静止型动态无功补偿装置_SVC_补偿容量的确定
静止型动态无功补偿装置SVC
静止型动态无功补偿装置SVCSVC-解决的问题SVC-原理SVC-结构组成SVC-优势SVC-技术特点SVC-技术参数SVC-典型业绩产品简介荣信电力电子股份有限公司是世界最大的高压动态无功补偿装置SVC制造商,也是中国最多的 SVC 专利技术拥有者。
专业研制开发并向国内外用户提供SVC 产品,在国内率先实现光触发的触发方式,从ETT到LTT各项技术完备。
拥有高效热管冷却和全密闭纯水冷却两种冷却方式,拥有国内一流、国际先进的 SVC 专用高压全载试验检测中心,并拥有先进的DSP全数字控制技术。
集中了国内外经验丰富的专业工程技术人员,性能价格比明显优于同类进口产品。
荣信SVC产品不仅全面替代进口,还广泛应用于宝钢、鞍钢、武钢、首钢等200余家钢铁企业,兰州铁路局、西安铁路局等电气化铁道牵引站,以及兖州矿业集团、淮南矿务局、海口电业局、包头铝业等煤炭、电力、有色金属行业,还出口到越南、泰国、土耳其、尼日利亚、巴西等国家,为意大利达涅利等国际型的工程总包公司提供SVC分包业务,用户遍及世界各地,2005、2006、2007,2008年连续四年SVC装机数量全球第一,正在运行的SVC超过800套,遥遥领先于国内同行业企业。
荣信 SVC 通过德国TUV、欧盟CE、以及瑞士SGS ISO9001 等国际认证,采用国际标准生产。
SVC-解决的问题◆电弧炉电弧炉做为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响,其中主要是:■导致电网严重三相不平衡,产生负序电流■产生高次谐波,其中普遍存在如2、4次偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更趋复杂化■存在严重的电压闪变■功率因数低彻底解决上述问题的唯一方法是用户必须安装具有快速响应速度的动态无功补偿器(SVC)。
荣信SVC系统响应时间小于l0ms,完全可以满足严格的技术要求,向电弧炉快速提供无功电流并且稳定电网电压,增加冶金有功功率的输出,提高生产效率,并且最大限度地降低闪变的影响。
科技成果——静止型动态无功补偿(SVC)技术
科技成果——静止型动态无功补偿(SVC)技术所属行业制造业技术开发单位荣信电力电子股份有限公司适用范围该产品广泛用于黑色冶金中的电冶炼、轧制;有色冶金的电冶炼、轧制、电解、电镀;发电产业的电厂、风电厂;电力系统;港口、电气化铁道等交通领域,用以消除无功冲击,滤除高次谐波,平衡三相电网,实现节能、消除电网“污染”,提高电能质量。
成果简介SVC主要由全数字控制系统、高压晶闸管变流装置、补偿电抗器、高次谐波滤波装置组成。
高次谐波滤波装置由电抗器、电力电容器、电阻器组成。
通过SVC的补偿电抗器给系统补偿无功,能抑制电网电压波动、闪变、畸变,减少三相不平衡,滤除谐波干扰,改善电能质量,保障电网安全。
应用SVC后,可使功率因数从0.7提高到0.95以上,节能35%以上,节能效果显著。
电容器提供固定的容性无功QC,补偿电抗器通过的电流决定了补偿电抗器输出感性无功QTCR的大小,感性无功和容性无功相抵消,只要能做到系统无功QN=QV(系统所需)-QC+QTCR=常数(或0),则能实现电网功率因数=常数,电压几乎不波动,关键是准确控制晶闸管的触发角,得到所需的流过补偿电抗器的电流,晶闸管变流装置和控制系统能够实现这个功能,采集母线的无功电流值和电压值,合成无功值,和所设定的恒无功值(可能是0)进行比较,计算得触发角大小,通过晶闸管触发装置,使晶闸管流过所需电流。
关键技术(1)高压大功率晶闸管变流技术;(2)全数字控制技术;(3)热管自冷散热技术、水冷技术;(4)高压全载检测试验技术;(5)远程数据监控技术。
主要技术指标1、应用于6kV,10kV,27.5kV,35kV,66kV系统;2、直挂于6kV、10kV、27.5kV、35kV、66kV母线;3、TCR额定功率:≤300Mvar;4、晶闸管型式:电触发晶闸管(ETT)或光控晶闸管(LTT);5、触发方式:光电触发或光触发;6、控制系统:DSP全数字控制系统;7、控制方式:无功功率或电压;8、无功调节范围:-100%到100%;9、调节方式:分相调节;10、调节系统响应时间:<10ms;11、噪音水平:自冷无噪声;12、辅助电网供电电压:380V+15%等。
无功补偿装置的性能参数与指标解读
无功补偿装置的性能参数与指标解读无功补偿装置是一种重要的电力设备,用于管理和调整电力系统中的无功功率。
在现代电力系统中,无功功率是不可避免的,并且可能会导致诸多问题,如电压稳定性下降、效率低下、设备损坏等。
因此,无功补偿装置的性能参数与指标对于电力系统的运行和稳定至关重要。
本文将对无功补偿装置的性能参数与指标进行解读。
一、静态无功补偿装置(SVC)的性能参数与指标1. 静态无功补偿装置的基本性能参数包括无功容量、电压调制范围和响应速度等。
无功容量是指装置能够提供的无功功率大小,通常以千伏安(kVar)为单位。
电压调制范围表示装置能够在电力系统中调整电压的程度,一般以百分比表示。
响应速度是指装置从接收命令到实际调整无功功率所需的时间,常以毫秒(ms)为单位。
2. 静态无功补偿装置的指标包括无功补偿率和功率因数。
无功补偿率是指无功补偿装置所提供的无功功率与系统总无功功率的比值,通常以百分比表示。
功率因数是指电力系统中有功功率与视在功率的比值,它反映了电力系统的运行效率。
在静态无功补偿装置的作用下,功率因数可以得到显著改善,提高电力系统的效率。
二、动态无功补偿装置(DSTATCOM)的性能参数与指标1. 动态无功补偿装置的基本性能参数包括无功容量、电压调制范围、响应速度和谐波抑制能力等。
与静态无功补偿装置相比,动态无功补偿装置的无功容量通常更大,能够提供更高的无功功率。
