平面结构体系的几何组成分析
结构力学第二章-平面体系的几何组成分析
2.4 实铰和虚铰
Ⅰ1
Ⅰ A
Ⅱ(参照刚片) (a) 实铰的相对位置固定
Ⅰ Ⅰ1
虚铰O O1
Ⅱ(参照刚片) (b) 虚铰的相对位置变化
图2.8 实铰和虚铰示例
15
Ⅰ
A Ⅱ
(a) 两刚片用铰结在一起的 两链杆相连
Ⅰ
A Ⅱ
(b) 两刚片用铰直接相连
图2.9实铰的常见情形
16
才从微小运动看,两根链杆所起的作 用相当于在链杆交点处的一个铰所起 的约束作用,此铰可称虚铰。
是一个刚片。一根梁、一根链杆或者支承体系的基础也 可看作是一个刚片。
形状可任意替换
7
2. 2 自由度
体系运动时可以独立改变的几何坐标的数目,称为 该体系的自由度。平面上的一个点的自由度为2(或称 作有2个自由度),平面上一个刚片的自由度为3。
平面内一刚片
平面内一点 n=2 n=3
x
y
8
2.3 约束
3
c.几何瞬变体系:不考虑材料的变形,在任何荷载作用下, 几何形状和位置可能产生微小的改变,随之即变成几何不 变体系的体系。
FP
FP
组成几何不变体系的条件:
• 具有必要的约束数; • 约束布置方式合理
4
d.几何常变体系:体系缺少约束或约束布置不恰当,没有确定的几 何形状与空间位置的体系(可发生持续大量的刚体位移)。
第2章 平面体系的几何组成分析
1
本章导读
学习内容: 1.掌握几何不变体系、几何可变体系、瞬变体系的概念, 2.掌握刚片、自由度、约束、实铰与虚铰的概念; 3.了解平面体系的计算自由度及其计算方法; 4.掌握平面几何不变体系的基本组成规则及其运用; 5.了解体系的几何组成与静力特性之间的关系。
结构力学 平面体系的几何构造分析
13
§2-2 几何不变体系的组成规律
4.当规则中的限制条件不被满足时则体系为瞬变或常变。
o
Ⅰ
Ⅰ
瞬变体系
ⅡAⅢ
常变体系
I
几何瞬变体系
精选2021版课件
14
§2-2 几何不变体系的组成规律
二、组成分析的步骤和方法 1.步骤:①若体系可直接视为由两片或三片组成,可直接按规则联接。
②若体系复杂可先去掉其上的二元体简化结构,然后从中找出可 直接观察出的几何不变部分作为刚片(2~3片)按规则联结,再 以此作为一个大刚片,寻找其它刚片设法按规则联结,如此循环 反复即可分析组成。
II
1
A
I
II
A
1
32
I
精选2021版课件
12
§2-2 几何不变体系的组成规律
3.三个刚片之间的连接
规则4:三个刚片用三个不共线的铰两两相连,则组成几何不 变体系且无多余约束。(三片三铰规则)
B
II A
B Ⅲ C
I
注:三个刚片之间的连接铰可 以是实铰亦可以是虚铰
I
III
A
II C
精选2021版课件
精选2021版课件
5
§2-1 几何构造分析的基本概念
y
y
xφ
2 3
x 1
x,
x
y
x,y,1,2,3x
单链杆约束
y
复链杆约束 n—结点个数
x
精选2021版课件
6
§2-1 几何构造分析的基本概念
2)铰 ①单铰约束:连结两个刚片的铰称为单铰。
结论:一个单铰可减少两个自由度,相当于两个约束或联系,相当于两 根单链杆的作用。 ②复铰: 连结两个以上刚片的铰称为复饺。
[精品]平面体系的几何组成分析
四、约束(联系)
1、约束:凡能减少自由度的装置。
2、一根链杆相当于一个约束(图3)。
y
o
x
(图3)
y
o
x
x
y
3、一个简单铰相当于两个约束(图4)。
y
o
x
(图4)
y
o
x
x
y
4、联结n个刚片的复铰相当于(n-1)个简单铰,减少(n-1)×2个约束(图5)。
(图5)
F
A
B
C
实饺:几何可变
虚饺:几何瞬变
2、三根链杆相互平行
实饺
虚饺
三饺共线(瞬变)
三个刚片上用不在同一直线上的三个铰两两相联结,形成无多余约束的几何不变体系。
三、三个刚片间的联结(规则三):
第四节 几何组成分析的方法、步骤和举例
一、方法 一般先考察体系的计算自由度,若W0,则体系为几何可变,不必进行 几何组成分析;若W0,则应进行几何组成分析。
三、举例
例题1
结论: 无多余约束几何不变体系
第五节 体系几何组成与静定性的关系
一、几何可变体系 一般无静力解答。
二、无多余联系的几何不变体系 静力解答唯一确定。
三、几何瞬变体系 其平衡方程或者没有有限值解答,或在特殊情况下,解答不确定。
四、具有多余联系的几何不变体系 静力解答有无穷多组解。
二、两个刚片之间的联结(规则二):
两个刚片上用一个铰和一根不通过此铰的一根链杆相连结,形成无多余约束的几何不变体系(或:两个刚片上用三根不交于一点、也不全平行的三根链杆相连结 ,形成无多余约束的几何不变体系)。
特殊情况: 1、三根链杆交于一点
第2章 平面体系的几何组成分析
瞬变体系
去支座后再分析
有
是什么 体系?
