2019新人教A版高中数学 必修第一册课时同步课时作业 4.4.3 不同函数增长的差异 课堂 Word版含解析
4.4.3 对数函数-不同函数增长的差异 课件 高一数学同步精讲(人教A版必修第一册)原创精品
2 数学模型选择
三种奖金方案的函数模型
x 100 200 300 400 500 600 700 800 900 1000
y=0.25x 增量y
25
50
25
75
25
100
25
125
25
150
25
175
25
200
25
225
25
250
25
y=log7x+1 3.37 3.72 3.93 4.08 4.19 4.29 4.37 4.44 4.5 4.55
增量y
0.35 0.21 0.15 0.11 0.1 0.08 0.07 0.06 0.05
y=1.002x 1.22 1.49 1.82 2.22 2.72 3.32 4.05 4.95 6.04 7.37
60
案
7 25.4760
40
8 5148.20
9 102490.4
20
10 2014400.08
0
从每天的回报量来看: 第__1_~__4_天,方案一最多: 第__4_~__8_天,方案二最多:
第____9__天以后,方案三最多;
•
“指数爆炸”
y=0.4·2x-1
•
•
• y=10x
•
•
•
•
•
•
•
•
•
2 数学模型选择
经过几年打拼王强创办的公司有了一定的规模,2022年 为了实现1000万元总利润的目标,他准备制定一个激励销售 部门的奖励方案:在销售利润达到10万元时,按销售利润进 行奖励,且奖金y (单位:万元)随销售利润x(单位:万元)的 增加而增加,但奖金总数不超过5万元,同时奖金不超过利润 的25% .
【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)
【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。
高中数学 第四章 指数函数与对数函数 4.4 对数函数一课一练(含解析)新人教A版必修第一册-新人教
第四章指数函数与对数函数4.4对数函数第1课时对数函数的概念及图像与性质 考点1对数函数的概念1.(2019·某某某某一中高一期中)与函数y =10lg(x -1)相等的函数是()。
A.y =(√x -1)2B.y =|x -1|C.y =x -1D.y =x 2-1x+1 答案:A 解析:y =10lg(x -1)=x -1(x >1),而y =(√x -12=x -1(x >1),故选A 。
2.(2019·某某公安一中单元检测)设集合A ={x |y =lg x },B ={y |y =lg x },则下列关系中正确的是()。
A.A ∪B =AB.A ∩B =⌀C.A =BD.A ⊆B 答案:D解析:由题意知集合A ={x |x >0},B ={y |y ∈R},所以A ⊆B 。
3.(2019·某某南安一中高一第二阶段考试)设函数f (x )={x 2+1,x ≤1,lgx ,x >1,则f (f (10))的值为()。
A.lg101B.1 C.2D.0 答案:C解析:f (f (10))=f (lg10)=f (1)=12+1=2。
4.(2019·东风汽车一中月考)下列函数是对数函数的是()。
A.y =log a (2x )B.y =lg10xC.y =log a (x 2+x )D.y =ln x 答案:D解析:由对数函数的定义,知D 正确。
5.(2019·某某调考)已知f (x )为对数函数,f (12)=-2,则f (√43)=。
答案:43解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =√2,∴f (x )=lo g √2x ,∴f (√43)=log √2√43=log 2(√43)2=log 2243=43。
6.(2019·某某中原油田一中月考)已知函数f (x )=log 3x ,则f (√3)=。
2020-2020学年高中数学第一册学案第4章 4.4 第3课时不同函数增长的差异含解析
2020-2020学年高中数学新教材人教A版必修第一册学案:第4章4.4 第3课时不同函数增长的差异含解析第3课时不同函数增长的差异学习目标核心素养1.理解直线上升、指数爆炸、对数增长的含义.(重点)2.区分指数函数、对数函数以及一次函数增长速度的差异.(易混点)3.会选择适当的函数模型分析和解决一些实际问题.(难点)借助三个函数模型的增长特征培养数学运算、数学建模的素养。
澳大利亚兔子数“爆炸”:1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子的数量在不到100年内达到75亿只,喂养牛羊的牧草几乎被兔子们吃光,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.兔子为什么会如此快地从几只增长到75亿只呢?原来在理想的环境中,种群数量呈指数增长;在有限制的环境中,种群数量的增长为对数增长.问题:指数函数、对数函数底数大于1时增长快慢有什么规律?提示:都是增函数,而y=a x(a〉1)增长速度越来越快;y=log a x(a〉1)在(0,+∞)上增长速度非常缓慢.三种函数模型的性质y=a x(a〉1)y=log a x(a>1)y=kx(k〉0)在(0,+∞)上的增减性增函数增函数增函数图象的变化趋势随x增大逐渐近似与y轴平行随x增大逐渐近似与x轴平行保持固定增长速度增长速度①y=a x(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=log a x (a〉1)的增长速度越来越慢;②存在一个x0,当x〉x0时,有a x>kx〉log a x1.思考辨析(正确的画“√”,错误的画“×”)(1)函数y=2x比y=2x增长的速度更快些.()(2)当a〉1,n>0时,在区间(0,+∞)上,对任意的x,总有log a x 〈x n〈a x成立.()(3)函数y=log错误!x衰减的速度越来越慢.()[答案](1)×(2)×(3)√2.已知变量y=1+2x,当x减少1个单位时,y的变化情况是()A.y减少1个单位B.y增加1个单位C.y减少2个单位D.y增加2个单位C[结合函数y=1+2x的变化特征可知C正确.]3.三个变量y1,y2,y3随变量x变化的数据如下表:x0510********y15130505 1 130 2 005 3 130 4 505y2590 1 62029 160524 8809 447 840170 061 120y35305580105130155其中关于x呈指数增长的变量是________.y2[由指数函数的变化规律可知,y2随x的变化呈指数增长.] 4.某工厂8年来某种产品总产量C与时间t(年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.②③[结合图象可知②③正确,故填②③。
新教材人教A版高中数学必修第一册全册课时练习(一课一练,附解析)
新教材人教A版高中数学必修第一册全册课时练习1.1.1集合的概念 (2)1.1.2集合的表示 (3)1.2集合间的基本关系 (5)1.3.1并集与交集 (7)1.3.2补集及集合运算的综合应用 (8)1.4.1充分条件与必要条件 (11)1.4.2充要条件 (12)1.5.1全称量词与存在量词 (13)1.5.2全称量词命题与存在量词命题的否定 (14)2.1等式性质与不等式性质 (16)2.2.1基本不等式 (17)2.2.2利用基本不等式求最值 (18)2.3.1二次函数与一元二次方程、不等式 (19)2.3.2一元二次不等式的应用 (20)3.1.1.1函数的概念 (21)3.1.1.2函数概念的应用 (22)3.1.2.1函数的表示法 (24)3.1.2.2分段函数 (25)3.2.1.1函数的单调性 (26)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (32)3.3幂函数 (36)3.4函数的应用(一) (37)4.1.1根式 (40)4.1.2指数幂及其运算 (41)4.2.1指数函数及其图象性质 (43)4.2.2指数函数的性质及其应用 (44)4.3.1对数的概念 (47)4.3.2 对数的运算 (48)4.4.1对数函数及其图象 (49)4.2.2对数函数的性质及其应用 (51)4.4.3不同函数增长的差异 (53)4.5.1函数的零点与方程的解 (54)4.5.2用二分法求方程的近似解 (57)4.5.3函数模型的应用 (58)5.1.1任意角 (60)5.1.2弧度制 (61)5.2.1三角函数的概念 (62)5.2.2同角三角函数的基本关系 (64)5.3.1诱导公式二、三、四 (66)5.3.2诱导公式五、六 (67)5.4.1正弦函数、余弦函数的图象 (69)5.4.2.1正弦函数、余弦函数的性质(一) ...................................................................... 71 5.4.2.2正弦函数、余弦函数的性质(二) ...................................................................... 73 5.4.3正切函数的性质与图象 ........................................................................................ 75 5.5.1.1两角差的余弦公式 ............................................................................................. 76 5.5.1.2两角和与差的正弦、余弦公式 ......................................................................... 78 5.5.1.3两角和与差的正切公式 ..................................................................................... 80 5.5.1.4二倍角的正弦、余弦、正切公式 ..................................................................... 81 5.5.2.1简单的三角恒等变换 ......................................................................................... 83 5.5.2.2三角恒等变换的应用 ......................................................................................... 84 5.6.1函数y =A sin(ωx +φ)的图象(一) .......................................................................... 86 5.6.2函数y =A sin(ωx +φ)的图象(二) .......................................................................... 88 5.7三角函数的应用 . (90)1.1.1集合的概念1.已知a ∈R ,且a ∉Q ,则a 可以为( ) A . 2 B .12 C .-2 D .-13[解析]2是无理数,所以2∉Q ,2∈R .[答案] A2.若由a 2,2019a 组成的集合M 中有两个元素,则a 的取值可以是( ) A .a =0 B .a =2019 C .a =1D .a =0或a =2019[解析] 若集合M 中有两个元素,则a 2≠2019a .即a ≠0,且a ≠2019.故选C . [答案] C3.下列各组对象能构成集合的有( )①接近于0的实数;②小于0的实数;③(2019,1)与(1,2019);④1,2,3,1. A .1组 B .2组 C .3组D .4组[解析] ①中“接近于0”不是一个明确的标准,不满足集合中元素的确定性,所以不能构成集合;②中“小于0”是一个明确的标准,能构成集合;③中(2019,1)与(1,2019)是两个不同的对象,是确定的,能构成集合,注意该集合有两个元素;④中的对象是确定的,可以构成集合,根据集合中元素的互异性,可知构成的集合为{1,2,3}.[答案] C4.若方程ax2+ax+1=0的解构成的集合中只有一个元素,则a为( )A.4 B.2C.0 D.0或4[解析] 当a=0时,方程变为1=0不成立,故a=0不成立;当a≠0时,Δ=a2-4a =0,a=4,故选A.[答案] A5.下列说法正确的是________.①及第书业的全体员工形成一个集合;②2019年高考试卷中的难题形成一个集合;③方程x2-1=0与方程x+1=0所有解组成的集合中共有3个元素;④x,3x3,x2,|x|形成的集合中最多有2个元素.[解析] ①及第书业的全体员工是一个确定的集体,能形成一个集合,正确;②难题没有明确的标准,不能形成集合,错误;③方程x2-1=0的解为x=±1,方程x+1=0的解为x=-1,由集合中元素的互异性知,两方程所有解组成的集合中共有2个元素1,-1,故错误;④x=3x3,x2=|x|,故正确.[答案] ①④1.1.2集合的表示1.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}[解析] ∵x2-2x+1=0,即(x-1)2=0,∴x=1,选B.[答案] B2.已知集合A={x∈N*|-5≤x≤5},则必有( )A.-1∈A B.0∈AC.3∈A D.1∈A[解析] ∵x∈N*,-5≤x≤5,∴x=1,2,即A={1,2},∴1∈A,选D. [答案] D3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}[解析] 由⎩⎪⎨⎪⎧y =x -3,y =-2x 得⎩⎪⎨⎪⎧x =1,y =-2,∴交点为(1,-2),故选D.[答案] D4.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B 为________. [解析] 当t =-2时,x =4; 当t =2时,x =4; 当t =3时,x =9; 当t =4时,x =16; ∴B ={4,9,16}. [答案] {4,9,16}5.选择适当的方法表示下列集合: (1)绝对值不大于2的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合; (3)一次函数y =x +6图象上所有点组成的集合.[解] (1)绝对值不大于2的整数是-2,-1,0,1,2,共有5个元素,则用列举法表示为{-2,-1,0,1,2}.(2)方程(3x -5)(x +2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2. (3)一次函数y =x +6图象上有无数个点,用描述法表示为{(x ,y )|y =x +6}.课内拓展 课外探究 集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】 用列举法表示下列集合: (1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y =x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y=x2+1.∴{(x,y)|y=x2+1}={P|P是抛物线y=x2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y=x2+1有关,但由于代表元素不同,因而表示的集合也不一样.1.2集合间的基本关系1.