初三数学反比例函数测试卷
反比例函数基础练习题
反比例函数基础练习题一一、选择题1.(衢山初中2011年中考一模)如图,直线和双曲线()交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为、△BOD 的面积为、△POE 的面积为,则 ( )A .B .C .D .2.(2011年北京四中三模)若点(-5,y 1)、(-3,y 2)、(3,y 3)都在反比例函数y= -3x 的图像上,则( )A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 1>y 3>y 2 3.(2011年北京四中五模)已知反比例函数xy k=的图象在一、三象限,则直线k k +=x y 的图象经过( ).A 、一、二、三象限B 、二、三、四象限C 、一、三、四象限D 、一、二、四象限 4.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)已知反比例函数y =-2x ,下列结论不正确...的是( ) A .图象经过点(-2,1) B .图象在第二、四象限 C .当x <0时,y 随着x 的增大而增大 D .当x >-1时, y >25.(2011年浙江省杭州市城南初级中学中考数学模拟试题)如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数ky x=的图象上.若点A 的坐标为(-2,-2),则k 的值为( ) A .-2 B .2 C .3 D .4 6.(2011年上海市卢湾区初中毕业数学模拟试题)如图,某反比例函数的图像过点M (2-,1),则此反比例函数表达式为( ) A .2y x =B .2y x =-C .12y x= D .12y x =-.第1题图l ky x=0k >1S 2S 3S 123S S S <<123S S S >>123S S S =>123S S S =<x-21y O第6题图第5题7.(2011年北京四中模拟26)已知k >0 ,那么函数y=kx的图象大致是 ( )8.(2011山西阳泉盂县月考)在反比例函数y=xm21-的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2, 则m 的取值范围是( ) A. m <0 B. m >0 C. m <21 D. m >219.(2011年北京四中中考模拟19)在同一直角坐标系中,函数y=kx+k ,与y=xk-(k 0≠)的图像大致为( )10. (2011年黄冈市浠水县中考调研试题)如图,某个反比例函数的图象经过点(-1,1),则它的解析式为( )A .)0(1>=x x y B .)0(1>-=x x y C .)0(1<=x x y D .)0(1<-=x xy 11. (2011年北京四中中考全真模拟17)在函数21-=x y 中,自变量x 的取值范围是( )A. x ≥2B. x>2C. x ≤2D. x<212.(北京四中模拟)已知三点11(,)x y 、22(,)x y 、33(,)x y 均在双曲线4y x=上,且1230x x x <<<,则下列各式正确的是( )A.123y y y <<B.213y y y <<C.312y y y <<D.321y y y <<13.(2011杭州模拟)探索二次函数2x y =和反比例函数xy 1=交点个数为 ( ) A .1个 B .2个 C .3个 D .0个 14.(2011杭州模拟25)双曲线x 10y =与x6y =在第一象限内的图象依次是M 和N ,设点P 在图像M 上,PC 垂直于X 轴于点C 交图象N 于点A 。
北师大初三数学上册反比例函数难题带答案解析
初三数学上册反比例函数一.选择题(共20小题)1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣62.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条3.如图,正方形ABCO和正方形CDEF的顶点B、E在双曲线y=(x>0)上,连接OB、OE、BE,则S△OBE的值为()A.2B.2.5C.3D.3.54.如图,点A是函数y=的图象上的点,点B,C的坐标分别为B(﹣,﹣),C(,).试利用性质:“函数y=的图象上任意一点A都满足|AB﹣AC|=2”求解下面问题:作∠BAC的内角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=的图象上运动时,点F总在一条曲线上运动,则这条曲线为()A.直线B.抛物线C.圆D.反比例函数的曲线5.如图,在平面直角坐标系中,△ABO的顶点A在x轴上,反比例函数y=(x<0)的图象与△OAB的边OB、AB 分别交于点C,点D.若BC:BO=2:3,BD:BA=3:4,S△ABO=,则k的值为()A.﹣8B.﹣6C.D.﹣6.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16C.D.107.如图,点A是双曲线y=上一点,过A作AB∥x轴,交直线y=﹣x于点B,点D是x轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,△ABD的面积为,tan∠ABD=,则k的值为()A.﹣2B.﹣3C.﹣D.8.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,=,则k=()A.﹣6B.﹣4C.6D.49.如图,已知A,B为反比例函数y1=图象上两点,连接AB,线段AB经过点O,C是反比例函数y2=(k<0)在第二象限内的图象上一点,当△CAB是以AB为底的等腰三角形,且=时,k的值为()A.﹣B.﹣3C.﹣4D.﹣10.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,则CE的长为()A.B.C.3.5D.511.如图,已知A1,A2,A3,…A n,…是x轴上的点,且OA1=A1A2=A2A3=…=A n﹣1A n…=1,分别过点A1,A2,A3,…,A n,…作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…,B n,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n等于()A.B.C.D.12.如图,O为坐标原点,点C在x轴上.四边形OABC为菱形,D为菱形对角线AC与OB的交点,反比例函数y=在第一象限内的图象经过点A与点D,若菱形OABC的面积为24,则点A的坐标为()A.(1,6)B.(,5)C.(2,4)D.(3,3)13.如图,点A,B分别在y轴正半轴、x轴正半轴上,以AB为边构造正方形ABCD,点C,D恰好都落在反比例函数y=(k≠0)的图象上,点E在BC延长线上,CE=BC,EF⊥BE,交x轴于点F,边EF交反比例函数y=(k ≠0)的图象于点P,记△BEF的面积为S,若S=+12,则△CEP的面积是()A.2+2B.2﹣2C.+2D.﹣214.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定15.如图,直线AD分别与x轴,y轴交于A,D两点,与反比例函数y=的图象交于B,C两点,连接OB,OC,若AB=BC,S△BOC=4,则k的值为()A.4B.C.D.16.如图,以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x轴、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E.过OC边上一点F,把△BCF沿直线BF翻折,使点C 落在点C′处(点C′在矩形OABC内部),且C′E∥BC,若点C′的坐标为(2,3),则k的值为()A.B.C.D.17.如图,点A是反比例函数y=(x>0)的图象上一点,过点A作直线y=﹣x的垂线,垂足为点B,再过点A作AC⊥AB交y=(x>0)的图象于点C,若△ABC是等腰三角形,则点B的坐标是()A.(﹣,)B.(﹣,)C.(﹣2,2)D.(﹣3,3)18.如图,菱形四边形ABCD的四个顶点分别在反比例函数y=,y=﹣的图象上,若该菱形的面积为78,则这个菱形的边长为()A.B.C.13D.1319.反比例函数y=的图象向右平移个单位长度得到一个新的函数,当自变量x取1,2,3,4,5,…,(正整数)时,新的函数值分别为y1,y2,y3,y4,y5,…,其中最小值和最大值分别为()A.y1,y2B.y43,y44C.y44,y45D.y2014,y201520.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为()A.3B.2C.4D.3二.填空题(共10小题)21.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为.22.如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)23.已知如图,直线y=x分别与双曲线y=(m>0,x>0)、双曲线y=(n>0,x>0)交于点A,点B,且=,将直线y=x向左平移6个单位长度后,与双曲线y=交于点C,若S△ABC=4,则mn的值为.24.如图,等边△OBA和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过OB的中点C和AE的中点D,已知OB=16,则点F的坐标为.25.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为.26.如图,直线y=x﹣8交x轴于点A,交y轴于点B,点C是反比例函数y=的图象上位于直线AB上方的一点,CD∥/x轴交AB于点D,CE⊥CD交AB于点E,若AD•BE=4,则k的值为.27.如图,△OBC的边BC∥x轴,过点C的双曲线y=(k≠0)与△OBC的边OB交于点D,且OD:DB=1:2,若△OBC的面积等于8,则k的值为.28.如图,一次函数y=x与反比例函数y=(k>0)的图象在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为.29.如图,C、D是双曲线y=(x>0,k>0)上两点,延长CD交x轴于点E,DB⊥x轴于点B,点F是线段DE的中点,延长FB交y轴于点S,连接SE,若S△SBE=,则k=30.如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD =AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于.三.解答题(共10小题)31.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.32.如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△P AB的面积;(2)设直线P A、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠P AQ与∠PBQ 的大小,并说明理由.33.如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.34.平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD 边与函数y1=(x>0)的图象都有交点,请说明理由.35.如图1所示,已知y=(x>0)图象上一点P,P A⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M 是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△P AB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.36.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.37.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.38.如图,直线y=k1x(x≥0)与双曲线y=(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.39.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x >0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b﹣>0的解集.40.如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.参考答案与试题解析一.选择题(共20小题)1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y =上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选:A.3.【分析】连接CE.只要证明CE∥OB,推出S△OBE=S△OBC,即可解决问题;【解答】解:连接CE.∵四边形ABCO,四边形DEFC都是正方形,∴∠ECF=∠BOC=45°,∴CE∥OB,∴S△OBE=S△OBC,∵BC=OC,点B在y=上,∴BC=OC=2,∴S△OBE=×2×2=2,故选:A.4.【分析】如图:延长AC交BF的延长线于G,连接OF.只要证明OF是△BCG的中位线,可得OF=CG=,即可解决问题.【解答】解:如图:延长AC交BF的延长线于G,连接OF.∵AF⊥BG,∴∠AFB=∠AFG=90°,∴∠BAF+∠ABF=90°,∠G+∠GAF=90°,∵∠BAF=∠F AG,∴∠ABF=∠G,∴AB=AG,∵AF⊥BG,∴BF=FG,∵B(﹣,﹣),C(,),∴OB=OC,∴OF=CG,∵|AB﹣AC|=2,AB=AG,∴CG=2,∴OF=,∴点F在以O为圆心为半径的圆上运动.故选:C.5.【分析】设B(m,n),想办法求出A,D,C的坐标,构建方程求出mn的值即可解决问题.【解答】解:设B(m,n),∵BC:BO=2:3,∴C(m,n),∵BD:AB=3:4,∴点D的纵坐标为n,∵C,D在y=的图象上,∴D(m,),∴直线BD的解析式为y=x﹣n,令y=0,得到x=m,∴A(m,0),∵S△ABO=,∴×(﹣m)×n=,∴mn=﹣,∴k==﹣×=﹣,故选:C.6.【分析】作AE⊥OD于E,CF⊥OD于F.首先证明S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,由此构建方程即可解决问题;【解答】解:作AE⊥OD于E,CF⊥OD于F.连接AC,AD.∵BC:CD=2:1,S△ADC=,∴S△ACB=,∵OA=AB,∴B(2m,2n),S△AOC=S△ACB=,∵A、C在y=上,BC=2CD,∴C(m,n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴•(n+n)×m=,∴mn=16,故选:B.7.【分析】如图作BH⊥OD于H.延长BA交y轴于E.由tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH =BE=9m,OD=4m,推出C(﹣6m,m),推出A(﹣m,9m),由△ABD的面积为,推出×m×9m=,可得m2=,推出k=﹣6m×m=﹣2;【解答】解:如图作BH⊥OD于H.延长BA交y轴于E.∵AB∥DH,∴∠ABD=∠BDH,∴tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH=BE=9m,OD=4m,∴C(﹣6m,m),∴A(﹣m,9m),∵△ABD的面积为,∴×m×9m=,∴m2=,∴k=﹣6m×m=﹣2,故选:A.8.