2021年中考数学复习题 (22)
2021年中考数学考点复习-【三角形】专项复习
2021中考数学考点复习【三角形】专项训练一.选择题1.如图,在△ABC中,D、E、F分别为BC、AD、CE的中点,且S=28cm2,则阴影部分的面△ABC积是()A.21cm2B.14cm2C.10cm2D.7cm22.如图,D,E分别是△ABC的边AB,AC的中点,H,G是边BC上的点,且HG=BC,S△ABC =24,则图中阴影部分的面积为()A.4B.6C.8D.123.如图,在四边形ABCD中,AE=EF=FG=GD,BH=HI=IJ=JC,四边形ABHE,EHIF,FIJG,GJCD的面积分别为S1,S2,S3,S4,则这四个面积之间的关系正确的是()A.S1S3=S2S4B.S1S4=S2S3C.S1+S3=S2+S4D.S1+S4=S2+S34.如图,将△ABC沿BC方向平移2BC长得到△DEF,若四边形ACFD的面积为12,△DEF的面积为()A.6B.4C.3D.25.如图△ABC中,分别延长边AB,BC,CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面积为1,则△DEF的面积为()A.12B.14C.16D.186.如图,在△ABC中,点D将线段AB分成AD:BD=2:1的两个部分,点E将线段BC分成BE:CE=1:3的两个部分,若△ADF的面积是4,则△ACF的面积是()A.B.18C.D.7.如图,在△ABC中,点D、E分别在AC、AB上,BD与CE交于点O,若四边形AEOD的面积记为S 1,S △BEO =S 2,S △BOC =S 3,S △COD =S 4,则S 1•S 3与S 2•S 4的大小关系为( )A .S 1•S 3<S 2•S 4B .S 1•S 3=S 2•S 4C .S 1•S 3>S 2•S 4D .不能确定 8.如图,△ABC 的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1.再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.……按此规律,倍长2018次后得到的△A 2018B 2018C 2018的面积为( )A .62017B .62018C .72018D .820189.如图所示,在△ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =16cm 2,则阴影部分(△BEF )的面积等于( )A .2cm 2B .4cm 2C .6cm 2D .8cm 210.如图,AB ∥DC ,ED ∥BC ,AE ∥BD ,那么图中与△ABD 面积相等的三角形有( )A.1个B.2个C.3个D.4个二.填空题11.如图,△ABC中,D为BC上一点,且S△ABC=12cm2,BD=BC,则BC边上的中线为,S△ABD=cm2.12.如图所示,已知Rt△ABC中,∠B=90°,BC=4,AB=4,现将△ABC沿BC方向平移到△A′B′C′的位置.若平移的距离为3,则△ABC与△A′B′C′重叠部分的阴影面积为.13.如图所示,在△ABC中,∠ABC=45°.点D在AB上,点E在BC上,且AE⊥CD,若AE=CD,BE:CE=5:6,S△BDE =75,则S△ABC=.14.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于cm2.15.如图,△ABC中,点D、E分别是BC,AD的中点,且△ABC的面积为8,则阴影部分的面积是.三.解答题16.在Rt△ABC中,∠ACB=90°,△ABC的面积为10,设AC=x,BC=y(1)求y与x之间的函数关系式;(2)令x+y=m,①当m=12时,求△ABC的周长;②求m的最小值.17.已知:A(﹣b,a),B(b,﹣b)满足+|b+1|=0.(1)点A坐标为,点B坐标为.(2)若x轴上有一点M(m,0),设三角形ABM的面积为S1,三角形ABO面积为S2.①当m>1时,求S1(用含m的式子表示);②当S1=2S2时,求点M的坐标.18.已知△OAB的三个顶点的坐标为O(0,0),A(﹣2,2),B(﹣3,﹣4)(1)在已指定的平面直角坐标系中画出△OAB;(2)求△OAB的面积S.△OAB19.如图:(1)在△ABC 中,BC 边上的高是 ;在△AEC 中,CD 是 边上的高;(2)若AB =CD =2cm ,AE =3cm ,求△AEC 的面积及CE 的长.20.平面直角坐标系中,点A 坐标为(0,﹣2),B ,C 分别是x 轴、y 轴正半轴上一点,过点C 作CD ∥x 轴,CD =3,点D 在第一象限,S △ACD =S △AOB ,连接AD 交x 轴于点E ,∠BAD =45°,连接BD .(1)请通过计算说明AC =OB ;(2)求证:∠ADC =∠ADB ;(3)请直接写出BE 的长为 .参考答案一.选择题1.解:∵S △ABC =28cm 2,D 为BC 中点,∴S △ADB =S △ADC ==14cm 2,∵E 为AD 的中点,∴S △BED ==7cm 2,S △CED =S △ADC =7cm 2, ∴S △BEC =S △BED +S △CED =7cm 2+7cm 2=14cm 2,∵F 为CE 的中点,∴S △BEF =S △BEC =7cm 2,故选:D .2.解:连接DE ,作AF ⊥BC 于F ,设DE 和AF 相交于点I ,DG 和EH 相交于点O ,如图所示, ∵D ,E 分别是AB ,AC 的中点,∴DE =BC ,DE ∥BC ,AI =FI ,∴△ADE ∽△ABC ,AI ⊥DE ,∴△ADE 的面积=24×=6,∴四边形DBCE 的面积=24﹣6=18,∵HG =BC ,∴DE =HG ,∴△DOE 的面积+△HOG 的面积=2×DE ×FI =△ADE 的面积=6, ∴图中阴影部分的面积=18﹣6=12,故选:D .3.解:连接AH 、HF 、FJ 、JD 、AJ ,如图所示:∵AE =EF =FG =GD ,BH =HI =IJ =JC ,∴S △AHE =S △FEH ,S △FHI =S △FJI ,S △ABH =S △AHJ ,S △JGF =S △JFA , ∴S △FEH +S △FHI =S 四边形AHJF =S 2,S △ABH +S △JGF =(S △AHJ +S △JFA )=S 四边形AHJD =S 2,∴S 四边形ABJG =S 四边形AHJF +S △ABH +S △JGF =2S 2+S 2=3S 2,即S 1+S 3=2S 2,同理可得:S 2+S 4=2S 3,∴S 1+S 3+S 2+S 4=2S 2+2S 3,∴S 1+S 4=S 2+S 3,故选:D .4.解:∵△ABC 沿着BC 方向平移到△DEF 的位置, ∴AB ∥DE ,AB =DE ,∴四边形ABED 为平行四边形,连接AE ,又∵平移距离是边BC 长的两倍,即BE =2BC =2CE , ∴S △ABC =S △ACE ,即S △ABE =2S △ABC ,又∵S △ABE =S △ADE ,∴S 四边形ACED =3S △ABC∵四边形ACFD 的面积为12,∴S 四边形ACED +S △ABC =S 四边形ACFD =4S △ABC =12 ∴S △ABC =S △DEF =3故选:C .5.解:连接AE 和CD ,∵BD =AB ,∴S △ABC =S △BCD =1,S △ACD =1+1=2,∵AF =3AC ,∴FC =4AC ,∴S △FCD =4S △ACD =4×2=8,同理可以求得:S △ACE =2S △ABC =2,则S △FCE =4S △ACE =4×2=8;S △DCE =2S △BCD =2×1=2;∴S △DEF =S △FCD +S △FCE +S △DCE =8+8+2=18.故选:D .6.解:如图,作DH ∥AE 交BC 于H .∵DH∥AE,∴==2,设BH=a,则EH=2a,∵EC=3BE,∴EC=9a,∵EF∥DH,∴==,∵S=4,△ADF=×4=18,∴S△ACF故选:B.7.解:如图,连接DE,设S=S′1,△DEO则==,从而有S1′S3=S2S4.因为S1>S1′,所以S1S3>S2S4.故选:C.8.解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等, 所以,S △A 1B 1C 1=7S △ABC ,同理S △A 2B 2C 2=7S △A 1B 1C 1,=72S △ABC ,依此类推,S △A 2018B 2018C 2018=72018S △ABC ,∵△ABC 的面积为1,∴S △A 2018B 2018C 2018=72018.故选:C .9.解:∵S △ABC =16cm 2,D 为BC 中点,∴S △ADB =S △ADC ==8cm 2,∵E 为AD 的中点,∴S △BED ==4cm 2,S △CED =S △ADC =4cm 2, ∴S △BEC =S △BED +S △CED =4cm 2+4cm 2=8cm 2,∵F 为CE 的中点,∴S △BEF =S △BEC =4cm 2,故选:B .10.解:∵AE ∥BD ,∴S △ABD =S △BDE ,∵DE ∥BC ,∴S △BDE =S △EDC ,∵AB ∥CD ,∴S △ABD =S △ABC ,∴与△ABD 面积相等的三角形有3个,故选:C .二.填空题11.解:∵BD =BC ,∴D 是BC 的中点,∴AD 是BC 边上的中线,等底同高的两个三角形面积相等.∴S △ABD =S △ADC =S △ABC =6cm 2.故答案为AD ,6.12.解:∵∠B =90°,BC =4,AB =4,∴△ABC 是等腰直角三角形,∴∠ACB =45°,∵△A ′B ′C ′是△ABC 平移得到的,∴△ABC ≌△A ′B ′C ′,∴∠B =∠A ′B ′C ′=90°,∴∠B 'OC =45°,∴△B 'OC 是等腰直角三角形,∵B 'C =BC ﹣BB ′=4﹣3=1,∴S △B 'OC =×1×1=,即S 阴影=,故答案为:.13.解:作DM ⊥BC 于M ,AN ⊥BC 于N ,如图所示:则∠CMD =∠BMD =∠ANE =90°,∵∠ABC =45°,∴△BDM 、△BAN 是等腰直角三角形,∴BM =DM ,BN =AN ,∵AE ⊥CD ,∴∠AEN +∠EAN =∠AEN +∠DCM =90°,∴∠EAN =∠DCM ,在△AEN 和△CDM 中,,∴△AEN ≌△CDM (AAS ),∴AN =CM ,EN =DM ,∴BN =CM ,∴BM =CN ,∴BM =DM =CN =EN ,∵BE :CE =5:6,∴设BE =5a ,则CE =6a ,BC =BE +CE =11a ,BM =DM =CN =EN =CE =3a ,CM =BC ﹣BM =8a , ∴CD 2=DM 2+CM 2=(3a )2+(8a )2=73a 2,∵S △BDE =BE ×DM =×5a ×3a =75,∴a 2=10,∵AE ⊥CD ,AE =CD ,∴S 四边形ADEC =CD ×AE =CD 2=×73a 2=×73×10=365,∴S △ABC =S △BDE +S 四边形ADEC =75+365=440;故答案为:440.14.解:如图,点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即EF =EC ,而高相等,∴S △BEF =S △BEC ,∵E 是AD 的中点,∴S △BDE =S △ABD ,S △CDE =S △ACD ,∴S△EBC =S△ABC,∴S△BEF =S△ABC,且S△ABC=4cm2,∴S△BEF=1cm2,即阴影部分的面积为1cm2.故答案为1.15.解:∵D、E分别是BC,AD的中点,∴S△AEC =S△ACD,S△ACD=S△ABC,∴S△AEC =S△ABC=×8=2.故答案为:2.三.解答题16.解:(1)∵S△ABC=AC•BC=10,∴y=(x>0).(2)①∵x+y=12,xy=20,∴==2,∴C△ABC=x+y+=12+2.②m=x+y==.∵(x ﹣y )2≥0,xy =20,∴m =≥=4. ∴m 的最小值为4.17.解:(1)∵A (﹣b ,a ),B (b ,﹣b )满足+|b +1|=0. ∴a ﹣3=0,b +1=0,∴a =3,b =﹣1,故答案为(1,3),(﹣1,1);(2)①由(1)可知A (1,3),B (﹣1,1),如图1,∵M (m ,0),m >1,∴KM =m +1,GM =3,∴S 1=S 矩形KMGH ﹣S △KMB ﹣S △ABH ﹣△AGM =3(m +1)﹣(m +1)×1﹣×(1+1)×(3﹣1)﹣×3=m +2,∴S 1=m +2;②∵OK =OQ =1,KQ =AH =2,KH =3,BH =2,∴S 2=矩形AHKQ ﹣S △BOK ﹣S △AOQ ﹣S △ABH=2×3﹣﹣﹣ =2,∵S 1=2S 2,∴S 1=4,∵当m >1时,S 1=m +2,∴m =2,∴此时M (2,0);当m <﹣1时,如图2,∵M (m ,0),A (1,3),B (﹣1,1),∴MF =AE =1﹣m ,EM =AF =3,MD =﹣1﹣m ,DF =2,BD =1,∴S 1=S 矩形AEMF ﹣S △AEM ﹣S △BMD ﹣S 梯形ABDF=3(1﹣m )﹣﹣(﹣1﹣m )×1﹣(1+3)×2=﹣2﹣m ,∵S 1=2S 2,∴﹣2﹣m =4,∴m =﹣6,∴此时,M (﹣6,0),综上,当S 1=2S 2时,点M 的坐标为(2,0)或(﹣6,0).18.解:(1)所作的图如图所示.(2),,,=15﹣2﹣6=7.∴S△OAB19.解:(1)在△ABC中,BC边上的高是AB;在△AEC中,CD是AE边上的高;故答案为:AB;AE;(2)∵AE=3cm,CD=2cm,∴S=AE•CD=3cm2,△AEC∵S=AB•CE=3cm2,△AEC∴CE=3cm.=3cm2,CE=3cm.故S△AEC20.解:(1)∵点A 坐标为(0,﹣2) ∴OA =2∵CD =3∴, ∵S △ACD =S △AOB∴∴AC =OB(2)延长DC 至点H ,使得CH =OA ,连接AH∵OB =AC ,CD ∥x 轴∴∠HCA =∠AOB =90°在△ACH 和△BOA 中,∴△ACH ≌△BOA (SAS )∴AH=AB,∠HAC=∠CAD,∠H=∠CAB ∵∠H+∠HAC=90°∴∠CAB+∠HAC=90°∵∠BAD=45°∴∠HAD=∠BAD在△HAD和△BAD中,∴△HAD≌△BAD(SAS)∴∠ADC=∠ADB(3)∵△HAD≌△BAD∴BD=DH=CD+CH=3+2=5∵CD∥OB∴∠ADC=∠DEB∵∠ADC=∠ADB∴∠BDE=∠BED∴BE=BD=5故答案为5。
2021年中考数学复习:三角形的角平分线、中线和高 专项练习题(含答案)
2021年中考数学复习:三角形的角平分线、中线和高专项练习题一.选择题1.如图,在△ABC中,AD是高,AE是角平分线,AF是中线,则下列说法中错误的是()A.BF=CF B.∠C+∠CAD=90°C.∠BAF=∠CAF D.S△ABC =2S△ABF2.如图所示,∠1=∠2,∠3=∠4,则下列结论正确的有()①AD平分∠BAF;②AF平分∠BAC;③AE平分∠DAF;④AF平分∠DAC;⑤AE平分∠BAC.A.4个B.3个C.2个D.1个3.钝角三角形三条高所在的直线交于()A.三角形内B.三角形外C.三角形的边上D.不能确定4.画△ABC中AC边上的高,下列四个画法中正确的是()A.B.C.D.5.下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点6.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A.B.C.D.7.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.8.如图所示,AC⊥BC于C,CD⊥AB于D,图中可以作为三角形“高”的线段有()A.1条B.2条C.3条D.5条9.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定10.如图,在△ABC中,AB边上的高是()A.AD B.BE C.BF D.CF二.填空题11.如图,AD⊥BC于D,那么图中以AD为高的三角形有个.12.已知:AD、AE分别是△ABC的高,中线,BE=6,CD=4,则DE的长为.13.若线段AD是△ABC的中线,且BD=3,则BC长为.14.如图,在△ABC中,BC边上的中垂线DE交BC于点D,交AC于点E,AB=5cm,AC=8cm,则△ABE的周长为.15.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,则∠B=.16.如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长多4cm.若AB=16cm,那么AC=cm.。
2021年重庆中考数学第22题新函数图像题专题训练
2021重庆中考数学第22题新函数图像题专题训练1.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=|2xx−2|的性质及其应用的部分过程,请按要求完成下列各小题:(1)请直接写出表中m,n的值,并在图中补全该函数图象;x…−5−4−3−2−1013234567…y=|2xx−2|…1074365m230266n1033145…(2)结合函数图象,直接写出该函数的一条性质;(3)已知函数y=45x+185的图象如图所示,结合你所画的函数图象,直接写出不等式45x+18 5≥|2xx−2|的解集(保留1位小数,误差不超过0.2).2.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=−6x−6x2−2x+2性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象:x…−5−4−3−2−1012345…y=−6x−6x2−2x+2…363715132417______12530−3______ −952417…(2)观察函数图象,写出该函数的一条性质:______ ;(3)已知函数y=−75x+1的图象如图所示,结合你所画的函数图象,直接写出不等式−6x−6x2−2x+2≥−75x+1的解集(保留1位小数,误差不超过0.2).x3−2x的图象与性质进行探究.3.根据我们学习函数的过程和方法,对函数y=14(1)如表是y与x的几组对应值:则m的值为______ ,n的值为______ .(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出该函数的一条性质:______ .x3−2x≥x,结合图象,直接写出x的取值范围______ .(3)若144.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=|5xx2+4|性质及其应用的部分过程,请按要求完成下列各小题.(1)补全表:(2)在平面直角坐标系中,补全函数图象,根据函数图象,写出这个函数的一条性质:______ ;(3)已知函数y=52x−1的图象如图所示,结合你所画的函数图象,直接写出关于x的方程|5xx2+4|=52x−1的近似解(保留1位小数,误差不超过0.2).5.探究函数性质时,我们经历了列表,描点,连线画出函数图象,观察分析图象特征,概括函数性质的过程,结合已有的学习经验,请结合表中的数据,画图并探究该函数y=−ax2+2的性质.x…−4−3−2−101234…y…−23−1211−2−4−6−4−2−b−23…(1)根据表中数据可得:a=______ ,b=______ .(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象;(3)观察该函数图象,写出该函数图象的一条性质:______ ;(4)已知函数y=−23x−103的图象如图所示,结合你所画的函数图象,直接写出不等式−ax2+2≤−23x−103的解集______ .6.某“数学兴趣小组”根据学习函数的经验,对函数y=−4x+6(x−2)2的图象和性质进行了探究,探究过程如下,请补充完整:x…−3−2−10323456…y (18)2574109m0−6−52n−98…(1)m=______ ,n=______ ;(2)同学们先找到y与x的几组对应值,然后在下图的平面直角坐标系xOy中,描出各对应值为坐标的点.请你根据描出的点,画出该函数的图象;(3)根据函数图象,写出该函数的一条性质:______ .(4)结合你所画的函数图象,直接写出不等式−x+2≤−4x+6的解集为______ .(x−2)27.在函数的学习中,我们经历“确定函数表达式--画函数图象--利用函数图象研究函数性质--利用图象解决问题”的学习过程,画函数图象时,我们常通过描点或平移或翻折的方法画函数图象,请根据你学到的函数知识探究函数y 1={2−|x|(x <2)x−2x−1(x ≥2)的图象与性质并利用图象解决如下问题: 列出y 1与x 的几组对应的值如表: x…−3−2−1 01234 5 …y … m 0 1 2 1 0 n 2334…(1)根据表格中x 、y 的对应关系可得m = ______ ,n = ______ ;(2)用你喜欢的方式画出该函数图象:根据函数图象,写出该函数的一条性质:______ ; (3)直接写出当函数y 1的图象与直线y 2=kx +1有三个交点时,k 的取值范围是______ .8.小明结合自己的学习经验,对新函数y=bkx2+1的解析式、图象、性质及应用进行探究:已知当x=0时,y=2;当x=1时,y=1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为:______ .(2)函数图象探究:①根据解析式,补全如表,则m=______ ,n=______ .