电压调制范围表示装置对电压进行调整的幅度,响应速度表示调整电压所需的时间,谐波抑制能力表示装置对谐波电压的抑制效果。
2. 动态无功补偿装置的指标包括响应时间、跟踪能力和失控保护等。
响应时间是指装置从接收无功功率调整命令到实际调整所需的时间,它反映了装置的调节速度。
跟踪能力是指装置能否实时跟踪电力系统的无功功率需求。
失控保护是一种安全保护机制,用于防止装置失控或发生故障时对电力系统造成不利影响。
三、无功补偿装置的其他性能参数与指标除了上述提及的性能参数与指标外,还有一些其他的重要参数需要关注。
静止型无功功率动态补偿装置(SVC)技术简介
较大容 量则采用
,
司为他 的合 作伙伴 和英 国 G 公司 签订 了
1 2
、 、
输配 电 工 程
柱式 即
,
。
9
个绕 线的铁芯
通过特殊 的线
Mes h
。
:
卷 联接 谐波
SR
分 别可 以 消除 n 次和 1 7 次 以 下 高次
) 则 用来减少更 高次 的谐波
,
s v C 应 用软件 专有 技术合 同
:
要派 专家来马 钢
按照
,
的标准 进 行全 面
一 种是 用可控硅 控制 电抗 器 和 电容 器 ( 即
T CR
的考 核并做 出结论 根 据合 同规 定 该 项 技术 的独 占权 和应 用合 同产 品
和G
。
)
,
另一 种就是 饱和 电抗 器 式的前
` S R: s a t
u r
! 上补
我们 和马 院共 同 享 有
迟
,
自饱 和 电抗 器型静补 装置和基本 原 那
2
、
、
图
U U B
,
1
所示 为基本 结 线 系统图
。
为 装置容 量的
3
、
%
;
为 系 统 电压 为 负荷端母 线 电压 自饱 和 电抗 器
过 载能力 强 因为 它 本 身是 一 个 铁 磁
,
:
物质 的 电抗 器
不 象可控硅 元件那 样娇贵
。
为有载 调 压 变 压 器
,
香 港 的地
以 及 台湾
巴西
、
美 国等地 的 电气
。
尤 负盛 名的是 1 9 8 6年底 投产 的横 穿
无功补偿装置的容量计算与配置
无功补偿装置的容量计算与配置无功补偿装置是电能质量管理中的重要组成部分,它能有效地改善电力系统的功率因数,提高系统的稳定性和可靠性。
然而,为了确保无功补偿装置能够正常工作并达到预期的效果,我们需要进行准确的容量计算和合理的配置。
本文将介绍无功补偿装置容量计算的方法,并提供配置建议。
一、容量计算方法无功补偿装置的容量计算一般包括静态无功补偿装置(SVC)和动态无功补偿装置(DSTATCOM)两种情况。
1. 静态无功补偿装置(SVC)SVC主要用于调节电力系统的电压,通过调节无功功率的输入或输出来调整系统的功率因数。
对于SVC的容量计算,通常采用以下步骤:1) 确定需要补偿的无功功率:根据电力系统的需求和特点,确定需要补偿的无功功率大小,一般以kvar(千乏)为单位。
2) 确定电压调整范围:根据系统的电压波动情况和设备的工作范围,确定SVC的电压调整范围。
3) 计算容量:根据实际需求和设备的特性,计算出SVC的容量。
2. 动态无功补偿装置(DSTATCOM)DSTATCOM主要用于响应瞬时电能质量问题,通过快速响应调整无功功率来实现无功补偿。
对于DSTATCOM的容量计算,一般需要考虑以下因素:1) 负荷的类型和特点:不同类型的负荷对无功补偿的需求不同,需要根据负荷的特点来确定DSTATCOM的容量。
2) 系统的瞬变功率需求:瞬态电能质量问题通常由瞬变负荷引起,需要根据系统的瞬变负荷情况来确定DSTATCOM的容量。
3) 响应时间需求:根据系统的响应时间要求,确定DSTATCOM的容量。
二、配置建议无功补偿装置的配置不仅需要考虑装置的容量,还需要考虑安装位置和连接方式等因素。
下面是几点配置建议:1. 安装位置为了最大限度地提高无功补偿装置的效果,应尽可能将其安装在负载附近,减少输电线路的损耗和电压波动,提高无功补偿的效果。
2. 连接方式无功补偿装置一般采用并联方式与电力系统连接,这样可以将无功功率直接注入到负载侧,实现最佳的补偿效果。
静止型动态无功补偿装置(SVC)
静止型动态无功补偿装置(SVC)作者:姜峰来源:《科技创新导报》2011年第20期摘要:精练炉在冶炼过程中会产生剧烈而频繁的冲击无功功率,引起母线电压波动和闪变,同时还会产生大量的谐波电流注入电力系统,引起电压畸变,并对其它负荷产生不利影响,为了解决上述问题,需在母线上安装静态型动态无功补偿装置(SVC)。
关键词:SVC装置通用硬件组成工作原理作用中图分类号:TM7 文献标识码:A 文章编号:1674-098X(2011)06(c)-0124-011 引言在电力系统中,供电的质量指标,电网运行的安全可靠性和经济性是最根本的问题。
快速合理地调节电网无功功率,对交流电网的稳压和系统电压的调节,合理分配潮流及限制电网过电压有着十分重要的意义。
近年来,随着冶金行业、电气化铁道等的飞速发展,具有冲击特性的负荷诸如电弧炼钢炉,轧钢机等不断投入电网,导致电网功率因数下降,波形畸变,电压波动,产生谐波干扰。
为了确保电力系统的安全、稳定运行,可装备静止型无功功率补偿装置(SVC)。
目前,在电力系统中,SVC主要用于稳定电网电压,通常是按三相对称方式工作。
而工业用户中,SVC主要用于缓冲冲击性负荷及恢复电力网络有功平衡和无功补偿。
2 系统组成SVC装置主要由两个部分组成:TCR部分和FC部分。
1)TCR部分主要有TCR阀组、水冷却系统、相电抗器。
TCR阀组由并联晶闸管多个串联组成,其过电压保护采用先进的BOD器件,它与其他电子器件一起构成晶闸管二次触发回路,使晶闸管免受过电压冲击而损坏。
光电转换,自动完成各高电位电子单元循检,高压光缆传递信号。
密封循环水冷却系统提供高纯水作为TCR阀的冷却介质(水一水型)。