O是虚 O不是
铰吗?
O
无多不变
II
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。 方法2: 利用规则将小刚片变成大刚片.扩大刚片范围,减少刚片数。 方法3: 将只有两个铰与其它部分相连的刚片看成链杆。 方法4: 去掉暴露在最外边的二元体.使结构简化。 例:对图示体系作几何组成分析
刚片Ⅲ
2.几何组成分析的目的
1)如何设计一个体系为几何不变体系,从而能承受荷载。 2)判断一个已知体系是否为几何不变体系,从而确定能否作 为结构。 3)区分静定与超静定结构,以便选择计算方法。
3.几何组成分析时的注意点
1)一个结构的几何属性只于结构的几何组成有关,而与所 受荷载无关。 2)由于不考虑材料的自身应变,因此可把一根梁、一根 杆、或体系中已经确定为几何不变的某个部分看作一个刚片。
5)定向支座(平行支链杆):可以减少二个自由度。
3.多余约束
材力中多余约束的概念是从平衡方程的个数和未知力的个数的 比较找出多余约束的。从体系自由度的角度同样可以引出多余约束 的概念 。
在一个体系中增加或减少一个约束,体系的自由度并不因 此而减少或增加,则该约束称为多余约束。
4.体系的计算自由度
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。
方法2: 利用规则3将小刚片变成大刚片.扩大刚片范围,减少刚片数。
例:对图示体系作几何组成分析
解:该体系为瞬变体系.
方法3: 将只有两个铰与其它部分相连的刚片看成链杆。
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。
方法2: 利用规则3将小刚片变成大刚片.扩大刚片范围,减少刚片数。
平面体系几何组成分析的方法(静定的概念)(建筑力学)
例题分析
例1.分析图示体系的几何构造性。 解析:(1)计算自由度
W 4244 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 进一步判断,依次去掉二元体DFE、BDC、BEC、BCA后,整个体系只剩下 地基了,为几何不变体系。由于去掉二元体并不改变原体系的几何构造性,因此 原体系也是几何不变体系。
二元体规则是非常好用的规则,特别是去二元体,可以大大简化体系 构件数目,使判断简化,其主要有以下几个技巧:
(1)根据需要进行链杆与刚片之间的转化,巧妙使用二元体; (2)当体系比较复杂时,可以先考虑其中的一个它部分之间的连接关系, 判定整个体系的几何构造性。
例题分析
例2.分析图示体系的几何构造性。 解析:(1)计算自由度
W 72 113 0
自由度为0,说明体系具有成为几何不变体系的最少约束数目。 体系没有二元体,但体系本身是有二元体的,去掉所有二元体,只剩下一个 杆件,所以体系本身几何不变,再考虑其与地基的连接方式,判定体系几何不变。
总结与技巧
示例
例1.分析图示体系的几何构造性。
解析:(1)计算自由度
W 7277 0
体系具有成为几何不变体系的最少约束数目,需进一步判断。 (2)依次去掉二元体FAB、IED、FBJ、IDC如图所示。 (3)三角形GCH看作刚片Ⅰ,地基看作特殊刚片Ⅱ。 (4)刚片Ⅰ、Ⅱ之间通过三根链杆相连,三链杆汇交
结构力学第二章 平面体系的几何组成分析
不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰
第2章 平面体系的几何组成分析
[例] 试对图示体系进行几何组成分析
因三铰在一直线上, 故该体系为瞬变体系。
例 试分析图所示体系的几何组成。
解 (1) 用公式 (2-1) 计算体 系的自由度 m = 3, h = 2, r = 5 W = 3m-2h-r = 3 × 3-2 × 2-5 = 0
(2)几何组成分析 先把杆 AB 、 BC 及地基分别看作是刚片 I ,Ⅱ,Ⅲ, 相互用实铰 A(1 , 3) 、实铰 B(1 , 2) 及虚铰 (2 , 3) 相连, (虚铰是在两平行支承链杆的交点处,即无限远处。) 三铰不在 — 直线上,此部分是几何不变的。然后再加上 一个二元体,亦是几何不变。 因此,整个体系是几何不变的。