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.x…−4−3−2−1−121212n4…y (2)171525m8528512515217…(3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质:______ .(4)综合应用:已知函数y=|715x−815|的图象如图所示,结合你所画的函数图象,直接写出不等式|7 15x−815|≤bkx2+1.9.根据我们学习函数的过程与方法,对函数y=x2+bx+2−c|x−1|的图象和性质进行探究,已知该函数图象经过(−1,−2)与(2,1)两点,(1)该函数的解析式为______ ,补全下表:(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出这个函数的一条性质:______ .(3)结合你所画的图象与函数y=x的图象,直接写出x2+bx+2−c|x−1|≤x的解集______ .x|ax+b|(a>0)的图象与性质进行探10.小帆根据学习函数的过程与方法,对函数y=14究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而______(在横线上填增大或减小);x|ax+b|的最大值是______;③当x<4时,y=14x|ax+b|有两个交点,则k=______.①直线y=k与函数y=1411.已知函数y=a−b|x−1|(a、b为常数),当x=1时,y=1;当x=2时,y=0;请对该函数及其图象进行如下探究:(1)求函数的解析式;(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:______;根据函数图象解决下列问题:①若A(m,c),B(n,c)为该函数图象上不同的两点,则m+n=______;x+k有两个不相等的实数解x1,x2,且x1⋅x2>0,则k的取②若方程a−b|x−1|=12值范围是______.12.函数图象在探索函数的性质中有非常重要的作用,现在就一类特殊的函数展开探索:y=x+a,探索函数图象和性质过程如下:x(1)上表是该函数y与自变量x的几组对应值,则a=______ ,m=______ ,n=______ ;(2)如图,在平面直角坐标系中,已经描出了表中部分点,请根据描出的点画出该函数图象;(3)由函数图象,写出该函数的一条性质:______ ;(4)请在同一个平面直角坐标系中画出函数y=2x的图象,并直接写出不等式x+ax≤2x 的解集:______ .13.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y={|x+1|(x≤1)2x(x>1)的图象与性质,探究过程如下,请补充完整.(1)列表:x…−4−3−2−101234…y…3m10121n 12…其中,m=______,n=______.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(72,y1),B(5,y2),C(x1,52),D(x2,6)在函数图象上,则y1______y2,x1______x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=−x+b与函数图象有且只有一个交点,请直接写出b的取值范围.14.学习函数时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,下面我们对函数y ={−2x (x <0)x 3−3x 2+2(x ≥0)的图象和性质进行探究,请将以下探究过程补充完整:(1)选取适当的值补全表格;描点、连线,在所给的平面直角坐标系中画出函数的图象:(2)结合图象,写出该函数的一条性质:______ ; (3)结合这个函数的图象与性质,解决下列问题:①若点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)在这个函数的图象上,且0<x 3<3,−1<x 1<x 2<0,请写出y 1,y 2,y 3的大小关系:______ (用“<”连接).②若直线y =2a +1(a 是常数)与该函数图象有且只有三个交点,则a 的取值范围为______ .15. 在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质--运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|={a(a ≥0)−a(a <0).小东结合上面的学习过程,对函数y =|32x −3|+12x −5的图象与性质进行了探究.(1)化简函数的表达式:当x ≥2时,y = ______ ,当x <2时,y = ______ ; (2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质:______ ;(3)已知函数y =2x (x >0)的图象如图所示,结合你所画函数图象,直按写出|32x −3|+12x −5=2x 的近似解______ .(精确到0.1)16.已知函数y=a|x−2|+x+b(a,b为常数).当x=3时,y=0,当x=0时,y=−1,请对该函数及其图象进行探究:(1)a=______ ,b=______ ;(2)请在给出的平面直角坐标系中画出该函数图象,并结合所画图象,写出该函数的一条性质.(3)已知函数y=−x2+4x+5的图象如图所示,结合图象,直接写出不等式a|x−2|+x+b≥−x2+4x+5的解集.17.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1=|ax+4|−b的图象与性质并利用图象解决问题.小明列出了如表y1与x的几组对应的值:(1)根据表格,直接写出a=______ ,b=______ ;(2)在平面直角坐标系中,画出该函数图象,并根据函数图象,写出该函数的一条性质______ ;(3)当函数y1的图象与直线y2=mx−1有两个交点时,直接写出m的取值范围.18.已知y=a|2x+4|+bx(a,b为常数).当x=1时,y=5;当x=−1时,y=3.(1)a=______ ,b=______ ;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数图象;并写出函数的一条性质:______ ;(3)已知函数y=25的图象如图所示,结合你所画的函数图象,直接写出方程a|2x+ |2x−2|4|+bx=25的近似解(精确到0.1).|2x−2|。
2021年中考数学一轮复习训练22 三角形中位线定理应用问题(解析版)
专题22 三角形中位线定理应用问题1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。
2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
3.对三角形中位线的深刻理解(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.【例题1】(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14 【答案】D【解析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.∵D ,E ,F 分别是AB ,BC ,CA 的中点,1214∴DE =12AC ,DF =12BC ,EF =12AB ,∴DF BC =EF AB =DE AC =12,∴△DEF ∽△ABC ,∴S △DEFS △ABC =(DE AC )2=(12)2=14, ∵等边三角形ABC 的面积为1,∴△DEF 的面积是14.【对点练习】(2019内蒙古赤峰)如图,菱形ABCD 周长为20,对角线AC 、BD 相交于点O ,E 是CD 的中点,则OE 的长是( )A .2.5B .3C .4D .5【答案】A .【解析】∵四边形ABCD 为菱形,∴CD =BC ==5,且O 为BD 的中点, ∵E 为CD 的中点,∴OE 为△BCD 的中位线,∴OE =CB =2.5。
【点拨】掌握菱形特点,根据三角形中位线定理解决问题。
【例题2】(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .【解析】1.【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB ,解得EF =2,则DH =12EF =1. 【解析】∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,【对点练习】(2019广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,F 、G 分别是AD 、AE 的中点,且FG =2cm ,则BC 的长度是 cm .【答案】8.【解析】利用三角形中位线定理求得FG=DE,DE=BC.如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=8cm【点拨】连续两次应用三角形中位线定理处理本题,是关键。
中考数学专题复习22一元二次方程试题
22一元二次方程时间:2022.4.12 单位:……*** 创编者:十乙州专题总结及应用一、知识性专题专题1 一元二次方程的定义【专题解读】涉及一元二次方程定义的问题,应注意强调二次项系数不为0,不要忽略某些题目中的隐含条件.例1 〔m-1〕x|m|+1+3x-2=0是关于x的一元二次方程,求m的值.专题2 一元二次方程的解法【专题解读】解一元二次方程时,主要考虑降次,其解法有直接方法、因式分解法、配方法及公式法,在详细的解题过程中,应结合详细的方程的特点选择简单、恰当的方法.例2 用配方法解一元二次方程2x2+1=3 x.例3 一元二次方程3x 2-x =0的解是〔 〕 A.x =0 B.x 1=0,x 2=3 C. 1210,3x x == D. 13x = 例4 解方程x 2-2x -2=0.专题3 与方程的根有关的问题【专题解读】 这局部内容主要考察方程的一根求字母的值,或者者是根与系数及判别式相联络的问题.例5 解以下方程,将所得到的解填入下面表格中:〔1〕通过填表,你发现这些方程的两个解的和与积与方程的系数有什么关系了吗? 〔2〕一般地,对于关于x 的方程x 2+px +q =0〔p ,q 为常数,且p 2-4q ≥0〕来说,是否也具备〔1〕中你所发现的规律?假如具备,请你写出规律,并说明理由;假如不具备,请举出反例.例6 假设a是关于x的方程x2+bx+a=0的根,且a≠0,那么由此可得求得以下代数式的值恒为常数的是〔〕A.abB. baC.a+bD.a-b专题4 一元二次方程的应用【专题解读】利用一元二次方程解决实际问题时,应根据详细问题找到等量关系,进而列出方程,另外,对方程的解要注意合理进展取舍.例7 农牧区校舍改造工程初见成效,农牧区最漂亮的房子是校舍,2021年政府对农牧区校舍改造的投入资金是5786万元,2021年校舍改造的投入资金是8050.9万元,假设设这两年投入农牧区校舍改造资金的年平均增长率为x,那么根据题意列方程得 .二、规律方法专题专题5 一元二次方程的解法技巧【专题解读】除了常见的几种一元二次方程的解法外,对于特殊类型的方程,可采用特殊的方法.例8 假如〔2m+2n+1〕〔2m+2n-1〕=63,那么m+n的值是 .例9 解方程〔3x+2〕2-8〔3x+2〕+15=0.例10 解方程〔x+2〕〔x+3〕〔x-4〕〔x-5〕=44.例11 先用配方法说明:无论x取何值,代数式x2-6x+10的值部大于0;再求出当x取何值时,代数式x2-6x+10的值最小,最小值是多少.例12 假设实数m,n,p满足m-n=8,mn+p2+16=0,那么m+n+p的值是〔〕A.-1B. 0 C例13 解方程3x2+11x+10=0.例14 解方程〔x-1994〕〔x-1995〕=1996×1997.三、思想方法专题专题6 建模思想【专题解读】建模思想是指根据实际问题中数量之间的关系建立方程模型表达这个等量关系,通过解方程来解决实际问题.例15 经过两年的连续治理,某城的大气环境有了明显改善,其每年每平方公里的降尘量从50吨下降到40.5吨,那么平均每年下降的百分率是 .中考真题精选 一、选择题1.关于x 的一元二次方程〔a -1〕x 2+x +|a|-1=0的一个根是0,那么实数a 的值是〔 〕A 、-1B 、0C 、1D 、-1或者12.假设一元二次方程式ax 〔x +1〕+〔x +1〕〔x +2〕+bx 〔x +2〕=2的两根为0.2,那么|3a +4b |之值为何〔 〕A .2B .5C .7D .83.关于方程式88〔x ﹣2〕2=95的两根,以下判断何者正确〔 〕 A 、一根小于1,另一根大于3 B 、一根小于﹣2,另一根大于2C 、两根都小于0D 、两根都大于24. 6.某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的选项是〔 〕A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x +=5.关于x 的方程2()0a x m b ++=的解是x 1=-2,x 2=1〔a ,m ,b 均为常数,a ≠0〕,那么方程2(2)0a x m b +++=的解是 .6.1是关于x 的一元二次方程〔m ﹣1〕x 2+x+1=0的一个根,那么m 的值是〔 〕 A 、1B 、﹣1C 、0D 、无法确定7.以下方程中是关于x 的一元二次方程的是〔 〕A .2210x x+=B .20ax bx c ++= C .(1)(2)1x x -+=D .223250x xy y --=8.假设x=2是关于x 的一元二次方程x 2﹣mx+8=0的一个解.那么m 的值是〔 〕A.6B.5C.2D.﹣6二、填空题1.关于x 的方程x 2+mx ﹣6=0的一个根为2,那么m = ,另一个根是 . 2. 假设x=2是关于x 的方程2250x x a --+=的一个根,那么a 的值是______. 3.一元二次方程x 2+5x+6=0的根是 . 一、选择题1.某品牌服装原价173元,连续两次降价00x 后售价价为127元,下面所列方程中正确的选项是〔 〕A .()2001731127x += B .()0017312127x -= C .()2001731127x -= D .()2001271173x +=2.如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,假设灰色三角形面积为421平方公分,那么此方格纸的面积为多少平方公分〔 〕A 、11B 、12C 、13D 、143.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班一共送了2070张相片,假如全班有x 名学生,根据题意,列出方程为〔 〕A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 4.亚运会期间,某纪念品原价168元,连续两次降价%a 后售价为128元,以下所列方程正确的选项是( )A .128%)1(1602=+aB .128%)1(1602=-aC .128%)21(160=-aD .128%)1(160=-a5.某工厂今年元月份的产量是50万元,3月份的产值到达了72万元.假设求2、3月份的产值平均增长率,设这两个月的产值平均月增长率为x ,依题意可列方程〔 〕 A .72〔x +1〕2=50 B .50〔x +1〕2=72C .50〔x ﹣1〕2=72D .72〔x ﹣1〕2=506.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,假设平面上不同的n 个点最多可确定21条直线.那么n 的值是〔 〕 A .5 B .6 C .7 D .8二、填空题1.某商场在促销活动中,将原价36元的商品,连续两次降价m%后现价为25元.根据题意可列方程为 .2. “十二五〞时期,将建成中西部旅游强,以旅游业为龙头的效劳业将成为推动经济开展的主要动力. 2021年全全年旅游总收入大约1000亿元,假如到2021年全全年旅游总收入要到达1440亿元,那么年平均增长率应为__________.3. 某小区2021年屋顶绿化面积为2000平方米,方案2021年屋顶绿化面积要到达2880平方米.假如每年屋顶绿化面积的增长率一样,那么这个增长率是 .4.据调查,某2021年的房价为4000元/m 2,预计2021年将到达4840元/m 2,求这两年的年平均增长率.设年平均增长率为x ,根据题意,所列方程为〔 〕 A .4000(1+x )=4840 B .4000(1+x )2=4840C.4000(1-x)=4840 D.4000(1-x)2=48405.某种药品原价为100元,经过连续两次的降价后,价格变为64元,假如每次降价的百分率是一样的,那么每次降价后的百分率是.6.线段AB的长为a.以AB为边在AB的下方作正方形ACDB.取AB边上一点E.以AE为边在AB的上方作正方形AKNM.过E作EF⊥CD.垂足为F点.假设正方形AENM与四边形EFDB的面积相等.那么AE的长为________________.7.“十二五〞时期,将建成中西部旅游强,以旅游业为龙头的效劳业将成为推动经济开展的丰要动力.2021年全全年旅游总收入大约l000亿元,假如到2021年全每年旅游总收入要到达1440亿元,那么年平均增长率应为.8.某城居民最低生活保障在2021年是240元,经过连续两年的增加,到2021年进步到345.6元,那么该城两年最低生活保障的平均年增长率是 .9.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.假设矩形的面积为4m2,那么AB的长度是m〔可利用的围墙长度超过6m〕.10.某家用电器经过两次降价,每台零售价由350元下降到299元.假设两次降价的百分率一样,设这个百分率为x,那么可列出关于x的方程为.11.如图〔1〕,在宽为20m,长为32m的矩形耕地上修建同样宽的三条道路〔横向与纵向垂直〕,把耕地分成假设干小矩形块,作为小麦试验田国,假设试验田面积为570m2,求道路宽为多少?设宽为x m,从图〔2〕的考虑方式出发列出的方程是.三、解答题1.某商店以6元/千克的价格购进某种干果1140千克,并对其进展挑选分成甲级干果与乙级干果后同时开场销售.这批干果销售完毕以后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开场销售至销售的第x天的总销量y1〔千克〕与x的关系为y1=﹣x2+40x;乙级干果从开场销售至销售的第t天的总销量y2〔千克〕与t的关系为y2=a t2+b t,且乙级干果的前三天的销售量的情况见下表:t 1 2 3y221 44 69〔1〕求a.b的值;〔2〕假设甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,那么卖完这批干果获得的毛利润是多少元?〔3〕问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?〔说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计〕2.为落实国务院房地产调控政策,使“居者有其屋〞,某加快了廉租房的建立力度.2021年政府一共HY2亿元人民币建立了廉租房8万平方米,预计到2021年底三年一共累计HY9.5亿元人民币建立廉租房,假设在这两年内每年HY的增长率一样.〔1〕求每年政府HY的增长率;〔2〕假设这两年内的建立本钱不变,求到2021年底一共建立了多少万平方米廉租房.3.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.〔1〕求平均每次下调的百分率.〔2〕某人准备以开盘价均价购置一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?4.某商场推销一种书包,进价为30元,在试销中发现这种书包每天的销售量P〔个〕与每个书包销售价x〔元〕满足一次函数关系式.当定价为35元时,每天销售30个;定价为37元时,每天销售26个.问:假如要保证商场每天销售这种书包获利200元,求书包的销售单价应定为多少元?5.随着人们经济收入的不断进步及汽车产业的快速开展,汽车已越来越多地进入普通家庭.据某HY门统计,2021年底该汽车拥有量为75万辆,而截止到2021年底,该的汽车拥有量已达108万辆.〔1〕求2021年底至2021年底该汽车拥有量的年平均增长率;〔2〕为了保护城环境,缓解汽车拥堵状况,该HY门拟控制汽车总量,要求到2021年底全汽车拥有量不超过125.48万辆;另据统计,从2021年初起,该此后每年报废的汽车数量是上年底汽车拥有量的10%假设每年新增汽车数量一样,请你估算出该从2021年初起每年新增汽车数量最多不超过多少万辆.6.国家HY公布的?商品房销售明码标价规定?,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格两次下调后,决定以每平方米4050元的均价开盘销售.〔1〕求平均每次下调的百分率;〔2〕某人准备以开盘均价购置一套100平方米的房子,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元.请问哪种方案更优惠?7.随着人们经济收入的不断进步及汽车产业的快速开展,汽车已越来越多地进入普通家庭,成为居民消费新的增长点.据某HY门统计,2021年底全汽车拥有量为15万辆,而截止到2021年底,全的汽车拥有量已达21.6万辆.