辽宁省沈阳市2017届高三教学质量监测(三)理数试题 扫描版缺答案
(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档
直径的圆与直线 bx ay 2ab 0 相切,则 C 的离心率为
6
A.
3
3
B.
3
2
C.
3
2
x1
x1
11.已知函数 f ( x) x 2x a(e e ) 有唯一零点,则 a=
1
D.
3
A. 1 2
B. 1 3
C. 1 2
12.在矩形 ABCD 中,AB=1 ,AD=2 ,动点 P 在以点 C 为圆心且与
B.2
2.设复数 z满足 (1+i) z=2i ,则∣ z∣ =
C. 1
D.0
1
A.
2
2
B.
2
C. 2
D.2
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了
2014 年 1 月至
2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A .f(x)的一个周期为 -2 π
B . y=f(x)的图像关于直线
8 x=
对称
3
C. f(x+π)的一个零点为 x= 6
7.执行下面的程序框图,为使输出
D .f(x)在 ( , π单)调递减 2
S 的值小于 91,则输入的正整数 N 的最小值为
A .5
B.4
C. 3
D.2
8.已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的
其中正确的是 ________。(填写所有正确结论的编号)
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第
17~21 题为必考题,
(完整版)2017全国三卷理科数学高考真题及答案,推荐文档
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为?2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.BCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .C.D .2二、填空题:本题共4小题,每小题5分,共20分。
2017年5月2017届高三第三次全国大联考(新课标Ⅲ卷)理数卷(参考答案及评分标准)
12017年第三次全国大联考【新课标III 卷】理科数学·参考答案13.3 14.590490 15.12 16.2sin 26x ⎛⎫- ⎪⎝⎭17.【解析】(Ⅰ)由cos cos 2a B b A +=,根据余弦定理,得222222222a c b b c a a b ac bc+-+-⋅+⋅=,整理,得2c =.………………2分由()cos 1cos cA b C =-,根据正弦定理,得()sin cos sin 1cos C A B C =-,即sin sin cos sin cos B C A B C =+,又sin B =()sin sin cos cos sin A C A C A C +=+,………4分sin cos sin cos B C A C =,故cos 0C =或sin sin A B =.………………5分当cos 0C =时,2C π=,故ABC △为直角三角形; 当sin sin A B =时,A B =,故ABC △为等腰三角形.………………7分(Ⅱ)因为13sin cos 226x x x x x ⎫π⎛⎫-=-=-⎪ ⎪⎪⎝⎭⎭,所以6C π=.………………8分 由(Ⅰ)知2c =,A B =,则a b =,………………9分 所以由余弦定理,得22242cos 6a a a π=+-,解得28a =+,………………10分 所以ABC ∆的面积21sin 226S a π==………………12分18.【解析】(Ⅰ)由题意,得参加跑步类的有778042013⨯=人,………………1分 所以420180240m =-=,78042018012060n =---=.………………3分 根据分层抽样法知,抽取的13人中参加200米的学生人数有180133780⨯=人.………………5分2(Ⅱ)由题意,得抽取的13人中参加400米的学生人数有240134780⨯=,参加跳绳的学生人数有3人,所以X 的所有可能取值为1、2、3、4,………………6分()134347C C 41C 35P X ===,()224347C C 182C 35P X ===,()314347C C 123C 35P X ===,()4447C 14C 35P X ===,………………9分所以离散型随机变量X 的分布列为:X 1 2 3 4P435 1835 1235 135所以41812116()1234353535357E X =⨯+⨯+⨯+⨯=.