果有5中,所以从袋子中随机取出1个球,则它是红球的概率是5 6故答案为:56.三、解答题21.(1) w=-10x2+700x-10000;(2) 即销售单价为35元时,该文具每天的销售利润最大;(3) A方案利润更高.【解析】【分析】试题分析:(1)根据利润=(单价-进价)×销售量,列出函数关系式即可.(2)根据(1)式列出的函数关系式,运用配方法求最大值.(3)分别求出方案A 、B 中x 的取值范围,然后分别求出A 、B 方案的最大利润,然后进行比较.【详解】解:(1)w =(x -20)(250-10x +250)=-10x 2+700x -10000.(2)∵w =-10x 2+700x -10000=-10(x -35)2+2250∴当x =35时,w 有最大值2250,即销售单价为35元时,该文具每天的销售利润最大.(3)A 方案利润高,理由如下:A 方案中:20<x≤30,函数w =-10(x -35)2+2250随x 的增大而增大,∴当x=30时,w 有最大值,此时,最大值为2000元.B 方案中:,解得x 的取值范围为:45≤x≤49.∵45≤x≤49时,函数w =-10(x -35)2+2250随x 的增大而减小,∴当x=45时,w 有最大值,此时,最大值为1250元.∵2000>1250,∴A 方案利润更高22.(1)对称轴x =1;(2)b=-2;(3)m=3;(4)见解析【解析】【分析】(1)根据图表直接写出此二次函数的对称轴即可;(2)图象经过点(1,-1),代入求b 的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m 值;(4)由题意采用描点法画出图像即可.【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1),∴2b =-.(3)将x=3代入解析式得m=3.(4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.23.(1)详见解析(2)85%【解析】【分析】(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是90÷300×100%,童装占得百分比1-30%-25%,即可补全统计表和统计图.(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可.【详解】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135; 儿童玩具占得百分比是(90÷300)×100%=30%.童装占得百分比1-30%-25%=45%. 补全统计表和统计图如下:类别儿童玩具 童车 童装 抽查件数 90 75 135(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×88%=66,童装中合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是816610885%300++=.24.(1)见解析;(2)抛物线的解析式为y=﹣12x2+12x+3.【解析】【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入求出a即可.【详解】解:(1)如图△A'B'C'即为所求.A′(0,2),B′(3,0),C′(1,4)(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入得到a=﹣12,∴抛物线的解析式为y=﹣12x2+12x+3.【点睛】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。
【压轴卷】九年级数学上期末试卷带答案(1)
【压轴卷】九年级数学上期末试卷带答案(1)一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x += D .()11980x x -=2.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .44.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A .y =﹣2(x +1)2+1B .y =﹣2(x ﹣1)2+1C .y =﹣2(x ﹣1)2﹣1D .y =﹣2(x +1)2﹣15.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )A.(24−254π)cm2B.254πcm2C.(24−54π)cm2D.(24−256π)cm26.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个7.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()A.100°B.130°C.50°D.65°8.若⊙O的半径为5cm,点A到圆心O的距离为4cm,那么点A与⊙O的位置关系是A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定9.一元二次方程x2+x﹣14=0的根的情况是()A.有两个不等的实数根B.有两个相等的实数根C.无实数根D.无法确定10.下列诗句所描述的事件中,是不可能事件的是( ) A .黄河入海流 B .锄禾日当午 C .大漠孤烟直 D .手可摘星辰 11.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+12x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 212.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒二、填空题13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.14.已知二次函数,当x _______________时,随的增大而减小.15.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .16.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米17.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.18.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).19.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是_______.20.若一元二次方程x 2+px ﹣2=0的一个根为2,则p =_____,另一个根是_____.三、解答题21.已知x =n 是关于x 的一元二次方程mx 2﹣4x ﹣5=0的一个根,若mn 2﹣4n+m =6,求m 的值.22.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根. (1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根. 23.用你喜欢的方法解方程 (1)x 2﹣6x ﹣6=0 (2)2x 2﹣x ﹣15=024.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE . (Ⅰ)求证:∠A =∠EBC ;(Ⅱ)若已知旋转角为50°,∠ACE =130°,求∠CED 和∠BDE 的度数.25.