用TL431做甲类功放
TL431详细解读及典型电路资料
TL431德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
平面向上,元件脚向自己.左起,1脚(R)REF也就是控制极.2脚(A)ANODE(元件符号像二极管的正极.3脚(K)CATHODE (类似二极管的负极)介绍: TL431是一个有良好的热稳定性能的三端可调分流基准电压源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
特点:•可编程输出电压为36V•电压参考误差:±0.4%,典型值@25℃(TL431B)•低动态输出阻抗,典型0.22Ω•负载电流能力1.0mA to 100mA•等效全范围温度系数50 ppm/℃典型•温度补偿操作全额定工作温度范围•低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP-8 贴片封装引脚图图4 TL431符号及内部方框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unlessotherwise noted.)最大额定值(环境温度范围适用,除非另有说明。
)RECOMMENDED OPERATING CONDITIONS建议操作条件ELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。
)ELECTRICAL CHARACTERISTICS (TA = 25℃, unless otherwise noted.)电气特性(25℃,除非另有说明。
一款发烧DAC音频解码器的设计与制作
⼀款发烧DAC⾳频解码器的设计与制作⼀款发烧DAC⾳频解码器的设计与制作摘要:随着数字⾳频时代的来临,数字⾳源也不断丰富,然⽽这些数字⾳频设备内建的DAC采⽤⼀体化设计,易受⼲扰,解码出来的声⾳并不尽⼈意。
⼀般的数字⾳源如CD、DVD、⽹络机顶盒等都配备了光纤和同轴输出接⼝,把数字⾳频信号绕开机内的DAC,直接送到专门的⾳频解码器,由专门的解码器完成D/A转换,实现声⾳的⾼保真重放。
本⽂本着hi-fi的设计原则,设计⼀款⽴体声DAC⾳频解码器,由LM317、TL431组成多路甲类并联稳压供电,采⽤经典的⾼性能的CS8412-CP负责数字信号的接收与解调、DF1700P数字滤波、R-2R架构的PCM1702-K做D/A转换、挑选发烧运放担任I/V和LPF,完成数字信号的接收并转换成⾼保真的⾳频信号,再通过⼀级电⼦管校⾳线路,输出驱动信号可以直接推动后级的甲类晶体管功放。
实现hi-fi 效果的重放。
关键词:DAC⾳频解码器 PCM1702-K 电⼦管校⾳⾼保真甲类并联稳压1. 引⾔:⼀些低中档数字⾳源输出的⾳频声⾳⽣硬,数码声重,⾳质刺⽿烦躁,不耐听,满⾜不了⾳响发烧友的听觉需求。
主要是因为这些机器内建的⾳频DAC性能差,模拟滤波、放⼤器件普通,供电也过于简单造成。
好在这些机器⼀般都配有光纤或者同轴输出端⼝,提供数字⾳频信号输出,供⾼档的DAC⾳频解码还原⾼保真的声⾳。
有动⼿能⼒的烧友都喜欢DIY⼀台⾼性能的DAC⾳频解码器以重放hi-fi的⾳响效果,满⾜⾃⼰的听觉需求。
2. DAC⾳频解码器电路的设计2.1 DAC⾳频解码器电路组成DAC⾳频解码器由数字信号接收器、数字滤波器、D/A转换器、I/V转换器、LPF滤波器将数字⾳频还原还原成模拟⾳频信号,再通过电⼦管组成的和⽥茂⽒线路校⾳、开机延迟吸合电路控制输出模拟⾳频信号推动后级功放。
电路的组成及其信号流如图1:图1 DAC⾳频解码器组成及信号流程2.2 数字信号接收与⾳频解码电路数字信号的接收与解码电路关系到⾳频信号还原的质量,想要得到⾼保真的声⾳,必需采⽤⾼性能的器件担当⾳频DAC解码的重任,这是重点部分,电路原理图见图2,下⾯对其原理作进⼀步的分析:2.2.1 数字信号接收器数字信号接收采⽤美国CRYSTAL公司的带有PLL的解调芯⽚CS8412-CP担任,能⾃动识别32K-48K采样率。
TL431-典型应用电路
TL431 典型应用电路及稳压电路TL431是一个有良好的热稳定性能的三端可调分流基准源。
他的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。
TL431是一种并联稳压集成电路。
因其性能好、价格低,因此广泛应用在各种电源电路中。
其封装形式与塑封三极管9013等相同。
TL431精密可调基准电源有如下特点:稳压值从 2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
