(全国通用版)2020高考数学二轮复习 板块四 考前回扣 回扣4 数列学案 文

合集下载

2020高考数学二轮复习 专题四 数列教学案

2020高考数学二轮复习 专题四  数列教学案

专题四 数列[江苏卷5年考情分析]小题考情分析 大题考情分析常考点等差数列的基本量计算(5年3考)等比数列的基本量计算(5年2考)近几年的数列解答题,其常规类型可以分为两类:一类是判断、证明某个数列是等差、等比数列(如2017年T19);另一类是已知等差、等比数列求基本量,这个基本量涵义很广泛,指定的项a k 、项数n 、公差d 、公比q 、通项a n 、和式S n 以及它们的组合式,甚至还包括相关参数(如2018年T20,2019年T20).数列的压轴题还对代数推理能力要求较高,其中数列与不等式的结合(如2018年T20,2016年T20);数列与方程的结合(如2015年T20).这些压轴题难度很大,综合能力要求较高.偶考点等差、等比数列的性质及最值问题第一讲 | 小题考法——数列中的基本量计算考点(一)等差、等比数列的基本运算主要考查等差、等比数列的通项公式、前n 项和公式及有关的五个基本量间的“知三求二”运算.[题组练透]1.(2019·江苏高考)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.解析:法一:由S 9=27⇒9(a 1+a 9)2=27⇒a 1+a 9=6⇒2a 5=6⇒2a 1+8d =6,所以a 1+4d =3,即a 5=3.又a 2a 5+a 8=0⇒2a 1+5d =0, 解得a 1=-5,d =2.故S 8=8a 1+8×(8-1)2d =16.法二:同法一得a 5=3.又a 2a 5+a 8=0⇒3a 2+a 8=0⇒2a 2+2a 5=0⇒a 2=-3. ∴ d =a 5-a 23=2,a 1=a 2-d =-5.故S 8=8a 1+8×(8-1)2d =16.答案:162.(2017·江苏高考)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________. 解析:设等比数列{a n}的公比为q ,则由S 6≠2S 3,得q ≠1,则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q =74,S 6=a 1(1-q 6)1-q =634,解得⎩⎪⎨⎪⎧q =2,a 1=14,则a 8=a 1q 7=14×27=32.答案:323.(2019·江苏苏锡常镇四市调研)已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 10S 5=4,则4a 1d=________.解析:由S 10S 5=4得S 10=4S 5,即10a 1+45d =4(5a 1+10d ),化简得2a 1=d ,则4a 1d=2. 答案:24.(2019·江苏南师大附中期中改编)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若S 2=34,S 4=154,则a n =________.解析:由题知数列{a n }为等比数列,公比q >0且q ≠1,由⎩⎪⎨⎪⎧S 2=34,S 4=154得⎩⎪⎨⎪⎧a 1(1-q 2)1-q =34,a 1(1-q 4)1-q =154,解得⎩⎪⎨⎪⎧a 1=14,q =2,故a n =a 1q n -1=14×2n -1=2n -3. 答案:2n -35.(2019·南京盐城一模)已知等比数列{a n }为递增数列,设其前n 项和为S n ,若a 2=2,S 3=7,则a 5的值为________.解析:设等比数列{a n }的公比为q ,则由题意得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7,得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2,因为数列{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以a 5=a 1q 4=16.答案:16[方法技巧]等差(比)数列基本运算的策略(1)在等差(比)数列中,首项a 1和公差d (公比q )是两个最基本的元素.(2)在进行等差(比)数列项的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体代换法的使用,以减少计算量.考点(二) 等差、等比数列的性质主要考查等差、等比数列的性质及与前n 项和有关的最值问题.[题组练透]1.(2019·南京三模)已知数列{a n }的前n 项和为S n ,且2S n =3n-1,n ∈N *.若b n =log 3a n ,则b 1+b 2+b 3+b 4的值为________.解析:法一:当n =1时,a 1=S 1=1,所以b 1=log 3a 1=0.当n ≥2时,a n =S n -S n -1=3n-12-3n -1-12=3n -1,所以b n =log 3a n =n -1(n ≥2).又b 1=0,所以b n =n -1,所以b 1+b 2+b 3+b 4=4×(0+3)2=6.法二:当n =1时,a 1=S 1=1,所以b 1=log 3a 1=0.当n =2时,a 2=S 2-S 1=32-12-1=3,所以b 2=log 3a 2=1.当n =3时,a 3=S 3-S 2=13-4=9,所以b 3=2.当n =4时,a 4=S 4-S 3=40-13=27,所以b 4=3.所以b 1+b 2+b 3+b 4=0+1+2+3=6.答案:62.(2019·扬州期末)设等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值为________.