相控电抗器是空心、干式、铝线环氧固化户外型电抗器,线性度高,噪音小,动热稳定性好,损耗小,绝缘强度高,散热好。
相当于一个可控的感性负载,通过电子调节器和反并联连接的可控硅阀的相位控制,改变补偿电抗器的电流大小,从而达到动态无功补偿的目的。
几种静止型动态无功补偿_SVC_装置的性能及应用场合分析
322009年第5期摘要:详细分析了目前国内无功功率补偿领域广泛使用的3种典型静止型动态无功功率补偿装置-S VC 的原理及性能特点,同时分析了几种典型的大功率负荷的无功功率变化特点,并针对该类负荷的无功功率变化特点,总结了适用的SVC 装置。
关键词:无功功率;补偿;SVC ;TCR;TS C;M CR 中图分类号:TM 714.3文献标识码:B文章编号:1007-1881(2009)05-0032-05随着国民经济和科技水平的发展,大容量非线性用电负荷急剧增加,这些负荷在工作中除了产生大量的谐波电流外,还导致从系统吸收的有功、无功功率的大幅度变化而造成电压跌落和波动,给供电系统带来了日益严重的/污染0;另一方面,这些负荷也对供电电能质量有很高的要求。
无功补偿及谐波治理技术在提高电网供电质量、电力净化及提高电网电能输送能力方面有重要作用。
用电设备工作状态的复杂性和多变性导致传统的固定电容器补偿及谐波抑制装置性能不佳或者无法起到预先设计的作用。
以电力电子器件作为无触点开关为核心的静止型动态无功补偿装置(SVC ),在抑制电压波动与闪变、平衡三相电流、提高和稳定功率因数、谐波电流吸收等方面起到了非常好的作用。
目前应用的SVC 装置主要分为3种类型:T CR 型、M C R 型及TSC 型。
其中,TCR+FC 型是目前国内应用最广的一种SVC 装置,而M C R 型和T SC 型也已占据了相当的市场。
以下对这3种产品的性能及其应用场合进行详细的分析,在实际应用中应根据负荷性质选择最优的SVC 设备,达到优化投资和节省运行成本,提高设备效率的目的。
1SVC 产品性能分析1.1TCR 型SVC 原理及性能分析TC R 一般与固定电容器组(FC )配合使用。
由固定电容器组提供最大无功补偿功率,而由晶闸管控制相控电抗器在计算调节单元的控制下,实时吸收固定电容器组提供的无功补偿功率与系统需要的无功功率的差额,做到实时调节无功的目的,如下式表示。
SVC静止型动态无功补偿解决方案教程文件
SVC静止型动态无功补偿解决方案1系统需求概述随着中国经济的迅猛发展以及新能源应用的推进,对电力系统运行的安全性、可靠性和经济性以及对电能的质量的要求越来越高。
一些大功率负荷的投入、退出,或者系统局部故障等,都会造成系统中有功功率和无功功率的大幅扰动,从而对电网的稳定性和经济性产生影响。
同时,这些扰动引起的电磁暂态过程产生的过电流和过电压又往往会危害到有关电器设备的安全。
快速有效地调节电网的无功功率,使整个电网负荷的潮流分配更趋合理,这对电网的稳定、调相、调压、限制过电压等等方面都是十分重要的。
另外,现在的直流输电工程日益发展,大功率换流装置(无论整流或逆变)都需要系统提供大量无功功率。
特别是一端为弱系统或临近的交流系统发生故障时,如果不能迅速补偿大幅度波动的无功功率,就会导致系统失控或瓦解。
在SVC出现前,人们除了精心设计和布局整个电网外,往往采用下面几种经典的办法或设备来调节电网的无功功率。
1)、适当调节发电机励磁,以调节机组运行功率因数。
2)、在交流系统适当地点(或直流输电弱系统侧)装设同步调相机。
3)、使用带抽头或有载开关的变压器,通过调节电网某些点的电压来调节潮流。
4)、采用串联补偿电容器来改善受端电压,提高电网极限传输能力并增强系统的稳定性。
5)、用开关投切并联电抗器或电容器,以满足系统随时变化的无功功率需求量,达到调相调压的目的。
这几种措施和方法,有些因其固有的优点,迄今仍为人们采用着。
但是,许多方法明显存在着响应速度慢、调节性能差、运行维护和管理不便、长年运行损耗过大、自动监控跟踪性能差以及对整个电网的技术效益和经济效益都偏低等等缺陷。
现在,性能优良的SVC(静止型动态无功补偿器)正逐步替换这些陈旧的设备。
尤其在一些重要的场合,如大型钢厂,风力发电厂以及在大型复杂电网运行中有特殊要求的电站,SVC正获得越来越全面的应用。
下文根据几种SVC典型的用户类型和容量详细介绍SVC产品,并给出了推荐配置方案及组屏设计实现方案。
静止型动态无功补偿装置SVC的应用
功率因数补偿到0.9以上,设备简单。 以上,设备简单。
缺点: 损耗大-铁芯工作在磁饱和区域,在这种结构下,磁饱和时的边
缘效应显著,由于磁阀交替饱和,在磁阀附近铁芯区域存在较大的 幅向磁场分量,因此增加了电抗器铁芯和绕组的附加损耗。
存在调节死区-铁芯电抗器易饱和产生死区,补偿调节 存在调节死区范围不大
静止型动态无功补偿装置(SVC) ( static var compensator)
SVC补偿原理:QL-无功负荷; QR-SVC电抗器吸收的无功功率; Qc-SVC固定电容器组提供的无功功率;
QL t QR- QC t QR
t t t Qc QR +QR- QC
SVC的分类
根据国际大电网会议将SVC分为:
MCR的结构及原理
MCR的原理
设晶闸管VT1 、VT2 和二极管VD 都为理想开关元件, 则电抗器有以下4 种工作状 态: 状态1 状态2 状态3 状态4 VT1 、VT2 、VD 都关断; VT2 、VD 关断, VT1 导通; VT1 、VT2 关断, VD 导通; VT1 、VD 关断, VT2 导通。
噪音大-铁芯电抗器易产生噪音。 噪音大-
SR-FC
感性、容性 连续无源 有限 有限 无 有限 快 , 取 决 于 系 统及 旁路 滤波
静止无功补偿装置(SVC)介绍资料
实现电网优化运行
SVC能够与系统其他设备配合,实现电网的优化运行和调度,提高 电网运行效率。
适应未来电网发展需求
随着电网的不断发展和升级,SVC的应用前景将更加广阔,能够满 足未来电网发展的多样化需求。
