07-nanostructured materials-categories of nanostructred materials
材料科学与工程专业英语13-unit 19-20 nanostructured materialsppt课件
• the changes of the chemical properties: increase of the surface to volume ratio
B
4.The colloidal mask is removed.
.
3. The spheres size is reduced and a material B is depo1s3ited.
.
14
.
11
top-down and bottom-up approaches
• Bottoom-up techniques
Bulk materials
– Sol-gel 溶胶-凝胶
– Precipitation 沉淀
– Flame pyrolysis 火焰分解
– Electrodeposition 电沉积
• Ferromagnietic materials:铁磁性材料 • Thermal motion:热运动 • Permanent magnetic:永磁性的 • Paramagnet:顺磁体 • Superparamagnetism: 超顺磁性 • Giant magnetoresistive effect:巨磁阻效应
材料科学与工程专业英语
Special English for Materials Science and Engineering
Part 4 nanostructured materials
Unit19 Nanotechnology and nanostructured materials Unit 20 creation of nanostructured materials
利用单光纤光镊实现不同折射率的微粒分选
第 31 卷第 8 期2023 年 4 月Vol.31 No.8Apr. 2023光学精密工程Optics and Precision Engineering利用单光纤光镊实现不同折射率的微粒分选钟慧1,高丙坤1,党雨婷1,赵忖2*,姜春雷1*(1.东北石油大学电气信息工程学院,黑龙江大庆 163318;2.东北石油大学秦皇岛校区电气信息工程系,河北秦皇岛 066004)摘要:为解决在进行不同折射率的微粒分类时遇到的问题,本文提出了一种采用熔融法拉伸的抛物线型光纤探针,所得到的出射光场对于浸没在水溶液中的不同折射率的微粒具有不同的操作能力,可以达到微粒分类的目的。
我们将波长为980 nm的激光通入光纤探针中,操控光纤在液体中实现对二氧化硅(SiO2)、聚苯乙烯(PS)和酵母菌细胞三种不同折射率的微粒及细胞的捕获和传输,进而实现不同微粒的分类。
基本上实现了对三种微粒在1~10 μm范围内的操控和分类。
通过仿真验证了这种抛物线型光纤探针对三种微粒具有不同捕获能力,所得到的理论和实验结果保持一致。
使用该方法对微粒进行分类,可以简化实验装置,并且在无标签混合光纤传感器的开发和传染病检测或细胞分类等方面有广泛应用。
关键词:光纤光镊;折射率;细胞筛选;微粒分类中图分类号:Q631 文献标识码:A doi:10.37188/OPE.20233108.1115Particle sorting with different refractive indices using singlefiber optical tweezersZHONG Hui1,GAO Bingkun1,DANG Yuting1,ZHAO Cun2*,JIANG Chunlei1*(1.College of Electrical Information Engineering, Northeastern Petroleum University,Daqing 163318, China;2.Department of Electrical Information Engineering, Northeast Petroleum University,Qinhuangdao Campus, Qinhuangdao 066004, China)* Corresponding author, E-mail: jiangchunlei_nepu@;48724332@ Abstract: In order to solve the problems encountered in classifying particles with different refractive indi⁃ces, this paper proposes a parabolic fiber optic probe stretched by the fusion method; the resulting outgo⁃ing light field has different operating capabilities for particles with different refractive indices submerged in aqueous solutions, which can be used for particle classification. We couple a laser beam with a wavelength of 980 nm into the fiber optic probe and manipulate the fiber to achieve the capture and transport of parti⁃cles and cells with three different refractive indices in liquid:silicon dioxide (SiO2),polystyrene (PS),and yeast cells, and thus achieve the classification of different particles in the range of 1-10 μm. The differ⁃ent capture capabilities of this parabolic fiber optic probe for the three particles were simulated, and the ob⁃tained theoretical and experimental results were in agreement. The use of this method to classify particles 文章编号1004-924X(2023)08-1115-09收稿日期:2022-07-01;修订日期:2022-09-27.基金项目:黑龙江自然科学基金资助项目(No.LH2021F008)第 31 卷光学精密工程simplifies the experimental setup and has a wide range of potential applications in the development of label-free hybrid fiber optic sensors, infectious disease detection, and cell classification.Key words: fiber optic tweezers; refractive index; cell screening; particle classification1 引言微粒、活细胞和大分子的无触点和无创分选是多学科研究的一个主要目标,特别是在生物医学和化学分析方面[1]。
紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.鄄Chim.Sin .,2007,23(8):1219-1223August Received:January 9,2007;Revised:April 6,2007;Published on Web:June 13,2007.∗Corresponding author.Email:qhli@;Tel:+8621⁃50217337.国家自然科学基金青年基金(50503011),上海“浦江人才”计划(05PG14051),上海市教委重点项目(06zz95)及上海市重点学科项目(P1701)资助ⒸEditorial office of Acta Physico ⁃Chimica Sinica紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用袁昊1李庆华1,∗沙菲2解丽丽1田震1王利军1(1上海第二工业大学环境工程系,上海201209;2上海纳米材料检测中心,上海200237)摘要:以正硅酸乙酯为硅源,四丙基氢氧化铵(TPAOH)为模板剂和碱源,采取水热晶化技术,通过原位法在硅晶片表面制备出纯二氧化硅透明分子筛薄膜;采用紫外光解法代替传统高温焙烧法脱除分子筛薄膜孔道内的模板剂,制备出具有低介电常数的氧化硅分子筛薄膜.使用FTIR 、XRD 和SEM 对样品进行了结构表征,并采用阻抗分析仪测量了薄膜的介电常数,纳米硬度计测量薄膜的杨氏模量和硬度.与传统的高温焙烧方法相比,紫外光解法处理条件温和,同时省时、省能、操作简易.