二次函数2y x bx =+上部分点的横坐标x 与纵坐标y 的对应值如下表: x…1-12- 0 1 2 3 …y (3)540 1- 0 m …(1)直接写出此二次函数的对称轴 ; (2)求b 的值;(3)直接写出表中的m 值,m = ;(4)在平面直角坐标系xOy 中,画出此二次函数的图象.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意得:每人要赠送(x-1)张贺卡,有x 个人,然后根据题意可列出方程:(x-1)x=1980. 【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x 个人, ∴全班共送:(x-1)x=1980, 故选:D . 【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x 个人是解决问题的关键.2.A解析:A 【解析】 【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数. 【详解】 ∵35C ∠=︒∴35BAD C =∠=︒∠ ∵AB 是圆O 的直径 ∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠ 故答案为:A . 【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B 【解析】 【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可. 【详解】 如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF , ∵四边形ABCD 是矩形, ∴∠C=∠D=90°, ∴四边形CDMN 是矩形, ∴MN=CD=4, 设OF=x ,则ON=OF , ∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2, 即:(4-x )2+22=x 2, 解得:x=2.5, 故选B . 【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.B解析:B 【解析】 【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1, 故选B . 【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.A解析:A 【解析】 【分析】利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可. 【详解】解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,∴10AC ===cm ,则2AC=5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604ππ⨯⨯⨯-=-(cm 2), 故选:A . 【点睛】本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.6.B解析:B 【解析】 【分析】 【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x =﹣2ba=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.7.B解析:B【解析】【分析】根据三角形的内切圆得出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.【详解】∵点O是△ABC的内切圆的圆心,∴∠OBC=12∠ABC,∠OCB=12∠ACB.∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.故选B.【点睛】本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.8.C解析:C【解析】【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内判断出即可.【详解】解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,∴d<r,∴点A与⊙O的位置关系是:点A在圆内,9.A解析:A【解析】【分析】根据方程的系数结合根的判别式,可得出△=2>0,即可判断有两个不相等的实数根.【详解】∵△=12﹣4×1×(﹣14)=2>0,∴方程x2+x﹣14=0有两个不相等的实数根.故选:A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10.D解析:D【解析】【分析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.11.D解析:D【解析】【分析】抛物线的形状只是与a有关,a相等,形状就相同.【详解】y=2(x﹣1)2+3中,a=2.故选D.本题考查了抛物线的形状与a的关系,比较简单.12.D解析:D【解析】【分析】根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得A CO∠'的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.二、填空题13.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410) (510) (610) (810) (910) (109) (4解析:7 15.【解析】【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.【详解】解:从6张牌中任意抽两张可能的情况有:(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,∴点数和是偶数的概率是147 3015=;故答案为7 15.【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.14.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质15.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB223040+50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.16.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平 解析:【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值. 故有, 即,,. 所以两盏警示灯之间的水平距离为: 17.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n =90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90【解析】【分析】根据弧长公式列式计算,得到答案.【详解】设这个扇形的圆心角为n °, 则6180n π⋅=3π, 解得,n =90,故答案为:90.【点睛】 考核知识点: 弧长的计算.