【分析】设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,由OA∥BC可得:=,过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,由图可得:S△ABC=S梯形AFEB+S梯形BEDC﹣S梯形AFDC,代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得到:y a x b﹣x a y b+y b x c ﹣y c x b﹣y a x c+x a y c=6,综上得到y b x c﹣y c x b=12,已知=,可得=,y b==,综合以上式子可得:10+x c y c=12,所以x c y c=4,即k=4.【解答】解:设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,∵OA∥BC∴=,整理得到:y a x b﹣y a x c=x a y b﹣x a y c①过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,∵S△ABC=S梯形AFEB+S梯形BEDC﹣S梯形AFDC=6∴(AF+BE)×EF+(BE+CD)×DE﹣(AF+CD)×DF=6代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得:y a x b﹣x a y b+y b x c﹣y c x b﹣y a x c+x a y c=6,②①②联立得:y b x c﹣y c x b=12,③由=,可得:=,即x b=x c,∴y b==,代入③得:10+x c y c=12,解得:x c y c=4,即k=﹣4.解法二:如图连接OB,OC,作BE⊥OP于E,CF⊥OP于F.∵OA∥BC,∴S△OBC=S△ABC=6,∵PB:PC=1:2,∴S△OPB=2,S△OPC=4,∵S△OBE=,∴S△PBE=,∵△BEP∽△CFP,∴S△CFP=4×=2,∴S△OCF=2,∴k=﹣4.故选:B.9.【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出=()2,因为CA:AB=5:8,AO=OB,推出CA:OA=5:4,推出CO:OA=3:4,可得=()2=,因为S△AOE =2,可得S△COF=,延长即可解决问题;【解答】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∵∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴=()2,∵CA:AB=5:8,AO=OB,∴CA:OA=5:4,∴CO:OA=3:4,∴=()2=,∵S△AOE=2,∴S△COF=,∴=,∵k<0,∴k=﹣,故选:A.10.【分析】证明△DHA≌△CGD(AAS)、△ANB≌△DGC(AAS)得到:AN=DG=1=AH,而AH=﹣1﹣m=1,解得:m=﹣2,即可求解.【解答】解:设点D(m,),如图所示,过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣,﹣5),GE=,CE=CG﹣GE=DH﹣GE=5﹣=,故选:B.11.【分析】由OA1=A1A2=A2A3=…=A n﹣1A n=1可知B1点的坐标为(1,y1),B2点的坐标为(2,y2),B3点的坐标为(3,y3)…B n点的坐标为(n,y n),把x=1,x=2,x=3代入反比例函数的解析式即可求出y1、y2、y3的值,再由三角形的面积公式可得出S1、S2、S3…S n的值,故可得出结论.【解答】解:∵OA1=A1A2=A2A3=…=A n﹣1A n=1,∴设B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n),∵B1,B2,B3…Bn在反比例函数y=(x>0)的图象上,∴y1=1,y2=,y3=…y n=,∴S1=×1×(y1﹣y2)=×1×(1﹣)=(1﹣);S2=×1×(y2﹣y3)=×(﹣);S3=×1×(y3﹣y4)=×(﹣);…S n=(﹣),∴S1+S2+S3+…+S n=(1﹣+﹣+﹣+…+﹣)=.故选:C.12.【分析】作AE⊥OC于E,DF⊥OC于F.设A(a,b).想办法证明OE=EF=CF即可解决问题;【解答】解:作AE⊥OC于E,DF⊥OC于F.设A(a,b).∵四边形ABCO是菱形,∴AD=DC,∵AE∥DF,∴EF=FC,∴DF=AE=b∵反比例函数y=在第一象限内的图象经过点A与点D,∴D(2a,b),∴OE=EF=FC=a,∴OA=OC=3a,∴AE==2a,∵OC•AE=24,∴3a•2a=24,∴a2=4,∵a>0,∴a=2,∴A(2,4),故选:C.13.【分析】如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.首先利用全等三角形的性质求出D、C两点坐标,再证明a=b,再构建方程求出a、k,再求出直线EF的解析式,利用方程组确定点P坐标即可解决问题;【解答】解:如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.∵四边形ABCD是正方形,∵AD=AB=BC,∠DAB=∠ABC=90°,易证△AOB≌△BNC≌△DMA,∴DM=OA=BN=b,AM=OB=CN=a,∴D(b,a+b),C(a+b,a),∵点C,D恰好都落在反比例函数y=(k≠0)的图象上,∴b(a+b)=a(a+b),∵a+b≠0,∴a=b,∴OA=OB,∴∠ABO=45°,∠EBF=45°,∵BE⊥EF,∴△BEF是等腰直角三角形,∵BC=EC,∴可得E(3a,2a),F(5a,0),∴×4a×2a=+12,∵D(a,2a),∴2a2=k,∴a=2,k=8,∴E(6,4),F(10,0),∴直线EF的解析式为y=﹣x+10,由,解得或,∴p(5+,5﹣),∴PE=﹣,∴S△ECP=•EC•EP=•(﹣)×2=2﹣2,故选:B.14.【分析】连接OF、OB、OE.首先证明EF是△BAC的中位线,利用相似三角形的性质即可解决问题.【解答】解:连接OF、OB、OE.∵四边形ABCO是矩形,∴S△ABO=S△BCO,∵BF=CF,∴S△CFO=S△BFO,∵E、F在y=(x>0)上,∴S△AEO=S△FCO=S△ABO,∴AE=EB,∵BF=CF,∴EF∥AC,∴△BEF∽△BAC,∴=,∵S矩形ABCO=16,∴S△BEF=×8=2,∴S四边形ACFE=8﹣2=6,故选:B.15.【分析】首先证明CD=BC=AB,设C的横坐标为x,则B的横坐标为2x,根据S△OBC=S△OBD﹣S△OCD,构建方程,即可求得k的值;【解答】解:作BE⊥x轴于E,CF⊥x轴于F,∴BE∥CF,∴=,∵AC=BC,∴CF=2BE,∵S△COF=S△OBE,∴CF•OF=OE•BE,∴OE=2OF,∵OD∥CF∥BE,∴DC=BC=AB,∴设C的横坐标为x,则B的横坐标为2x,∴C的纵坐标为,B的纵坐标为,∴CF=,BE=,OA=3x∵S△OBC=S△OAC﹣S△OAB,△OBC的面积为4,∴OA•CF﹣OA•C=4,∴•3x•﹣•3x•=4,∴k=故选:B.16.【分析】首先证明点E是线段AB的中点,设BC=BC′=m,则EC′=m﹣2.在Rt△BEC′中,根据BC′2=BE2+EC′2,构建方程求出m即可解决问题;【解答】解:连接OD、OE.设BC=BC′=m,则EC′=m﹣2.∵CD=BD,∴S△CDO==S矩形ABCD,∵S△AOE==S△CDO=S矩形ABCD,∴AE=EB,∵C′(2,3),∴AE=EB=3,在Rt△BEC′中,∵BC′2=BE2+EC′2,∴m2=32+(m﹣2)2,∴m=,∴E(,3),∵点E在y=上,∴k=,故选:D.17.【分析】由题意,△ABC是等腰直角三角形,BC∥x轴,设B(a,﹣a),想办法证明A(﹣a,﹣3a),利用待定系数法求出a即可.【解答】解:由题意,△ABC是等腰直角三角形,BC∥x轴,设B(a,﹣a),∵AC∥OB,∴AC⊥直线y=x,∴A、C关于直线y=x对称,作OH⊥AC于H,则四边形ABOH是矩形,∴AH=HC=OB,AB=2OB,∴A(﹣a,﹣3a),∴3a2=6,∴a2=2,∵a<0,∴a=﹣,∴B(﹣,),故选:A.18.【分析】据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,推出菱形ABCD 的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.由△DOM∽△OCN,S△DOM=2,S△OCN=,推出()2=,可以假设OD=2k,OC=3k,根据菱形的面积公式构建方程即可解决问题;【解答】解:根据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠DOM+∠CON=90°,∠CON+∠OCN=90°,∴∠DOM=∠OCN,∵∠DMO=∠CNO=90°,∴△DOM∽△OCN,∵S△DOM=2,S△OCN=,∴()2=,∴可以假设OD=2k,OC=3k,∵S菱形ABCD=4••2k•3k=78,∴k=,∴CD==k=,故选:B.19.【分析】图象y=向右平移个单位长度得到一个新的函y=,因为44<<45,结合图形可知:当x<44时,y<0,y随x的增大而减小,x=44时,得到y的最小值y44,当x>45时,y>0,y随x的增大而增大,x=45时,得到y的最大值y45;【解答】解:图象y=向右平移个单位长度得到一个新的函y=,∵44<<45,∴当x<44时,y<0,y随x的增大而减小,x=44时,得到y的最小值y44,当x>45时,y>0,y随x的增大而增大,x=45时,得到y的最大值y45,故选:C.20.【分析】如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C(0,c).由△ACH ∽△CDE,推出===,由A(1,),推出AH=1,CH=﹣c,推出EC=,DE=﹣c,推出D(﹣c,c﹣),根据BA=BD,可得B(,),因为A、B在y=上,可得=×,解方程求出点C坐标即可解决问题;【解答】解:如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C(0,c).∵△ABC是等边三角形,∴AB=AC=BC,∵AB=BD,∴BA=BC=BD,∴△ACD是直角三角形,∵∠CAD=60°,∴DC=AC,∵∠ACD=∠AHC=∠DEC=90°,∴∠ACH+∠DCE=90°,∵∠ECD+∠CDE=90°,∴∠ACH=∠CDE,∴△ACH∽△CDE,∴===,∵A(1,),∴AH=1,CH=﹣c,∴EC=,DE=﹣c,∴D(﹣c,c﹣),∵BA=BD,∴B(,),∵A、B在y=上,∴=×,整理得:4c2﹣16c﹣11=0,解得c=﹣或(舍弃),∴C(0,﹣),∴AC==2,故选:B.二.填空题(共10小题)21.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN,OM=AN,即可得到求出B的坐标,代入反比例函数即可得出一元二次方程,解方程即可得到k的值.【解答】解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=(x>0)经过点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(负值已舍去),故答案为:.22.【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(m﹣n),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.23.【分析】先求出直线y=x向左平移6个单位长度后的解析式为y=x+4,那么直线y=x+4交y轴于E(0,4),作EF⊥OB于F.根据互相垂直的两直线斜率之积为﹣1得出直线EF的解析式为y=﹣x+4,再求出F(,),EF==,根据S△ABC=4,求出AB=,那么OA=AB=,进而求出A、B 两点坐标,求出m、n即可解决问题.【解答】解:直线y=x向左平移6个单位长度后的解析式为y=(x+6),即y=x+4,∴直线y=x+4交y轴于E(0,4),作EF⊥OB于F.可得直线EF的解析式为y=﹣x+4,由,解得,即F(,).∴EF==,∵S△ABC=4,∴•AB•EF=4,∴AB=,∵=,∴OA=AB=,∴A(3,2),B(5,),∴m=6,n=,∴mn=100.故答案为100.24.【分析】过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式;过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.【解答】解:过点C作CG⊥OA于点G,过点D作DH⊥AF于点H,∵点C是等边△OAB的边OB的中点,∴OC=8,∠AOB=60°,∴OG=4,CG=OG•tan60°=4,∴点C的坐标是(4,4),∴k=4×4=16,∴该双曲线所表示的函数解析式为y=,设AH=a,则DH=a.∴点D的坐标为(16+a,a),∵点D是双曲线y=上的点,∴a×(16+a)=16,即:a2+16a﹣16=0,解得:a1=﹣8+4,a2=﹣8﹣4(舍去),∴AD=2AH=﹣16+8,∴AF=2AD=﹣32+16,∴OF=AO+AF=16﹣32+16=16﹣16,即点F的坐标为(16﹣16,0).故答案为:(16﹣16,0).25.【分析】由题意B(0,b),A(b,0),推出OA=OB=b,因为直线y=﹣x+b关于直线y=x对称,反比例函数y =﹣关于y=x对称,推出BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),想办法构建方程求出a、b的关系,求出点D的坐标(用b表示),再利用待定系数法即可解决问题;【解答】解:由题意B(0,b),A(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵,∴=,整理得:12a2+17ab﹣14b2=0,解得a=b或a=﹣b(舍弃),∴D(b,﹣b),∵D在y=﹣的图象上,∴b×(﹣b)=﹣4,解得b=3或﹣3(舍弃),∴D(4,﹣1),C(﹣1,4),∴CD==5,故答案为5.26.【分析】过D作DF⊥AO于F,过EG⊥OB于G,则DF∥OB,GE∥AO,设C(x,y),则GE=x,DF=﹣y,由△ADF∽△ABO,可得AD=﹣y,由△BEG∽△BAO,可得BE=2x,再根据AD•BE=4,即可得到k=xy=.【解答】解:如图,过D作DF⊥AO于F,过EG⊥OB于G,则DF∥OB,GE∥AO,由直线y=x﹣8,可得A(,0),B(0,﹣8),∴AO=,BO=8,AB=,设C(x,y),则GE=x,DF=﹣y,由△ADF∽△ABO,可得,即=,∴AD=﹣y,由△BEG∽△BAO,可得,即=,∴BE=2x,∵AD•BE=4,∴﹣y×2x=4,∴xy=﹣,∴k=xy=﹣,故答案为:﹣.27.【分析】延长BC交y轴于点E,过点D作DF⊥x轴于点FBA⊥x轴于A.由矩形与反比例函数的性质,可得S四边=S△OBC=8,易证得△ODF∽△OBA,又由OD:DB=1:2,即可得S△ODF=S四边形ABDF=×4=,则形ABDF可求得答案.【解答】解:延长BC交y轴于点E,过点D作DF⊥x轴于点F,BA⊥x轴于A.∵梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,∴四边形OABE是矩形,∴S△OBE=S△OAB,∵过点C的双曲线y=交OB于点D,∴S△OCE=S△ODF,∴S四边形ABDF=S△OBC=8,∵DF∥AB,∴△ODF∽△OBA,∵OD:DB=1:2,∴OD:OB=1:3,∴S△ODF:S△OAB=1:9,∴S△ODF:S四边形ABDF=1:8,∴S△ODF=S四边形ABDF=×8=1,∴k=2.