2.平面链杆系的自由度
仅在杆的两端用铰连接的杆件称为链杆,它是刚 片的特殊形式,桁架是由这类杆件组成。 链杆系的自由度也可以用式W = 3m – 2h – r ,但 在链杆系中复铰较多,计算有所不便,因此另外从 节点出发推导两个方便计算的公式。
在链杆系中,假如各节点都是互不相连地独 立存在,则每一节点在平面内的自由度是2。
例2-4 计算图所示体系的自由度。
解: 用式(2-3)计算 W=2j–b–r 因为 j=9,b=15,r=3 所以 W= 2×9 –15 – 3 = 0 即体系没有自由度。
例2-5 计算图所示体系的自由度。
解:图中 A , B , C 应算作 节点。其余与地基相连的 铰不算入节点数 j 内 (因为两 斜杆视作支承链杆)。 因为 j = 3,b = 2,r = 5 所以 W = 2 j-b-r = 2× 3-2-5=-1 即体系不但没有自由度, 且多一个约束。
解: 该体系不与基础相连,r=0,故 用式(2-2) V = 3m – 2h – 3 因为 m=7,h=7+2=9
结构力学之平面体系的几何组成分析
二、二刚片规则: 两个刚片用既不全平行也不全交于一点的 三根链杆相联,所组成的体系是几何不变 体系,且无多余约束。
O
ΙΙ
ΙΙΙ
推论: 两个刚片由一个铰和一根轴线不通过该铰的 链杆相联,所组成的体系是几何不变体系, 且无多余约束。
ΙΙ
C
A
B
例三、
C
A
分析图示体系的几何构造:
D
解法一: 1、找刚片:
依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
(二)二元体规则:
增加或去掉二元体不改变原体系的几何
组成性质。
C
A
B
例五、 分析图示体系的几何构造:
解:
A
D
E
基本铰结三角形ABC符合 三刚片规则,是无多余约
B
束的几何不变体系;依次
C
F
G
在其上增加二元体A-D-C、
C-E-D、C-F-E、E-G-F后, 体系仍为几何不变体,且 无多余约束。
一、几何构造特性:
(一)无多余联系的几何不变体系称为静定 结构。
静定结构几何组成的特点是:
任意取消一个约束,体系就变成了
几何可变体系。
(二)有多余联系的几何不变体系称为超静 定结构。
特点: 某些约束撤除以后,剩余体系仍
为几何不变体系。
二、静力特性:
(一)静定结构: 在荷载作用下,可以依据
第十二章 平面结构体系的几何组成分析
若原体系几何不变(或可变),则新增加一个 二元体后,新体系仍为几何不变(或可变); 同样,在一个已知体系上拿掉二元体,也不
会影响原体系的几何不变性或几何可变性。
因此可将二元体规则叙述如下:在一个体系
上依次增加或减少二元体,原体系的几何可 变性保持不变。
第四节 几何组成分析举例
第四节 几何组成分析举例
=-3
应用此方法解本题时须注意:此时结点B为混合结点, 对于此类结点,计算单刚结点数时,可把铰接杆当作不存 在;而在计算铰结点数时,则把刚接各杆看作一个刚片。
所以,应用式(12-1)计算可得 W=3×m-3×g-2×h-b-r =3×9-3×6 -2×4-9 =-8
表明此体系具有8个多余约束。
三、瞬变体系
在对结构进行分析计算时,必须先分析体系的几 何组成,以确定体系的几何不变性。
几何组成分析的目的是:
(1)判别给定体系是否是几何不变体系,从而确 定它能否作为结构使用;
(2)研究几何不变体系的组成规则,以保证设计 出安全合理的结构;
(3)正确区分静定结构和超静定结构,为结构的 内力计算打下必要的基础
(二)自由度
体系的自由度是指确定体系空间位置所需的独立坐标 数,或者体系运动时可以独立改变的几何参数的数目,通 常记作S。
一个点在平面内自由运动时,它的位置用坐标X,Y完全 可以确定,则平面内一点的自由度等于2,如图12-3(a)所 示。
一个刚片在平面内自由运动时,它的位置
用其上任一点A的坐标x,y和过A点的任一 直线AB的倾角φ完全可以确定,则一个平面 刚片的自由度等于3,如图12-3(b)所示。
解法二:把体系内部看成是由7个刚片AB、BC、CD、DE、 EF、FA、EB,3个单铰F、B、D,3个单刚结点A、B、
(整理)一级注册结构工程师基础考试结构力学教程.
