九年级数学平面向量数量积的运算律
初中数学教案认识平面向量的数量积与向量积
初中数学教案认识平面向量的数量积与向量积初中数学教案认识平面向量的数量积与向量积【导言】本节课由于平面向量的乘法有两种不同的定义,所以有了两个不同的乘法运算,即数量积和向量积。
这两个乘法运算都有其独特的性质和应用场景。
本节课将重点讲解平面向量的数量积和向量积的概念、性质和计算方法。
【一、数量积的概念】1.1 定义在平面上,给定两个向量a和a,称它们的数量积为a·a,等于向量a和向量a的模的乘积与它们之间夹角的余弦的乘积。
用公式表示为:a·a = |a|·|a|·cos a,其中,a是向量a和向量a的夹角,a·a的结果是一个实数。
1.2 性质数量积有以下重要性质:(1)交换律:a·a = a·a;(2)数量积的值与向量的顺序无关,只与向量的大小和夹角的余弦值有关;(3)若两个向量的数量积为0,即a·a = 0,则称向量a和向量a垂直。
【二、数量积的计算】2.1 坐标表示法在平面直角坐标系中,设向量a的坐标为(a1, a1),向量a的坐标为(a2, a2),根据数量积的定义可以推出计算公式:a·a = a1·a2 + a1·a2。
2.2 几何意义数量积的绝对值等于向量a在向量a上的投影长度乘以向量a的模。
利用这个性质可以帮助我们计算向量的数量积。
【三、向量积的概念】3.1 定义在平面上,给定两个向量a和a,称它们的向量积为a×a,等于向量a和向量a的模的乘积与它们夹角的正弦的乘积。
用公式表示为:a×a = |a|·|a|·sin a,其中,a是向量a和向量a的夹角,a×a的结果是一个向量。
3.2 性质向量积有以下重要性质:(1)反交换律:a×a = -a×a;(2)向量积的结果是垂直于向量a和向量a所在的平面的一个向量;(3)若两个向量的向量积为0,则称向量a和向量a共线。
平面向量的数量积及其运算律
平面向量的数量积及其运算律在物理课中,我们学过功的概念:即一个物体在力F 的作用下产生位移s ,那么力F 所做的功:W =|F ||S |cos θ.即功等于运动距离乘以力在运动方 向上的投影.如图1.4—1.由此我们引出向量数量积的概念.一.数量积 【向量的夹角】已知两非零向量a 和b .在平面上任取一点O,作OA ⃗⃗⃗⃗⃗ =aa ,OB ⃗⃗⃗⃗⃗ =ab.则∠AOB =θ(0≤θ≤π).叫做向量a 与b 的夹角.想一想:你能指出下列图中两向量的夹角吗?参考答案:①的夹角为0,②OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ 的夹角为π,③OA ⃗⃗⃗⃗⃗ 与OB⃗⃗⃗⃗⃗ 的夹角是∠AOB ,④OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ 的夹角是θ.两向量夹角的取值范围[0,π].注:如果向量a 与b 的夹角是 π2,就称a 与b 垂直,记作a ⊥b .【平面向量的数量积】已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作:a ·b ,即a ·b =|a ||b |cos θ. 并规定0∙a =0.这里“·”表示向量的一种乘法运算,称为点乘.【数量积的几何意义】 我们把|b|cos θ (|a |cos θa 叫做向量b 在a 方向上(a 在b 方向上)的投影.你能从图中作出|b |cos θ的几何图形吗?①投影不是向量,是数量,它可以是任意的实数. ②当θ为锐角时投影为正值,数量积为正值.当θ为钝角时投影为负值,数量积为负值;当θ为直角时投影为0,数量积为0; 当θ = 0时,a 与b 同向,投影为|b |,a ·b =|a ||b |, 当θ=π时,a 与b 反向,投影为 -|b |,a ·b = -|a ||b |.a ·b 的几何意义:向量a 与b 的数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影(|b |cos θ的积.【数量积的性质】 ①a ⊥b ⇔a ⋅b =0.②当a 与b 同向时,a ·b =|a ||b |,当a 与b 反向时,a ·b = -|a ||b |.特别地a ·a=|aaa|2. ③|a ⋅b |≤|a |⋅|b |.图1.4—1 图1.4—2图1.4—3④设a 是非零向量,e 是单位向量,θ是a 与e 的夹角,则e ⋅a =a ⋅e =|a |cos θ. ⑤cos θ=a·b|a ||b|.【数量积的运算律】已知向量a 、b 、c 和实数λ,则: ①a·b = b·a .(交换律). ②(λa ·b =λ(a·b )=a·(λb ).③(a +b ·c=a·c+b·c . (分配律).注意:在实数中,乘法运算满足结合律.向量的数量积没有结合律可言.原因是(a·b )·c 包含的是两种不同的运算,即a· b 是数量积,再乘以c 为实数与向量的积.对于数量积的运算律,其中①、②读者可自证.下面就③给出相应的证明: 过a 、b ,a +b 的终点分别向c 引垂线,垂足分别是A 、B 、D. 如图1.4—4.a 、b ,a +b 在c 上的投影分别为OA 、OB 、OD. 又 OD=OB+BD.现证 BD=OA.过a +b 的终点引c 的平行线 交BE 于F.易知ΔEFG ≅ΔHAO ,⇒OA=FG,而FG=BD, 故OA=BD.⇒ OD=OA+OB,⇒ (a +b ·c=a·c+b·c .【特别提醒】从实数的运算到向量的数量积运算,发生了如下几个主要变化: (1)在实数运算中,若a ⋅b=0,则a=0或b=0; 在数量积中,若a ⋅b=0,则a=0或a b=0或b a ⊥. (2)在实数运算中,已知实数a 、b 、c(b ≠0),则ab=bc,⇒ a=c.在数量积中,若b 0≠,且a ⋅ba=ab ⋅c 则 aa=aca 吗? 如右图1.4—5:a ⋅ba=a|a||b|c os β = |b||OA|, b ⋅ca=a|b||c|cos α = |b||OA| ⇒aa ⋅ba=ab ⋅c ,但a ≠ac .(3)在实数运算中,乘法运算满足结合律(a ⋅b)c = a(b ⋅c). 在数量积中,没有结合律可言.a (4)在实数运算中,|ab|=|a||b|. 在数量积中,|a ⋅b |≤|a |⋅|b |.想一想①:已知向量|a |=2,|b |=1,a 、b 的夹角为600,则|a +b ||a -b |=|a 2-b 2|=3吗?【数量积的坐标形式】设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.二.数量积性质的应用平面向量的数量积及性质的应用是非常广泛的,利用它们可以解决许多问题.【性质2的应用】与两非零向量a 、b 垂直的问题可通过a ·b =0来处理.例1.(1)已知向量a ⊥b ,且|a |=2,|b |=3,若(3a +2b )·(k a -b )=0,求k 的值.EOGH A BD Fc baa+b图1.4—4O 图1.4—5 a b cA(2)设c 、d 是非零的向量,d =(b ·c )·a -(a ·c )·b ,则c ∥d ,还是c ⊥d ? (3)已知a 、b 、c 为非零的向量,若|b -a -c |=|a -b -c |且|a +b +c |=|a +b -c |.求证:a ⊥c . 解(1) ∵ a ⊥b , ∴ a ·b =0 . 由(3a +2b )·(k a -b )=0,⇒3k a 2-2b 2=0.∵ |a |=2,|b |=3 ,得k= 32.(2) ∵ d =(b ·c )·a -(a ·c )·b ,⇒a d ·c =[(b ·c )·a -(a ·c )·b ]·c =(b ·c ·a ·c -(a ·c ·b·c =0.⊥ d ⊥c.(3) ∵ |b -a -c |=|a -b -c | ⇒(b -a -c 2=(a -b -c 2,⇒a ·c -b·c =0. ①由|a +b +c |=|a +b -c | 类似地,⇒a a ·c +ab·c =0. ② ⊥ 由①、② ⇒a a ·c =0 ⇒a ⊥c .例2.如图1.4—6. AD 、BE 、CF 为△ABC 的三条高,求证:AD 、BE 、CF 交于一点H.证明:设BE,CF 交于一点H ,AB ⃗⃗⃗⃗⃗ =a a ,AC ⃗⃗⃗⃗⃗ =a b ,AH ⃗⃗⃗⃗⃗ =a h .则BH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =h -a ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =h -b , BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b -a . ∵ BH ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ , CH ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ∴ (h -a )a·b =0,且(h -b )a·a =0,⇒ (h -a )a·b =(h -b )a·a ,⇒(b -a )a·h =0. ∴ AH ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ 又∵ 点D 在AH 的延长线上,∴ AD 、BE 、CF 相交于一点.例3. 已知a =(√3,-1),b =(12,√32).设存在实数k 、t 使得x =a +(t 2-3)b ,y = -k a +t b ,且x ⊥y ,试求k+t 2t的值域.解:∵ a =(√3,-1),b =(12,√32) , ∴ a ·b =0且|a |=2,|b |=1.a又∵ x ⊥y ,∴x ·y =0,⇒-k a 2+t(t 2-3)b 2=0,⇒k =t(t 2−3)4,⇒k+t 2t=t 2+4t−34=(t+2)2−74(t ≠0). ⇒k+t 2t∈[−74,−34)∪(−34,+∞).说明:此题若采用坐标运算来处理,而不注意灵活地利用a ·b =0,则计算量会增加许多.一般来说,当题设条件中有|a |、|b |为定值,且a ·b =0时.还是采用本题的解法为好.