故答案为:2.28.【分析】设A(m,m),因为点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,可得AB =5,由此构建方程即可解决问题.【解答】解:设A(m,m),∵点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,∴AB=5,∴m2+(7﹣m)2=25,解得m=3或4,∴A(3,3)或(4,4),∵点A在y=上,∴k=9或16,∴反比例函数的解析式为y=或y=,故答案为y=或y=.29.【分析】连接OD.设D(m,n),只要证明△SBO∽△DEB,可得=,推出DB•OB=OS•BE,因为S△SBE =,可得•BE•SO=,推出BE•SO=,推出DB•OB=,即可解决问题;【解答】解:连接OD.设D(m,n)∵DB⊥OE,∴∠DBE=90°,∵DF=FE,∴BF=FE,∴∠FEB=∠FBE,∵∠FBE=∠SBO,∴∠SBO=∠DEB,∵∠SOB=∠DBE=90°,∴△SBO∽△DEB,∴=,∴DB•OB=OS•BE,∵S△SBE=,∴•BE•SO=,∴BE•SO=,∴DB•OB=,∵D(m,n)在y=上,∴k=mn=DB•OB=,故答案为.30.【分析】作DF⊥x轴于点F,EG⊥y轴于G,得到△QEG∽△PDF,于是得到,设EG=9t,则PF=25t,然后根据△ADE∽△FPD,据此即可得到关于t的方程,求得t的值,进而求解.【解答】解:作DF⊥x轴于点F,EG⊥y轴于G,∴△QEG∽△DPF,∴,设EG=9t,则PF=25t,∴A(9t,),由AC=AEAD=AB,∴AE=9t,AD=,DF=,PF=25t,∵△ADE∽△FPD,∴AE:DF=AD:PF,9t:=:25t,即t2=,图中阴影部分的面积=×9t×9t+××=,故答案为:.三.解答题(共10小题)31.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B 的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(2,m),B(n,﹣2)代入y=得:k2=2m=﹣2n,即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC=•BC•BD∴×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k2=6,即反比例函数的解析式是y=;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是p≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是p>0,即P的取值范围是p≤﹣2或p>0.32.【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△P AB=2S△AOP,要求△P AB的面积,只需求△P AO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠P AQ=∠PBQ.【解答】解:(1)k=4,S△P AB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y=x,得到点B的坐标为(4,1),把点B(4,1)代入y=,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△P AB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC=OC•AR+OC•PS=×3×4+×3×1=,∴S△P AB=2S△AOP=15;(2)过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y=,设P(m,),直线P A的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线P A的方程为y=x+﹣1,联立,解得直线PB的方程为y=﹣x++1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)∠P AQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y=x+﹣1.当y=0时,x+﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠P AQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠P AQ=∠PBQ.33.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D(1,t),由DC∥AB,可知C (2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=,再由点P在双曲线上,点Q在y轴上,设Q(0,y),P(x,),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT,由此即可得出结论.【解答】解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示;若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示;当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴=.34.【分析】(1)如图1,AB交y轴于C,由于AB∥x轴,根据k的几何意义得到S△OAC=2,S△OBC=2,所以S△OAB =S△OAC+S△OBC=4;(2)根据函数图象上点的坐标特征得A、B的纵坐标分别为、﹣,根据两点间的距离公式得到OA2=a2+()2,OB2=b2+(﹣)2,则利用等腰三角形的性质得到a2+()2=b2+(﹣)2,变形得到(a+b)(a﹣b)(1﹣)=0,由于a+b≠0,a>0,b<0,所以1﹣=0,易得ab=﹣4;(3)由于a≥4,AC=3,则可判断直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,由于A点坐标为(a,),正方形ACDE的边长为3,则得到C 点坐标为(a﹣3,),F点的坐标为(a﹣3,),所以FC=﹣,然后比较FC与3的大小,由于3﹣FC =3﹣(﹣)=,而a≥4,所以3﹣FC≥0,于是可判断点F在线段DC上.【解答】解:(1)如图1,AB交y轴于C,∵AB∥x轴,∴S△OAC=×|4|=2,S△OBC=×|﹣4|=2,∴S△OAB=S△OAC+S△OBC=4;(2)∵A、B的横坐标分别为a、b,∴A、B的纵坐标分别为、﹣,∴OA2=a2+()2,OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴a2+()2=b2+(﹣)2,∴a2﹣b2+()2﹣()2=0,∴a2﹣b2+=0,∴(a+b)(a﹣b)(1﹣)=0,∵a+b≠0,a>0,b<0,∴1﹣=0,∴ab=﹣4;(3)∵a≥4,而AC=3,∴直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,如图2,∵A点坐标为(a,),正方形ACDE的边长为3,∴C点坐标为(a﹣3,),∴F点的坐标为(a﹣3,),。
初三数学《反比例函数》复习题
9(上)第五章 反比例函数复习(一)一、 反比例函数的定义例1 下列函数中是反比例函数的是( )A y=x+1,B y=x8, C y= —2x, D y=2x 2 【说明】本题的四个选项呈现了一次函数、反比例函数、正比例函数(也是一次函数)、二次函数的表达形式,应让学生会识别、区分它们。
本题答案:B例2 已知函数12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,1y =-;当3x = 时,5y =.求y 关于x 的函数关系式.【说明】由于正比例函数定义式是y=kx,反比例函数定义式是y=xk,两式都使用了字母k,受此影响,学生解答此题时易犯的错误是:设y 1=kx 、设y 2=xk,而本题中的正比例和成反比例的比例系数未必相同,因此应设y 1=k 1x 、设y 2=xk 2,以示两个比例系数的不同。
尽管本题最后结论y 关于x 的函数关系式是复合函数的形式,但这类型的题目还是比较常见的,有时也会考到这种题型,还是建议在复习中作补充训练。
本题答案:y=2x-x3二、 反比例函数的图像和性质例3(1)图象经过点(2,-3)的反比例函数是( )A y= -x 6B y=x 6C y= x 23D y=-x23 (2) 已知反比例函数y=xk的图象经过点(2,3),那么下列在函数的图象上的点是( )A (4,1)B (21,-1)C (-23,-11) D (-3 ,-21)【说明】本例是已知图像上一点的坐标,用待定系数法确定反比例函数解析式。
例4(1)已知反比例函数21m y x-=的图象在一,三象限,那么m 的 取值范围是______________.(2)已知反比例函数xm21-=y 的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2是,有y 1<y 2.则m 的取值范围是( ).A.m <0, B .m >0,C.m<21,D.m>21【说明】本例是考察对反比例函数图像和性质的理解,并与解不等式知识结合。
初三数学反比例函数试题答案及解析
初三数学反比例函数试题答案及解析1. 如果反比例函数的图像在每个象限内随的增大而减小,那么的取值范围是 .【答案】k >【解析】∵反比例函数y=的图象在每个象限内y 随x 的增大而减小,∴2k-1>0,解得k >. 故答案为:k >.【考点】反比例函数的性质.2. 已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是( )A .(﹣6,1)B .(1,6)C .(2,﹣3)D .(3,﹣2)【答案】B .【解析】∵反比例函数y=的图象经过点(2,3), ∴k=2×3=6,A 、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B 、∵1×6=6,∴此点在反比例函数图象上;C 、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D 、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上. 故选B .【考点】反比例函数图象上点的坐标特征.3. 如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO=90°,OA 与反比例函数y=的图象交于点D ,且OD=2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形ABCD=10,则k 的值为 .【答案】﹣16【解析】∵OD=2AD , ∴,∵∠ABO=90°,DC ⊥OB , ∴AB ∥DC ,∴△DCO ∽△ABO , ∴, ∴,∵S 四边形ABCD =10, ∴S △ODC =8, ∴OC×CD=8,OC×CD=16,∴k=﹣16,故答案为:﹣16.【考点】1、相似三角形的判定与性质;2、反比例函数系数k的几何意义4.反比例函数的图象在二、四象限,则m的取值范围.【答案】m<1.【解析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.∵反比例函数的图象在二、四象限,∴m-1<0解得:m<1.【考点】反比例函数的性质.5.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()【答案】C【解析】因xy=a,y=,y与x成反比例,所以选C.6.若双曲线过两点(-1,y1),(-3,y2),则有y1____y2(可填“”、“”、“”).【答案】<.【解析】将(﹣1,y1),(﹣3,y2),分别代入y=得,y1=﹣2,y2=﹣,y1<y2..故答案是<.【考点】反比例函数图象上点的坐标特征.7.老师给出一个函数,甲、乙、丙、丁四位同学分别指出了这个函数的一个性质: 甲:函数图象不经过第二象限;乙:函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1<y2;丙:函数图象经过第一象限;丁:y随x的增大而减小.老师说这四位同学的叙述都是正确的,请你构造一个满足上述性质的一个函数:____________.【答案】y=(x>0)【解析】函数图象上两个点A(x1,y1)、B(x2,y2)且x1<x2,y1>y2,y随x的增大而减小,若是反比例函数则k>0,函数图象不经过第二象限,函数图象经过第一象限,只取第一象限的分支.8.已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.求:(1)y与x之间的函数关系式;(2)当x=2时y的值.【答案】(1)y=-3x2. (2)-9.【解析】(1)y1是x的反比例函数,可设y1=,y2是x2的正比例函数,可设y2=k2x2,则y与x的关系式为y=-k2x2,x=1时y=3;x=-2时y=-15,代入求出k1=6,k2=3.(2)将x=2代入解析式y=-3x2,y=3-3×4=-9.9.反比例函数y1=,y2=(k≠0)在第一象限的图象如图,过y1上的任意一点A,作x轴的平行线交y2于点B,交y轴于点C,若S△AOB=2,则k=_________.【答案】12.【解析】根据y1=,过y1上的任意一点A,得出△CAO的面积为4,进而得出△CBO面积为3,即可得出k的值.试题解析:∵y1=,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,∴S△AOC=×8=4,又∵S△AOB =2,∴△CBO面积为6,∴|k|=6×2=12,∵根据图示知,y2=(k≠0)在第一象限内,∴k>0,∴k=12考点: 反比例函数系数k的几何意义.10.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.11.已知y是x的反比例函数,当x=5时,y=8.(1)求反比例函数解析式;(2)求y=-10时x的值.【答案】(1);(2).【解析】(1)由y是x的反比例函数可设,将x=5,y=8代入可求得k,从而得到反比例函数解析式;(2)把y=-10代入即可求得x的值.试题解析:(1)∵y是x的反比例函数,∴设.∵当x=5时,y="8" ,∴,解得k="40."∴反比例函数解析式为.(2)把y=-10代入得,解得 .【考点】1.待定系数法的应用;2.曲线上点的坐标与方程的关系.12.若反比例函数经过点(1,2),则下列点也在此函数图象上的是()A.(1,-2)B.(-1,﹣2)C.(0,﹣1)D.(﹣1,﹣1)【答案】B【解析】设反比例函数图象的解析式为,∵反比例函数的图象经过点(1,2),∴k=1×2=2,而1×(-2)=-2,-1×(-2)=2,0×(-1)=0,-1×(-1)=1.∴点(-1,-2)在反比例函数图象上.故选B.【考点】反比例函数图像上点的坐标的特征.13.如图,四边形ABCD为正方形.点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数的图象经过点C,一次函数的图象经过点A,(1)求反比例函数与一次函数的解析式;(2)求点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.【答案】解:(1)∵点A的坐标为(0,2),点B的坐标为(0,-3),∴AB=5。
初三数学反比例函数经典例题