关键词:紫外光解法;高温焙烧法;氧化硅分子筛薄膜;低介电常数中图分类号:O649Application of Ultraviolet Treatment in the Synthesis of Pure 鄄silicaZeolite Thin Films with Low Dielectric ConstantYUAN Hao 1LI Qing ⁃Hua 1,∗SHA Fei 2XIE Li ⁃Li 1TIAN Zhen 1WANG Li ⁃Jun 1(1Department of Environmental Engineering,Shanghai Second Polytechnic University,Shanghai 201209,P.R.China ;2Shanghai Testing Center of Nanometer Materials,Shanghai 200237,P.R.China )Abstract :Transparent pure ⁃silica zeolite (PSZ)films were synthesized on silicon wafers through hydrothermal reaction ,in which tetraethyl orthosilicate (TEOS)was used as silica source ,tetrapropyl ammonium hydroxide (TPAOH)as template and alkaline source.An ultraviolet treatment was subsequently applied to remove the organic templates within the pores/channels of zeolite films.The thin films were characterized by using FTIR,XRD,and SEM techniques before and after the ultraviolet treatment.FTIR results showed that the organic templates were effectively removed via ultraviolet treatment,which was the same as the results from the calcinations treatment.In comparison with the calcined films,XRD and SEM results indicated that the crystallinity and the surface as well as the thickness of the films had no significant changes after ultraviolet treatment.Dielectric constant (ε)values of the thin films were measured by means of impedance analyzer.Elastic modulus and hardness of the thin films were measured by the nano ⁃indentation technique.All results showed that the films after ultraviolet treatment had a lower εvalue and higher mechanical strength.Therefore,it could be concluded that ultraviolet treatment was a faster,more energy ⁃conservative method to remove template from zeolite films,in comparison with conventional calcination.Key Words :Ultraviolet treatment;Calcination;Silica zeolite thin film;Low dielectric constant随着超大规模集成电路(ULSI)技术的发展,电子器件特征尺寸不断缩小,而电路的互连延迟逐渐增大[1,2],成为制约集成电路速度进一步提高的瓶颈.采用低介电常数(low ε)介质薄膜作金属线间和层间介质以代替传统SiO 2介质(ε≈4)是降低互连延迟、串扰和能耗的有效方法[2,3].通常采取以下两类方法降低材料的介电常数:第一类是利用有机化合物本身的低介电常数特性,但由于其机械性能差又不耐高温等缺陷限制了它们的应用;第二类是降低材料的有效介电常数,即在材1219Acta Phys.鄄Chim.Sin.,2007Vol.23料中增加孔隙,制备成多孔薄膜的方法.由于孔隙的增多致使平均介电常数降低.目前有可能在集成电路中应用的低介电常数介质主要有多孔氧化硅、含氟氧化硅、含氟碳膜、聚酰亚胺等[4-7].其中多孔SiO2不仅有较低的介电常数,且能与已有的单晶SiO2工艺很好地兼容,在热稳定性、对无机物的粘附性等方面明显优于有机介质,是传统SiO2理想的替代物.纳米多孔SiO2材料的制备目前多采用溶胶⁃凝胶(sol⁃gel)工艺[7,8],采用这种方法可获得较大孔隙度,但孔的结构不易控制,孔径尺寸随机分布,不适于用在集成电路中作为互连介质.另一类是与溶胶⁃凝胶技术相结合的模板法,以表面活性剂为模板,结合溶胶⁃凝胶或旋涂技术,可以得到孔径分布均匀的纳米介孔SiO2材料[9,10].与单纯的溶胶⁃凝胶方法相比,这种模板合成法可合理地控制孔隙度、孔尺寸以及膜的结构和厚度,但该类介孔薄膜材料易吸附空气中的水,从而导致薄膜的介电常数增大;同时,其薄膜材料较大的孔道和疏松的无机孔壁结构导致膜的机械性能下降,限制了介孔SiO2材料的进一步应用.近年来,一种新型基于微孔二氧化硅晶体———纯二氧化硅分子筛薄膜材料开始引起人们的关注.同具有低介电常数的有机硅酸盐、氟化硅玻璃或介孔二氧化硅薄膜相比,氧化硅分子筛薄膜具有均一的孔道结构,高热稳定性,高机械强度和高疏水性等特性[11,12],并且具有较低的理论介电常数[13].美国加州大学Yan课题组最先合成的MFI分子筛薄膜的ε值可达到2.7[14].通过选用较低骨架密度的MFI型分子筛或添加造孔剂等方法,将ε值进一步降低到2.2以下[15,16].最引人注目的是这种新型材料的机械强度(杨氏模量E)远大于其它材料[17],因此氧化硅分子筛薄膜有望代替传统二氧化硅薄膜而应用在未来超低ε材料领域.然而,尽管纯硅沸石分子筛(PSZ)薄膜材料显示出比纳米多孔SiO2材料更优异的机械强度和疏水性能,但在制备后期需要采用高温焙烧(>500℃)的方法脱除阻塞孔道的模板剂,并且加热处理过程比较缓慢.我们知道,低介电常数薄膜在实际制备中使用的温度一般不高于400℃.因此,如何解决在低温下快速有效地脱除有机模板剂成为氧化硅分子筛薄膜可以在低ε材料领域得到实际应用的关键问题.目前报道的脱除有机模板剂常用的方法除传统的高温焙烧外,还有酸萃取法和微波消解法等.但温和的酸萃取剂不能彻底脱除模板剂,而微波消解法在结合以廉价氧化性无机酸等为溶剂,利用体系中自身的压力脱除模板剂的同时对薄膜的骨架会有一定的副作用.Li等[18,19]将紫外光解技术应用在微孔分子筛领域,制备出一系列性能良好的分子筛纳米颗粒和薄膜.区别于传统的高温焙烧法,紫外光解技术是在近室温条件下将有机模板剂进行光化学分解,不仅避免高温对低介电常数材料制备影响的限制,同时也避免高温导致的薄膜材料和薄膜基底热膨胀系数不同产生的薄膜开裂.本研究是在原有工作基础上,继续探索紫外光解技术在制备低介电常数氧化硅分子筛薄膜方面的优越性.通过水热晶化方法,以四丙基氢氧化铵(TPAOH)为模板剂,在硅晶片上原位制备高质量的氧化硅分子筛薄膜.比较了传统高温焙烧法和紫外光解法对薄膜结构、组成和介电常数等的影响.1实验过程1.1原位晶化制备氧化硅分子筛薄膜将2cm×2cm双面抛光的硅晶片严格按标准的硅芯片清洗步骤清洗后,固定在自制的特富龙支架上,置于TPAOH/TEOS/H2O/EtOH的摩尔比为0.12/1/85/4的澄清溶液中,于100℃油浴中静置,2天后取出硅晶片,用0.1mol·L-1的氨水溶液洗涤后,室温下真空干燥.形成薄膜后,将其中一个薄膜基片放置在184-257nm、10-20mW·cm-2下的中压汞灯下照射3-8 h(在184-257nm波长范围内的紫外光),基片中心离紫外灯下端距离为2cm,控制实验温度<50℃.作为参比,采用传统的高温焙烧脱除模板剂的处理方法,将相同样品在氮气保护下以1℃·min-1的线性升温速率升到550℃,在550℃下焙烧6h,再以1℃·min-1降温速率降到室温,得到参比样品.整个高温焙烧的处理时间长达48h.1.2性能表征采用德国布鲁克AXS公司的D8ADVANCE X⁃ray Diffractometer确定微孔薄膜的晶态结构,使用Cu Kα为射线源,管电压40kV,管电流40mA,扫描区间5°-40°;采用德国布鲁克V70傅立叶变换红外分光光谱仪测定薄膜的红外光谱;用日本日立S⁃4800型冷场扫描电子显微镜观察薄膜的表面形貌和薄膜的厚度;介电常数的测量采用平行电容法,电容由HP4284阻抗分析仪测定;杨氏模量和硬度采用美国MTS公司的纳米压痕仪Nano⁃indenter1220No.8袁昊等:紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用DCM组件测定.2结果与讨论2.1FTIR图谱分析图1为原位晶化得到的氧化硅分子筛薄膜及其紫外光照处理/高温焙烧后产物的红外光谱图.对处理前的薄膜,图1的插图可直接表明有机分子的存在.模板剂中甲基(CH3)和亚甲基(CH2)的C—H伸缩振动峰在2700-3100cm-1区域之间,甲基(CH3)的C—H弯曲振动在1300-1600cm-1区域之间.图1高波数段(3100-2700cm-1)显示在2883、2943、2981 cm-1处有三个吸收峰,这些分别归属于亚甲基(CH2)和甲基(CH3)的C—H伸缩振动,而在低波数段(1800-500cm-1)的1460、1474cm-1处的两个吸收峰则归属于模板剂亚甲基(CH2)和甲基(CH3)的C—H 弯曲振动[20].经过高温焙烧和紫外光照处理后FTIR图谱发生了一些明显的变化.表征有机模板剂的甲基(CH3)和亚甲基(CH2)的C—H伸缩振动和弯曲振动的特征谱峰全部消失,表明两种处理方式都能有效地脱去孔道内的模板剂(低于仪器的检测下限,残留有机物低于1%的原始含量).