解析:∵S 3=S 11,∴S 11-S 3=a 4+a 5+a 6+…+a 11=0,故可得(a 4+a 11)+(a 5+a 10)+(a 6+a 9)+(a 7+a 8)=4(a 7+a 8)=0,∴a 7+a 8=0.结合a 1=13可知,该数列的前7项均为正数,从第8项开始为负数,故数列的前7项和最大.答案:73.在等比数列{a n }中,a 3,a 15是方程x 2-6x +8=0的根,则a 1a 17a 9=________. 解析:由题知,a 3+a 15=6>0,a 3a 15=8>0,则a 3>0,a 15>0,由等比数列的性质知a 1a 17=a 3a 15=8=a 29⇒a 9=±22.设等比数列{a n }的公比为q ,则a 9=a 3q 6>0,故a 9=22,故a 1a 17a 9=822=2 2.答案:2 24.(2019·南京四校联考)已知各项均为正数的等比数列{a n }中,a 2=3,a 4=27,S 2n 为该数列的前2n 项和,T n 为数列{a n a n +1}的前n 项和,若S 2n =kT n ,则实数k 的值为________.解析:法一:因为各项均为正数的等比数列{a n }中,a 2=3,a 4=27,所以a 1=1,公比q =3,所以S 2n =1×(1-32n)1-3=32n-12,a n =3n -1,令b n =a n a n +1=3n -1·3n =32n -1,所以b 1=3,数列{b n }为等比数列,公比q ′=9,所以T n =3×(1-9n )1-9=3(32n-1)8.因为S 2n =kT n ,所以32n-12=k ·3(32n-1)8,解得k =43.法二:因为各项均为正数的等比数列{a n }中,a 2=3,a 4=27,所以a 1=1,公比q =3.注意到S 2=4,T 1=3;S 4=40,T 2=30;…,由此归纳可得k =43.答案:435.(2019·苏州期末)设S n 是等比数列{a n }的前n 项和,若S 5S 10=13,则S 5S 20+S 10=________. 解析:法一:设等比数列{a n }的公比为q ,若公比q 为1,则S 5S 10=12,与已知条件不符,所以公比q ≠1,所以S n =a 1(1-q n )1-q ,因为S 5S 10=13,所以1-q 51-q 10=13,所以q 5=2,所以S 5S 20+S 10=1-q 51-q 20+1-q 10=1-21-24+1-22=118. 法二:因为S 5S 10=13,所以不妨设S 5=a ,S 10=3a ,a ≠0,易知S 5,S 10-S 5,S 15-S 10,S 20-S 15成等比数列,由S 5=a ,S 10-S 5=2a ,得S 15-S 10=4a ,S 20-S 15=8a ,从而S 20=15a ,所以S 5S 20+S 10=a 15a +3a =118.答案:118[方法技巧]等差、等比数列性质问题求解策略(1)等差、等比数列性质的应用的关键是抓住项与项之间的关系及项的序号之间的关系,从这些特点入手选择恰当的性质进行求解.(2)应牢固掌握等差、等比数列的性质,特别是等差数列中“若m +n =p +q ,则a m +a n=a p +a q ”这一性质与求和公式S n =n (a 1+a n )2的综合应用.考点(三) 等差、等比数列的判断主要考查利用某些基本量判断数列的类型.[典例感悟][典例] (2019·南通等七市一模)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n +1}是等比数列;③数列⎩⎨⎧⎭⎬⎫1a n 是等比数列;④数列{lg a 2n }是等比数列.其中正确的命题有________个. [解析] 设等比数列{a n }的公比为q ,则a n +1a n =q ,|a n +1||a n |=|q |,故数列{|a n |}是等比数列,①正确;a n +1a n +2a n a n +1=q 2,则数列{a n a n +1}是等比数列,②正确;1a n +11a n=1q ,则数列⎩⎨⎧⎭⎬⎫1a n 是等比数列,③正确;若a n =1,则lg a 2n =0,数列{lg a 2n }不是等比数列,④错误.故正确的命题有3个.[答案] 3[方法技巧]1.判断等差数列的常用方法(1)定义法:a n +1-a n =d (常数)(n ∈N *)⇔{a n }是等差数列.(2)通项公式法:a n =pn +q (p ,q 为常数,n ∈N *)⇔{a n }是等差数列.(3)中项公式法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. 2.判断等比数列的常用方法 (1)定义法:a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. (2)通项公式法:a n =cq n(c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列. (3)中项公式法:a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.[演练冲关]若数列{a n }的前n 项和S n =3n 2-2n ,则下列四个命题:①{a n }是递减等差数列; ②{a n }是递增等差数列; ③{a n }是递减等比数列; ④{a n }是递增等比数列.其中正确命题的序号为________.解析:当n =1时,a 1=S 1=3-2=1.当n ≥2时,a n =S n -S n -1=3n 2-2n - [3(n -1)2-2(n -1)]=6n -5.当n =1时,也满足上式,∴a n =6n -5.∵首项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数), ∴数列{a n }是等差数列,且公差为6>0. ∴{a n }为递增数列. 