(完整word版)高等代数(北大版)第一学期考试卷2
高等代数(一)试题及参考答案汇编
高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。
错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项.A 、11223344a a a a .B 、14233142a a a a .C 、12233144a a a a .D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠.4.下列向量组中,线性无关的是( ).A 、{}0.B 、{},,αβ0.C 、{}12,,,r ααα,其中12m αα=.D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合.5.设A 是n 阶矩阵且()r A r n =<,则A 中( ).A 、必有r 个行向量线性无关.B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分).1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( ) 三、填空题(每空4分,共24分).1.行列式000100200100D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= .四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)31111010(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分(2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分) 2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分) 得同解方程组12345234534523215414851x x x x x x x x x x x x ++-+=⎧⎪--+=-⎨⎪+-=-⎩取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。
高等代数教案(北大版)--高等代数试题以及解答
高 等 代 数(上)(No. 8)一、填空题(每小题1分, 共8分)1.一非空复数集P 为数域, 若其 包含0和1, 且对加减乘除四种运算封闭. 2. 设d (x )为f (x ), g (x ) 的一个最大公因式, 则d (x )与(f (x ), g (x ))的关系 倍数关系即d (x )=k (f (x ), g (x )) .3.设{i 1,i 2,…,i n }={1,2,…, n },则τ( i 1i 2…i n )+ τ( i n i n -1…i 1)=n(n -1)2. 4.设n ≥2, a 1,…,a n 两两不同, 则xa a a x a a a xnn.....................2211的不同根为 a 1, a 2,…,a n .5.设t 1,…,t r 两两不同, 则αi =(1,t i ,…,1-r i t ), i =1,…, r 线性 无关 .6.若β可由α1,…,αr 唯一表示, 则α1,…,αr 线性 无关 . 7.设α1,…,αm 为n 维向量组, 且R (α1,…,αm )=n , 则n ≤ m . 8.若A 为n 级实对称阵且AA '= O , 则A= O . 二、选择题(每小题1分, 共8分)1. 对于“命题甲:将n (>1)级行列式D 的主对角线上元素反号, 则行列式变为-D ;命题乙:对换行列式中两行的位置, 则行列式反号”有( B ) .A . 甲成立, 乙不成立B . 甲不成立, 乙成立C . 甲, 乙均成立D . 甲, 乙均不成立2.整系数多项式f (x )在Z 不可约是f (x )在Q 上不可约的( B ) 条件.A . 充分B . 充分必要C . 必要D . 既不充分也不必要3.设D=|a ij |n , A ij 为a ij 的代数余子式, 则nnnnn n A A A A A A A A A D (212)221212111∙=( C ) .A . DB . -DC .D n D . (-1)n D 4.下述中, 错误的是( D ) .A . 奇数次实系数多项式必有实根B . 代数基本定理适用于复数域C . 任一数域包含QD . 在P [x ]中, f (x )g (x )= f (x )h (x )⇒g (x )=h (x ) 5.设A , B 为n 级方阵, m ∈N , 则“命题甲:|-A|=-A ;命题乙:(AB )m = A m B m ”中正确的是( D ) .A . 甲成立, 乙不成立B . 甲不成立, 乙成立C . 甲, 乙均成立D . 甲, 乙均不成立 6. 任n 级矩阵A 与-A , 下述判断成立的是( B ) .A . |A|=-|A|B . AX =0 与(-A )X =0同解C . 若A 可逆, 则(-A )-1=(-1)n A -1D . A 反对称, -A 反对称7. 向量组α1,…,αs 线性无关⇔( C ) .A . 不含零向量B . 存在向量不能由其余向量线性表出C . 每个向量均不能由其余向量表出D . 与单位向量等价8. 设A , B 均为P 上矩阵, 则由( A ) 不能断言A ≌B .A . R (A )= R (B ) B . 存在可逆阵P 与Q 使A=PBQC . A 与B 均为n 级可逆D . A 可经初等变换变成B三、简要回答(每小题5分, 共20分)1.设f (x), g (x )∈P [x ], g (x )≠0, 若f (x )= g (x )q (x )+r (x ), 则 (f (x ), g (x ))=(f (x ), r (x ))成立吗?为什么?答: 不一定成立. 如:f (x )=6x 2, g (x )=2x , q (x )=3x , r (x )=0, (f (x ), g (x ))= x , (f (x ), r (x ))=x 2. 2. 设⎪⎪⎭⎫⎝⎛=d c b a A , 则当a ,b ,c ,d 满足何条件时, A =A '? A =A 2?为什么? 答: 当b =c 时, A 是一个对称矩阵, 因此A =A '.当a+d =1或c=b=0且a , d ∈{0,1}时, A =A 2.直接根据矩阵相等的定义.3.若α1,…,αs 与β1,…,β s 均相关, 则α1+β1,…,αs +β s 相关吗?为什么?答: 不一定. 如:α1=(0, 2, 0), α2=(1, 0, 1), α3=(2, 1, 2), β1=(0, -1, 0), β2=( -1, 0, 0), β3=(-1, -1, 0), 显然α1, α2, α3; β1, β2, β3两组向量均相关, 但α1+β1, α2+β2, α3+β3是线性无关的.4.若A , B 均为n 级阵, 且A ≌B , 则A 与B 的行向量组等价吗?为什么? 答:等价。
高等代数北大编第1章习题参考答案
第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。
解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。
2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。
解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。
时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。
综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。
2(X — X。
)~ + …+ C n(X — X。
)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。
高等代数2009-2010第一学期期末试卷答案