下列四个关系式:①{a,b}⊆{b,a};②∅={∅};③∅{0};④0∈{0}.其中正确的个数是( )A.4 B.3C.2 D.1[解析] 对于①,任何集合是其本身的子集,正确;对于②,相对于集合{∅}来说,∅∈{∅},也可以理解为∅⊆{∅},错误;对于③,空集是非空集合的真子集,故∅{0}正确;对于④,0是集合{0}的元素,故0∈{0}正确.[答案] B2.集合A={x|-1≤x<2,x∈N}的真子集的个数为( )A .4B .7C .8D .16[解析] A ={-1,0,1},其真子集为∅,{-1},{0},{1},{-1,0},{-1,1},{0,1},共有22-1=4(个).[答案] A3.已知集合A ={3,-1},集合B ={|x -1|,-1},且A =B ,则实数x 等于( ) A .4 B .-2 C .4或-2D .2[解析] ∵A =B ,∴|x -1|=3,解得x =4或x =-2. [答案] C4.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为________.[解析] 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.[答案] 65.设集合A ={x |-1≤x ≤6},B ={x |m -1≤x ≤2m +1},已知B ⊆A . (1)求实数m 的取值范围;(2)当x ∈N 时,求集合A 的子集的个数.[解] (1)当m -1>2m +1,即m <-2时,B =∅,符合题意. 当m -1≤2m +1,即m ≥-2时,B ≠∅. 由B ⊆A ,借助数轴(如图),得⎩⎪⎨⎪⎧m -1≥-1,2m +1≤6,解得0≤m ≤52.综上所述,实数m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <-2或0≤m ≤52. (2)当x ∈N 时,A ={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3.1并集与交集1.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( ) A .{2} B .{2,3} C .{-1,2,3}D .{1,2,3,4}[解析] 因为A ∩C ={1,2},所以(A ∩C )∪B ={1,2,3,4},选D. [答案] D2.集合P ={x ∈Z |0≤x <3},M ={x ∈R |x 2≤9},则P ∩M 等于( ) A .{1,2} B .{0,1,2} C .{x |0≤x ≤3}D .{x |0≤x <3}[解析] 由已知得P ={0,1,2},M ={x |-3≤x ≤3}, 故P ∩M ={0,1,2}. [答案] B3.已知集合A ={x |x >2或x <0},B ={x |-5<x <5},则( ) A .A ∩B =∅ B .A ∪B =R C .B ⊆AD .A ⊆B[解析] ∵A ={x |x >2或x <0},B ={x |-5<x <5},∴A ∩B ={x |-5<x <0或2<x <5},A ∪B =R .故选B.[答案] B4.设集合M ={x |-3≤x <7},N ={x |2x +k ≤0},若M ∩N ≠∅,则实数k 的取值范围为________.[解析] 因为N ={x |2x +k ≤0}=⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ≤-k 2,且M ∩N ≠∅,所以-k2≥-3⇒k ≤6.[答案] k ≤65.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N . (2)当M ∩N =M 时,求实数m 的值.[解] (1)由题意得M ={2}.当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}.(2)∵M ∩N =M ,∴M ⊆N .∵M ={2},∴2∈N . ∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m=0,解得m=2.由(1)知,M∩N={2}=M,适合题意,故m=2.1.3.2补集及集合运算的综合应用1.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}[解析] ∵A={x|x≤0},B={x|x≥1},∴A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.[答案] D2.已知三个集合U,A,B之间的关系如图所示,则(∁U B)∩A=( )A.{3} B.{0,1,2,4,7,8}C.{1,2} D.{1,2,3}[解析] 由Venn图可知U={0,1,2,3,4,5,6,7,8},A={1,2,3},B={3,5,6},所以(∁U B)∩A={1,2}.[答案] C3.设全集U={x∈N|x≤8},集合A={1,3,7},B={2,3,8},则(∁U A)∩(∁U B)=( )A.{1,2,7,8} B.{4,5,6}C.{0,4,5,6} D.{0,3,4,5,6}[解析] ∵U={x∈N|x≤8}={0,1,2,3,4,5,6,7,8},∴∁U A={0,2,4,5,6,8},∁U B={0,1,4,5,6,7},∴(∁U A)∩(∁U B)={0,4,5,6}.[答案] C4.全集U={x|0<x<10},A={x|0<x<5},则∁U A=________.[解析] ∁U A={x|5≤x<10},如图所示.[答案] {x|5≤x<10}5.设全集U={2,3,a2+2a-3},A={|2a-1|,2},且∁U A={5},求实数a的值.[解] ∵∁U A={5},∴5∈U,但5∉A,∴a2+2a-3=5,解得a=2或a=-4.当a=2时,|2a-1|=3,这时A={3,2},U={2,3,5}.∴∁U A={5},适合题意.∴a=2.当a=-4时,|2a-1|=9,这时A={9,2},U={2,3,5},A⃘U,∴∁U A无意义,故a =-4应舍去.综上所述,a=2.课内拓展课外探究空集对集合关系的影响空集是不含任何元素的集合,它既不是有限集,也不是无限集.空集就像一个无处不在的幽灵,解题时需处处设防,提高警惕.空集是任何集合的子集,其中“任何集合”当然也包括了∅,故将会出现∅⊆∅.而此时按子集理解不能成立,原因是前面空集中无元素,不符合定义,因此知道这一条是课本“规定”.空集是任何非空集合的真子集,即∅A(而A≠∅).既然A≠∅,即必存在a∈A而a∉∅,∴∅A.由于空集的存在,关于子集定义的下列说法有误,如“A⊆B,即A为B中的部分元素所组成的集合”.因为从“部分元素”的含义无法理解“空集是任何集合的子集”、“A是A 的子集”、“∅⊆∅”等结论.在解决诸如A⊆B或A B类问题时,必须优先考虑A=∅时是否满足题意.【典例1】已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},求满足B⊆A 的a的值组成的集合.[解] 由已知得A={-2,4},B是关于x的一元二次方程x2+ax+a2-12=0(*)的解集.方程(*)根的判别式Δ=a2-4(a2-12)=-3(a2-16).(1)若B=∅,则方程(*)没有实数根,即Δ<0,∴-3(a2-16)<0,解得a <-4或a >4.此时B ⊆A .(2)若B ≠∅,则B ={-2}或{4}或{-2,4}.①若B ={-2},则方程(*)有两个相等的实数根x =-2, ∴(-2)2+(-2)a +a 2-12=0,即a 2-2a -8=0. 解得a =4或a =-2.当a =4时,恰有Δ=0; 当a =-2时,Δ>0,舍去.∴当a =4时,B ⊆A . ②若B ={4},则方程(*)有两个相等的实数根x =4, ∴42+4a +a 2-12=0,解得a =-2,此时Δ>0,舍去.③若B ={-2,4},则方程(*)有两个不相等的实数根x =-2或x =4,由①②知a =-2,此时Δ>0,-2与4恰是方程的两根.∴当a =-2时,B ⊆A .综上所述,满足B ⊆A 的a 值组成的集合是{a |a <-4或a =-2或a ≥4}.[点评] ∅有两个独特的性质,即:(1)对于任意集合A ,皆有A ∩∅=∅;(2)对于任意集合A ,皆有A ∪∅=A .正因如此,如果A ∩B =∅,就要考虑集合A 或B 可能是∅;如果A ∪B =A ,就要考虑集合B 可能是∅.【典例2】 设全集U =R ,集合M ={x |3a -1<x <2a ,a ∈R },N ={x |-1<x <3},若N ⊆(∁UM ),求实数a 的取值集合.[解] 根据题意可知:N ≠∅,又∵N ⊆(∁U M ). ①当M =∅,即3a -1≥2a 时,a ≥1. 此时∁U M =R ,N ⊆(∁U M )显然成立. ②当M ≠∅,即3a -1<2a 时,a <1.由M ={x |3a -1<x <2a },知∁U M ={x |x ≤3a -1或x ≥2a }.又∵N ⊆(∁U M ),∴结合数轴分析可知⎩⎪⎨⎪⎧a <1,3≤3a -1,或⎩⎪⎨⎪⎧a <1,2a ≤-1,得a ≤-12.综上可知,a 的取值集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥1或a ≤-12. [点评] 集合的包含关系是集合知识重要的一部分,在后续内容中应用特别广泛,涉及集合包含关系的开放性题目都以子集的有关性质为主,因此需要对相关的性质有深刻的理解.对于有限集,在处理包含关系时可列出所有的元素,然后依条件讨论各种情况,找到符合条件的结果.1.4.1充分条件与必要条件1.若a∈R,则“a=2”是“(a-1)(a-2)=0”的( )A.充分条件B.必要条件C.既不是充分条件,也不是必要条件D.无法判断[解析] 因为a=2⇒(a-1)(a-2)=0,而(a-1)(a-2)=0不能推出a=2,故a=2是(a-1)(a-2)=0的充分条件,应选A.[答案] A2.设x∈R,则x>2的一个必要条件是( )A.x>1 B.x<1C.x>3 D.x<3[解析] 因为x>2⇒x>1,所以选A.[答案] A3.下列命题中,是真命题的是( )A.“x2>0”是“x>0”的充分条件B.“xy=0”是“x=0”的必要条件C.“|a|=|b|”是“a=b”的充分条件D.“|x|>1”是“x2不小于1”的必要条件[解析] A中,x2>0⇒x>0或x<0,不能推出x>0,而x>0⇒x2>0,故x2>0是x>0的必要条件.B中,xy=0⇒x=0或y=0,不能推出x=0,而x=0⇒xy=0,故xy=0是x=0的必要条件.C中,|a|=|b|⇒a=b或a=-b,不能推出a=b,而a=b⇒|a|=|b|,故|a|=|b|是a=b的必要条件.D中,|x|>1⇒x2不小于1,而x2不小于1不能推出|x|>1,故|x|>1是x2不小于1的充分条件,故本题应选B.[答案] B4.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的____________条件.[答案] 不必要(填必要、不必要)5.(1)若“x<m”是“x>2或x<1”的充分条件,求m的取值范围.(2)已知M={x|a-1<x<a+1},N={x|-3<x<8},若N是M的必要条件,求a的取值范围.[解] (1)记A={x|x>2或x<1},B={x|x<m}由题意可得B⊆A,即{x|x<m}⊆{x|x>2或x<1}.所以m ≤1.故m 的取值范围为{m |m ≤1}. (2)因为N 是M 的必要条件,所以M ⊆N .于是⎩⎪⎨⎪⎧a -1≥-3,a +1≤8,从而可得-2≤a ≤7.故a 的取值范围为{a |-2≤a ≤7}.1.4.2充要条件1.设x ∈R ,则“x <-1”是“|x |>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件[解析] 因为x <-1⇒|x |>1,而|x |>1⇒x <-1或x >1,故“x <-1”是“|x |>1”的充分不必要条件.[答案] A2.“x 2+(y -2)2=0”是“x (y -2)=0”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件[解析] x 2+(y -2)2=0,即x =0且y =2,∴x (y -2)=0.反之,x (y -2)=0,即x =0或y =2,x 2+(y -2)2=0不一定成立.[答案] B3.已知A ,B 是非空集合,命题p :A ∪B =B ,命题q :A B ,则p 是q 的( ) A .充要条件B .充分不必要条件C .既不充分也不必要条件D .必要不充分条件[解析] 由A ∪B =B ,得A B 或A =B ;反之,由A B ,得A ∪B =B ,所以p 是q 的必要不充分条件.[答案] D4.关于x 的不等式|x |>a 的解集为R 的充要条件是________. [解析] 由题意知|x |>a 恒成立,∵|x |≥0,∴a <0. [答案] a <05.已知x ,y 都是非零实数,且x >y ,求证:1x <1y的充要条件是xy >0.[证明] 证法一:①充分性:由xy >0及x >y ,得x xy >y xy ,即1x <1y.②必要性:由1x <1y ,得1x -1y <0,即y -xxy<0.因为x >y ,所以y -x <0,所以xy >0. 所以1x <1y的充要条件是xy >0.证法二:1x <1y ⇔1x -1y <0⇔y -xxy<0.由条件x >y ⇔y -x <0,故由y -xxy<0⇔xy >0. 所以1x <1y⇔xy >0,即1x <1y的充要条件是xy >0.1.5.1全称量词与存在量词1.下列命题中,不是全称量词命题的是( ) A .任何一个实数乘0都等于0 B .自然数都是正整数C .对于任意x ∈Z,2x +1是奇数D .一定存在没有最大值的二次函数 [解析] D 选项是存在量词命题. [答案] D2.下列命题中,存在量词命题的个数是( )①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④任意x ∈R ,y ∈R ,都有x 2+|y |>0.A .0B .1C .2D .3[解析] 命题①含有存在量词;命题②可以叙述为“所有的正方形都是菱形”,故为全称量词命题;命题③可以叙述为“一切能被6整除的数也能被3整除”,是全称量词命题;命题④是全称量词命题.故有1个存在量词命题.[答案] B3.下列命题是“∀x ∈R ,x 2>3”的另一种表述方法的是( ) A .有一个x ∈R ,使得x 2>3B .对有些x ∈R ,使得x 2>3 C .任选一个x ∈R ,使得x 2>3 D .至少有一个x ∈R ,使得x 2>3[解析] “∀x ∈R ,x 2>3”是全称量词命题,改写时应使用全称量词. [答案] C4.对任意x >8,x >a 恒成立,则实数a 的取值范围是________. [解析] ∵对于任意x >8,x >a 恒成立,∴大于8的数恒大于a ,∴a ≤8. [答案] a ≤85.判断下列命题是全称量词命题还是存在量词命题?并判断其真假. (1)∃x ∈R ,|x |+2≤0;(2)存在一个实数,使等式x 2+x +8=0成立;(3)在平面直角坐标系中,任意有序实数对(x ,y )都对应一点. [解] (1)存在量词命题.∵∀x ∈R ,|x |≥0,∴|x |+2≥2,不存在x ∈R , 使|x |+2≤0.故命题为假命题. (2)存在量词命题.∵x 2+x +8=⎝ ⎛⎭⎪⎫x +122+314>0,∴命题为假命题.(3)在平面直角坐标系中,任意有序实数对(x ,y )与平面直角坐标系中的点是一一对应的,所以该命题是真命题.1.5.2全称量词命题与存在量词命题的否定1.命题“∃x ∈R ,x 2-2x -3≤0”的否定是( ) A .∀x ∈R ,x 2-2x -3≤0 B .∃x ∈R ,x 2-2x -3≥0 C .∃x 0∈R ,x 2-2x -3>0 D .