目前对UV/ozone空气环境下降解有机物的机理学术界还存在争论,但普遍认为UV光照过程可能包括下面的反应:低于245.4nm(最佳λ=184nm)的紫外光照促进了氧气(空气中的)分裂成臭氧和氧原子;且253.7nm波长的光线可激活和/或分裂有机基体,从而产生有活性的核素(如离子、自由基和受激分子);有活性的有机核素随时受到氧原子和臭氧的协同攻击容易形成简单的易挥发的(或可除去的)产物,如一些可从样品内部逸出的CO2、H2O和N2.同时,UV光源发出的光子表现的热效应[21],促使薄膜内部的有机成分分解挥发,且在较短的时间内使得薄膜的性能达到甚至超过传统的热处理效果.需要指出的是,脱除模板剂及其分解产物所需的紫外照射时间与使用的汞灯的功率、灯管清洁程度、薄膜离灯的距离以及薄膜自身的厚度等因素有关.红外测量结果表明,4h的照射时间足够完全除去分子筛薄膜孔道内的有机物,并且能保持样品表面的温度低于50℃,而高温焙烧法不仅需要高达550℃的高温,而且加热时间需要至少48h.所以,紫外光照技术应用在薄膜领域具有低温、快速、简易的特点,在保障低温脱除模板剂前提下,又大大缩短了模板剂脱除所需的时间.2.2XRD图谱分析图2是原位晶化后的分子筛薄膜和经紫外光照或高温焙烧处理后的XRD图谱.薄膜未经处理前的XRD图谱是MFI分子筛薄膜典型的特征衍射峰[22],表明薄膜材料具有均一有序的孔洞结构.样品经过紫外光照或高温焙烧处理后,峰位保持不变,峰的相对强度发生了明显的变化.前两个峰7.96°和8.88°的峰强度变强,11.92°和12.50°两个峰强度有所下降,这主要是由于在模板剂脱除过程中无机组分进入到骨架结构的空穴中[23].我们知道,分子筛薄膜在高温焙烧脱除有机模板剂过程中常会引起薄膜结晶度的下降,这将导致孔隙率降低,介电常数ε值增大.为避免破坏薄膜结构,通常采用氧气/氮气气氛下非常缓慢的程序控制升温过程.整个实验过程耗时、耗能,同时高温可能引起薄膜因与基底热膨胀系数不同而产生裂纹,大图1MFI薄膜原样、UV光照或焙烧处理后的FTIR图谱Fig.1FTIR absorption spectra of silica MFI films ofas⁃synthesized and treated by UV and calcinationMFI:a kind of silicazeolites图2MFI薄膜原样、UV光照/高温焙烧处理后的XRD图Fig.2XRD patterns of silica MFI films of as⁃synthesized and treated by UV and calcination1221Acta Phys.⁃Chim.Sin.,2007Vol.23大影响膜的性能.而紫外光照处理后的XRD 谱图证实紫外光照技术在高效除去模板剂的同时,在保持薄膜结晶度和完整性方面具有比传统高温焙烧法更优异的性能.2.3SEM 形貌厚度分析图3是原位晶化后的微孔分子筛薄膜和经紫外光照或高温焙烧处理后的扫描电镜照片.照片显示,无论是紫外光照处理还是高温焙烧,薄膜表面同未处理前的表面形貌没有明显差异.薄膜表面致密、连续、平整.从SEM 的截面图象中观察到三种薄膜的厚度非常接近,平均为500nm.说明紫外光照处理同高温焙烧处理一样,对薄膜厚度没有影响.2.4薄膜介电常数分析FTIR 和XRD 谱图分析表明紫外光解法比传统高温焙烧法在脱除薄膜孔道内的有机物过程中不仅保证整个过程是低温、快速进行,同时在保持薄膜结晶度完整方面紫外光解法具有更大的优势.我们进一步用平行电容法测量了两种薄膜的介电常数值,研究不同处理方法对介电常数值的影响.为了测量薄膜的介电常数,在制备好的薄膜表面通过孔状隔板真空蒸发上直径为1.5mm 、厚度为1μm 的6个圆形铝点作为上层电极,在硅片的另一面先用缓冲的HF 溶液清洗后真空蒸发沉积一层铝膜,这样它连同中间层的氧化硅介质及上层的铝点构成平板电容器.微孔薄膜的相对介电常数通过公式ε=Cd /(A ε0)算出,其中A 是圆形铝电极的面积,ε0是真空介电常数,d 是薄膜厚度,电容C 由HP4284阻抗分析仪测定.为了避免水吸附的影响,待测薄膜先在120℃下干燥12h,然后保存在干燥器中.电容测量过程在N 2保护下进行.处理前薄膜的介电常数值为ε=3.6,经紫外光照处理后ε=2.4,而经高温焙烧处理后的ε=2.6.这是由于原位晶化制备的分子筛薄膜因孔道中的模板剂占据了一定的空间,导致孔隙率降低,所以介电常数ε值较高为3.6,但经紫外光照处理和高温焙烧脱除模板剂后,ε值因孔隙的增大而分别降低到2.4和2.6,大大低于目前普遍使用的SiO 2介电材料(ε≈4).紫外光照处理比高温焙烧后的ε值低的实验结果也进一步证实了XRD 图谱分析的预测,即由紫外光照处理的样品比高温处理的样品结构更加有序、结晶度更高、缺陷更少.由此,分子筛薄膜的孔隙率增大,ε值减小.2.5薄膜杨氏模量分析经高温焙烧处理后薄膜的杨氏模量和硬度分别为43.2GPa 和2.67GPa,经紫外光照处理后薄膜的杨氏模量和硬度分别为44.0GPa 和2.73GPa.经过紫外光照和高温焙烧处理脱除模板剂后的杨氏模量分别为44.0GPa 和43.2GPa,远远高于微电子工业所要求的低ε材料的杨氏模量必须大约6GPa 的要求.同时由于紫外光解法相对于高温焙烧法具有更好的结构有序度、空间缺陷少等优点,使其具备了更好的机械性能.3结论FTIR 、XRD 、SEM 表征结果和介电常数、机械性能分析表明,紫外光解法同传统的高温焙烧处理法相比,不仅在低温(<50℃)下有效地脱除分子筛薄膜模板剂,而且大大缩短脱除模板剂所需的时间(从48h 降低到4h).需要指出的是,紫外光解法比传统高温焙烧方法在保持薄膜结晶度、有序性方面具有更大的优势,同时可以避免因膜与基底间的热膨胀系数不同而导致在膜界面产生裂缝,因此,在制备高质量低介电常数的薄膜材料方面具有独特的优越性.References1Chen,S.J.;Evans,D.F.;Ninham,B.M.J.Phys.Chem.,1984,88:16312Banerjee,K.;Amerasekera,A.;Dixit,G.;Hu,C.Technical Digest of IEEE International Electron Device Meeting.San Francisco,1996:65-683Fan,H.Y.;Bentley,H.R.;Kathan,K.R.;Clem,Y.;Lu,Y.;Brink,C.J.J.Non ⁃Cryst.Solids,2001,285:79图3薄膜的SEM 照片Fig.3SEM micrographs of films(a)as ⁃synthesized film,(b)UV treated film,(c)calcined film(a)(b)(c)1222No.8袁昊等:紫外光解法在制备低介电常数氧化硅分子筛薄膜中的应用4Bhan,M.K.;Huang,J.;Cheung,D.Thin Solid Films,1997,308/ 309:5075Kazuhiko,E.;Toru,T.J.Vac.Sci.Technol.,1997,15(6):3134 6Lu,T.M.;Moore,J.A.MRS Bulletin,1997,22(10):287Homma,T.Material Science and Engineering,1998,23(6):243 8Wu,G.M.;Shen,J.;Wang,J.;Zhou,B.;Ni,X.Y.Atomic Energy Science and Technology,2002,36(4/5):374[吴广明,沈军,王珏,周斌,倪星元.原子能科学技术,2002,36(4/5):374] 9Stupp,S.I.;Lebonheur,V.;Walker,K.;Li,L.S.;Huggins,K.E.Science,1997,276:38410Wang,J.;Zhang,C.R.;Feng,J.Acta Phys.⁃Chim.Sin.,2004,20(12):1399[王娟,张长瑞,冯坚.物理化学学报,2004,20(12):1399]11Wang,Z.B.;Mitra,A.P.;Wang,H.T.;Yan,Y.Adv.Mater., 2001,13:74612Persson,A.E.;Schoeman,B.J.;Sterte,J.Zeolites,1995,15:611 13van Santen,P.A.;Kramer,G.J.Chem.Rev.,1995,95:63714Wang,Z.;Wang,H.;Mitra,A.;Huang,L.;Yan,Y.Adv.Mater.,2001,13:74615Mitra,A.;Cao,T.;Wang,H.;Wang,Z.;Huang,L.Ind.Eng.Chem.Res.,2004,43:294616Li,S.;Li,Z.;Yan,Y.Adv.Mater.,2003,15:152817Li,Z.;Johnson,M.C.;Sun,M.;Ryan,E.;Earl,D.J.Angew.Chem.Int.Ed.,2006,45:632918Parikh,A.;Navrotsky,A.;Li,Q.;Yee,C.K.;Amwg,M.L.Microporous Mesoporous Mat.,2004,76:1719Li,Q.;Amweg,M.;Yee,C.Microporous Mesoporous Mat.,2005, 87:4520Bellamy,L.J.The infrared sepctra of complex molecules.London: Chapman and Hall,1975:374-38321Taylor,D.J.;Fabes,B.D.J.Non⁃Cryst.Solids,1992,147-148: 45722Wu,E.L.;Lawton,S.L.;Oison,D.H.;Rohrman,A.C.J.Phys.Chem.,1979,83(21):277723Flanigen,E.M.;Bennett,J.M.;Grose,R.W.;Cohen,J.P.;Patton, R.L.;Kirchner,R.M.;Smith,J.V.Nature,1978,271:5121223。
化学化工专业英语电子版课本.