………………12分 19.【解析】(Ⅰ)如图,连接AC 交BD 于点M ,连接MH .∵AFBG DE ,BG DE =,AF ⊥平面ABCD ,∴四边形BDEG 为矩形,………………1分又∵H 为EG 中点,∴MHBGAF ,MH BG =,………………2分又∵AF ⊥平面ABCD ,∴MH ⊥平面ABCD ,∴MH ⊥BD .………………3分 在正方形ABCD 中,BD AC ⊥,且ACMH M =,∴BD ⊥平面CMH ,………………4分又CH ⊂平面CMH ,∴BD CH ⊥.………………5分(Ⅱ)由题意,以D 为坐标原点,以,,DA DC DE 分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,且设1AB AF BG DE ====,………………6分则()0,0,1E ,()1,0,1F ,()1,1,1G ,()0,1,0C ,()1,0,0EF =,()0,1,1EC =-,()1,1,0EG =. …………………………………………………………………7分 设()1111,,x y z =n 为平面FCE 的一个法向量,则由110EF EC ⎧=⎪⎨=⎪⎩n n ,得11100x y z =⎧⎨-=⎩,取11y =,得()10,1,1=n .………………9分3设()2222,,x y z =n 为平面GCE 的一个法向量,则由2200EG EC ⎧=⎪⎨=⎪⎩n n ,得222200x y y z +=⎧⎨-=⎩,取21y =,得()21,1,1=-n ,………………11分∴1212126cos ,||||323⋅===⋅⨯n n n n n n , ∴二面角F CE G --的余弦值为6.………………12分20.【解析】(Ⅰ)由题意,得63c a = ①,且12||2F F c =,21||b PF a=,则212146||||2b F F PF c a ⋅=⋅= ②.………………2分由①②联立,并结合222a b c =+,解得26a =,22b =,所以椭圆C 的方程为22162x y +=.………………4分 (Ⅱ)当直线m 与x 轴不垂直时,设直线m 的方程为()()20y k x k =-≠,代入椭圆C 的方程22162x y +=,得()222213121260k x k x k +-+-=.………………5分 设()11,A x y 、()22,B x y ,所以21221213k x x k+=+,212212613k x x k -=+.………………6分 根据题意,假设在x 轴上存在一个定点()0,0M x ,使得MA MB ⋅的值为定值, 则()()()()101202102012,,MA MB x x y x x y x x x x y y ⋅=-⋅-=--+()()()()()()222002222120120231210612413x x k x k x x k x x x k x k-++-=+-++++=+.…………7分要使上式为定值,即与k 无关,则()220003121036x x x -+=-,解得073x =,4此时,20569MA MB x ⋅=-=-,………………8分 所以在x 轴上存在定点7,03M ⎛⎫⎪⎝⎭,使得MA MB ⋅为定值,且073x =,定值为59-.……………9分当直线m 与x 轴垂直时,将2x =代入椭圆方程可求得出,A B 的坐标,不妨设,2,A B ⎛⎛ ⎝⎭⎝⎭,则161,,,33MA MB ⎛⎫⎛=-=- ⎪ ⎪ ⎝⎭⎝⎭∴115()()339MA MB ⋅=-⨯--=-.…………11分 综上可知,在x 轴上存在定点7,03M ⎛⎫⎪⎝⎭,使得MA MB ⋅为定值,且073x =,定值为59-.……12分21.【解析】(Ⅰ)函数()f x 的定义域为()1+∞-,,()()()()2331212111x a af x x x x +-'=+++-=,………………2分 当0a ≤时,()0f x '≥,函数()f x 在()1+∞-,上单调递增;……………3分 当0a >时,若1x ≥,则()0f x '≥,函数()f x 在1,)+∞上单调递增;若11x -<<,则()0f x '<,函数()f x 在(1)-上单调递减.……………4分综上所述,当0a ≤时,函数()f x 在()1+∞-,上单调递增;当0a >时,函数()f x 在区间()1-上单调递减,在)1,+∞上单调递增.