∀x ∈R ,x 2-2x -3>0[解析] 存在量词命题的否定是全称量词命题,一方面要改量词即“∃”改为“∀”;另一方面要否定结论,即“≤”改为“>”.故选D.[答案] D2.已知命题p :∀x >0,x 2≥2,则它的否定为( )A .∀x >0,x 2<2 B .∀x ≤0,x 2<2 C .∃x ≤0,x 2<2 D .∃x >0,x 2<2[答案] D3.全称量词命题“所有能被5整除的整数都是奇数”的否定是( ) A .所有能被5整除的整数都不是奇数 B .所有奇数都不能被5整除C .存在一个能被5整除的整数不是奇数D .存在一个奇数,不能被5整除[解析] 全称量词命题的否定是存在量词命题,而选项A ,B 是全称量词命题,所以选项A ,B 错误.因为“所有能被5整除的整数都是奇数”的否定是“存在一个能被5整除的整数不是奇数”,所以选项D 错误,选项C 正确,故选C.[答案] C4.对下列命题的否定,其中说法错误的是( )A .p :∀x ≥3,x 2-2x -3≥0;p 的否定:∃x ≥3,x 2-2x -3<0B .p :存在一个四边形的四个顶点不共圆;p 的否定:每一个四边形的四个顶点共圆C .p :有的三角形为正三角形;p 的否定:所有的三角形不都是正三角形D .p :∃x ∈R ,x 2+2x +2≤0;p 的否定:∀x ∈R ,x 2+2x +2>0[解析] 若p :有的三角形为正三角形,则p 的否定:所有的三角形都不是正三角形,故C 错误.[答案] C5.写出下列命题的否定,并判断其真假. (1)菱形是平行四边形;(2)与圆只有一个公共点的直线是圆的切线; (3)存在一个三角形,它的内角和大于180°; (4)∃x ∈R ,使得x 2+x +1≤0.[解] (1)题中命题的否定为“存在一个菱形不是平行四边形”,这个命题为假命题. (2)是全称量词命题,省略了全称量词“任意”,即“任意一条与圆只有一个公共点的直线是圆的切线”,否定为:存在一条与圆只有一个公共点的直线不是圆的切线;这个命题为假命题.(3)题中命题的否定为“所有三角形的内角和都小于或等于180°”,这个命题为真命题.(4)题中命题的否定为“∀x ∈R ,x 2+x +1>0”,这个命题为真命题.因为x 2+x +1=x 2+x +14+34=⎝⎛⎭⎪⎫x +122+34>0.2.1等式性质与不等式性质1.下列说法正确的为( ) A .若1x =1y,则x =yB .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2[解析] ∵1x =1y,且x ≠0,y ≠0,两边同乘以xy ,得x =y .[答案] A2.设a ,b 为非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2B .ab 2<a 2b C .1ab 2<1a 2bD .b a <a b[解析] 用a =-1,b =1,试之,易排除A ,D.再取a =1,b =2,易排除B. [答案] C3.下列命题中正确的个数是( ) ①若a >b ,b ≠0,则a b>1; ②若a >b ,且a +c >b +d ,则c >d ; ③若a >b ,且ac >bd ,则c >d . A .0 B .1 C .2 D .3[解析] ①若a =2,b =-1,则不符合;②取a =10,b =2,c =1,d =3,虽然满足a >b 且a +c >b +d ,但不满足c >d ,故错;③当a =-2,b =-3,取c =-1,d =2,则不成立.[答案] A4.若x ≠2或y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系为________. [解析] ∵x ≠2或y ≠-1,∴M -N =x 2+y 2-4x +2y +5=(x -2)2+(y +1)2>0,∴M >N . [答案] M >N5.若-1≤a ≤3,1≤b ≤2,则a -b 的范围为________. [解析] ∵-1≤a ≤3,-2≤-b ≤-1, ∴-3≤a -b ≤2. [答案] -3≤a -b ≤22.2.1基本不等式1.若ab >0,则下列不等式不一定能成立的是( ) A .a 2+b 2≥2ab B .a 2+b 2≥-2ab C .a +b2≥abD .b a +a b≥2[解析] C 选项由条件可得到a 、b 同号,当a 、b 均为负号时,不成立. [答案] C 2.已知a >1,则a +12,a ,2aa +1三个数的大小顺序是( ) A.a +12<a <2a a +1 B.a <a +12<2aa +1C.2a a +1<a <a +12 D.a <2a a +1≤a +12 [解析] 当a ,b 是正数时,2ab a +b ≤ab ≤a +b2≤a 2+b 22(a ,b ∈R +),令b =1,得2aa +1≤a ≤a +12.又a >1,即a ≠b ,故上式不能取等号,选C.[答案] C3.b a +ab≥2成立的条件是________.[解析] 只要b a 与a b都为正,即a 、b 同号即可. [答案] a 与b 同号4.设a ,b ,c 都是正数,试证明不等式:b +c a +c +a b +a +bc≥6. [证明] 因为a >0,b >0,c >0, 所以b a +ab ≥2,c a +a c ≥2,b c +c b≥2,所以⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫b c +c b ≥6,当且仅当b a =a b ,c a =a c ,c b =bc, 即a =b =c 时,等号成立.所以b +c a +c +a b +a +bc≥6.2.2.2利用基本不等式求最值1.已知y =x +1x-2(x >0),则y 有( )A .最大值为0B .最小值为0C .最小值为-2D .最小值为2[答案] B2.已知0<x <1,则当x (1-x )取最大值时,x 的值为( ) A.13 B.12 C.14D.23[解析] ∵0<x <1,∴1-x >0.∴x (1-x )≤⎝ ⎛⎭⎪⎫x +1-x 22=14,当且仅当x =1-x ,即x =12时,等号成立.[答案] B3.已知p ,q ∈R ,pq =100,则p 2+q 2的最小值是________. [答案] 2004.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________. [解析] 由基本不等式,得4x +a x≥24x ·a x =4a ,当且仅当4x =a x,即x =a2时,等号成立,即a2=3,a =36.[答案] 365.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?[解] 由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x-200≥212x ·80000x-200=200, 当且仅当12x =80000x,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.2.3.1二次函数与一元二次方程、不等式1.不等式-x 2-5x +6≤0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}[解析] 由-x 2-5x +6≤0得x 2+5x -6≥0, 即(x +6)(x -1)≥0, ∴x ≥1或x ≤-6. [答案] D2.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}[解析] 结合二次函数y =ax 2+bx +c (a <0)的图象可得{x |-1≤x ≤2},故选D. [答案] D3.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .4[解析] 由题可知-7和-1为ax 2+8ax +21=0的两个根,∴-7×(-1)=21a,a =3.[答案] C4.不等式x 2-4x +5≥0的解集为________. [解析] ∵Δ=(-4)2-4×5=-4<0, ∴不等式x 2-4x +5≥0的解集为R . [答案] R5.当a >-1时,关于x 的不等式x 2+(a -1)x -a >0的解集是________. [解析] 原不等式可化为(x +a )(x -1)>0, 方程(x +a )(x -1)=0的两根为-a,1, ∵a >-1,∴-a <1,故不等式的解集为{x |x <-a 或x >1}. [答案] {x |x <-a 或x >1}2.3.2一元二次不等式的应用1.不等式x -2x +3>0的解集是( ) A .{x |-3<x <2} B .{x |x >2} C .{x |x <-3或x >2} D .{x |x <-2或x >3}[解析] 不等式x -2x +3>0⇔(x -2)(x +3)>0的解集是{x |x <-3或x >2},所以C 选项是正确的.[答案] C2.若集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,则A ∩B =( ) A .{x |-1≤x <0} B .{x |0<x ≤1} C .{x |0≤x ≤2}D .{x |0≤x ≤1}[解析] ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2},∴A ∩B ={x |0<x ≤1}. [答案] B3.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值范围是( )A .m >2B .m <2C .m <0或m >2D .0<m <2[解析] 由题意得Δ=m 2-4×m2<0,即m 2-2m <0,解得0<m <2.[答案] D4.已知不等式x 2+ax +4<0的解集为空集,则a 的取值范围是( ) A .-4≤a ≤4 B .-4<a <4 C .a ≤-4或a ≥4D .a <-4或a >4[解析] 依题意应有Δ=a 2-16≤0,解得-4≤a ≤4,故选A. [答案] A5.某产品的总成本y (万元)与产量x (台)之间的函数关系式为y =3000+20x -0.1x 2(0<x <240,x ∈R ),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时最低产量是( )A .100台B .120台C .150台D .180台 [解析] 3000+20x -0.1x 2≤25x ⇔x 2+50x -30000≥0,解得x ≤-200(舍去)或x ≥150. [答案] C3.1.1.1函数的概念1.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)[解析] 由题意可知,要使函数有意义,需满足{ x -1≥0,x -2≠0,即x ≥1且x ≠2.[答案] A2.函数y =1-x 2+x 的定义域为( ) A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤-1}D .{x |0≤x ≤1}[解析] 由题意可知⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,解得0≤x ≤1.[答案] D 3.函数f (x )=(x +2)(1-x )x +2的定义域为( )A .{x |-2≤x ≤1}B .{x |-2<x <1}C .{x |-2<x ≤1}D .{x |x ≤1}[解析] 要使函数有意义,需⎩⎪⎨⎪⎧(x +2)(1-x )≥0,x +2≠0,解得-2≤x ≤1,且x ≠-2,所以函数的定义域是{x |-2<x ≤1}.[答案] C4.集合{x |-1≤x <0或1<x ≤2}用区间表示为________. [解析] 结合区间的定义知,用区间表示为[-1,0)∪(1,2]. [答案] [-1,0)∪(1,2]5.已知矩形的周长为1,它的面积S 是其一边长为x 的函数,则其定义域为________(结果用区间表示).[解析] 由实际意义知x >0,又矩形的周长为1,所以x <12,所以定义域为⎝ ⎛⎭⎪⎫0,12.[答案] ⎝ ⎛⎭⎪⎫0,123.1.1.2函数概念的应用1.下列各组函数中,表示同一个函数的是( )A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=(x -1)2和g (x )=(x +1)2D .f (x )=(x )2x 和g (m )=m(m )2[解析] A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.[答案] D2.设f (x )=x 2-1x 2+1,则f (2)f ⎝ ⎛⎭⎪⎫12=( )A .1B .-1 C.35 D .-35[解析] f (2)f ⎝ ⎛⎭⎪⎫12=22-122+1⎝ ⎛⎭⎪⎫122-1⎝ ⎛⎭⎪⎫122+1=35-3454=35×⎝ ⎛⎭⎪⎫-53=-1.[答案] B3.下列函数中,值域为(0,+∞)的是( ) A .y =x B .y =1xC .y =1xD .y =x 2+1[解析] y =x 的值域为[0,+∞),y =1x的值域为(-∞,0)∪(0,+∞),y =x 2+1的值域为[1,+∞).[答案] B4.已知函数f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1) C .[0,1)∪(1,4]D .(0,1)[解析] 由f (x )的定义域是[0,2]知,{ 0≤2x ≤2,x -1≠0, 解得0≤x <1,所以g (x )=f (2x )x -1的定义域为[0,1). [答案] B5.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________. [解析] ∵x ∈{1,2,3,4,5} ∴f (x )=2x -3∈{-1,1,3,5,7}. ∴f (x )的值域为{-1,1,3,5,7}. [答案] {-1,1,3,5,7}3.1.2.1函数的表示法1.y 与x 成反比,且当x =2时,y =1,则y 关于x 的函数关系式为( ) A .y =1xB .y =-1xC .y =2xD .y =-2x[解析] 设y =k x ,当x =2时,y =1,所以1=k 2,得k =2.故y =2x.[答案] C2.由下表给出函数y =f (x ),则f [f (1)]等于( )x 1 2 3 4 5 y45321A.1 B .2 C .4 D .[解析] 由题意得f (1)=4,所以f [f (1)]=f (4)=2. [答案] B3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )[解析] 距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.[答案] C4.若3f (x -1)+2f (1-x )=2x ,则f (x )的解析式为__________________. [解析] (换元法)令t =x -1,则x =t +1,t ∈R , 原式变为3f (t )+2f (-t )=2(t +1),①以-t 代替t ,①式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t )得f (t )=2t +25,∴f (x )=2x +25.[答案] f (x )=2x +255.已知f (x )=x +b ,f (ax +1)=3x +2,求a ,b 的值. [解] 由f (x )=x +b ,得f (ax +1)=ax +1+b . ∴ax +1+b =3x +2,∴a =3,b +1=2,即a =3,b =1.3.1.2.2分段函数1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f [f (-7)]的值为( )A .100B .10C .