初三数学反比例函数经典例题1. 反比例函数基础知识1.1 什么是反比例函数?大家好!今天咱们来聊聊反比例函数。
反比例函数就是一种数学函数,简单来说,它是这样一种关系:当一个变量增加时,另一个变量就会减少,反之亦然。
比如,你做一道题的时间越多,你的分数就越少,这就是反比例的体现。
数学上,它的公式是 ( y= frac{k}{x} ),其中 ( k ) 是一个常数。
1.2 反比例函数的特点反比例函数的图像是一条曲线,它总是向两个对角线延伸。
想象一下,你把一条绳子拉长了,它会变得越来越细。
反比例函数的曲线就是这种变化的数学表现。
它永远不会碰到坐标轴,但却在坐标轴附近无限接近。
2. 经典例题解析2.1 例题背景好了,我们进入正题吧!假设你正在做一道题目,上面写着这样的问题:一个车间的工人数量和生产效率成反比例关系。
如果10个人能在5小时内完成生产任务,那问:20个人需要多少小时完成相同的任务?2.2 解题步骤先别慌,我们一步步来解这道题。
设10个人在5小时内完成任务的总工作量为( W ),那么每个人每小时的工作量就是 ( frac{W}{10 times 5} )。
接下来,用20个人来计算时间。
设需要 ( t ) 小时完成任务,那么总工作量 ( W ) 就可以写作 ( 20 times t times frac{W}{10 times 5} )。
你会发现这两个工作量相等,所以我们可以设方程: ( 10 times 5 = 20 times t )。
解这个方程就能找出 ( t ) 的值。
最后,算出来 ( t = frac{10 times 5}{20} = 2.5 ) 小时。
3. 实际应用场景3.1 生活中的反比例其实,反比例函数不仅仅在数学题中出现。
你比如说,车速和到达目的地的时间就是反比例关系。
车速越快,所需时间就越短。
这种关系在生活中随处可见,用反比例函数来解题,可以帮助我们更好地理解这些现象。
3.2 总结与体会总的来说,反比例函数帮助我们理解了许多生活中的基本规律。
湘教版初三上册数学第1章反比例函数单元测试卷(有解析)
湘教版初三上册数学第1章反比例函数单元测试卷(有解析)一、选择题1.下列函数中,y与x成反比例的是()A.y=B.y=C.y=3x2D.y=+12.关于反比例函数,下列说法不正确的是()A.点(-2,-1)在它的图象上B.它的图象在第一、三象限C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大3.若点A(﹣2,3)在反比例函数的图像上,则k的值是()。
A.﹣6B.﹣2C.2D.64.若反比例函数y= 的图象通过(﹣2,5),则该反比例函数的图象在()A.第一、二象限B.第一、三象限C.第二、三象限 D.第二、四象限5.已知函数图象如图,以下结论,其中正确有()个:①m<0;②在每个分支上y随x的增大而增大;③若A(﹣1,a),点B(2,b)在图象上,则a<b④若P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.A.4个B.3个C.2个D.1个6.在同一直角坐标系中,函数与y=ax+1(a≠0)的图象可能是()A.B.C. D.7. 已知A(x1 ,y1)、B(x2 ,y2)、C(x3 ,y3)是反比例函数y= 上的三点,若x1<x2<x3 ,y2<y1<y3 ,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x 1+x2<08.如图,在直角坐标系中,点是轴正半轴上的一个定点,点是双曲线()上的一个动点,当点的横坐标逐步增大时,的面积将会()A.逐步增大 B.不变 C.逐步减小 D.先增大后减小9.已知,如上右图,动点P在函数y=(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1相交于点E,F,则AF•BE的值是()A.4B.2C.1D.10.如图,在x轴正半轴上依次截取OA1=A1A2=A2A3=…=An﹣1An(n 为正整数),过点A1、A2、A3、…、An分别作x轴的垂线,与反比例函数y=(x>0)交于点P1、P2、P3、…、Pn ,连接P1P2、P2P3、…、Pn ﹣1Pn ,过点P2、P3、…、Pn分别向P1A1、P2A2、…、Pn﹣1An﹣1作垂线段,构成的一系列直角三角形(见图中阴影部分)的面积和是()A.B.C.D.二、填空题11.已知某工厂有煤1500吨,则这些煤能用的天数y与每天用煤的吨数x之间的函数关系式为________.12.假如函数y=kxk﹣2是反比例函数,那么k=________,此函数的解析式是________ .13.在下列四个函数①y=2x;②y=﹣3x﹣1;③y= ;④y=x2+1(x<0)中,y随x的增大而减小的有________(填序号).14.函数y=- 的图象的两个分支分布在________象限.15.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是________.16.已知反比例函数的图象通过点(m,6)和(﹣2,3),则m的值为_ _______.17.已知点A(﹣2,y1),B(﹣1,y2)和C(3,y3)都在反比例函数y= 的图象上,则y1 ,y2 ,y3的大小关系为________.(用“<”连接)18.如图,已知双曲线(k<0)通过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC 的面积为________.19.反比例反数y=(x>0)的图象如图所示,点B在图象上,连接O B并延长到点A,使AB=OB,过点A作AC∥y轴交y=(x>0)的图象于点C,连接BC、OC,S△BOC=3,则k=________.三、解答题20.已知函数y=(m2+2m)(1)假如y是x的正比例函数,求m的值;(2)假如y是x的反比例函数,求出m的值,并写出现在y与x的函数关系式.21.近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其要紧成分是CO.在一次矿难事件的调查中现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg /L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如下图,依照题中相关信息回答下列问题:(1)求爆炸前后空气中CO浓度y与时刻x的函数关系式,并写出相应的自变量取值范畴;(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.22.已知,如图,反比例函数y= 的图象与一次函数y=x+b的图象交于点A(1,4),点B(m,-1),(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直截了当写出不等式x+b>的解.23.M为双曲线y= 上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D,C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B.(1)求AD•BC的值.(2)若直线y=﹣x+m平移后与双曲线y= 交于P、Q两点,且PQ =3 ,求平移后m的值.(3)若点M在第一象限的双曲线上运动,试说明△MPQ的面积是否存在最大值?假如存在,求出最大面积和M的坐标;假如不存在,试说明理由.参考答案一、选择题B D A D B B AC C A二、填空题11. y=12. 1;y=13. ②④14. 二、四15. (﹣,﹣2)16. ﹣1 17. y2<y1<y3 18. 9 19. 4三、解答题20.解:(1)由y=(m2+2m)是正比例函数,得m2﹣m﹣1=1且m2+2m≠0,解得m=2或m=﹣1;(2)由y=(m2+2m)是反比例函数,得m2﹣m﹣1=﹣1且m2+2m≠0,解得m=1.故y与x的函数关系式y=3x﹣1 .21.解:(1)因为爆炸前浓度呈直线型增加,因此可设y与x的函数关系式为y=k1x+b(k1≠0),由图象知y=k1x+b过点(0,4)与(7,46),则,解得,则y=6x+4,现在自变量x的取值范畴是0≤x≤7.(不取x=0不扣分,x=7可放在第二段函数中)∵爆炸后浓度成反比例下降,∴可设y与x的函数关系式为y=(k2≠0).由图象知y=过点(7,46),∴=46,∴k2=322,∴y=,现在自变量x的取值范畴是x>7.(2)当y=34时,由y=6x+4得,6x+4=34,x=5.∴撤离的最长时刻为7﹣5=2(小时).∴撤离的最小速度为3÷2=1.5(km/h).(3)当y=4时,由y=得,x=80.5,80.5﹣7=73.5(小时).∴矿工至少在爆炸后73.5小时才能下井.22. (1)解:把A点坐标(1,4)分别代入y= ,y=x+b,得:k=1×4,1+b=4,解得:k=4,b=3,∴反比例函数、一次函数的解析式分别为y= ,y=x+3(2)解:当y=﹣1时,x=﹣4,∴B(﹣4,﹣1).又∵当y=0时,x+3=0,x=﹣3,∴C(﹣3,0),∴S△AOB=S△AOC+S△BOC= ×4+ ×3×1=(3)解:不等式x+b>的解是x>1或﹣4<x<023.(1)解:过C作CE⊥x轴于E,过D作DF⊥y轴于F,如图1,当x=0时,y=m,∴A(0,m);当y=0时,x=m,∴B(m,0).∴△ABO为等腰直角三角形∴∠OAB=∠OBA=45°∴△ADF和△BCE也是等腰直角三角形设M(a,b),则ab= ,CE=b,DF=a∴AD= DF= a,BC= CE= b∴AD•BC= a•b=2ab=2(2)解:将y=﹣x+m代入双曲线y= 中,整理得:x2﹣mx+ =0,设x1、x2是方程x2﹣mx+ =0的两个根(x1<x2),∴x1+x2=m,x1•x2= .∵PQ=3 ,直线的解析式为y=﹣x+m,∴x2﹣x1=3= = ,解得:m=±(3)解:由上述结论知x1=y2 ,x2=y1 ,且AO=BO=y1+y2=x1+x2=m①,∵x1x2= ②,∴P,Q两点的坐标可表示为P(x1 ,x2),Q(x2 ,x1),∴PQ= (x2﹣x1),∵(x2﹣x1)2=(x1+x2)2﹣4x1x2=m2﹣4 ,∴PQ= ,∵S△MPQ= PQ•h,∵PQ为定值,∴PQ边上的高有最大值时,即存在面积的最大值,当m无限向x轴右侧运动时,(或向y轴的上方运动时)h的值无限增大,∴不存在最大的h,即△MPQ的面积不存在最大值.。
湘教版初三数学反比例函数试卷
湘教版初三数学反比例函数试卷一、单选题(共12题;共24分)1.已知反比例函数的图象在一、三象限,则直线y=kx+k的图象经过().A. 一、二、三象限B. 二、三、四象限C. 一、三、四象限D. 一、二、四象限2.若反比例函数的图象在第一、三象限,则的值可以是()A. 4B. 3C. 0D. -33.某乡粮食总产量为a(常数)吨,设该乡平均每人占有粮食为y吨,人口数为x,则y与x之间的函数关系的图象是()A. B. C. D.4.如图,过点O作直线与双曲线(k≠0)交于A,B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E,F,使点A,E,F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2 ,则S1、S2的数量关系是().A. S1=S2B. 2S1=S2C. 3S1=S2D. 4S1=S25.下面的函数是反比例函数的是()A. y=3x-1B. y=C. y=D. y=6.下列选项中,能写成反比例函数的是()A. 人的体重和身高B. 正三角形的边长和面积C. 速度一定,路程和时间的关系D. 销售总价不变,销售单价与销售数量的关系7.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A. B. C. D.8.如图,正比例函数y1与反比例函数y2相交于点E(﹣1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()A. B.C. D.9.已知反比例函数,有下列四个结论:① 图象必经过点(-1,2);② 图像经过(),()两点,若,则;③ 图象分布在第二、四象限内;④ 若x>1,则y>-2.其中正确的有()A. 1个B. 2个C. 3个D. 4个10.一次函数y=ax+b与反比例函数y=的图象如图所示,则()A. a>0,b>0.c>0B. a<0,b<0.c<0C. a<0,b>0.c>0D. a<0,b<0.c>011.已知函数y=(m﹣2)是反比例函数,则m的值为()A. 2B. ﹣2C. 2或﹣2D. 任意实数12.如图,反比例函数(k>0)与一次函数的图象相交于两点A( , ),B( , ),线段AB交y轴与C,当| - |=2且AC = 2BC时,k、b的值分别为()A. k=,b=2B. k=,b=1C. k=,b=D. k=,b=二、填空题(共12题;共12分)13.在反比例函数y= 图象上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,则m的取值范围是________.14.如图,在反比例函数(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=________.15.如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y= 的图象经过点B,则k=________.16.如图,点D为矩形OABC的AB边的中点,反比例函数的图象经过点D,交BC边于点E.若△BDE的面积为1,则k=________17.如图,点A、B在反比例函数y= (k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.18.如图,已知反比例函数y= (k>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB相交于点D,若B的坐标为(4,6),则△BOD的面积为________.19.如图,点A是反比例函数在第二象限内图像上一点,点B是反比例函数在第一象限内图像上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则的面积是________。
初三数学反比例函数的图像与性质------5月16日作业-学生用卷
第1页,共1页
初三数学反比例函数的图像与性质------5月16日作业
1. 若 , 、 , 、 , 三点都在函数
的图象上,则 、 、 的大小关系是
A. B. C.
D. 2. 如图,在平面直角坐标系中,点P 是反比例函数 图象上的一点,分别过点P
作 轴于点 , 轴于点 若四边形OAPB 的面积为3,则k 的值为
A. 3
B.
C.
D.
3. 反比例函数 图象上有三个点 , , , , , ,其中 ,则 , , 的大小关系是
A. B. C.
D. 4. 如图,直线 轴于点P ,且与反比例函数 及 的图象分别交
于点 , ,连接 , ,已知 的面积为2,则 的值为
A. 2
B. 3
C. 4
D.
5. 反比例函数 的图象上有 , , , 两点,则 与 的大小关系是 A.
B. C. D. 不确定 6. 如图,点A 、B 是双曲线 上的点,分别过点A 、B 作x 轴和y 轴的垂线段,若图中阴影
部分的面积为2,则两个空白矩形面积的和为______
7. 如图,点A 在双曲线 上,点B 在双曲线 上,且 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为______ .
8. 如图,在直角坐标系中,O 为坐标原点 已知反比例函数 的图象经过点 , ,过点A 作 轴于点 , 的面积为 .
求k 和m 的值;
点 , 在反比例函数 的图象上,求当 时,对应的x 的取值范围.
9.已知反比例函数 的图象经过点 , ,点B 与点C 关于原点O 对称,
轴于点 , 轴于点D .