………………5分(Ⅱ)22()323()3g x x x x x '=-=-,1,23x ⎡⎤∈⎢⎥⎣⎦,可见,当2,23x ⎡⎤∈⎢⎥⎣⎦时,()0g x '≥,()g x 在2,23⎡⎤⎢⎥⎣⎦上单调递增,当12,33x ⎡⎤∈⎢⎥⎣⎦时,()0g x '≤,()g x 在12,33⎡⎤⎢⎥⎣⎦上单调递减,………………7分而()1224327g g ⎛⎫=-<= ⎪⎝⎭,所以,()g x 在1,23⎡⎤⎢⎥⎣⎦上的最大值为4,………………8分 依题意,只需当12,13x ⎡⎤∈-⎢⎥⎣⎦时,()()11134x f x ++≥恒成立, 即()()1111x f x +≥,即()()1ln 111a x x x +++≥+在2,13⎡⎤-⎢⎥⎣⎦上恒成立,5亦即()()()211ln 1a x x x ≥+-++在2,13⎡⎤-⎢⎥⎣⎦上恒成立.………………9分 令()()()2()11ln 1h x x x x =+-++2,13x ⎛⎫⎡⎤∈- ⎪⎢⎥⎣⎦⎝⎭,则()()()21ln 1h x x x x '=--++,………9分显然(0)0h '=, 当2,03x ⎡⎫∈-⎪⎢⎣⎭时, 0x ->,()()21ln 10x x ++<,()0h x '>,即()h x 在2,03⎡⎫-⎪⎢⎣⎭上单调递增;………………10分当(]0,1x ∈时,0x -<,()()21ln 10x x ++>,()0h x '<,即()h x 在区间(]0,1上单调递减; 所以,当0x =时,函数()h x 取得最大值(0)1h =,………………112分 故1a ≥,即实数a 的取值范围是[)1,+∞.………………12分请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程【解析】(Ⅰ)消去参数t ,得直线l 的普通方程为10x y -+=,斜率为1, 所以直线l '的斜率为1-.………………1分因为圆C 的极坐标方程可化为24cos 2sin 0m ρρθρθ--+=,所以将222,cos ,sin x y x y ρρθρθ=+==代入上述方程得圆C 的直角坐标方程为22420x y x y m +--+=,则配方,得()()22215x y m -+-=-,其圆心为()2,1C ,半径为)5m <.………………3分由题意,知直线l '经过圆心()2,1C ,所以直线l '的方程为()12y x -=--,即30x y +-=,所以由cos ,sin x y ρθρθ==,得直线l '的极坐标方程为()cos sin 3ρθθ+=.………………5分(Ⅱ)因为||AB =C 到直线l)5m =<.)5m =<,解得1m =.………………7分 (Ⅲ)当所求切线的斜率存在时,设切线方程为4(4)y k x -=-,即440kx y k --+=.2=,解得512k=,所以所求切线的方程为512280x y-+=;当所求切线的斜率不存在时,切线方程为4x=.………………9分综上,所求切线的方程为4x=或512280x y-+=.………………10分23.(本小题满分10分)选修4-5:不等式选讲【解析】(Ⅰ)设()222f x x x=+--,则()4,13,124,2x xf x x xx x--<-⎧⎪=-≤<⎨⎪+≥⎩,………………1分当1x<-时,由42x-->,得6x<-,6x<-∴;………………2分当12x-≤<时,由32x>,得23x>,223x<<∴;………………3分当2x≥时,由42x+>,得2x>-,2x≥∴.………………4分综上所述,集合M为2|63x x x⎧⎫><-⎨⎬⎩⎭或.………………5分(Ⅱ)由(Ⅰ)知1t=,则()()()1111a b c t---==.因为1,1,1a b c>>>,所以10,10,10a b c->->->,………………6分则()110a a=-+≥>,(当且仅当2a=时等号成立)……………7分()110b b=-+≥>,(当且仅当2b=时等号成立)………………8分()110c c=-+≥>,(当且仅当2c=时等号成立)………………9分则8abc≥≥(当且仅当2a b c===时等号成立),即8abc≥.………………10分67。
辽宁省沈阳市2017届高三第三次模拟考试理科综合物理试题
二、选择题:此题共8 小题,每题 6 分。
在每题给出的四个选项中,第一项切合题目要求,第19~21题有多项切合题目要求。
所有选对的得的得 3 分,有选错的得O 分 .14~ 18 题只有6 分,选对但不全14.铀核裂变的产物是多样的,一种典型的铀核裂变的核反响方程是92235 U 10 n X3689 Kr 310 n ,则以下表达正确的选项是( )A.X 原子核中含有86 此中子B.X 原子核中含有144 个核子C.因为裂变时开释能量,出现质量损失,因此裂变后的总质量数减少D.因为裂变时开释能量,出现质量损失,因此裂变后的总质量数增添15. A 、 B、C、 D 四个质量均为2kg 的物体,在圆滑的水平面上做直线运动,它们运动的x-t、 v-t 、a-t、 F-t 图象如下图,已知物体在t=0 时的速度均为零,此中0~ 4s 内物体运动位移最大的是()A B C D16.以无量远处的电势为零,在电荷量为q 的点电荷四周某点的电势可用kq计算,式r中 r 为该点到点电荷的距离, k 为静电力常量。