-10D .-100[解析] ∵f (-7)=10,∴f [f (-7)]=f (10)=10×10=100. [答案] A2.下列图形是函数y =x |x |的图象的是( )[解析] ∵f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,分别画出y =x 2(取x ≥0部分)及y =-x 2(取x <0部分)即可.[答案] D3.函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A .RB .[0,2]∪{3}C .[0,+∞)D .[0,3][解析] 当0≤x ≤1时,0≤f (x )≤2,当1<x <2时,f (x )=2,当x ≥2时,f (x )=3.故0≤f (x )≤2或f (x )=3,故选B.[答案] B4.下图中的图象所表示的函数的解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2)[解析] 可将原点代入,排除选项A ,C ;再将点⎝ ⎛⎭⎪⎫1,32代入,排除D 项. [答案] B5.设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2,x >0.若f [f (a )]=2,则a =________.[解析] 当a ≤0时,f (a )=a 2+2a +2>0,f [f (a )]<0,显然不成立;当a >0时,f (a )=-a 2,f [f (a )]=a 4-2a 2+2=2,则a =±2或a =0,故a = 2.[答案] 23.2.1.1函数的单调性1.如图所示,函数y =f (x )在下列哪个区间上是增函数( )A .[-4,4]B .[-4,-3]∪[1,4]C .[-3,1]D .[-3,4][解析] 观察题中图象知,函数在[-3,1]上是增函数. [答案] C2.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)2[解析] 选项A ,B 在(-∞,0)上为减函数,选项D 在(-2,0]上为减函数,只有选项C 满足在(-∞,0]内为增函数.故选C.[答案] C3.若函数f (x )=(2a -1)x +b 是R 上的减函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝ ⎛⎦⎥⎤-∞,12C.⎝ ⎛⎭⎪⎫-12,+∞ D.⎝⎛⎭⎪⎫-∞,12 [解析] 由一次函数的性质得2a -1<0,即a <12.故选D.[答案] D4.已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝ ⎛⎭⎪⎫12的实数x 的取值范围为________.[解析] 因为f (x )在区间[-1,1]上为增函数,且f (x )<f ⎝ ⎛⎭⎪⎫12,所以⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.[答案] ⎣⎢⎡⎭⎪⎫-1,125.已知函数f (x )=x -1x +1,判断f (x )在(0,+∞)上的单调性并用定义证明. [解] f (x )在(0,+∞)上单调递增. 证明如下:任取x 1>x 2>0,f (x 1)-f (x 2)=x 1-1x 1+1-x 2-1x 2+1=2(x 1-x 2)(x 1+1)(x 2+1),由x 1>x 2>0知x 1+1>0,x 2+1>0,x 1-x 2>0,故f (x 1)-f (x 2)>0,即f (x )在(0,+∞)上单调递增.3.2.1.2函数的最大(小)值1.函数f (x )在[-2,+∞)上的图象如图所示,则此函数的最大、最小值分别为( )A .3,0B .3,1C .3,无最小值D .3,-2[解析] 观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.[答案] C2.已知函数f (x )=|x |,x ∈[-1,3],则f (x )的最大值为( ) A .0 B .1 C .2 D .3[解析] 作出函数f (x )=|x |,x ∈[-1,3]的图象,如图所示.根据函数图象可知,f (x )的最大值为3.[答案] D3.下列函数在[1,4]上最大值为3的是( ) A .y =1x+2B .y =3x -2C .y =x 2D .y =1-x[解析] B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.[答案] A4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).[解析] 设矩形花园的宽为y m ,则x 40=40-y 40, 即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20时,面积最大.[答案] 205.已知二次函数y =x 2-4x +5,分别求下列条件下函数的最小值: (1)x ∈[-1,0];(2)x ∈[a ,a +1].[解] (1)∵二次函数y =x 2-4x +5的对称轴为x =2且开口向上, ∴二次函数在x ∈[-1,0]上是单调递减的. ∴y min =02-4×0+5=5.(2)当a ≥2时,函数在x ∈[a ,a +1]上是单调递增的,y min =a 2-4a +5;当a +1≤2即a ≤1时,函数在[a ,a +1]上是单调递减的,y min =(a +1)2-4(a +1)+5=a 2-2a +2;当a <2<a +1即1<a <2时,y min =22-4×2+5=1.故函数的最小值为⎩⎪⎨⎪⎧a 2-2a +2,a ≤1,1,1<a <2,a 2-4a +5,a ≥2.3.2.2.1函数奇偶性的概念1.函数y =f (x ),x ∈[-1,a ](a >-1)是奇函数,则a 等于( ) A .-1 B .0 C .1D .无法确定[解析] 由-1+a =0,得a =1.选C. [答案] C2.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3C .y =1xD .y =x 2,x ∈[0,1][解析] A 项中的函数为奇函数;C 、D 选项中的函数定义域不关于原点对称,既不是奇函数,也不是偶函数;B 项中的函数为偶函数.故选B.[答案] B3.函数f (x )=1x-x 的图象( )A .关于y 轴对称B .关于直线y =x 对称C .关于坐标原点对称D .关于直线y =-x 对称[解析] 函数f (x )=1x-x 的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f (-x )=-1x -(-x )=x -1x=-f (x ),所以f (x )是奇函数,图象关于原点对称.[答案] C4.若f (x )=(x +a )(x -4)为偶函数,则实数a =________.[解析] 由f (x )=(x +a )(x -4)得f (x )=x 2+(a -4)x -4a ,若f (x )为偶函数,则a -4=0,即a =4.[答案] 45.已知y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-3,3],且它们在[0,3]上的图象如图所示,求不等式f (x )g (x )<0的解集.[解] 由题知,y =f (x )是偶函数,y =g (x )是奇函数. 根据函数图象的对称性画出y =f (x ),y =g (x )在[-3,0]上的图象如图所示.由图可知f (x )>0⇔0<x <2或-2<x <0,g (x )>0⇔1<x <3或-1<x <0.f (x )g (x )<0⇔⎩⎪⎨⎪⎧f (x )>0,g (x )<0或⎩⎪⎨⎪⎧f (x )<0,g (x )>0,可求得其解集是{x |-2<x <-1或0<x <1或2<x <3}.3.2.2.2函数奇偶性的应用1.函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=-x +1,则当x <0时,f (x )的解析式为( )A .f (x )=-x +1B .f (x )=-x -1C .f (x )=x +1D .f (x )=x -1[解析] 设x <0,则-x >0.∴f (-x )=x +1,又函数f (x )是奇函数. ∴f (-x )=-f (x )=x +1, ∴f (x )=-x -1(x <0). [答案] B2.设f (x )是R 上的偶函数,且在[0,+∞)上单凋递增,则f (-2),f (-π),f (3)的大小顺序是( )A .f (-π)>f (3)>f (-2)B .f (-π)>f (-2)>f (3)C .f (3)>f (-2)>f (-π)D .f (3)>f (-π)>f (-2) [解析] ∵f (x )是R 上的偶函数, ∴f (-2)=f (2),f (-π)=f (π), 又f (x )在[0,+∞)上单调递增,且2<3<π, ∴f (π)>f (3)<f (2), 即f (-π)>f (3)>f (-2). [答案] A3.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围为( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23 [解析] 由于f (x )为偶函数,且在[0,+∞)上单调递增,则不等式f (2x -1)<f ⎝ ⎛⎭⎪⎫13,即-13<2x -1<13,解得13<x <23.。
新教材高中数学人教A版必修第一册课时作业:4.4.3 不同函数增长的差异
第四章 4.4 4.4.3A组·素养自测一、选择题1.有一组实验数据如下表所示:x 1234 5y 1.5 5.913.424.137A.y=log a x(a>1)B.y=ax+b(a>1)C.y=ax2+b(a>0) D.y=log a x+b(a>1)[解析]通过所给数据可知y随x增大而增大,其增长速度越来越快,而A、D中的函数增长速度越来越慢,B中的函数增长速度保持不变,故选C.2.一辆汽车在某路段中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是(A)A.分段函数B.二次函数C.指数函数D.对数函数[解析]由图象知,在不同时段内,路程折线图不同,故对应的函数模型为分段函数.3.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x(1≤x≤4,x∈N*)之间关系的是(C)A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100x[解析]对于A中的函数,当x=3或4时,误差较大;对于B中的函数,当x=3或4时,误差也较大;对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差较小;对于D中的函数,当x=2,3,4时,据函数关系式得到的结果与实际值相差都很远,综上,只有C中的函数误差最小,故选C.4.在股票买卖过程中,经常用两种曲线来描述价格变化情况,一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元,下面给出了四个图象,实线表示y =f (x ),虚线表示y =g (x ),其中最有可能正确的是( C )[解析] 即时价格若一直下跌,则平均价格也应该一直下跌,故排除A ,D ;即时价格若一直上升,则平均价格也应一直上升,排除B(也可以由x 从0开始增大时,f (x )与g (x )应在y 轴上有相同起点,排除A ,D).故选C .二、填空题5.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是__y =x 2__. [解析] 当x 变大时,x 比ln x 增长要快,∴x 2比x ln x 增长得要快.6.设常数a >1,实数x ,y 满足log a x +2log x a +log x y =-3,y 的最大值为2,则a 的值为__4__,x 的值为__18__.[解析] 由log a x +2log x a +log x y =-3,得log a x +2log a x +log a ylog a x =-3(x >0,y >0,x ≠1),整理可得log a y =-(log a x )2-3log a x -2. 设log a x =t (t ≠0),则有log a y =-(t +32)2+14.因为a >1,所以当t =-32时,y 取得最大值2,即log a2=14,解得a =4,从而log 4x =-32,即x =4-32 =18. 三、解答题7.对于5年可成材的树木,在此期间的年生长率为18%,以后的年生长率为10%.树木成材后,即可出售,然后重新栽树木;也可以让其继续生长.问:哪一种方案可获得较大的木材量(注:只需考虑10年的情形)?[解析] 设新树苗的木材量为Q ,则10年后有两种结果: 连续生长10年,木材量N =Q (1+18%)5(1+10%)5; 生长5年后重新栽树木,木材量M =2Q (1+18%)5. 则M N =2(1+10%)5.∵(1+10%)5≈1.61<2,∴MN>1,即M >N .因此,生长5年后重新栽树木可获得较大的木材量.B 组·素养提升一、选择题1.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y (万公顷)关于年数x (年)的函数关系较为近似的是( C )A .y =0.2xB .y =110x 2+2xC .y =2x10D .y =0.2+log 16x[解析] 将x =1,2,3依次代入各函数表达式中得x 1 2 3 y =0.2x 0.2 0.4 0.6 y =2x 10 0.2 0.4 0.8 y =110x 2+2x 2.1 4.4 6.9 y =0.2+log 16x0.20.450.2+log 1632.(多选题)在某种金属材料的耐高温实验中,温度y (℃)随着时间t (min)变化的情况由计算机记录后显示的图象如图所示,现给出下列说法中正确的是( BC )A .前5 min 温度增加越来越快B .前5 min 温度增加越来越慢C .5 min 后温度保持匀速增加D .5 min 后温度保持不变[解析] 前5 min 温度y 随x 增加而增加,增长速度越来越慢;5min 后,温度y 随x 的变化曲线是直线,即温度匀速增加,所以B 、C 正确,故选BC .二、填空题3.里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为__6__级;9级地震的最大振幅是5级地震最大振幅的__10 000__倍.[解析] 由lg 1 000-lg 0.001=6,得此次地震的震级为6级.设9级地震的最大振幅为A 9,5级地震的最大振幅为A 5,则有lg A 9-lg 0.001=9,得A 9=106;同理得A 5=102,所以9级地震的最大振幅是5级地震最大振幅的10 000倍.4.在不考虑空气阻力的情况下,火箭(除燃料外)的质量m kg 、火箭的最大速度v m/s 和燃料的质量M kg 的函数关系是v =2 000ln(1+Mm ).当燃料质量是火箭质量的__e 6-1__倍时,火箭的最大速度可达12 km/s.[解析] 设M =tm ,则有2 000ln(1+t )=12 000,即ln(1+t )=6解得t =e 6-1. 三、解答题5.有甲、乙两个水桶,开始时水桶甲中有a L 水,水桶乙中无水,水通过水桶甲的底部小孔流入水桶乙中,t min 后剩余的水符合指数衰减曲线y =a e -nt,假设过5 min 时水桶甲和水桶乙的水相等,求再过多长时间水桶甲中的水只有a8.[解析] 由题意得,a e -5n=a -a e-5n,即e-5n=12,设再过t 分钟水桶甲中的水只有a8,得a e-n (t +5)=a8, 所以e-n (t +5)=18=(12)3=e -15n , ∴t +5=15,∴t =10.∴再过10分钟水桶甲中的水只有a8.由Ruize收集整理。