〔1〕求2021年底至2021年底该汽车拥有量的年平均增长率;〔2〕为保护城环境,缓解汽车拥堵状况,从2021年初起,该HY门拟控制汽车总量,要求到2021年底全汽车拥有量不超过23.196万辆;另据估计,该从2021年起每年报废的汽车数量是上年底汽车拥有量的10%.假定在这种情况下每年新增汽车数量一样,请你计算出该每年新增汽车数多不能超过多少万辆.8.:▱ABCD 的两边AB ,AD 的长是关于x 的方程x 2﹣mx+2m ﹣14=0的两个实数根. 〔1〕当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长;〔2〕假设AB 的长为2,那么▱ABCD 的周长是多少?9.某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.〔1〕求平均每次下调的百分率.〔2〕某人准备以开盘价均价购置一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?10.某为争创全国文明卫生城,2021年政府对区绿化工程投入的资金是2000万元,2021年投入的资金是2420万元,且从2021年到2021年,两年间每年投入资金的年平均增长率一样.〔1〕求该对区绿化工程投入资金的年平均增长率;〔2〕假设投入资金的年平均增长率不变,那么该在2021年需投入多少万元?11.解方程:0)10553(|4|222=--+--y x y x .12.知识背景:来凤有一处野生古杨梅群落,其野生杨梅是一种具特殊价值的绿色食品.在当地场出售时,基地要求“杨梅〞用双层上盖的长方体纸箱封装〔上盖纸板面积刚好等于底面面积的2倍,如图〕〔1〕实际运用:假如要求纸箱的高为,底面是黄金矩形〔宽与长的比是黄金比,取黄金比为0.6〕,体积为.①按方案1〔如图〕做一个纸箱,需要矩形硬纸板A 1B 1C 1D 1的面积是多少平方米? ②小明认为,假如从节材料的角度考虑,采用方案2〔如图〕的菱形硬纸板A 2B 2C 2D 2做一个纸箱比方案1更优,你认为呢?请说明理由.〔2〕拓展思维:北方一家水果商打算在基地购进一批“野生杨梅〞,但他感觉〔1〕中的纸箱体积太大,搬运吃力,要求将纸箱的底面周长、底面面积和高都设计为原来的一半,你认为水果商的要求能办到吗?请利用函数图象验证.13.汽车产业是我支柱产业之一,产量和效益逐年增如.据统计,2021年我某种品牌汽车的年产量为6.4万辆,到2021年,该品牌汽车的年产量到达10万辆.假设该品牌汽车年产量的年平均增长率从2021年开场五年内保持不变,那么该品牌汽车2021的年产量为多少万辆?14.随着经济的开展,尹进所在的公司每年都在元月一次性的进步员工当年的月工资.尹进2021年的月工资为2000元,在2021年时他的月工资增加到2420元,他2021年的月工资按2021到2021年的月工资的平均增长率继续增长.〔1〕尹进2021年的月工资为多少?〔2〕尹进看了甲、乙两种工具书的单价,认为用自己2021年6月份的月工资刚好购置假设干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2021年6月份的月工资少了242元,于是他用这242元又购置了甲、乙两种工具书各一本,并把购置的这两种工具书全部捐献给西部山区的.请问,尹进总一共捐献了多少本工具书?15.请阅读以下材料:问题:方程x 2+x-1=0,求一个一元二次方程,使它的根分别是方程根的2倍。
2021年(广东省考卷)中考数学复习专题测试卷-----数与式 (含答案)
2021年(广东省考卷)中考数学复习专题测试卷-----数与式(满分120分)一.选择题(共10小题,满分30分,每小题3分)1.下列各数中,属于无理数的是()A.1.414B.C.D.2.与2021相加和为零的数是()A.﹣2021B.C.0D.3.下列式子是最简二次根式的是()A.B.C.D.4.2020年新冠肺炎席卷全球.据经济日报3月8日报道,为支持发展中国家应对新冠肺炎疫情,中国向世卫组织捐款2000万美元.其中的2000万用科学记数法表示为()A.20×106B.2×107C.2×108D.0.2×1085.下列计算正确的是()A.a5⋅a2=a10B.2a+a=3a2C.(3a3)2=6a6D.(a2)3=a66.若代数式x2﹣16x+k2是完全平方式,则k等于()A.6B.64C.±64D.±87.有理数a、b在数轴上的对应点的位置如图所示,则化简|a﹣b|+a的结果正确的是()A.2a﹣b B.﹣b C.b D.2a+b8.如果单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,那么a b的值是()A.﹣6B.﹣8C.8D.﹣279.观察下面图形,从图1到图2可用式子表示为()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a2+2ab+b2=(a+b)210.如图,第1个图形中小黑点的个数为5个,第2个图形中小黑点的个数为9个,第3个图形中心点的个数为13个,…,按照这样的规律,第n个图形中小黑点的个数应该是()A.4n+1B.3n+2C.5n﹣1D.6n﹣2二.填空题(共7小题,满分28分,每小题4分)11.如果在实数范围内有意义,那么实数a的取值范围是.12.计算:20210+()﹣1=.13.分解因式:m2﹣21m=.14.已知3a﹣22和2a﹣3都是m的平方根,则m的值是.15.已知代数式m+2n=1,则代数式3m+6n+5的值为.16.按照如图所示的程序计算,如开始输入的m值为,则最后输出的结果是.17.若(x﹣3)(x2+px+q)的结果不含x2和x项,则p+q=.三.解答题(共8小题,满分62分)18.(6分)计算:()2+(4﹣π)0﹣|﹣3|+cos45°.19.(6分)计算:(3m3)2+m2•m4﹣2m8÷m2.20.(6分)化简:.21.(8分)先化简,再求值:(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y),其中+|y+2|=0.22.(8分)先化简,再求值:,其中.23.(8分)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.24.(10分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.25.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A、1.414是有限小数,属于有理数,故本选项不合题意;B、是分数,属于有理数,故本选项不合题意;C、是无理数,故本选项符合题意;D、,是整数,属于有理数,故本选项不合题意;故选:C.2.【解答】解:﹣2021+2021=0.故选:A.3.【解答】解:=2,故A不符合题意;=2,故B不符合题意;不能再化简,故C符合题意;==,故D不符合题意.故选:C.4.【解答】解:2000万=20000000=2×107.故选:B.5.【解答】解:A、a5⋅a2=a7,故本选项不合题意;B、2a+a=3a,故本选项不合题意;C、(3a3)2=9a6,故本选项不合题意;D、(a2)3=a6,故本选项符合题意;故选:D.6.【解答】解:∵x2﹣16x+k2是一个完全平方式,∴x2﹣16x+k2=x2﹣16x+64,∴k=±8.故选:D.7.【解答】解:由图可知,a<0<b,∴|a﹣b|+a=b﹣a+a=b.故选:C.8.【解答】解:∵单项式3x a+3y2与单项式﹣4xy b﹣1的和还是单项式,∴单项式3x a+3y2与单项式﹣4xy b﹣1是同类项,则a+3=1,2=b﹣1,解得a=﹣2,b=3,∴a b=(﹣2)3=﹣8,故选:B.9.【解答】解:图1:长方形的面积为:(a+b)(a﹣b),图2:剪掉边长为b的正方形的面积为:a2﹣b2,所以从图1到图2可用式子表示为:(a+b)(a﹣b)=a2﹣b2.故选:A.10.【解答】解:设第n(n为正整数)个图形中小黑点的个数为a n个.观察图形,可知:a1=5=4×1+1,a2=9=4×2+1,a3=13=4×3+1,…,∴a n=4n+1.故选:A.二.填空题(共7小题,满分28分,每小题4分)11.【解答】解:∵在实数范围内有意义,∴a﹣2≥0,解得a≥2.故答案为:a≥2.12.【解答】解:原式=1+2=3,故答案为:3.13.【解答】解:原式=m(m﹣21).故答案为:m(m﹣21).14.【解答】解:∵3a﹣22和2a﹣3都是m的平方根,∴3a﹣22+2a﹣3=0,解得a=5,∴3a﹣22=﹣7,2a﹣3=7,∴m的值为49.故答案为:49.15.【解答】解:∵m+2n=1,∴3m+6n+5=3(m+2n)+5=3×1+5=3+5=8.故答案为:8.16.【解答】解:∵当m=时,(m+1)(m﹣1)=m2﹣1=4<12;当m=4时,(m+1)(m﹣1)=m2﹣1=15>12.∴最后输出的结果为15.故答案为:15.17.【解答】解:原式=x3﹣3x2+px2﹣3px+qx﹣3q=x3+(p﹣3)x2+(q﹣3p)x﹣3q,根据题意,令p﹣3=0,q﹣3p=0,解得:p=3,q=9,∴p+q=12,故答案为:12.三.解答题(共8小题,满分62分)18.【解答】解:原式=3+1﹣3+×=3+1﹣3+1=2.19.【解答】解:原式=9m6+m6﹣2m6=8m6.20.【解答】解:原式=+×=+=.21.【解答】解:(2x+y)2+(x+y)(x﹣y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,∵+|y+2|=0,∴x﹣1=0且y+2=0,解得:x=1,y=﹣2,当x=1,y=﹣2时,原式=9×1×(﹣2)=﹣18.22.【解答】解:原式=(﹣)÷=•=•=,当a=+1时,原式==.23.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.24.【解答】解:(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为:C;(2)错误的原因为:没有考虑a=b的情况,故答案为:没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为:△ABC是等腰三角形或直角三角形.25.【解答】解:(1)∵a+b=,∴a+b=m2+3n2+2mn,∴a=m2+3n2,b=2mn.故答案为:m2+3n2,2mn.(2)令m=1,n=1,∴a=m2+3n2=4,b=2mn=2.故答案为4、2、1、1.(3)由(1)可知:a=m2+3n2,b=2mn∵b=4=2mn,且m、n为正整数,∴m=2,n=1或者m=1,n=2,∴a=22+3×12=7,或a=12+3×22=13.∴a=7或13.。
河北省2021年中考数学试题真题(Word版+答案+解析)
河北省2021年中考数学试卷一、单选题1.(2021·河北)如图,已知四条线段 a , b , c , d 中的一条与挡板另一侧的线段 m 在同一直线上,请借助直尺判断该线段是( )A. aB. bC. cD. d2.(2021·河北)不.一定相等的一组是( )A. a +b 与 b +aB. 3a 与 a +a +aC. a 3 与 a ⋅a ⋅aD. 3(a +b) 与 3a +b3.(2021·河北)已知 a >b ,则一定有 −4a □−4b ,“ □ ”中应填的符号是( )A. >B. <C. ≥D. =4.(2021·河北)与 √32−22−12 结果相同的是( ).A. 3−2+1B. 3+2−1C. 3+2+1D. 3−2−15.(2021·河北)能与 −(34−65) 相加得0的是( )A. −34−65B. 65+34C. −65+34D. −34+656.(2021·河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( )A. A 代表B. B 代表C. C 代表D. B 代表7.(2021·河北)如图1, ▱ABCD 中, AD >AB , ∠ABC 为锐角.要在对角线 BD 上找点 N ,M ,使四边形 ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )图2A. 甲、乙、丙都是B. 只有甲、乙才是C. 只有甲、丙才是D. 只有乙、丙才是8.(2021·河北)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面 AB = ( )A. 1cmB. 2cmC. 3cmD. 4cm9.(2021·河北)若 √33 取1.442,计算 √33−3√33−98√33 的结果是( )A. -100B. -144.2C. 144.2D. -0.0144210.(2021·河北)如图,点 O 为正六边形 ABCDEF 对角线 FD 上一点, S △AFO =8 , S △CDO =2 ,则 S 正六边形ABCDEF 的值是( )A. 20B. 30C. 40D. 随点 O 位置而变化11.(2021·河北)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为 a 1 , a 2 , a 3 , a 4 , a 5 ,则下列正确的是( )A. a 3>0B. |a 1|=|a 4|C. a 1+a 2+a 3+a 4+a 5=0D. a 2+a 5<012.(2021·河北)如图,直线 l , m 相交于点 O . P 为这两直线外一点,且 OP =2.8 .若点 P 关于直线 l , m 的对称点分别是点 P 1 , P 2 ,则 P 1 , P 2 之间的距离可能..是( )A. 0B. 5C. 6D. 713.(2021·河北)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图, ∠ACD 是 △ABC 的外角.求证: ∠ACD =∠A +∠B .下列说法正确的是()A. 证法1还需证明其他形状的三角形,该定理的证明才完整B. 证法1用严谨的推理证明了该定理C. 证法2用特殊到一般法证明了该定理D. 证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2021·河北)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“()”应填的颜色是()A. 蓝B. 粉C. 黄D. 红15.(2021·河北)由(1+c2+c −12)值的正负可以比较A=1+c2+c与12的大小,下列正确的是()A. 当c=−2时,A=12B. 当c=0时,A≠12C. 当c<−2时,A>12D. 当c<0时,A<1216.(2021·河北)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形OFM=S扇形OAB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A. Ⅰ和Ⅱ都对B. Ⅰ和Ⅱ都不对C. Ⅰ不对Ⅱ对D. Ⅰ对Ⅱ不对二、填空题17.(2021·河北)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为________;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片________块.18.(2021·河北)下图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E 保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应________(填“增加”或“减少”)________度.三、解答题19.(2021·河北)用绘图软件绘制双曲线m:y=60与动直线l:y=a,且交于一点,图1为a=8x时的视窗情形.(1)当a=15时,l与m的交点坐标为________;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点 O 始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的 12 ,其可视范围就由 −15≤x ≤15 及 −10≤y ≤10 变成了 −30≤x ≤30 及 −20≤y ≤20 (如图2).当 a =−1.2 和 a =−1.5 时, l 与 m 的交点分别是点A 和 B ,为能看到 m 在A 和 B 之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的 1k ,则整数 k = ________.20.(2021·河北)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进 m 本甲种书和 n 本乙种书,共付款 Q 元.(1)用含m ,n 的代数式表示 Q ;(2)若共购进 5×104 本甲种书及 3×103 本乙种书,用科学记数法表示 Q 的值.21.(2021·河北)已知训练场球筐中有 A 、 B 两种品牌的乒乓球共101个,设 A 品牌乒乓球有 x 个. (1)淇淇说:“筐里 B 品牌球是 A 品牌球的两倍.”嘉嘉根据她的说法列出了方程: 101−x =2x .请用嘉嘉所列方程分析淇淇的说法是否符合题意;(2)据工作人员透露: B 品牌球比 A 品牌球至少多28个,试通过列不等式的方法说明 A 品牌球最多有几个.22.(2021·河北)某博物馆展厅的俯视示意图如图1所示,嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.(1)求嘉淇走到十字道口 A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.23.(2021·河北)下图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点 P )始终以 3km/min 的速度在离地面 5km 高的上空匀速向右飞行,2号试飞机(看成点 Q )一直..保持在1号机 P 的正下..方., 2号机从原点 O 处沿 45° 仰角爬升,到 4km 高的 A 处便立刻转为水平飞行,再过 1min 到达 B 处开始沿直线 BC 降落,要求 1min 后到达 C(10,3) 处.(1)求 OA 的 ℎ 关于 s 的函数解析式,并直接..写出2号机的爬升速度;(2)求 BC 的 ℎ 关于 s 的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离 PQ 不超过 3km 的时长是多少.(注:(1)及(2)中不必写 s 的取值范围)24.(2021·河北)如图, ⊙O 的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为 A n ( n 为1~12的整数),过点 A 7 作 ⊙O 的切线交 A 1A 11 延长线于点 P .(1)通过计算比较直径和劣弧 A 7A 11⌢ 长度哪个更长; (2)连接 A 7A 11 ,则 A 7A 11 和 PA 1 有什么特殊位置关系?请简要说明理由;(3)求切线长 PA 7 的值.25.(2021·河北)下图是某同学正在设计的一动画示意图, x 轴上依次有 A , O , N 三个点,且 AO =2 ,在 ON 上方有五个台阶 T 1~T 5 (各拐角均为 90° ),每个台阶的高、宽分别是1和1.5,台阶 T 1 到 x 轴距离 OK =10 .从点 A 处向右上方沿抛物线 L : y =−x 2+4x +12 发出一个带光的点 P .(1)求点 A 的横坐标,且在图中补画出 y 轴,并直接..指出点 P 会落在哪个台阶上;(2)当点 P 落到台阶上后立即弹起,又形成了另一条与 L 形状相同的抛物线 C ,且最大高度为11,求 C 的解析式,并说明其对称轴是否与台阶 T 5 有交点;(3)在 x 轴上从左到右有两点 D , E ,且 DE =1 ,从点 E 向上作 EB ⊥x 轴,且 BE =2 .在 △BDE 沿 x 轴左右平移时,必须保证(2)中沿抛物线 C 下落的点 P 能落在边 BD (包括端点)上,则点 B 横坐标的最大值比最小值大多少?(注:(2)中不必写 x 的取值范围)26.(2021·河北)在一平面内,线段 AB =20 ,线段 BC =CD =DA =10 ,将这四条线段顺次首尾相接.把 AB 固定,让 AD 绕点 A 从 AB 开始逆时针旋转角 α(α>0°) 到某一位置时, BC , CD 将会跟随出现到相应的位置.(1)论证 如图1,当 AD//BC 时,设 AB 与 CD 交于点 O ,求证: AO =10 ;(2)发现当旋转角 α=60° 时, ∠ADC 的度数可能是多少?(3)尝试 取线段 CD 的中点 M ,当点 M 与点 B 距离最大时,求点 M 到 AB 的距离;(4)拓展 ①如图2,设点 D 与 B 的距离为 d ,若 ∠BCD 的平分线所在直线交 AB 于点 P ,直接..写出 BP 的长(用含 d 的式子表示); ②当点 C 在 AB 下方,且 AD 与 CD 垂直时,直接..写出 α 的余弦值.答案解析部分一、单选题1.【答案】A【考点】直线的性质:两点确定一条直线【解析】【解答】解:设线段m与挡板的交点为A,a、b、c、d与挡板的交点分别为B,C,D,E,连结AB、AC、AD、AE,根据直线的特征经过两点有且只有一条直线,利用直尺可确定线段a与m在同一直线上,故答案为:A.【分析】将A点,与B,C,D,E点分别作直线。
2021年广东省中考数学解答题压轴题练习及答案 (22)