求这个反比函数的解析式;
求 的面积.。
双语中学初三数学一轮复习11---反比例函数验收卷
双语中学初三数学一轮复习10---------反比例函数一.选择题1.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( )2.已知反比例函数ky x=的图象经过点(3)m m ,,则此反比例函数的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限3.已知120k k <<,则函数1y k x =和2ky x=的图象大致是( )4.函数xy 1-=的图象上有两点),(11y x A ,),(22y x B ,若0<21x x <,则( ) A .21y y < B .21y y > C .21y y = D .1y 、2y 的大小不确定 5.如果反比例函数ky x=的图象经过点(34)--,,那么该函数的图象位于( ) A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限6.已知函数5y x =-+,4y x=,它们的共同点是:①在每一个象限内,都是函数y 随x 的增大而增大;②都有部分图象在第一象限;③都经过点(14),,其中错误..的有( ) A.0个B.1个C.2个D.3个7.平面直角坐标系中有六个点(15)A ,,533B ⎛⎫-- ⎪⎝⎭,,(51)C --,,522D ⎛⎫- ⎪⎝⎭,,533E ⎛⎫ ⎪⎝⎭,,522F ⎛⎫⎪⎝⎭,,其中有五个点在同一反比例函数图象上,不在这个函数图象上的点是( ) A .点C B .点D C .点E D .点Fy xO y xO y xO y xO A .B .C .D.xy O A .xyO B .xyO C . xyO D .8.已知反比例函数ky x=的图象在第二、四象限内,函数图象上有两点1(27)A y ,,2(5)B y ,,则1y 与2y 的大小关系为( )A .12y y <B .12y y =C .12y y <D .无法确定9.反比例函数ky x=的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果2MON S =△,则k 的值为( ) A.2 B.2- C.4D.4-10.已知三点111()P x y ,,222()Px y ,,3(12)P -,都在反比例函数ky x=的图象上,若10x <,20x >,则下列式子正确的是( )A .120y y <<B .120y y <<C .120y y >>D .120y y >>二、填空题1.在平面直角坐标系中,O 是坐标原点.点()P m n ,在反比例函数ky x=的图象上.若m k =,2n k =-,则k =2.已知120k k <<,则函数1y k x =和2k y x=的图象大致是( )3.老师给出了一个函数,甲、乙、丙三位学生分别指出了这个函数的一个性质,甲:第一象限内有它的图象;乙:第三象限内有它的图象;丙:在每个象限内,y 随x 的增大而减小.请你写一个满足上述性质的函数解析式________________.4.在ABC △的三个顶点(23)(45)(3A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 5. 如图,已知双曲线(0)ky x x=>经过矩形OABC 过AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k =________. y xO y xO yxO yxO A .B .C .D.y xEB F OC6.在平面直角坐标系xoy 中,直线y x =绕点O 逆时针旋转90 得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 . 7.已知反比例函数12my x-=的图象上两点11()A x y ,,22()B x y ,,当120x x <<时,有12y y <,则m 的取值范围是 .8.如图,半径为2的两圆1O 和2O 均与y 轴相切于点O ,反比例函数ky x=(0k >)的图像与两圆分别交于点A B C D ,,,,则图中阴影部分的面积是 .9.设P 是函数4y x=在第一象限的图像上任意一点,点P 关于原点的对称点为P ',过P 作PA 平行于y 轴,过P '作P A '平行于x 轴,PA 与P A '交于A 点,则PAP '△的面积 10.如图,直线y mx =与双曲线ky x=交于点A B ,.过点A 作AM x ⊥轴,垂足为点M ,连结BM .若1ABM S =△,则k 的值是三.解答题1.已知一次函数与反比例函数的图象都经过(21)--,和(2)n ,两点. (1)求这两个函数的解析式.(2)画出这两个函数的图象草图.AOPP 'xy第9题ABOMxy第10题x C D A BO O 2O 1 -22 y第8题2.(1)已知矩形A 的长、宽分别是2和1,那么是否存在另一个矩形B ,它的周长和面积分别是矩形A 的周长和面积的2倍?对上述问题,小明同学从“图形”的角度,利用函数图象给予了解决,小明论证的过程开始是这样的:如果用x y ,分别表示矩形的长和宽,那么矩形B 满足6x y +=,4xy =.请你按照小明的论证思路完成后面的论证过程.(2)已知矩形A 的长和宽分别是2和1,那么是否存在一个矩形C ,它的周长和面积分别是矩形A 的周长和面积的一半?小明认为这个问题是肯定的,你同意小明的观点吗?为什么?(2)观察图像,当x 取任何值时,12y y >?O xy 2 2 4 4 6 68 8 图(1)O x y1 12 23 34 4 图(2)。
初三数学反比例函数试题答案及解析
初三数学反比例函数试题答案及解析1.如果反比例函数的图象经过点(1,-2),那么这个函数的解析式是【答案】y=-.【解析】设反比例函数解析式为(k≠0),把点(1,-2)代入函数解析式(k≠0),即可求得k的值.试题解析:设反比例函数的解析式为(k≠0).由图象可知,函数经过点(1,-2),∴-2=,得k=-2.∴反比例函数解析式为y=-.【考点】待定系数法求反比例函数解析式.2.已知一个函数的图象与y=的图象关于y轴成轴对称,则该函数的解析式为【答案】y=-.【解析】根据图象关于y轴对称,可得出所求的函数解析式.试题解析:关于y轴对称,横坐标互为相反数,纵坐标相等,即y=,∴y=-【考点】反比例函数的性质.3.如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线经过点C 交x轴于点E,双曲线经过点D,则k的值为【答案】1.【解析】解由一次函数图象上点的坐标特征即可求得点C的坐标,则根据矩形的性质易求点D的坐标,所以把点D的坐标代入双曲线解析式即可求得k的值.试题解析:根据矩形的性质知点C的纵坐标是y=1,∵经过点C,∴解得,x=4,即点C的坐标是(4,1).∵矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,∴D(1,1),∵双曲线经过点D,∴k=xy=1×1=1,即k的值为1.【考点】1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征.4. 如图,点A 是反比例函数y=的图象上﹣点,过点A 作AB ⊥x 轴,垂足为点B ,线段AB 交反比例函数y=的图象于点C ,则△OAC 的面积为 .【答案】2【解析】∵AB ⊥x 轴,∴S △AOB =×|6|=3,S △COB =×|2|=1,∴S △ACB =S △AOB ﹣S △COB =2. 故答案为2.【考点】反比例函数系数k 的几何意义5. 如图,在平面直角坐标系中,直线l 与x 轴相交于点M ,与y 轴相交于点N ,Rt △MON 的外心为点A (,﹣2),反比例函数y=(x >0)的图象过点A . (1)求直线l 的解析式;(2)在函数y=(x >0)的图象上取异于点A 的一点B ,作BC ⊥x 轴于点C ,连接OB 交直线l 于点P .若△ONP 的面积是△OBC 面积的3倍,求点P 的坐标.【答案】(1)y=x ﹣4;(2)(,﹣1).【解析】(1)由A 为直角三角形外心,得到A 为斜边MN 中点,根据A 坐标确定出M 与N 坐标,设直线l 解析式为y=mx+n ,将M 与N 坐标代入求出m 与n 的值,即可确定出直线l 解析式; (2)将A 坐标代入反比例解析式求出k 的值,确定出反比例解析式,利用反比例函数k 的意义求出△OBC 的面积,由△ONP 的面积是△OBC 面积的3倍求出△ONP 的面积,确定出P 的横坐标,即可得出P 坐标.试题解析:(1)∵Rt △MON 的外心为点A (,﹣2), ∴A 为MN 中点,即M (3,0),N (0,﹣4), 设直线l 解析式为y=mx+n , 将M 与N 代入得:,解得:m=,n=﹣4, 则直线l 解析式为y=x ﹣4;(2)将A (,﹣2)代入反比例解析式得:k=﹣3, ∴反比例解析式为y=﹣,∵B 为反比例函数图象上的点,且BC ⊥x 轴,∴S △OBC =, ∵S △ONP =3S △OBC , ∴S △ONP =,设P 横坐标为a (a >0), ∴ON•a=3×,即a=,则P 坐标为(,﹣1). 【考点】反比例函数综合题.6. 如图,A 、B 是双曲线上的点,A 、B 两点的横坐标分别是、,线段AB 的延长线交x 轴于点C ,若,则的值为( )A .2B .3C .4D .6 【答案】B.【解析】分别过点A 、B 作AF ⊥y 轴于点F ,AD ⊥x 轴于点D ,BG ⊥y 轴于点G ,BE ⊥x 轴于点E ,∵k >0,点A 是反比例函数图象上的点 ∴S △AOD =S △AOF =,∵A 、B 两点的横坐标分别是a 、3a , ∴AD=3BE ,∴点B 是AC 的三等分点, ∴DE=2a ,CE=a ,∴S △AOC =S 梯形ACOF -S △AOF =(OE+CE+AF )×OF-=×5a×-=6,解得k=3. 故选B.考点: 反比例函数系数k 的几何意义.7. 如果反比例函数y =的图象经过点(-1,-2),则k 的值是 ( ) A .2B .-2C .-3D .3【答案】D【解析】∵反比例函数图象过点(-1,-2) ∴-2=.k =3.故选D.8. 双曲线y =的图象经过第二、四象限,则k 的取值范围是________.【答案】k <【解析】因反比例函数的图象经过第二、四象限,所以2k-1<0,即k<.故答案是k<.9.已知y=y1-y2,其中y1是x的反比例函数,y2是x2的正比例函数,且x=1时y=3,x=-2时y=-15.求:(1)y与x之间的函数关系式;(2)当x=2时y的值.【答案】(1)y=-3x2. (2)-9.【解析】(1)y1是x的反比例函数,可设y1=,y2是x2的正比例函数,可设y2=k2x2,则y与x的关系式为y=-k2x2,x=1时y=3;x=-2时y=-15,代入求出k1=6,k2=3.(2)将x=2代入解析式y=-3x2,y=3-3×4=-9.10.如图,在直角坐标系中,矩形OABC的顶点A、B在双曲线y=kx(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),则点B的坐标为_________.【答案】B(4,).【解析】由矩形OABC的顶点A、B在双曲线y=(x>0)上,BC与x轴交于点D.若点A的坐标为(1,2),利用待定系数法即可求得反比例函数与直线OA的解析式,又由OA⊥AB,可得直线AB的系数,继而可求得直线AB的解析式,将直线AB与反比例函数联立,即可求得点B 的坐标.试题解析:∵矩形OABC的顶点A、B在双曲线y=(x>0)上,点A的坐标为(1,2),∴2=,解得:k=2,∴双曲线的解析式为:y=,直线OA的解析式为:y=2x,∵OA⊥AB,∴设直线AB的解析式为:y=-x+b,∴2=-×1+b,解得:b=,∴直线AB的解析式为:y=-x+,将直线AB与反比例函数联立得出:,解得:或∴点B(4,).考点: 反比例函数综合题.11.已知反比例函数y=(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.【答案】(1)m的值为2;(2)C(﹣4,0).【解析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,则△CBD∽△CAE,运用相似三角形知识求出CD的长即可求出点C的横坐标.试题解析:(1)∵图象过点A(﹣1,6),∴=6,解得m=2.故m的值为2;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,由题意得,AE=6,OE=1,即A(﹣1,6),∵BD⊥x轴,AE⊥x轴,∴AE∥BD,∴△CBD∽△CAE,∴,∵AB=2BC,∴,∴,∴BD=2.即点B的纵坐标为2.当y=2时,x=﹣3,即B(﹣3,2),设直线AB解析式为:y=kx+b,把A和B代入得:,解得,∴直线AB解析式为y=2x+8,令y=0,解得x=﹣4,∴C(﹣4,0).【考点】反比例函数综合题.12.如图,点A是正比例函数y=﹣x与反比例函数y=在第二象限的交点,AB⊥OA交x轴于点B ,△AOB 的面积为4,则k 的值是_____________.【答案】-4.【解析】反比例系数k 的几何意义:过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.同时考查了正比例函数的性质,等腰三角形的性质.过点A 作AC ⊥OB 于C ,先由正比例函数的性质及AB ⊥OA ,得出△AOB 是等腰直角三角形,根据等腰三角形三线合一的性质得出BC=OC ,则2S △AOC =S △AOB =4,所以k=±4,由反比例函数的图象在第二象限可知:k<0.故k=-4.【考点】1、反比例函数系数k 的几何意义;2、等腰直角三角形.13. 若反比例函数的图象上有两点P 1(1,y 1)和P 2(2,y 2),那么( ) A .y 2<y 1<0B .y 1<y 2<0C .y 2>y 1>0D .y 1>y 2>0【答案】D.【解析】把两点P 1(1,y 1)和P 2(2,y 2)分别代入反比例函数y= ,求出y 2、y 1的值即可作出判断.解答:解:把点P 1(1,y 1)代入反比例函数y=得,y 1=1;点P 2(2,y 2)代入反比例函数y=求得,y 2=, ∵1>>0,∴y 1>y 2>0. 故选D .考点: 反比例函数图象上点的坐标特征.14. 某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(2,3) B .(3,2) C .(-3,2) D .(6,1)【答案】C【解析】根据反比例函数的图象上点的横纵坐标之积等于定值k 得到反比例函数图象经过点(-1,6),则反比例函数的解析式为,然后计算各点的横纵坐标之积,再进行判断.【考点】反比例函数图象上点的坐标特征.15. 若反比例函数经过点(1,2),则下列点也在此函数图象上的是( ) A .(1,-2) B .(-1,﹣2) C .(0,﹣1) D .(﹣1,﹣1)【答案】B【解析】设反比例函数图象的解析式为,∵反比例函数的图象经过点(1,2),∴k=1×2=2,而1×(-2)=-2,-1×(-2)=2,0×(-1)=0,-1×(-1)=1. ∴点(-1,-2)在反比例函数图象上.故选B.【考点】反比例函数图像上点的坐标的特征.16.如图,P1是反比例函数在第一象限图像上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的横坐标为A.B.C.D.【答案】C【解析】过点P1作P1C⊥OA2,垂足为C,∵△P1OA1为边长是2的等边三角形,OC=1,,∴P1(1,)。
初三数学反比例函数的专项培优练习题(含答案)含答案解析
初三数学反比例函数的专项培优练习题(含答案)含答案解析一、反比例函数1.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.2.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.3.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。
2023年北京市重点校初三(上)期末数学试题汇编:反比例函数