人教A版(2019)高中数学必修第一册4.4.1对数函数的概念教案
4.4.1 对数函数的概念教学目标:通过具有现实背景的具体实例,经历数学抽象,理解对数函数的概念,了解对数函数的实际意义.教学重点:对数函数的概念,包括定义、底数a的取值范围、定义域.教学难点:由指数函数(a>0,且a≠1),能想到x也是y的函数,总结归纳出对数函数的概念.教学过程:引导语:在4.2节中,我们用指数函数模型研究了呈指数增长或衰减变化规律的问题.对这样的问题,在引入对数后,我们还可以从另外的角度,对蕴含的规律作进一步的研究.1.形成定义问题1:在4.2.1的问题2中,我们已经研究了死亡生物体内碳14的含量y随死亡时间x的变化而衰减的规律是函数(x≥0).进一步地,死亡时间x是碳14的含量y的函数吗?追问1:解决这个问题,显然要依据函数的定义.那么依据定义应该怎样进行判断呢?师生活动:教师引导学生先回忆函数的定义,然后确定判断方法.函数的定义:设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.所以要判断死亡时间x是否是碳14的含量y的函数,就要确定,对于任意一个y∈(0,1],是否都有唯一确定的x与其对应.追问2:若已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢?如图1,观察(x≥0)的图象,过y轴正半轴上任意一点(0,y0)(0<y0≤1)作x轴的平行线,与(x≥0)的图象有几个交点?这说明对任意一个y∈(0,1],都有几个x与其对应?能否将x看成是y的函数?师生活动:按照追问1确定的办法,先由学生分析,之后教师用软件进行演示,直观呈现对任意一个y∈(0,1],都有唯一确定的x与其对应.根据函数的定义,可知能将x看成是y的函数.追问3:能否求出生物死亡年数随体内碳14含量变化的函数解析式?师生活动:学生应该有足够能力解决此问题.通过指数与对数的运算关系,可以将这种对应关系,改写为.习惯上用x表示自变量,用y表示函数值,于是就得到函数,x∈(0,1],刻画时间y随碳14含量x的衰减而变化的规律.设计意图:通过再次分析4.2.1的问题2,并与指数函数进行比较,形成对比,从另外的角度刻画其中蕴含的规律,引出用函数的方式描述问题,为抽象得到对数函数做准备.问题2:对于一般的指数函数(a>0,且a≠1),根据指数与对数的运算关系,转换成(a>0,且a≠1),能否将x看成是y的函数?师生活动:利用解决问题1的经验,先由学生解答这个问题,之后师生一起完善.教师讲授:通常,我们用x表示自变量,y表示函数.为此,可将(a>0,且a≠1)改写为:(a>0,且a≠1).这就是对数函数.追问1:通过与指数函数对比,函数的定义域是什么?师生活动:根据指数函数的定义可知,在对数函数中,自变量x的取值范围是(0,+∞).于是就得到了:定义:一般地,函数(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).设计意图:通过从特殊到一般的过程,抽象出对数函数的基本形式,得出对数函数的概念.并在与指数函数对比的基础上,建立关联,得出对数函数的定义域.2.应用定义例1求下列函数的定义域:追问:求解的依据是什么?据此求解的步骤是什么?师生活动:教师利用追问引导学生,一切从定义出发.对数函数(a>0,且a≠1)的定义域是(0,+∞),那么(1)中的和(2)中的(4-x)的取值范围就是(0,+∞),于是得到不等式,将定义域问题转化为解不等式问题,进而求出定义域.设计意图:通过求函数定义域,进一步理解对数函数定义域的特殊性.在中学阶段,对数函数是为数不多的定义域不是实数集R的函数,这属于一个特殊情况.此前遇到的特殊情况还包括分母不能为0,二次根式下不能为负数.可以前后形成对比,加深对函数定义域和一些特殊情况的理解.练习1.求下列函数的定义域:练习2.画出下列函数的图象:设计意图:通过对数函数与分式、绝对值等多种形式的结合,并利用函数的解析式法、图象法,从不同角度推动学生对对数函数定义域的理解,进一步明确概念,体会对数函数定义域的特殊性.例2 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的物价为x.(1)该地的物价经过几年后会翻一番?(2)填写下表,并根据表中的数据,说明该地物价的变化规律.师生活动:教师引导学生,顺着题意,理清思路,进行解答.对于(1),先写出x关于y的函数,再根据对数与指数间的关系,转换为y关于x的函数.对于(2),利用计算工具,快速填好表格,探索发现,随着x的增长,y的增长在减缓.由表中的数据可以发现,该地区的物价随时间的增长而增长,但大约每增加1倍所需要解:观察集合A和集合B的数据,猜测其对应关系为以2为底的指数函数,将数据依次代入函数进行检验,发现都满足该函数的解析式,所以选①.(1)先通过4.2.1的问题2中所阐述的实际问题,利用图象上x与y的对应关系,理解x也是y的函数,再利用指数与对数的运算关系,依据函数的定义,从交换自变量与函数值“地位”的方向进行研究,得到对数函数的概念.(2)对数函数与指数函数是密不可分的.对于呈指数增长或衰减变化的问题,我们可以用指数函数进行描述,还可以从对数函数的角度进行描述,从而能够更全面地研究其中蕴含的规律.设计意图:(1)得到对数函数概念的基本过程,是函数研究套路“背景-概念-图象与性质-应用”中的“背景-概念”环节.通过不断重复这一过程,使学生逐步掌握研究一个数学对象的基本套路.(2)明确对数函数的现实背景,可以使学生明白这类函数区别于其他初等函数的主要特征,为对数函数的图象性质和应用奠定基础.4.布置作业根据课堂教学情况,从教科书习题4.4中选择合适的题目,可选题目为第1,3,5,9,10题.(五)目标检测设计1.设对数函数y=f(x)的底数为a,如果f(9)=2,f(27)=3,那么a=____ ,f(81)=_____ .设计意图:考查对数函数的概念.。
人教A版高中同步学案数学必修第一册精品作业课件 第3章 函数的概念与性质 第2课时函数的最大(小)值
2 12
f(x1)-f(x2)=
1 +1
−
2 22
2 +1
所以f(x1)<f(x2),
所以函数f(x)在区间[0,1]上单调递增,
则f(x)min=f(0)=0,f(x)max=f(1)=1,
所以函数在x∈[0,1]上的值域是[0,1].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
8
8.[探究点二·2024江苏高一期末]函数f(x)=x+ (x∈[2,8])的值域为 [4 2,9] .
解析 由对勾函数的单调性可知,
8
f(x)=x+ 在区间[2,2
2]上单调递减,在区间[2 2,8]上单调递增,
8
所以当 x=2 2时,函数有最小值 f(2 2)=2 2 + 2 2=4 2,又 f(2)=6,f(8)=9,
A级
必备知识基础练
1.[探究点一]函数y=f(x)(-2≤x≤2)的图象如图所示,则函数的最大值、最小
值分别为( C )
A.f(2),f(-2)
1
B.f(2),f(-1)
1
3
C.f( ),f(- )
2
2
1
D.f( ),f(0)
2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
14.若
2 2
f(x)= ,则函数在
+1
解析
2 2
f(x)=+1
=
[0,1]
x∈[0,1]上的值域是
人教A版高中数学第一册(必修1)课时作业2:4.4.1 对数函数的概念
4.4 对数函数 4.4.1 对数函数的概念1.给出下列函数:①y =223log x ;②y =log 3(x -1);③y =log (x +1)x ;④y =log πx .其中是对数函数的有( ) A .1个B .2个C .3个D .4个 考点 对数函数的概念 题点 对数函数的概念 『答 案』 A『解 析』 ①②不是对数函数,因为对数的真数不是仅有自变量x ;③不是对数函数,因为对数的底数不是常数;④是对数函数. 2.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( ) A .{x |x >-1} B .{x |x <1} C .{x |-1<x <1}D .∅考点 对数函数的定义域 题点 对数函数的定义域 『答 案』 C『解 析』 ∵M ={x |1-x >0}={x |x <1}, N ={x |1+x >0}={x |x >-1}, ∴M ∩N ={x |-1<x <1}.3.下列函数中,与函数y =x 相等的是( ) A .y =(x )2 B .y =x 2C .y =2log 2xD .y =log 22x『答 案』 D『解 析』 因为y =log 22x 的定义域为R ,且根据对数恒等式知y =x . 4.对数函数的图象过点M (16,4),则此对数函数的『解 析』式为( ) A .y =log 4x B .y =14log xC .y =12log xD .y =log 2x『答 案』 D『解 析』 由于对数函数的图象过点M (16,4), 所以4=log a 16,得a =2.所以对数函数的『解 析』式为y =log 2x ,故选D.5.已知函数f (x )=log a (x +2),若图象过点(6,3),则f (2)的值为( ) A .-2B .2C.12D .-12考点 对数函数的性质 题点 对数函数图象过定点问题 『答 案』 B『解 析』 代入(6,3),得3=log a (6+2)=log a 8, 即a 3=8,∴a =2.∴f (x )=log 2(x +2),∴f (2)=log 2(2+2)=2.6.若f (x )=log a x +a 2-4a -5是对数函数,则a =________. 『答 案』 5『解 析』 由对数函数的定义可知,⎩⎪⎨⎪⎧a 2-4a -5=0,a >0,a ≠1,解得a =5.7.函数y =()12log 3x a -的定义域是⎝⎛⎭⎫23,+∞,则a =________. 『答 案』 2『解 析』 由y =()12log 3x a -知,3x -a >0,即x >a3.∴a 3=23,即a =2.8.某公司为了业务发展制定了一个激励销售人员的奖励方案,在销售额为x 万元时,奖励y 万元.若公司拟定的奖励方案为y =2log 4x -2,某业务员要得到5万元奖励,则他的销售额应为________万元. 『答 案』 128『解 析』 由题意得5=2log 4x -2, 即7=log 2x ,得x =128. 9.求下列函数的定义域: (1)f (x )=log (x -1)(3-x ); (2)f (x )=2x +3x -1+log 2(3x -1). 解 (1)由题意知⎩⎪⎨⎪⎧3-x >0,x -1>0,x -1≠1,解得1<x <3,且x ≠2,故f (x )的定义域是(1,2)∪(2,3). (2)由题意知⎩⎪⎨⎪⎧2x +3≥0,x -1≠0,3x -1>0,解得x >13,且x ≠1.故f (x )的定义域是⎝⎛⎭⎫13,1∪(1,+∞).10.20世纪70年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0.其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.(1)假设在一次地震中,一个距离震中1000千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.002,计算这次地震的震级;(2)5级地震给人的震感已比较明显,我国发生在汶川的8级地震的最大振幅是5级地震的最大振幅的多少倍?解 (1)M =lg A -lg A 0=lg A A 0=lg 200.002=lg104=4.即这次地震的震级为4级.(2)由题意得⎩⎪⎨⎪⎧5=lg A 5-lg A 0,8=lg A 8-lg A 0,所以lg A 8-lg A 5=3, 即lg A 8A 5=3.所以A 8A 5=103=1000.即8级地震的最大振幅是5级地震的最大振幅的1000倍.11.函数y =log 2(x -1)2-x的定义域是( )A .(1,2』B .(1,2)C .(2,+∞)D .(-∞,2) 『答 案』 B『解 析』 由⎩⎪⎨⎪⎧ x -1>0,2-x >0,得⎩⎪⎨⎪⎧x >1,x <2,∴1<x <2.∴函数的定义域为(1,2).12.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y (只)与引入时间x (年)的关系为y =a log 2(x +1),若该动物在引入一年后的数量为100只,则7年后它们发展到( ) A .300只B .400只C .600只D .700只 『答 案』 A『解 析』 将x =1,y =100代入y =a log 2(x +1)得, 100=a log 2(1+1),解得a =100, 所以x =7时,y =100log 2(7+1)=300.13.若函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =________. 『答 案』 1『解 析』 由a 2-a +1=1, 解得a =0或a =1. 又底数a +1>0,且a +1≠1,所以a =1.14.函数f (x )=lg ⎝⎛⎭⎫2kx 2-kx +38的定义域为R ,则实数k 的取值范围是________. 『答 案』 『0,3)『解 析』 依题意,2kx 2-kx +38>0的解集为R ,即不等式2kx 2-kx +38>0恒成立,当k =0时,38>0恒成立,∴k =0满足条件.当k ≠0时,则⎩⎪⎨⎪⎧k >0,Δ=k 2-4×2k ×38<0,解得0<k <3. 综上,k 的取值范围是『0,3).15.函数f (x )=a -lg x 的定义域为(0,10』,则实数a 的值为( ) A .0B .10C .1D.110『答 案』 C『解 析』 由已知,得a -lg x ≥0的解集为(0,10』, 由a -lg x ≥0,得lg x ≤a , 又当0<x ≤10时,lg x ≤1, 所以a =1,故选C.16.国际视力表值(又叫小数视力值,用V 表示,范围是『0.1,1.5』)和我国现行视力表值(又叫对数视力值,由缪天容创立,用L 表示,范围是『4.0,5.2』)的换算关系式为L =5.0+lg V . (1)请根据此关系式将下面视力对照表补充完整;V 1.5 ② 0.4 ④ L①5.0③4.0(2)甲、乙两位同学检查视力,其中甲的对数视力值为4.5,乙的小数视力值是甲的2倍,求乙的对数视力值.(所求值均精确到小数点后面一位数,参考数据:lg2≈0.3010,lg3≈0.4771) 解 (1)因为5.0+lg1.5=5.0+lg 1510=5.0+lg3=5.0+lg3-lg22≈5.0+0.4771-0.3010≈5.2,所以①应填5.2;因为5.0=5.0+lg V,所以V=1,②处应填1.0;=5.0+lg4-1因为5.0+lg0.4=5.0+lg410=5.0+2lg2-1≈5.0+2×0.3010-1≈4.6,所以③处应填4.6;因为4.0=5.0+lg V,所以lg V=-1.所以V=0.1.所以④处应填0.1.对照表补充完整如下:(2)先将甲的对数视力值换算成小数视力值,则有4.5=5.0+lg V甲,所以V甲=10-0.5,则V乙=2×10-0.5.所以乙的对数视力值L乙=5.0+lg(2×10-0.5) =5.0+lg2-0.5≈5.0+0.3010-0.5≈4.8.。
高中数学新人教A版必修第一册 第四章 4.4.2 第1课时 对数函数的图象和性质 课件(44张)
【加固训练】
如图,若 C1,C2 分别为函数 y=logax 和 y=logbx 的图象,则( )
A.0<a<b<1
B.0<b<a<1
C.a>b>1
D.b>a>1
【解析】选 B.根据 C1,C2 分别为函数 y=logax 和 y=logbx 的图象,可得 0<b<1,0<a<1, 且 b<a.