2021年广东省中考数学解答题压轴题练习1.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S△AOE=,试判断△AOE与△AOD是否相似?并说明理由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.【分析】(1)利用因式分解法解一元二次方程即可;(2)利用三角形的面积求出OE,然后求出两个三角形夹直角的两边的比,再根据相似三角形的判定方法判定即可;(3)根据平行四边形的对边相等求出BC,再求出OC,然后利用勾股定理列式求出AC的长,再求出直线AB的解析式为y=x+4,设出点F的坐标,然利用勾股定理列式求出AF2、CF2,再分三种情况列出方程求解即可.【解答】解:(1)x2﹣7x+12=0,因式分解得,(x﹣3)(x﹣4)=0,由此得,x﹣3=0,x﹣4=0,所以,x1=3,x2=4,∵OA>OB,∴OA=4,OB=3;(2)S△AOE=×4•OE=,解得OE=,∵==,==,∴=,又∵∠AEO=∠OAD=90°,∴△AOE∽△AOD;(3)∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,∵OB=3,∴OC=6﹣3=3,由勾股定理得,AC===5,易求直线AB的解析式为y=x+4,设点F的坐标为(a,a+4),则AF2=a2+(a+4﹣4)2=a2,CF2=(a﹣3)2+(a+4)2=a2+a+25,①若AF=AC,则a2=25,解得a=±3,a=3时,a+4=×3+4=8,a=﹣3时,a+4=×(﹣3)+4=0,所以,点F的坐标为(3,8)或(﹣3,0);②若CF=AC,则a2+a+25=25,整理得,25a2+42a=0,解得a=0(舍去),a=﹣,a+4=×(﹣)+4=,所以,点F的坐标为(﹣,),③若AF=CF,则a2=a2+a+25,解得a=﹣,a+4=×(﹣)+4=﹣,所以,点F的坐标为(﹣,﹣),综上所述,点F的坐标为(3,8)或(﹣3,0)或(﹣,)或(﹣,﹣)时,以A、C、F为顶点的三角形是等腰三角形.。
2021年九年级数学中考复习小专题突破训练:三角形内角和定理的应用(附答案)
2021年九年级数学中考复习小专题突破训练:三角形内角和定理的应用(附答案)1.如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°2.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°3.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC =50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°4.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)5.如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C,则∠C的度数是()A.30°B.45°C.55°D.60°6.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形7.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将∠C沿DE对折,使点C落在△ABC外的点C′处,若∠1=20°,则∠2的度数为()A.80°B.90°C.100°D.110°8.如图,OB、OC是∠ABC、∠ACB的角平分线,∠BOC=120°,则∠A=()A.60°B.120°C.110°D.40°9.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形10.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()A.44°B.40°C.39°D.38°11.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°12.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=.13.如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC =.14.如果将一副三角板按如图方式叠放,那么∠1=.15.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=度.16.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=.17.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=32°,那么∠1+∠2=度.18.在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为度.19.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正确的是.20.如图,将△ABC沿着DE对折,点A落到A′处,若∠BDA′+∠CEA′=70°,则∠A =.21.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.22.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正确的结论有(填序号)23.如图,把△ABC的一角折叠,若∠1+∠2=130°,则∠A的度数为.24.在直角△ABC中,∠C=90°,沿图中虚线剪去∠C,则∠1+∠2=.25.如图,△ABC中,∠ABC与∠ACB的平分线相交于D,若∠A=50°,则∠BDC=度.26.一副透明的三角板,如图叠放,直角三角板的斜边AB、CE相交于点D,则∠BDC =.27.在△ABC中,∠A:∠B:∠C=2:3:4,则∠B=.28.如图,在△ABC中,∠C=90°,∠A=34°,D,E分别为AB,AC上一点,将△BCD,△ADE沿CD,DE翻折,点A,B恰好重合于点P处,则∠ACP=.29.在△ABC中,∠A=∠B=∠C,则∠B=度.30.已知如图①,BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,BQ、CQ分别是∠PBC、∠PCB的角平分线,BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC =α.(1)当α=40°时,∠BPC=°,∠BQC=°;(2)当α=°时,BM∥CN;(3)如图②,当α=120°时,BM、CN所在直线交于点O,求∠BOC的度数;(4)在α>60°的条件下,直接写出∠BPC、∠BQC、∠BOC三角之间的数量关系:.31.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:;(2)仔细观察,在图2中“8字形”的个数:个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).32.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=°;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.33.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,直接写出∠ABO的度数=.34.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.35.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.36.已知:△ABC中,记∠BAC=α,∠ACB=β.(1)如图1,若AP平分∠BAC,BP,CP分别平分△ABC的外角∠CBM和∠BCN,BD ⊥AP于点D,用α的代数式表示∠BPC的度数,用β的代数式表示∠PBD的度数;(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论是否发生变化,补全图形并直接写出你的结论.37.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.38.如图所示,在△ABC中,D是BC边上一点∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度数.39.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.参考答案1.解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:B.2.解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.3.解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.4.解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.5.解:根据三角形的外角性质,可得∠ABN=∠AOB+∠BAO,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=∠ABN,∠BAC=∠BAO,∴∠C=∠ABE﹣∠BAC=(∠AOB+∠BAO)﹣∠BAO=∠AOB,∵∠MON=90°,∴∠AOB=90°,∴∠C=×90°=45°.故选:B.6.解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选:A.7.解:∵∠A=65°,∠B=75°,∴∠C=180°﹣65°﹣75°=40°,由折叠的性质可知,∠C′=∠C=40°,∴∠3=∠1+∠C′=60°,∴∠2=∠C+∠3=100°,故选:C.8.解:因为OB、OC是∠ABC、∠ACB的角平分线,所以∠ABO=∠CBO,∠ACO=∠BCO,所以∠ABO+∠ACO=∠CBO+∠BCO=180°﹣120°=60°,所以∠ABC+∠ACB=60°×2=120°,于是∠A=180°﹣120°=60°.故选:A.9.解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选:B.10.解:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选:C.11.解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.12.解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.13.解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.14.解:给图中角标上序号,如图所示.∵∠2+∠3+45°=180°,∠2=30°,∴∠3=180°﹣30°﹣45°=105°,∴∠1=∠3=105°.故答案为:105°.15.解:∵∠A=40°,∠B=72°,∴∠ACB=68°,∵CE平分∠ACB,CD⊥AB于D,∴∠BCE=34°,∠BCD=90﹣72=18°,∵DF⊥CE,∴∠CDF=90°﹣(34°﹣18°)=74°.故答案为:74.16.解:∵∠ABC=42°,∠A=60°,∠ABC+∠A+∠ACB=180°.∴∠ACB=180°﹣42°﹣60°=78°.又∵∠ABC、∠ACB的平分线分别为BE、CD.∴∠FBC=,∠FCB=.又∵∠FBC+∠FCB+∠BFC=180°.∴∠BFC=180°﹣21°﹣39°=120°.故答案为:120°.17.解:∵∠3=32°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣32°=88°,∴∠5+∠6=180°﹣88°=92°,∴∠5=180°﹣∠2﹣108°①,∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=92°,即∠1+∠2=70°.故答案为:70°.18.解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60或10;19.解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,故①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C∴2∠BEF=∠BAF+∠C,即∠BEF=(∠BAF+∠C),故②正确;③∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,故③正确,④∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,∴∠F=(∠BAC﹣∠C);故④正确;故答案为①②③④,20.解:∵将△ABC沿着DE对折,A落到A′,∴∠A′DE=∠ADE,∠A′ED=∠AED,∴∠BDA′+2∠ADE=180°,∠A′EC+2∠AED=180°,∴∠BDA′+2∠ADE+∠A′EC+2∠AED=360°,∵∠BDA′+∠CEA′=70°,∴∠ADE+∠AED=145°,∴∠A=35°.故答案为:35°.21.解:∵∠1:∠2:∠3=28:5:3,∴设∠1=28x,∠2=5x,∠3=3x,由∠1+∠2+∠3=180°得:28x+5x+3x=180°,解得x=5,故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,∠5=∠2+∠3=25°+15°=40°,故∠EAC=∠4+∠5=40°+40°=80°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CF A,∴△EGF∽△CAF,∴α=∠EAC=80°.故填80°.22.解:(1)∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.(2)由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.(3)在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°﹣∠ABD,故③正确;(4)如果BD平分∠ADC,则四边形ABCD是平行四边形,∵∠ABD=∠ADB,∴AB=AD,∴四边形ABCD是菱形,∴只有在△ABC是正三角形时才有BD平分∠ADC故④错误.(5)∵∠BAC+∠ABC=∠ACF,∴∠BAC+∠ABC=∠ACF,∵∠BDC+∠DBC=∠ACF,∴∠BAC+∠ABC=∠BDC+∠DBC,∵∠DBC=∠ABC,∴∠BAC=∠BDC,即∠BDC=∠BAC.故⑤正确.故答案为:①②③⑤.23.解:如图,∵△ABC的一角折叠,∴∠3=∠5,∠4=∠6,而∠3+∠5+∠1+∠2+∠4+∠6=360°,∴2∠3+2∠4+∠1+∠2=360°,∵∠1+∠2=130°,∴∠3+∠4=115°,∴∠A=180°﹣∠3﹣∠4=65°.故答案为:65°.24.解:∵∠A+∠B+∠C=180°,∴∠A+∠B=180°﹣∠C=90°,∵∠1+∠2+∠A+∠B=360°,∴∠1+∠2=360°﹣90°=270°.故答案是:270°.25.解:∵∠A=50°,∴∠ABC+∠ACB=130°.∵∠ABC与∠ACB的平分线相交于D,∴∠DBC+∠DCB=65°,∴∠BDC=115°.26.解:∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.27.解:设一份是x°,则∠A=2x°,∠B=3x°,∠C=4x°.则有2x+3x+4x=180,x=20.则∠B=3x°=60°;故答案为:60°.28.解:由折叠可得,AD=PD=BD,∴D是AB的中点,∴CD=AB=AD=BD,∴∠ACD=∠A=34°,∠BCD=∠B=56°,∴∠BCP=2∠BCD=112°,∴∠ACP=112°﹣90°=22°,故答案为:22°.29.解:设∠A为x.x+2x+3x=180°⇒x=30°.∴∠A=30°,∠B=60°,∠C=90°.故填60.30.解:(1)∵∠DBC=∠A+∠ACB,∠BCE=∠A+∠ABC,∴∠DBC+∠BCE=180°+∠A=220°,∵BP、CP分别是△ABC的外角∠CBD、∠BCE的角平分线,∴∠CBP+∠BCP=(∠DBC+∠BCE)=110°,∴∠BPC=180°﹣110°=70°,∵BQ、CQ分别是∠PBC、∠PCB的角平分线,∴∠QBC=∠PBC,∠QCB=∠PCB,∴∠QBC+∠QCB=55°,∴∠BQC=180°﹣55°=125°;(2)∵BM∥CN,∴∠MBC+∠NCB=180°,∵BM、CN分别是∠PBD、∠PCE的角平分线,∠BAC=α,∴(∠DBC+∠BCE)=180°,即(180°+α)=180°,解得α=60°;(3)∵α=120°,∴∠MBC+∠NCB=(∠DBC+∠BCE)=(180°+α)=225°,∴∠BOC=225°﹣180°=45°;(4)∵α>60°,∠BPC=90°﹣α、∠BQC=135°﹣α、∠BOC=α﹣45°.∠BPC、∠BQC、∠BOC三角之间的数量关系:∠BPC+∠BQC+∠BOC=(90°﹣α)+(135°﹣α)+(α﹣45°)=180°.故答案为:70,125;60;∠BPC+∠BQC+∠BOC=180°.31.解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,∴∠A+∠D=∠C+∠B,故答案为:∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个,故答案为:6;(3)∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠P AB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠P AB,∠DCP=∠PCB,①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠P AB+∠P,即2∠P=∠D+∠B,又∵∠D=50度,∠B=40度,∴2∠P=50°+40°,∴∠P=45°;(4)关系:2∠P=∠D+∠B.∠D+∠1=∠P+∠3①∠B+∠4=∠P+∠2②①+②得:∠D+∠1+∠4+∠B=∠P+∠3+∠2+∠P,∵∠DAB和∠DCB的平分线AP和CP相交于点P,∴∠1=∠2,∠3=∠4∴2∠P=∠D+∠B.32.解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=×90°=45°,∴∠AEB=135°;(2)∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAO=∠BAO,∠F AO=∠GAO,∴∠EAF=(∠BAO+∠GAO)=×180°=90°.故答案为:90;∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,即∠ABO=2∠E,在△AEF中,∵有一个角是另一个角的3倍,故分四种情况讨论:①∠EAF=3∠E,∠E=30°,则∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO为60°或45°.33.解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠P AB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠P AB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°;③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°.∴∠ABO为60°或45°.故答案为:60°或45°.34.解:(1)如图(1),连接AD并延长至点F,,根据外角的性质,可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,∴∠BDC=∠A+∠B+∠C;(2)①由(1),可得∠ABX+∠ACX+∠A=∠BXC,∵∠A=40°,∠BXC=90°,∴∠ABX+∠ACX=90°﹣40°=50°,故答案为:50.②由(1),可得∠DBE=∠DAE+∠ADB+∠AEB,∴∠ADB+∠AEB=∠DBE﹣∠DAE=130°﹣40°=90°,∴(∠ADB+∠AEB)=90°÷2=45°,∴∠DCE=(∠ADB+∠AEB)+∠DAE=45°+40°=85°;③∠BG1C=(∠ABD+∠ACD)+∠A,∵∠BG1C=70°,∴设∠A为x°,∵∠ABD+∠ACD=133°﹣x°∴(133﹣x)+x=70,∴13.3﹣x+x=70,解得x=63,即∠A的度数为63°.35.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.36.解:(1)∵∠BAC+∠CBA+∠ACB=180°,∠BAC=α∴∠CBA+∠ACB=180°﹣∠BAC=180°﹣α∵∠MBC+∠ABC=180°,∠NCB+∠ACB=180°∴∠MBC+∠NCB=360°﹣∠ABC﹣∠ACB=360°﹣(180°﹣α)=180°+α∵BP,CP分别平分△ABC的外角∠CBM和∠BCN∴∠PBC=∠MBC,∠PCB=∠NCB∴∠PBC+∠PCB=∠MBC+∠NCB=(180°+α)=90°+α∵∠BPC+∠PBC+∠PCB=180°∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(90°+α)=90°﹣α∵∠BAC=α,∠ACB=β,∵∠MBC是△ABC的外角∴∠MBC=α+β∵BP平分∠MBC∴∠MBP=∠MBC=(α+β)∵∠MBP是△ABP的外角,AP平分∠BAC∴∠BAP=α,∠MBP=∠BAP+∠APB∴∠PBD=90°﹣∠APB=90°﹣(∠MBP﹣∠BAP)=90°﹣∠MBP+∠BAP=90°﹣(α+β)+α=90°﹣β;(2)如图2,若点P为△ABC的三条内角平分线的交点,BD⊥AP于点D,猜想(1)中的两个结论已发生变化;∠PBD=.证明:∠BPD=∠BAD+∠ABP,∠CPD=∠CAD+∠ACP,∴∠BPC=∠BAD+∠ABP+∠CAD+∠ACP=∠BAC+∠ABC+∠BCA=∠BAC+(∠ABC+∠BCA)=∠BAC+(180°﹣∠BAC)=90°+∠BAC=90°+α.∠PBD=90°﹣∠BPD=90°﹣(∠BAD+∠ABP)=90°﹣(∠ABC+∠BAC)=90°﹣(180°﹣∠BCA)=∠BCA=.37.解:(1)①∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=45°,故答案为:45°;②∵AD平分∠CAE,CF平分∠ACB,∴∠CAD=∠CAE,∠ACF=∠ACB,∵∠CAE是△ABC的外角,∴∠B=∠CAE﹣∠ACB,∵∠CAD是△ACF的外角,∴∠F=∠CAD﹣∠ACF=∠CAE﹣∠ACB=(∠CAE﹣∠ACB)=∠B=a;(2)由(1)可得,∠F=∠ABC,∵∠AGB与∠GAB的角平分线交于点H,∴∠AGH=∠AGB,∠GAH=∠GAB,∴∠H=180°﹣(∠AGH+∠GAH)=180°﹣(∠AGB+∠GAB)=180°﹣(180°﹣∠ABG)=90°+∠ABG,∴∠F+∠H=∠ABC+90°+∠ABG=90°+∠CBG=180°,∴∠F+∠H的值不变,是定值180°.38.解:设∠1=∠2=x°,则∠3=∠4=2x°,∵∠2+∠4+∠BAC=180°,∴x+2x+69=180,解得x=37,即∠1=37°,∴∠DAC=∠BAC﹣∠1=69°﹣37°=32°.39.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BCE=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°。