主要参数三端可调分流基准源可编程输出电压:2.5V~36V电压参考误差:±0.4% ,典型值@25℃(TL431B)低动态输出阻抗:0.22Ω(典型值)等效全范围温度系数:50 ppm/℃(典型值)温度补偿操作全额定工作温度范围稳压值送从2.5--36V连续可调,参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆,输出电流1.0--100毫安。
全温度范围内温度特性平坦,典型值为50ppm,低输出电压噪声。
封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23最大输入电压为37V最大工作电流150mA内基准电压为2.5V输出电压范围为2.5~36V内部结构TL431的具体功能可以用下图的功能模块示意。
由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。
由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管图1的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。
典型应用电路如下:1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。
TL431_典型应用电路
TL431 典型应用电路及稳压电路TL431是一个有良好的热稳定性能的三端可调分流基准源。
他的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。
TL431是一种并联稳压集成电路。
因其性能好、价格低,因此广泛应用在各种电源电路中。
其封装形式与塑封三极管9013等相同。
TL431精密可调基准电源有如下特点:稳压值从 2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
主要参数三端可调分流基准源可编程输出电压:2.5V~36V电压参考误差:±0.4% ,典型值25℃(TL431B)低动态输出阻抗:0.22Ω(典型值)等效全范围温度系数:50 ppm/℃(典型值)温度补偿操作全额定工作温度范围稳压值送从2.5--36V连续可调,参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆,输出电流1.0--100毫安。
全温度范围内温度特性平坦,典型值为50ppm,低输出电压噪声。
封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23最大输入电压为37V最大工作电流150mA内基准电压为2.5V输出电压范围为2.5~36V内部结构TL431的具体功能可以用下图的功能模块示意。
由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。
由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF 端电压的微小变化,通过三极管图1的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。
典型应用电路如下:1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。
TL431中文资料简介
TL431中⽂资料简介介绍: TL431是⼀个有良好的热稳定性能的三端可调分流基准电压源。
它的输出电压⽤两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应⽤中可以⽤它代替齐纳⼆极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
特点:·可编程输出电压为36V ·电压参考误差:±0.4%,典型值@25℃(TL431B) ·低动态输出阻抗,典型0.22Ω ·负载电流能⼒1.0mA to 100mA ·等效全范围温度系数50 ppm/℃典型 · 温度补偿操作全额定⼯作温度范围 ·低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP-8 贴⽚封装引脚图图4 TL431符号及内部⽅框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unlessotherwise noted.)最⼤额定值(环境温度范围适⽤,除⾮另有说明。