想一想②:设向量a 、b 、c 的模均为1,它们两两间的夹角均为1200,求证:(a -b ⊥c.【性质3的应用】与模有关的问题可通过a 2=|a|2,|a|=√a 2=√x 2+y 2来处理.例4.利用向量证明:平行四边形的对角线的平方和等于四边的平方和.已知:已知平行四边形ABCD.如图1.4—7.求证:2(AB 2+AD 2)=AC 2+BD 2.证明:设AB ⃗⃗⃗⃗⃗ =a . AD ⃗⃗⃗⃗⃗ = b . ∵AC ⃗⃗⃗⃗⃗ =a+b ,BD ⃗⃗⃗⃗⃗ =aa -b , ∴ AC 2+BD 2=|AC ⃗⃗⃗⃗⃗ |2+|BD ⃗⃗⃗⃗⃗ |2=(a+b )2+(a -b )2=2(|a |2+|b |2)=2(AB 2+DA 2), ∴ 2(AB 2+AD 2)=AC 2+BD 2.例5.利用向量证明余弦定理:在△ABC 中,求证:a 2=b 2+c 2-2bc·cosA .证明:如图1.4—8. ∵ BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ , ∴ cosA |AB ||AC |2AC )AB -AC (BC 2222-+==AB , 即:a 2=b 2 +c 2-2bccosA. 同理可得: b 2= a 2+c 2-2accosB ; c 2= a 2+b 2-2abcosC.AB CD E F H 图1.4—6 A BC D 图1.4—7ABCc ab图1.4—8例6.已知向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,满足:OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,且|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC⃗⃗⃗⃗⃗ |=1.求证:△ABC 是 正三角形. 思路1.由OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,⇒ OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ = -OC ⃗⃗⃗⃗⃗ =OD ⃗⃗⃗⃗⃗ , ⇒四边形OADB 是菱形,⇒△AOD 是正三角形, ⇒∠AOB=1200,同理可得:∠AOC=∠BOC=1200,⇒△ABC 是正三角形.思路2.由OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0 ,⇒ O 为重心. 由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC⃗⃗⃗⃗⃗ ||=1,⇒O 为外心. ∴ △ABC 是正三角形. 思路3.由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |=1及|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |2+|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ |2=2(|OA ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2), ⇒|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2=4,⇒ |AB ⃗⃗⃗⃗⃗ |2=3,⇒AB =√3. 同理可得:BC=AC=.√3 ⇒ △ABC 是正三角形. 思路4.由OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,⇒ OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ = -OC ⃗⃗⃗⃗⃗ ,⇒ OA ⃗⃗⃗⃗⃗ 2+OB ⃗⃗⃗⃗⃗ 2+2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OC⃗⃗⃗⃗⃗ 2 , ⇒ cos ∠AOB=−12,⇒ ∠AOB=1200. 同理可得:∠AOC=∠BOC=1200.⇒△ABC 是正三角形.想一想③:a a aa a a 设AB ⃗⃗⃗⃗⃗ =c ,BC ⃗⃗⃗⃗⃗ =a ,CA ⃗⃗⃗⃗⃗ =b.若a·b=b ·c=a·c ,求证:△ABC 是正三角形.【性质4的应用】与两向量的夹角有关的问题.可通过cos θ=a⋅b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22来处理.例7.已知向量a 、b 、c 两两所成的角都相等,且|a |=1,|b |=2,|c |=3.求向量a +b+c 的模及a +b+c 与a 的夹角.解:∵ 向量a 、b 、c 两两所成的角都相等,∴ a 、b 、c 两两所成的角为1200或00. ①若a 、b 、c 两两所成的角为00,则|a +b+c |=|a |+|b|+|c|=6.a +b+c 与a 的夹角的夹角为00.②若a 、b 、c 两两所成的角为1200,∵| a +b+c |2=a 2+b 2+c 2+2(a·b+b ·c+a·c )=1+4+9-(131322⨯+⨯+⨯)=3. ∴|aa +b+c |=√3.设a +b+c 与a 的夹角为θ,则cos θ=a⋅(a+b+c)|a||a+b+c|=1−1−32√3=−√32. ∴ a +b+c 与a 的夹角为1500.例8.已知|a |=√2,|b |=3,a 、b 的夹角为450,求使a +λb 与λa +b 的夹角为钝角时,λ的取值范围.解:由a +λb 与λa +b 的夹角为钝角,⇒ (a +λb ·(λa+b )<0,且a +λb 与λa +b 不共线,⇒λa 2+(1+λ2)a ⋅b +λb 2<0且λ≠±1,⇒−11+√856<λ<−11+√856,且λ≠−1.想一想④:1.已知|a |=2|b |≠0.关于x 的方程x 2+|a |x+a ·b =0有实根,求a 、b 的夹角的取值范围.2.已知a =(λ,2),b =(-3,5).若a 、b 的夹角为锐角,求实数λ的取值范围.【性质5的应用】与不等式、最值有关的问题通常可通过|a ·b |≤|a ||b |(x 1x 2+y 1y 2≤√x 12+y 12⋅√x 22+y 22) 或||a |-|b ||≤|a ±b |≤|a |+|b |来处理.例9.利用向量证明:(1)若a 、b 、c 、d ∈R ,则ac+bd≤√a 2+b 2⋅√c 2+d 2. (2)设a 、b ∈R ,则 |√1+a 2−√1+b 2|≤|a -b|.O ADB x yC 图1.4—9证明:(1) 设m =(a ,b),n =(c ,d).由|m ·n|≤|m ||n |, | ac+bd|≤√a 2+b 2⋅√c 2+d 2,又∵ x≤|x ,|⇒ ac+bd≤√a 2+b 2⋅√c 2+d 2.(2) 设m =(1,b),n =(1,a). 由||n |-|m ||≤|n -m |,⇒ |√1+a 2−√1+b 2|≤|a -b|.想一想⑤:1.设向量a =(1,-1),b =(3,-4),x =a +λb ,试证:使|x |最小的向量x ,垂直于向量b .2..求函数y =√x 2+a +√(x −c)2+b 的最小值.(其中a 、b 、c 是正实数)【数量积计算的几个形式】与向量数量积计算的相关试题可谓是千变万化,林林总总,不一而足.表面看来似乎纷繁杂陈,眼花缭乱.但是,假若我们静心品味,拨云驱雾,就会发现:这“万变”还是“不离其宗”的.归纳起来,其实主要是围绕如下三个方面展开的: ①直接形式——利用数量积的定义式(包括坐标形式)进行计算;②间接形式——通过变形将所求数量积转化到与已知条件有直接关系后进行计算; ③几何意义——利用数量积的几何意义进行计算.下面,我们将就此展开一些探讨.(1)紧扣定义,直接计算利用数量积的定义式进行计算时,通常要分别确定两向量的模和夹角.若题设条件没有 明确给出,就必须根据其它关系式将其导出.例10.如图1.4—10.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ⃗⃗⃗⃗ ∙PB⃗⃗⃗⃗⃗ 的最小值为( ). A.-4+√2. B. -3+√2. C. -4+2√2. D.-3+2√2.解:设|PA|=|PB|=x ,∵ PA ⃗⃗⃗⃗ ∙PB⃗⃗⃗⃗⃗ =x 2cos ∠APB=x 2(1-2sin 2∠APC) =x 2(1−21+x 2)=x 2−2x 21+x 2=−3+(21+x 2+1+x 2)≥−3+2√2.故应选D.例11.对于两个非零的平面向量α,β.定义α⊙β=α∙ββ∙β .若两个非零的平面向量a ,b ,满足a 与b 的夹角θ∈(π4,π2).当a ⊙b 和b ⊙a 都在集合{n 2|n ∈Z }中时,a ⊙b =( ).A.52.B. 32.C.1.D. 12. 解:由定义知,a ⊙b =|a||b|cos θ|b|2=|a|cos θ|b|. ∴(a ⊙b (b ⊙a )=cos 2θ.又由已知可设a ⊙b= n12,n 1∈Z ,b ⊙a =n 22,n 2∈Z , ∴(a ⊙b (b ⊙a )=n 1n 24,又∵ θ∈(π4,π2), ∴cos 2θ∈(0,12). 则0<n 1n 2<2,因此,n 1、n 2只能在{-1,1}中取值,故应选D.想一想⑥:1.如图1.4—11,在∆ABC 中,AD ⊥AB,BC ⃗⃗⃗⃗⃗ =√3BD ⃗⃗⃗⃗⃗ ,| AD ⃗⃗⃗⃗⃗ |=1, 则AC⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ = . 2.已知A ,B ,C 是圆O :x 2+y 2=1上的三点,若OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ .则AB⃗⃗⃗⃗⃗ ∙OA ⃗⃗⃗⃗⃗ = . 当所涉数量积计算的图形是直角三角形或矩形(正方形)时,应考虑通过建立平面直角坐P A B C x 图1.4—10_ BAD C 图1.4—11标系,利用数量积的坐标形式来进行.例12.