一级注册结构工程师基础考试结构力学教程第一节平面体系的几何组成分析按照机械运动及几何学的观点,对平面结构或体系的组成情况进行分析,称为平面体系的几何组成分析。
一、名词定义(一)刚片和刚片系不会产生变形的刚性平面体称为刚片。
在体系的几何组成分析中,不考虑杆件微小的应变,这种不计应变的平面杆件就是刚片,由刚片组成的体系称为刚片系。
(二)几何可变体系和几何不变体系当不考虑材料的应变时,体系中各杆的相对位置或体系的形状可以改变的体系称为几何可变体系。
否则,体系就称为几何不变体系。
一般的实际结构,都必须是几何不变体系。
(三)自由度、约束和对象物体运动时的独立几何参数数目称为自由度。
例如一个点在平面内的自由度为2,一个刚片在平面内的自由度为3。
减少体系独立运动参数的装置称为约束,被约束的物体称为对象。
使体系减少一个独立运动参数的装置称为一个约束。
例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n个刚片的复刚性节点相当于n—1个单刚性节点。
一个平面体系的自由度w可按下式确定W=3n—2H—R其中n为体系中的刚片总数,H、R分别为体系中的单铰总数和支杆总数。
例如图1-1所示体系的自由度分别为1和0。
自由度大于零的体系一定是几何可变的。
自由度等于零及小于零的体系,可能是几何不变的也可能是几何可变的,要根据体系中的约束布置情况确定。
(a) (b)图1-1(四)必要约束和多余约束如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。
如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。
平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。
(五)等效代替1.等效刚片几何组成分析时,一个内部几何不变的平面体系,可用一个相应的刚片来代替,此刚片称为等效刚片。
2.等效链杆几何组成分析时,一根两端为铰的非直线形杆件,可用一根相应的两端为铰的直线形链杆来代替,此直线形链杆称为等效链杆。
第二章_平面体系的几何组成分析
规则三:三个刚片用不在同一直线上的三个 铰两两相联,则组成没有多余约束的几何不 变体系。如图所示。
A
A
O2 O1 O2 O3O1
O3
B
B
C
C
第二章 平面结构的几何构造分析
现在来讨论三刚片联结的特殊情况。如果两个刚
片之间是通过平行链杆联结,则其形成的虚铰将在无 穷远处。三个刚片之间的联结包括一对、两对和三对 平行链杆的情况。
合理,因B而不能限制瞬时运动B 的情况。 C
C
A
B
A'
第二章 平面结构的几何构造分析
二、两刚片组成规则
规则二:两个刚片用一个铰和不通过该铰 的一根链杆或用不交于一点也不互相平行 的三根链杆相联结,则组成没有多余约束 的几何不变体系。如图所示。
O
几何可变体系
O
R P
几何不变体系
A
C
A CE
B
D
变,实际上就是判别该体系 是否存在刚体运动的自由度。 y
所谓体系的自由度,是指体
系运动时可以独立变化的几
何参数的数目,也就是确定
xA
物体位置所需的独立坐标数
目。例如一个点在平面内自 由运动时,其位置要用两个 o
y x