熟记公式是关键.18.123456中的任何一个数【解析】【分析】【详解】解:∵一元二次方程有两个不相等的实数根∴△=解得∵c 是整数∴c=123456故答案为123456中的任何一个数【点睛】本题考查根的判别式;根与系数的解析:1,2,3,4,5,6中的任何一个数.【解析】【分析】【详解】解:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <,∵125x x +=,120x x c =>,c 是整数,∴c=1,2,3,4,5,6.故答案为1,2,3,4,5,6中的任何一个数.【点睛】本题考查根的判别式;根与系数的关系;开放型.19.k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k -1≠0且△=(-2)2-4(k-1)>0解得:k <2且k≠1考点:1根的判别式;2一元二次解析:k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根, ∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.20.-1-1【解析】【分析】设方程的另一根为t 根据根与系数的关系得到2+t=-p2t=-2然后先求出t 再求出p 【详解】解:设方程的另一根为t 根据题意得2+t =﹣p2t =﹣2所以t =﹣1p =﹣1故答案为:解析:-1 -1【解析】【分析】设方程的另一根为t ,根据根与系数的关系得到2+t=-p ,2t=-2,然后先求出t ,再求出p .【详解】解:设方程的另一根为t ,根据题意得2+t =﹣p ,2t =﹣2,所以t =﹣1,p =﹣1.故答案为:﹣1,﹣1.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=-b a ,x 1•x 2=c a. 三、解答题21.1【解析】【分析】把x=n 代入方程求出mn 2-4n 的值,代入已知等式求出m 的值即可.【详解】依题意,得2450mn n --=.∴245mn n -=.∵246mn n m -+=,∴56m +=.∴1m =.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握运算法则是解本题的关键.22.(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.23.(1)x 1=x 2=32)x 1=﹣2.5,x 2=3【解析】【分析】(1)先求出b 2﹣4ac 的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2﹣6x ﹣6=0,∵a=1,b=-6,c=-6,∴b 2﹣4ac =(﹣6)2﹣4×1×(﹣6)=60,x 3=x 1=x 2=3(2)2x 2﹣x ﹣15=0,(2x+5)(x﹣3)=0,2x+5=0,x﹣3=0,x1=﹣2.5,x2=3.【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.24.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°【解析】【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.25.(1)对称轴x=1;(2)b=-2;(3)m=3;(4)见解析【解析】【分析】(1)根据图表直接写出此二次函数的对称轴即可;(2)图象经过点(1,-1),代入求b的值即可;(3)由题意将x=3代入解析式得到并直接写出表中的m值;(4)由题意采用描点法画出图像即可.【详解】解:(1)观察图像直接写出此二次函数的对称轴x=1.(2)∵二次函数2y x bx =+的图象经过点(1,-1), ∴2b =-.(3)将x=3代入解析式得m=3.(4)如图.【点睛】本题考查了二次函数的图象和性质,根据二次函数的图象和性质分析是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【压轴卷】九年级数学上期末试卷(带答案)一、选择题1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R2.下列智能手机的功能图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值( )A .0或2B .-2或2C .-2D .24.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( ) A .0<m <1B .1<m ≤2C .2<m <4D .0<m <45.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个根是x =1D .不存在实数根6.抛物线2y x 2=-+的对称轴为 A .x 2=B .x 0=C .y 2=D .y 0=7.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .458.下列函数中是二次函数的为( ) A .y =3x -1 B .y =3x 2-1 C .y =(x +1)2-x 2D .y =x 3+2x -39.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根10.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .2411.若20a ab -=(b ≠0),则aa b+=( ) A .0B .12 C .0或12D .1或 212.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( ) A .74-B .3或3-C .2或3-D .2或3-或74-二、填空题13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.14.设a 、b 是方程220190x x +-=的两个实数根,则()()11a b --的值为_____. 15.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.16.若直角三角形两边分别为6和8,则它内切圆的半径为_____. 17.已知二次函数,当x _______________时,随的增大而减小.18.如图,AB 是⊙O 的直径,∠AOE =78°,点C 、D 是弧BE 的三等分点,则∠COE =_____.19.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.20.已知扇形的面积为12πcm 2,半径为12cm ,则该扇形的圆心角是_______.三、解答题21.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千 克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当x=60时 ,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利w (元)与销售单价x (元)之间的函数关系式. (3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?22.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由; (3)如果△ABC 是等边三角形,试求这个一元二次方程的根.23.