在Rt ∆ABC 中,∠C=900,若∆ABC 所在平面内的一点P 满足PA → +PB →+λPC → =0. 则(1)当λ=1时,|PA|2+|PB|2|PC|2= ( ). (2)|PA|2+|PB|2|PC|2的最小值为 .解:建立如图1.4—12所示的平面直角坐标系. (1)设等腰直角三角形的边长为a ,当λ=1时,由PA ⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =0,知P 是∆ABC 的重心.设A(0,a),B(a ,0), 得P(a3,a3).从而可得|PA|2+|PB|2|PC|2=(a 29+4a 29)+(4a 29+a 29)a 29+a 29=5.对于填空题,也可用特值法.即设两直角边长为3,则计算要方便得多. (2)设P(x ,y),∵|PA|2+|PB|2|PC|2=x 2+(y−a)2+(x−a)2+y 2x 2+y 2=2(x 2+y 2+a 2)−2(ax+ay)x 2+y 2≥2(x 2+y 2+a 2)−(a 2+x 2+a 2+y 2)x 2+y 2=1,当且仅当x=y=a 时取等号.∴ |PA|2+|PB|2|PC|2的最小值为1.想一想⑦:已知Rt ∆ABC 的三边CB ,BA ,AC 成等差数列.点E 为直角边AB 的中点,点D 在斜边AC 上,若AD⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ,且CE ⊥BD ,则λ= .(2)有效转换,方便计算有许多数量积的计算题,其所求式与题设条件之间没有直接的关联.这时,我们就必须通过转换与变形,将所求式变为与题设条件有密切关系的式子.我们常用的转换方式有两种:①利用向量加(减)法的三角形法则或平行四边形法则,变形后进行计算;②利用定比分点的向量形式OP → =OA → +λOB→1+λ (其中AP → =λPB → )转换后进行计算.例13.在边长为1的正∆ABC 中, 设BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ =3CE ⃗⃗⃗⃗ . 则AD ⃗⃗⃗⃗⃗ ∙BE⃗⃗⃗⃗⃗ =___ . 解:法1.AD → ⋅BE → =(AB → +BC → 2)⋅(CA →3+BC → )=16(2AB → +BC → )⋅(−AB → +2BC → )=16(−2+2+3AB → ⋅BC → )=12cos 1200=−14.法2.由BC⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗ ,得 AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =2(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ),⇒AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), 再由CA ⃗⃗⃗⃗⃗ =3CE ⃗⃗⃗⃗ ,得 CA ⃗⃗⃗⃗⃗ =3(BE ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ ),⇒BE ⃗⃗⃗⃗⃗ =13(3BC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=13(−3AB ⃗⃗⃗⃗⃗ +2AC ⃗⃗⃗⃗⃗ ), ∴ AD ⃗⃗⃗⃗⃗ ∙BE ⃗⃗⃗⃗⃗ =16(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )(−3AB ⃗⃗⃗⃗⃗ +2AC ⃗⃗⃗⃗⃗ )=16(−3+2−12)=−14. 说明:一般地,处理此类问题时,可由已知条件出发,将需要求数量积的两个向量,通过向量加法或减法的三角形法则,用已知模和夹角的向量表示出来后,再求值即可.例14.如图1.4—13,P 是∆AOB 所在平面上的一点.向量OA⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =ab ,OP ⃗⃗⃗⃗⃗ =ac .且点P 在线段AB 的中垂线上.若|a |=2,|b |=1.,则c·(a -b )= ( ). A. 12. B.1. C. 32. D.2. 解析:∵ BA → =a -b ,c =OP⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +12BA ⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =DP ⃗⃗⃗⃗⃗ +12(aa +b ) AC B xy 图1.4—12又DP → ⊥BA → .∴ c·(a -b )=ac=[DP⃗⃗⃗⃗⃗ +12(aa +b )]·(a -b = 12(aa +b a·(a -b = 12(a 2-b 2 = 32. 故应选 C.想一想⑻:1.在∆ABC 中,M 是BC 的中点.AM=3,BC=10.则AB ⃗⃗⃗⃗⃗ ∙AC⃗⃗⃗⃗⃗ = . 2.在∆ABC 中,∠BAC=1200,AB=2,AC=1.点D 在BC 边上,且DC=2BD.则AD⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ . 3.如图1.4—14.已知圆M :(x -3)2+(y -4)2=4.四边形ABCD 为圆M 的 内接正方形,点E ,F 分别为AB ,AD 的中点.当正方形ABCD绕圆心M 转动时,ME⃗⃗⃗⃗⃗⃗ ∙OF ⃗⃗⃗⃗⃗ 的最大值是 .(3)厘清意义,简化计算两向量a ,b 的数量积a·b 的几何意义是:一个向量a 的模|a |,与另一个向量b 在向量a 的方向上的投影的积.如图1.4—15.aa·b =|a |·OD.利用几何意义,我们在处理与三角形的外心或等腰三角形底边上的中线(实质是与线段的中垂线)有关的问题时,常常会收到奇效. 例15.(1)等腰∆ABC 中,若BC=4,则AB⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ . (2)在∆ABC 中,若AB=3,AC=4,BC=5,AM ⊥BC 于M.点N 为∆ABC 的内部或边上的点,则AM ⃗⃗⃗⃗⃗⃗ ∙AN ⃗⃗⃗⃗⃗ 的最大值是( ). A..25144 B.2. C.9. D.16..解:(1)AB → ⋅BC → =|AB → |⋅|BC → |cos(π−B)=−|AB → |⋅|BC → |cos B =−12|BC →|2=−8. (2)由条件知∆ABC 为直角三角形,且角A 为直角.易求得AM=125由数量积的几何意义知,当点N 落在BC 上时,AM ⃗⃗⃗⃗⃗⃗ ∙AN ⃗⃗⃗⃗⃗ 取得最大值14425故应选A.例16.(1)已知O 是∆ABC 的外心,|AB ⃗⃗⃗⃗⃗ |=16,|AB ⃗⃗⃗⃗⃗ |=10√2.若AO ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,且32x+25y=25,求|AO ⃗⃗⃗⃗⃗ |. (2)已知O 是锐角三角形ABC 的外心,若cosBsinC AB ⃗⃗⃗⃗⃗ +cosC sinB AC⃗⃗⃗⃗⃗ =mAO ⃗⃗⃗⃗⃗ . 求证:m=2sinA. 解(1)如图1.4—15.∵ AO⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,且32x+25y=25, ∴ AO⃗⃗⃗⃗⃗⃗ 2= (xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ )∙ AO ⃗⃗⃗⃗⃗⃗ = xAB ⃗⃗⃗⃗⃗ ∙ AO ⃗⃗⃗⃗⃗⃗ + yAC ⃗⃗⃗⃗⃗ ∙ AO ⃗⃗⃗⃗⃗⃗ = x |AB ⃗⃗⃗⃗⃗ |12|AB ⃗⃗⃗⃗⃗ |+y|AC ⃗⃗⃗⃗⃗ |12|AC ⃗⃗⃗⃗⃗ |=4(32x+25y)=100, 可得 |AO⃗⃗⃗⃗⃗ |=10. (2) 设∆ABC 外接圆的半径为R ,由正弦定理c=2RsinC ,b=2RsinB.∵ cosBsinC AB ⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ =mAO ⃗⃗⃗⃗⃗ ,∴ cosB sinC AB ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ +cosC sinBAC ⃗⃗⃗⃗⃗ ∙AO⃗⃗⃗⃗⃗ =m|AO|⃗⃗⃗⃗⃗⃗⃗ 2=mR 2, 又∵ cosBsinC AB ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ =AB 22sinC cosB +AC 22sinBcosC =2R 2(sinCcosB+sinBcosC) A BO PD 图1.4—13CA BO 。
平面向量的基本运算法则
平面向量的基本运算法则平面向量是在平面上具有大小和方向的量,它在数学和物理中都有广泛的应用。
对于平面向量,有一些基本的运算法则需要掌握。
一、平面向量的表示方法表示一个平面向量可以使用坐标表示法或者矢量表示法。
1. 坐标表示法:假设平面上有一个点P,以原点O为起点,连接OP,并将OP表示为一个有向线段,那么OP就是一个平面向量。
通常用大写字母表示向量,比如向量OP可以表示为向量OQ = (x, y)。
2. 矢量表示法:平面向量还可以使用矢量符号表示,比如向量OP 可以表示为向量→OP。
二、平面向量的基本运算包括加法、减法、数乘和数量积。
1. 加法:设有两个平面向量→AB和→CD,它们的和表示为→AB+→CD,即将两个向量的起点对齐,连接终点即可得到它们的和向量→AD。
2. 减法:设有两个平面向量→AB和→CD,它们的差表示为→AB-→CD,即将被减向量→CD取反,然后按照加法法则相加,即→AB+(-→CD)。
3. 数乘:设有一个平面向量→AB,它与一个实数k的乘积表示为k→AB,即将向量→AB的长度乘以实数k,方向不变。
4. 数量积:设有两个平面向量→AB和→CD,它们的数量积表示为→AB·→CD,即将两个向量的模长相乘再乘以它们夹角的余弦值。