THANKS
感谢观看
特点
各类SVC具有不同的特点。例如,TCR型SVC响应速度快、连 续可调,但谐波含量较高;TSC型SVC结构简单、成本低,但 只能分级调节;MCR型SVC调节范围宽、谐波含量低,但响 应速度相对较慢。
02
SVC系统组成与结构
主要设备构成
1 2
晶闸管控制电抗器(TCR)
采用晶闸管控制电抗器的投入或切除,从而改变 系统的无功功率,实现快速、连续的无功功率调 节。
静止无功补偿装置 (SVC)介绍资料
汇报人:XX
目录
• SVC基本概念与原理 • SVC系统组成与结构 • SVC控制策略及实现方法 • SVC性能指标评价体系建立 • SVC在电力系统中的应用前景展望
01
SVC基本概念与原理
SVC定义及作用
SVC定义
静止无功补偿装置(Static Var Compensator,SVC)是一种用于电力系统无 功补偿的装置,通过控制无功功率的流动,提高电力系统的稳定性和效率。
效性。
混合实现方法
结合硬件实现和软件实现的优势 ,采用硬件在循环(HIL)仿真技术 ,将实际控制系统与虚拟仿真环 境相结合,实现对SVC控制策略
的高效、灵活验证。
案例分析:某地区电网SVC应用实例
要点一
案例背景
某地区电网存在电压波动和闪变问题 ,严重影响电能质量和用户用电设备 的安全运行。为解决这一问题,该地 区电网引入了静止无功补偿装置 (SVC)。
静止无功补偿装置(SVC)介绍资料
无功功率需求量,达到调相调压的目的。
缺点:响应速度慢、调节性能差、运行维护和管理不便 、长年运行损耗过大、自动监控跟踪性能差以及对 整个电网的技术效益和经济效益都偏低等等。
概述
SVC(Static Var Compensator:静止动态无功补偿器)
工作原理
工作原理
空心电抗器的电流是由 一个可控硅阀组来控制
V
I
的。借助于对可控硅触
I
t
发相角的调整,就可以
L
~ 改变流过空心电抗器的 V
电流(基波有效值),
V
SW
I
从而保证SVC在电网接
t
a
a
入点的无功量正好能将 该点电压稳定在规定范 围内(电网补偿)。或 者,使该点的总无功量
V
I
t
a
a
等于零(对负荷补偿来 说),相当于功率因数 不同触发角度下的TCR电流波形
晶闸管控制电抗器(TCR:Thyristor Controled Reactor) 晶闸管投切电容器(TSC:Thyristor Switched Capacitor) 晶闸管投切电抗器(TSR:Thyristor Switched Reactor) 开关投切电容器/滤波器(FC:Fixed Compensator,BSC:
传媒
缆传媒
双金属间接冷 却散热器
真空热管散 热器加散热 风机
普通耐高温
无
PPH
尼龙管
无
水嘴要塑焊
无
高位电子板TE 脉冲变压器
西电科技
可生产的每套 容量为30Mvar -200Mvar
光电触发/光缆 传媒 双金属间接散 热器
SVC静止型动态无功补偿装置的应用
SVC静止型动态无功补偿装置的应用张海燕摘要:本文通过对轧钢厂生产线正常生产时,其设备的无功损耗以及对电网的高次谐波影响进行分析,并叙述了10KV-34MVar-SVC静止型动态无功补偿装置的应用及实现过程。
关键词:无功功率补偿;谐波抑制;SVC静止型动态无功补偿装置;TCR相控电抗器;FC滤波器一、前言无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。
而无功功率指的是交流电路中,电压U与电流I存在相位差时,所形成的功率分量,根据负载特性的不同,又有感性无功与容性无功之分。
而大型轧钢厂矿是以感性负载为主,生产时感性无功冲击较大。
现在以某生产线为例,其用电设备总装机容量约为54.4MW;其中大型传动为交—交变频系统,装机容量约为17.5MW;部分辅传动为交—直—交变频系统,装机容量约为19.7MW;其余的设备为恒速传动设备,装机容量约为17.2MW。
现代电力电子设备等非线性负荷大量的使用,产生的无功冲击将引起电网电压闪变、波动以及产生大量高次谐波电流,严重污染电网环境。
该生产线平均有功功率为30.39MW、平均无功功率为33.84MVAR,平均功率因数仅为0.67;而且这套设备所供电力电子元器件,其无功冲击较大;同时,注入电网的谐波电流超标。
高次谐波电流将对各种电气设备,继电保护、自动控制装置、计算机、测量和计量仪器以及通讯系统均有不利的影响;它将恶化电能质量,降低电网可靠性,增加电网损失,缩短电气设备的使用寿命。
因此,对这条生产线进行无功补偿和谐波治理具有深远意义。
二、无功损耗及谐波分析1、无功损耗分析该轧钢厂生产线建设的10KV开关站,系统采用单母线分段接线,分段开关正常时断开运行,以10KV电压等级向轧线的主、辅传动及功辅设施的用电设备供电;其中变频传动设备全部由10KVⅠ段母线供电;其余的负荷由10KVⅠ、Ⅱ段母线分别供电。
静止型动态无功补偿器SVC基础知识讲解
7、下列情况补偿装置的投退 (1) 正常情况下,补偿不退出运行。 (2) 当35kV母线电压超过电容器额定电压的1.1倍或者电流超 过额定电流的1.3倍以及电容的环境温度超过55℃时,均应将 其退出运行。 (3) 35kV母线失压后,必须将补偿装置退出运行。 (4)电容器的投退必须使用断路器,电容器退出后需放电 10min,方可重新投入(放电线圈正常)。
8、当补偿装置发生下列情况之一时,应立即退出运行 (1)电容器外壳明显膨胀,喷油,起火或爆炸; (2)电容器套管发生破裂或有闪络放电; (3)电容器内部或放电设备严重异常响声; (4)联接头严重过热或熔化