综合类型 简单的值域问题(数学运算) 根据单调性求值域 【典例】函数 f(x)=2x+log2x(x∈[1,2])的值域为________.
(1)对于对数函数 y=logax,为什么一定过点(1,0) ? 提示:当 x=1 时,loga1=0 恒成立,即对数函数的图象一定过点(1,0) .
(2)在下表中,?处 y 的范围是什么?
提示:
2.反函数
指数函数 y=ax(a>0,且a≠1) 与对数函数 y=logax(a>0,且a≠1) 互为反函数,它
1.对数函数的图象和性质
0<a<1
a>1
人教A版高中数学第一册(必修1)课时作业4:3.1.1 函数的概念练习题
第三章函数的概念与性质 3.1 函数的概念及其表示3.1.1 函数的概念基础达标练1.设f :x →x 2是集合A 到集合B 的函数,如果集合B ={1},那么集合A 不可能是( ) A .{1}B .{-1}C .{-1,1}D .{-1,0}2.下列各个图形中,不可能是函数y =f (x )的图象的是( )3.下列各组函数表示同一个函数的是( ) A .y =x 2-3x -3与y =x +3(x ≠3)B .y =x 2-1与y =x -1C .y =x 0(x ≠0)与y =1(x ≠0)D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z4.若『a, 3a -1』为一确定区间,则a 的取值范围是________. 5.设f (x )=11-x ,则f (f (a ))=________.6.函数y =x +26-2x -1的定义域为_________.(用区间表示)7.已知函数f (x )=x +1x .(1)求f (x )的定义域; (2)求f (-1),f (2)的值; (3)当a ≠-1时,求f (a +1)的值.8.若f (x )=ax 2-2,且f (f (2))=-2,求a 的值.素养提升练1.某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩,则下列选项中一定正确的是( )A .y 是x 的函数B .z 是y 的函数C .w 是z 的函数D .x 是z 的函数2.下列函数中,值域为(0,+∞)的是( ) A .y =xB .y =100x +2C .y =16xD .y =x 2+x +13.(多选题)给出定义:若m -12<x ≤m +12(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即{x }=m .在此基础上给出下列关于函数f (x )=|x -{x }|的四个结论,其中正确的是( ) A .f ⎝⎛⎭⎫-12=12B .f (3.4)=-0.4C .f ⎝⎛⎭⎫-14=f ⎝⎛⎭⎫14D .y =f (x )的定义域为R ,值域是⎣⎡⎦⎤-12, 12 4.已知集合A ={1,2,3},B ={4,5},则从A 到B 的函数f (x )有________个. 5.若函数f (x )=3x -1mx 2+x +3的定义域为R ,求m 的取值范围.6.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值;(2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值;(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 020)+f ⎝⎛⎭⎫12 020的值.——★ 参*考*答*案 ★——基础达标练1.D『『解 析』』若集合A ={-1,0},则0∈A ,但02=0∉B . 2.A『『解 析』』当x 取值时,有很多y 值与x 对应,不满足函数的定义. 3.C『『解 析』』选项A ,B 及D 中对应关系都不同,故都不是相等函数. 4.⎝⎛⎭⎫12,+∞『『解 析』』若『a, 3a -1』为一确定区间,则a <3a -1,解得a >12,所以a 的取值范围是⎝⎛⎭⎫12,+∞. 5.a -1a (a ≠0,且a ≠1)『『解 析』』f (f (a ))=11-11-a =11-a -11-a =a -1a (a ≠0,且a ≠1). 6.⎣⎡⎭⎫-2, 52∪⎝⎛⎦⎤52,3 『『解 析』』要使函数『解 析』式有意义,需满足⎩⎨⎧x +2≥0,6-2x ≥0,6-2x ≠1⇒⎩⎪⎨⎪⎧x ≥-2,x ≤3,x ≠52⇒-2≤x ≤3,且x ≠52.∴函数的定义域为⎣⎡⎭⎫-2, 52∪⎝⎛⎦⎤52,3. 7.解 (1)要使函数f (x )有意义,必须使x ≠0, ∴f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0, ∴f (a +1)=a +1+1a +1.8.解 因为f (2)=a (2)2-2=2a -2,所以f (f (2))=a (2a -2)2-2=- 2.于是a (2a -2)2=0,即2a -2=0或a =0.所以a =22或a =0. 素养提升练1.B『『解 析』』姓名不是数集,故A ,D 不成立,成绩w 可能与多个身高z 对应,不能构成函数. 学号集合到身高集合的对应是数集间的对应,且任一个学号都对应唯一一个身高,因此z 是y 的函数. 2.B『『解 析』』A 中y =x 的值域为『0,+∞);C 中y =16x 的值域为(-∞,0)∪(0,+∞);D中y =x 2+x +1=⎝⎛⎭⎫x +122+34的值域为⎣⎡⎭⎫34,+∞;B 中函数的值域为(0,+∞). 3.AC『『解 析』』由题意得f ⎝⎛⎭⎫-12=⎪⎪⎪⎪-12-⎩⎨⎧⎭⎬⎫-12=⎪⎪⎪⎪-12-(-1)=12,A 正确;f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4,B 错误;f ⎝⎛⎭⎫-14=⎪⎪⎪⎪-14-⎩⎨⎧⎭⎬⎫-14=⎪⎪⎪⎪-14-0=14,f ⎝⎛⎭⎫14=⎪⎪⎪⎪14-0=14,∴f ⎝⎛⎭⎫-14=f ⎝⎛⎭⎫14,C 正确;y =f (x )的定义域为R ,值域为⎣⎡⎦⎤0, 12,D 错误. 4.8『『解 析』』抓住函数的“取元任意性,取值唯一性”,利用列表方法确定函数的个数.由表可知,这样的函数有8个.5.解 要使函数f (x )有意义,必须mx 2+x +3≠0. 又因为函数的定义域为R ,故mx 2+x +3≠0对一切实数x 恒成立. 当m =0时,x +3≠0,即x ≠-3, 与f (x )定义域为R 矛盾, 所以m =0不合题意.当m ≠0时,有Δ=12-12m <0,得m >112.综上可知m 的取值范围是⎩⎨⎧m ⎪⎪⎭⎬⎫m >112.6.(1)解 ∵f (x )=x 21+x 2,∴f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1. f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明 f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)解 由(2)知f (x )+f ⎝⎛⎭⎫1x =1, ∴f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1, f (4)+f ⎝⎛⎭⎫14=1,…,f (2 020)+f ⎝⎛⎭⎫12 020=1. ∴f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2 020)+f ⎝⎛⎭⎫12 020=2 019.。
人教A版高中同步学案数学必修第一册精品课件 第3章 函数的概念与性质 第2课时 分段函数 分层作业
3.[探究点一]已知函数 f(x)= -1, < 0,则不等式 xf(x-1)≤1 的解集为( A )
1, ≥ 0,
A.[-1,1]
B.[-1,2]
C.(-∞,1]
D.[-1,+∞)
-1 < 0,
-1
≥
0,
解析 原不等式等价于
或
解得-1≤x≤1.
≤ 1,
- ≤ 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 + 2-3, ≤ 1,
8.[探究点二·2023 四川船山期中]已知 f(x)=
3, > 1.
(1)在所给坐标系中画出f(x)的图象;
(2)直接写出f(x)的值域.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
解 (1)函数图象如下图所示.
(2)由图象可知,函数的值域为[-4,+∞).
4.[探究点三]已知f(x)=
正确的是( D )
+ 1,∈[-1,0),
2 + 1,∈[0,1],
则下列关于图中的函数图象说法
A.是f(x-1)的图象
B.是f(-x)的图象
C.是f(|x|)或|f(x)|的图象
D.以上答案都不对
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
解析 画出f(x)的图象.
f(x-1)的图象是由f(x)的图象向右平移一个单位得到的,与题目中的图不一
样,故A不正确;而f(-x)与f(x)的图象关于y轴对称,与题目中的图不一样,故B
不正确.
f(|x|)是偶函数,|f(x)|的图象与f(x)的图象一样,二者图象都与题目中的图不
4.4 对数函数全部课件共3课时(人教A版2019高一数学必修第一册)
(1)根据对数函数性质及上述的计算公式,说明溶液酸碱度与溶液中氢
离子的浓度之间的变化关系;
(2)已知纯净水中氢离子的浓度为[ + ] = 10−7 摩尔/升,计算纯净水的.
解(1):根据对数的运算性质,有
=
−[ + ]
=
[ + ]−1
实例 概念 表示 图象 性质 应用
1.画对数函数的图象
情景一:
与研究指数函数一样,我们首先画出其图像,然后借助图像研究其质.
由浅入深,我们先最简单的开始。
问题1 请同学们用描点法画出 = log2的图像!
x
y = log2x
0.5
-1
1
0
2
1
4
2
8
3
16
4
描点
列表
连线
情景二:
(1)利用描点法画出函数 = 1 的图象,
定义域是(, +∞)(真数大于0)。
课本P131 练习
1.求下列函数的定义域:
1
(1) y ln 1 x ;(2) y
;
lg x
1
(3) y log 7
;(4) y loga x a 0, a 1 .