ContentPART 1 Introduction to Materials Science &Engineering 1 Unit 1 Materials Science and Engineering 1 Unit 2 Classification of Materials 9 Unit 3 Properties of Materials 17 Unit 4 Materials Science and Engineering: What does the Future Hold? 25 PartⅡMETALLIC MATERLALS AND ALLOYS 33 Unit 5 An Introduction to Metallic Materials 33 Unit 6 Metal Manufacturing Methods 47 Unit 7 Structure of Metallic Materials 57 Unit 8 Metal-Matrix Composites 68 PartⅢCeramics 81 Unit 9 Introduction to Ceramics 81 Unit 10 Ceramic Structures —Crystalline and Noncrystalline 88 Unit 11 Ceramic Processing Methods 97 Unit 12 Advanced ceramic materials –Functional Ceramics 105 PARTⅣNANOMATERIALS 112 Unit 13 Introduction to Nanostructured Materials 112 Unit14 Preparation of Nanomaterials 117 Unit 15 Recent Scientific Advances 126 Unit 16 The Future of Nanostructure Science and Technology 130 PartⅤPOLYMERS 136 Unit17 A Brief Review in the Development of Synthetic Polymers 136 Unit18 Polymer synthesis: Polyethylene synthesis 146 Unit19 Polymer synthesis:Nylon synthesis 154 Unit 20 Processing and Properties Polymer Materials 165 PART VI POLYMERIC COMPOSITES 172 Unit21 Introduction to Polymeric Composite Materials 172 Unit22 Composition, Structure and Morphology of Polymeric Composites 178Unit23 Manufacture of Polymer Composites 185 Unit24 Epoxy Resin Composites 191 Part 7 Biomaterial 196 Unit 25 Introduction to Biomaterials 196 Unit 26 Biocompatibility 205 Unit 27 Polymers as Biomaterials 213 Unit 28 Future of Biomaterials 224 PARTⅧMaterials and Environment 237 Unit29 Environmental Pollution & Control Related Materials 237 Unit30 Bio-degradable Polymer Materials 241 Unit 31 Environmental Friendly Inorganic Materials 248 Unit 32 A Perspective on the Future: Challenges and Opportunities 256 附录一科技英语构词法263 附录二科技英语语法及翻译简介269附录三:聚合物英缩写、全名、中文名对照表280 附录四:练习题参考答案284 PART 1 Introduction to Materials Science &EngineeringUnit 1Materials Science and Engineering Historical PerspectiveMaterials are probably more deep-seated in our culture than most of us realize. Transportation, housing, clothing, communication, recreation, and food production —virtually every segment of our everyday lives is influenced to one degree or another by materials. Historically, the development and advancement of societies ha ve been intimately tied to the members‘ ability to produce and manipulate materi- als to fill their needs. In fact, early civilizations have been designated by the level of their materials development (Stone Age, Bronze Age, Iron Age.The earliest humans had access to only a very limited number of materials, those that occur naturally: stone, wood, clay, skins, and so on. With time they discovered techniques for producing materials that had properties superior to those of the natural ones; these new materials included pottery and various metals. Furthermore, it was discovered that the properties of a material could be altered by heat treatments and by the addition of other substances. At this point, materials utilization was totally a selection process that involved deciding from a given, rather limited set of materials the one best suited for an application by virtue of its characteristics.①It was not until relatively recent times that scientists came to understand the relationships between the structural elements of materials and their properties. This knowledge, acquired over approximately the past 100 years, has empowered them to fashion, to a large degree, the characteristics of materials. Thus, tens of thousands of different materials have evolved with rather specialized charac- teristics that meet the needs of our modern and complex society; these include metals, plastics, glasses, and fibers. deep-seated根深蒂固的, 深层的pottery / ☐☯❑♓陶器structural elements结构成分;property / ☐❑☐☜♦♓/⏹.性能The development of many technologies that make our existence so comfortable has been intimately associated with the accessibility of suitable materials. An advancement in the understanding of a material type is often the forerunner to the stepwise progression of a technology. For example, automobiles would not havebeen possibl- e without the availability of inexpensive steel or some other comparable substitute. In our contemporary era, sophisticated electronic devices rely on components that are made from what are called semiconducting materials. Materials Science and EngineeringThe discipline of materials science involves investigating the relationships that exist between the structures and properties of materials. In contrast, materials engineering is, on the basis of these structure–property correlations, designing or engineering the structure of a material to produce a predetermined set of properties.―Structure‘‘ is at this point a nebulous term that deserves some explanation. In brief, the structure of a material usually relates to the arrangement of its internal components. Subatomic structure involves electrons within the individual atoms and interactions with their nuclei. On an atomic level, structure encompasses the organization of atoms or molecules relative to one another. The next larger structural realm, which contains large groups of atoms that are normally agglomerated together, is termed‗‗microscopic,‘‘ meaning that which is subject to direct observation using some type of microscope. Finally, structural elements that may be viewed with the naked eye are termed ‗‗macroscopic.‘‘The notion of ‗‗property‘‘ deserves elaboration. While in service use, all materials are exposed to external stimuli that evoke some type of response. For example, aspecimen subjected to forces will experience deformation; or a polished metal surface will reflect light. Property is a material trait in terms of the kind and magnitude of response to a specific imposed stimulus. Generally, definitions of properties are made independent of material shape and size.Virtually all important properties of solid materials may be grouped into six different categories: mechanical, electrical, thermal, magnetic, optical, and stepwise /♦♦♏☐♦♋♓/ ♎逐步的sophisticated/♦☯♐♓♦♦♓♏♓♦♓♎/ ♎精制的,复杂的; semiconducting materials 半导体材料nebulous/ ⏹♏♌✞●☯♦/♎含糊的,有歧义的subatomic/ ♦✈♌☯❍♎亚原子的microscopic/❍♓❑☯☐♓♎微观的❍♋♍❑☐♦♍☐☐♓♍/❍✌❑☯✞☐♓♎宏观的deteriorative. For each there is a characteristic type of stimulus capable of provokingdifferent responses. Mechanical properties relate deformation to an applied load or force; examples include elastic modulus and strength. For electrical properties, such as electrical conductivity and dielectric constant, the stimulus is an electric field. The thermal behavior of solids can be represented in terms of heat capacity and thermalconductivity. Magnetic properties demonstrate the response of a material to the application of a magnetic field. For optical properties, the stimulus is electro- magnetic or light radiation; index of refraction and reflectivity are representative optical properties. Finally, deteriorative characteristics indicate the chemical reactivity of materials.In addition to structure and properties, two other important components are involved in the science and engineering of materials, viz. ‗‗processing‘‘ and‗‗performance.‘‘ With regard to the relationships of these four components, the structure of a material will depend on how it is processed. Furthermore, a material‘s perf ormance will be a function of its properties.Fig. 1.1 Photograph showing the light transmittance of three aluminum oxide specimens. From left to right: single crystal material (sapphire, which is transparent;a polycrystalline and fully dense (nonporous material, which is translucent; and a polycrystalline material that contains approximately 5% porosity, which is opaque. (Specimen preparation, P. A. Lessing; photography by J. Telford.We now present an example of these processing-structure-properties-perfor- mance principles with Figure 1.1, a photograph showing three thin disk specimens placed over some printed matter. It is obvious that the optical properties (i.e., the deformation/♎♓♐❍♏♓☞☯变形deteriorative/♎♓♓☯❑♓☯❑♏♓♦♓破坏(老化的elastic modulus 弹性模量strength /♦♦❑♏⏹♑强度;dielectric constant介电常数;heat capacity 热容量refraction/❑♓♐❑✌☞☯折射率; reflectivity/ ❑♓♐●♏♓♓♦♓/ 反射率processing/☐❑☯◆♏♦♓☠加工light transmittance of each of the three materials are different; the one on the left is transparent (i.e., virtually all of the reflected light passes through it, whereas the disks in the center and on the right are, respectively, translucent and opaque.All of these specimens are of the same material, aluminum oxide, but the leftmost one is what we call a single crystal—that is, it is highly perfect—which gives rise to its transparency. The center one is composed of numerous and verysmall single crystals that are all connected; the boundaries between these small crystals scatter a portion of the light reflected from the printed page, which makes this material optically translucent.