9、 TCR阀组维护 (1)、除尘 虽然TCR阀组安装在室内,但由于其本身带有高压电,会吸附 空气中的灰尘,所以阀组运行两个月要进行一次清理灰尘,采 用电吹风机除去散热器、电阻、电容,触发机箱、框架等部位 的灰尘。具体步骤如下: a)确认断路器断开。 b)确认TCR阀组停止运行。 c)确认阀组主回路挂接地线。 d)清除灰尘。 e)拆除全部接地线。 f)恢复运行。
(2)、紧固件检查 检查支撑绝缘子安装螺栓的紧固情况。 检查主电路电缆的连接情况,护线软管有无破裂。 检查控制插头的连接情况,插头、插座有无损坏,光纤有无损 坏。 检查阀组框架有无明显裂纹和变形,检视表面的油漆剥落和腐 蚀情况。
(3)、一般故障的处理 一般故障包括电阻故障、电容故障等。 处理步骤如下: 1)确认断路器断开。 2)确认TCR阀组停止运行。 3)确认阀组主回路挂接地线。 4)找到故障的零件进行维修或更换即可。
■空心 ■铝绕组 ■环氧树脂固封 ■空气绝缘 ■自然冷却
3.维护使用以及故障处理
• 1、设备投运 • 确认设备正常及补偿装置断路器处于分闸位; • 依次合上隔离刀闸; • 关好滤波补偿装置门锁; • 确认各种指示和监控正常; • 断路器合闸送电。
静止型动态无功补偿装置及应用
2 C T R型S VC的结构组 成
TC R型S VC的结构 组 成包括 以下几 部分 :
系统 的动 态 和暂 态稳 定性 ,抑 制工 频 过 电压 等 。
1 VC的 工 作 原 理 S
世界各 国 目前普遍采用T R c 型静止型动态无
的触 发 角 ,得 到 所 需 的 流 过 补 偿 电抗器 的 电流 ,
称之 为静 止型 动态 无功 补 偿装 置 。
静 止 型 无 功 补 偿 装 置 在 低 压 供 配 电系 统 中 广 泛 应 用 于 电压 调 整 、 改善 电压 水 平 、 减少 电压 波 动 、改 善 功 率 因数 、抑 制 电压 闪变 、平 衡 不 对
组 成 : 电抗 器 , 电力 电容 器 , 电 阻器 ( 有高 通 通道 时使 用 ) ,上 述 三部 分 组 成一 个
S V( k 统 系
滤 波通道 ,根据 系统 要 求可 以组 成多 个滤 波
5 5
第1 ̄gs 23 0 1 N
O 5月 牛
电 潦 彳 左 阌 乏
PO W ER U PPLY S TECH N O LO G I ES AN D PPLI A CA TI N S o
4 )提升机
电弧炉 做 为 非线 性 及 无规 律 负荷 接 入 电网 ,
将 会对 电网产生 一系列 不 良影响 ,其 中主要 是 :
提 升 机等 其 它 重工 业 负 载在 工 作 中会 对 电网
产 生如 下影 响 :
( ) 致 电 网严 重 三 相 不 平 衡 ,产 生 负 序 电 1导
Vo . 3 NO 5 11 . M a 0l v2 0
svc
SVC静止型动态无功补偿装置SVC就是静止型无功补偿装置的简称, SVC属于动态无功补偿产品。
SVC静止型动态无功补偿装置一般由 FC,TCR,控制保护系统组成,其中FC由滤波电抗器和电容器组成,称为:FC 滤波器。
TCR为晶闸管控制相控电抗器。
FC 滤波器用于提供容性无功功率补偿及谐波滤波,主要为3次谐波和5次谐波。
TCR 晶闸管控制电抗器用于平衡系统中由于负载的波动所产生的感性无功功率。
Q C=Q L+Q F cos@=1Q C:无功功率值为固定Q L:感性无功功率值随负载无功的变化而反向变化Q F:负载无功功率电抗器部分SVC静止型无功补偿装置中的电抗器有两种: 干式空心滤波电抗器和干式空心并联电抗器。
干式空心滤波电抗器根据额定电感又可以分为额定电感36.1m H、额定电流103A和额定电感10.1mH、额定电流90A两种。
干式空心滤波电抗器有六组,干式空心并联电抗器有三组。
干式空心滤波电抗器中的额定电感36.1m H、额定电流103A电抗器有三组,主要为滤除5次谐波;额定电感10.1mH、额定电流90A 的电抗器有三组,主要为滤除3次谐波。
干式空心并联电抗器干式空心并联电抗器是SVC静止型无功补偿装置TCR部分中晶闸管控制相控电抗器中的电抗器,可提供可调的感性无功,平衡系统中由于负载的波动所产生的感性无功功率。
上图为一组干式空心并联电抗器的上下两部分要作用为防雨,理论上形成环流,加速电抗器的冷却。
(图为干式空心并联电抗器的接线方式)干式空心并联电抗器与母线接线依次为:AB,BC,CA.形成三角形接法,即SVC静止型无功补偿装置中的TCR接线:TCR接线干式空心滤波电抗器干式空心滤波电抗器是SVC静止型无功补偿装置FC 滤波器中的电抗器。
用于提供容性无功功率补偿及谐波滤波,主要为3次谐波和5次谐波。
干式空心滤波电抗器有六组,其中额定电感36.1m H、额定电流103A电抗器有三组,主要为滤除5次谐波;额定电感10.1mH、额定电流90A电抗器有三组,主要为滤除3次谐波。
SVC静止型无功补偿装置原理及应用
1.引言随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网感性无功要求也与日惧增。
特别是如可逆式大型轧钢机、炼钢电弧炉等冲击负荷、非线性负荷容量的不断增加,加上普遍应用的电力电子和微电技术,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。
近年发展起来的静止型无功补偿装置(STATICVARCOMPENSATOR,下简称SVC)是一种快速调节无功功率的装置,已成功的应于冶金、采矿和电气化铁路等冲击性负荷的补偿上。
而晶闸管控制电抗器型(称TCR型)SVC用晶闸管控制线性电抗器实现较快、连续的无功功率调节,由于它具有反应时间快(5~20MS),运行可靠,无级补偿、分相调节,能平衡有功,适用范围广和价格便宜等优点。
TCR装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而其应用最广。
尤其是在冶金行业中,使用例子也最多。