2021年湖南省湘潭市中考数学总复习:一元二次方程(含答案解析)
2021年湖南省湘潭市中考数学总复习:一元二次方程一.选择题(共7小题)1.一元二次方程x(3x+2)=6(3x+2)的解是()A.x=6B.x=−2 3C.x1=6,x2=−23D.x1=﹣6,x2=232.我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1.若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2×i=(﹣1)×i=﹣i,i4=(i2)2=(﹣1)2=1,从而对任意正整数n,我们可以得到i4n+1=i4n×i=(i4)n×i=i,i4n+2=﹣1,i4n+3=﹣i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013+…+i2019的值为()A.0B.1C.﹣1D.i3.用配方法解一元二次方程x2﹣6x﹣2=0以下正确的是()A.(x﹣3)2=2B.(x﹣3)2=11C.(x+3)2=11D.(x+3)2=2 4.关于x的一元二次方程x2+(k﹣3)x+1﹣k=0根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定5.一元二次方程(x﹣1)2=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6.若关于x的一元二次方程x2﹣x+k=0有实数根,则k的取值范围是()A.k<14B.k≤14C.k>14D.k≥147.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()第1 页共31 页。
中考数学专题复习卷平面直角坐标系(含解析)(2021-2022学年)
平面直角坐标系一、选择题1。
在平面直角坐标系中,点P(-1,2)所在的象限是( )A。
第一象限 B. 第二象限C。
第三象限D。
第四象限2.点P(x﹣1,x+1)不可能在( )A。
第一象限B. 第二象限 C. 第三象限D。
第四象限3.在平面直角坐标系中,点P(—2,x2+1)所在的象限是( )A. 第一象限B。
第二象限C。
第三象限 D. 第四象限4。
在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )A。
B。
C。
D.5.在平面直角坐标系中,以原点为对称中心,把点A(3,4)逆时针旋转90°,得到点B,则点B 的坐标为( )A.(4,-3)B。
(-4,3)ﻫC。
(—3,4)ﻫD。
(-3,-4)6. 抛物线(m是常数)的顶点在 ( ) A。
第一象限B。
第二象限C。
第三象限D。
第四象限7。
在平面直角坐标系中,点关于原点的对称点的坐标是()A.B. C.D。
8.已知a、b、c为常数,点P(a,c)在第二象限,则关于x的方程ax2+bx+c=0根的情况是( )ﻬA。
有两个相等的实数根 B. 有两个不相等的实数根C.没有实数根D。
无法判断9。
如果直线AB平行于y轴,则点A,B的坐标之间的关系是( )A。
横坐标相等B。
纵坐标相等C。
横坐标的绝对值相等D。
纵坐标的绝对值相等10.如图,CB=1,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是( )A。
B。
﹣C.D. ﹣11。
小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()ﻫA。
(﹣2,1) B. (﹣1,1) C。
(1,﹣2) D。
(﹣1,﹣2)12。
如图,小手盖住的点的坐标可能为()A. (-4,—5)B. (—4,5) C.(4,5) D. (4,-5)二、填空题13。
21年福建中考数学卷
21年福建中考数学卷
选择题:
1. 下列哪个数是一个正整数?
A. 0
B. -3
C. 1/2
D. 2.5
2. 下列数字中哪一个是素数?
A. 1
B. 2
C. 4
D. 6
3. 如果一个正方形的周长为16厘米,那么它的边长是多少?
A. 2厘米
B. 4厘米
C. 6厘米
D. 8厘米
4. 以下哪个是5的倍数?
A. 21
B. 15
C. 12
D. 10
5. 如果一个三角形的三条边长分别为3厘米、4厘米、5厘米,那么这个三角形是什么类型的三角形?
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 等腰三角形
填空题:
6. 一个圆的直径为8厘米,求其半径是____厘米。
7. 一个矩形的长为12厘米,宽为5厘米,求其周长是____厘米。
8. 如果一个数的平方等于25,那么这个数是____。
9. 30和18的最大公约数是____。
10. 如果一个长方形的长为8厘米,宽为3厘米,求其面积是____平方厘米。
应用题:
11. 小明和小红一起去超市买水果,小明买了5斤苹果,小红买了3斤香蕉,他们一共买了多少斤水果?
12. 一个矩形的长是8厘米,宽是6厘米,求其面积和周长分别是多少?
13. 如果一个有线电话每分钟收费0.5元,小明打电话打了25分钟,他需要支付多少电话费?
14. 一支铅笔长15厘米,如果用这支铅笔每次画2厘米,可以画多少次?
15. 小明家有30个苹果,他打算将它们平均分给他的4个朋友,每个朋友可以得到多少个苹果?。
2021年河南省中考数学复习题及答案 (40)
2021年中考数学复习题22.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1)该客户选择两种不同的方案所需总费用分别是多少元?(用含x、y的式子表示并化简)(2)若该客户需要购买10套西装,22条领带,则他选择哪种方案更划算?(3)若该客户需要购买15套西装,40条领带,则他选择哪种方案更划算?【解答】解:(1)按方案①购买,需付款:200x+(y﹣x)×40=(40y+160x)元;该客户按方案②购买,需付款:200x•90%+40y•80%=(180x+32y)(元);(2)当x=10,y=22时,按方案①购买,需付款:40×22+160×10=2480(元);该客户按方案②购买,需付款:180×10+32×22=2504(元);∵2480<2504,∴按方案①更划算;(3)当x=15,y=40时,按方案①购买,需付款:40×40+160×15=4000(元);该客户按方案②购买,需付款:180×15+32×40=3980(元);∵4000>3980,∴按方案②更划算.23.(8分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【解答】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8×20)×80%=288(元);乙商场所需费用为5×40+(20﹣5×2)×8=280(元),∵288>280,∴选择乙商场购买更合算.。
2021年九年级数学中考复习:实数及其运算练习卷(word版含答案解析)
2021届中考实数及其运算练习卷一、选择题1.下列选项中,比小的数是A. B. 0 C. D.2.数1,,0,中最小的是()A. 1B. 0C.D. —23.下列各数中,比小的数是A. —3B. —1C. 0D. 24.下列各数中最大的负数是A. B. C. —1 D. —35.下列各组数比较大小,判断正确的是A. B. C. D.6.某市有一天的最高气温为,最低气温为,则这天的最高气温比最低气温高A. B. C. D.7.计算的结果是A. B. C. 1 D. 58.的值是A. B. 1 C. 5 D.9.下列各对数中,数值相等的是A. 与B. 与C. 与D. 与10.的倒数是A. B. C. 2021 D.11.下列各式中结果为负数的是A. B. C. D.12.下列算式中,运算结果为负数..的是A. B. C.—(—3)D.13.九章算术中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为米,那么低于海平面300米应记为A. B. C. D.14.数轴上到点的距离为5的点表示的数为A. B. C. 3或 D. 5或15.有理数a,b在数轴上的位置如图所示,则下列结论正确的是A. B.C. D.16.若a与5互为相反数,则等于A. 0B. 5C. 10D.17.的相反数是A. 0B.C.D. 2018.的倒数等于A. 2020B.—2020C.D.19.已知实数x,y满足,则代数式的值为A. 1B. —1C. 2021D. —202120.在中,已知、都是锐角,,那么的度数为A. B. C. D.21.若将“收入100元”记作“元”,则“支出50元”应记作()A. 元B. 元C. 元D. 元22.的相反数为A. B. 3 C. 0 D. 不能确定23.下列四个数中最大的数是A. 0B.C.D.24.下列数中,是无理数的是A. B. 0 C. D.25.的相反数是A. 2020B.C.D.26.计算,结果正确的是A. —4B. —3C. —2D. —127.在,,,0,,中,负数的个数有A. 2个B. 3个C. 4个D. 5个28.若实数a、b在数轴上对应的点如图,下列结论正确的共有(),,,,;A. 2 个B. 3 个C. 4 个D. 5 个29.在有理数、、、中负数有A. 4B. 3C. 2D. 130.数a,b在数轴上的位置如图所示,下列式子中错误的是()A. B. C. D.31.的平方根是A. 4B.C.D.32.下列说法正确的是A. 是25的算术平方根B. 是64的立方根C. 是的立方根D. 的平方根是33.的平方根是A. B. C. D.二、填空题34.截至2020年11月17日凌晨,中国首次火星探测任务“天问一号”探测器已在轨飞行116天,距离地球约63800000千米,请将63800000用科学记数法表示________.35.月球的半径约为1738000m,把1738000这个数用科学记数法表示为.36.5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为______.37.科学家们测得光在水中的速度约为225000000米/秒,数字225000000用科学记数法表示为.38.截止2020年,世界总人口已接近于76亿人,用科学记数法可表示为.39.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为,数字用科学记数法表示为______.40.是大气压中直径小于或等于的颗粒物,将用科学记数法表示为________.41.随着人们对环境的重视,新能源的开发迫在眉睫,石墨烯是现在世界上最薄的纳米材料,其理论厚度应是,这个数据用科学记数法表示是________.三、解答题42.计算:.43.计算:.44.计算:.45.计算:;46.计算:.47.计算:48.计算:.49.计算:.50.计算:.51. 计算:(π-3.14)0+(12)-1-|-2|-(-1)2020.52. 计算:|-3|+(-1) 2020×(π-3.14) 0-(−13)−2+tan45°.53.计算: |3-2|+(π-2021)0-(13)-1+3tan30°.54. 计算:2cos45°+(-12)-2+(2020-2)0+|2-2|.55.计算: │-3│+(-tan45°)3×(π-3.14)0-(-12)-3-(3+2)(3-2)56.计算:|-2|+π0-16+327÷3+2cos45°.答案和解析1.【答案】D【解析】先比较数的大小,再得出选项即可.能熟记有理数的大小比较法则的内容是解此题的关键.解:A、,故本选项不符合题意;B、,故本选项不符合题意;C、,故本选项不符合题意;D、,故本选项符合题意;故选:D.2.【答案】D【解析】根据有理数大小比较的方法即可得出答案.解:,所以最小的数是.故选D.3.【答案】A【解析】有理数的大小比较.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小,根据有理数大小比较法则解答即可.【解答】解:,比小的数是,故选A.4.【答案】A【解析】根据有理数的大小比较即可求出.解题的关键是熟练运用有理数的大小比较法则,本题属于基础题型.特别记住:两个负数,绝对值大的其值反而小.解:因为,所以最大的负数是,故选:A.5.【答案】D【解析】解:,选项A不符合题意;,选项B不符合题意;,选项C不符合题意;,选项D符合题意.故选:D.有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.6.【答案】A【解析】有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:.故选:A.7.【答案】D【解析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解熟记减去一个数等于加上这个数的相反数是解题的关键.解:.故选:D.8.【答案】A【解析】直接利用有理数的减法运算法则计算得出答案.解:.故选:A.9.【答案】C【解析】分别求出选项中的每一项,,,,,,,,即可求解.牢固掌握有理数的乘方和乘法运算法则是解题的关键.解:,,不正确;,,不正确;,,C正确;,,不正确;故选:C.10.【答案】B【解析】求一个数的倒数,掌握求一个整数的倒数就是写成这个整数分之一是解题的关键.解:的倒数是,故选:B.11.【答案】D【解析】根据相反数、有理数的乘方、绝对值,解析化简即可解答.解决本题的关键是明确正数和负数的概念.解:A、,是正数,故错误;B、,是正数,故错误;C 、,是正数,故错误;D 、,是负数,正确.故选:D.12.【答案】B【解析】本题考查了正数和负数,涉及的知识点有绝对值的性质、有理数的乘方、相反数,属于基础题,难度较易.将每一项的式子进行化简,然后根据负数的定义进行判断即可.【解答】解:A、,是正数;B、,是负数;C、,是正数;D、,是正数,故选B.13.【答案】A【解析】本题考查了正数和负数,解决本题的关键是理解正负数的意义.根据相反意义的量可以用正负数来表示,高于海平面200米记为米,那么低于海平面300米应记为米.【解答】解:如果高于海平面200米记为米,那么低于海平面300米应记为米.故选:A.14.【答案】C【解析】设未知数,根据数轴上两点之间的距离等于这两点所表示的数的差的绝对值,列方程求解即可.数形结合是常用的方法.解:设这个数为x,由题意得,,或,解得,或.故选:C.15.【答案】C【解析】由数轴知,再根据有理数的加法法则和乘法法则计算可得.解题的关键是掌握数轴上右边的数总是大于左边的数及有理数的加法法则和乘法法则.由数轴知,则A选项错误.B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.16.【答案】C【解析】根据a与5互为相反数,可得:,据此求出等于多少即可.解:与5互为相反数,,故选:C.17.【答案】B【解析】直接利用零指数幂的性质以及相反数的定义分析得出答案.正确把握相关定义是解题关键.解:,则1的相反数是.故选:B.18.【答案】C【解析】根据绝对值性质和倒数的概念求解可得.解题的关键是掌握乘积是1的两数互为倒数.解:,即2020的倒数等于,故选:C.19.【答案】A【解析】直接利用非负数的性质进而得出x,y的值,即可得出答案.正确得出x,y的值是解题关键.解:,,,解得:,,则.故选:B.20.【答案】C【解析】直接利用绝对值的性质以及偶次方的性质得出,,进而得出,,即可得出答案.正确得出,是解题关键.解:,,,,,,,的度数为:.故选:C.21.【答案】B【解析】解:如果将“收入100元”记作“元”,那么“支出50元”应记作“元”,故选:B.22.【答案】B【解析】解:的相反数是3,故选:B.根据相反数的定义进行解答即可.23.【答案】A 【解析】解:根据题意得:,则最大的数是0,故选:A .24.【答案】D 【解析】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:带有根号且开方开不尽的数,无限不循环小数,某些含有兀的数.【解答】解:,0,31是有理数,是无理数.故选D . 25.【答案】A 【解析】解:的相反数是2020,故选:A .26.【答案】C 【解析】首先应根据负数的绝对值是它的相反数,求得,再根据有理数的减法法则进行计算.解:原式.故选:C .27.【答案】C 【解析】先根据有理数的乘方、绝对值、相反数化简,再根据负数的定义即可.解决本题的关键是先根据有理数的乘方、绝对值、相反数化简.解:,,,,负数有:,,,,负数的个数有4个,故选:C .28.【答案】B 【解析】根据各点在数轴上位置即可得,且,再根据有理数的四则运算法则判断即可. 解:由题意可知,且, ,故正确;,故错误; ,故错误;,故错误; ,故正确;,故正确.正确的有共3个. 故选:B .29.【答案】B 【解析】先化简题目中的数字即可解答本题. 解:, , , ,有理数、、、中负数有3个,故选:B .30.【答案】B 【解析】本题考查了数轴,数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.根据数轴表示数的方法得到,数a表示的点比数b表示点离原点远,则;;,.【解答】解:根据题意得,,;;,数a表示的点比数b表示点离原点远,,选项ACD正确,选项B不正确.故选B.31.【答案】D【解析】根据平方根的定义,即一个数的平方等于a,则这个数叫a的平方根.注意:一个正数的平方根有两个,并且它们互为相反数.解:,的平方根为,则的平方根是.故选:D.32.【答案】C【解析】根据立方根、平方根、算术平方根的定义解答即可.解题的关键是明确它们各自的计算方法.解:A、是25的平方根,原说法错误,故此选项不符合题意;B、4是64的立方根,原说法错误,故此选项不符合题意;C、是的立方根,原说法正确,故此选项符合题意;D、,16的平方根是,原说法错误,故此选项不符合题意.故选:C.33.【答案】D【解析】首先根据算术平方根的定义求出的值,再根据平方根的定义求2的平方根.注意此题求的是的平方根,而不是4的平方根.注意一个正数有两个平方根,它们互为相反数.解:,2的平方根为的平方根为.故选:D.34.【答案】【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:将将63800000用科学记数法表示为,故答案为.35.【答案】【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【解答】解:.故答案为.36.【答案】【解析】解:将数据1300000用科学记数法可表示为:.故答案为:.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.37.【答案】【解析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.根据确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同解答即可.【解答】解:,故答案为:.38.【答案】【解析】此题考查科学记数法、绝对值较大的数.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.根据科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.可得出答案.【解答】解:76亿,故答案是:.39.【答案】【解析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.故答案为:.40.【答案】【解析】解:,故答案为:.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.41.【答案】【解析】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:.答案:.42.【答案】解:原式.【解析】本题考查的知识点比较多:绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算的有关内容,熟练掌握且区分清楚,才不容易出错.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.43.【答案】解:原式.【解析】本题主要考查的是实数的运算,涉及有理数的乘方,绝对值,特殊角的三角函数值以及负整数指数幂的有关知识,先将给出的式子进行变形,然后再计算即可.44.【答案】解:原式.【解析】本题主要考查了实数的运算,根据题意先运用法则计算零指数幂和负整数指数幂及利用特殊角三角函数值计算最后一项,然后合并即可.45.【答案】解:原式【解析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.原式第一项利用绝对值的代数意义化简,第二、三项利用特殊角的三角函数值计算,最后一项利用负整数指数幂法则计算,最后计算加减即可得到结果.46.【答案】解:原式.【解析】本题主要考查实数的运算,零指数幂与负整数指数幂,特殊角的三角函数值,掌握法则是解题的关键.第一项根据负整数指数幂的法则计算,第二项根据零指数幂的法则计算,第三项根据特殊角的三角函数值计算,第四项根据二次根式的性质化简,然后算乘法,最后算加减即可.47.【答案】解:原式.【解析】本题主要考查了带特殊角三角函数的实数运算,考查了负整数指数幂,零指数幂、绝对值,熟练掌握运算法则是解题的关键.直接根据特殊角三角函数、绝对值的性质、负整数指数幂、零指数幂的性质化简式子,然后计算可得答案.48.【答案】解:原式.【解析】本题考查代数式的值、负整数指数幂、绝对值、零指数幂及特殊角的三角函数值,考查了学生的计算能力,培养了学生分析问题与解决问题的能力.解答此题可先求出负整指数幂,零整指数幂的值,写出角的正弦值,并化简绝对值,然后再加减即可.49.【答案】解:原式.【解析】直接利用绝对值的性质以及负整数指数幂的性质、零指数幂的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.50.【答案】解:【解析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.51.原式==1+2-2-1=0.52.原式=3+1×1-9+1=3+1-9+1=4-9+1=-4.53.原式=2-3+1-3+3=0.54.原式=2-2+1+2-2=1.55.原式=3-1×1+8-(9-2)=3-1+8-7=3.56.计算:|-2|+π0-16+327÷3+2cos45°.56.原式=2+1—4+1+1=1.。