)、Rating 参数Symbol符号数值Unit单位Cathode to Anode Voltage阴极阳极电压VKA37V Cathode Current Range, Continuous 阴极电流范围,连续IK–100 to +150mA Reference Input Current Range, Continuous 参考输⼊电流范围,连续Iref–0.05 to +10mA OperatingJunctionTemperature⼯作结温TJ150℃Operating Ambient Temperature Range 操作环境温度范围TL431I,TL431AI, TL431BITA–40 to +85℃TL431C, TL431AC, TL431BC 0 to +70StorageTemperature Range储存温度范围Tstg–65 to +150℃Total Power Dissipation总耗散功率常温@ TA = 25℃Derate above 25℃Ambient Temperature D, LP后缀塑封PD0.70W P后缀塑封 1.10DM 后缀塑封0.52Total Power Dissipation @ TC = 25℃ Derate above 25℃ Case Temperature 总耗散功率外壳温度D, LP后缀塑封PD1.5W P后缀塑封 3.0RECOMMENDED OPERATING CONDITIONS建议操作条件Condition 条件Symbol符号Min最⼤值Max最⼩值Unit单位Cathode to Anode Voltage 阴极阳极电压VKA Vref36V Cathode Current 阴极电流IK 1.0100mACathode Current 阴极电流IK 1.0100mA THERMAL CHARACTERISTICS热特性Characteristic 特性Symbol符号D, LP后缀封装P后缀封装DM 后缀封装Unit单位Thermal Resistance, Junction–to–Ambient 热阻,结点到环境RqJA178114240℃/W Thermal Resistance, Junction–to–Case 热阻,结到外壳RqJC8341–℃/WELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted.)电⽓特性(25℃,除⾮另有说明。
TL431详细解读及典型电路资料
TL431德州仪器公司(TI)生产得TL431就是一就是一个有良好得热稳定性能得三端可调分流基准源。
它得输出电压用两个电阻就可以任意地设置到从Vref(2、5V)到36V范围内得任何值(如图2)。
该器件得典型动态阻抗为0、2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
平面向上,元件脚向自己.左起,1脚(R)REF也就就是控制极.2脚(A)ANODE(元件符号像二极管得正极.3脚(K)CATHODE(类似二极管得负极)介绍: TL431就是一个有良好得热稳定性能得三端可调分流基准电压源。
它得输出电压用两个电阻就可以任意地设置到从Vref(2、5V)到36V范围内得任何值。
该器件得典型动态阻抗为0、2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
特点:•可编程输出电压为36V•电压参考误差:±0、4% ,典型值25℃(TL431B) •低动态输出阻抗,典型0、22Ω•负载电流能力1、0mA to 100mA•等效全范围温度系数50 ppm/℃典型•温度补偿操作全额定工作温度范围•低输出噪声电压图1 TO92封装引脚图图2 8脚封装引脚功能图3 SOP8 贴片封装引脚图图4 TL431符号及内部方框图图5 TL431内部电路图MAXIMUM RATINGS (Full operating ambient temperature range applies, unlessotherwise noted、)最大额定值(环境温度范围适用,除非另有说明。
)Rating 参数Symbol符号数值Unit单位Cathode to Anode Voltage阴极阳极电压VKA 37 V Cathode Current Range, Continuous 阴极电流范围,连续IK–100 to+150mAREMENDED OPERATING CONDITIONS建议操作条件ELECTRICAL CHARACTERISTICS(TA=25℃, unless otherwise noted、)电气特性(25℃ ,除非另有说明。
TL431_典型应用电路
TL431 典型应用电路及稳压电路TL431是一个有良好的热稳定性能的三端可调分流基准源。
他的输出电压用两个电阻就可以任意的设置到从Verf(2.5V)到36V范围内的任何值。
该器件的典型动态阻抗为0.2Ω,在很多应用中用它代替齐纳二极管,例如,数字电压表,运放电路,可调压电源,开关电源等。
TL431是一种并联稳压集成电路。
因其性能好、价格低,因此广泛应用在各种电源电路中。
其封装形式与塑封三极管9013等相同。