2.TCR+FC型SVC系统的组成及控制原理2.1系统组成TCR+FC型SVC系统的组成如图1所示,一般由TCR、滤波器(FC)及控制系统组成。
通过控制与电抗器串联的两个反并联晶闸管的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。
该补偿器响应时间快(小于半周波),灵活性大,而且可以连续调节无功输出,缺点是产生谐波,但加上滤波装置则可以克服。
图1TCR+FC型SVC系统的组成2.2可调控电抗器相(TCR)产生连续变化感性无功的基本原理如图2(A)所示,U为交流电压。
TH1、TH2为两个反并联晶闸管,控制这两个晶闸管在一定范围内导通,则可控制电抗器流过的电流I,I和U的基本波形如图2(B)所示。
图2可调控电抗器相(TCR)产生连续变化感性无功的基本原理α为TH1和TH2的触发角,则有I=(COSα-COSωT)I的基波电流有效值为:I=(2π-2α+SIN2α)式中:V为相电压有效值;ωL为电抗器的基波电抗(ω)。
静止型动态SVC无功补偿装置培训
一、无功补偿基础知识: 1、什么是功率、功率因数 2、提高功率因数的意义 3、无功补偿的基本原理和方法 4、无功补偿在系统中的作用
1、功率、功率因数
在电网中,功率分为有功功率、无功功率和视在功 率。交流电网中,由于有阻抗和电抗(感抗和容抗) 的同时存在,所以电源输送到电器的电功率并不完 全做功。因为,其中有一部分电功率(电感和电容 所储的电能)仍能回输到电网,因此,凡实际为电 器(电阻性质)所吸收的电功率叫有功功率。电感和电 容所储的电能仍能回输到电网,这部分功率在电源 与电抗之间进行交换,交换而不消耗,称为无功功 率。
实际工程中晶闸管的控制角仅一般工作在1OO 度~165度,在电网电压基本不变的前提下。增大 控制角,将减小TCR电流,减小装置的感性无功功 率。反之减小控制角,将增大TCR电流。
从而使得相控电抗器提供(吸收)的无功能 够满足SVC的整体补偿目标要求。
可见: TCR是向电网提供在一定范围内可调的感性无功
控制目标
220kV侧 110 kV侧 35 kV侧
1、设备投运 确认设备正常及补偿装置断路器处于分闸位; 依次合上隔离刀闸; 关好滤波补偿装置门锁; 确认各种指示和监控正常; 断路器合闸送电。
2、设备退出 (1)切除电容器组支路; (2)按TCR控制柜停止按钮;
(3)如需检修设备,断开上级隔离刀闸,然后挂 接地线,分别在电容器组进出线端挂地线。
(1)断路器的检修主要包括:断路器电磁机构、 传动机构箱等的检修。
(2)电容器和电抗器的检修主要包括:电容器 有无鼓肚、喷油、渗漏油、过热;电容器、电 抗器外观检查是否良好、清洁,瓷质无裂纹和 破损;电容器、电抗器台架、基础是否牢固稳 定;电容器的保护装置是否相应均全投入运行。
无功补偿装置的选型及参数调节
无功补偿装置的选型及参数调节无功补偿装置是电力系统中常用的设备,用于补偿电力系统中的无功功率,提高系统的功率因数,改善电力质量。
本文将就无功补偿装置的选型和参数调节进行探讨。
一、无功补偿装置的选型无功补偿装置根据其工作原理和补偿方式的不同,可以分为静态无功补偿装置和动态无功补偿装置两大类。
1. 静态无功补偿装置静态无功补偿装置是指通过电容器、电感器等静态元件进行无功功率的补偿。
根据补偿方式的不同,静态无功补偿装置又可以分为并联补偿和串联补偿两种。
(1)并联补偿并联补偿是指将电容器或电容器组与电网并联连接,通过提供电网所需的无功功率来实现补偿。
在并联补偿中,电容器的容量需要根据负载的状况进行选型。
一般来说,负载较为稳定的情况下,可以选用固定容量的电容器;而负载波动较大的情况下,应选用可调节容量的电容器。
(2)串联补偿串联补偿是指将电感器或电抗器与电网串联连接,通过提供电网所需的无功功率来实现补偿。
同样地,在串联补偿中,电感器的参数需要根据负载的情况进行选择。
负载较为稳定的情况下,可以选用固定参数的电感器;而负载波动较大的情况下,应选用可调参的电感器。
2. 动态无功补偿装置动态无功补偿装置是指通过电力电子器件控制无功功率的补偿。
常见的动态无功补偿装置包括静止无功发生器(STATCOM)和静止同步补偿器(SVC)等。
动态无功补偿装置的选型主要需要考虑装置响应的速度、补偿容量、电流和电压的能力等因素。
根据电力系统的需求进行综合评估后,才能选择合适的动态无功补偿装置。
二、无功补偿装置参数调节无功补偿装置的参数调节需要根据电力系统的工作条件和要求进行调整,以最大程度地提高系统的无功补偿效果。
1. 并联补偿参数调节在并联补偿中,电容器的参数调节主要包括容量的选择和电压的调整。
(1)容量的选择电容器的容量选择应考虑系统的负载情况和无功功率需求。
容量过小会导致无功功率补偿效果不佳,而容量过大则会造成电容器的浪费。
TCR+FC型SVC静止动态无功补偿装置简介
TCR+FC型SVC静止动态无功补偿装置简介随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网无功功率的要求与日俱增。
特别是如轧机、电弧炉等冲击、非线性负荷的不断增加,加上电力电子技术的普遍应用,使得电力网发生了电压波形畸变、电压波动闪变和三相不平衡等,产生了电能质量降低、网络损耗增加等不良影响。
因此解决好电网的无功功率因数补偿和谐波滤波问题,对于提高电能质量、安全运行、降低损耗、节能、充分利用电气设备的出力等具有重要的意义。
1、谐波的危害:1.电能的生产,传输和利用效率降低,电器设备过热,产生附加的振动和噪声2.绝缘老化,寿命缩短3.设备故障,引起电力系统局部发生串联谐振或者并联谐振4.谐波发生放大,造成电容器过热,膨胀甚至产生破裂5.继电保护和自动化控制装置误动作,使电能计量失准,造成混乱6.对通信和电子设备产生干扰。
2、简介90年代以来,随着高压晶闸阀的制造技术日趋成熟,绝大部分用户采用TCR+FC型SVC这种动态无功补偿及滤波装置来改善电网电能的质量。