两电荷量大小均为 Q 的异种点电荷固定在相距为 L 的两点,如下图。
现将一质子(电荷量为 e)从两点电荷连线上的 A 点沿以电荷 +Q 为圆心、半径为 R 的半圆形轨迹 ABC 移到 C 点,质子从 A 移到 C 的过程中电势能的变化状况为 ()A.增添B. 增添C. 减少D.减少17.智好手机的普及使“低头族”应运而生。
低头时,颈椎遇到的压力会增大(当人体直即刻,颈椎所蒙受的压力等于头部的重量)。
现将人体头颈部简化为如下图的模型:重心在头部的 P 点,在可绕 0 转动的颈椎OP(轻杆 )的支持力和沿PQ 方向肌肉拉力的作用下处于静止。
当低头时,若颈椎与竖直方向的夹角为450, PQ 与竖直方向的夹角为530,此时颈椎遇到的压力与直即刻颈椎遇到压力的比值为( sin53 0 0) , cos53 =0.6)(A . 4 C.42 D.5218.卫星发射进入预约轨道常常需要进行多次轨道调整,如下图,某次发射任务中先将卫星送至近地轨道,而后再控制卫星进入椭圆轨道,图中O 点为地心地球半径为R,A 点是近地轨道和椭圆轨道的交点,远地址 B 离地面高度为6R,设卫星在近地轨道运动的周期为 T ,以下对卫星在椭圆轨道上运动的剖析,此中正确的选项是( )A.控制卫星从图中低轨道进入椭圆轨道需要使卫星减速B.卫星经过 A 点时的速度是经过 B 点时速度的 6 倍C.卫星经过 A 点时的加快度是经过 B 点时加快度的D.卫星从 A 点经 4T 的时间恰巧能抵达 B 点6 倍19.如下图MNPQ 矩形地区存在着互相垂直的匀强电场和匀强磁场,匀强电场方向与MN边平行。
(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档
2017年普通高等学校招生全国统一考试(新课标山)理科数学、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1 •已知集合A= (x, y)| x2y21,B= (x, y)l y X,贝y A l B中兀素的个数为A . 3B. 2C. 1 D. 02 .设复数z满足(1+i)z=2i, 则1z 1=1A . 一2B. 2C. 2 D. 23•某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A •月接待游客量逐月增加B .年接待游客量逐年增加C •各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4. ( x+ y )(2 x - y )5的展开式中x3 y 3的系数为A . -80B. -4C. 40D. 805.已知双曲线2 2x y C :C : 2 .2a b1(a > 0,b > 0)的一条渐近线方程为y x,且与椭圆22 2話二1有公共焦点,则C的方程为体积为3 nnnA . nB .C .D .—4 2 49.等差数列a n 的首项为1,公差不为0 .若a 2, a 3, a 6成等比数列,则a n 前6项的和A . -24B . -3C . 3D . 82 2x y10 .已知椭圆 C :二 2 1 , ( a>b>0)的左、右顶点分别为 A 1, A 2,且以线段 A 1A 2为a b直径的圆与直线 bx ay 2ab 0相切,则C 的离心率为.3-1A .BC .D .33 3 32 2xy ’A .12 2x y ’ B .12x C.—52 x D.— 42y- i 36.设函数则下列结论错A • f(x)的一个周期为-2 B . y=f(x)的图像关于直线 8x=- 3对称C . f(x+n 的一个零点为x=—6D . f(x)在(一,n 单调递减22的同一个球的球面上,则该圆柱的N 的最小值为11 .已知函数f(x)2x 2x a(ex1e % 1)有唯一零点,则 a=11 1A .B.-C.-D . 1232uur12.在矩形ABC D中,AB=1 ,AD=2,动点P 在以点 C 为圆心且与 BD 相切的圆上.若APuuu uuurAB +AD , 则 +的最大值为A . 3B . 2 2C . 5D . 2二、 填空题:本题共 4小题,每小题5分,共20分。
【全国市级联考】辽宁省沈阳市2017届高三第三次模拟考试数学(理)试题(解析版)