TL431精密可调基准电源有如下特点:稳压值从2.5~36V连续可调;参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆输出电流1.0~100毫安;全温度范围内温度特性平坦,典型值为50ppm;低输出电压噪声。
主要参数三端可调分流基准源可编程输出电压:2.5V~36V电压参考误差:±0.4% ,典型值25℃(TL431B)低动态输出阻抗:0.22Ω(典型值)等效全范围温度系数:50 ppm/℃(典型值)温度补偿操作全额定工作温度范围稳压值送从2.5--36V连续可调,参考电压原误差+-1.0%,低动态输出电阻,典型值为0.22欧姆,输出电流1.0--100毫安。
全温度范围内温度特性平坦,典型值为50ppm,低输出电压噪声。
封装:TO-92,PDIP-8,Micro-8,SOIC-8,SOT-23最大输入电压为37V最大工作电流150mA内基准电压为2.5V输出电压范围为2.5~36V内部结构TL431的具体功能可以用下图的功能模块示意。
由图可以看到,VI是一个内部的2.5V 的基准源,接在运放的反向输入端。
由运放的特性可知,只有当REF端(同向端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管图1的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,但可用于分析理解电路。
典型应用电路如下:1:精密基准电压源(附图1)该电路具有良好的温度稳定性及较大的输出电流。
一款发烧DAC音频解码器的设计与制作
一款发烧DAC音频解码器的设计与制作摘要:随着数字音频时代的来临,数字音源也不断丰富,然而这些数字音频设备内建的DAC采用一体化设计,易受干扰,解码出来的声音并不尽人意。
一般的数字音源如CD、DVD、网络机顶盒等都配备了光纤和同轴输出接口,把数字音频信号绕开机内的DAC,直接送到专门的音频解码器,由专门的解码器完成D/A转换,实现声音的高保真重放。
本文本着hi-fi的设计原则,设计一款立体声DAC音频解码器,由LM317、TL431组成多路甲类并联稳压供电,采用经典的高性能的CS8412-CP负责数字信号的接收与解调、DF1700P数字滤波、R-2R架构的PCM1702-K做D/A转换、挑选发烧运放担任I/V和LPF,完成数字信号的接收并转换成高保真的音频信号,再通过一级电子管校音线路,输出驱动信号可以直接推动后级的甲类晶体管功放。
实现hi-fi 效果的重放。
关键词:DAC音频解码器 PCM1702-K 电子管校音高保真甲类并联稳压1. 引言:一些低中档数字音源输出的音频声音生硬,数码声重,音质刺耳烦躁,不耐听,满足不了音响发烧友的听觉需求。
主要是因为这些机器内建的音频DAC性能差,模拟滤波、放大器件普通,供电也过于简单造成。
好在这些机器一般都配有光纤或者同轴输出端口,提供数字音频信号输出,供高档的DAC音频解码还原高保真的声音。
有动手能力的烧友都喜欢DIY一台高性能的DAC音频解码器以重放hi-fi的音响效果,满足自己的听觉需求。
2. DAC音频解码器电路的设计2.1 DAC音频解码器电路组成DAC音频解码器由数字信号接收器、数字滤波器、D/A转换器、I/V转换器、LPF滤波器将数字音频还原还原成模拟音频信号,再通过电子管组成的和田茂氏线路校音、开机延迟吸合电路控制输出模拟音频信号推动后级功放。
电路的组成及其信号流如图1:图1 DAC音频解码器组成及信号流程2.2 数字信号接收与音频解码电路数字信号的接收与解码电路关系到音频信号还原的质量,想要得到高保真的声音,必需采用高性能的器件担当音频DAC解码的重任,这是重点部分,电路原理图见图2,下面对其原理作进一步的分析:2.2.1 数字信号接收器数字信号接收采用美国CRYSTAL公司的带有PLL的解调芯片CS8412-CP担任,能自动识别32K-48K采样率。
TL431的原理及应用
TL431的原理及应用一、TL431的原理:1. 稳定的参考电压:TL431内部集成了一个稳定的参考电压(Vref),通常为2.5V。
这个参考电压是通过一个精密的组合电路产生的,具有很高的准确性和稳定性。
2. 比较电压:TL431将外部的参考电压与Vref进行比较,并通过反馈电路来调整输出电压。
当外部参考电压大于Vref时,输出电压向上调整;当外部参考电压小于Vref时,输出电压向下调整。
通过调整外部参考电压,可以实现对输出电压的精确控制。
3. 可编程性:由于TL431采用了可编程的电阻网络,因此可以通过调整电阻值来调整Vref和输出电压。
这样就可以在各种不同应用中实现输出电压的精确调整。
二、TL431的应用:1.精密稳压电源:TL431可以作为稳压电源的基准电压源,通过与一个电阻和功率放大器(如三极管或MOSFET)组成负反馈电路,实现对输出电压的精确控制。
该负反馈电路将输出电压与TL431的参考电压进行比较,并通过调整外接电阻值来实现稳压。