②And finally, the specimen on the right is composed not only of many small, interconnected crystals, but also of a large number of very small pores or void spaces. These pores also effectively scatter the reflected light and render this material opaque.Thus, the structures of these three specimens are different in terms of crystal boundaries and pores, which affect the optical transmittance properties. Furthermore, each material was produced using a different processing technique. And, of course, if optical transmittance is an important parameter relative to the ultimate in-service application, the performance of each material will be different.Why Study Materials science and Engineering?Why do we study materials? Many an applied scientist or engineer, whether mechanical, civil, chemical, or electrical, will at one time or another be exposed to a design problem involving materials. Examples might include a transmission gear, the superstructure for a building, an oil refinery component, or an integrated circuit chip. Ofcourse, materials scientists and engineers are specialists who are totally involved in the investigation and design of materials.Many times, a materials problem is one of selecting the right material from the many thousands that are available. There are several criteria on which the final decision is normally based. First of all, the in-service conditions must be charac- terized, for these will dictate the properties required of the material. On only rare occasions does a material possess the maximum or ideal combination of properties. transmittance/♦❑✌❍♓♦☜⏹♦/ ⏹. 透射性sapphire /♦✌♐♓☯蓝宝石transparent/♦❑✌☐☪☯❑☯⏹♦/ ♎透明的;polycrystalline/ ☐♓❑♓♦♦☯♓多晶体; translucent/♦❑✌✞♎半透明的; opaque☯✞☐♏♓♎不透明的single crystal 单晶体Thus, it may be necessary to trade off one characteristic for another. The classic example involves strength and ductility; normally, a material having a high strength will have only a limited ductility. In such cases a reasonable compromise between two or more properties may be necessary.A second selection consideration is any deterioration of material properties that may occur during service operation. For example, significant reductions in mecha- nical strength may result from exposure to elevated temperatures or corrosive envir- onments.Finally, probably the overriding consideration is that of economics: What will the finished product cost? A material may be found that has the ideal set of proper- ties but is prohibitively expensive. Here again, some compromise is inevitable.The cost of a finished piece also includes any expense incurred during fabrication to produce the desired shape. The more familiar an engineer or scientist is with the various characteristics and structure–property relationships, as well as processing techniques of materials, the more proficient and confident he or she will be to make judicious materials choices based on these criteria.③Reference:William D. Callister, Materials science and engineering : anintroduction, Press:John Wiley & Sons, Inc.,2007;2-5 transmission gear传动齿轮dictate/♎♓♏♓决定trade off 权衡;折衷ductility♎✈♓●♓♦♓延展性/ ☯✞☯❑♋♓♎♓☠/♎最主要的judicious/♎✞✞♎♓☞☯♦/♎明智的Notes1.At this point, materials utilization was totally a selection process that involved deciding froma given, rather limited set of materials the one best suited for an application by virtue of itscharacteristics由此看来,材料的使用完全就是一个选择过程,且此过程又是根据材料的性质从许多的而不是非有限的材料中选择一种最适于某种用途的材料。
advanced optical materials分区
Advanced Optical MaterialsIntroductionAdvanced optical materials refer to materials that possess uniqueoptical properties and have applications in various fields such as electronics, photonics, and optoelectronics. These materials are designed and engineered to manipulate light at the nanoscale, enabling the development of novel devices and technologies.Classification of Advanced Optical MaterialsAdvanced optical materials can be classified into several categories based on their properties and applications:1.Photonic Crystals: These materials have a periodic arrangement ofrefractive index variations, enabling the control and manipulation of light propagation. Photonic crystals find applications inoptical filters, waveguides, and sensors.2.Metamaterials: Metamaterials are artificially engineeredmaterials that possess unusual optical properties not found innaturally occurring materials. They have a unique refractive index and can exhibit negative refraction, enabling the development ofsuperlenses, invisibility cloaks, and other exotic devices.3.Plasmonic Materials: Plasmonic materials exhibit stronginteraction between light and free electrons at the nanoscale.They can confine and manipulate light beyond the diffraction limit, enabling the development of nanophotonic devices, biosensors, andenhanced solar cells.4.Quantum Dots: Quantum dots are semiconductor nanoparticles withunique optical properties. They can emit light of different colors depending on their size, making them useful in displays, lighting, and biological imaging.5.Nanophotonics: Nanophotonics involves the study and manipulationof light at the nanoscale. It combines nanotechnology, optics, and materials science to develop devices such as nanolasers, photoniccircuits, and ultra-sensitive detectors.6.Optical Fibers: Optical fibers are thin, flexible strands ofglass or plastic that can transmit light over long distances withminimal loss. They are used in telecommunications, medical imaging, and sensing applications.Applications of Advanced Optical MaterialsAdvanced optical materials have a wide range of applications across various fields:rmation Technology: Advanced optical materials are crucialfor the development of faster and more efficient data storage andcommunication technologies. Photonic crystals and metamaterialsare used in optical data storage, high-speed optical communication, and optical computing.2.Sensing and Imaging: Advanced optical materials play a vital rolein sensing and imaging technologies. Plasmonic materials andquantum dots are used in biosensors for detecting biologicalmolecules and in medical imaging for improved contrast andresolution.3.Energy: Advanced optical materials are used in solar cells toenhance light absorption and improve energy conversion efficiency.They are also used in light-emitting diodes (LEDs) for efficientand high-quality lighting.4.Optical Devices: Advanced optical materials enable thedevelopment of compact and efficient optical devices.Nanophotonics and photonic crystals are used in the fabrication of nanolasers, photonic integrated circuits, and ultra-sensitivedetectors.5.Biotechnology: Advanced optical materials have applications inbiotechnology and medicine. Quantum dots and plasmonic materialsare used for cellular imaging, drug delivery, and cancer therapy.Future OutlookThe field of advanced optical materials continues to evolve rapidly, driven by advancements in nanotechnology, materials science, and optics. Future research and development efforts are focused on:1.Enhancing Performance: Researchers are working on improving theoptical properties of advanced materials, such as increasing their efficiency, stability, and tunability.2.Integration and Miniaturization: The integration of advancedoptical materials into compact and multifunctional devices is amajor focus of ongoing research. This includes the development of on-chip photonic circuits and nanoscale optical devices.3.Biomedical Applications: Advanced optical materials hold greatpromise in biotechnology and medicine. Ongoing research aims todevelop targeted drug delivery systems, high-resolution imagingtechniques, and optical sensors for disease detection.4.Emerging Technologies: The field of advanced optical materials isalso exploring new technologies such as plasmonics, quantumphotonics, and 2D materials for novel applications incommunications, sensing, and computing.In conclusion, advanced optical materials offer immense potential for the development of next-generation devices and technologies. Their unique optical properties and versatile applications make them a vital area of research and innovation. Continued advancements in this field will drive progress in various sectors, from information technology to healthcare.。
nanostuctured materials
1
1. The definition of nanomaterial
A nanomaterial is defined as a material with dimensins in nanometer range(<100nm)
2
MnO2 Nanostructures
13
红移的发生
粒径的减小使颗粒内部的内应力(内应力p=2/r, r 为粒子半径, 为表面张力)增加,这种内应力的 增加也会导致能带结构的变化,电子波函数重叠加 大,结果带隙、能级间距变窄,使其光吸收发生红 移. 最终的效应取决于蓝移和红移竞争的结果.