高等代数(北大版)第一学期考试卷答案一、选择题(每小题3分,共24分)1.D2.C3.B4.D5.A6.B7.C8.A二、填空题(每小题3分,共18分)1.322(1)5(1)7(1)1x x x -+-+-- 2.2x + 3.1()2n n +- 4.)1,,1,1( c x = 5.d6.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=-3/13/1003/23/100005200211A三、计算题(本大题共3个小题,共22分.请写出必要的推演步骤和文字说明)1.(6分)设b ax x x x x f +++-=23463)(,1)(2-=x x g ,a 与b 是什么数时,)(x f 能被)(x g 整除?解:方法一、利用辗转相除法,得余式:7)3()(++-=b x a x r ,………………………………………..4分由已知, 7,3-==b a ……………………………………………..2分方法二、由于)(x f 能被)(x g 整除,而1)(2-=x x g 的零点为1和-1,所以1和-1也应是)(x f 的零点,即04)1(=++=b a f 和 010)1(=+-=-b a f …………5分 故7,3-==b a …………………………………………………...….1分2.(8分)已知B AX X +=,其中⎪⎪⎪⎭⎫ ⎝⎛---=101111010A ,⎪⎪⎪⎭⎫ ⎝⎛--=350211B ,求矩阵X 。
解:由 B AX X += 得 B X A E =-)(而 ⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛=-201101011101111010100010001A E 可逆…………….2分可以求得 ⎪⎪⎪⎭⎫ ⎝⎛--=--11012312031)(1A E ……………………………………….. .3分 所以 ⎪⎪⎪⎭⎫ ⎝⎛--=-=-11012312031)(1B A E X ⎪⎪⎪⎭⎫ ⎝⎛--350211=⎪⎪⎪⎭⎫ ⎝⎛--110213………………3分3.(8)b a ,取什么值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 5432154325432154321334536223231有解?在有解的情形求一般解。
(完整word版)高等代数试卷及答案(二),推荐文档
一、填空题 (共10题,每题2分,共20 分)1.只于自身合同的矩阵是 矩阵。
2.二次型()()11212237,116x f x x x x x ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭的矩阵为__________________。
3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。
4.正交变换在标准正交基下的矩阵为_______________________________。
5.标准正交基下的度量矩阵为_________________________。
6.线性变换可对角化的充要条件为__________________________________。
7.在22P ⨯中定义线性变换σ为:()a b X X c d σ⎛⎫= ⎪⎝⎭,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。
8.设1V 、2V 都是线性空间V 的子空间,且12V V ⊆,若12dim dim V V =,则_____________________。
9.叙述维数公式_________________________________________________________________________。
10.向量α在基12,,,n ααα⋅⋅⋅(1)与基12,,,n βββ⋅⋅⋅(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。
二、判断题 (共10 题,每题1分,共10分)1.线性变换在不同基下的矩阵是合同的。
( ) 2.设σ为n 维线性空间V 上的线性变换,则()10V V σσ-+=。
( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。
( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++⋅⋅⋅+=与12n x x x ==⋅⋅⋅=的解空间,则12n V V P ⊕= ( )5.2211nn i i i i n x x ==⎛⎫- ⎪⎝⎭∑∑为正定二次型。
高等代数教案(北大版)高等代数试题以及解答
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并说明线性方程组的解的概念。
2. 线性方程组的求解方法:高斯消元法、克莱姆法则。
3. 线性方程组的解的性质:唯一性、存在性。
4. 线性方程组在实际应用中的例子。
二、矩阵及其运算1. 定义矩阵,说明矩阵的元素、矩阵的行和列。
2. 矩阵的运算:加法、减法、数乘、矩阵乘法。
3. 矩阵的转置、共轭、伴随矩阵。
4. 矩阵的行列式、行列式的性质和计算方法。
三、线性空间与线性变换1. 定义线性空间,说明线性空间的基、维数。
2. 线性变换的定义,线性变换的矩阵表示。
3. 线性变换的性质:线性、单调性、可逆性。
4. 线性变换的应用:线性映射、线性变换在几何上的意义。
四、特征值与特征向量1. 特征值、特征向量的定义。
2. 矩阵的特征多项式、特征值和特征向量的计算方法。
3. 特征值和特征向量的性质:特征值的重数、特征向量的线性无关性。
4. 对称矩阵的特征值和特征向量。
五、二次型1. 二次型的定义,二次型的标准形。
2. 二次型的矩阵表示,矩阵的合同。
3. 二次型的性质:正定、负定、不定。
4. 二次型的判定方法,二次型的最小值和最大值。
六、向量空间与线性映射1. 向量空间的概念,包括基、维数和维度。
2. 线性映射的定义,线性映射的性质,如线性、单调性和可逆性。
3. 线性映射的表示方法,包括矩阵表示和坐标表示。
4. 线性映射的应用,如线性变换、线性映射在几何上的意义。
七、特征值和特征向量的应用1. 特征值和特征向量的计算方法,包括特征多项式和特征方程。
2. 特征值和特征向量的性质,如重数和线性无关性。
3. 对称矩阵的特征值和特征向量的性质和计算。
4. 特征值和特征向量在实际问题中的应用,如振动系统、量子力学等。
八、二次型的定义和标准形1. 二次型的定义,包括二次型的标准形和矩阵表示。
2. 二次型的矩阵表示,包括矩阵的合同和相似。
3. 二次型的性质,如正定、负定和不定。
《高等代数》(上)题库
《高等代数》(上)题库第一章多项式填空题(1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数是。
(1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或p(x)|g(x)。
(1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。
(1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b。
(1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。
(1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。
(1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。
(1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为f(x)= 。
(1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根是。