2.开关电源电压调整和限流:TL431可以用来调整和控制开关电源的输出电压和限流电流。
通过将TL431与参考电压相连,通过调整参考电压,可以实现对开关电源输出电压的精确调整。
另外,通过与限流电路结合,可以实现对开关电源的限流电流的精确控制。
3.模拟-数字转换器(ADC)的参考电压源:ADC通常需要一个参考电压源,用于将模拟信号转换为数字信号。
TL431可以提供精确的参考电压,作为ADC的参考电压源,从而提高转换的精度和稳定性。
4.直流电机驱动的恒流源:5.LED驱动电路:综上所述,TL431作为一种可编程精密电压参考源,具有稳定的输出电压和低漂移工作特性,具有广泛的应用领域,包括精密稳压电源、开关电源电压调整和限流、ADC的参考电压源、直流电机驱动的恒流源和LED 驱动电路等。
通过调整外接的电阻值和参考电压,可以实现对输出电压和电流的精确控制,提高电路的稳定性和可靠性。
TL431大功率可调稳压电源电路图
TL431⼤功率可调稳压电源电路图
TL431是⽤于稳压电路的精密基准电压集成电路,它的输出电压连续可调,最⾼可达36V。
⼯作电流最⾼可达100mA。
下图是⽤TL431作基准电压源,K790场效应管作调整管构成的⾼精度稳压电源,输出电流可达6A。
电路原理:220v电压经变压器B降压、D1-D4整流、C1滤波。
此外D5、D6、C2、C3组成倍压电路(使得Vdc=60V),Rw、R3组成分压电路,TL431、R1组成取样放⼤电路,9013、R2组成限流保护电路,场效应管K790作调整管,C5是输出滤波电容器。
稳压过程:当输出电压降低时,f点电位降低,经TL431内部放⼤使e点电压增⾼,经K790调整后,b点电位升⾼;反之,当输出电压增⾼时,f点电位升⾼,e点电位降低,经K790调整后,b 点电位降低。
从⽽使输出电压稳定。
限流保护:当输出电流⼤于6A时,三极管9013处于截⽌,使输出电流被限制在6A以内,从⽽达到限流的⽬的。
本电路除电阻R1选⽤2W、R2选⽤5W外,其它元件⽆特殊要求,元件参数如图所⽰。
为了⽅便⼤家更好的学习,畅学电⼦⽹特别增加了针对单⽚机和EDA的公众号,每天推送相关知识,希望能对你的学习有所帮助!。
TL431 并联甲类_稳压电源
下载(86.53 KB)
2010-4-8 21:22
下载(87.12 KB)
2010-4-8 21:22
下载(72.06 KB)
2010-4-8 21:22
下载(74.27 KB)
2010-4-8 21:22
下载(90.64 KB)
2010-4-8 21:22
实际成本中,Q1、Q4用的是TIP142、TIP147,Q2、Q3用的是3CD511,因为我手中只有这些东西。
这个是为了即将开始的运放前级准备的正负15V的并联稳压电源。本来想自己做块板,但是实在没有现成大小合适的板子,只好洞了一个。这可是我近30年来头一次进洞啊。
这是线路图
下载(13.57 KB)
2010-4-8 21:22
这是作好后拍的照片
下载(81.83 KB)Hale Waihona Puke 2010-4-8 21:22
下载(88.83 KB)
R1、R2两个电阻没有4.7欧的,就用3.5欧代替了,结果实际测量LED电压2.77V,Q1、Q4的Veb是1.4V,电流应该是390MA左右,空载时Q2、Q3的散热片热的厉害。看来还得继续改啊。
2010-4-8 21:22
下载(119.94 KB)
2010-4-8 21:22
下载(120.7 KB)
2010-4-8 21:22
下载(84.75 KB)
2010-4-8 21:22
下载(58.74 KB)
2010-4-8 21:22
下载(84.95 KB)
2010-4-8 21:22
下载(90.37 KB)
TL431的工作原理
TL431的工作原理TL431是一种广泛应用于电子电路中的可编程精密电压参考源。
它具有稳定的输出电压,并且能够在广泛的温度范围内提供精确的电压参考。
TL431的工作原理基于反馈控制和比较器的原理。
TL431是一个三端可编程电压参考源,具有开关特性。
它的三个引脚分别是:Anode(阳极)、Cathode(阴极)和Reference(参考)。
Anode引脚是输入引脚,Cathode引脚是输出引脚,而Reference引脚用于设定参考电压。
当TL431处于工作状态时,它的Anode引脚连接到输入电压,Cathode引脚连接到负载,而Reference引脚连接到一个电阻分压器电路。
电阻分压器电路的作用是将参考电压设定在所需的值。
TL431内部具有一个比较器和一个可调电流源。
比较器用于比较Anode引脚和Reference引脚之间的电压差,当电压差达到一定阈值时,比较器会产生一个控制信号。
可调电流源则根据这个控制信号调整输出电流,以使Cathode引脚上的电压保持稳定。
当输入电压增加时,Anode引脚上的电压也会增加,这样就会导致Anode引脚和Reference引脚之间的电压差增加。