14
Superparamagnetism method
26
27
28
29
30
31
Template synthesis
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
12
蓝移的解释
一个方面是由于量子尺寸效应,即由于颗粒尺 寸下降使能隙变宽(电子跃迁需要更高的能 量),这就导致光吸收带移向短波方向。 另一个方面是由于表面效应。由于纳米微粒颗 粒小,大的表面张力使晶格发生畸变,晶格常 数变小。对纳米氧化物和氮化物小粒子研究表 明,第一近邻和第二近邻的距离变短。键长的 缩短导致纳米微粒的键本征振动频率增大,结果 使红外光吸收带移向了高波数。
有机材料能量密度
有机材料能量密度概述能量密度是衡量材料储存和释放能量能力的重要指标。
有机材料是指由碳元素构成的化合物,它们通常具有较低的能量密度。
然而,随着科学技术的不断发展,人们对于提高有机材料的能量密度进行了广泛研究。
本文将探讨有机材料能量密度的相关概念、影响因素以及目前取得的进展。
什么是能量密度?能量密度是指单位体积或单位质量中所含有的储存或释放的能量数量。
在化学领域中,常用单位为焦耳/升(J/L)或焦耳/克(J/g)。
较高的能量密度意味着更多的储存或释放能量。
有机材料的特点有机材料主要由碳元素构成,具有许多独特的特点:1.轻质:与金属和无机材料相比,有机材料通常具有较低的密度,因此在相同质量下其体积较大。
2.易加工:由于其分子结构相对简单,有机材料易于合成和加工,可以通过调整分子结构来改变其性质。
3.稳定性差:有机材料通常不具备较高的熔点和热稳定性,容易受到高温、氧气和光照等外界条件的影响而发生分解。
影响有机材料能量密度的因素提高有机材料的能量密度是一个复杂而具有挑战性的任务。
以下是影响有机材料能量密度的关键因素:1.分子结构:有机材料的分子结构直接影响其储存和释放能量的能力。
一些特定的化学键或官能团可以提供更高的能量密度。
2.化学反应:有机材料在储存和释放能量过程中通常会经历化学反应。
通过优化反应条件和选择适当的反应物,可以提高能量密度。
3.能源转换效率:有机材料作为电池、超级电容器等能源储存设备中的活性物质,其转换效率对于提高能量密度至关重要。
目前取得的进展近年来,科学家们在提高有机材料能量密度方面取得了一些重要进展。
以下是一些具有代表性的研究成果:1.高能量密度聚合物:研究人员通过合成新型聚合物材料,成功实现了较高能量密度的有机材料。
这些聚合物通常具有特殊的结构,可以在储存和释放能量过程中发生可逆的氧化还原反应。
2.纳米复合材料:将纳米颗粒引入有机材料中,可以增强其电导性和储能性能,从而提高能量密度。
材料科学与工程专业英语2【手工输入,按章节】
Composite materials复合材料Ferroconcrete钢筋混凝土Steel reinforcement钢筋Civil engineering土木工程Polymeric materials聚合物材料Structural properties结构性能Tailor structure performance调整结构Thermal expansion热膨胀Fatigue resistance耐疲劳Science efforts科研工作Comprehension综合理解Optimization最佳化Structural composite materials结构复合材料Component部件Economic经济上State of the art技术水平Satisfy specific requite满足特殊需求Thermoplastic based composite热塑性塑料基复合材料Composites based on Natural occurring materials天然存在材料为基体的复合材料Resin树脂Cost-efficient合算Biomedical生物医学Concurrent engineering methodology并存的工程方法论Natural tissues天然组织College of material science and engineering材料科学与工程学院Cross-disciplinary strategies交叉学科策略National institute for advanced interdisciplinary research国家先进跨学科研究院Combining element综合元素Tissue engineering组织工程Trend趋势Quality assurance质量保证Specific functional properties功能特性The principal requirement最主要的要求Filler size填料大小Surface chemical nature表面化学特性Magnetic-elastic磁致弹性Significantly enhance明显提高Elasto-dynamic response弹性动力学响应Atoms原子Electrons电子Mature manufacturing technology成熟加工技术Set at design level处于设计水平Expectation期望Sensor传感器Actuators调节器Organ器官Artificial prosthesis人造假肢Muscle肌肉Cartilage软骨Soft tissue软组织Composite structure复合结构Biohybrid technology生物杂化技术Culture cells培养细胞Delivery vehicle运载工具Polymeric biodegradable scaffold可降解的聚合物支架纳米材料Nanostructured materials纳米材料Categories种类Chemical composition化学组成The arrangement of the atoms原子排列Atomic structure原子结构Solid state physics固体物理Inert gas惰性气体Condensation冷凝Amorphous无固定形状的Precipitation沉降Crystalline结晶Devices器件装备Multilayer quantum多层量子Nanometer-sized纳米尺寸Bulk块状Ion implantation离子植入Laser beam激光束Supersaturated liquid饱和液体Atomic structure of solid surface固体表面的原子结构Hardness硬的Modify修改修饰Corrosion resistance抗腐蚀Wear resistance耐磨损Protective coating保护层Subgroup分枝Free surface自由表面Pattern模型Lithograph光蚀刻Local probes局部探测Near-field近场Focused聚焦的Beams电流能量Integrated circuit集成电路Single electron transistor单电子晶体管Building blocks构筑模型Gels胶体Supersaturated solid solutions过饱和固溶体Nano-length scale纳米尺度Implanted materials植入材料Quenching淬火Annealing退火Assembled装配Incoherent非共格Coherent interface共格晶面Heterogeneous非均质的Grain boundaries晶界Inherently天生的,固有的Synonymous同义的Exclusively专有的,表征Concept概念Industrial society工业社会Triggered引发Technological revolution科技发展Steam engine蒸汽机Initiated开创Industrial era工业时代Silicon technology硅技术Phase阶段Embryonic胚胎Intergration集成Illustrate说明Chemical systems化学物系Monomer单体Block模板Backbone主链Organism有机体Life science生命科学Macroscopic design宏观设计Molecular application of synthetic materials合成材料的结构应用Reshuffle重组Buzz Word术语Phenomena现象Scientific environment科学环境Microscopy显微技术Determine确定Characterize表征Architecture结构Fullerenes富勒烯Nanotube纳米管Dendritic枝状Hyperbranched超支化Promising希望Milestone里程碑Dendrimers枝状单体Multifunctional macromolecular多功能大分子Non-covalent非共价Covalent compound共价化合物Ionic compound离子化合物Organic compound有机化合物Supramolecular超分子Mimicking模拟Potential关键Sustainable民用Modify改变Concept of life生活观念Thorough彻底Chemical industry化学工业Merger合并Fusion融合Life cycle生命周期S-curve S曲线Cracker裂化装置Bulk polymer本体聚合物Synergy协同作用Solution provider决策者Principal原理Spin-off company派生公司Pronounced明确的Polymeric materials高分子材料Co-operation合作Venture capital风险投资Entrepreneurial spirit企业家精神Crucial至关重要Capacitor电容器Water purification systems水纯化装置Solid-solubility固熔度Electronegativity电负性Chemical formula化学式Stainless steels不锈钢Transition metal过渡金属Copolymer共聚物Homopolymer均聚物Cells in parallel并联Cells in series串联Inorganic nomatallic material无机非金属Wavelength波长Dielectric constant介电常数Adverse effect副作用Fatigue resistance抗疲劳性Defect缺陷Photovoltaic cell光生伏打灯Biomimetic仿生Uniform均一的Dispersion分散Short circuit短路Battery shot电池短路Open circuit开路Environmental friendly环境友好Interdisciplinary各学科间的Mechanical机械的、力学的Magnetic磁力的Optical视觉的Deteriorative变化的Van der waals bonds范德瓦耳斯力TEM电子透射显微镜。
纳米零价铁的制备及应用研究进展
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第6期·2208·化 工 进展纳米零价铁的制备及应用研究进展谢青青,姚楠(浙江工业大学化学工程学院,工业催化研究所,绿色化学合成技术国家重点实验室培育基地,浙江 杭州 310032)摘要:纳米零价铁催化材料具有价格低廉、比表面积大、还原性强、吸附性和反应活性优异等优点,可通过不同机制降解各类环境污染物(如重金属、无机阴离子、放射性元素、卤代有机化合物、硝基芳香化合物、环境内分泌干扰物等),被视为一种有着广阔应用前景的新材料,是目前国内外研究的热点。
本文详细介绍了纳米零价铁的典型制备方法(如物理法、化学液相还原法、热分解法、碳热法、多元醇法等)和新型绿色合成技术,同时总结了纳米零价铁在环境污染物处理和催化方面的最新应用进展,阐述了纳米零价铁在各类反应中的作用机理和效能,并提出了纳米零价铁催化材料在实际应用中尚需解决的团聚和氧化等问题,未来的研究目标应着重于改进或开发新制备方法以降低成本和拓宽纳米零价铁催化材料的应用范围。