辽宁省沈阳市2017届高三第三次模拟考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,,则集合( )A. B. C. D.【答案】C【解析】,所以.故本题正确答案为C.2. 在复平面内复数(是虚数单位)对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】,复数对应点为:.点在第二象限,所以B选项是正确的.3. 向量,,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】若,则由向量的定义显然有,必有;若,则,得,不能推出,故选A.4. 如下的程序框图,其作用是输入的值,输出相应的值,若,则这样的值有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题分析:根据题意可知,当时,,令,解得,当时,,令,解得,当时,,方程在给定范围内无解,故一共有三个解,所以答案为C.考点:程序框图.5. 已知一个三棱锥的三视图如右图所示,则该三棱锥的体积为()A. 9B. 21C. 25D. 34...【答案】B【解析】由已知中的三视图可得,该几何体是一个三棱锥由正视图和俯视图可得底面底边长为2,由左视图可得底面底边上的高为2,故底面积由主视图和左视图可得棱锥的高故棱锥的体积.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.6. 已知,分别是双曲线:的两个焦点,若在双曲线上存在点满足,则双曲线的离心率的取值范围是()A. B. C. D.【答案】D【解析】设点是双曲线左支上的点,由,化为(为双曲线的焦距),,容易证明,于是,.故选D.7. 已知函数的图象在轴左侧的第一个最高点为,第一最低点为,则函数的解析式为()A. B.C. D.【答案】A【解析】由题可得,,当时,,过点,可得,,当时(舍).8. 若,则()A. B. 3 C. D.【答案】C【解析】,则.9. “杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是()A. B. C. D.【答案】B【解析】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为,故第1行的第一个数为:,...第2行的第一个数为:,第3行的第一个数为:,…第行的第一个数为: (n+1)×2n−2,表中最后一行仅有一个数,则这个数是.10. 直线与圆相切,则的最大值为()A. 1B.C.D.【答案】C【解析】由函数奇偶性的定义可知,即,因为(当且仅当取等号),所以,应选答案C。
(完整word版)2017全国三卷理科数学高考真题及答案(3),推荐文档
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣=A .12B CD .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -=B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为?2πB .y =f (x )的图像关于直线x =83π对称C .f (x +π)的一个零点为x =6π D .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a6成等比数列,则{}n a 前6项的和为A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.BCD .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .C.D .2二、填空题:本题共4小题,每小题5分,共20分。
(完整版),2017全国三卷理科数学高考真题及答案,推荐文档
2- 1= - 1= - 1=2017 年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合 A ={( x , y │) x 2 + y 2 = 1},B ={( x , y │) y = x },则 A B 中元素的个数为 A .3B .2C .1D .02.设复数 z 满足(1+i)z =2i ,则∣z ∣=1 A.B .C .D .2223. 某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了 2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月份D .各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳4.( x + y )(2 x - y )5 的展开式中 x 3 y 3 的系数为A .-80B .-40C .40D .80x 2 - y 2= = 55.已知双曲线 C : 1 (a >0,b >0)的一条渐近线方程为 y x ,且与椭圆x 2 y 2a 2b 2 2 + = 12 31有公共焦点,则 C 的方程为 x 2 y 2 - = 1 B.x 2 y 2C.x 2 y 2D.x 2 y 28 104 55 44 36. 