2021年九年级数学中考复习分类专题练习:等边三角形的判定与性质(二)
2021年九年级数学中考复习分类专题:等边三角形的判定与性质(二)一.选择题1.如图,△ABC是等边三角形,DE∥BC,若AB=5,BD=3,则△ADE的周长为()A.2 B.6 C.9 D.152.在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是()A.4个B.3个C.2个D.1个3.如图,在直角三角形ABC中,∠BAC=90°,将△ABC沿直线BC向右平移得到△DEF,连结AD、AE,则下列结论中不成立的是()A.AD∥BE,AD=BE B.∠ABE=∠DEFC.ED⊥AC D.△ADE为等边三角形4.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC =()A.18°B.20°C.25°D.15°5.如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B的坐标为(2,0),点P 为线段AB外一动点且PA=1,以PB为边作等边△PBM,则当线段AM的长取到最大值时,点P的横坐标为()A.﹣1 B.C.D.6.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则cos∠AOB=()A.B.C.D.7.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6cm,DE=2cm,则BC的长为()A.4cm B.6cm C.8cm D.12cm8.如图,在平面直角坐标系中,O为坐标原点,A(0,),B(﹣1,0),平行于AB的直线l交y轴于点C,若直线l上存在点P,使得△PAB是等边三角形,则点C的坐标为()A.(1,0)或(﹣3,0)B.(0,1)或(0,﹣)C.(0,﹣)或(0,3)D.(﹣,0)或(3,)9.如图是两块完全一样的含30°角的三角板,分别记作△ABC和△A1B1C1,现将两块三角板重叠在一起,较长直角边的中点为M,绕中点M转动上面的三角板ABC,直角顶点C恰好落在三角板△A1B1C1的斜边A1B1上.当∠A=30°,B1C=2时,则此时AB的长为()A.6 B.8 C.9 D.1010.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°11.如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,图中与BD相等的线段有()A.5条B.6条C.7条D.8条12.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2二.填空题13.如图,AB=AC,DB=DC,若∠ABC为60°,BE=3cm,则AB=cm.14.如图,在四边形ABCD中,AD=CD,∠D=60°,∠A=105°,∠B=120°,则的值为.15.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB 的值为.16.已知如图等腰△ABC ,AB =AC ,∠BAC =120°,AD ⊥BC 于点D ,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面结论:①∠APO +∠DCO =30°;②△OPC 是等边三角形;③AC =AO +AP ;④S △ABC =S 四边形ADCP ;其中正确的有 (填上所有正确结论的序号)17.如图,已知△ABC 是等边三角形,D 是BC 边上的一个动点(异于点B 、C ),过点D 作DE ⊥AB ,垂足为E ,DE 的垂直平分线分别交AC 、BC 于点F 、G ,连接FD ,FE .当点D 在BC 边上移动时,有下列三个结论:①△DEF 一定为等腰三角形,②△CFG 一定为等边三角形,③△FDC 可能为等腰三角形.其中正确的是 .(填写序号)三.解答题18.如图,△ABC 为等边三角形,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E . (1)求证:△ADE 是等边三角形. (2)求证:AE =AB .19.如图①,在凸四边形中,∠ABC =30°,∠ADC =60°,AD =DC .(1)如图②,若连接AC,则△ADC的形状是三角形.你是根据哪个判定定理?答:.(请写出定理的具体内容)(2)如图③,若在四边形ABCD的外部以BC为一边作等边△BCE,并连接AE,请问:BD 与AE相等吗?若相等,请加以证明;若不相等,请说明理由.(3)在第(2)题的前提下,请你说明BD2=AB2+BC2成立的理由.20.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒时,M、N两点重合?(2)点M、N运动几秒时,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.21.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=1.将三角板中30°角的顶点D 放在AB边上移动,使这个30°角的两边分别与△ABC的边AC,BC相交于点E,F,且使DE始终与AB垂直.(1)△BDF是什么三角形?请说明理由;(2)设AD=x,CF=y,试求y与x之间的函数关系式;(不用写出自变量x的取值范围)(3)当移动点D使EF∥AB时,求AD的长.22.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA =CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=;如图2,若∠ACD=90°,则∠AFB =;如图3,若∠ACD=120°,则∠AFB=;(2)如图4,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.参考答案一.选择题1.解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠AED=∠B=∠C=60°,∴△ADE为等边三角形,∵AB=5,BD=3,∴AD=AB﹣BD=2,∴△ADE的周长为6,故选:B.2.解:①有一个外角是120°的等腰三角形是等边三角形,正确;②有两个外角相等的等腰三角形不一定是等边三角形,错误;③有一边上的高也是这边上的中线的等腰三角形不一定是等边三角形,错误;④有一个角是60°,且是轴对称的三角形是等边三角形,正确.故选:C.3.解:∵△ABC沿直线BC向右平移得到△DEF,∴AD∥BE,AD=BE,A选项的结论正确;∠ABC=∠DEF,B选项的结论正确;∵△ABC沿直线BC向右平移得到△DEF,∴AB∥DE,而AB⊥AC,∴DE⊥AC,C选项的结论正确;∵AB=DE,AD=BE,没有条件得出DE=AD,D选项的结论错误.故选:D.4.解:如图延长BD到M使得DM=DC,∵∠ADB=78°,∴∠ADM=180°﹣∠ADB=102°,∵∠ADB=78°,∠BDC=24°,∴∠ADC=∠ADB+∠BDC=102°,∴∠ADM=∠ADC,在△ADM和△ADC中,,∴△ADM≌△ADC,∴AM=AC=AB,∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°,∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=24°,∵∠CAB+∠ABC+∠ACB=180°,∴24°+2(60°+∠CBD)=180°,∴∠CBD=18°,故选:A.5.解:如图,将△MPA绕点P顺时针旋转60°,得到△BPN,连接AN.根据旋转不变性可知:PA=PN,∠MPB=∠APN=60°,AM=BN,∴△PAN是等边三角形,∴AN=PA=1,∵BN≤AN+AB,∴当N,A,B共线时,BN的值最大,此时点N在BA的延长线上,可得点P的横坐标为﹣1﹣=﹣,故选:C.6.解:根据题意得:OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选:B.7.解:延长ED交BC于M,延长AD交BC于N,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠E=60°,∴△BEM为等边三角形,∵BE=6cm,DE=2cm,∴DM=4cm,∵△BEM为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=2cm,∴BN=4cm,∴BC=2BN=8cm.故选:C.8.解:如图,∵A(0,),B(﹣1,0),∴OA=,OB=1,∴tan∠ABO=,∴∠ABO=60°,∴AB=2OB=2,在x轴正半轴上取一点P(1,0),连接PA,则△APB是等边三角形,∵直线AB的解析式为y=x+,∴直线PC的解析式为y=x﹣,∴C(0,﹣),作点P关于直线AB的对称点P′(﹣2,),过P′平行AB的直线的解析式为y=x+3,∴可得C′(0,3),综上所述,满足条件的点C坐标为(0,﹣)或(0,3).故选:C.9.解:连接C1C,∵M是AC的中点,△ABC,△A1B1C1是两块完全一样的含30°角三角板重叠在一起的,∴AM=CM=A1C1,即CM=A1M=C1M,∴∠A1=∠1,∠2=∠3,∴∠A1+∠3=∠1+∠2=90°=∠A1CC1,∴△B1C1C为直角三角形,∵∠A1=30°,∴∠B1=60°,∴∠B1C1C=30°,∴BC=B1C1=2B1C=4,∵∠A=30°,∴AB=2BC=8.故选:B.10.解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,∴△BPQ是等边三角形,∴PQ=BP=4,∵PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,即△PQC是直角三角形,∵△BPQ是等边三角形,∴∠BOQ=∠BQP=60°,∴∠BPA=∠BQC=60°+90°=150°,∴∠APC=360°﹣150°﹣60°﹣∠QPC=150°﹣∠QPC,∵∠PQC=90°,PQ≠QC,∴∠QPC≠45°,即∠APC≠135°,∴选项A、B、C正确,选项D错误.故选:D.11.解:如图,连接EF.∵等边△ABC中,AD是BC边上的高,∴∠BAD=∠CAD=30°,∵∠BDE=∠CDF=60°,∴∠ADE=∠ADF=30°,△AEF、△BDE、△CDF、△DEF都是全等的等边三角形,∴∴BD=DC=DE=BE=AE=AF=FC=FD,即图中与BD相等的线段有7条.故选:C.12.解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC===,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=.二.填空题(共5小题)13.解:在△ABD和△ACD中,∴△ABD≌△ACD.∴∠BAD=∠CAD.又∵AB=AC,∴BE=EC=3cm.∴BC=6cm.∵AB=AC,∠ABC=60°,∴△ABC为等边三角形.∴AB=6cm.故答案为:6.14.解:如图,连接AC,作CE⊥AB的延长线于点E,∵AD=CD,∠D=60°,∴△ADC是等边三角形,∴AC=AD,∠DAC=60°,∵∠DAB=105°,∴∠CAE=105°﹣60°=45°,∴∠ACE=45°,∴AE=CE,∴=,∴AC=AD=,∵∠ABC=120°,∴∠CBE=60°,∴=,BC=,∴==.故答案为.15.解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故答案为:1:2.16.解:如图,①连接OB,∵AB=AC,BD=CD,∴AD是BC垂直平分线,∴OB=OC=OP,∴∠APO=∠ABO,∠DBO=∠DCO,∵∠ABO+∠DBO=30°,∴∠APO+∠DCO=30°.故①正确;②∵△OBP中,∠BOP=180°﹣∠OPB﹣∠OBP,△BOC中,∠BOC=180°﹣∠OBC﹣∠OCB,∴∠POC=360°﹣∠BOP﹣∠BOC=∠OPB+∠OBP+∠OBC+∠OCB,∵∠OPB=∠OBP,∠OBC=∠OCB,∴∠POC=2∠ABD=60°,∵PO=OC,∴△OPC是等边三角形,故②正确;③在AB上找到Q点使得AQ=OA,则△AOQ为等边三角形,则∠BQO=∠PAO=120°,在△BQO和△PAO中,,∴△BQO≌△PAO(AAS),∴PA=BQ,∵AB=BQ+AQ,∴AC=AO+AP,故③正确;④作CH⊥BP,∵∠HCB =60°,∠PCO =60°,∴∠PCH =∠OCD ,在△CDO 和△CHP 中,,∴△CDO ≌△CHP (AAS ),∴S △OCD =S △CHP∴CH =CD ,∵CD =BD ,∴BD =CH ,在Rt △ABD 和Rt △ACH 中,,∴Rt △ABD ≌Rt △ACH (HL ),∴S △ABD =S △AHC ,∵四边形OAPC 面积=S △OAC +S △AHC +S △CHP ,S △ABC =S △AOC +S △ABD +S △OCD∴四边形OAPC 面积=S △ABC .故④错误.故答案为:①②③.17.解:∵DE 的垂直平分线分别交AC 、BC 于点F 、G ,∴FE =FD ,∴△DEF 为等腰三角形,故①正确;∵DE ⊥AB ,DE ⊥FG ,∴AB ∥FG ,∴∠FGC =∠B =60°,又∵△ABC 是等边三角形,∴∠C =60°,∴△CFG中,∠C=∠CFG=∠CGF,∴△CFG是等边三角形,故②正确;∵∠FDC>∠FGC=60°,∠C=60°,∠CFD<∠CFG=60°,∴△CDF不可能是等腰三角形,故③错误;故答案为:①②.三.解答题(共5小题)18.证明:(1)∵△ABC为等边三角形,∴∠A=∠ABC=∠C=60°.∵DE∥BC,∴∠AED=∠ABC=60°,∠ADE=∠C=60°.∴△ADE是等边三角形.(2)∵△ABC为等边三角形,∴AB=BC=AC.∵BD平分∠ABC,∴AD=AC.∵△ADE是等边三角形,∴AE=AD.∴AE=AB.19.解:(1)∵在△ADC中,AD=AC,∴△ADC是等腰三角形,又∵∠ADC=60°,∴△ADC是等边三角形(一个内角为60°的等腰三角形是等边三角形);故答案是:等边;一个内角为60°的等腰三角形是等边三角形;(2)∵由(1)知,△ADC是等边三角形,∴DC=AC,∠DCA=60°;又∵△BCE是等边三角形,∴CB=CE,∠BCE=60°,∴∠DCA+∠ACB=∠ECB+∠ACB,即∠DCB=∠ACE,∴△BDC≌△EAC(SAS),∴BD=EA(全等三角形的对应边相等);(3)证明:∵由(2)知,△BCE是等边三角形,则BC=CE,∠CBE=60°.∴∠ABE=∠ABC+∠CBE=90°.在Rt△ABE中,由勾股定理得AE2=AB2+BE2.又∵BD=AE,∴BD2=AB2+BC2.20.解:(1)设点M、N运动x秒时,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒时,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN(AAS),∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.21.解:(1)△BDF是等边三角形,证明如下:∵ED⊥AB,∠EDF=30°,∴∠FDB=60°,∵∠A=30°,∠ACB=90°,∴∠B=60°,∴∠DFB=60°,∴△BDF是等边三角形.(2)∵∠A=30°,∠ACB=90°,∴AB=2BC=2,∵CF=y,∴BF=1﹣y,又△BDF是等边三角形,∴BD=BF=1﹣y,∴x=2﹣(1﹣y)=1+y,∴y=x﹣1,(3)当EF∥AB时,∠CEF=30°,∠FED=∠EDA=90°,∴CF=EF,EF=DF,∵DF=BF=1﹣y,∴y=(1﹣y),∴y=,∴x=y+1=,即AD=.22.解:(1)如图1,CA=CD,∠ACD=60°,所以△ACD是等边三角形.∵CB=CE,∠ACD=∠BCE=60°,所以△ECB是等边三角形.∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,又∵∠ACD=∠BCE,∴∠ACE=∠BCD.∵AC=DC,CE=BC,∴△ACE≌△DCB.∴∠EAC=∠BDC.∠AFB是△ADF的外角.∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.如图2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,∴△ACE≌△DCB.∴∠AEC=∠DBC,又∵∠FDE=∠CDB,∠DCB=90°,∴∠EFD=90°.∴∠AFB=90°.如图3,∵∠ACD=∠BCE,∴∠ACD﹣∠DCE=∠BCE﹣∠DCE.∴∠ACE=∠DCB.又∵CA=CD,CE=CB,∴△ACE≌△DCB.∴∠EAC=∠BDC.∵∠BDC+∠FBA=180°﹣∠DCB=180°﹣(180﹣∠ACD)=120°,∴∠FAB+∠FBA=120°.∴∠AFB=60°.故填120°,90°,60°.(2)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE.∴∠ACE=∠DCB.∴∠CAE=∠CDB.∴∠DFA=∠ACD.∴∠AFB=180°﹣∠DFA=180°﹣∠ACD=180°﹣α.(3)∠AFB=180°﹣α;证明:∵∠ACD=∠BCE=α,则∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,则△ACE≌△DCB(SAS).则∠CBD=∠CEA,由三角形内角和知∠EFB=∠ECB=α.∠AFB=180°﹣∠EFB=180°﹣α.。
2021年哈尔滨市中考数学试题及答案解析版