关键词:纳米零价铁;制备;还原;催化中图分类号:TB39 文献标志码:A 文章编号:1000–6613(2017)06–2208–07 DOI :10.16085/j.issn.1000-6613.2017.06.034Progress of preparation and application of nanoscale zero-valent ironXIE Qingqing ,YAO Nan(College of Chemical Engineering ,Institute of Industrial Catalysis ,State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology ,Zhejiang University of Technology ,Hangzhou 310032,Zhejiang ,China )Abstract :Nanoscale zero-valent iron catalytic materials have advantages of low cost ,high reactionactivity ,high specific surface area and excellent adsorption properties. The excellent performances of these materials in various environmental pollutants (e.g. heavy metals ,inorganic anions ,radioactive elements ,halogenated organic compounds ,nitroaromatic compounds and endocrine-disrupting chemicals )remediation through different degradation mechanisms have made them be regarded as a new type of material that having broad application prospect. In this review ,the typical preparation methods ,including physical method ,chemical liquid phase reduction method ,thermal decomposition method ,carbothermal synthesis and polyol process ,and novel green synthesis technology ,of nanoscale zero-valent iron are introduced in detail. Moreover ,the applications as well as the reaction mechanism and efficiency of nanoscale zero-valent iron in environmental pollution treatment and catalysis are summarized. In addition ,some unresolved scientific problems including the oxidation and the agglomeration of nanoscale zero-valent iron are mentioned. It also suggests that the future research should be focused on the improvement or development of new synthetic method to reduce the cost and to extend the application field of the nanoscale zero-valent iron materials. Key words :nanoscale zero-valent iron ;preparation ;reduction ;catalysis米零价铁的制备及其应用。
纤维素的改性及应用研究进展_罗成成
2015年第34卷第3期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS・767・化工进展纤维素的改性及应用研究进展罗成成,王晖,陈勇(中南大学化学化工学院,湖南长沙410083)摘要:植物纤维素是天然的可再生资源,对纤维素的改性利用一直是研究的热点。
本文简要介绍了纤维素的结构与性质,综述了纤维素的改性方法,包括物理改性、化学改性和生物改性等,其中化学改性是最主要的方法,包括酯化、磺化、醚化、醚酯化、交联和接枝共聚等,通常涉及其结构中羟基的一系列反应。
通过改性,引进了一系列离子型基团,有利于增强纤维素的亲水性。
经改性后的纤维素与之前相比,结晶度和聚合度明显降低,可及度明显提高,无论物理性质还是化学性质都表现出更大的优越性。
其后回顾了纤维素衍生物在食品、造纸以及建筑行业中的一些研究应用成果,阐述了其在医药及废水处理等方面的研究进展,并展望了纤维素衍生物的发展前景。
关键词:纤维素;纤维素衍生物;化学改性中图分类号:TQ072文献标志码:A文章编号:1000–6613(2015)03–0767–07DOI:10.16085/j.issn.1000-6613.2015.03.028Progress in modification of cellulose and applicationLUO Chengcheng,WANG Hui,CHEN Yong(School of Chemistry and Chemical Engineering,Central South University,Changsha410083,Hunan,China)Abstract:Plant cellulose is a natural renewable resource,and application of the modified cellulose has been a research focus.The structure and properties of cellulose are described,and cellulose modification methods are reviewed,including physical,chemical and biological methods.The main method is chemical modification,including esterification,sulfonation,etherification,ether esterification,crosslinking and graft copolymerization,which involve the reactions of hydroxyl groups in the cellulose.Hydrophilcity of cellulose could be enhanced by introduction of ionic groups.Compared with non-modified cellulose,crystallinity and degree of polymerization of modified cellulose decrease significantly,whereas accessibility is improved remarkably,with superior physical and chemical properties.Finally,the research achievements of cellulose derivatives in food,paper and construction industries are reviewed.Research progresses in pharmaceuticals,wastewater treatment and other areas are presented.Future applications of cellulose derivatives are prospected.Key words:cellulose;cellulose derivatives;chemical modification纤维素是植物细胞壁的主要成分,在自然界中分布甚广,是取之不尽、用之不竭的天然高分子化合物。
nano materials science 分区
nano materials science 分区Nano materials science 是一个涉及纳米尺度材料研究的学科领域,主要关注纳米材料的物理、化学、机械、电子等性质及其应用。
其研究范围涉及纳米颗粒、纳米管、纳米棒、纳米盘、纳米结构、纳米晶等各种纳米结构和界面材料。
在SCI期刊分区中,nano materials science 主要分为Materials Science、Chemistry和Physics三个大类别。
具体如下:Materials Science该领域的期刊涉及纳米材料的合成、表征、结构、性质和应用等方面,例如:- Nano Letters:侧重于纳米结构材料的合成和表征;- ACS Nano:侧重于新型纳米材料的合成与性能调控;- Advanced Materials:侧重于纳米材料在电子学、光学、生物医学等领域的应用研究。
Chemistry该领域的期刊关注纳米材料的化学合成、表征、反应机理等方面,例如:- Chemical Reviews:关注纳米结构合成、表征、性能以及生物化学应用等;- The Journal of Physical Chemistry C:关注纳米材料在电子、能源和催化等领域的应用研究;- Nano Research:涵盖了纳米材料的全领域。
Physics该领域的期刊主要研究纳米材料的物理性质、电学性质、热学性质等方面,例如:- Physical Review Letters:关注纳米尺度物理学研究,包括材料、器件和系统等;- Nano Energy:关注纳米材料在能源转化、储存和利用等方面的应用研究;- ACS Photonics:关注纳米材料在光学领域的应用研究,如光电转换、激光器件等。
纳米材料的研究是一个跨学科的领域,其分区可根据不同研究方向和需求进行选择。
柚子皮活性炭对阳离子染料吸附性能的研究
柚子皮活性炭对阳离子染料吸附性能的研究作者:朱敏聪黄明强黄雨晴林健王敬超曾晓雯来源:《现代农业科技》2018年第22期摘要用柚子皮为原料制备活性炭,考察柚子皮活性炭(PPAC)对阳离子染料(亚甲基蓝)的吸附效果。
基于静态试验结果,PPAC对亚甲基蓝(MB)染料的吸附行为进行等温吸附、动力学及热力学研究。
等温吸附试验结果表明,Langmuir等温吸附模型能很好地描述PPAC对MB的吸附过程。
动力学拟合并进行动力学试验结果表明,PPAC对MB染料废水的吸附行为遵循准二级反应速率方程所描述的规律。
柚子皮活性炭(PPAC)作为一种价廉、高效的吸附剂材料,在污水处理中具有很好的应用前景,且解决了福建漳州地区柚子皮农林废物处理处置问题。
关键词柚子皮活性炭(PPAC);阳离子染料;吸附等温线;吸附动力学中图分类号 X703;X788 文献标识码 A 文章编号 1007-5739(2018)22-0181-03Abstract This study prepared activated carbons(PPAC)from wastes pomelo peel,and investigated its adsorption effect for cationic fuel methylene blue.Based on static test results,kinetics and thermodynamics,equilibrium studies of adsorption behavior were conducted. The results showed that the Langmuir adsorption isotherm model was adequate to represent the adsorption of MB onto PPAC. The pseudo-second order kinetic model was suitable to represent the adsorption of MB onto PPAC. The wastes pomelo peel is an inexpensive material for preparing an activated carbon with high adsorption capacities for MB. It has a good application prospect in sewage treatment and solves the problem of pomelo peel disposal.Key words PPAC;cationic dye;isotherm;kinetic染料行业在国民经济中占主导地位,广泛应用于食品、化妆品、纺织、皮革、涂料等行业。
211122229_多壁碳纳米管增强环氧胶粘剂的性能
多壁碳纳米管增强环氧胶粘剂的性能王静1,严福金2(1.天津工业大学纺织科学与工程学院,天津300387;2.中科院上海硅酸盐研究所,上海201800)摘要:为了充分发挥陶瓷材料抗压性能好和碳纤维材料高比刚、高比强、耐冲击性能好等优点,实现两者稳定、高效的连接,采用多壁碳纳米管(MWCNTs )对环氧胶粘剂进行增强改性,探讨了MWCNTs 添加量以及胶层厚度对CFRP-陶瓷接头剪切强度和断裂模式的影响。
3D 轮廓仪、旋转流变仪、综合热分析仪及胶接接头力学性能测试结果表明:MWCNTs 提高了CFRP-陶瓷接头的剪切强度,当MWCNTs 质量分数为1.00%、胶层厚度为0.5mm 时,接头剪切强度达到最大值20.01MPa ,提高了19.96%;同时,不同胶层厚度的CFRP-陶瓷接头经历不同的失效阶段,胶层厚度为0.5mm ,表现在搭接区端部胶层开裂,胶层厚度超过1.0mm ,表现在搭接区端部胶层开裂逐渐向胶层内部断裂过渡;在此最优含量下,改性后环氧胶粘剂固化反应速率最大、热分解温度最高、热稳定性最佳,热分解残余剩余率提高了9.57%,但是,纳米颗粒的增强效果与其团聚性能相关,随着纳米颗粒含量增加,改性效果反而降低。