(1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。
(1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。
(1.3)12、如果f(x)|g(x),g(x)|h(x),则。
(1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。
(1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。
(1.3)15、若f(x)|g(x),f(x)| h(x),则。
(1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。
(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。
(1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。
(1.7)19、α是f(x)的根的充分必要条件是。
(1.7)20、f(x)没有重根的充分必要条件是。
《高等代数》考研北京大学配套2021考研真题库
《高等代数》考研北京大学配套2021考研真题库第一部分名校考研真题第1章多项式一、判断题1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.()[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述得P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k 重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研] 【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研] 【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x-1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1三、证明题1.设不可约的有理分数p/q是整系数多项式f(x)=a0x n+a1x n-1+…+a n-1x+a n的根,证明:q∣a0,p∣a n[华中科技大学研]证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且f(x)=(qx-p)(b n-1x n-1+…+b0,b i∈z比较两边系数,得a0=qb n-1,a n=-pb0⇒q∣a0,p∣a n2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f (x)∣g(x)的充要条件是f k(x)∣g k(x)[浙江大学研]证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h (x)∈P(x),两边k次方得g k(x)=f k(x)h k(x),所以f k(x)∣g k(x)(2)再证充分性.设f k(x)∣g k(x)(i)若f(x)=g(x)=0,则f(x)∣g(x)(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①所以f k(x)=d k(x)f1k(x),g k(x)=d k(x)g1k(x)因为f k(x)∣g k(x),所以存在h(x)∈P[x](x),使得g k(x)=f k(x)·h(x)所以d k(x)g1k(x)=d k(x)f1k(x)·h(x),两边消去d k(x),得g1k(x)=f1k(x)·h(x)②由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k-1(x)这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1故f l(x)=c,其中c为非零常数.所以f(x)=d(x)f1(x)=cd(x)⇒f(x)∣g(x)3.设f(x),g(x)都是P[x]中的非零多项式,且g(x)=s m(x)g1(x),这里m≥1.又若(s(x),g1(x))=1,s(x)∣f(x).证明:不存在f1(x),r(x)∈P[x],且r(x)≠0,∂(r(x))<∂(s(x))使①[浙江大学研]证明:用反证法,若存在f1(x),r(x)使①式成立,则用g(x)乘①式两端,得f(x)=r(x)g1(x)+f1(x)s(x)②因为s(x)∣f(x),s(x)∣f1(x)s(x),由②式有s(x)∣r(x)g1(x).但(s(x),g1(x))=1,所以s(x)∣r(x).这与∂(r(x))<∂(s(x))矛盾.4.设f(x)是有理数域上n次[n≥2]多项式,并且它在有理数域上不可约,但知f (x)的一根的倒数也是f(x)的根.证明:f(x)每一根的倒数也是f(x)的根.[南开大学研]证明:设b是f(x)的一根,1/b也是f(x)的根.再设c是f(x)的任一根.下证1/c也是f(x)的根.令g(x)=f(x)/d,其中d为f(x)的首项系数,不难证明:g(x)与f(x)有相同的根,其中g(x)是首项系数为l的有理系数不可约多项式.设g(x)=x n+a n-1x n-1+…+a1x+a0,(a0≠0).由于b n+a n-1b n-1+…+a1b+a0=0①(1/b)n+a n-1(1/b)n-1+…+a1(1/b)+a0=0⇒a0b n+a1b n-1+…+a n-1b+1=0⇒b n+(a1/a0)b n-1+…+(a n-1/a0)b+1/ a0=0 ②由g(x)不可约及①,②两式可得1/a0=a0,a i/a0=a n-i(i=1,2,…,n-1).故a0=±1,a i=±a n-i(i=1,2,…,n-1)③由③式可知,当f(c)=0时,有f(c)=0,且g(1/c)=0,从而f(1/c)=0.5.设f(x)是复系数一元多项式,对任意整数n有f(n)都是整数.证明:f(x)的系数都是有理数.举例说明存在不是整系数的多项式,满足对任意整数n,有f (n)是整数.[浙江大学研]证明:设f(x)=g(x)+ih(x),g(x),h(x)∈R[x]由于∀n∈Z,f(n)=g(n)+ih(n)∈Z,所以h(x)=0.下证g(x)∈Q[x].事实上,令g(x)=a0+a1x+…+a m x m,a m≠0,a i∈R,i=1,2,…,m则有a0+a1+…+a m=g(1)∈Z,a0+a1·2+…+a m·2m=g(2)∈Z,⋮a0+a1(m+1)+…+a m(m+1)m=g(m+1)∈Z.记则有(a0,a1,…,a m)T=(g(1),g(2),…,g(m+1))①又显见∣T∣=m!(m-1)!…2!1!≠0,由①式得(a0,a1,…,a m)=(g(1),g(2),…,g(m+1))T-1这里T-1是有理数域上的矩阵,g(1),g(2),…,g(m+1)均为整数,所以a0,a1,…,a m∈Q.因此f(x)=g(x)∈Q[x].取f(x)=x2/2-1/2,有f(x)=(x-n)(x/2+n/2)+(n2-1)/2可见存在不是整系数的多项式f(x),对任一整数n,有f(n)=(n2-1)/2∈Z.。
(完整word版)免费-高等代数试卷二及答案