比较器会感知到这个电压差的变化,并产生一个控制信号。
可调电流源会根据这个控制信号调整输出电流,以使Cathode引脚上的电压保持不变。
同样地,当输入电压减小时,Anode引脚上的电压也会减小,导致Anode引脚和Reference引脚之间的电压差减小。
比较器会感知到这个电压差的变化,并再次产生一个控制信号。
可调电流源会根据这个控制信号调整输出电流,以使Cathode引脚上的电压保持不变。
通过这种反馈控制机制,TL431能够提供稳定的输出电压。
通过调整电阻分压器电路中的电阻值,可以设定TL431的参考电压。
这使得TL431成为一个非常灵活和可编程的电压参考源。
TL431还具有过温保护功能。
当温度超过一定阈值时,TL431会自动关闭输出,以保护电路免受损坏。
tl431锂电池过放电路
tl431锂电池过放电路摘要:1.TL431锂电池过放电路简介2.TL431锂电池过放电路工作原理3.TL431锂电池过放电路应用4.TL431锂电池过放电路的优势5.结论:TL431锂电池过放电路的重要性和实用性正文:【提纲】1.TL431锂电池过放电路简介TL431锂电池过放电路是一种用于保护锂电池的电路,它能有效地防止锂电池在过放状态下工作,从而延长锂电池的使用寿命,保证设备的安全运行。
2.TL431锂电池过放电路工作原理TL431锂电池过放电路主要由检测电路、比较电路和控制电路组成。
检测电路负责实时监测锂电池的电压,当锂电池电压低于预设值时,比较电路会将实测电压与预设电压进行比较,若实测电压低于预设电压,控制电路就会启动,切断锂电池的供电,从而实现过放保护。
3.TL431锂电池过放电路应用TL431锂电池过放电路广泛应用于各种锂电池供电的设备中,如智能手机、笔记本电脑、电动汽车等。
它能有效地防止锂电池在过放状态下工作,延长锂电池的使用寿命,保证设备的安全运行。
4.TL431锂电池过放电路的优势TL431锂电池过放电路具有以下优势:- 高效:能实时监测锂电池的电压,快速切断供电,防止锂电池过放。
- 可靠:采用专用的过放保护芯片,性能稳定,可靠性高。
- 安全:过放保护电路能有效地防止锂电池过放,从而降低锂电池故障率和事故风险。
- 易于使用:TL431锂电池过放电路设计简单,易于集成到各种锂电池供电的设备中。
5.结论:TL431锂电池过放电路的重要性和实用性TL431锂电池过放电路在保护锂电池方面具有重要意义。
它能实时监测锂电池的电压,有效防止锂电池过放,延长锂电池的使用寿命,保证设备的安全运行。
无论是从安全性、可靠性还是易用性方面,TL431锂电池过放电路都展现了其强大的实用价值。
TL431的原理及应用说明
TL431的原理及应用说明TL431是一款电压参考器,其原理基于晶体管的稳定工作点和差动放大器的负反馈原理。
它能够根据反馈电压和参考电压之间的差异,自动调整输出电压的大小,从而实现电压的稳定。
由于TL431具有高精度、低温漂移、低动态输出电阻等特点,被广泛应用于各种电子设备中。
TL431的内部结构主要包含一个基准电压源、一个错误放大器和一个输出驱动器。
基准电压源是一个带有一个电阻分压器的Zener二极管,它提供了一个稳定的参考电压。
错误放大器是一个差动放大器,它比较了输入电压和参考电压的差异,并根据差异的方向和大小来调整输出电压。
输出驱动器是一个NPN晶体管,它将放大器的输出信号转换为一个电流输出。
在应用方面,TL431可用作电压调节器、电流源和开关模式电源控制器等。
下面针对不同应用进行详细说明:1.电压调节器:TL431可用作稳压器来提供稳定的输出电压。
通过与稳压二极管或功率晶体管和电阻网络相结合,可以实现不同的输出电压。
在反馈电路中,输出电压通过电位器或分压器进行采样,与参考电压进行比较,然后通过调整放大器的反向输入电压来自动调节输出电压的大小。
这样可以实现宽范围的稳定输出电压。
2.电流源:TL431可用作可调电流源,通过控制输出电压从而控制流经负载的电流。
在电流源电路中,将一个电阻与TL431的输入引脚相连,输出引脚与负载相连。
通过调整输入引脚的电压,可以改变负载的电流。
例如,将一个电阻串联到输入引脚,通过改变电阻的大小来调整输入引脚的电压,进而调整负载的电流。
3.开关模式电源控制器:TL431还可用作开关模式电源控制器的误差放大器。
在开关电源中,误差放大器用于比较输出电压与参考电压之间的差异,并根据差异的方向和大小来控制开关管的开关周期。
通过调整参考电压或调节电压分压比,可以实现开关电源的输出电压稳定。
4.可编程参考电压:由于TL431具有可编程的特性,因此它可以用于生成可变的参考电压。
利用TL431的大功率可调稳压电源要点
利用TL431的大功率可调稳压电源要点TL431是一种经典的可调稳压器芯片,被广泛应用于各种电力电子设备中,其具有高精度、高稳定性和可靠性的特点。