设函数 f (x )=cos(x +),则下列结论错误的是38A .f (x )的一个周期为?2πB .y =f (x )的图像关于直线 x =对称3A .225xy ⎪⎩C .f (x +π)的一个零点为 x =6D .f (x )在(,π)单调递减27. 执行下面的程序框图,为使输出 S 的值小于 91,则输入的正整数 N 的最小值为A .5B .4C .3D .28. 已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为A.πB . 3π4π π C .D .249. 等差数列{a n }的首项为 1,公差不为 0.若 a 2,a 3,a 6 成等比数列,则{a n }前 6 项的和为A .-24B .-3C .3D .82 2 10.已知椭圆 C : + = 1,(a >b >0)的左、右顶点分别为 A 1,A 2,且以线段 A 1A 2 为直a2b 2径的圆与直线bx - ay + 2ab = 0 相切,则 C 的离心率为A.6 B.3 C.2 D . 1333311.已知函数 f (x ) = x 2 - 2x + a (e x -1 + e -x +1) 有唯一零点,则 a =1 11A. -B.C .D .1 23 212.在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若AP = λAB + μAD,则λ + μ 的最大值为A .3B .2C .D .2二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
(完整word版)2017全国三卷理科数学高考真题及答案
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
辽宁省沈阳市2017届高三教学质量监测(三)文数试题扫描版缺答案
2017年沈阳市高中三年级教学质量监测(三)数学(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.其中第II 卷第22题、第 23题为选考题,其它题为必考题考生作答时.将答案答在答题卡上・在本试卷上答题 无效.考试结束后,将本试卷和答题卡一井交回.注意事项:1. 答题前・窃生务必将1'1(2的姓名、列;墳得在答题 U ・并将条码粘贴在答题I 、•指定 区•域,2. 第I 卷毎小题选出答案后.用2B 铅笔把答题卡I :对应题I I 的答案标号涂黑.如需改 动用橡皮擦I :净麻.何选涂找他答案标号 第II 卷川黑色機水签字笔在答题卡指定位 置阴作答•在本试题卷I :作答无效。
3. 写试结束后.与牛•将答题卡交冋第I 卷(选择题,共60分)一、选择题:(本题共12小题.每小题5分.在每小题给岀的四个选项中・只有一项是 符合题目要求的)1. 岩集 ^.4 = {.v|l<,r<2!. 〃二{x|x'-3x + 2 = 0}・则 MOB 等(A ) !,v|l<x<2}( B ) (1,2)(C){1,2}(D) 02. 已知j 是虚数单•位,则满足z 一gl + 2i|的复数二在复平面I:対应点所在的象限为(A )第-•象限(B )第•.象限 ( <:)第三象限 (D )第四象限3. 已知向^a- jb 不共线,AB = a + mb ・.4C = 〃“+b (〃人〃 w lh ・ WiJ AB l-j AC Jt 线 的条件是(A ) m + /? = ()( B ) m-n = 0( C ) mn + 1 = 0 (I)) mn -1=04. 已知函数 /(x) = sin x + cos.v ・ g(.v) = 2cos,v .动血fJ< x = 11j / (.v) [11 g(.v)的图 象分别交于彳、B 两点•则| AB |的取值范II#址 (\)|0・ 1|(B)|(). \[2 I ((:)[()• 2|(I ))|l. \/2 I5. 在边氏为2的1E 方形4BCDN 部取-点则満绘Z/M3为俛角的槪卒是(A ) —( B ) —((: ) 1 --------- ( I) ) 1 ------------------------命题:沈阳市第31沈阳市第36中学曹明 沈阳市回民中学 朱晓丽东北育才学校王成栋 沈河区教研员王丽萍4 B 4 S••数7 (文科)试卷第I页(共6页)6. OlW术》是我国古代内容极为丰富的数学名著•书屮有如下问题:“今有刍花下8驟沪.厂现物线宀讪焦点”抛如的动钛则嘶(A ) 9 ( B ) 1()((:)II (D) 159. 按右图所示的稈序框图.若输入“ = 1101()1 • 则输出的b=(A ) 53 ( B ) 51(C ) 49 ( 1) ) 4710. 