高等代数试卷二一、 单项选择题(每小题2分,共10分)【 】1、设)(x f 为3次实系数多项式,则A.)(x f 至少有一个有理根B. )(x f 至少有一个实根C.)(x f 存在一对非实共轭复根D. )(x f 有三个实根.【 】2、设,A B 为任意两个n 级方阵,则如下等式成立的是 A. 222()2A B A AB B +=++ B. A B A B +=+ C. AB B A = D. A B A B -=-【 】3、设向量组12,αα线性无关,则向量组1212,a b c d αααα++线性无关的充分必要条件为A. ad bc ≠B. ad bc =C. ab cd ≠D. ab cd = 【 】4.一个(2)n ≥级方阵A 经过若干次初等变换之后变为B , 则一定有A. A B =B. 0Ax =与0Bx =同解C. 秩()A =秩()BD. **A B =【 】5、设矩阵A 和B 分别是23⨯和33⨯的矩阵,秩()2A =,秩()3B =,则秩()AB 是A. 1B. 2C. 3D. 4二、填空题(每小题2分,共20分)1.多项式)(x f 没有重因式的充要条件是 . 2 .若()()1f x g x +=,则((),())f x g x = .3. 设1230231002A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则*1()A -= .4. 行列式1230000a a a 的代数余子式之和:313233A A A ++为______________. 5.设3级方阵1211222,2A B ααββββ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其中,i i αβ均为3维行向量。
若16,2A B ==,则A B -= .6. 若矩阵A 中有一个r 级子式不为0, 则 r(A)= .7.线性方程组 121232343414x x a x x a x x a x x a -=⎧⎪-=⎪⎨-=⎪⎪-=⎩, 有解的充要条件是 .8. 若向量组12,,r ααα可由12,,s βββ线性表示,且12,,r ααα线性无关,则r s.9.设A 为3级矩阵, 且12A =, 则 1*A A --= 10. 设001200373*******A ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭, 则1A -= .三、判断题(每小题2分,共10分)【 】1、若不可约多项式p(x)是()f x '的2重因式,则p(x)是)(x f 的3重因式.【 】2、设n 级方阵A 为可逆矩阵,则对任意的n 维向量β,线性方程组Ax β=都有解。
高等代数习题(北大第四版)答案一到四章
证 由题设知 ( f ( x), g( x)) =1 ,所以存在 u(x),v(x) 使 u(x) f (x) + v(x)g (x) = 1,
从而 u(x) f (x) −v(x) f (x) +v(x) f (x) +v(x)g(x) =1,
高等代数答案第一章第一章第一章第一章多项式多项式多项式多项式时代入2可得1339109
高等代数答案
第一章 多项式
1. 用 g(x) 除 f (x) ,求商 q(x) 与余式 r(x) :
1) f (x) = x3 − 3x 2 − x −1, g(x) = 3x 2 − 2x +1;
2) f (x) = x 4 − 2x + 5, g( x) = x2 − x + 2 。
2) f (x) = x3 − x2 − x, g( x) = x −1 + 2i 。
q(x) = 2x4 − 6x3 +13x2 − 39x +109
解 1)
;
r (x) = −327
2) q(x) = x2 − 2ix − (5 + 2i ) 。 r (x) = −9 + 8i
4.把 f (x) 表示成 x − x0 的方幂和,即表成 c0 + c1 (x − x0 ) +c2 (x − x0 )2 + ... +cn (x −x0 )n +⋯的形式: 1) f (x) = x5 , x0 =1; 2) f (x) = x4 − 2x2 + 3, x0 = −2; 3) f (x) = x4 + 2ix3 − (1+ i )x2 − 3x + 7 + i, x0 = −i 。 解 1)由综合除法,可得 f (x) = 1+ 5(x −1) +10(x −1)2 +10(x −1)3 +5(x −1)4 +(x −1)5; 2)由综合除法,可得 x4 − 2x2 + 3 = 11− 24(x + 2) + 22(x + 2)2 − 8(x + 2)3 + (x + 2)4 ; 3) 由综合除法,可得 x4 + 2ix3 − (1+ i )x2 − 3x + (7 +i ) = (7 + 5i) − 5(x + i )+ (− 1− i )(x + i )2 − 2i (x + i )3 + (x + i )4 。 5.求 f (x) 与 g(x) 的最大公因式: 1) f (x) = x4 + x3 − 3x2 − 4x −1,g (x ) = x3 + x2 − x − 1; 2) f (x) = x4 − 4x3 +1,g (x ) = x3 − 3x2 +1; 3) f (x) = x4 −10x2 +1, g (x) = x4 − 4 2x3 + 6x2 + 4 2x + 1。 解 1) ( f ( x), g( x)) = x +1 ; 2) ( f (x), g( x)) =1; 3) ( f ( x), g( x)) = x2 − 2 2 x −1。 6.求 u(x), v( x) 使 u(x) f (x) + v(x)g (x) = ( f (x), g (x)) 。 1) f (x) = x4 + 2x3 − x2 − 4x − 2, g (x) = x4 + x3 − x2 − 2x − 2; 2) f (x) = 4x4 − 2x3 −16x2 + 5x + 9, g (x) = 2x3 − x2 − 5x + 4 ; 3) f (x) = x4 − x3 − 4x2 + 4x + 1, g (x) = x2 − x − 1。 解 1)因为 ( f ( x), g( x)) = x2 − 2 = r2( x)
高等代数教案(北大版)高等代数试题以及解答
高等代数教案(北大版)-高等代数试题以及解答一、线性方程组1. 定义线性方程组,并了解线性方程组的基本性质。
2. 掌握高斯消元法求解线性方程组,并能够运用该方法解决实际问题。
3. 了解克莱姆法则,并能够运用该法则判断线性方程组的解的情况。
4. 通过例题讲解,让学生熟练掌握线性方程组的求解方法。
二、矩阵及其运算1. 定义矩阵,并了解矩阵的基本性质。
2. 掌握矩阵的运算,包括矩阵的加法、减法、数乘以及矩阵的乘法。
3. 了解逆矩阵的概念,并掌握逆矩阵的求法。
4. 通过例题讲解,让学生熟练掌握矩阵的运算方法。
三、线性空间与线性变换1. 定义线性空间,并了解线性空间的基本性质。
2. 掌握线性变换的概念,并了解线性变换的基本性质。
3. 了解特征值和特征向量的概念,并掌握特征值和特征向量的求法。
4. 通过例题讲解,让学生熟练掌握线性空间和线性变换的相关知识。
四、二次型1. 定义二次型,并了解二次型的基本性质。
2. 掌握二次型的标准形以及惯性定理。
3. 了解二次型的正定性以及其判定方法。
4. 通过例题讲解,让学生熟练掌握二次型的相关知识。
五、向量空间与线性映射1. 定义向量空间,并了解向量空间的基本性质。
2. 掌握线性映射的概念,并了解线性映射的基本性质。
3. 了解核空间以及秩的概念,并掌握核空间和秩的求法。
4. 通过例题讲解,让学生熟练掌握向量空间和线性映射的相关知识。
六、特征值和特征向量1. 回顾特征值和特征向量的定义,理解它们在矩阵对角化中的作用。
2. 学习如何求解一个矩阵的特征值和特征向量,包括利用特征多项式和行列式等方法。
3. 掌握特征值和特征向量在简化矩阵表达式和解决实际问题中的应用。
4. 提供例题,展示如何将一般矩阵问题转化为特征值和特征向量的问题,并教会学生如何解这些问题。
七、二次型1. 复习二次型的基本概念,包括二次型的定义、标准形和惯性定理。
2. 学习如何将一般二次型转化为标准形,以及如何从标准形判断二次型的正定性。
北京大学高等代数 I_2012 期末答案2
北京大学数学科学学院期末试题2012 -2013学年第 1 学期考试科目 高等代数I 考试时间 2013 年 1 月 9 日 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001. 1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010. 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0IrQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010010101101, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。