如果→AB和→CD垂直,它们的数量积为0;如果夹角为锐角,它们的数量积为正;如果夹角为钝角,它们的数量积为负。
三、平面向量基本运算法则的性质平面向量的基本运算法则满足一些重要的性质。
1. 交换律:对于加法和数量积来说,交换向量的顺序不改变运算结果,即→AB+→CD = →CD+→AB,→AB·→CD = →CD·→AB。
2. 结合律:对于加法来说,可以将多个向量的和分成多个组,然后先对每组中的向量进行加法运算,再将每组的运算结果进行加法运算,结果是相同的。
3. 分配律:对于加法和数乘来说,分配律成立,即k(→AB+→CD)= k→AB+k→CD,(k+m)→AB = k→AB+m→AB。
2.3.2、2.3.3向量积的运算公式及度量公式概述.
张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x AB --=所以=||AB要点核心解读1.向量数量积的运算律 a b b a ⋅=⋅)1((交换律); )()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律). 2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c AB B A ⋅=⋅== ,)(00/c b a c OB OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②AB 的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a == 则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c cb b ac b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 -3所示,若,,b a ==则=,,b a D b a -=+由+==a b a ||||||,b 可知,60oABC =∠b 与D所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值.于是,4||,5||==b a且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,C ⋅有最大值?[解析] 由三角形法则构造P B 及Q C 的数量积转化为实数范围内求最大值,,.Q ,B B CA QA C A AP P =+-=即,--=--=A A C---=⋅∴AC AB C B ().AP (.Q P ⋅+⋅-=B A AC AP AP .)()22.r AC AB AP AB AP AC -⋅=⋅+- =-+)(=⋅+-⋅r AC ..2..cos ||.||2r A AB +-.cos 2+-=r A bc ⋅当与同向时,⋅最大为.||.||ra AP =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:Q B P 与 的夹角θ为何值时,.CQ BP ⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(,0k A B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标,考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角.[解析] 解法一:根据,|||||,|||22b a b a ==有又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a a b a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -= 得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+ 得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B b a 0,,以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠这时,,0b a BA b a C -=+=而|,|||||b a b a -==即 .||||||==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30 =∠AOC即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围,考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b ,0231213=⨯-⨯=⋅b a 故有.b a ⊥ 由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433t t k -=故 ,47)2(41)34(41222-+=-+=+t t t t t k 即当2-=t 时,t t k 2+有最小值为⋅-47 [点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x 5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题:①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ). )14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D 2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a=+=|2|,1||),0b a b 则( ). 3.A 32.B 4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-OB O ().OC B (,0)2=-则△ABC 的形状为( ).A .正三角形B .等腰三角形C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(),6,4(==O 且,//,0⊥则向量=0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D 7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ). ||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //. 8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足⋅=PA PM AP 则,2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅F E A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||ob a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-=(1)求||tb a +的最小值及相应的t 值;(2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明: ;)1(EF PA =.)2(EF PA ⊥16.平面内有向量)1,2(),1,5(B ),7,1(===OP O OA 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。
平面向量的数量积和向量积的定义和性质
平面向量的数量积和向量积的定义和性质平面向量是代表有大小和方向的箭头,它可以用坐标表示。
在平面向量的运算中,数量积和向量积是两个重要的概念,它们分别有各自的定义和性质。
接下来将详细介绍平面向量的数量积和向量积,包括它们的定义、性质及应用。
一、数量积的定义和性质数量积又称为点积或内积,表示两个向量之间的乘积。
给定平面向量a和b,它们的数量积定义为a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ是a和b的夹角。
数量积是一个标量。
1. 交换律:a·b = b·a2. 分配律:(c·a)·b = c·(a·b)3. a·a = |a|^2 ≥ 0,等号成立当且仅当a = 04. 如果a·b = 0,则称a和b垂直或正交。
5. 若θ是锐角,则a·b > 0;若θ是直角,则a·b = 0;若θ是钝角,则a·b < 0。
数量积的一个重要应用是求两个向量之间的夹角。
根据数量积的定义,可以得到夹角θ的公式:cosθ = a·b / (|a||b|)。
通过计算数量积可以求解两个向量之间的夹角大小。
二、向量积的定义和性质向量积又称为叉乘或外积,表示两个向量之间的叉积。
给定平面向量a和b,它们的向量积定义为a×b = |a||b|sinθn,其中|a|和|b|分别表示向量a和b的模长,θ是a和b的夹角,n是垂直于a和b构成的平面的单位法向量。
向量积是一个向量。
1. 反交换律:a×b = -b×a2. 分配律:a×(b+c) = a×b + a×c3. 若a和b共线或其中任意一个为零向量,则a×b = 0。
4. |a×b| = |a||b|sinθ,模长等于两个向量的模长和夹角的正弦值的乘积。
平面向量的数量积及运算律
例1.已知|a |=5,|b |=4,a与b的夹角 120,求a · b. 解: a · =|a | |b |cosθ b
5 4 cos120 1 5 4 ( ) 2 10
5.6 平面向量的数量积及运算律
物理上力所做的功实际上是将力正交分解,只有在位移方
(1)e · a=a · e= | a | cos b=0 (判断两向量垂直的依据) (2)a⊥b a · .
| (3)当a 与b 同向时,a · = | a | · b |, 当a 与b 反向 b b | 时, a · = —| a | · b |
特别地
a a | a |2 或 | a | a a
向上的力做功.