坐标和来确定(右图),所
以一个点的自由度等于2。
第二章 平面结构的几何构造分析
如一个刚片在平面
1
2
A
1
3
2
第二章 平面结构的几何构造分析
体系中的约束有的对组成几何不变体 系来说是必须的,这种约束称为必要约束, 而必要约束之外的约束称之为多余约束。 每一个必要约束都可以使体系的自由度减 少1个,而多余约束并不减少体系的自由 度。
第二章 平面体系的几何组成分析
(6) 复刚结点(P.15)
联结n个刚片间的刚结点相当于(n-1)个单刚结点 (P.16) (7) 复链杆
一般来说,联结n个点的复链杆相当于(2n-3) 个单链杆(P.16)
五、不同的装置对自由度的影响
1.一个支杆(或链杆)、可动铰支座→减少一个自由度。 2.两个相交的支杆、固定铰支座→ 减少两个自由度。 3.单铰(中间铰):一个单铰减少两个自由度。 4.固定支座或刚结点:减少三个自由度。
几何不变体系的要求:杆件和支承数量要足够,组成方式 要合理。
可变
不变
可变
可变
可变
不变
二、二元体规则:一个点与一个刚片之间的连接方式。 1.约束:一个平面内的点有两个自由度,采用两个联系, 可使其几何不变。 2.规律I:一个刚片与一个点用不在同一直线上的两根 链杆相连,则组成没有多余约束的几何不变体系。
三、刚片与自由度
刚片:在平面内可以看成是几何形状不变的物体。 一根梁、一个柱、一根链杆、地基基础、地球
或体系中已经肯定为几何不变的某个部分都可看作 一个平面刚片。
四、约束(联系): 减少自由度的装置或连接。
常见的约束:
(1)链杆:两端用铰与其它物体相连的杆。 链杆可以是直杆、折杆、曲杆。
y
O
x
进行几何组成分析时,应注意:
1)体系中的每根杆件和约束都不能遗漏,也不能 重复使用。 2)当分析无法进行下去时,一般是使用的刚片或 约束不恰当,应重新选择刚片或约束再试。 3)对于某一体系,可能有多种分析途径,但结论 是唯一的。
练习:分析图示体系的几何组成。
D
C
ED
C
E
D
C
E
A
B
A
B
2平面体系的几何组成分析
例如三铰拱
大地、AC、无BC多为余刚几片何;A不、变B、C为单铰
减加二元体简组化成分结析构
如何减二元体?
试分析图示体是系什的么几何组成。 体系?
有二元
体吗?
没有
有虚 铰吗?
有
无多余几何不变
F
D
E
C
A
B
D
E
C
A
B
例1
F
D
E
C
A
B
F
D
E
C
A
B
例2
1,.3
2.,3 .1,2
就称为瞬变体系;反之则为常变体系。
应避C免设计常变体系,
A 也应避免设B 计A 成瞬变
B
0 0' 或接近瞬变瞬变的体体系的系两C个’ 特征:
P
M 0 0
(1) 多余约束的存在
N3 P r 0 (2) 很小的荷载引起很大的内
N1
N2
N3
N3
Pr
力;构件的微小变形引起体 系显著的位移。
第二章 平面体系的几何组成分析
Construction Analysis of Plan Structures
基本假定:不考虑材料的变形
几何组成分析的目的主要是分析、判断一个体系是否几何可
变或如何保证它成为几何不变体系,只有几何不变体系才可以 作为结构。同时几何分析能为结构受力分析提供合理途径。
§2-1 几何组成分析的几个概念 一、几何不变体系和几何可变体系
5 4 (1,2)
6
.