高等代数(北大版)第2章习题参考答案
第二章 行 列 式1. 求以下9级排列的逆序数,从而决定它们的奇偶性1) 1 3 4 7 8 2 6 9 5; 2) 2 1 7 9 8 6 3 5 4; 3)9 8 7 6 5 4 3 2 1;解:1) 所求排列的逆序数为:()1011033110134782695=+++++++=τ,所以此排列为偶排列。
2) 所求排列的逆序数为:()1810345401217986354=+++++++=τ, 所以此排列为偶排列。
3) 所求排列的逆序数为:()()36219912345678987654321=-=+++++++=τ, 所以此排列为偶排列。
2.选择i 与k 使1) 1274i 56k 9成偶排列; 2) 1i 25k 4897成奇排列。
解: 1) 当3,8==k i 时, 所求排列的逆序数为:()()10011314001274856399561274=+++++++==ττk i ,故当3,8==k i 时的排列为偶排列.。
2)当6,3==k i 时, 所求排列的逆序数为:()()5110110101325648974897251=+++++++==ττk i ,故当6,3==k i 时的排列为奇排列。
3.写出把排列12345变成排列25341的那些对换。
解: 12345()()()2534125431214354,35,22,1−−→−−−→−−−→−。
4.决定排列()211 -n n 的逆序数,并讨论它的奇偶性。
解: 因为1与其它数构成1-n 个逆序,2与其它数构成2-n 个逆序, ……n n 与1-构成1个逆序,所以排列()211 -n n 的逆序数为()[]()()()时排列为奇排列。
当时,排列为偶排列;故当34,2414,4211221211++=+=-=+++-+-=-k k n k k n n n n n n n τ5.如果排列n n x x x x 121- 的逆序数为k ,排列121x x x x n n -的逆序数是多 少?解: 因为比i x 大的数有i x n -个,所以在121x x x x n n -与n n x x x x 121- 这两个排列中,由i x 与比它的 各数构成的逆序数的和为i x n -.因而,由i x 构成的逆序总数 恰为 ()()21121-=-+++n n n 。
(完整word版)高等代数(一)试题及参考答案
高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。
错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项.A 、11223344a a a a .B 、14233142a a a a .C 、12233144a a a a .D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠.4.下列向量组中,线性无关的是( ).A 、{}0.B 、{},,αβ0.C 、{}12,,,r αααL ,其中12m αα=.D 、{}12,,,r αααL ,其中任一向量都不能表示成其余向量的线性组合. 5.设A 是n 阶矩阵且()r A r n =<,则A 中( ).A 、必有r 个行向量线性无关.B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分). 1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( ) 三、填空题(每空4分,共24分).1.行列式0001020010000D n n==-L L LLLL L L L. 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩L L L L L L L L L L 有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= .四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)311110100(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分(2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分)2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分)得同解方程组12345234534523215414851x x x x x x x x x x x x ++-+=⎧⎪--+=-⎨⎪+-=-⎩ 取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。
北京大学数学科学学院高等代数(II)期末考试题
试题1(北京大学高等代数(I)期末考试题)一、(本题共40分)给定有理数域Q 上的多项式42()3 3.f x x x =++1.(本题5分)证明()f x 为Q 中的不可约多项式.2.(本题5分)设α是()f x 在复数域C 内的一个根,定义[]{}2012.Q a a a a αα=++证明:对于任意的[]()g x Q x ∈,有[]()g Q αα∈;又对于任意的[],Q βγα∈,有[]Q βγα∈.3.(本题5分)接上题,证明:若[]Q βα∈,0β≠,则存在[]Q γα∈,使得1βγ=.4.(本题5分)找出()f x 的一个sturm 序列, 判断()f x 有几个实根.5.(本题5分)求下面三阶方阵在有理数域Q 上的最小多项式:0 031 000 13A -⎛⎫⎪= ⎪ ⎪-⎝⎭. 二、(本题10分)在欧氏空间4R 内求下列齐次线性方程组123412412342303220390x x x x x x x x x x x ++-=⎧⎪+-=⎨⎪++-=⎩的解空间的正交补空间的一组标准正交基.三、(本题15分)给定数域P 上的多项式3()f x x px q =++.设()f x 在复数域C 内的三个根是123,,ααα.求P 上的首1三项式()F x ,它以222123,,ααα为三个根. 四、(本题15分)设σ是n 维酉空间V 内的一个Hermite 变换.1.(本题5分)证明i σε-可逆,这里i 为虚单位.2.(本题10分)证明1()()i i τσεσε-=-+为酉变换.五、(本题10分)设σ是n 维酉空间V 内的一个线性变换.如果σ的特征向量都是*σ的特征向量,证明σ是正规变换.六、(本题5分) 证明在n 维欧氏空间V 中两两夹钝角(即夹角大于2π)的向量不能多于1n +个.七、(本题5分)考察复数域上全体n 阶方阵所成的集合()n M C ,它关于矩阵的加法及实数与矩阵的数乘组成实数域R 上的线性空间.设M 为其子空间,且满足:(i )若,A B M ∈,则,A B M ∈;(ii )若,0A M A ∈≠ ,则A 可逆,且1A M -∈.1.证明:任给A M ∈,则()A aE a R =∈或A aE B =+,这里a R ∈,且2(,0)B b E b R b =∈<. 2.令{}2|,,0N A M A bE b R b =∈=∈<,证明N 是M 的子空间.。
北师大版高一(上)高考题单元试卷:第2章_函数(01)(有答案)