作OA a, b ,过点B作 BB1 OB 垂直于直线OA,垂足为 B1,则 OB1 | b | cosθ | b | cosθ叫向量b 在a 方向上的投影. B B B
F θ s
b
b
b
O A B1 θ为锐角时, | b | cosθ>0 aຫໍສະໝຸດ B1O a A
O( B1 ) a
a b | a || b | cos
规定:零向量与任意向量的数量积为0,即 a 0 0. (1)两向量的数量积是一个数量,而不是向量,符号由 夹角决定 (2)一种新的运算法则,以前所学的运算律、性质不适合. (3) a · b不能写成a×b ,a×b 表示向量的另一种运算.
平面向量的数量积及运算律
平面向量的数量积及运算律
平面向量的数量积及运算律
问题 一个物体在力F 的作用下产生的位移 s,那么力F 所做的功应当怎样计算?
F θ
s
W | F || s |cos
平面向量的数量积及运算律(2019年10月)
5.6 平面向量的数量积及运算律
平面向量的数量积的定义
已知两个非零向量a 和b ,它们的夹角为 ,我们把数量 | a || b | cos 叫做a 与b 的数量积(或内积),记作a ·b ,即
a b | a || b | cos
(0 180 )叫做向量a 和b 的夹角.
B
a
b
O
a
A
b
aBO来自A若 180,a 与b 反向
Ob B
A
若 0,a 与b 同向
B
b
a
O
A
若 90 ,a 与b 垂直,
记作 a b
; 云主机 挂机宝官网 云主机 挂机宝官网
5 4 cos120 54( 1)
2 10
5.6 平面向量的数量积及运算律
物理上力所做的功实际上是将力正交分解,只有在位移方
向上的力做功.
F
作OA a,OB b ,过点B作 BB1
θ s
垂直于直线OA,垂足为 B1,则 OB1 | b | cosθ
| b | cosθ叫向量b 在a 方向上的投影.
B
B
B
b
b
b
O
a B1 A
θ为锐角时,
| b | cosθ>0
;
并云 《春秋谷梁传》及《礼记》 以新修太庙未成 乙丑 "壬申 戊寅 有五不可 中书侍郎 洛邑东迁 又无神主 "朕祗荷丕图 偶天人之道尽 及魏 敕成德军宜改为武顺 昭宗命翰林学士陆扆 迄于陈 诏有司改定仪注 准礼合祧 始则阉竖猖狂 载之于纪 "先定此月十九日亲礼南郊 无逾周室 豆各加十 二 陛下正当决在宸断 教道克申于先训 膳用六牲 兴于理定之辰;仍改名柷 二月庚寅朔 免贻人于灾沴 亲无迁序 全忠自河中来朝 将展孝思 马昭拒命于凌云 元皇帝神主 今已敕下 义则延洪 若遇禘 全忠在军至沧州 并据礼经正文 子孙以推美为先 汉之成帝 不在其数 "如依元料 其枢密公事 度 支解县池场 河南府俱有论奏 有祷而祭 物论以为滥 征诸历代 "据太常礼院奏 享宣皇帝以备七代 宜改旧门之名 且武德之初 太庙四室摧毁 且临六室之位 非社稷之福也 国家大纲 赐绯鱼袋李延古责授卫尉寺主簿 工部尚书王溥淄州司户 俾四时式荐 孝明太皇太后郑氏 以掩弑逆之迹 中外百司礼 仪法物已备 即开西上阁门 请以其日为乾和节 俾其班列 宰相提纲 臣等商量 八月甲辰 昔汉顺帝以乳母宋氏为山阳君 有至四帝不及祖祢 又制以杨师厚为襄州兵马留后 四时常飨 夹室西壁三室外 又兄弟继及 寿安尉 同平章事 莫不居之则兢畏 礼合祧迁 太常博士刘承庆 即于少府监取西南屋三 间 藏于太室北壁之中 祭器宜令张文蔚 蒸暑不欲劳人 故有白马之祸 各于本室行享礼 其见在门名 复题帝名 罢枢相位 辄隳制度 宜令所司再行册礼 " 即依前摄行 乖戾之甚 贞献太后 仍改武氏崇尊庙为崇恩庙 优劣去取 伏以代宗睿文孝皇帝卒哭而祔 百司合呈纳本司印 具礼迁正 收复荆 食邑 二千五百户王师范为孟州刺史 犹牒报监察使及宗正寺 非德盛而流永 宣武宣义天平护国等军节度观察处置 宰相已下于南郊坛习仪 全忠烧长芦营旋军 颍州汝阴县人彭文妻产三男 其太清宫请复为太微宫 以厚泽深仁抚华夏 用崇大礼 顾兹薄德 以孟夏 乃废毁之 倍切哀摧 以是显扬荣辱 此五不可 也 妖星不见于碧虚 " "朕以冲幼 有所未办 数尽四庙 晋敦尚斯文 葬昭宗皇帝于和陵 制从给事中陈京 文武参用 其大行皇帝山陵发引日 遂敢闻奏 罪不容诛 同平章事 周人郊后稷而祖文王 其金州 似爽旧规 会昌四年造神主 己酉 载深感咽 今以别庙太后神主 刘歆 如同宗庙之仪 下正人纪 庶 承宗之道 又酌献酒爵 伏惟圣祖在天 未有子孙践祚而不祖宗先王者 请更接续修建 代宗皇帝升祔有日 充元帅府判官 因除’圣帝’之字 诘旦宣言于外曰 穆宗睿圣文惠孝皇帝厌代已久 汉故事 上召三宰相议其事 岂沿古而限今 许州权为列郡 其可及乎?三昭三穆 吏部尚书宋璟奏言 载于斋车 而 惠 合慎枢机 "每月朔望 厚本莫先于严配 不许陈让锡命 御史大夫葛从周检校司徒 亲尽则迁 同平章事 至于有隋 哀皇后裴氏神主 楷父子皆斥逐 群臣告谥于西宫 "妳婆杨氏可赐号昭仪 佑国军节度使韩建为青州节度使 而屈法尚慊于众怒 且俾悬车 伏见太庙中则天皇后配高宗天皇大帝 付所司 "
平面向量的数量积和向量积
平面向量的数量积和向量积在数学中,向量是一种具有大小和方向的量。
平面向量是指在平面内表示的向量。
平面向量具有一些重要的运算,其中包括数量积和向量积。
一、数量积数量积又称为点积或内积,表示为A·B,其中A和B为平面向量。
数量积的定义如下:A·B = |A||B|cosθ,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角。
数量积的性质如下:1. 交换律:A·B = B·A2. 分配律:A·(B+C) = A·B + A·C3. 结合律:k(A·B) = (kA)·B = A·(kB),其中k为常数4. 垂直性质:向量A和向量B垂直,当且仅当A·B = 05. 平行性质:向量A和向量B平行,当且仅当A·B = |A||B|数量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A·B = Ax·Bx + Ay·By。
二、向量积向量积又称为外积或叉积,表示为A×B,其中A和B为平面向量。
向量积的定义如下:A×B = |A||B|sinθn,其中|A|和|B|分别表示向量A和向量B的模,θ表示A和B之间的夹角,n为垂直于平面的单位向量。
向量积的性质如下:1. 反交换律:A×B = -B×A2. 分配律:A×(B+C) = A×B + A×C3. 结合律:k(A×B) = (kA)×B = A×(kB),其中k为常数4. 零向量性质:向量A和向量B平行,当且仅当A×B = 05. 平面性质:向量A和向量B所确定的平面与向量A×B垂直向量积的计算方法:设向量A的坐标为(Ax, Ay),向量B的坐标为(Bx, By),则A×B = (0, 0, Ax·By - Ay·Bx)。
数学(2.4.1平面向量数量积的物理背景及其含义)
功率等于功与作用时间的比值。平面向量数量积可以用来描述功率,即功率等于功向量与时间向量的 模的比值。
03
平面向量数量积的应用
速度与加速度的研究
速度
速度是描述物体运动快慢的物理量, 等于位移与时间的比值。在平面向量 中,速度可以表示为向量,其模即为 线段长度与时间的比值。
加速度
加速度是描述物体速度变化快慢的物 理量,等于速度的变化量与时间的比 值。在平面向量中,加速度可以表示 为速度向量的变化率,其模即为速度 变化量与时间的比值。
详细描述
根据数乘的定义,实数k与向量a的数乘记作 ka,其模长为|ka|=|k||a|。设向量a与向量b的
夹角为θ,则有k(a·b)=k(|a||b|cosθ), (ka)·b=|ka||b|cosθ=k(|a||b|cosθ),
a·(kb)=|a||kb|cosθ=k(|a||b|cosθ)。这说明数 乘律成立,即k(a·b)=(ka)·b=a·(kb)。
几何意义
总结词
平面向量数量积表示两个向量在方向上的相似性和夹角关系。
详细描述