晶闸管控制电抗器型静止动态无功补偿装置是一种可以自动调节的无功功率补偿装置。
它具有3个主要功能:抑制电压波动,改善功率因数,吸收电网谐波。
TCR+FC型SVC全称如下:图1:TCR+FC型SVC主回路接线图无源单调谐滤器FC以其结构简单、成本低、运行维护方便等特点被广泛应用于负荷冲击不大的有污染的供电系统中,具有吸收电网谐波和补偿无功功率两个功能。
安装于母线或者设备侧,设备组合方便,性能稳定。
TCR(Thyristor Controlled Reactor)是晶闸管投切电抗器型静止无功补偿装置。
由于单独的TCR只能吸收感性的无功功率,因此往往与并联电容器配合使用。
并联电容器后,使得总的无功功率为TCR与并联电容器无功功率抵消后的净无功功率。
3、TCR型补偿装置工作原理TCR型动补装置的补偿原理见图2所示。
图中Q C为电容器功率,Q L为负载感性无功功率,Q LS为补偿器所提供的感性无功功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者简介:李常俊(1970 ),男,重庆璧山县人,电气工程师。
收稿日期:2011-04-20静止型动态无功补偿装置(SVC )补偿容量的确定李常俊(西南铝业(集团)有限责任公司装备部,重庆九龙坡401326)摘要:主要对6kV 静止型动态无功补偿装置(SVC )的原理进行分析,确定了静止型动态无功补偿装置的补偿容量。
能实时地根据电网功率因数和电压的变化状况,动态跟踪补偿6kV 供电系统的无功。
关键词:动态补偿;SVC ;容量中图分类号:TM3文献标识码:A文章编号:1005-4898(2011)03-0038-04某企业在对60年代的交直直拖动方式(即高压交流电动机-直流发电机-直流电动机)改由交交变频拖动方式(即整流变压器-交流电动机)进行节能改造后,电网的无功负荷及各类谐波增大,使电网的供电质量变差,影响电气设备的控制精度。
功率因数和无功平衡是衡量电网质量的重要标志。
如果无功能得到有效的平衡,不仅能大大降低电网的损耗,而且对提高电压质量具有重要的意义。
因此提高电网功率因数、平衡无功、提高电压质量、降低线损,是电力系统的一个重要课题。
设计采用一套静止型动态无功补偿装置(SVC )能实时地根据电网功率因数和无功的变化状况,动态跟踪补偿6kV 供电系统的无功,基本做到精补细补。
1SVC 工作原理及功能SVC 称为“静止型动态无功补偿器”,主要用于补偿用户母线上的无功功率,这是通过连续调节其自身无功功率来实现的。
用Q S 表示系统总无功功率,Q F 为用户负荷的无功功率,Q L 为晶闸管控制电抗器(以下简称TCR )的无功功率,Q C 为电容器无功功率,上述平衡过程可以用如下公式来表达:Q S =Q F +Q L -Q C =常数=0如图1所示,A 为系统工作点。
负荷工作时产生感性无功Q F ,补偿装置中的电容器组提供固定的容性无功Q C ,一般情况下后者大于前者,多余的容性无功由TCR 平衡。
当用户负荷Q F 变化时,SVC 控制系统调节TCR 电流从而改变Q L 值以跟踪,实时抵消负荷无功,动态维持系统的无功平衡。
TCR 装置的组成和工作原理如图2所示。
图1无功补偿原理示意图图2TCR 装置原理示意图TCR 的基本结构是两个反并联的晶闸管和电抗器串联。
晶闸管在电源电压的正负半周轮流工作,当晶闸管的控制角α在90ʎ 180ʎ之间时,晶闸管受控导通(控制角为90ʎ时完全导通,180ʎ时完全截至)。
在网压基本不变的前提下,增大控制角将减小TCR 电流,减小装置的感性无功功率;反之减小控制角将增大TCR 电流,增大装置的感性无功。
其电压-电流特性曲线如图2(b )所示,每条曲线是TCR 在导通角为某一特定角度下的伏安特性。
就电流的基波分量而言,TCR 装置相当于一个可调电纳。
其等效电纳为:Br=2π-2a+sin2aπwL式中:α为晶闸管导通角,L为电抗器电感值,w为网压的角频率。
对于不对称负荷,应采用分相调节。
TCR分相调节的理论基础为STEINMETZ理论,在此理论指导下,SVC能够将负荷补偿为纯有功的三相平衡系统。
STEINMETZ理论给出多种表达形式,本控制器采用如下补偿电纳公式:B abr =1槡33V2ˑ1T∫T(νbcˑi a(l)+νcaˑi b(l)-νabˑic(l))dtB bcr =1槡33V2ˑ1T∫T(νabˑi c(l)+νcaˑi b(l)-νbcˑia(l))dtB car =1槡33V2ˑ1T∫T(νabˑi c(l)+νbcˑi a(l)-νcaˑib(l))dt式中:Br ab,Br bc,Br ca分别为△形连接的补偿电抗器电纳值;V为系统网压有效值;Vab,Vbc,Vca为系统网压(线电压)瞬时值;ia(l),ib(l),ic (l)为系统网流瞬时值;T为采样周期,等于10ms。
SVC装置对电力系统中无功功率进行快速的动态补偿,可以实现的功能:①对动态无功负荷的功率因数校正;②改善电压调整;③提高电力系统的静态和动态稳定性,阻尼功率振荡;④降低过电压;⑤减少电压闪变;⑥阻尼次同步振荡;⑦减少电压和电流的不平衡。
应当指出,以上这些功能虽然是相互关联的,但实际的静止无功补偿装置往往只能以其中某一条或某几条为直接控制目标,其控制策略也因此而不同。
此外,这些功能有的属于对一个或几个在一起的负载的补偿效果(负载补偿),有的则是以整个输电系统性能的改善和传输能力的提高为目标(输电补偿),而改善电压调整,提高电压的稳定度,则可以看作是两者的共同目标。
2补偿容量确定及效果企业对其电压为6kV功率为8000kW的交直直拖动方式(即高压交流电动机-直流发电机-直流电动)改由交交变频拖动方式即(整流变压器-交流电动机)进行节能改造后,电网的无功负荷及各类谐波增大,使电网的供电质量变差,影响电气设备的控制。