北师大版高一(上)高考题单元试卷:第2章函数(01)一、选择题(共26小题)的定义域为()1. 函数f(x)=lg(x+1)x−1A.(−1, +∞)B.[−1, +∞)C.(−1, 1)∪(1, +∞)D.[−1, 1)∪(1, +∞)2. 函数y=√1−x+√x的定义域为()A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}的定义域为( )3. 函数f(x)=√4−|x|+lg x2−5x+6x−3A.(2, 3)B.(2, 4]C.(2, 3)∪(3, 4]D.(−1, 3)∪(3, 6]4. 设函数y=f(x)的图象与y=2x+a的图象关于y=−x对称,且f(−2)+f(−4)=1,则a=()A.−1B.1C.2D.45. 汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油6. 函数y=√x ln(1−x)的定义域为()A.(0, 1)B.[0, 1)C.(0, 1]D.[0, 1]7. 小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )A. B.C.D.8. 已知函数f(x)的定义域为(−1, 0),则函数f(2x +1)的定义域为( )A.(−1, 1)B.(−1,−12)C.(−1, 0)D.(12,1)9. 把函数y =e x 的图象按向量a →=(2, 3)平移,得到y =f(x)的图象,则f(x)=( )A.e x−3+2B.e x+3−2C.e x−2+3D.e x+2−310. 函数f(x)=ln (x 2−x)的定义域为( )A.(0, 1)B.[0, 1]C.(−∞, 0)∪(1, +∞)D.(−∞, 0]∪[1, +∞)11. 设全集为R ,函数f(x)=√1−x 的定义域为M ,则∁R M 为( )A.(−∞, 1)B.(1, +∞)C.(−∞, 1]D.[1, +∞)12. 函数y =cos 2x −3cos x +2的最小值为( )A.2B.0C.−14D.613. 设全集为R ,函数f(x)=√1−x 2的定义域为M ,则∁R M 为( )A.[−1, 1]B.(−1, 1)C.(−∞, −1)∪(1, +∞)D.(−∞, −1]∪[1, +∞)14. 已知函数f(x)=|lg x|,若a ≠b ,且f(a)=f(b),则a +b 的取值范围是( )A.(1, +∞)B.[1, +∞)C.(2, +∞)D.[2, +∞)15. 已知函数f(x)=x 3+ax 2+bx +c .且0<f(−1)=f(−2)=f(−3)≤3,则( )A.c ≤3B.3<c ≤6C.6<c ≤9D.c >916. 函数f(x)=√log x−1的定义域为( ) A.(0, 2)B.(0, 2]C.(2, +∞)D.[2, +∞)17. 函数f(x)=√(log 2x)−1的定义域为( ) A.(0, 12)B.(2, +∞)C.(0, 12)∪(2, +∞)D.(0, 12]∪[2, +∞) 18. 函数f(x)的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f(x)=( )A.e x+1B.e x−1C.e −x+1D.e −x−1 19. 函数y =1log2(x−2)的定义域为( ) A.(−∞, 2)B.(2, +∞)C.(2, 3)∪(3, +∞)D.(2, 4)∪(4, +∞)20. 设x ∈R ,定义符号函数sgnx ={1,x >0,0,x =0,−1,x <0,则( )A.|x|=x|sgnx|B.|x|=xsgn|x|C.|x|=|x|sgnxD.|x|=xsgnx21. 存在函数f(x)满足,对任意x ∈R 都有( )A.f(sin 2x)=sin xB.f(sin 2x)=x 2+xC.f(x 2+1)=|x +1|D.f(x 2+2x)=|x +1|22. 已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且f(x)−g(x)=x 3+x 2+1,则f(1)+g(1)=( )A.−3B.−1C.1D.323. 已知函数f(x)=x2−2(a+2)x+a2,g(x)=−x2+2(a−2)x−a2+8.设H1(x)=max{f(x), g(x)},H2(x)=min{f(x), g(x)},(max{p, q})表示p,q中的较大值,min{p, q}表示p,q中的较小值),记H1(x)的最小值为A,H2(x)的最大值为B,则A−B =()A.16B.−16C.−16a2−2a−16D.16a2+2a−1624. 如果|x|≤π4,f(x)=cos2x+sin x最小值是()A.√2−12B.−1+√22C.−1D.1−√2225. 设函数y=f(x)定义在实数集上,则函数y=f(x−1)与y=f(1−x)的图象关于()A.直线y=0对称B.直线x=0对称C.直线y=1对称D.直线x=1对称26. 在下列各图中,y=ax2+bx与y=ax+b(ab≠0)的图象只可能是()A. B.C. D.二、填空题(共4小题)已知函数f(x)=a x+b(a>0, a≠1)的定义域和值域都是[−1, 0],则a+b=________.已知函数f(x)=ax3−2x的图象过点(−1, 4)则a=________.函数y=ln(1+1x)+√1−x2的定义域为________.定义在R上的函数f(x)满足f(x+1)=2f(x).若当0≤x≤1时,f(x)=x(1−x),则当−1≤x≤0时,f(x)=________.参考答案与试题解析北师大版高一(上)高考题单元试卷:第2章 函数(01)一、选择题(共26小题)1.【答案】C【考点】函数的定义域及其求法【解析】依题意可知要使函数有意义需要x +1>0且x −1≠0,进而可求得x 的范围.【解答】要使函数有意义需{x +1>0x −1≠0, 解得x >−1且x ≠(1)∴ 函数f(x)=lg (x+1)x−1的定义域是(−1, 1)∪(1, +∞). 故选:C .2.【答案】D【考点】函数的定义域及其求法【解析】保证两个根式都有意义的自变量x 的集合为函数的定义域.【解答】解:要使原函数有意义,则需{1−x ≥0,x ≥0,解得0≤x ≤1,∴ 原函数定义域为[0, 1].故选D .3.【答案】C【考点】函数的定义域及其求法【解析】根据函数成立的条件进行求解即可.【解答】解:要使函数有意义,则有{4−|x|≥0,x 2−5x+6x−3>0,即{−4≤x ≤4,(x−2)(x−3)x−3>0,化简得{−4≤x ≤4,x >2,x ≠3,解得2<x ≤4且x ≠3,即函数的定义域为(2, 3)∪(3, 4].故选C.4.【答案】C【考点】函数的图象与图象的变换【解析】先求出与y =2x+a 的反函数的解析式,再由题意f(x)的图象与y =2x+a 的反函数的图象关于原点对称,继而求出函数f(x)的解析式,问题得以解决.【解答】∵ 与y =2x+a 的图象关于y =x 对称的图象是y =2x+a 的反函数,y =log 2x −a(x >0),即g(x)=log 2x −a ,(x >0).∵ 函数y =f(x)的图象与y =2x+a 的图象关于y =−x 对称,∴ f(x)=−g(−x)=−log 2(−x)+a ,x <0,∵ f(−2)+f(−4)=1,∴ −log 22+a −log 24+a =1,解得,a =2,5.【答案】D【考点】根据实际问题选择函数类型【解析】根据汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,以及图象,分别判断各个选项即可.【解答】解:对于选项A ,从图中可以看出当乙车的行驶速度大于40千米每小时时的燃油效率大于5千米每升,故乙车消耗1升汽油的行驶路程远大于5千米,故A 错误;对于选项B ,以相同速度行驶相同路程,三辆车中,甲车消耗汽油最小,故B 错误; 对于选项C ,甲车以80千米/小时的速度燃油效率为10千米/升,行驶1小时,里程为80千米,故消耗8升汽油,故C 错误;对于选项D ,因为在速度低于80千米/小时,丙的燃油效率高于乙的燃油效率,故D 正确.故选D .6.【答案】B【考点】函数的定义域及其求法【解析】由函数的解析式可直接得到不等式组{x≥01−x>0,解出其解集即为所求的定义域,从而选出正确选项【解答】解:由题意,自变量满足{x≥0,1−x>0,解得0≤x<1,即函数y=√x ln(1−x)的定义域为[0, 1).故选B.7.【答案】C【考点】函数的表示方法【解析】解答本题,可先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项【解答】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C 正确,B不正确.8.