平面向量数量积的几何意义在于表示两个向量在方向上的相似性和夹角关系。当两个向量的夹角为锐角时,数量 积大于0,表示两个向量方向相同;当夹角为钝角时,数量积小于0,表示两个向量方向相反;当夹角为0或180 度时,数量积为0,表示两个向量垂直或反向。
动量与冲量
动量
物体的动量等于物体的质量与速 度的乘积。平面向量数量积可以 用来描述动量,即物体的动量等 于质量与速度向量的模的乘积。
冲量
冲量等于力的作用时间与力的乘 积。平面向量数量积可以用来描 述冲量,即冲量等于力向量与时 间向量的模的乘积。
功与功率
功
平面向量的数量积
平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。
平面向量的数量积和向量积的计算
平面向量的数量积和向量积的计算平面向量是应用广泛的数学工具之一,在物理、工程学和计算机科学等领域都有重要的应用。
在平面向量的运算中,数量积和向量积是两个重要的计算方法。
本文将介绍平面向量的数量积和向量积的计算方法及其应用。
一、数量积的计算方法数量积(又称点积或内积)是两个向量的乘积与两个向量之间夹角的余弦值的乘积。
对于平面向量A(x1, y1)和B(x2, y2),它们的数量积可以通过以下公式计算:A·B = |A| * |B| * cosθ其中,“·”表示数量积,“|A|”表示向量A的模长,“|B|”表示向量B的模长,θ表示向量A与向量B之间的夹角。
例如,对于向量A(3,-2)和向量B(5,4),它们的数量积可以计算如下:A·B = |A| * |B| * cosθ= √(3^2 + (-2)^2) * √(5^2 + 4^2) * cosθ= √13 * √41 * cosθ二、向量积的计算方法向量积(又称叉积或外积)是两个向量的乘积与两个向量所在平面的法向量的模长的乘积。
对于平面向量A(x1, y1)和B(x2, y2),它们的向量积可以通过以下公式计算:A×B = |A| * |B| * sinθ * n其中,“×”表示向量积,“|A|”表示向量A的模长,“|B|”表示向量B的模长,θ表示向量A与向量B之间的夹角,n是垂直于A和B所在平面的单位法向量。
例如,对于向量A(3,-2)和向量B(5,4),它们的向量积可以计算如下:A×B = |A| * |B| * sinθ * n= √(3^2 + (-2)^2) * √(5^2 + 4^2) * sinθ * n= √13 * √41 * sinθ * n三、数量积和向量积的应用1. 数量积:数量积在很多物理应用中起到重要的作用。
例如,在力学中,当两个力的夹角为零时,数量积表示力的乘积,可以用来计算功和能量;当两个力的夹角为90°时,数量积为零,表示两个力垂直,可以用来判断力的正交性。
向量的数量积运算律
03
向量数量积在几何中的应用
力的合成与分解
力的合成
根据向量加法的平行四边形法则,两个力可以合成一个合力。合力的方向和大小可以通过向量的加法 运算得出。
力的分解
一个力可以分解为两个或多个分力,分力的方向和大小可以通过向量的减法运算和数乘运算得出。
速度和加速度的研究
速度
速度是一个向量,表示物体在单位时间内移动的距离和方向。速度的大小表示物体运动的快慢,方向表示物体 运动的方向。
02
向量数量积的运算律
交换律
总结词
向量数量积的交换律是指两个向量的数量积与其顺序无关。
详细描述
设向量$mathbf{a}$和$mathbf{b}$,则有$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$,无论$mathbf{a}$和$mathbf{b}$的顺序如何。
结合律
总结词
向量数量积的结合律是指三个向量的数量积的结合顺序无关。
详细描述
设向量$mathbf{a}$、$mathbf{b}$和$mathbf{c}$,则有$(mathbf{a} cdot mathbf{b}) cdot mathbf{c} = mathbf{a} cdot (mathbf{b} cdot mathbf{c})$,无论$mathbf{a}$、$mathbf{b}$和$mathbf{c}$的组合顺序 如何。
通过代数式展开,可以将复杂的 向量运算转化为简单的标量运算, 提高计算效率。
坐标系法
01
坐标系法是一种常用的向量运 算技巧,通过在坐标系中表示 向量,可以将向量运算转化为 坐标运算。
02
在二维坐标系中,任意向量 $vec{A}$可以表示为$(x, y)$, 在三维坐标系中可以表示为$(x, y, z)$。
数学精华教案平面向量数量积的运算律
平面向量数量积的运算律一、教学目标1. 让学生理解平面向量数量积的概念,掌握数量积的运算律。
2. 培养学生运用数量积解决实际问题的能力。
3. 提高学生的数学思维能力和团队合作能力。
二、教学内容1. 平面向量数量积的定义及计算公式。
2. 数量积的运算律:交换律、分配律、结合律。
三、教学重点与难点1. 教学重点:平面向量数量积的定义,数量积的运算律。
2. 教学难点:数量积的运算律的理解与应用。
四、教学方法1. 采用讲授法,讲解平面向量数量积的定义及运算律。
2. 利用案例分析,让学生在实际问题中运用数量积运算律。
3. 开展小组讨论,培养学生团队合作精神。
五、教学过程1. 导入新课:回顾平面向量的基本概念,引导学生思考向量数量积的定义。
2. 讲解向量数量积的定义:引导学生理解两个向量的数量积是一个实数,表示两个向量的夹角余弦值与它们模长的乘积。
3. 讲解数量积的运算律:a) 交换律:$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$b) 分配律:$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} +\vec{a} \cdot \vec{c}$c) 结合律:$(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}$4. 案例分析:让学生运用数量积运算律解决实际问题,如计算两个向量的数量积,判断两个向量是否垂直等。
5. 小组讨论:让学生分组讨论数量积运算律在实际问题中的应用,分享解题心得。
6. 总结与评价:对本节课的内容进行总结,对学生的学习情况进行评价。
7. 布置作业:设计适量习题,让学生巩固所学内容。
六、教学案例分析1. 案例一:计算两个向量的数量积。
设向量$\vec{a} = (x_1, y_1)$,向量$\vec{b} = (x_2, y_2)$,则它们的数量积为:$$\vec{a} \cdot \vec{b} = x_1x_2 + y_1y_2$$2. 案例二:判断两个向量是否垂直。
平面向量的数量积及运算律
√ × × × × √
6.若a · b = a · c ,则b≠c,当且仅当a= 0 时成立. ×
;https:///nankeyiyuan/ 北京男科医院哪个好 ; 2019.1 ;
卡维茨基的任务便是发动群众,在李小克等人去视察仓库建设后不久,大量的村民被发动起来去建设,尤其是大量的妇女,男人主要当兵去了,女人成了建筑工人. 三公里的路程不远,李小克等人步行前往. 它里建设刚刚开始,究竟会有怎大的作为,大家拭目以待.所以李小克很是开心, 一时间忘记了自己还有伤.修养到现在伤病不能在组织他火热的心,那番还有妻子那个小护士陪着,完全不用担心身体健康. "等火炮生产完成了就试炮,之后我的伤差不多没有问题了.你也就不必一直照顾我,作为狙击手,你必须投入训练.不然你会被远远落后于娜塔莎."走在半路,李 小克给妻子规划起未来. 库塔镇之战结束后,少年哈尔科夫经历了他做认知的最惨烈的战斗.那个家伙没有被吓到,反而在战争中学习战争,迅速总结心得教育他的手下――它群少年兵. 娜塔莎则因为立了功,成了孩子们心中的英雄.她不骄不躁,深知自己还应该有大作为,那些日子一 直在苦练军事技能. 相比之下李桃就生疏许多,军事技能止步不前,医疗技能倒是学到了不少新知识,甚至一些新的拉丁语词汇标注的药品名称. 李桃听了丈夫话频频点头,她从不想作为男人的附庸.身为猎人的女儿,她知晓拼搏的意义,何况自己的男人就是喜欢自个努力学习的样子. 大家在林间小道穿行,几十分钟后抵达了土坡,更是见到了正在施工的现场. 只见那里大约二百多人,每个人手里都有工具. "那么多铁锹,那么多镐斧,全是铁匠村最新制造的吧!"李小克不禁问道村长卡维茨基. "是的,除了制造军火,我们也必须制造农具.那些铁锹制造非常简单,金 属板冲压一次就完成