利用TL431的大功率可调稳压电源可以满足一些对功率较大的应用需求,本文将从选择电源元件、设计电路拓扑结构、提高效率和优化保护措施等方面进行讨论。
一、选择电源元件在设计大功率可调稳压电源时,选择合适的电源元件是非常重要的。
首先,需要选择适合高功率应用的电源开关元件,如功率MOSFET、IGBT 等,其具有低导通电阻和高开关速度,可以提高电路转换效率和响应速度。
其次,应选择合适的电源滤波电感和电容,以降低输入和输出电压的纹波,并提供足够的电流响应能力。
此外,还需选择适合的TL431芯片,一般情况下,选择带有内部参考电压的TL431,以便简化电路结构。
二、设计电路拓扑结构常见的TL431大功率可调稳压电源拓扑结构有降压型和升压型两种。
降压型电路通常采用Buck拓扑结构,通过电感储能和开关管控制开关频率和占空比来实现输出电压的调整。
降压型拓扑结构简单,效率高,但在输入输出差压较大时,需要较大的开关元件和滤波电容,造成成本增加和体积增大。
升压型电路通常采用Boost拓扑结构,通过电感储能和开关管控制开关频率和占空比来实现输出电压的调整。
升压型拓扑结构适用于输出电压大于输入电压的情况,但在输入输出差压较大时,会造成开关管电压过高,需选择合适的开关元件。
三、提高效率为了提高大功率可调稳压电源的效率,可以从以下几个方面进行考虑。
首先,选择合适的开关元件和电源滤波元件,以减小开关损耗和改善输出电压的纹波。
其次,尽量减小电源线路的电阻和电感,以降低线路功耗。
另外,可以采用同步整流技术,将开关元件替换为同步整流二极管,减小反向漏液损耗。
最后,合理设计电路布局和散热结构,以提高电路的热效率。
四、优化保护措施在设计大功率可调稳压电源时,需要考虑到过压、过流和过温等异常情况的保护。
TL431特性及应用
1 TL431的简介德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。
它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。
该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。
左图是该器件的符号。
3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。
TL431的具体功能可以用如图1的功能模块示意。
由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。
由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管图1 的电流将从1到100mA变化。
当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。
但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,本文的一些分析也将基于此模块而展开。
2. 恒压电路应用前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。
如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。
显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时V o=(1+R1/R2)Vref。
选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。
需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。
当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。
将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4。
LED电源次级利用TL431恒流方法总结
LED电源次级利用TL431恒流方法总结随着LED照明现在越来越热,作为LED的生命支柱--LED驱动电源也越来越受到人们的关注。
一直听到有很多人这么说:LED电源是个特殊的电源,跟普通电源有很大的不同,所以做LED电源要找专业的LED电源工程师。
这种说法给LED电源蒙上了一层神秘的面纱,但作为做电源的专业人士,我们都知道LED电源其实没什么特别,其特点就是需要恒流限压,况且长期工作在满载情况下,所以对效率的要求比较高;有些电源由于结构尺寸的限制,对高度有要求。
下面我就试着就目前中小功率的LED照明电源,谈谈次级恒流的一些常见的方法来一个总结;不一定很全面,也不一定很深入,不过总算能对一些初入行的工程师有些帮助。
可以毫不夸张的说,LED驱动电源将直接决定LED灯的可靠性与寿命;作为电源工程师,我们知道LED的特性需要恒流驱动,才能保证其亮度的均匀,长期可靠的发光。