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B 《红楼梦》、C 《西游记》、D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.24.如图,⊙O是△ABC的外接圆,AB是直径,OD⊥AC,垂足为D点,直线OD与⊙O 相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PB,PC,且满足∠PCA =∠ABC(1)求证:P A=PC;(2)求证:P A是⊙O的切线;(3)若BC=8,32ABDF,求DE的长.25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.(1)求证:无论m取何值,原方程总有两个实数根;(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.2.C【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、图形既不是轴对称图形是中心对称图形,B 、图形是轴对称图形,C 、图形是轴对称图形,也是中心对称轴图形,D 、图形是轴对称图形. 故选C . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.D解析:D 【解析】 【分析】将()1212122(2)2=3x x x x x x -+--+-化简可得,()21212124423x x x x x x +-+=--,利用韦达定理,()2142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】解:由韦达定理,得:12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x -+--+=-,得:()21212423x x x x --+=-,即()21212124423x x x x x x +-+=--, 所以,()2142(2)3k k ----+=-, 化简,得:24k =, 解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根, 所以,△=()214(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D.本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.4.C解析:C 【解析】 【分析】根据二次函数图象上点的坐标特征即可求得. 【详解】解:当a >0时,抛物线开口向上,则点(0,1)的对称点为(x 0,1), ∴x 0>4,∴对称轴为x=m 中2<m <4, 故选C . 【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.5.A解析:A 【解析】 【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可. 【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根, 1+8﹣c =0,解得c =9, ∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根. 故选:A . 【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.6.B解析:B 【解析】 【分析】根据顶点式的坐标特点,直接写出对称轴即可. 【详解】解∵:抛物线y=-x 2+2是顶点式, ∴对称轴是直线x=0,即为y 轴. 故选:B . 【点睛】此题考查了二次函数的性质,二次函数y=a (x-h )2+k 的顶点坐标为(h ,k ),对称轴为直线x=h .7.C解析:C 【解析】 【分析】 【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3355÷= 故选C8.B解析:B 【解析】A. y =3x −1是一次函数,故A 错误;B. y =3x 2−1是二次函数,故B 正确;C. y =(x +1)2−x 2不含二次项,故C 错误;D. y =x 3+2x −3是三次函数,故D 错误; 故选B.9.C解析:C 【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2ba-=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误; ∵对称轴x=2ba-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确; ∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2ba-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.10.C解析:C 【解析】 【分析】连结AC ,先由△AGH ≌△ADH 得到∠GHA =∠AHD ,进而得到∠AHD =∠HAP ,所以△AHP 是等腰三角形,所以PH =PA =PC ,所以∠HAC 是直角,再在Rt △ABC 中由勾股定理求出AC 的长,然后由△HAC ∽△ADC ,根据=求出AH 的长,再根据△HAC ∽△HDA 求出DH 的长,进而求得HP 和AP 的长,最后得到△APH 的周长. 【详解】∵P 是CH 的中点,PH =PC ,∵AH =AH ,AG =AD ,且AGH 与ADH 都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC ==10,∵△HAC ∽△ADC ,∴=,∴AH ===7.5,又∵△HAC ∽△HAD ,=,∴DH =4.5,∴HP ==6.25,AP =HP =6.25,∴△APH 的周长=AP +PH +AH =6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.11.C解析:C 【解析】 【分析】 【详解】解:∵20a ab -= ()0b ≠, ∴a(a-b)=0, ∴a=0,b=a . 当a=0时,原式=0; 当b=a 时,原式=12, 故选C12.C解析:C 【解析】 【分析】根据对称轴的位置,分三种情况讨论求解即可. 【详解】二次函数的对称轴为直线x=m ,①m <﹣2时,x=﹣2时二次函数有最大值, 此时﹣(﹣2﹣m )2+m 2+1=4,解得m=74-,与m <﹣2矛盾,故m 值不存在; ②当﹣2≤m≤1时,x=m 时,二次函数有最大值, 此时,m 2+1=4,解得m= ③当m >1时,x=1时二次函数有最大值, 此时,﹣(1﹣m )2+m 2+1=4, 解得m=2,综上所述,m 的值为2或﹣ 故选C .二、填空题13.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410) (510) (610) (810) (910) (109) (4解析:715. 【解析】 【分析】列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可. 