将氏宽分别为2和1的K:方形ABCD沿对用线JCtt起.得到卩1|血休/- BCD .则卩U而体A-BCD外接球的表面枳为(\)3R( 1() 5n((:)10n (I)) 20nII. 11知数列埒尊差数列」丄满足心=7・设S”为数列{(-1)" d” }的前"项和•则S则7为[\ ) -3025 ( II)-3024IC) 2017 ( I)) 970312. iM数/(x)的定义域为/)•若满足条件:$在[“问匸厂•使f(x)(V.[a.h]上的値域为则称/(x)为“倍细函数” •若函数f(x) = \nx+t为••倍缩函数•• •则实数/的取们范11;1是(A)(YC」112-1) ( B )(Tc」n2-1] ((:) (I - In2,+oo) (I)) [l-ln2.+oo)•••数学(文科)试卷第3页(共6页)第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题一第21题为必考题,每个试题考生都必 须作答.第22题一第23题为选考题.考生根据要求作答二、填空题(本大题包括4小题,每小题5分.共20分.把正确答案填在答题卡中的横线上) 13. Li 知a 是第二象限ffj. Il sin ( 7T + «)=--.则 kui2a 的值为 ______________________ .■.r >l14. 已知实数X ]满足:v <3•则z = 2.v+ y 的最小值为 ___________________ ・• .V >2(.Y -3)15. 已知双Illi 线C :亠一上r = 1(“ >()">())的右顶点为>!• O 为坐标原点•以>1为cr b ・惻心的M 9収Illi 线C 的-条渐近线交P . 0 l«j 点・若LPAQ =芋・11 | PQ |=.则Will 线C 的渐近线方稈为 ___________________ •16. 利数学家列昂纳多•蹩波那契以兔作殖为例.引人••兔子数列”:2. 3. 5. X. 13. 2L 34. 55,旳.114. 233.F ( 〃)=尸(〃一 1)+尸(〃-2) (〃》3・〃 w M ) •若此数列的H 一项被3除拆M 余数 构成•个新数列:•则h :ltr = _____________ :三、解答题:(本大题包括6小题.共70分.解答应写岀文字说明.证明过程或演算步骤》 门•(本小题满分12分)TT如图.C 知△」〃〃屮.D BC I :点.ZD4C = —• cos ZB DA=JC = 4v f 2 .(I )求/ID 的 IO(Il )若△/[〃〃的Ifli 积为14•求/1B 的氏.F (1)= F(2) =高-数学(文科)试卷第4页(共6页)1& (本小题满分12分)••其亨冲乍"的出现为我们提供了一种新 型的交通方式某机构为了调杳人们对此种交A 城巾B 城市6 8 413 6 4 5 3 2 4 5 5 6 4 23 34 6 9 7 6 X X 6 4 3 3 2 1 92X651 1 3 9 75 5 2(I )根据茎叶图•比较淅城市满意度评分的平均值和方差(不要求计算出具体值. 得出结论即町);(II )若得分不低十X0分•则认为该用户对此 种交通方式“认町”.否则认为该用户对此种交通方 式“不认可”•请根据此样木完成卜•列2x2列联表. 并据此样本分析你足否杠95 %的把握认为城市拥堵 与认町共享单车有关・(m )在(参考公式 2认不A 城1 J B J P (宀)0.05 0.010 k3.8416.63519.(本小题满分12分)任20・(本小题满分12分)已知椭圆C:W +》L(a>b>0)的离心率e =—,且与直线l:y = x + 3相切. a b 2(I)求椭圆的标准方程;(n )过椭圆上点/(2,1)作椭圆的弦AP y AQ,若AP,AQ的中点分别为M,N・且MN平行于/,.则OM,ON斜率之和是否为定值?请说明理由21.(本小题满分12分)已知f (x) = e x +ox(a G R)(I)求/(x)的单调区间;(H)已知常数a>-e9求证:对于色*+<»)■都有/(x)>(x-l)2恒成立.i ••数学(文科)试卷第6页(共6页)高三数学(文科)试卷第5页(共6页)请考生在22、23两题中任选一题作答•如果多做.则按所做的第一题记分. 22.(本小题满分10分)选修4一4:坐标系与参数方程x = 2 cos 0 z、厂。
(完整word版)2017全国三卷理科数学高考真题及答案,推荐文档
2017年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .2 C .2 D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。