我们来谈谈比较流行的TL431的几种恒流方式。
1、单个TL431恒流电路如上图,即是利用单个TL431恒流的示意图原理:此电路非常简单,利用了431的2.495V的基准来做恒流,同样限制了LED上面的压降,但优点与缺点同样明显。
优点:电路简单,元器件少,成本低,因为TL431的基准电压精度高,R12,T13只要采高精度电阻,恒流精度比较高缺点:由于TL431是2.5V基准,故恒流取样电路的损耗极大,不适合做输出电流过大的电源此电路的致命缺陷是不能空载,故不适合做外置式的LED电源。
这个电路的恒流点计算相信大家都知道:ID=2.495/(R12//R13)取样电阻R12,R13的功率为PR=2.495*2.495/R13),对于小功率电源来说,这个功率的损耗相当可观,所以不建议采用此电路做电流大于200mA的产品2、单个TL431恒流改进型电路如上图,即是利用单个TL431恒流的改进型示意图原理:此电路同样是利用了TL431的2.495V的基准来做恒流,跟上面的电路不同点在于减少了电流取样电路的电压,只要合计设计R12,R13,R14的值,可以限制LED上面的压降优点:电路简单,元器件少,成本低,跟上面电路相比,显著降低了取样电阻的功耗,恒流精度很高,克服了上面的电路不能空载的致命缺陷,当有个别LED击穿时,可以自动调整输出电压缺点:当输出空载时,输出电压会有上升,上升幅度由电流取样电路电阻与R12,R13的比值决定。
开关电源环路中的TL431
开关电源环路中的TL431作者:安森美半导体产品线应用工程总监Christophe Basso 来源:电子设计应用2009年第4期通过极点和零点创建相位提升环路补偿的原理,在于当转换器工作在闭环时,确保所有工作条件下都有安全的相位和增益裕量。
相位增益意指在交越频率fc下环路增益T(s)的总相位旋转小于-360°,相反,总相位旋转是-360°时,相位增益容许环路增益模块与0dB轴之间存在距离。
为确保顾及这些设计条件,必须插入一个补偿电路G(s),其任务是在选定频率下改变环路增益,使其穿越0dB轴,以及在所考虑到的频率下具备足够的相位和增益裕量。
应该如何选择交越频率呢?举例来说,有的设计人员武断地选择开关频率的1/5作为交越频率。
更好的方法是根据规范表中列出的最大下冲值来分析获得0dB轴上的交越点。
参考文献1中介绍了获得0dB交越点的一个合适方法。
为方便起见,可假定交越频率为1kHz,并以此为例展开讨论。
图1 采用电流模式工作的反激转换器的典型电源转换段重要的第一步从电源段波特图开始,这就是记作H(s)的函数,如图1所示。
它是具有斜坡补偿特性的隔离型电流模式CCM反激转换器的响应。
这个波特图可以采用基准测试数据、解析性分析或使用SPICE仿真器来获得。
从图中可以发现,增益缺额为-22dB,相位旋转为-63°,这两个值都是在选定的1kHz交越频率读取的。
为获得良好的输入抑制,需要较小的输出静态误差、低的输出阻抗和大的直流增益。
原点处的极点可以满足这个要求。
就数学等式而言,原点处的极点表述为下述形式:遗憾的是,将极点恰当置于原点会导致永久的相位旋转。
而且,由于使用运放或采用反向配置接线的TL431,总相位旋转将达到-270°。
因此,如果将这-270°的相位旋转与电源段-63°的相位旋转相加,最后会得到-333°的总环路相位旋转。
这就为设计提供了27°的裕量,避免冲击到-360°的限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用TL431做功放,TL431常用于开关电源的稳压系统,今天用的材料也是开关电源用的材料.做成功放音质还是可以的,但功率不大,我用的是12V开关电源供电,在公司办公室内使用,功率大了也没用,简洁,用个万能板就可以搭起来,方便,常用的元件做开关电源的都有,坏了更换也方便,也好弄材料,报废板上也有的拆,不说了,先上一个
图:
最简版的,直接用老化水泥电阻,中点电压6V,静态电流约为1A,整机损耗12W,中点电压由R4,R3,R2决定,计算公
式:
R2,R3取值为2.4K,R4是6.8K,代入计算约为6V,放大增益倍数是R4/R2=2.8倍,MOS管可以选择做同步整流的MOS管75N75,或者选择4N60也成,但供电电压最好做到15V,再把分压电阻调整一下,具体要看你们的要求,也可以适当去调试改进,DIY音响方面是一种享受,一方面耳朵听的见,另一方面不用什么先进的仪器就可以调试。
不说了,来个升级版的:
由Q2,Q3,R5,R7组成一个1A恒流源,Q3也可以用TL431来组成恒流源,恒流效果会更好,但对应的电压要高点.光恒流取样就占了2.48V,当然有TL432的是最好,用
TL432放大倍数会增加,做恒流取样1.25V,效果相对要比TL431要好,音质还是不错的,具体自己动手试试看。