【详解】解:从6张牌中任意抽两张可能的情况有: (4,10) (5,10) (6,10) (8,10) (9,10) (10,9) (4,9) (5,9) (6,9) (8,9) (9,8) (10,8) (4,8) (5,8) (6,8) (8,6) (9,6) (10,6) (4,6) (5,6) (6,5) (8,5) (9,5) (10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个, ∴点数和是偶数的概率是1473015=; 故答案为715. 【点睛】本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求情况数与总情况数之比.14.-2017【解析】【分析】根据根与系数的关系可得出将其代入中即可得出结论【详解】∵是方程的两个实数根∴∴故答案为:-2017【点睛】本题考查了根与系数的关系牢记两根之和等于两根之积等于是解题的关键解析:-2017 【解析】 【分析】根据根与系数的关系可得出1a b +=-,2019ab =-,将其代入()()()111a b ab a b --=-++中即可得出结论.【详解】∵a 、b 是方程220190x x +-=的两个实数根, ∴1a b +=-,2019ab =-,∴()()()111a b ab a b --=-++2019112017=-++=-. 故答案为:-2017. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于b a -,两根之积等于c a ”是解题的关键. 15.1250cm2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分则两个正方形的边长分别是cmcm 再列出二次函数求其最小值即可【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分列二次解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆 解析:27-1【解析】【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8226+8,∴内切圆的半径为:6+810=22-;若8=1.故答案为2【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.68°【解析】【分析】根据∠AOE 的度数求出劣弧的度数得到劣弧的度数根据圆心角弧弦的关系定理解答即可【详解】∵∠AOE=78°∴劣弧的度数为78°∵AB 是⊙O 的直径∴劣弧的度数为180°﹣78°=1解析:68°【解析】【分析】根据∠AOE 的度数求出劣弧¶AE的度数,得到劣弧¶BE 的度数,根据圆心角、弧、弦的关系定理解答即可.【详解】∵∠AOE =78°,∴劣弧¶AE的度数为78°. ∵AB 是⊙O 的直径,∴劣弧¶BE的度数为180°﹣78°=102°. ∵点C 、D 是弧BE 的三等分点,∴∠COE 23=⨯102°=68°. 故答案为:68°.【点睛】本题考查了圆心角、弧、弦的关系定理,掌握在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解题的关键. 19.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键. 20.30°【解析】设圆心角为n°由题意得:=12π解得:n=30故答案为30° 解析:30°【解析】设圆心角为n°,由题意得:212360n π⨯=12π, 解得:n=30,故答案为30°.三、解答题21.(1)y=-2x+200(30≤x≤60)(2)w=-2(x -65)2 +2000);(3)当销售单价为60元时,该公司日获利最大,为1950元【解析】【分析】(1)设出一次函数解析式,把相应数值代入即可.(2)根据利润计算公式列式即可;(3)进行配方求值即可.【详解】(1)设y=kx+b ,根据题意得806010050k b k b =+⎧⎨=+⎩解得:k 2b 200=-⎧⎨=⎩∴y=-2x+200(30≤x≤60)(2)W=(x -30)(-2x+200)-450=-2x 2+260x -6450=-2(x -65)2 +2000)(3)W =-2(x-65)2 +2000∵30≤x≤60∴x=60时,w有最大值为1950元∴当销售单价为60元时,该公司日获利最大,为1950元考点:二次函数的应用.22.(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.【解析】试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC 的形状;(2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状;(3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可.试题解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考点:一元二次方程的应用.23.(1)50;(2)见解析;(3)16.【解析】【分析】(1) 本次一共调查:15÷30%;(2)先求出B对应的人数为:50﹣16﹣15﹣7,再画图;(3)先列表,再计算概率.【详解】(1)本次一共调查:15÷30%=50(人);故答案为50;(2)B对应的人数为:50﹣16﹣15﹣7=12,如图所示:(3)列表:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∴P(选中A、B)=212=16.【点睛】本题考核知识点:统计初步,概率.解题关键点:用列表法求概率.24.(1)详见解析;(2)详见解析;(3)DE=8.【解析】【分析】(1)根据垂径定理可得AD=CD,得PD是AC的垂直平分线,可判断出P A=PC;(2)由PC=P A得出∠P AC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠P AC=90°,即可得出结论;(2)根据AB和DF的比设AB=3a,DF=2a,先根据三角形中位线可得OD=4,从而得结论.【详解】(1)证明∵OD⊥AC,∴AD=CD,∴PD是AC的垂直平分线,∴P A=PC,(2)证明:由(1)知:P A=PC,∴∠P AC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠P AC=90°,即AB⊥P A,∴P A是⊙O的切线;(3)解:∵AD=CD,OA=OB,∴OD∥BC,OD=12BC=182⨯=4,∵32 ABDF=,设AB=3a,DF=2a,∵AB=EF,∴DE=3a﹣2a=a,∴OD=4=32a﹣a,a=8,∴DE=8.【点睛】本题考查的是圆的综合,难度适中,需要熟练掌握线段中垂线的性质、圆的切线的求法以及三角形中位线的相关性质.25.(1)详见解析;(2)m=﹣3或m=﹣1【解析】【分析】(1)根据根的判别式即可求出答案.(2)利用跟与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可解答.【详解】解:(1)证明:∵△=(m+3)2﹣4(m+2)=(m+1)2,∵无论m取何值,(m+1)2≥0,∴原方程总有两个实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1x2=m+2,∵x12+x22=2,∴(x1+x2)2﹣2x1x2=2,∴代入化简可得:m2+4m+3=0,解得:m=﹣3或m=﹣1【点睛】此题考查根与系数的关系,根的判别式,解题的关键是熟练运用根与系数的关系,本题属于基础题型.。