2023北京重点校初三(上)期末数学汇编反比例函数轴上任意一点,则ABC的面积为(A.12.(2023秋·北京密云,y y的大小关系是(12<y y(1)求一次函数和反比例函数的表达式;(2)已知点()0P n ,()0n >过点P 作垂直于y 轴的直线,与反比例函数的图象交于点交于点C ,横、纵坐标都是整数的点叫做整点.若线段的图象中(不含边界)恰有3个整点,直接写出6.(2023秋·北京密云·九年级统考期末)已知函数(1)求m ,n 的值.(2)已知直线y kx b =+与直线y x =平行,且直线y 范围.7.(2023秋·北京通州·九年级统考期末)如图,已知反比例函数(1)求n 和b 的值; (2)观察图像,不等式kx b x>−+的解集为8.(2023秋·北京通州·九年级统考期末)已知双曲线()()()2323A B m C n ,,,,﹣,三点.(1)求m 和n 的值;(2)在平面直角坐标系中描出上述两个函数的草图,并根据图象直接写出:当12y y >时,x 的取值范围?S=ABC故选:A.【点睛】本题主要考查了反比例函数的图象和性质,解题的关键是熟练掌握反比例函数及反比例函数的图象和性质.【详解】解:反比例函数②当线段BC 在点A 下方时,点P 在1和2之间时,恰有此时12n ≤<;综上:当12n ≤<或78n <≤时,恰有3个整点.【点睛】本题主要考查了一次函数和反比例函数的图象和性质,解题的关键是掌握用待定系数法求解函数表达式的方法和步骤,会画函数图象. 6.(1)6,2m n ==(2)1k =,b 的取值范围为15b −≤≤【分析】(1)把16A (,)代入my x=可求出m 的值,即可得出反比例函数的解析式,根据把3B n (,)代入可求出n 值;b,1≤.5【点睛】本题考查反比例函数与一次函数综合、两平行直线的关系及直线与线段的交点个数问题,熟练掌握反比例函数图形上点的坐标特征是解题关键.当12y y >时,则x 的范围是:02x x <<<−,【点睛】本题考查了待定系数法求函数解析式,以及利用图象解不等式,解题关键是理解数形结合思想.。
初三数学反比例函数练习题
初三数学反比例函数练习题解题步骤:反比例函数是数学中的一个重要概念,在初三数学中经常会遇到与反比例函数相关的练习题。
本文将通过一些典型的初三数学反比例函数练习题来帮助同学们加深对该概念的理解和掌握。
题目一:已知函数y与x满足y = k/x,当x = 2时,求y的值。
解析:根据题目中给出的反比例函数y = k/x,我们可以使用代入法求解。
将x = 2代入函数中,得到y = k/2。
由此可见,当x = 2时,y的值等于k/2。
题目二:已知函数y与x满足y = 3/(2x+1),当x = 3时,求y的值。
解析:同样地,我们使用代入法求解该题。
将x = 3代入函数中,得到y = 3/(2*3+1)。
计算得到y = 3/7。
因此,当x = 3时,y的值等于3/7。
题目三:已知函数y与x满足y = 4/x,当y = 2时,求x的值。
解析:根据题目中给出的反比例函数y = 4/x,我们需要求解x的值。
将y = 2代入函数中,得到2 = 4/x。
通过化简方程,可得到x = 2。
因此,当y = 2时,x的值等于2。
题目四:已知函数y与x满足y = 5/(3x-2),求函数的定义域。
解析:函数的定义域指的是函数中变量x的取值范围。
对于反比例函数,为了避免出现分母为零的情况,需要确定分母不等于零。
因此,我们需要求解3x-2≠0,即x≠2/3。
因此,函数的定义域为x ≠ 2/3。
题目五:已知函数y与x满足y = 2/(x-1),求函数的值域。
解析:函数的值域指的是函数y的取值范围。
对于反比例函数,我们可以通过分析分母的取值范围确定函数的值域。
根据题目中给出的函数y = 2/(x-1),可得x-1≠0,即x≠1。
因此,当x≠1时,函数的值域为实数集R。
通过以上五个典型的初三数学反比例函数练习题,我们可以对反比例函数的概念和求解方法有一个初步的了解。
同学们在学习和解题过程中,可以通过多做一些类似的练习题来加深理解和掌握反比例函数的特性和应用。
初三数学反比例函数试题答案及解析
初三数学反比例函数试题答案及解析1.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12B.C.D.【答案】D.【解析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=,则OA=。
设AB与y轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出,求得OD=,最后根据梯形的面积公式即可求出阴影部分的面积。
∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3。
在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,,OA=AC﹣OC=。
设AB与y轴交于点D.∵OD∥BC,∴,即,解得OD=,∴阴影部分的面积是:。
故选:D.【考点】1.反比例函数系数k的几何意义;2.含30度角的直角三角形;3.勾股定理。
2.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点重合,在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数中,k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大【答案】C.【解析】设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值.∴a+b为定值.设(定值),则∵矩形对角线的交点与原点O重合, ∴k=AB•AD=ab=.∴k是a的二次函数,它的图象开口向下,当时,有最大值.∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.【考点】1.单动点问题;2.曲线上点的坐标与方程的关系;3.矩形的性质;4.二次函数的性质. 3.矩形的面积一定,则它的长和宽的关系是()A.正比例函数B.一次函数C.反比例函数D.二次函数【答案】C.【解析】设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是:y是x的反比例函数.故选C.考点: 1.反比例函数的定义;2.正比例函数的定义.4.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数在第一象限内的图像与△ABC有交点,则的取值范围是A.2≤≤B.6≤≤10C.2≤≤6D.2≤≤【答案】A.【解析】把A点的坐标代入即可求出k的最小值;当反比例函数和直线BC相交时,求出b2﹣4ac的值,得出k的最大值.把点A(1,2)代入得:k=2;C的坐标是(6,1),B的坐标是(2,5),设直线BC的解析式是y=kx+b,则,解得:,则函数的解析式是: y=﹣x+7,根据题意,得:=﹣x+7,即x2﹣7x+k=0,△=49﹣4k≥0,解得:k≤.则k的范围是:2≤k≤.故选A.【考点】反比例函数综合题.5.如图,在平面直角坐标系中,正方形的边长为2.写出一个函数,使它的图象与正方形有公共点,这个函数的表达式为.【答案】(答案不唯一)【解析】由图象可知过B点时图象与正方形只有一个公共点,此时k值最大∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=(k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一)【考点】1、反比例函数;2、正方形6.反比例函数的图象在第象限.【答案】二、四【解析】反比例函数y=的图像是双曲线,当k>0时,x,y 同号,所以图像在第一、三象限;当k<0时,x,y 异号,所以图像在第二、四象限.∴,因为k=-2<0,图像在二、四象限.【考点】反比例函数图像与k的关系.7.点A在双曲线上,AB⊥x轴于B,且△AOB的面积为3,则k=()A.3B.6C.±3D.±6【答案】D.【解析】∴S△AOB =3,∴|k|=6,∴k=±6.故选D.考点: 反比例函数系数k的几何意义.8.如图,矩形OABC的顶点A,C分别在x,y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D,E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x,y轴正半轴交于点H,G,求线段OG的长.【答案】(1)2 (2)y= n= (3)【解析】解:(1)在Rt△BOA中,∵OA=4,tan∠BOA=,∴AB=OA×tan∠BOA=2.(2)∵点D为OB的中点,点B(4,2),∴点D(2,1),又∵点D在y=的图象上,∴1=,∴k=2,∴y=.又∵点E在y=图象上,∴4n=2,∴n=.(3)设点F(a,2),∴2a=2,∴CF=a=1,连接FG,设OG=t,则OG=FG=t,CG=2-t,在Rt△CGF中,GF2=CF2+CG2,∴t2=(2-t)2+12,解得t=,∴OG=t=.9.反比例函数y=过点(2,3),则k=_____________________;反比例函数y=过点(-2,3),则k=_________________.【答案】6 -5【解析】点在函数图象上,则点的坐标满足函数关系式,把点的坐标值代入解析式求k的值.3= ,k=6;=3,k-1=-6,k=-5.10.如图,已知点A在反比例函数的图象上,点B在反比例函数的图象上,AB∥x轴,分别过点A、B作x轴作垂线,垂足分别为C、D,若,则k的值为_________.【答案】12.【解析】设A(a,b),∵点A在反比例函数y=的图象上,∴ab=4,∵OC=a,OC=OD,∴OD=3a,∴B(3a,b),∵点B在反比例函数y=(k≠0)的图象上,∴k=3ab=3×4=12,考点: 反比例函数综合题.11.已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数的图象上.下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1【答案】B.【解析】∵k2≥0,∴﹣k2≤0,﹣k2﹣1<0,∴反比例函数的图象在二、四象限,∵点(﹣1,y1)的横坐标为﹣1<0,∴此点在第二象限,y1>0;∵(2,y2),(3,y3)的横坐标3>2>0,∴两点均在第四象限y2<0,y3<0,∵在第四象限内y随x的增大而增大,∴0>y3>y2,∴y1>y3>y2.故选B.【考点】反比例函数图象上点的坐标特征.12.如图,直线y=2x与双曲线交于点A.将直线y=2x向右平移3个单位后,与双曲线交于点B,与x轴交于点C,若,则k= .【答案】8.【解析】根据直线平移的规律,即可得出直线BC的解析式;根据反比例函数的性质得出A,B 两点的坐标,根据xy=k即可得出k的值.试题解析:∵将直线y=2x向右平移3个单位后,得到的直线是BC,∴直线BC的解析式是:y=2(x-3);过点A作AD⊥x轴于点D,BE⊥x轴于点E,∵直线BC是由直线OA平移得到的,∴,∵,∴,∴AD=2BE,又∵直线BC的解析式是:y=2(x-3),∴设B点的横坐标为3+x,∴B点的纵坐标为:y=2(x+3-3)=2x,∴BE=2x,∵AD=2BE,∴AD=4x,∵y=2x,∴,∴,∴A点的纵坐标为4x,根据A,B都在反比例函数图象上得出:∴2x×4x=(3+x)×2x,x=1,∴k的值为:2×1×4×1=8.考点: 反比例函数综合题.13.如图,双曲线经过的两个顶点、轴,连接,将沿翻折后得到,点刚好落在线段上,连接,恰好平分与轴负半轴的夹角,若的面积为3,则的值为。
初三数学反比例函数经典试题
初三数学反比例函数经典试题一.选择题1. 在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A .B .C .D . 2. 如图所示的图象上的函数关系式只能是( ) .A. y x =B. 1y x =C. 21y x =+D. 1||y x =3. 已知0ab <,点P(a b ,)在反比例函数ay x=的图像上,则直线y ax b =+不经过的象限是( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 在函数21a y x--=(a 为常数)的图象上有三个点1(1)y -,,21()4y -,,31()2y ,,则函数值1y 、2y 、3y 的大小关系是( ).A .2y <3y <1yB .3y <2y <1yC .1y <2y <3yD .3y <1y <2y5. 如图,直线x=t (t >0)与反比例函数y=(x >0)、y=(x >0)的图象分别交于B 、C 两点,A 为y 轴上任意一点,△ABC 的面积为3,则k 的值为( )A.2B.3C.4D.512my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m>6. 如图,点A 、C 为反比例函数y=图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为时,k 的值为( )A .4B .6C .﹣4D .﹣67.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是( ) A .(2,3) B .(3,2) C .(﹣2,3) D .(﹣2,﹣3) 8. 函数与在同一坐标系内的图象可以是( )9. 反比例函数是y=的图象在( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限 10. 数22(1)my m x -=-是反比例函数,则m 的值是( )A .±1B .1 C.-1 11. 如图所示,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ).A .1B .2C .3D .412. 点(-1,1y ),(2,2y ),(3,3y )在反比例函数21k y x--=的图象上.下列结论中正y x m =+(0)my m x=≠确的是( ).A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >> 13. 已知111(,)P x y 、222(,)P x y 、333(,)Px y 是反比例函数2y x=图象上的三点,且1230x x x <<<,则1y 、2y 、3y 的大小关系是( )A .321y y y <<B .123y y y <<C .213y y y <<D .231y y y << 14. 如图所示,点P 在反比例函数1(0)y x x=>的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点P ',则在第一象限内,经过点P '的反比例函数图象的解析式是( ).A .5(0)y x x =->B .5(0)y x x =>C .6(0)y x x =->D .6(0)y x x=> 二、填空题15. 如图所示是三个反比例函数x k y 1=、x ky 2=、xk y 3=的图象,由此观察得到1k 、2k 、3k 的大小关系是____________________(用“<”连接).16. 如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数6y x=(x >0)的图象上,则点C 的坐标为 _________ .17. 已知y 1与x 成正比例(比例系数为k 1),y 2与x 成反比例(比例系数为k 2),若函数y=y 1+y 2的图象经过点(1,2),(2,),则8k 1+5k 2的值为. 18.已知A (11,x y ),B (22,x y )都在6y x =图象上.若123x x =-,则12y y 的值为 _________ .19. 如图,正比例函数3y x =的图象与反比例函数ky x=(k >0)的图象交于点A ,若k 取1,2,3…20,对应的Rt △AOB 的面积分别为12320,,....,S S S S ,则1220....S S S +++ = ________.20. 如图所示,点1A ,2A ,3A 在x 轴上,且11223OA A A A A ==,分别过点1A ,2A ,3A作y 轴的平行线,与反比例函数y =8x(x >0)的图象分别交于点1B ,2B ,3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别于y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为____________.21.若反比例函数的图象过点(3,﹣2),则其函数表达式为 . 22.若函数y=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围___________. 23.反比例函数)0(≠=k xky 的图象叫做__________.当0k >时,图象分居第__________象限,在每个象限内y 随x 的增大而_______;当0k <时,图象分居第________象限,在每个象限内y 随x 的增大而__________.24. 若点A(m ,-2)在反比例函数的图像上,则当函数值y ≥-2时,自变量x 的取值范围是___________.25.