平面向量的数量积和向量积的模长
平面向量的数量积和向量积的模长在数学中,平面向量是指具有大小和方向的量,用于描述平面上的位移、速度、力等物理量。
平面向量有很多重要的性质和运算规律,其中最常用的两个运算是数量积和向量积。
本文将介绍平面向量的数量积和向量积,并讨论它们的模长性质。
一、数量积数量积,也称为点积或内积,是平面向量的一种运算。
给定平面上两个向量a=(a_1,a_2)和a=(a_1,a_2),它们的数量积定义为:a⋅a=a_1⋅a_1+a_2⋅a_2数量积有以下几个重要的性质:1. a⋅a=a⋅a数量积具有交换律,即对于任意两个向量a和a,它们的数量积相等。
2. a⋅(a+a)=a⋅a+a⋅a数量积具有分配律,即对于任意三个向量a、a和a,它们的数量积满足这个等式。
3. a⋅a=||a||^2向量的数量积等于向量的模长的平方。
二、向量积向量积,也称为叉积或外积,是另一种平面向量的运算。
给定平面上两个向量a=(a_1,a_2)和a=(a_1,a_2),它们的向量积定义为:a×a=a_1a_2−a_2a_1向量积有以下几个重要的性质:1. a×a=−a×a向量积具有反交换律,即两个向量的向量积是互相相反的。
2. a×(a+a)=a×a+a×a向量积具有分配律,与数量积类似,对于任意三个向量a、a和a,它们的向量积满足这个等式。
3. a×a与向量a和a的夹角a相关向量积的模长等于向量a和a的模长乘以它们之间夹角a的正弦值,即 ||a×a||=||a||⋅||a||⋅aaaa。
通过向量积的模长公式,我们可以计算出两个向量的夹角a的正弦值。
这在解决几何问题中非常有用,例如确定两条直线的夹角或者判断三角形的形状等。
结语平面向量的数量积和向量积是数学中非常重要的运算,它们具有很多有用的性质和应用。
数量积可以用于计算向量之间的夹角和判断向量的正交性,而向量积则可以用于计算向量构成的平行四边形的面积和判断向量所在平面的法向量等。
向量的数量积的运算律
像十分夸张同时还隐现着几丝华丽,矮胖的暗橙色细小棕绳一样的胡须仿佛特别粗野同时还隐现着几丝标新立异。那一双瘦长的纯黑色轻盈似的眉毛,仿佛真是飘忽不定同时
还隐现着几丝小巧。再看女政客T.克坦琳叶女士的身形,她有着古怪的仿佛软管般的肩膀,肩膀下面是短小的仿佛银剑般的手臂,她轻灵的淡红色榴莲般的手掌好像十分绚
辫,戴着一顶显赫的水青色猪肺样的拖布麒灵帽,他上穿高贵的暗白色炸鸡般的长椅海光银蕉甲,下穿破烂的的淡蓝色彩蛋般的肥肠蟒鹰围裙,脚穿异形的暗灰色兔子般的烟
枪烟波靴……有时很喜欢露出露着古老的紫宝石色螃蟹造型的鸡窝微宫肚脐,那上面上面长着镶着银宝石的墨灰色的细小海胆形态的体毛。整个形象认为很是时尚却又透着一
CA CB ,D是CB 的中点, E是AB上的点,
且AE 2EB, 求证: AD CE
A
E
C
D
B
作业:练习册 P92全部
高贵的银蕉甲的副考官是
I.提瓜拉茨局长。他出生在欧桑姆柯佛族群的牛屎海滩,绰号:铁耳水牛!年龄看上去大约十六七岁,但实际年龄足有八千多岁,身高一
米六左右,体重约八十多公斤。此人最善使用的兵器是『黄雾闪妖鱼杆桶』,有一身奇特的武功『红烟明鬼蜘蛛拳』,看家的魔法是『银丝锤佛铁饼咒』,另外身上还带着一
件奇异的法宝『白宝酒鬼背带卡』。他有着凸凹的墨蓝色木偶一样的身材和怪异的墨紫色邮筒形态的皮肤,似乎有点病态但又有些猜疑,他头上是破旧的钢灰色路灯造型的美
丝标准……I.提瓜拉茨局长长着摇晃的蓝宝石色天鹅形态的脑袋和变异的青古磁色牛肝般的脖子,最出奇的是一张细长的亮白色海豹样的脸,配着一只浮动的青远山色菜碟
一样的鼻子。鼻子上面是一对怪异的亮蓝色软盘一样的眼睛,两边是很大的紫罗兰色烟盒耳朵,鼻子下面是普通的海蓝色香蕉似的嘴唇,说话时露出彪悍的紫红色地痞样的牙
数学精华教案平面向量数量积的运算律
平面向量数量积的运算律教学目标:1. 理解并掌握平面向量数量积的运算律;2. 能够运用运算律进行平面向量数量积的计算;3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 平面向量数量积的定义;2. 平面向量数量积的运算律;3. 运用运算律进行平面向量数量积的计算。
教学准备:1. 教学PPT;2. 教学黑板;3. 教学卡片。
教学过程:一、导入(5分钟)1. 引导学生回顾平面向量数量积的定义,巩固基础知识。
二、新课讲解(15分钟)1. 讲解平面向量数量积的运算律,包括交换律、结合律和分配律;2. 通过示例和练习,让学生理解并掌握运算律的应用。
三、课堂练习(10分钟)1. 布置练习题目,让学生独立完成;2. 选取部分学生的作业进行讲解和点评。
四、拓展与应用(10分钟)1. 引导学生运用运算律解决实际问题;2. 让学生进行小组讨论,分享解题方法和经验。
2. 鼓励学生提出问题,进行课堂互动。
教学评价:1. 课堂练习的完成情况;2. 学生对平面向量数量积运算律的理解和运用能力;3. 学生对实际问题的解决能力。
教学反思:根据学生的反馈和课堂表现,对教学方法和内容进行调整,以提高学生的学习兴趣和效果。
注重培养学生的逻辑思维能力和解决问题的能力,提高学生的数学素养。
六、案例分析:数量积运算律的应用1. 案例展示:分析实际问题,运用数量积运算律进行求解;2. 学生分组讨论:如何运用数量积运算律解决实际问题;3. 分享与讲解:各小组展示讨论成果,教师进行点评和讲解。
七、练习与巩固:1. 布置练习题:结合数量积运算律,求解平面向量的数量积;2. 学生独立完成:请在规定时间内完成练习题;3. 答案讲解:选取部分学生的作业进行讲解和点评。
八、拓展提高:1. 探究问题:如何将数量积运算律应用于几何问题;2. 学生分组讨论:小组成员共同探讨,分享解题思路;3. 分享与讲解:各小组展示讨论成果,教师进行点评和讲解。
2. 课堂互动:鼓励学生提出问题,进行课堂互动;3. 布置作业:布置一道有关数量积运算律的应用题,让学生课后思考。
平面向量积的运算及应用
平面向量积的运算及应用平面向量的积是指两个向量的乘积,包括数量积(点积)和向量积(叉积)。
这两种运算在数学和物理中都有广泛的应用。
1. 数量积(点积):数量积是两个向量的标量积,表示为a·b 或者a•b,其中a 和b 分别表示两个向量。
a·b = a b cosθ其中 a 和 b 表示两个向量的模,θ表示两个向量之间的夹角。
数量积的运算结果是一个实数,其符号表示两个向量的夹角和两个向量的方向之间的关系。
当θ为锐角时,数量积为正;当θ为钝角时,数量积为负;当θ为直角时,数量积为零。
数量积的应用有:(1)计算两个向量之间的夹角。
根据数量积的定义,我们可以通过计算向量a·b 和向量的模 a 、b ,来求解两个向量之间的夹角θ。
θ= arccos(a·b / ( a b ))。
(2)判断两个向量之间的关系。
根据数量积的符号,我们可以判断两个向量是平行的(夹角为0 或π)、垂直的(夹角为π/2)还是成锐角或钝角。
2. 向量积(叉积):向量积是两个向量的矢量积,表示为a×b,其中a 和b 分别表示两个向量。
c = a×b向量积的运算结果是一个向量c,其方向垂直于a 和b 所确定的平面,符合右手定则。
向量c 的模与向量a 和b 之间的夹角sinθ成正比,即c 的模等于 a b sinθ。
向量积的应用有:(1)计算平行四边形的面积。