1 3x
【详解】
(1)解:对于函数 y ln 1 x ,有 1 x 0 ,解得 x 1 ,
借助计算工具画出具体对数函数的图像,探索并了解对数
函数的单调性与特殊点.
2.知道对数函数与指数函数互为反函数
3.能够应用对数函数的图像及性质解决问题.
素养目标
数学抽象
数学运算
逻辑推理
人教A版高中数学第一册(必修1)课时作业1:3.4 函数的应用(一)练习题
3.4 函数的应用(一)1.据调查,某自行车存车处在某星期日的存车量为2000辆次,其中变速车存车费是每辆一次0.8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y 元,则y关于x的函数关系式是()A.y=0.3x+800(0≤x≤2000,x∈N*)B.y=0.3x+1600(0≤x≤2000,x∈N*)C.y=-0.3x+800(0≤x≤2000,x∈N*)D.y=-0.3x+1600(0≤x≤2000,x∈N*)『答案』 D『解析』由题意知,变速车存车数为(2000-x)辆次,则总收入y=0.5x+(2000-x)×0.8=0.5x+1600-0.8x=-0.3x+1600(0≤x≤2000,x∈N*).2.一种新型电子产品计划投产两年后,使成本降36%,那么平均每年应降低成本() A.18% B.20%C.24% D.36%『答案』 B『解析』设平均每年降低成本x,则(1-x)2=0.64,得x=0.2=20%.3.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售量的收入是()A.310元B.300元C.290元D.280元『解 析』 设y =kx +b (k ≠0),代入(1,800)和(2,1300),则⎩⎪⎨⎪⎧ k +b =800,2k +b =1300,得⎩⎪⎨⎪⎧k =500,b =300.所以y =500x +300,当x =0时,y =300.4.某公司招聘员工,面试人数按拟录用人数分段计算,计算公式为y =⎩⎪⎨⎪⎧4x ,1≤x <10,x ∈N *,2x +10,10≤x <100,x ∈N *,1.5x ,x ≥100,x ∈N *.其中,x 代表拟录用人数,y 代表面试人数,若应聘的面试人数为60,则该公司拟录用人数为( ) A .15B .40C .25D .130 『答 案』 C『解 析』 令y =60,若4x =60, 则x =15>10,不合题意;若2x +10=60,则x =25,满足题意; 若1.5x =60,则x =40<100,不合题意, 故拟录用人数为25.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m (件)与售价x (元)满足一次函数:m =162-3x ,若要每天获得最大的销售利润,每件商品的售价应定为( ) A .30元 B .42元 C .54元 D .越高越好『答 案』 B『解 析』 设当每件商品的售价为x 元时,每天获得的销售利润为y 元. 由题意得,y =m (x -30)=(x -30)(162-3x ). 上式配方得y =-3(x -42)2+432. 所以当x =42时,利润最大.6.生产某机器的总成本y (万元)与产量x (台)之间的函数关系式是y =x 2-75x ,若每台机器售价为25万元,则该厂获利润最大时应生产机器________台.『解 析』 设安排生产x 台,则获得利润 f (x )=25x -y =-x 2+100x =-(x -50)2+2500.故当x =50台时,获利润最大.7.甲同学家到乙同学家的途中有一公园,甲同学家到公园的距离与乙同学家到公园的距离都是2km.如图表示甲同学从家出发到乙同学家经过的路程y (km)与时间x (min)的关系,其中甲在公园休息的时间是10min ,那么y =f (x )的『解 析』式为________________.『答 案』 y =f (x )=⎩⎪⎨⎪⎧115x ,0≤x ≤30,2,30<x <40,110x -2,40≤x ≤60『解 析』 由题图知所求函数是一个分段函数,且各段均是直线,可用待定系数法求得y =f (x )=⎩⎨⎧115x ,0≤x ≤30,2,30<x <40,110x -2,40≤x ≤60.8.某电脑公司2019年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2021年经营总收入要达到1690万元,且计划从2019年到2021年每年经营总收入的年增长率相同,则2020年预计经营总收入为________万元. 『答 案』 1300『解 析』 设从2019年到2021年每年经营总收入的年增长率为x . 由题意,得2019年经营总收入为40040%=1000(万元),则有1000(1+x )2=1690. 解得x =0.3,故2020年预计经营总收入为1000(1+0.3)=1300(万元).9.某游乐场每天的盈利额y 元与售出的门票张数x 之间的函数关系如图所示,试由图象解决下列问题:(1)求y 关于x 的函数『解 析』式;(2)要使该游乐场每天的盈利额超过1000元,每天至少卖出多少张门票? 解 (1)由图象知,当x ∈『0,200』时,可设y =kx +b , 代入点(0,-1000)和(200,1000), 解得k =10,b =-1000,从而y =10x -1000,x ∈『0,200』.当x ∈(200,300』时,代入点(200,500)和(300,2000), 解得k =15,b =-2500,x ∈(200,300』. 从而y =15x -2500,所以y =⎩⎪⎨⎪⎧10x -1000,x ∈[0,200],15x -2500,x ∈(200,300].(2)每天的盈利额超过1000元,则x ∈(200,300』, 由15x -2500>1000得,x >7003,故每天至少需要卖出234张门票.10.某电脑公司在甲、乙两地各有一个分公司,甲分公司有电脑6台,乙分公司现有同一型号的电脑12台.现A 地某单位向该公司购买该型号的电脑10台,B 地某单位向该公司购买该型号的电脑8台.已知从甲地运往A ,B 两地每台电脑的运费分别是40元和30元,从乙地运往A ,B 两地每台电脑的运费分别是80元和50元.(1)设甲地调运x 台至B 地,该公司运往A ,B 两地的总运费为y 元,求y 关于x 的函数『解 析』式;(2)若总运费不超过1000元,问能有几种调运方案? 解 (1)甲地调运x 台到B 地,则剩下(6-x)台电脑调运到A地;乙地应调运(8-x)台电脑至B地,运往A地12-(8-x)=(x+4)台电脑(0≤x≤6,x∈N),则总运费y=30x+40(6-x)+50(8-x)+80(x+4)=20x+960,所以y=20x+960(x∈N,且0≤x≤6).(2)若使y≤1000,即20x+960≤1000,得x≤2.又0≤x≤6,x∈N,所以0≤x≤2,x∈N.所以x=0,1,2,即有3种调运方案.11.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0时到6时,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的是()A.①B.①②C.①③D.①②③『答案』 A『解析』由甲乙两图知,出水的速度是进水的2倍,所以0点到3点只进水不出水,3点到4点水量减少,则一个进水口进水,另一个关闭,出水口出水;4点到6点水量不变,可能是不进水不出水或两个进水口进水,一个出水口出水,所以只有①正确,故选A. 12.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡?()A .3人B .4人C .5人D .6人『答 案』 B『解 析』 水箱内水量y =200+2t 2-34t , 当t =172时,y 有最小值,此时共放水34×172=289(升),28965≈4.4,故至多可供4人洗澡.13.某厂有许多形状为直角梯形的铁皮边角料,如图所示,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形的两边长x ,y 应分别为________.『答 案』 15,12『解 析』 由题干图知x ,y 满足关系式x 20=24-y16,即y =24-45x ,矩形的面积S =xy =x ⎝⎛⎭⎫24-45x =-45(x -15)2+180, 故x =15,y =12时,S 取最大值.14.某市出租车收费标准如下:起步价为8元,起步里程为3千米(不超过3千米按起步价付费);超过3千米但不超过8千米时,超过部分按每千米2.15元收费;超过8千米时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.若某人乘坐出租车行驶了5.6千米,则需付车费________元,若某人乘坐一次出租车付费22.6元,则此出租车行驶了________千米. 『答 案』 14.59 9『解 析』 设出租车行驶x 千米时,付费y 元,则y =⎩⎪⎨⎪⎧9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,当x =5.6时,y =8+2.15×2.6+1=14.59(元). 由y =22.6,知x >8,由8+2.15×5+2.85(x -8)+1=22.6, 解得x =9.15.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1000+5x +110x 2,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( ) A .a =45,b =-30 B .a =30,b =-45 C .a =-30,b =45 D .a =-45,b =-30『答 案』 A『解 析』 设生产x 吨产品全部卖出,获利润为y 元, 则y =xQ -P =x ⎝⎛⎭⎫a +x b -⎝⎛⎭⎫1000+5x +110x 2 =⎝⎛⎭⎫1b -110x 2+(a -5)x -1000(x >0).由题意知,当x =150时,y 取最大值,此时Q =40.所以⎩⎨⎧-a -52⎝⎛⎭⎫1b -110=150,a +150b =40,解得⎩⎪⎨⎪⎧a =45,b =-30.16.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,飞机票价格为900元;若旅行团人数多于30人,则给予优惠:每多1人,飞机票价格就减少10元,直到达到规定人数75人为止.旅行团乘飞机,旅行社需付给航空公司包机费15000元. (1)写出飞机票的价格关于人数的函数;(2)旅行团人数为多少时,旅行社可获得最大利润? 解 (1)设旅行团人数为x ,飞机票价格为y 元,则y =⎩⎪⎨⎪⎧900,0<x ≤30,x ∈N *,900-10(x -30),30<x ≤75,x ∈N *,即y =⎩⎪⎨⎪⎧900,0<x ≤30,x ∈N *,1200-10x ,30<x ≤75,x ∈N *.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15000,0<x ≤30,x ∈N *,x (1200-10x )-15000,30<x ≤75,x ∈N *.即S =⎩⎪⎨⎪⎧900x -15000,0<x ≤30,x ∈N *,-10(x -60)2+21000,30<x ≤75,x ∈N *.因为S =900x -15000在区间(0,30』上单调递增, 当x =30时,S 取最大值12000.又S =-10(x -60)2+21000在区间(30,75』上的对称轴为x =60, 当x =60时,S 取最大值21000.故当x =60时,旅行社可获得最大利润.。
2019-2020学年新人教A版必修一 函数的图象及其应用 课时作业
课时达标检测(十一) 函数的图象及其应用1.函数f (x )=sin xx 2+1的图象大致为( )解析:选A 因为f (x )=sin xx 2+1,所以f (0)=f (π)=f (-π)=0,排除选项C ,D ;当0<x <π时,sin x >0,所以当0<x <π时,f (x )>0,排除选项B ,故选A.2.已知定义在区间上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为( )解析:选B 由y =f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x ,0≤x ≤1,1,1<x ≤2.当x ∈时,2-x ∈,所以f (2-x )=⎩⎪⎨⎪⎧1,0≤x ≤1,2-x ,1<x ≤2,故y =-f (2-x )=⎩⎪⎨⎪⎧-1,0≤x ≤1,x -2,1<x ≤2.3.若变量x ,y 满足|x |-ln 1y=0,则y 关于x 的函数图象大致是( )解析:选B 由|x |-ln 1y =0,得y =1e |x |=⎩⎪⎨⎪⎧e -x,x ≥0,e x,x <0,利用指数函数图象可知选B.4.如图是张大爷离开家晨练过程中离家距离y 与行走时间x 的函数y =f (x )的图象.若用黑点表示张大爷家的位置,则张大爷行走的路线可能是( )解析:选D 由图象知,张大爷晨练时,离家的距离y 随行走时间x 的变化规律是先匀速增加,中间一段时间保持不变,然后匀速减小.故张大爷的行走的路线可能如D 选项所示.5.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f ⎝⎛⎭⎪⎫1f=________. 解析:∵由图象知f (3)=1,∴1f=1.∴f ⎝⎛⎭⎪⎫1f=f (1)=2.答案:2一、选择题1.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不正确的个数为( )A .1B .2C .3D .4解析:选A 将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h 和时间t 之间的关系可以从高度随时间的变化率上反映出来;图①应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化规律是先快后慢再快,正确;④中的变化规律是先慢后快再慢,也正确,故只有①是错误的.2.下列函数f (x )图象中,满足f ⎝ ⎛⎭⎪⎫14>f (3)>f (2)的只可能是( )解析:选D 因为f ⎝ ⎛⎭⎪⎫14>f (3)>f (2),所以函数f (x )有增有减,排除A ,B.在C 中,f ⎝ ⎛⎭⎪⎫14<f (0)=1,f (3)>f (0),即f ⎝ ⎛⎭⎪⎫14<f (3),排除C ,选D. 3.函数y =x 33x -1的图象大致是( )解析:选C 由题意得,x ≠0,排除A ;当x <0时,x 3<0,3x-1<0,∴x 33x -1>0,排除B ;又∵x →+∞时,x 33x -1→0,∴排除D ,故选C.4.函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0解析:选C 函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0.令x =0,得f (0)=b c 2,又由图象知f (0)>0,∴b >0.令f (x )=0,得x =-b a ,结合图象知-b a>0,∴a <0.故选C.5.(2018·绵阳模拟)已知函数y =f (x )及y =g (x )的图象分别如图所示,方程f (g (x ))=0和g (f (x ))=0的实根个数分别为a 和b ,则ab =( )A .24B .15C .6D .4解析:选A 由图象知,f (x )=0有3个根,分别为0,±m (m >0),其中1<m <2,g (x )=0有2个根n ,p ,-2<n <-1,0<p <1,由f (g (x ))=0,得g (x )=0或±m ,由图象可知当g (x )所对应的值为0,±m 时,其都有2个根,因而a =6;由g (f (x ))=0,知f (x )=n 或p ,由图象可以看出当f (x )=n 时,有1个根,而当f (x )=p 时,有3个根,即b =1+3=4.