2021年哈尔滨市中考数学试题及答案解析版一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤17.某车间有26名工人,每人每天能够生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人一辈子产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时刻后,到达位于灯塔P的南偏东30°方向上的B处,则现在轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时刻后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时刻t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为.12.函数y=中,自变量x的取值范畴是.13.运算2﹣的结果是.14.把多项式ax2+2a2x+a3分解因式的结果是.15.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.二次函数y=2(x﹣3)2﹣4的最小值为.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.一个不透亮的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球差不多上白球的概率为.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF 对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直截了当写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、大夫、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范畴内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你依照图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估量该中学最喜爱律师职业的学生有多少名?24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情形下,请直截了当写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.早晨,小明步行到离家900米的学校去上学,到学校时发觉眼镜忘在家中,因此他赶忙按原路步行回家,拿到眼镜后赶忙按原路骑自行车返回学校.已知小明步行从学校到家所用的时刻比他骑自行车从家到学校所用的时刻多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,假如小明骑自行车和步行的速度不变,小明步行从家到图书馆的时刻不超过骑自行车从学校到家时刻的2倍,那么小明家与图书馆之间的路程最多是多少米?26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c通过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范畴);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG通过AC的中点Q时,求点F的坐标.2021年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】绝对值.【分析】依照负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【考点】幂的乘方与积的乘方;同底数幂的乘法;完全平方公式.【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【考点】反比例函数图象上点的坐标特点.【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特点,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】依照从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,依照口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.某车间有26名工人,每人每天能够生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人一辈子产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【考点】由实际问题抽象出一元一次方程.【分析】题目差不多设出安排x名工人一辈子产螺钉,则(26﹣x)人一辈子产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就能够列出方程.【解答】解:设安排x名工人一辈子产螺钉,则(26﹣x)人一辈子产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时刻后,到达位于灯塔P的南偏东30°方向上的B处,则现在轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【考点】勾股定理的应用;方向角.【分析】依照题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则现在轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【考点】相似三角形的判定与性质.【分析】依照平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时刻后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时刻t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【考点】一次函数的应用.【分析】依照待定系数法可求直线AB的解析式,再依照函数上点的坐标特点得出当x=2时,y的值,再依照工作效率=工作总量÷工作时刻,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 5.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700 000=5.7×106.故答案为:5.7×106.12.函数y=中,自变量x的取值范畴是x≠.【考点】函数自变量的取值范畴.【分析】依照分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.运算2﹣的结果是﹣2.【考点】二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【考点】提公因式法与公式法的综合运用.【分析】第一提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【考点】扇形面积的运算.【分析】依照扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【考点】二次函数的最值.【分析】题中所给的解析式为顶点式,可直截了当得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),因此最小值为﹣4.故答案为:﹣4.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【考点】等腰直角三角形.【分析】①如图1依照已知条件得到PB=BC=1,依照勾股定理即可得到结论;②如图2,依照已知条件得到PC=BC=1,依照勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【考点】切线的性质.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判定BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判定四边形CDEF为矩形,因此CD=EF,接着利用勾股定理运算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,【分析】依据题意先用列表法或画树状图法分析所有等可能的显现结果,然后依照概率公式求出该事件的概率即可.【解答】解:列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球差不多上白球有4种结果,∴两次摸出的小球差不多上白球的概率为:=,故答案为:.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF 对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【考点】菱形的性质.【分析】第一证明△ABC,△ADC差不多上等边三角形,再证明FG是菱形的高,依照2•S△ABC=BC•FG 即可解决问题.【解答】解:∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【考点】分式的化简求值;专门角的三角函数值.【分析】先算括号里面的,再算除法,最后把a的值代入进行运算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直截了当写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【考点】作图-轴对称变换.【分析】(1)直截了当利用网格结合勾股定理得出符合题意的答案;(2)直截了当利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、大夫、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范畴内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你依照图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估量该中学最喜爱律师职业的学生有多少名?【考点】条形统计图;用样本估量总体;扇形统计图.【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比能够求出总调查学生数;(2)用总调查数减去其他几个职业类别就能够得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情形下,请直截了当写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)依照正方形的性质得出AD=B A,∠BAQ=∠ADP,再依照已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)依照AQ﹣AP=PQ和全等三角形的对应边相等进行判定分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.早晨,小明步行到离家900米的学校去上学,到学校时发觉眼镜忘在家中,因此他赶忙按原路步行回家,拿到眼镜后赶忙按原路骑自行车返回学校.已知小明步行从学校到家所用的时刻比他骑自行车从家到学校所用的时刻多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,假如小明骑自行车和步行的速度不变,小明步行从家到图书馆的时刻不超过骑自行车从学校到家时刻的2倍,那么小明家与图书馆之间的路程最多是多少米?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设小明步行的速度是x米/分,依照题意可得等量关系:小明步行回家的时刻=骑车返回时刻+10分钟,依照等量关系列出方程即可;(2)依照(1)中运算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,依照题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【考点】圆的综合题.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,因此∠BAD=∠CAD,由因为∠ABC=∠ADC,因此∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,因此BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c通过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范畴);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG通过AC的中点Q时,求点F的坐标.【考点】二次函数综合题.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,依照直线EH的解析式表示出点F的坐标和H的坐标,发觉点P和点H的纵坐标相等,则PH与x轴平行,依照平行线截线段成比例定理可得G也是PQ的中点,由此表示出点G的坐标并列式,求出t的值并取舍,运算出点F的坐标.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,因此抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。
2021年九年级中考数学复习专题-【菱形及其性质】选择题考点专练(二)(解析版)
2021年中考数学复习专题-【菱形及其性质】选择题考点专练(二)1.如图,在菱形ABCD中,对角线AC、BD相交于点O.下列结论中不一定成立的是()A.AB=AD B.AC=BD C.AC⊥BD D.OA=OC 2.如图,菱形ABCD中,对角线AC,BD相交于点O,E是AD边的中点,菱形ABCD 的周长为32,则OE的长等于()A.4 B.8 C.16 D.183.如图,平行四边形ABCD中,对角线AC、BD相交于O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①BE⊥AC;②EG=GF;③△EFG≌△GBE;④EA平分∠GEF;⑤四边形BEFG是菱形.其中正确的是()A.①②③B.①③④C.①②⑤D.②③⑤4.将等腰△ABC沿对称轴折叠,使点B与C重合,展开后得到折痕AF,再沿DE折叠,使点A与F重合,展开后得到折痕DE,则四边形ADFE是()A.平行四边形B.菱形C.矩形D.等腰梯形5.如图,▱ABCD的对角线AC、BD相交于点O,那么下列条件中,能判断▱ABCD是菱形的为()A.AO=CO B.AO=BO C.∠AOB=∠BOC D.∠BAD=∠ABC 6.如图,在四边形ABCD中,AB=1,则四边形ABCD的周长为()A.1 B.4 C.D.7.如图,两条宽度都为1的纸条,交叉重叠放在一起,它们的夹角为锐角α,它们重叠部分(图中阴影部分)的面积是,那么sinα的值为()A.B.C.D.8.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C、D为圆心,OC的长为半径,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C、D两点之间距离为()A.10 B.12 C.13 D.9.如图,AC、BD是菱形ABCD的对角线,E、F分别是边AB、AD的中点,连接EF,EO,FO,则下列结论错误的是()A.EF=DO B.EF⊥AOC.四边形EOFA是菱形D.四边形EBOF是菱形10.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为()A.2 B.3 C.4 D.511.如图,一个菱形被分割成4个直角三角形和1个矩形后仍是中心对称图形.若只知道下列选项中的一个角度,就一定能算出这个矩形的长与宽之比的是()A.∠BAF B.∠CBGC.∠BAD D.以上选项都不可以12.如图是以KL所在的直线为对称轴的轴对称图形,六边形EFGHLK的各个内角相等,记四边形HCH′L、四边形EKE′A、△BGF的周长分别为C1、C2、C3,且C1=2C2=4C3,已知FG=LK,EF=6,则AB的长是()A.9.5 B.10 C.10.5 D.1113.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8cm B.5cm C.9.6cm D.10cm14.如图,在直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则菱形OACB的边长为()A.3 B.C.5 D.15.如图,在菱形ABCD中,∠ABC=60°,点P在对角线BD上(不与点B,D重合),PE∥BC,PF∥DC.设AB=m,AP=a,PF=b,PE=c,下列表述正确的是()A.c2+b2=a2B.a+b=c+mC.c2+b2﹣bc=a2D.a+b+c≥2m16.如图,在平面直角坐标系中,四边形OBCD是菱形,OB=OD=1,∠BOD=60°将菱形OBCD绕点O旋转任意角度,得到菱形OB1C1D1,则点C1的纵坐标的最小值为()A.B.﹣1 C.﹣D.117.如图,在菱形ABCD中,∠A=60°,AD=8.P是AB边上的一点,E,F分别是DP,BP的中点,则线段EF的长为()A.8 B.2C.4 D.218.如图,△ABC是边长为2的等边三角形,将△ABC沿射线BC向右平移到△DCE,连接AD、BD,下列结论错误的是()A.AD=BC B.BD⊥DEC.四边形ACED是菱形D.四边形ABCD的面积为419.如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形;④BD⊥DE.其中正确的个数是()A.1 B.2 C.3 D.420.在小正方形组成网格图中,四边形ABCD的顶点都在格点上,如图所示.则下列结论错误的是()A.AD∥BCB.DC=ABC.四边形ABCD是菱形D.将边AD向右平移3格,再向上平移7格就与边BC重合参考答案1.解:∵四边形ABCD是菱形,∴AB=AD,OA=OC,AC⊥BD,无法得出AC=BD,故选项B符合题意,选项A、C、D不符合题意,故选:B.2.解:∵菱形ABCD的周长为32,∴AB=8,∵E为AD边中点,O为BD的中点∴OE=AB=4.故选:A.3.解:∵四边形ABCD是平行四边形∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误,∵BG=EF,AB∥CD∥EF∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=AB,∴∠BAC=30°与题意不符合故⑤错误故选:B.4.解:∵等腰△ABC沿对称轴折叠后点B与C重合,∴AF⊥BC∵沿DE折叠,使点A与F重合,∴ED∥CB∴AF⊥DE又∵点A与F重合,点B与C重合,∴AF与DE互相平分,∵AF与DE是四边形AEFD的对角线,AF与DE垂直且平分,∴四边形AEFD是菱形.故选:B.5.解:选项A,由平行四边形的性质可知,对角线互相平分,故A不符合题意;选项B,由▱ABCD中AO=BO可推得AC=BD,可以证明▱ABCD为矩形,但不能判定▱ABCD为菱形,故B不符合题意;选项C,当∠AOB=∠BOC时,由于∠AOB+∠BOC=180°,故∠AOB=∠BOC=90°,而对角线互相垂直的平行四边形是菱形,故C符合题意;选项D,由平行四边形的性质可知,∠BAD+∠ABC=180°,故当∠BAD=∠ABC时,∠BAD=∠ABC=90°,从而可判定▱ABCD为矩形,故D不符合题意.综上,只有选项C可以判定▱ABCD是菱形.故选:C.6.解:由图可知:AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形,∴四边形ABCD的周长=4×1=4,故选:B.7.解:如图,过点A作AE⊥BC,AF⊥CD,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵四边形ABCD的面积是1.5,∴BC×AE=CD×AF,且AE=AF=1,∴BC=CD,∴四边形ABCD是菱形,∴AD=CD,∵1.5=CD×AF,∴CD=,∴AD=CD=,∴sinα==,故选:B.8.解:由作图过程可知:OC=OD,OC=CE=DE,∵OC=OD=DE=CE,∴四边形ODEC是菱形.如图,连接CD交OE于点F,∵四边形OCED是菱形,∴OE⊥CD,OF=FE=OE=8,OC=10,∴CF=DF=6,∴CD=12.故选:B.9.解:∵菱形ABCD,∴BO=OD,BD⊥AC,∵E、F分别是边AB、AD的中点,∴2EF=BD=BO+OD,EF∥BD,∴EF=DO,EF⊥AO,∵E是AB的中点,O是BD的中点,∴2EO=AD,同理可得:2FO=AB,∵AB=AD,∴AE=OE=OF=AF,∴四边形EOFA是菱形,∵AB≠BD,∴四边形EBOF是平行四边形,不是菱形,故选:D.10.解:根据作图,AC=BC=OA,∵OA=OB,∴OA=OB=BC=AC,∴四边形OACB是菱形,∵AB=2cm,四边形OACB的面积为4cm2,∴AB•OC=×2×OC=4,解得OC=4cm.故选:C.11.解:如图,连接AC,BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,连接EG,FH,∵一个菱形被分割成4个直角三角形和1个矩形后仍是中心对称图形,∴EG与FH的交点也是点O,∵四边形EFGH是矩形,∴∠HEF=∠AFB=∠EFG=90°,∴∠AOB=∠AFB=90°,∴点A,O,F,B共圆,∴∠AFO=∠ABO,∵∠AOB=∠HEF=90°,∴△AOB∽△HEF,∴,∴,在Rt△AOB中,tan∠BAO=,∵AC是菱形的对角线,∴∠BAO=,∴=tan,故选:C.12.解:∵六边形EFGHLK的各个内角相等,∴该六边形的每个内角为120°,每个外角都是60°,∴△BFG,△AEK,△CHL都是等边三角形,∴∠B=∠BAC=∠ACB=60°,BF=FG,AE=AK,CL=HL,∴△ABC是等边三角形,∴AB=AC,即BF+FE+AE=AK+KL+CL,又∵BF=FG=KL,∴EF=CL=6=CH,由轴对称可得,四边形HCH′L、四边形EKE′A都是菱形,∵C1=2C2,∴AE=CH=3,又∵2C2=4C3,∴C3=C2=×12=6,∴BF=×6=2,∴AB=BF+EF+AE=2+6+3=11,故选:D.13.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8.