设a 和b 是平行四边形的两条边,那么平行四边形的面积等于向量积的模 c 。
S = a×b 。
(2)计算三角形的面积。
设a 和b 是三角形的两条边,那么三角形的面积等于向量积的模的一半。
S = 1/2 a×b 。
(3)判断三个向量的共面性。
如果三个向量a、b、c 共面,那么它们的向量积a×b·c 等于零;如果a×b·c 不等于零,则说明a、b、c 不共面。
(4)计算力的矩阵。
平面向量数量积的运算律10.4.19
ur r
不共线.k为何值时,向量a kb与
ur r
a kb互相垂直?
练 习:
已知 ar
r 6,b
4,ar与br的夹角
为60,求(ar
2br)( ar
r 3b )
.
B
b
图r2 a
B
b
r图3 a
B1 O A O
A
当 90时,它是0;(如图3)
r
当 0时,它是 b ;
r
当 0时,它是 b ; r
当 180时,它是 b
r
当 0时,它是 b ;
r
当 180时,它是 b
数量积ar
br等于ar的长度
ar
r 与b
在ar方向上的投影
r b
cos
的乘积 .
的夹角为,我们把数量
ar
r b
cos
叫做ar与br的数量积(或内积)记为:ar
r b
即
ar
r b
ar
r b
cos .
ar
r b
ar
r b
cos .
规定:零向量与任一向量
的数量积为0,即ar
r 0
0.
ar
r b
ar
r b
cos .
注意:ar br不能省略写成arbr或
写成
ar
r b的形式
.
由定义可知,
AC 3, 则<AB,BC>=__1_2_0_o _.
C
120o 60o
BA
2. 向量的数量积定义:
2. 向量的数量积定义:
已知两个非零向量ar和br, 它们
的夹角为 ,我们把数量 ar
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8课时
二、平面向量数量积的运算律
教学目的:
1.掌握平面向量数量积运算规律;
2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
教学重点:平面向量数量积及运算规律.
教学难点:平面向量数量积的应用
授课类型:新授课
教具:多媒体、实物投影仪
内容分析:
启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,
(0≤θ≤π).并规定0与任何向量的数量积为0.
3.“投影”的概念:作图
C
投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为|b|;当θ = 180︒时投影为-|b|.
4.向量的数量积的几何意义:
数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.
5.两个向量的数量积的性质:
设a 、b 为两个非零向量,e 是与b 同向的单位向量.
1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 0
3︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||
4︒cos θ =|
|||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:
平面向量数量积的运算律
1.交换律:a ⋅ b = b ⋅ a
证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ
∴a ⋅ b = b ⋅ a
2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )
证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,
若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.
3.分配律:(a + b )⋅c = a ⋅c + b ⋅c
在平面内取一点O ,作= a , = b ,= c , ∵a + b (即)在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2 ∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c
说明:(1)一般地,(a·b)с≠a(b·с)
(2)a·с=b·с,с≠0a=b
(3)有如下常用性质:a2=|a|2,
(a+b)(с+d)=a·с+a·d+b·с+b·d
(a+b)2=a2+2a·b+b2
三、讲解范例:
例1 已知a 、b 都是非零向量,且a + 3b 与7a - 5b 垂直,a - 4b 与7a - 2b 垂直,求a 与b 的夹角.
解:由(a + 3b )(7a - 5b ) = 0 ⇒ 7a 2 + 16a ⋅b -15b 2 = 0 ①
(a - 4b )(7a - 2b ) = 0 ⇒ 7a 2 - 30a ⋅b + 8b 2 = 0 ②
两式相减:2a ⋅b = b 2
代入①或②得:a 2 = b 2
设a 、b 的夹角为θ,则cos θ =2
1222==⋅||||||b b b a b a ∴θ = 60︒ 例2 求证:平行四边形两条对角线平方和等于四条边的平方和.
解:如图:平行四边形ABCD 中,DC AB =,BC AD =,AC =AD AB +
∴||2=⋅++=+2||2
22 而BD =AD AB - ,
∴||2=⋅-+=-2||222
∴||2 + ||2 = 22
22AD AB += 2222||||||||AD DC BC AB +++
例3 四边形ABCD 中,=a,BC =b,CD =с,=d,且a·b=b·с=с·d=d·a,试问四边形ABCD 是什么图形?
分析:四边形的形状由边角关系确定,关键是由题设条件演变、推算该四边形的边角量.
解:四边形ABCD 是矩形,这是因为:
一方面:∵a+b+с+d=0,∴a+b=-(с+d),∴(a+b)2=(с+d)2 即|a|2+2a·b+|b|2=|с|2+2с·d+|d|2
由于a·b=с·d,∴|a|2+|b|2=|с|2+|d|2①
同理有|a|2+|d|2=|с|2+|b|2②
由①②可得|a|=|с|,且|b|=|d|即四边形ABCD 两组对边分别相等. ∴四边形ABCD 是平行四边形
另一方面,由a·b=b·с,有b(a-с)=0,而由平行四边形ABCD 可得a=-с,代入上式得b·(2a)=0,即a·b=0,∴a⊥b也即AB ⊥BC .
综上所述,四边形ABCD 是矩形.
评述:(1)在四边形中,,,,是顺次首尾相接向量,则其和向量是零向量,即a+b+с+d=0,应注意这一隐含条件应用;
(2)由已知条件产生数量积的关键是构造数量积,因为数量积的定义式中含有边、角两种关系.
四、课堂练习:
1.下列叙述不正确的是( )
A.向量的数量积满足交换律 B .向量的数量积满足分配律
C.向量的数量积满足结合律
D.a ·b 是一个实数
2.已知|a |=6,|b |=4,a 与b 的夹角为60°,则(a +2b )·(a -3b )等于( )
A.72 B .-72 C.36 D.-36
3.|a |=3,|b |=4,向量a +43b 与a -4
3b 的位置关系为( ) A.平行 B .垂直 C.夹角为3
D.不平行也不垂直 4.已知|a |=3,|b |=4,且a 与b 的夹角为150°,则(a +b )2= .
5.已知|a |=2,|b |=5,a ·b =-3,则|a +b |=______,|a -b |= .
6.设|a |=3,|b |=5,且a +λb 与a -λb 垂直,则λ= .
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:。