若变量y 与x 成反比例,且2x =时,3y =-,则y 与x 之间的函数关系式是________,在每个象限内函数值y 随x 的增大而_________.4y x=26.已知函数x m y =,当21-=x 时,6=y ,则函数的解析式是__________. 27.如图,面积为3的矩形OABC 的一个顶点B 在反比例函数xky =的图象上,另三点在坐标轴上,则_______k =.28.在一个可以改变容积的密闭容器内,装有一定质量的某种气体,当改变容积V 时,气体的密度ρ也随之改变.在一定范围内,密度ρ是容积V 的反比例函数.当容积为53m 时,密度是1.43/kg m ,则ρ与V 的函数关系式为_______________.三.解答题29.已知反比例函数的图象经过点P (2,﹣3). (1)求该函数的解析式; (2)若将点P 沿x 轴负方向平移3个单位,再沿y 轴方向平移n (n >0)个单位得到点P ′,使点P ′恰好在该函数的图象上,求n 的值和点P 沿y 轴平移的方向. 30. 如图所示,已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M(m ,n )(在A 点左侧)是双曲线ky x =上的动点.过点B 作BD ∥y 轴交于x 轴于点D .过N(0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C .(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式. 31. (2015春•耒阳市校级月考)如图,已知点A (﹣8,n ),B (3,﹣8)是一次函数y=kx+b 的图象和反比例函数my x=图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积,32. 一辆汽车匀速通过某段公路,所需时间t(h )与行驶速度v(/km h )满足函数关系:kt v=,其图象为如图所示的一段曲线且端点为A(40,1)和B(m ,0.5).(1)求k 和m 的值;(2)若行驶速度不得超过60/km h ,则汽车通过该路段最少需要多少时间? 33. 在压力不变的情况下,某物体承受的压强P (Pa )是它的受力面积S ()的反比例函数,其图象如图所示.(1) 求P 与S 之间的函数关系式; (2) 求当S =0.5时物体承受的压强P .34.如图,直线y=x 与双曲线y=(x >0)交于点A ,将直线y=x 向下平移个6单位后,与双曲线y=(x >0)交于点B ,与x 轴交于点C. (1)求C 点的坐标. (2)若=2,则k 的值为?35.如图所示,一次函数112y k x =+与反比例函数22k y x=的图象交于点A(4,m )和B(-8,-2),与y 轴交于点C .(1)1k = ________,2k =________;(2)根据函数图象可知,当12y y >时,x 的取值范围是________;(3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点.设直线OP 与线段AD 交于点E ,当31ODE ODAC S S =△四边形::时,求点P 的坐标.【答案与解析】 一.选择题1. C2. D3. C4. D5. D6. C7. D8. B9. B 10. D 11. C 12. B 13. C 14. D二.填空题15. 123k k k <<; 16.(3,6) 17. 9 18. -12 19. 105 20. 49921. y=﹣22. m <2 23. 双曲线;一、三;减小;二、四;增大;24. x ≤-2或0x >; 25. xy 6-=;增大 ; 26.3y x =-; 27. -3;28. 7Vρ=.三.解答题 29.【解析】解:(1)设反比例函数的解析式为y=, ∵图象经过点P (2,﹣3), ∴k=2×(﹣3)=﹣6,∴反比例函数的解析式为y=﹣;(2)∵点P 沿x 轴负方向平移3个单位, ∴点P ′的横坐标为2﹣3=﹣1, ∴当x=﹣1时,y=﹣=6,∴∴n=6﹣(﹣3)=9,∴沿着y 轴平移的方向为正方向. 30.【解析】解:(1)∵ D(-8,0),∴ B 点的横坐标为-8,代入14y x =中,得y =-2.∴ B 点坐标为(-8,-2).而A 、B 两点关于原点对称,∴ A(8,2) . 从而k =8×2=16.(2)∵ N(0,-n ),B 是CD 的中点,A 、B 、M 、E 四点均在双曲线上, ∴ mn k =,(2,)2n B m --,C(-2m ,-n ),E(-m ,-n ).22DCNO S mn k ==矩形,1122DBO S mn k ==△,1122OEN S mn k ==△, ∴ DBO OEN DCNO OBCE S S S S k =--=△△矩形四边形.∴ k =4. 由直线14y x =及双曲线4y x=, 得A(4,1),B(-4,-1),∴ C(-4,-2),M(2,2). 设直线CM 的解析式是y ax b =+,由C 、M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩ 解得23a b ==. ∴ 直线CM 的解析式是2233y x =+.31.【解析】解:(1)△B (3,﹣8)在反比例函数my x=图象上, △﹣8=3m,m=﹣24,反比例函数的解析式为y=﹣,把A (﹣8,n )代入y=﹣,n=3,设一次函数解析式为y=kx+b ,,解得,,一次函数解析式为y=﹣x ﹣5. (2)﹣x ﹣5=0,x=﹣5, 点C 的坐标为(﹣5,0),△AOB 的面积=△AOC 的面积+△BOC 的面积=×5×3+×5×8=.(3)点A (﹣8,3),B (3,﹣8)是一次函数y=kx+b 的图象和反比例函数my x=图象的两个交点, 方程kx+b ﹣mx=0的解是:x 1=﹣8,x 2=3, (4)由图象可知,当x <﹣8或0<x <3时,kx+b >m x, ∴不等式kx+b ﹣mx>0的解集为:x <﹣8或0<x <3.32.【解析】解:(1)将(40,1)代入k t v=,得140k=,解得k =40.∴ 该函数解析式为40t v =.∴ 当t =0.5时,400.5m=,解得m =80,∴ k =40,m =80.(2)令v =60,得402603t ==, 结合函数图象可知,汽车通过该路段最少需要23小时.33.【解析】解:(1)设所求函数解析式为kp s=,把(0.25,1000)代入解析式, 得1000=0.25k, 解得k =250 ∴所求函数解析式为250p s=(s >0)(2)当s =0.5时,P =500(Pa)34.【解析】解:(1)∵将直线y=x 向下平移个6单位后得到直线BC ,∴直线BC 解析式为:y=x ﹣6, 令y=0,得x ﹣6=0, ∴C 点坐标为(,0);(2)∵直线y=x 与双曲线y=(x >0)交于点A ,∴A(,),又∵直线y=x ﹣6与双曲线y=(x >0)交于点B ,且=2,∴B(+,),将B 的坐标代入y=中,得(+)=k ,解得k=12.35.【解析】 解:(1)12,16; (2)-8<x <0或x >4; (3)由(1)知,1122y x =+,216y x=. ∴ m =4,点C 的坐标是(0,2),点A 的坐标是(4,4).∴ CO =2,AD =OD =4.∴ 2441222ODAC CO AD S OD ++=⨯=⨯=梯形. ∵ 31ODE ODAC S S =△梯形::,∴ 1112433ODE ODAC S S =⨯=⨯=△梯形即142OD DE =,∴ DE =2.∴ 点E 的坐标为(4,2). 又点E 在直线OP 上,∴ DE =2.∴ 点E 的坐标为(4,2).由16,1,2y x y x ⎧=⎪⎪⎨⎪=⎪⎩得11x y ⎧=⎪⎨=⎪⎩22x y ⎧=-⎪⎨=-⎪⎩(不合题意舍去)∴ P的坐标为.。
初三数学反比例函数与三角形难题(含详细答案)
《反比例函数—三角形》难度题1、如图,已知点A 是双曲线y =x4在第一象限的分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为边作等边△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线xky =(k <0)上运动,则k 的值是 ﹣12 .2、如图,已知点A 是双曲线6y x=在第三象限分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限内,且随着点A 的运动,点C 的位置也在不断变化,但点C 始终在双曲线ky x=上运动,则k 的值是 63-【解】∵双曲线6y =A 与点B 关于原点对称.∴OA =OB .连接OC ,如图所示.∵△ABC 是等边三角形,OA =OB ,∴OC ⊥AB .∠BAC =60°.∴3OCtan OAC OA∠==.∴,3OC OA =,过点A 作AE ⊥y 轴,垂足为E ,过点C 作CF ⊥y 轴,垂足为F ,∵AE ⊥OE ,CF ⊥OF ,OC ⊥OA ,∴∠AEO =∠OFC ,∠AOE =90°-∠FOC =∠OCF .∴△OFC ∽△AEO .相似比3OCOA=3OFC AEOS S = .∵点A 在第一象限,设点A 坐标为(a ,b ),∵点A 在双曲线6y x =上,∴S △AEO =12ab =62,∴S △OFC =12FC OF ⋅= 362.∴设点C 坐标为(x ,y ),∵点C 在双曲线ky x =上,∴k =xy ∵点C 在第四象限,∴FC =x ,OF =-y .∴FC•OF =x•(-y )=-xy =-36 6.∴xy =-36..故答案为:-36.3、如图,已知点A 是双曲线xy 4=在第一象限的分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为斜边作等腰直角△ABC ,点C 在第四象限.随着点A 的运动,点C 的位置也不断变化,但点C 始终在双曲线xky =(k <0)上运动,则k 的值是 ﹣4 .4、如图,等腰直角三角形OAB 和BCD 的底边OB 、BD 都在x 轴上,直角顶点A 、C 都在反比例函数y =kx图象上,若D (-8,0),则k =___8-_______.【方法】利用特殊形的角度、长度与坐标的关系,巧设坐标,联立方程求值 A (-a , a ),C (-4-a , 4-a ) 82-=-=a k5、如图,等边三角形OAB 和BCD 的底边OB 、BD 都在x 轴上,直角顶点A 、C 都在反比例xyACDBO函数y =kx图象上,若D (-12,0),则k =__________318-.6、如图,Rt △AOB 中,O 为坐标原点,∠AOB =90°,∠B =30°,如果点A 在反比例函数xy 1=(x >0)的图象上运动,那么点B 在函数xy 3-=(填函数解析式)的图象上运动.【方法】A 、B 两点分别向y 轴作垂线段,利用相似直角三角形的比例关系,用A 点坐标表示B 点坐标 设A )1,(00x x , B (x ,y ),得:B )3,3(00x x -7、如图,Rt △ABO 中,∠AOB =90°,点A 在第一象限、点B 在第四象限,且AO :BO =1:2,若点A ),(00y x 的坐标0x 、0y 满足001x y =,则点B (x ,y )的坐标x ,y 所满足的关系式为 xy 2-=x8、已知点A ,B 分别在反比例函数x y 2=(x >0),xy 8-=(x >0)的图象上且OA ⊥OB ,则tanB 为21【解】相似比 A(11,y x ) B(22,y x ) tanB = 2121x y y x =- ∴ 2121y y x x -== 2116x x ∴ 421=x x tanB = 21212x x x y == 219、如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 9【解】∵点D 为△OAB 斜边OA 的中点,且点A 的坐标(﹣6,4), ∴点D 的坐标为(﹣3,2), 把(﹣3,2)代入双曲线)0(<=k xky ,可得k =﹣6,即双曲线解析式为x y 6-=,∵AB ⊥OB ,且点A 的坐标(﹣6,4), ∴C 点的横坐标为﹣6,代入解析式xy 6-=,y=1, 即点C 坐标为(﹣6,1),∴AC=3,又∵OB=6,∴S △AOC =×AC×OB = 9. 故答案为:9.10、如图,已知双曲线)0(>k xky =经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k =_____2_____【方法】设D ),(a k a , 则B )2,2(a k a , C )2,2(ak a11、如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线x ky =(x >0)经过斜边OA 的中点C ,与另一直角边交于点D .若S △OCD =9,则S △OBD 的值为 6 .ABOx yDC ABOx yDC12、如图,等腰直角三角形ABC 顶点A ,C 在x 轴上,∠BCA =90°,AC =BC =22,反比例函数y =x3(x >0)的图象分别与AB ,BC 交于点D ,E .当△BDE ∽△BCA 时,点E 的坐标为 )2,223(【方法】设E ),(11y x ,D ),(22y x ; D )22,(1x 直线DE :m x y +-=联立方程⎪⎩⎪⎨⎧=+-=x y m x y 3 得:032=+-mx x 得:321=x x ∴ 11222x x y +== 2231=x ∴ D )2,223(13、如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数xky =(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD .若△OCD ∽△ACO ,则直线OA 的解析式为14、如图,Rt △AOC 的直角边OC 在x 轴上,∠ACO=90o ,反比例函数xky =经过另一条直角边AC 的中点D ,3=∆AOC S ,则k = 315、如图,A 、B 是双曲线)0(>=k xky 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC = 6.则k= 4【方法】向坐标轴作垂线段,将坐标与长度、角度建立等量关系 C(3a , 0)16、如图,反比例函数xy 6-=在第二象限的图象上有两点A 、B ,它们的横坐标分别为﹣1,﹣3,直线AB 与x 轴交于点C ,则△AOC 的面积为( )yxOBCAA .8B .10C .12D .2417、如图,点A 、B 在反比例函数(0,0)ky k x x=>>的图像上,过点A 、B 作x 轴的垂线,垂足分别为M 、N ,延长线段AB 交x 轴于点C ,若OM MN NC ==,AOC ∆的面积为6,则k 的值为 4.18、如图,点A 、B 在反比例函数y = kx的图象上,且点A 、B 的横坐标分别为a 、2a (a <0),若S △AOB=3,则k 的值为____-4____.【方法】等面积法设A(a , 2b ), B(2a, b ) 梯形AFEB 面积为3 4-=∴kOABxyO AB xyEF19、如图,若双曲线y =kx与边长为5的等边△AOB 的边OA ,AB 分别相交于C ,D 两点,且OC =3BD ,则实数k 的值为 .20、已知点A 是双曲线y =4x上一动点,且OA =4,OA 的垂直平分线交x 轴于点B ,过A 作AC ⊥x 轴于点C ,则△ABC 的周长为________62________,∠ABC =____︒30_____【方法】设而不求,求比例;勾股定理;AB = 21AC21、如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为_______7OCA BxyM 93422、如图,点P 1(x 1,y 1),点P 2(x 2,y 2),…,点P n (x n ,y n )在函数xy 1=(x >0)的图象上,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…,△P n A n ﹣1A n 都是等腰直角三角形,斜边OA 1、A 1A 2、A 2A 3,…,A n ﹣1A n 都在x 轴上(n 是大于或等于2的正整数),则点P 3的坐标是)23,23(-+ ;点P n 的坐标是 )1,1(---+n n n n (用含n 的式子表示).23、如图,点P 是反比例函数y =x34 (x >0)图象上的动点, 在y 轴上取点Q ,使得以P ,O ,Q 为顶点的三角形是一个含有30°的直角三角形,则符合条件的点Q 的坐标是 (0,2), (0,8),(0,23),(0,338) . OCA BxyM24、如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.