故选:A.14.解:连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(4,0),点B的纵坐标是﹣1,∴OC=4,BD=AD=1,∴OD=CD=2,∴菱形OACB的边长为=.故选:D.15.解:如图,连接PC,过点P作PH⊥BC,交BC延长线于点H,∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP,且PD=PD,∴△APD≌△CPD(SAS),∴AP=CP=a,∵PE∥BC,PF∥DC,∴四边形PECF是平行四边形,∴PE=CF=c,∵PF∥DC∥AB,∴∠PFC=∠ABC=60°,∵PH⊥BC,∴∠FPH=30°,∴FH=,PH=FH=b,∴CH=﹣c,∵PC2=CH2+PH2,∴a2=(﹣c)2+(b)2,∴c2+b2﹣bc=a2,故选:C.16.解:如图,连接OC,过点C作CE⊥x轴,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,且CE⊥OB于E,∴BE=BC=,CE=,∴OC===∴当点C1在y轴上时,点C1的纵坐标有最小值为﹣,故选:C.17.解:如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵∠A=60°,∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴EF=BD=4.故选:C.18.解:∵△ABC沿射线BC向右平移到△DCE,∴AD=BC,AD∥BC,故选项A正确;∴四边形ABCD为平行四边形,又△ABC为等边三角形,∴AB=BC,∴四边形ABCD为菱形,∴AC⊥BD,由平移可知:AC∥DE,则DE⊥BD,故选项B正确;∵△ABC沿射线BC向右平移到△DCE,∴AD=CE,AD∥CE,∴四边形ACED为平行四边形,由平移可得△DCE也为等边三角形,∴DE=CE,∴四边形ACED为菱形,选项C正确;过A作AF⊥BC,如图所示:∵△ABC为边长为2的等边三角形,∴BF=CF=BC=1,在Rt△ABF中,AB=2,BF=1,根据勾股定理得:AF==,则S 菱形ABCD=BC•AF=2,选项D错误,则原题结论错误的选项为D.故选:D.19.解:∵△ABC、△DCE是等边三角形,∴∠ACB=∠DCE=60°,AC=CD,∴∠ACD=180°﹣∠ACB﹣∠DCE=60°,∴△ACD是等边三角形,∴AD=AC=BC,故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.∵四边形ABCD是平行四边形,BA=BC,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∥DE,∴∠BDE=∠COD=90°,∴BD⊥DE,故④正确,综上可得①②③④正确,共4个.故选:D.20.解:A、由图形可知:BC和AD是连接7×2的图形的对角线,即AD∥BC,故本选项错误;B、设小正方形的边长是1,由勾股定理得:DC==,AB=,即AB=CD,故本选项错误;C、由图形可知:AD∥BC,CD∥AB,即四边形ABCD是菱形,但BC==≠AB,故本选项正确;D、将边AD向右平移3格,再向上平移7格就与边BC重合,正确,故本选项错误;故选:C.。
备战2021年四川中考数学必考专题 22 解直角三角形(解析版)
备战2021年四川中考数学必考专题22 解直角三角形一.选择题(共3小题)1.(2019•绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.B.C.D.【点拨】根据正方形的面积公式可得大正方形的边长为5,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【解析】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5cosθ﹣5sinθ=5,∴cosθ﹣sinθ,∴(sinθ﹣cosθ)2.故选:A.【点睛】本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.2.(2019•凉山州)如图,在△ABC中,CA=CB=4,cos C,则sin B的值为()A.B.C.D.【点拨】过点A作AD⊥BC,垂足为D,在R t△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD;在Rt△ABD中,BD=CB﹣CD=3,AD,∴AB2,∴sin B.故选:D.【点睛】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB 的长是解题的关键.3.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x =﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.【点拨】如图,设直线x=﹣5交x轴于K.由题意KD CF=5,推出点D的运动轨迹是以K 为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.【解析】解:如图,设直线x=﹣5交x轴于K.由题意KD CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO,∴,∴OE,∴AE,作EH⊥AB于H.∵S△ABE•AB•EH=S△AOB﹣S△AOE,∴EH,∴AH,∴tan∠BAD,故选:B.【点睛】本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二.填空题(共4小题)4.(2019•雅安)在Rt△ABC中,∠C=90°,AB=5,BC=4,则sin A=.【点拨】根据正弦的定义解答.【解析】解:在Rt△ABC中,sin A,故答案为:.【点睛】本题考查的是锐角三角函数的定义,锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.5.(2019•绵阳)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.【点拨】过点A作AD⊥BC,垂足为D,通过解直角三角形及勾股定理可求出AD,BD,CD的长,进而可得出BC的长,再利用三角形的面积公式可求出△ABC的面积.【解析】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴CD5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC BC•AD=75或25.故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD,BC的长度是解题的关键.6.(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【点拨】给图中相关点标上字母,连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理,可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE a,利用勾股定理可得出AD的长,再结合余弦的定义即可求出cos(α+β)的值.【解析】解:给图中相关点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a a,∴AD a,∴cos(α+β).故答案为:.【点睛】本题考查了解直角三角形、等边三角形的性质以及规律型:图形的变化类,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.7.(2019•乐山)如图,在△ABC中,∠B=30°,AC=2,cos C.则AB边的长为.【点拨】如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C,∴,∴CH,∴AH,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH,故答案为.【点睛】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三.解答题(共11小题)8.(2019•内江)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC为多少米?(结果保留根号)【点拨】作AE⊥BC于E,设BE=x,利用正切的定义用x表示出EC,结合题意列方程求出x,计算即可.【解析】解:作AE⊥BC于E,则四边形ADCE为矩形,∴AD=CE,设BE=x,在Rt△ABE中,tan BAE,则AE x,∵∠EAC=45°,∴EC=AE x,由题意得,BE+CE=120,即x+x=120,解得,x=60(1),∴AD=CE x=180﹣60,∴DC=180﹣60,答:两座建筑物的地面距离DC为(180﹣60)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.9.(2019•泸州)如图,海中有两个小岛C,D,某渔船在海中的A处测得小岛D位于东北方向上,且相距20nmile,该渔船自西向东航行一段时间到达点B处,此时测得小岛C恰好在点B的正北方向上,且相距50nmile,又测得点B与小岛D相距20nmile.(1)求sin∠ABD的值;(2)求小岛C,D之间的距离(计算过程中的数据不取近似值).【点拨】(1)过D作DE⊥AB于E,解直角三角形即可得到结论;(2)过D作DF⊥BC于F,解直角三角形即可得到结论.【解析】解:(1)过D作DE⊥AB于E,在Rt△AED中,AD=20,∠DAE=45°,∴DE=20sin45°=20,在Rt△BED中,BD=20,∴sin∠ABD;(2)过D作DF⊥BC于F,在Rt△BED中,DE=20,BD=20,∴BE40,∵四边形BFDE是矩形,∴DF=EB=40,BF=DE=20,∴CF=BC﹣BF=30,在Rt△CDF中,CD50,∴小岛C,D之间的距离为50nmile.【点睛】此题考查了解直角三角形的应用﹣方向角问题,关键是根据题意画出图形,作出辅助线,构造直角三角形,“化斜为直”是解三角形的基本思路,常需作垂线(高),原则上不破坏特殊角.10.(2019•广元)如图,某海监船以60海里/时的速度从A处出发沿正西方向巡逻,一可疑船只在A的西北方向的C处,海监船航行1.5小时到达B处时接到报警,需巡査此可疑船只,此时可疑船只仍在B的北偏西30°方向的C处,然后,可疑船只以一定速度向正西方向逃离,海监船立刻加速以90海里/时的速度追击,在D处海监船追到可疑船只,D在B的北偏西60°方向.(以下结果保留根号)(1)求B,C两处之间的距离;(2)求海监船追到可疑船只所用的时间.【点拨】(1)作CE⊥AB于E,则∠C EA=90°,由题意得:AB=60×1.5=90,∠CAB=45°,∠CBN=30°,∠DBN=60°,得出△ACE是等腰直角三角形,∠CBE=60°,得出CE=AE,∠BCE=30°,由直角三角形的性质得出CE BE,BC=2BE,设BE=x,则CE x,AE=BE+AB =x+90,得出方程x=x+90,解得:x=4545,得出BC=2x=9090即可;(2)作DF⊥AB于F,则DF=CE x=135+45,∠DBF=30°,由直角三角形的性质得出BD=2DF=270+90,即可得出结果.【解析】解:(1)作CE⊥AB于E,如图1所示:则∠CEA=90°,由题意得:AB=60×1.5=90(海里),∠CAB=45°,∠CBN=30°,∠DBN=60°,∴△ACE是等腰直角三角形,∠CBE=60°,∴CE=AE,∠BCE=30°,∴CE BE,BC=2BE,设BE=x,则CE x,AE=BE+AB=x+90,∴x=x+90,解得:x=4545,∴BC=2x=9090;答:B,C两处之间的距离为(9090)海里;(2)作DF⊥AB于F,如图2所示:则DF=CE x=135+45,∠DBF=90°﹣60°=30°,∴BD=2DF=270+90,∴海监船追到可疑船只所用的时间为3(小时);答:海监船追到可疑船只所用的时间为(3)小时.【点睛】本题考查了解直角三角形的应用、方向角、直角三角形的性质;正确作出辅助线是解题的关键.11.(2019•眉山)如图,在岷江的右岸边有一高楼AB,左岸边有一坡度i=1:2的山坡CF,点C与点B在同一水平面上,CF与AB在同一平面内.某数学兴趣小组为了测量楼AB的高度,在坡底C处测得楼顶A的仰角为45°,然后沿坡面CF上行了20米到达点D处,此时在D处测得楼顶A的仰角为30°,求楼AB的高度.【点拨】由i EC2=CD2,解得DE=20m,EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,则四边形DEBG、四边形DECH、四边形BCHG都是矩形,证得AB =BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,tan∠ADG,代入即可得出结果.【解析】解:在Rt△DEC中,∵i,DE2+EC2=CD2,CD=20,∴DE2+(2DE)2=(20)2,解得:DE=20(m),∴EC=40m,过点D作DG⊥AB于G,过点C作CH⊥DG于H,如图所示:则四边形DEBG、四边形DECH、四边形BCHG都是矩形,∵∠ACB=45°,AB⊥BC,∴AB=BC,设AB=BC=xm,则AG=(x﹣20)m,DG=(x+40)m,在Rt△ADG中,∵tan∠ADG,∴,解得:x=50+30.答:楼AB的高度为(50+30)米.【点睛】本题考查了解直角三角形的应用﹣方向角问题,通过解直角三角形得出方程是解题的关键.12.(2019•资阳)如图,南海某海域有两艘外国渔船A、B在小岛C的正南方向同一处捕鱼.一段时间后,渔船B沿北偏东30°的方向航行至小岛C的正东方向20海里处.(1)求渔船B航行的距离;(2)此时,在D处巡逻的中国渔政船同时发现了这两艘渔船,其中B渔船在点D的南偏西60°方向,A渔船在点D的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)【点拨】(1)由题意得到∠CAB=30°,∠ACB=90°,BC=20,根据直角三角形的性质即可得到结论;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,得到四边形AEBC和四边形BEHG是矩形,根据矩形的性质得到BE=GH=AC=20,AE=BC=20,设BG=EH=x,求得AH=x+20,解直角三角形即可得到结论.【解析】解:(1)由题意得,∠CAB=30°,∠ACB=90°,BC=20,∴AB=2BC=40海里,答:渔船B航行的距离是40海里;(2)过B作BE⊥AE于E,过D作DH⊥AE于H,延长CB交DH于G,则四边形AEBC和四边形BEHG是矩形,∴BE=GH=AC=20,AE=BC=20,设BG=EH=x,∴AH=x+20,由题意得,∠BDG=60°,∠ADH=45°,∴x,DH=AH,∴20x=x+20,解得:x=20,∴BG=20,AH=20+20,∴BD40,AD AH=2020,答:中国渔政船此时到外国渔船B的距离是40海里,到外国渔船A的距离是(2020)海里.【点睛】本题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.13.(2019•巴中)某区域平面示意图如图所示,点D在河的右侧,红军路AB与某桥BC互相垂直.某校“数学兴趣小组”在“研学旅行”活动中,在C处测得点D位于西北方向,又在A处测得点D位于南偏东65°方向,另测得BC=414m,AB=300m,求出点D到AB的距离.(参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【点拨】过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,根据BE=DF=CF,列方程可得结论.【解析】解:如图,过点D作DE⊥AB于E,过D作DF⊥BC于F,则四边形EBFD是矩形,设DE=x,在Rt△ADE中,∠AED=90°,∵tan∠DAE,∴AE,∴BE=300,又BF=DE=x,∴CF=414﹣x,在Rt△CDF中,∠DFC=90°,∠DCF=45°,∴DF=CF=414﹣x,又BE=DF,即:300414﹣x,解得:x=214,故:点D到AB的距离是214m.【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确根据三角函数列方程是解题的关键.14.(2019•遂宁)汛期即将来临,为保证市民的生命和财产安全,市政府决定对一段长200米且横断面为梯形的大坝用土石进行加固.如图,加固前大坝背水坡坡面从A至B共有30级阶梯,平均每级阶梯高30cm,斜坡AB的坡度i=1:1;加固后,坝顶宽度增加2米,斜坡EF的坡度i=1:,问工程完工后,共需土石多少立方米?(计算土石方时忽略阶梯,结果保留根号)【点拨】过A作AH⊥BC于H,过E作E G⊥BC于G,于是得到四边形EGHA是矩形,求得EG=AH,GH=AE=2,得到AH=BH,求得BG=BH﹣HG,得到FG,根据梯形的面积公式求得梯形ABFE的面积乘以大坝的长度即可得到结论.【解析】解:过A作AH⊥BC于H,过E作EG⊥BC于G,则四边形EGHA是矩形,∴EG=AH,GH=AE=2,∵斜坡AB的坡度i=1:1,∴AH=BH=30×30=900cm=9米,∴BG=BH﹣HG=7,∵斜坡EF的坡度i=1:,∴FG=9,∴BF=FG﹣BG=97,∴S梯形ABFE(2+97)×9,∴共需土石为200=900(95)立方米.【点睛】此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.15.(2019•成都)2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C(结的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)【点拨】作CE⊥AB于E,根据矩形的性质得到CE=AB=20,CD=BE,根据正切的定义求出AE,结合图形计算即可.【解析】解:作CE⊥AB于E,则四边形CDBE为矩形,∴CE=AB=20,CD=BE,在Rt△ADB中,∠ADB=45°,∴AB=DB=20,在Rt△ACE中,tan∠ACE,∴AE=CE•tan∠ACE≈20×0.70=14,∴CD=BE=AB﹣AE=6,答:起点拱门CD的高度约为6米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.(2019•宜宾)如图,为了测得某建筑物的高度AB,在C处用高为1米的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A的仰角为60°.求该建筑物的高度AB.(结果保留根号)【点拨】设AM=x米,根据等腰三角形的性质求出FM,利用正切的定义用x表示出EM,根据题意列方程,解方程得到答案.【解析】解:设AM=x米,在Rt△AFM中,∠AFM=45°,∴FM=AM=x,在Rt△AEM中,tan∠AEM,则EM x,由题意得,FM﹣EM=EF,即x x=40,解得,x=60+20,∴AB=AM+MB=61+20,答:该建筑物的高度AB为(61+20)米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.17.(2019•广安)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据: 1.4, 1.7)【点拨】(1)由∠HFE=45°知HE=EF=10,据此得BH=BE+HE=1.5+10=11.5;(2)设DE=x米,则DG x米,由∠GFD=45°知GD=DF=EF+DE,据此得x=10+x,解之求得x的值,代入CG=DG+DC x+1.5计算可得.【解析】解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DE tan60°DE,设DE=x米,则DG x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=55,∴CG=DG+DC x+1.5(55)+1.5=16.5+525,答:教学楼CG的高约为25米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18.(2019•达州)渠县賨人谷是国家AAAA级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD,想法测出了尾部C看头顶B的仰角为40°,从前脚落地点D看上嘴尖A的仰角刚好60°,CB=5m,CD=2.7m.景区管理员告诉同学们,上嘴尖到地面的距离是3m.于是,他们很快就算出了AB的长.你也算算?(结果精确到0.1m.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84. 1.41, 1.73)【点拨】作BF⊥CE于F,根据正弦的定义求出BF,利用余弦的定义求出CF,利用正切的定义求出DE,结合图形计算即可.【解析】解:作BF⊥CE于F,在Rt△BFC中,BF=BC•sin∠BCF≈3.20,CF=BC•cos∠BCF≈3.85,在Rt△ADE中,DE 1.73,∴BH=BF﹣HF=0.20,AH=EF=CD+DE﹣CF=0.58,由勾股定理得,AB0.6(m),答:AB的长约为0.6m.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.。