(2,3)
例6
A
B C DE F
平面体系的几何组成分析
平面体系的几何组成分析平面体系是指在二维平面上展示和分析的几何结构,可以是二维图形、图表或者平面上的线条、点等。
几何组成分析是对平面体系中组成要素的形态和关系进行研究、描述和解释的过程。
在平面体系的几何组成分析中,主要包括以下几个方面的内容:1.几何形态分析:几何形态分析是对平面体系中的形状、大小、比例关系等几何特征进行分析和描述的过程。
在几何形态分析中,可以通过测量、标注、计算等方法获取图形的尺寸信息,并通过比较、计算等方法揭示出图形的相似性、对称性等几何特征。
2.几何结构分析:几何结构分析是对平面体系中各个组成要素之间的关系进行研究和解释的过程。
在几何结构分析中,可以根据图形之间的相对位置、相互连接关系等,判断图形的层次结构、组合关系等几何关系,并通过分析这些几何关系揭示出图形之间的相互作用和约束关系。
3.几何变换分析:几何变换分析是对平面体系中的图形进行变换、平移、旋转等操作,以研究和揭示几何要素之间的关系和规律的过程。
在几何变换分析中,可以通过变换操作改变图形的形态、位置等几何特征,并观察这些变换对图形的几何关系和性质的影响,进而揭示出图形之间的变换关系和对称性等几何规律。
4.几何拓扑分析:几何拓扑分析是对平面体系中的点、线、面等几何要素之间的拓扑关系进行研究和表示的过程。
在几何拓扑分析中,可以通过判断要素之间的相交、包含、连接等关系,建立起点、边、面等要素之间的拓扑关系,并通过分析这些拓扑关系揭示出图形的几何拓扑特征和性质。
5.几何组合分析:几何组合分析是对平面体系中的各个组成要素进行组合、排列等操作,以研究和描述图形的整体特征和性质的过程。
在几何组合分析中,可以将各个组成要素进行组合或排列,形成新的图形,并通过分析这些组合或排列揭示出图形的组成特征、数量关系等几何特征。
几何组成分析不仅可以帮助我们理解和描述平面体系中的几何特征和规律,还可以应用于许多领域,如建筑设计、工程规划、地理信息系统等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 几何组成分析的目的
显然,几何可变体系是不能用来作为结 构的,因为在建筑工程结构中,要求在任 何种类的荷载作用下,结构必须能保持自 己的形状和位置。
在对结构进行分析计算时,必须先分析体系的几 何组成,以确定体系的几何不变性。 几何组成分析的目的是: (1)判别给定体系是否是几何不变体系,从而确 定它能否作为结构使用; (2)研究几何不变体系的组成规则,以保证设计 出安全合理的结构; (3)正确区分静定结构和超静定结构,为结构的 内力计算打下必要的基础
对刚片加人约束装置,它的自由度将会减少。如用一 根链杆将刚片与基础相联(图 (a)),则刚片将不能沿链杆 方向移动,因而减少了一个自由度。如果在刚片与基础之 间再加一根链杆(图 (b)),则刚片又减少了一个自由度。 用一个光滑铰链把两个刚片Ⅰ和Ⅱ在点联结起来(图 12-4(c)),那么,对刚片Ⅰ而言,其位置可由点的坐标和 线的倾角来确定。因此,它仍有3个自由度。
2、单链杆、复链杆 用于将两个刚片(或杆件)连接在一起的两端铰结的杆件称 为单链杆(链杆)。图12-7(a)中杆12即为单链杆。它只能减少 一个自由度,故链杆相当于一个约束。 同时连接两个以上刚片链杆称为复链杆(图12-7(b))。一个 连接N个杆件的复链杆,可以减少(2N-3)个自由度,相当于 (2N-3)个单链杆。
当刚片Ⅰ的位置被确定后,因为刚片Ⅱ与刚片 Ⅰ在A点以铰联结,所以刚片Ⅱ只能绕A点作相对 转动。也就是说,刚片Ⅱ只保留了独立的相对转 角φ 2。因此,由刚片Ⅰ、Ⅱ所组成的体系在平面 内的自由度为4。而两个独立的刚片在平面内的自 由度总数应为2×3=6。因此,用一个圆柱铰将两 个刚片联结起来后,就使自由度的总数减少了两 个。这种联结两个刚片的铰称为单铰。
在有多余约束的体系中,哪些 约束是多余约束并不唯一,例如 在图12-5(a)所示体系中,若A将 处竖向链杆与B链杆看成必要的, 则C链杆是多余的(如图12-5(b)所 示);若将B、C链杆看作是必要 的,则A支座竖向链杆就是多余的 (如图12-5(b)所示)。 若一个几何不变体系中无多余 约束,则称其为无多余约束几何 不变体系,反之称为有多余约束 几何不变体系。