关键词:环氧胶粘剂;多壁碳纳米管(MWCNTs );碳纤维增强复合材料;陶瓷增强复合材料;胶接中图分类号:TB332文献标志码:A 文章编号:员远苑员原园圆源载(圆园2猿)园员原园园22原07Properties of multi-walled carbon nanotubes reinforced epoxy adhesiveWANG Jing 1,YAN Fu-jin 2(1.School of Textile Science and Engineering ,Tiangong University ,Tianjing 300387,China ;2.Shanghai Institute of Ce -ramics ,Chinese Academy of Sciences ,Shanghai 201800,China )Abstract :In order to give full play to the good compression resistance of ceramic materials and the high specific stiffness袁high specific strength and good impact resistance of carbon fiber materials and realize the stable and efficient con鄄nection between the two materials袁multi-walled carbon nanotubes 渊MWCNTs冤was used to reinforce and modify epoxy adhesive袁and effect of the thickness of an adhesive layer and the auount of MWCNTs added on the shear strength and fracture mode of a CFRP-ceramic joint was studied.The test results of a 3D profilometer袁a rotary rheometer袁a comprehensive thermal analyzer袁and the mechanical properties of the adhesive bonding joint showedthat the MWCNTs could improve the shear strength of the CFRP-ceramic joint.When the mass fraction of the MWCNTs was 1.00%and the thickness of the adhesive layer was 0.5mm袁the shear strength of the joint reached its maximum at 20.01MPa袁showing a 19.96%increase.Also袁after CFRP-ceramic joints with different thicknesses went through different failure stages袁it was found that the 0.5mm adhesive layer cracked at the end of the lap zone袁while adhesive layers that are thicker than 1.0mm cracked gradually from the end of the lap zones to the in鄄ternal fractures of the adhesive layers.Under this optimal content袁the modified epoxy adhesive demonstrates the highest curing reaction rate袁the highest thermal decomposition temperature袁and the best thermal stability袁re鄄sulting in a 9.57%increase in the residual rate of thermal decomposition.However袁the enhancement effect ofnanoparticles is related to their agglomerative properties袁and the modification effect decreases with the increase ofnanoparticle content.Key words :epoxy adhesive曰multi-walled carbon nanotubes 渊MWCNTs冤曰carbon fiber reinforced composites曰ceramic re鄄inforced composites曰bonding收稿日期:2021-11-24基金项目:科技部重点研发项目(2019YFC0311800)通信作者:王静(1985—),女,博士,副研究员,主要研究方向为复合材料固化成型以及改性。
壳聚糖-f127二元体系制备球形亲水纳米介孔碳材料的方法与流程
壳聚糖-f127二元体系制备球形亲水纳米介孔碳材料的方法与流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!壳聚糖F127二元体系制备球形亲水纳米介孔碳材料的方法与流程摘要:介绍了一种利用壳聚糖F127二元体系制备球形亲水纳米介孔碳材料的方法与流程。
速度快并且容易中的材料类SCI期刊
速度快并且容易中的材料类SCI期刊(更新中)推荐:1. Journal of alloy and compounds 影响因子IF 1点多,1个月给消息,容易中,现在几乎成为中国人的专刊了,哈哈;2. applied surface science 影响因子IF 1点多,发表容易,3. Materials Letter 1.7 速度快,快报一般都要求有新意(当然,新意太高可以投APL了)4. Materials & Design 影响因子不到1,很快,快点一个月就接受的!适合特别想要文章毕业或者评奖学金的。
5. Physica B 影响因子不到1,很快,我一个同学已经在上面发了2篇了,最快不到一个月就接受了,还是容易中的,最好是工作全面细致些。
6. Materials science and engineering B 影响因子1点多,从投稿到接受一般3-4个月,相对容易中。
7. Optoelectronics and Advanced Materials-Rapid Communications, 罗马尼亚期刊,影响因子0.2,很快,一个月可以搞定,适合灌水和急需文章。
8. Optical materials 发光材料期刊,影响因子1点多,相对容易中,速度也快。
9. Journal of Luminescence 发光方面专业期刊,老牌杂志,虽然影响因子只有1点多,但很多发光方面的经典文章出自此期刊,相对容易中,速度也可以。
10. Journal of Physics D: Applied physics 偏物理材料方面,影响因子2 左右,速度快,也不难中,中国人投稿还比较多。
黑名单:1. Thin solid films 影响因子1点多,但审稿巨慢,不推荐;2. Materials Characterization 影响因子不高,容易中,但速度慢,如果不急着要文章,也可以投的;3. Materials Chemistry and Physics 影响因子1点多,速度巨慢,我一个同学投稿半年还没消息,现在1年过去了还没查到这篇文章,估计没戏了吧。
聚多硅氧烷为硅源的无裂痕块状气凝胶制备
do:i 10 . 3969/ .j issn. 1671- 7627. 2011. 03. 007
聚多硅氧烷为硅源的无裂痕块状气凝胶制备
江国栋, 沈晓冬, 腾凯明, 崔 升
( 南京工业大学 材料科学与工程学院, 江苏 南京 210009)
摘 要: S i O 2气凝胶在凝胶老化和干燥过程中极易产 生凝胶的开裂 。 以多聚硅氧烷 ( PED S) 为硅 源 , 通 过在交联凝
胶的制备及凝胶老化过 程中 , 控制水的用量 , 制备出具有无裂痕的 S i O2凝胶 。结果表 明 : 低水 用量获得 湿凝胶的抗 压模量明显低于高水用 量所制备湿凝胶的抗压模量 , 因 此孔结 构具有 一定的 柔性 , 从而有 利于释放 凝胶收 缩产生 的内应力 。 当 H 2 O 与 PED S 中 S i原子的摩 尔比值为 0 5 时 , 所得凝胶 在 H 2 O 体积分数 为 20% 的乙 醇老化 液中老 化后 , 可以获得完整的无裂痕气凝胶 。 高分辨透 射电镜 ( HRTEM ) 和场发 射扫描 电子显 微镜 ( FESEM ) 观察 表明 : 所制备的气凝胶是由 5~ 8 nm颗粒 串联 形成的 线状 结构体 构成 。 经差示 扫描 量热 质量 损失 仪 ( DSC TG ) 分析表 明 : 乙醇超临界干燥所制备的气凝胶 , 除了表面吸附少量 的乙醇 分子 , 还含有 S i OC2 H 5 基团 和 Si OH 基团 。 所制 备的气凝胶 , 室温下的导热系数在 0 028 1~ 0 038 1W / ( m K ) 。 关键词 : 聚多硅氧烷 ; 气凝胶 ; 导热系数 ; 抗 压强度 ; 网状纳米结构 中图分类号 : O 648 17 文献标志码 : A 文章编号 : 1671- 7627( 2011) 03- 0033- 05
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Discussions:
1. What was the most surprising thing you learned about nanotechnology during this lesson? 2. Do you think you would be able to see an element that was 10 nanometers wide without the aid of technology? 3. If a sheet of paper is about 100,000 nanometers thick, how do you think an engineer would go about moving an element that is only 30 nanometers thick -such as the gold particle to the right? 4. Do you think that nanotechnology might have the most impact on the development of materials, improvements in energy options, or in advances in healthcare? Why?
Building block:构成单元
Quench:淬火 Equilibrium:平衡
crystallographic:结晶学 crystallographic orientation:结晶取向 incoherent or coherent interfaces:不连续 或连续的界面 adjacent:相邻的 heterogeneous:多相的 grain boundary:晶界 homogeneous:均相的 supramolecular:超分子
Q: what factors could affect the materials microstructures vapor deposition 化学气相 沉积 PVD: physical vapor deposition 物理气相沉 积 Inert gas:惰性气体 Aerosol:气溶胶 喷雾 Precipitation:沉淀 Supersaturated:过饱和 Catalyst:催化剂 Quantum well structure:量子井结构
材料科学与工程专业英语
Special English for Materials Science and engineering
Nanostructured materials–
Categories of nanostructured materials
Review
钢筋混凝土 ferroconcrete 高模量纤维 High modulus
Ion implantation:离子注入 Laser beam:激光束 Nanometer scale:纳米尺寸 Pattern:图案 Lithography:刻蚀术 Nanolithography:纳米刻蚀技术 Probe:探针 Tunneling microscope :隧道显微镜 Near-field methods: Scanning Near-Field Optical Microscopy近场光学显微镜 Focused electron:聚焦电子 (confocul electronic microscope) Integrated circuit:集成电路 transistor: 晶体管 Quantum computer:量子计算机
fibers
热膨胀 耐腐蚀性 耐疲劳性 环境友好的 热塑性的 thermoplastic
高温树脂 组织工程textile engineering 生物杂化 biohybrid 不同种类的 heterogeneous 各项异性的anisotropic
Microstructure:微观结构 Dimension:维(数),尺寸 Parameter:参数 Correlation:相关性,相互关系 Diamond :钻石 金刚石 Graphite:石墨 Spectacular:壮观的,引人入胜的 Deviate:偏离 Interatomic spacing:原子间距