【答案】B【考点】函数的定义域及其求法【解析】原函数的定义域,即为2x+1的范围,解不等式组即可得解.【解答】解:∵原函数的定义域为(−1, 0),∴−1<2x+1<0,解得−1<x<−12.∴则函数f(2x+1)的定义域为(−1,−12).故选B.9.【答案】C【考点】函数的图象与图象的变换【解析】平移向量a →=(ℎ, k)就是将函数的图象向右平移ℎ个单位,再向上平移k 个单位.【解答】把函数y =e x 的图象按向量a →=(2, 3)平移,即向右平移2个单位,再向上平移3个单位,平移后得到y =f(x)的图象,∴ f(x)=e x−2+3,10.【答案】C【考点】函数的定义域及其求法【解析】此题暂无解析【解答】解:由x 2−x >0,解得x <0或x >1,则定义域为(−∞, 0)∪(1, +∞).故选C .11.【答案】B【考点】函数的定义域及其求法补集及其运算【解析】由根式内部的代数式大于等于0求出集合M ,然后直接利用补集概念求解.【解答】解:由1−x ≥0,得x ≤1,即M =(−∞, 1],又全集为R ,所以∁R M =(1, +∞).故选B .12.【答案】B【考点】函数的值域及其求法余弦函数的定义域和值域【解析】先进行配方找出对称轴,而−1≤cos x ≤1,利用对称轴与区间的位置关系求出最小值.【解答】y =cos 2x −3cos x +2=(cos x −32)2−14∵ −1≤cos x ≤1∴ 当cos x =1时y min =0,13.【答案】C【考点】函数的定义域及其求法补集及其运算【解析】求出函数f(x)的定义域得到集合M,然后直接利用补集概念求解.【解答】由1−x2≥0,得−1≤x≤1,即M=[−1, 1],又全集为R,所以∁R M=(−∞, −1)∪(1, +∞).14.【答案】C【考点】对数函数的单调性与特殊点【解析】由已知条件a≠b,不妨令a<b,又y=lg x是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lg a=−lg b,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:因为f(a)=f(b),所以|lg a|=|lg b|,不妨设0<a<b,则0<a<1<b,∴lg a=−lg b,lg a+lg b=0,∴lg(ab)=0,∴ab=1,又a>0,b>0,且a≠b,∴(a+b)2>4ab=4,∴a+b>2.故选C.15.【答案】C【考点】其他不等式的解法【解析】由f(−1)=f(−2)=f(−3)列出方程组求出a,b,代入0<f(−1)≤3,即可求出c的范围.【解答】由f(−1)=f(−2)=f(−3)得{−1+a−b+c=−8+4a−2b+c−1+a−b+c=−27+9a−3b+c,解得{a=6b=11,则f(x)=x3+6x2+11x+c,由0<f(−1)≤3,得0<−1+6−11+c≤3,即6<c≤9,16.【答案】C【考点】函数的定义域及其求法【解析】分析可知,{x >0log 2x −1>0,解出x 即可. 【解答】由题意可得,{x >0log 2x −1>0, 解得{x >0x >2,即x >(2) ∴ 所求定义域为(2, +∞).17.【答案】C【考点】函数的定义域及其求法【解析】根据函数出来的条件,建立不等式即可求出函数的定义域.【解答】解:要使函数有意义,则(log 2x)2−1>0(x >0),即log 2x >1或log 2x <−1,解得x >2或0<x <12,即函数的定义域为(0, 12)∪(2, +∞), 故选C.18.【答案】D【考点】函数解析式的求解及常用方法函数的图象变换【解析】首先求出与函数y =e x 的图象关于y 轴对称的图象的函数解析式,然后换x 为x +1即可得到要求的答案.【解答】解:函数y =e x 的图象关于y 轴对称的图象的函数解析式为y =e −x ,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y =e x 的图象关于y 轴对称, 所以函数f(x)的解析式为y =e −(x+1)=e −x−1.即f(x)=e −x−1.故选D .19.【答案】C【考点】函数的定义域及其求法【解析】此题暂无解析【解答】解:根据题意得{x −2>0,log 2(x −2)≠0,解得x >2且x ≠3.故选C .20.【答案】D【考点】带绝对值的函数分段函数的应用【解析】去掉绝对值符号,逐个比较即可.【解答】解:对于选项A ,右边=x|sgnx|={x,x ≠0,0,x =0,而左边=|x|={x,x ≥0,−x,x <0,显然不正确; 对于选项B ,右边=xsgn|x|={x,x ≠0,0,x =0,而左边=|x|={x,x ≥0,−x,x <0,显然不正确; 对于选项C ,右边=|x|sgnx ={x,x ≠0,0,x =0,而左边=|x|={x,x ≥0,−x,x <0,显然不正确; 对于选项D ,右边=xsgnx ={x,x >0,0,x =0,−x,x <0,而左边=|x|={x,x ≥0,−x,x <0,显然正确. 故选D .21.【答案】D【考点】函数的概念函数解析式的求解及常用方法【解析】利用x取特殊值,通过函数的定义判断正误即可.【解答】解:A,取x=0,则sin2x=0,∴f(0)=0;,则sin2x=0,取x=π2∴f(0)=1;∴f(0)=0和1,不符合函数的定义,∴不存在函数f(x),对任意x∈R都有f(sin2x)=sin x,A错误;B,取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义,B错误;C,取x=1,则f(2)=2,取x=−1,则f(2)=0;这样f(2)有两个值,不符合函数的定义,C错误;D,令|x+1|=t,t≥0,则f(t2−1)=t,令t2−1=x,则t=√x+1,∴f(x)=√x+1,即存在函数f(x)=√x+1,对任意x∈R,都有f(x2+2x)=|x+1|,D正确.故选D.22.【答案】C【考点】函数奇偶性的性质【解析】将原代数式中的x替换成−x,再结合着f(x)和g(x)的奇偶性可得f(x)+g(x),再令x= 1即可.【解答】解:由f(x)−g(x)=x3+x2+1,将所有x替换成−x,得f(−x)−g(−x)=−x3+x2+1,根据f(x)=f(−x),g(−x)=−g(x),得f(x)+g(x)=−x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选C.23.【答案】B【考点】函数的值域及其求法先作差得到ℎ(x)=f(x)−g(x)=2(x −a)2−(8)分别解出ℎ(x)=0,ℎ(x)>0,ℎ(x)<(0)画出图形,利用新定义即可得出H 1(x),H 2(x).进而得出A ,B 即可.【解答】②由ℎ(x)>0,解得x >a +2,或x <a −2,此时f(x)>g(x)(1)③由ℎ(x)<0,解得a −2<x <a +2,此时f(x)<g(x).综上可知:(1)当x ≤a −2时,则H 1(x)=max {f(x), g(x)}=f(x)=[x −(a +2)]2−4a −4, H 2(x)=min {f(x), g(x)}=g(x)=−[x −(a −2)]2−4a +12,(2)当a −2≤x ≤a +2时,H 1(x)=max {f(x), g(x)}=g(x),H 2(x)=min {f(x), g(x)}=f(x)(2)(3)当x ≥a +2时,则H 1(x)=max {f(x), g(x)}=f(x),H 2(x)=min {f(x), g(x)}=g(x),故A =g(a +2)=−[(a +2)−(a −2)]2−4a +12=−4a −4,B =g(a −2)=−4a +12,∴ A −B =−4a −4−(−4a +12)=−(16)故选:B .24.【答案】D【考点】函数的值域及其求法同角三角函数间的基本关系【解析】由|x|≤π4,可进一步得到sin x 的范围,借助二次函数求最值的配方法,就可以确定出函数的最小值.