学习目标:
1.了解刚片、自由度、约束、多余约 束、静定结构等几个概念; 2.了解几个常见约束; 3.掌握几何不变体系的组成规则; 4.会进行简单的几何组成分析。
第一节 几何组成分析的目的
第一节 几何组成分析的目的
当体系受到任意荷载作用后,若不考虑材料的变形, 而能保持其几何形状和位置不变的,则称为几何不变体 系,如图12-1(a)所示。 另有一类体系,尽管只受到很小的荷载 F 的作用,也 会引起很大的形状或Байду номын сангаас置的改变。其原因不是由于材料 本身的弹性变形,而是由于体系内部的组成不健全或支 承的布置不合理,这类体系称为几何可变体系, 如图121(b)所示。
3、单刚结点、复刚结点 仅连接两杆(或刚片)的刚结点,图12-8(a)所示的B处即为 单刚结点。它能减少三个自由度,所以单刚结点相当于三个 约束。 同时连接两个以上刚片刚结点称为复刚结点(图12-8(b))。 一个连接N个刚片的复刚结点,可以减少3(N-1)个自由度, 相当于(N-1)个单刚结点。
(五)静定结构与超静定结构 可以从几何组成的角度,根据几何不变体 系是否具有多余约束来确定结构是静定还是 超静定的。 若几何组成为几何不变体系,但有多余约 束,称这样的结构为超静定结构(如图12-5(a) 所示)。静定结构是无多余约束的几何不变体 系(如图12-5(b)、(c)所示)。
同时连接两个以上刚片的铰称为复铰(图126(b))。一个连接n个刚片的复铰,可减少2(n1)个自由度,其作用相当于(n-1)个单铰
(三)约束 体系有自由度,如果给体系加入限制运动的装置,使其自由 度减少,把减少体系自由度的装置称为约束,能减少S个自由 度的装置称为有S个约束。 约束可分为外部约束和内部约束两种,外部约束是指体系与 基础之间的约束,也就是支座;而内部约束则是指体系内部各 杆之间或结点之间的约束,如铰结点、刚结点和链杆等。 一个平面体系,通常都是由若干个刚片加人某些约束所组成 的。如果在组成体系的各刚片之间恰当地加人足够的约束,就 能使刚片与刚片之间不可能发生相对运动,从而使该体系成为 几何不变体系。
(四)必要约束、多余约束 根据对自由度的影响体系中的约束可分为 两类: 若在一个体系上增加一个约束,体系自由 度实际无变化,则所增加的这一约束称为多 余约束。 若在一个体系上减少一个约束,体系自由 度将增加,则所减少的这一约束称为必要约 束。
例如平面上一个动点,有两个自由度, 用两根不共线的链杆将其与地基相连,组 成一个几何不变体系,此时若减少一个约 束,体系变为几何可变,说明这两根链杆 是必要约束;若再增加一根链杆,体系仍 为几何不变,则将所增加的这一链杆称为 多余约束。
(二)自由度
体系的自由度是指确定体系空间位置所需的独立坐标 数,或者体系运动时可以独立改变的几何参数的数目,通 常记作S。 一个点在平面内自由运动时,它的位置用坐标X,Y完全 可以确定,则平面内一点的自由度等于2,如图12-3(a)所 示。
一个刚片在平面内自由运动时,它的位置 用其上任一点A的坐标x,y和过A点的任一 直线AB的倾角φ完全可以确定,则一个平面 刚片的自由度等于3,如图12-3(b)所示。
(二)体系的计算自由度
一个体系的计算自由度为组成体系各 刚片自由度数之和减去体系的总约束数 目。用W表示。 如果用m表示刚片数,g表示单刚结 点数,h表示单铰数,b表示体系内部单 链杆数,r表示支座链杆数,则体系计算 自由度的基础计算公式为: W=3×m-3×g-2×h-b-r 式(12-1)
第二节 平面体系的自由度
第二节 平面体系的自由度
一、几个重要的概念 (一)刚片 在几何组成分析中,可能遇到各种各样 的平面物体,不论其具体形状如何,凡本 身为几何形状不变者,则均可把它看作为 刚片。例如:一根梁、一根杆或体系中已 经肯定为几何不变的某个部分均可视为刚 片。
图所示的体系中,用虚线画出的1、2、3 、4、5各个部分,都可分别看作为刚片。