所以ab =24.6.如图所示,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,点P以1 cm/s 的速度沿A →B →C 的路径向C 移动,点Q 以2 cm/s 的速度沿B →C →A 的路径向A 移动,当点Q 到达A 点时,P ,Q 两点同时停止移动.记△PCQ 的面积关于移动时间t 的函数为s =f (t ),则f (t )的图象大致为( )解析:选A 当0≤t ≤4时,点P 在AB 上,点Q 在BC 上,此时PB =6-t ,QC =8-2t ,则s =f (t )=12QC ×BP =12(8-2t )×(6-t )=t 2-10t +24;当4≤t ≤6时,点P 在AB 上,点Q 在CA 上,此时AP =t ,P 到AC 的距离为45t ,QC =2t -8,则s =f (t )=12QC ×45t =12(2t-8)×45t =45(t 2-4t );当6≤t ≤9时,点P 在BC 上,点Q 在CA 上,此时CP =14-t ,QC=2t -8,则s =f (t )=12QC ×CP sin ∠ACB =12(2t -8)·(14-t )×35=35(t -4)·(14-t ).综上,函数f (t )对应的图象是三段抛物线,依据开口方向得图象是A.二、填空题7.(2018·石家庄模拟)若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________.解析:由于函数y =f (4-x )的图象可以看作y =f (x )的图象先关于y 轴对称,再向右平移4个单位长度得到.点(1,1)关于y 轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y =f (4-x )的图象过定点(3,1).答案:(3,1)8.(2018·银川调研)给定min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a ,已知函数f (x )=min{x ,x 2-4x+4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________.解析:设g (x )=min{x ,x 2-4x +4},则f (x )=g (x )+4,故把g (x )的图象向上平移4个单位长度,可得f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y =m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).答案:(4,5)9.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令g (x )=y =log 2(x +1),作出函数g (x )图象如图. 由⎩⎪⎨⎪⎧x +y =2,y =log 2x +,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.答案:{x |-1<x ≤1}10.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y=log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2] 三、解答题11.已知函数f (x )=x |m -x |(x ∈R),且f (4)=0.(1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)∵f (4)=0, ∴4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x x -=x -2-4,x ≥4,-x x -=-x -2+4,x <4.f (x )的图象如图所示.(3)f (x )的单调递减区间是.(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,即方程f (x )=a 只有一个实数根,所以a 的取值范围是(-∞,0)∪(4,+∞).12.设函数f (x )=x +1x的图象为C 1,C 1关于点A (2,1)的对称图象为C 2,C 2对应的函数为g (x ).(1)求函数g (x )的解析式;(2)若直线y =b 与C 2有且仅有一个公共点,求b 的值,并求出交点的坐标.解:(1)设曲线C 2上的任意一点为P (x ,y ),则P 关于A (2,1)的对称点P ′(4-x,2-y )在C 1上,所以2-y =4-x +14-x ,即y =x -2+1x -4=x -2x -4,所以g (x )=x -2x -4(x ≠4).(2)由x -2x -4=b ,得(x -3)2=b (x -4)(x ≠4).所以x 2-(b +6)x +4b +9=0(x ≠4)(*)有唯一实根. 由Δ=2-4(4b +9)=b 2-4b =0, 得b =0或b =4,把b =0代入(*)式得x =3,所以g (3)=-23-4=0;把b =4代入(*)式得x =5,所以g (5)=-25-4=4,所以当b=0或b=4时,直线y=b与C2有且仅有一个公共点,且交点的坐标为(3,0)或(5,4).。
2020年高中数学人教A版必修第一册课时作业 4.4.3《不同函数增长的差异》(含答案)
2020年高中数学人教A 版必修第一册课时作业4.4.3《不同函数增长的差异》一、选择题1.当2<x <4时,2x ,x 2,log 2x 的大小关系是( )A.2x >x 2>log 2xB.x 2>2x >log 2xC.2x >log 2x >x 2D.x 2>log 2x >2x2.有一组实验数据如下表所示:下列所给函数模型较适合的是( )A.y=log a x(a>1)B.y=ax +b(a>1)C.y=ax 2+b(a>0)D.y=log a x +b(a>1)3.某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y 与时间x 的关系,可选用( )A.一次函数B.二次函数C.指数型函数D.对数型函数4.某种动物繁殖数量y(只)与时间x(年)的关系为y=alog 2(x +1),设这种动物第一年有100只,到第7年它们发展到( )A.300只B.400只C.500只D.600只5.三个变量y 1,y 2,y 3随着变量x 的变化情况如下表:则关于x 分别呈对数函数、指数函数、幂函数变化的变量依次为( )A.y 1,y 2,y 3B.y 2,y 1,y 3C.y 3,y 2,y 1D.y 1,y 3,y 26.某地为加强环境保护,决定使每年的绿地面积比上一年增长10%,那么从今年起,x 年后绿地面积是今年的y 倍,则函数y=f(x)的大致图象是( )7.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y(万公顷)关于年数x(年)的函数关系较为近似的是( )A.y=0.2xB.y=(x 2+2x)C.y=D.y=0.2+log 16x 1102x 108.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图像,可能正确的是( )二、填空题9.函数y=x2与函数y=xln x在区间(1,+∞)上增长较快的一个是________.10.某种动物繁殖数量y(只)与时间x(年)的关系为y=alog2(x+1),设这种动物第一年有100只,到第7年它们发展到__________.11.某种病菌经30分钟繁殖为原来的2倍,且知这种病菌的繁殖规律为y=e kt(k为常数,t为时间,单位:小时),y表示病菌个数,则k=________;经过5小时,1个病菌能繁殖为________个.12.某工厂8年来某种产品的总产量C与时间t(年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________.三、解答题13.为了发展电信事业,方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费用y(元)的关系如图所示.(1)分别求出通话费用y1,y2与通话时间x之间的函数解析式;(2)请帮助用户计算在一个月内使用哪种卡便宜.14.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m.要使鸡场面积最大,鸡场的长度应为多少米?15.某公司生产一种产品的固定成本为0.5万元,但每生产100件需要增加投入0.25万元,市场对此产品的需求量为500件,销售收入为函数R(x)=5x -(0≤x ≤5)万元,其中x 是产品售出的数量(单位:百件).x22(1)把利润表示为年产量的函数f(x);(2)年产量为多少时,当年公司所得利润最大?16.复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息的方法.某人向银行贷款10万元,约定按年利率7%复利计算利息.(1)写出x年后,需要还款总数y(单位:万元)和x(单位:年)之间的函数关系式;(2)计算5年后的还款总额(精确到元);(3)如果该人从贷款的第二年起,每年向银行还款x元,分5次还清,求每次还款的金额x(精确到元).(参考数据:1.073=1.225 0,1.074=1.310 8,1.075=1.402 551,1.076=1.500 730)答案解析1.答案为:B ;解析:法一:在同一平面直角坐标系中分别画出函数y=log 2x ,y=x 2,y=2x ,在区间(2,4)上从上往下依次是y=x 2,y=2x ,y=log 2x 的图象,所以x 2>2x >log 2x.法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x=3,经检验易知选B.2.答案为:C ;解析:通过所给数据可知s 随t 增大,其增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C.3.答案为:D ;解析:一次函数保持均匀的增长,不能体现题意;二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢.4.答案为:A ;解析:由已知第一年有100只,得a=100. 将a=100,x=7代入y=alog 2(x +1),得y=300.5.答案为:C ;解析:通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y 3随x 的变化符合此规律;指数函数的增长速度越来越快,y 2随x 的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y 1随x 的变化符合此规律,故选C.6.答案为:D ;解析:设今年绿地面积为m ,则有my=(1+10%)x m ,∴y=1.1x ,故选D.7.答案为:C ;解析:将x=1,2,3,y=0.2,0.4,0.76分别代入验算.8.答案为:D ;解析:函数y=a x 与y=log a x 的单调性相同,由此可排除C ;直线y=x +a 在y 轴上的截距为a ,则选项A 中0<a<1,选项B 中a>1,显然y=a x 的图像不符,排除A ,B ,选D.9.答案为:y=x 2解析:当x 变大时,x 比ln x 增长要快,∴x 2要比xln x 增长得要快.10.答案为:300;解析:由已知第一年有100只,得a=100.将a=100,x=7代入y=alog 2(x +1),得y=300.11.答案为:2ln 2 1 024解析:设病菌原来有1个,则半小时后为2个,得2=e ,k 2解得k=2ln 2,y(5)=e (2ln 2)·5=e 10ln 2=210=1 024(个).12.答案为:②③;解析:由t ∈[0,3]的图象联想到幂函数y=x a (0<a<1).反映了C 随时间的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.13.解:(1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B(30,35),C(30,15)分别代入y 1,y 2的解析式,得k 1=,k 2=.1512∴y 1=x +29(x ≥0),y 2=x(x ≥0).1512(2)令y 1=y 2,即x +29=x ,则x=96.151223当x=96时,y 1=y 2,两种卡收费一致;23当x <96时,y 1>y 2,使用便民卡便宜;23当x >96时,y 1<y 2,使用如意卡便宜.2314.解:因为长为x m ,则宽为 m ,设面积为S m 2,50-x 3则S=x·=-(x 2-50x)=-(x -25)2+(12.5<x<50),50-x 313136253所以当x=25时,S 取得最大值,即鸡场的长度为25米时,面积最大.15.解:(1)设年产量为x(百件),当0≤x ≤5时,f(x)=5x --(0.5+0.25x);x22当x>5时,销售收入为万元,此时f(x)=-(0.5+0.25x)=12-0.25x 252252∴f(x)=Error!(2)当0≤x ≤5时,f(x)=-(x -4.75)2+10.781 25;12当x>5时,函数f(x)为单调递减函数.∴当年产量为475件时,公司所得利润最大.16.解:(1)y=10·(1+7%)x ,定义域为{x|x ∈N *}.(2)5年后的还款总额为y=10×(1+7%)5=10×1.075=14.025 5.答:5年后的还款总额为140 255元(或14.025 5万元).(3)由已知得x(1+1.07+1.072+1.073+1.074)=14.025 5.解得x=2.438 9.答:每次还款的金额为24 389元(或2.438 9万元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 4.4 4.4.3
1.当x越来越大时,下列函数中,增长速度最快的是(D)
A.y=100x B.y=log100x
C.y=x100D.y=100x
[解析]由于指数函数的增长是爆炸式增长,则当x越来越大时,函数y=100x的增长速度最快.
2.某商品的价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来的价格相比,变化情况是(B)
A.增加了7.84%B.减少了7.84%
C.减少了9.5% D.不增不减
[解析]设该商品原价为a,则四年后的价格为a(1+0.2)2(1-0.2)2=a×1.22×0.82=0.921 6a,
所以a-0.921 6a=0.078 4a=7.84%a,
故变化的情况是减少了7.84%.
3.专家预测,在我国大西北某地区荒漠化土地面积每年平均比上年增长10.4%,经过x 年可能增长到原来的y倍,则函数y=f(x)的图象大致为(D)
[解析]由题意可知y=(1+10.4%)x,故选D.
4.某工厂8年来某种产品的总产量C与时间t(年)的函数关系如图,给出下列四种说法:
①前三年中产量增长的速度越来越快;
②前三年中产量增长的速度越来越慢;
③第三年后这种产品停止生产;
④第三年后产量保持不变.
其中说法正确的是__②③__.
[解析]由t∈[0,3]的图象,联想到幂函数y=x a(0<a<1),反映了C随时间的变化而逐渐增长但速度越来越慢,由t∈[3,8]的图象可知,总产量C没有变化,即第三年后停止生产.。