【解答】函数f(x)=cos 2x +sin x =1−sin 2x +sin x =−(sin x −12)2+54∵ |x|≤π4,∴ −π4≤x ≤π4∴ −√22≤sin x ≤√22 ∴ sin x =−√22时,(sin x −12)23+2√24 ,f(x)1−√2225.D【考点】函数的图象与图象的变换【解析】本选择题采用取特殊函数法.根据函数y=f(x)定义在实数集上设出一个函数,由此函数分别求出函数y=f(x−1)与y=f(1−x),最后看它们的图象的对称即可.【解答】假设f(x)=x2,则f(x−1)=(x−1)2,f(1−x)=(1−x)2=(x−1)2,它们是同一个函数,此函数图象关于直线x=1对称.26.【答案】D【考点】函数的图象与图象的变换【解析】要分析满足条件的y=ax2+bx与y=ax+b(ab≠0)的图象情况,我们可以使用排除法,由二次项系数a与二次函数图象开口方向及一次函数单调性的关系,可排除A,C;由二次函数常数项c为0,函数图象过原点,可排除B.【解答】在A中,由二次函数开口向上,故a>0故此时一次函数应为单调递增,故A不正确;在B中,由y=ax2+bx,则二次函数图象必过原点故B也不正确;在C中,由二次函数开口向下,故a<0故此时一次函数应为单调递减,故C不正确;二、填空题(共4小题)【答案】−3 2【考点】指数型复合函数的性质及应用【解析】对a进行分类讨论,分别题意和指数函数的单调性列出方程组,解得答案.【解答】解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以{1+b=0,1a+b=−1,解得b=−1,1a=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以{1+b=−1,1a+b=0,解得b=−2,a=12,综上a+b=−32.故答案为:−32.【答案】−2【考点】函数解析式的求解及常用方法【解析】f(x)是图象过点(−1, 4),从而该点坐标满足函数f(x)解析式,从而将点(−1, 4)带入函数f(x)解析式即可求出a.【解答】根据条件得:4=−a+2;∴a=−2.【答案】(0, 1]【考点】函数的定义域及其求法【解析】根据偶次根式下大于等于0,对数的真数大于0,建立不等式组解之即可求出所求.【解答】由题意得:{1+1x>01−x2≥0,即{x<−1或x>0−1≤x≤1,解得:x∈(0, 1]. 故答案为:(0, 1].【答案】−12x(x+1)【考点】函数解析式的求解及常用方法【解析】当−1≤x≤0时,0≤x+1≤1,由已知表达式可求得f(x+1),根据f(x+1)= 2f(x)即可求得f(x).【解答】解:当−1≤x≤0时,0≤x+1≤1,由题意f(x)=12f(x+1)=12(x+1)[1−(x+1)]=−12x(x+1),故答案为:−12x(x+1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…………….……………..装……………………订………………..线………
…….……………..
阜阳师范学院
——
学年度第 一 学期考试卷
数学与计算科学
学院 2008级数学与应用
专业 高等代数 课程,共 4 页, 第1页,共印刷 420 份, 2008 年 01 月 12 日 08:00 — 09:40 考试,任课教师
拟题 教研室 学号
一 判断题(每题1分,共5分)
1若不可约多项式()p x 是()f x '的1k -重因式,则它是()f x 的k 重因式。
( ) 2排列542163是偶排列。
( ) 3在有理数域上,存在任意次数的不可约多项式。
( )
4 任意一个向量组必有极大线性无关组。
( )
5 有相同秩的两向量组必等价。
( ) 二 单项选择题(每题3分,共15 分)
1如果排列121n n x x x x -的逆序数为k ,那么排列121n n x x x x -的逆序数是( )
A k n n +-2)1(
B k n n ++2)1(
C k n n --2)1(
D k n n -+2)1( 2 若多项式1()f x ,2()f x ,3()f x 互素,则( ) A 若()()121(),()f x f x d x =,()()232(),()f x f x d x =,则()12(),()1d x d x =
B 1()f x ,2()f x 必互素
C 1()f x ,2()f x ,3()f x 两两互素
D 存在()u x ,()v x ,使()()()()231u x f x v x f x +=
3 向量组()()()1231,0,3,1,2 , 1,3,0,1,1 ,2,1,7,2,5ααα=-=--=,()
4 4,2,14,0,6α=的秩为( )
A 1
B 2
C 3
D 4
4 设x x x x x x f 1111
231112
12)(-= ,则3x 的系数为( )
A 1
B 2
C -1
D 0
5 若 ⎪⎩
⎪
⎨⎧=+-=++=+0
2020z
z y kx z ky x kx 有非零解,则) (=k
A 2k =-
B 1-=k
C 0=k
D 2k =
三 填空题(每空3分,共21分)
1 设11231223
2315
2319
A =,则11121314223A A A A +++=__________。
2 设200222001)1()1()(+--=x x x x f ,则)(x f 的展开式中各项系数之和为_____。
3若1是多项式1224+++x bx ax 的二重根,则a =______,b =______。
4 4327104x x x -+-在有理数域上_________(可约,不可约)。
5 若321,,ααα线性无关,则133221,,αααααα+++线性_________(相关,无关)。
6 设233
3231232221131211=a a a a a a a a a ,求333233312322232113121311323232a a a a a a a a a a a a ---=_________。
班 姓名
级
学院
…………….……………..装……………………订………………..线…………….……………..
数学与计算科学 学院 2007级数学与应用 专业 高等代数 课程 共 4 页,第2页,共印刷 420 份, 2008 年 01 月 12 日 08:00 — 09:40 考试,任课教师
四 计算题(共36分) 1 求
m
x x x x m x x x x m x n n n ---
2
1
21
21(7分)
2 求n
n n n n n
n n n
a a a a a a a a a D
212
22
2121
111
---=(8分)
3 求多项式()32254g x x x x =--+与()432421659f x x x x x =--++的最大公因式,并求()(),u x v x ,使()()()()()()(),u x f x v x g x f x g x +=。
(9分)
…………….……………..装……………………订………………..线…………….……………..
4 讨论,a b 取何值时,线性方程组123452345
1234512345422665433323x x x x x x x x x x x x x x a x x x x x b ++++=⎧⎪+++=⎪⎨+++-=⎪⎪+++-=⎩有解?
在有解的情形,用导出组的基础解系表出该线性方程组的全部解。
(12分)
…………….……………..装……………………订………………..线…………….……………..
五 证明题(每题10分,共20分)
1设p 为素数,试用艾森斯坦判别法证明:11)(-++=p x x x f 在有理数域上不可约。
2 设n ααα ,,21是n 一组维向量,证明:n ααα ,,21线性无关的充分必要条件是任一
n 维向量都可被它们线性表出。
…………….……………..装……………………订………………..线…………….……………..
…………….……………..装……………………订………………..线…………….……………..。