因此需在6kV供电系统增加一套6kV 静止型动态无功补偿装置(SVC)来提高电网质量。
该静止型动态无功补偿装置(SVC)应主要实现如下功能:①对动态无功负荷的功率因数校正;②改善电压调整;③提高电力系统的静态和动态稳定性,阻尼功率振荡;④减少电压闪变。
该企业变电站(高压侧)电源为110kV,中压侧母线电压为35kV,低压侧母线电压为6kV,1#主变压器额定容量为31500kVA,2#主变压器额定容量为20000kVA。
2.1计算的基础数据2.1.1变电站一次系统接线图变电站一次系统接线图如图3所示。
图3一次性系统接线图2.1.2主要数据SVC挂接电压等级为6kV母线,设计运行电压6.3kV;主变参数:型号:SFSLQ-31500/110;110/38.5/6.3kV;110kV 38.5kV,UdI-II=16.4%;110kV 6kV,UdI-Ⅲ=9.74%;35kV 6kV,UdII-III=5.56%;公共连接点(P.C.C考核点):变电站6kV系统母线;公共连接点6kV母线最小短路容量:238.6MVA;6kV母线最大短路容量:278.9MVA;变电站6kV母线主要负荷及参数:直流传动电机总额定容量为:15800(kW)、交交变频传动额定电机容量为:7000(kW)。
2.2容量确定及系统构成经过对该变电站6kV系统的最高、最低负荷统计计算和现场实际测量6kV系统的各次谐波量,确定该SVC系统的动态无功量为+30Mvar(容性) -20Mvar(感性),TCR回路可调感性无功为0 23Mvar,包括一组晶闸管控制电抗器,4组单调谐滤波器(即3、5、7、11次),挂接在变电站的6kV系统母线上。
根据以上配置,SVC一次原理主接线图如图4所示,SVC站采用单母线接线。
图4主接线图六脉冲TCR由三角形连接的三个单相单元构成,其中每个单元由一个晶闸管阀和两个分裂电抗器相串联。
晶闸管阀由多个晶闸管对串联而成,以承受6kV的额定电压和正常的过电压情况。
TCR 装置的运行参数见表1;各滤波支路均为单调谐滤波器,其主要运行技术参数见表2。
表1TCR装置参数名称参数额定电压 6.3kV额定容量30Mvar额定电流2887A响应时间≤15ms表2各次滤波器支路的参数滤波支路安装容量/Kvar每相电感/mh3次6120 3.745次90000.797次60000.5511次90000.152.3运行效果该SVC装置运行一年多来,对提高电网电压的稳定性、降低网损,改善电能质量效果明显,各项运行指标见表3。
表3运行指标名称指标谐波电压允许值Uthd≤3%。
谐波电流允许值满足《电能质量一公用电网谐波》(GB/T14549—93)的要求电压波动和闪变压波动限值为≤2%;短时闪变:≤0.9功率因数CosΦ>0.96三相电压不平衡度相电压不平衡度≤1.3%该SVC装置的设计依据是110kV变电站运行1 #主变(31500kVA)带负荷进行的,但当110KV变电站运行2#主变(20000kVA)的时候,该SVC装置的补偿容量略显不足,电网电压波动明显约为6%,功率因数能满足要求。
这是当初进行容量设计和选型的时候欠考虑的地方。
3结论加强电网无功动态补偿是提高电网质量的重要手段,SVC技术是一种先进、经济、节能的技术,能够提高电网电压的稳定性、降低网损,改善电能质量,加强对低频震荡阻尼和谐波的治理。
该套SVC装置的补偿容量计算和设计选型是成功的,对提高该110kV变电站的功率因素,稳定6kV系统电压,治理谐波起了重要作用。
Determination of Compensation Capacity of Static Var Compensator(SVC)LI Chang-jun(Southwest Aluminum(Group)Co.,Ltd.,Chongqing401326,China)Abstract:The principle of6kV SVC was mainly analyzed,and the compensation capacity of SVC was determined.Keywords:dynamic compensation;SVC;capacity中铝公司“湿法赤泥堆场干法增容技术研究”成果整体技术达国际领先水平由中铝公司和河海大学联合研发的“湿法赤泥堆场干法增容技术”获的成功,整体技术达到国际领先水平。
该项技术解决了湿法堆场干法增容过程中的排渗、排洪技术,形成了成套筑坝技术。
通过在中铝贵州企业赤泥堆场实施,与新建堆场相比,可节省建设投资近2亿元,延长该赤泥堆场使用年限15.4年,节约运行成本约3.2亿元,节省土地76公顷。
与国内其它新建赤泥堆场相比,单位库容投资平均降低8.6元/m3,单位土地面积库容平均提高26.4m3/m2。
该技术创新性强,投资省,用地少,经济、社会和环保效益显着,可广泛应用于铝和非铝行业。
铝电解质替代冰晶石提高综合利用水平全球最大的铝电解质经销商加铝公司与其代理商尚轻时代金属公司已经向中国10多家电解铝企业供应了进口铝电解质。
这不仅使中国铝行业进入了全球电解质市场循环体系,也使相关企业降低了电解槽启动成本和运营成本。
目前,西方电解铝厂几乎都已经不再使用冰晶石启槽,全部使用铝电解质。
据悉,锦宁铝镁、南山铝业、中电霍煤等铝厂也都开始使用全电解质启槽技术,节支效果显著。
江苏佳汇有色5万吨铝合金项目开工江苏佳汇有色金属有限公司合金材料制造项目由江苏万宁置业集团投资,计划总投资8亿元,分两期建设。
其中一期投资5亿元,计划建设年产100万套轿车变速箱壳体、200万件轿车变速箱阀体,5万吨铝合金生产线。
项目全部达产后,可提供1000个就业岗位,年可实现产值15亿元、创利税1.2亿元。
项目一期工程计划于2012年7月主体竣工,2012年8月开始安装设备,2012年11月竣工投产。