线段DC上有一点E,当△ABE的面积等于5时,点E的坐标为(5,0).25、如图,以原点O为顶点的等腰直角三角形ABO中,∠BAO=90°,反比例函数kyx=过A、B两点,若点A的横坐标为2,则k=252-.26、如图,A 、B 是双曲线xky =上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为27、如图,已知点A 在反比例函数)0(<=x xky 上,作RT ⊿ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若⊿BCE 的面积为8,则k = 1628、如图,平面直角坐标系中,OB 在x 轴上,∠ABO=90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线xky =(x >0)上,则k 的值为 3【解】易得OB=1,AB=2,∴AD=2,∴点D 的坐标为(3,2), ∴点C 的坐标为(3,1),∴k =3×1=3.29、如图,△AOB 和△ACD 均为正三角形,顶点B 、D 在双曲线xy 4=(x >0)上,则S △OBP = 4 .30、如图,点A 是反比例函数xky =的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是 ﹣631、如图在反比例函数xy x y 32=-=和的图象上分别有A 、B 两点,若AB ∥x 轴且OA ⊥OB,则=OBOA36 .第15题O BAy x34、如图,已知点A ,B 在双曲线)0(>=x xky 上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k 的值为 12 .35、 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x +6于A 、B 两点,若反比例函数ky x=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( ) A .2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤8答案:A36、如图,在平面直角坐标系xOy 中,直线x y 23=与双曲线xy 6=相交于A ,B 两点,C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若△PBC 的面积是24,则点C 的坐标为 (6,1).38、如图,A 、B 是双曲线xky =上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为39、如图,点A 在双曲线y =xk的第一象限的那一支上,AB 垂直于x 轴与点B ,点C 在x 轴正半轴上,且OC =2AB ,点E 在线段AC 上,且AE =3EC ,点D 为OB 的中点,若△ADE 的面积为3,则k 的值为___316_____.【方法】等面积法,设A (a , 2b ), 则C (2a ,0)4=∆ACD S ACD COD ABD ABCD S S S S ∆∆∆++=梯形40、如图,OAC ∆和BAD ∆都是等腰直角三角形, 90=∠=∠ADB ACO ,反比例函数xk y =在第一象限的图象经过点B ,若1222=-AB OA ,则k 的值为________.641、如图,已知动点A 在函数4(0)y x x=>的图象上,AB x ⊥轴于点B ,AC y ⊥轴于点C ,延长CA 至点D ,使AD=AB ,延长BA 至点E ,使AE=AC 。
初三数学复习--反比例函数
反比例函数一、.若22)1(-+=ax a y 是反比例函数,则a 的取值为( )A .1B .-1C .±1D .任意实数 【答案】:A . 【解析】∵此函数是反比例函数, ∴,解得a=1.【方法指导】本题考查的是反比例函数的定义,先根据反比例函数的定义列出关于a 的不等式组,求出a 的值即可.练习1. 下列四个点中,在反比例函数y = -6x 的图象上的是( )A .(3,-2)B .(3,2)C .(2,3)D .(-2,-3) 2、若是反比例函数,则a 的取值为( )A .1B .﹣lC .±lD .任意实数二.若点A(1,y 1)、B(2,y 2)都在反比例函数y=kx(k >0)的图象上,则y 1、y 2的大小关系为( )A .y 1<y 2B .y 1≤y 2C .y 1>y 2D .y 1≥y 2 【答案】:C .【解析】根据反比例函数的图象.由 k >0可知图象在第一象限内y 随x 的增大而减小;因为1<2,所以y 1>y 2. 【方法指导】本题考查反比例函数的图象及性质. 当k>0时,反比例函数图象的两个分支分别在第一、三象限内,且在每个象限内,y 随x 的增大而减小;当k<0时,图象的两个分支分别在第二、四象限内,且在每个象限内,y 随x 的增大而增大.注意:不能说成“当k >0时,反比例函数y 随x 的增大而减小,当k <0时,反比例函数y 随x 的增大而增大.”因为,当x 由负数经过0变为正数时,上述说法不成立.练习1、已知点A (1,1y )、B (2,2y )、C (-3,3y )都在反比例函数xy 6=的图象上,则的大小关系是( )A. 213y y y <<B. 321y y y <<C. 312y y y <<D. 123y y y << 2、当x >0时,函数的图象在( ) A .第四象限B .第三象限C .第二象限D .第一象限3. 若函数y=的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m的取值范围是( ) A . m <﹣2 B . m <0 C . m >﹣2 D . m >0三.如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数y=kx(x >0)的图象经过顶点B ,则k 的值为( ).A .12B .20C .24D .32 【答案】D .【解析】过C 点作CD ⊥x 轴,垂足为D ,根据点C 坐标求出OD 、CD 、BC 的值,进而求出B 点的坐标,即可求出k 的值. 解:过C 点作CD ⊥x 轴,垂足为D . ∵点C 的坐标为(3,4),∴OD=3,CD=4.∴OC= OD2+CD2=32+42=5.∴OC=BC=5.∴点B 坐标为(8,4), ∵反比例函数y=kx(x >0)的图象经过顶点B ,∴k=32. 所以应选D .【方法指导】本题主要考查反比例函数的综合题的知识点,解答本题的关键是求出点B 的坐标,此题难度有一定难度,是一道不错的习题.【易错警示】不能综合运用菱形的性质、勾股定理、反比例函数图象的性质而出错.四、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 2)与体积V (单位:m 3)满足函数关系式Vk=ρ(k 为常数,k ≠0),其图象如图所示,则k 的值为( )A .9B .-9C .4D .-4 【答案】:A . 【解析】反比例函数Vk=ρ经过A (6,1.5),利用待定系数法将V=6、 1.5ρ=代入解析式即可求出解析式。
初三数学反比例函数试题
初三数学反比例函数试题1.如果y是x的反比例函数,那么当x增大时,y就减小【答案】错【解析】对于反比例函数:当时,图象在一、三象限,在每一象限,y随x的增大而减小;当时,图象在二、四象限,在每一象限,y随x的增大而增大,故本题错误.【考点】反比例函数的性质点评:本题是反比例函数的性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如果一个函数不是正比例函数,就是反比例函数【答案】错【解析】形如的函数叫正比例函数,形如的函数叫反比例函数.一个函数不是正比例函数,还可能是二次函数等,故本题错误.【考点】函数的定义点评:函数问题是初中数学的重点,也是难度,在中考中极为常见,在各种题型中均有出现,尤其是综合题,一般难度较大,需多加注意.3. y与x2成反比例时y与x并不成反比例【答案】对【解析】反比例函数的定义:形如的函数叫反比例函数.y与x2成反比例时,则y与x并不成反比例,故本题正确.【考点】反比例函数的定义点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.4. y与2x成反比例时,y与x也成反比例【答案】对【解析】反比例函数的定义:形如的函数叫反比例函数.y与2x成反比例时,则y与x也成反比例,故本题正确.【考点】反比例函数的定义点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.5.已知y与x成反比例,又知当x=2时,y=3,则y与x的函数关系式是y=【答案】对【解析】设y与x的函数关系式是,再把x=2时,y=3代入即可求得结果.设y与x的函数关系式是,当x=2,y=3时,则y与x的函数关系式是y=故本题正确.【考点】待定系数法求反比例函数关系式点评:待定系数法求函数关系式是函数问题中极为重要的一种方法,在中考中极为常见,在各种题型中均有出现,尤其是综合题,一般难度较大,需多加注意.6.叫__________函数,x的取值范围是__________.【答案】反比例,x≠0【解析】直接根据反比例函数的定义填空即可.叫反比例函数,x的取值范围是x≠0.【考点】反比例函数的定义点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.7.已知三角形的面积是定值S,则三角形的高h与底a的函数关系式是h=________,这时h是a的__________.【答案】,反比例函数【解析】根据三角形的面积公式即可得到三角形的高h与底a的函数关系式,即可判断结果.由题意得,则,这时h是a的反比例函数.【考点】三角形的面积公式,反比例函数的定义点评:函数问题是初中数学的重点,也是难度,在中考中极为常见,在各种题型中均有出现,尤其是综合题,一般难度较大,需多加注意.8.如果y与x成反比例,z与y成正比例,则z与x成__________.【答案】反比例【解析】先根据反比例函数与正比例函数的定义设出函数关系式,即可判断结果.由题意得,则,z与x成反比例.【考点】反比例函数,正比例函数点评:概念问题是数学学习的基础,很重要,但此类问题往往知识点比较独立,故在中考中不太常见,常以填空题、选择题形式出现,属于基础题,难度一般.9.兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y)在减少,但y与x是成反例吗?【答案】①y=30-x;②y与x不成反比例.【解析】①根据29+1=30,28+2=30,27+3=30,……,1+29=30,即可得到结果;②根据①中所求的函数关系式即可判断.①由题意得y+x=30,则y与x之间的函数关系式为y=30-x;②y与x不成反比例.【考点】函数的应用点评:函数问题是初中数学的重点,也是难度,在中考中极为常见,在各种题型中均有出现,尤其是综合题,一般难度较大,需多加注意.10.水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.②这是一个反比例函数吗?【答案】①;②是【解析】①根据,即可得到结果;②根据①中所求的函数关系式即可判断.①由题意得,则t与v之间的函数关系式为;②是一个反比例函数.【考点】函数的应用点评:函数问题是初中数学的重点,也是难度,在中考中极为常见,在各种题型中均有出现,尤其是综合题,一般难度较大,需多加注意.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 反比例函数测试卷
一、选择题(本大题共10个小题,每小题3分,共30分.每小题给出的四个选项中,只有一项符合题目要求)
1. 下列函数中,y 是x 的反比例函数是( )
A y= 1
1-x B x y 21= C 22
x y = D 2=x y
2.关于反比例函数4
y x
=
的图象,下列说法正确的是( ) A .必经过点(1,1)
B .两个分支分布在第二、四象限
C .两个分支关于x 轴成轴对称
D .两个分支关于原点成中心对称 3.函数2y x =与函数1
y x
-=
在同一坐标系中的大致图像是( )
4.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( ) A. (-3,2) B. (3,2) C. (2,3) D. (6,1)
5.若双曲线y=x k 1
2-的图象经过第二、四象限,则k 的取值范围是( )
A.k >
21 B. k <21 C. k =2
1
D. 不存在 6.反比例函数k
y x
=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1
B.0<y <1
C. y >2
D.0< y <2
7. 矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )
8. 已知点(-1,1y ),(2,2y ),(3,3y )在反比例函数x
k y 12--=的图像上. 下列结论中正确的( ) A .321y y y >> B .231y y y >> C .213y y y >> D .132y y y >> 9. 如图,正比例函数y 1=kx 和反比例函数y 2=2
k x
的图像交于A (-1,2)、(1,-2)两点,若y 1 <y 2,则x 的取值范围是( )
A.x <-1或x >1
B. x <-1或0<x <1
C. -1<x <0或 0<x <1
D. -1<x <0或x >1 10. 如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=-x+6于A 、B 两点,若反比例函数k y x
=(x >0)的图像与△ABC 有公共点,则k 的取值范围是( ) A .2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤8
二、填空题(本大题共5个小题.每小题3分,共15分.把答案填在题中横线上) 11. 若反比例函数的图像过点P (-1,4),则它的函数关系是 .
12.若函数x
m y 2
+=
图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是 . 13.如图:点A 在双曲线k
y x =上,AB ⊥x 轴于B ,且△AOB 的面积S △AOB =2,则k=______.
14. 如图,点A 在双曲线1y x =上,点B 在双曲线3
y x
=上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD
的面积为矩形,则它的面积为 .
15. 如图,已知第一象限内的图象是反比例函数y=图象的一个分支,第二象限内的图象是反比例函数 y=
﹣图象的一个分支,在x 轴的上方有一条平行于x 轴的直线l 与它们分别交于点A 、B ,过点A 、B 作x 轴的垂线,垂足分别为C 、D .若四边形ABCD 的周长为8且AB <AC ,则点A 的坐标为 .
13题 14题 15题
三、解答题(本大题共 4 个小题.共55分.解答应写出文字说明、证明过程或演算步骤) 16. (10分)如图9,已知双曲线k
y x
=和直线y=mx+n 交于点A 和B ,B 点的坐标是(2,-3),AC 垂直y 轴于点C ,AC=
32
; (1)求双曲线和直线的解析式;(2)求△AOB 的面积。
17.(15分) 如图,直线y=2x ﹣6与反比例函数y=的图象交于点A (4,2),与x 轴交于点B .
(1)求k 的值及点B 的坐标;
(2)在x 轴上是否存在点C ,使得AC=AB ?若存在,求出点C 的坐标;若不存在,请说明理由.
18. (15分)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。
已知药物释放过程中,室内每立方米空气中含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系为t
a
y (a 为常数)。
如图所示,据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释
放开始,至少需要经过多少小时后,学生才能进入教室?
19. (15分)已知:如图,正比例函数y ax =的图象与反比例函数k
y x
=
的图象交于点()32A ,. (1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值?
(3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点
B ;过点A 作直线A
C y ∥轴交x 轴于点C ,交直线MB 于点
D .当四边形OADM 的面积为6时,请
判断线段BM 与DM 的大小关系,并说明理由.
(第19题图)。