答案:②[必备知能·自主补缺] (一) 主干知识要记牢 1.等差数列、等比数列2.等差数列(1)a ,b ,c 成等差数列是2b =a +c 的充要条件. (2)等差中项的推广:a n =a n +p +a n -p2(n ≥2,n >p ).(3)等差数列的单调性 由数列的单调性定义,易得 {a n }为递增数列⇔d >0; {a n }为递减数列⇔d <0; {a n }为常数列⇔d =0. (4)构造新数列若数列{a n },{b n }都是等差数列且项数相同,则{kb n },{a n +b n },{a n -b n },{pa n +qb n }都是等差数列.3.等比数列(1)a ,b ,c 成等比数列是b 2=a ·c 的充分不必要条件.(2)推广:等比数列{a n }中,a n 是与a n 前后等距离的两项a n -p ,a n +p 的等比中项,即a 2n =a n -p ·a n +p (n ≥2且n >p ).(3)等比数列的单调性 由数列的单调性定义,易得 {a n }为递增数列⇔⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1; {a n }为递减数列⇔⎩⎪⎨⎪⎧a 1<0,q >1或⎩⎪⎨⎪⎧a 1>0,0<q <1;{a n }为常数列⇔q =1; {a n }为摆动数列⇔q <0. (4)构造新数列:①若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.②若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列.(二) 二级结论要用好 1.等差数列的重要规律与推论(1)p +q =m +n ⇒a p +a q =a m +a n .(2)a p =q ,a q =p (p ≠q )⇒a p +q =0;S m +n =S m +S n +mnd .(3)连续k 项的和(如S k ,S 2k -S k ,S 3k -S 2k ,…)构成的数列是等差数列.(4)若等差数列{a n }的项数为偶数2m ,公差为d ,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m =m (a m +a m +1),S 偶-S 奇=md ,S 奇S 偶=a ma m +1. (5)若等差数列{a n }的项数为奇数2m -1,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则所有项之和S 2m -1=(2m -1)a m ,S 奇=ma m ,S 偶=(m -1)a m ,S 奇-S 偶=a m ,S 奇S 偶=mm -1. [针对练] 一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和之比为32∶27,则该数列的公差d =________.解析:设等差数列的前12项中奇数项的和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d , 所以d =192-1626=5.答案:52.等比数列的重要规律与推论 (1)p +q =m +n ⇒a p ·a q =a m ·a n .(2){a n },{b n }成等比数列⇒{a n b n }成等比数列.(3)连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m ,…)构成的数列是等比数列(注意:这连续m 项的和必须非零才能成立).(4)若等比数列有2n 项,公比为q ,奇数项之和为S 奇,偶数项之和为S 偶,则S 偶S 奇=q . (5)对于等比数列前n 项和S n ,有: ①S m +n =S m +q mS n ;②S m S n =1-q m 1-q n(q ≠±1).[课时达标训练]A 组——抓牢中档小题1.(2018·南京三模)若等比数列{a n }的前n 项和为S n ,n ∈N *,且a 1=1,S 6=3S 3,则a 7的值为________.解析:由S 6=(a 1+a 2+a 3)+a 1q 3+a 2q 3+a 3q 3=(a 1+a 2+a 3)(1+q 3)=(1+q 3)S 3=3S 3,得(1+q 3)S 3=3S 3.因为S 3=a 1(1+q +q 2)≠0,所以q 3=2,得a 7=4.答案:42.(2019·苏北三市一模)在等差数列{a n }中,若a 5=12,8a 6+2a 4=a 2,则{a n }的前6项和S 6的值为________.解析:设等差数列{a n }的公差为d ,由a 5=12,8a 6+2a 4=a 2,得⎩⎪⎨⎪⎧a 5=a 1+4d =12,8(a 1+5d )+2(a 1+3d )=a 1+d ,解得⎩⎪⎨⎪⎧a 1=52,d =-12,所以S 6=6a 1+6×(6-1)2d =152.答案:1523.(2018·苏中三市、苏北四市三调)已知{a n }是等比数列,S n 是其前n 项和.若a 3=2,S 12=4S 6,则a 9的值为________.解析:由S 12=4S 6,当q =1,显然不成立,所以q ≠1,则a 1(1-q 12)1-q =4a 1(1-q 6)1-q,因为a 11-q ≠0,所以1-q 12=4(1-q 6),即(1-q 6)(q 6-3)=0,所以q 6=3或q =-1,所以a 9=a 3q 6=6或2.答案:2或64.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 则a 4=-1+3d =8,解得d =3;b 4=-1·q 3=8,解得q =-2.所以a 2=-1+3=2,b 2=-1×(-2)=2,所以a 2b 2=1. 答案:15.(2019·无锡期末)设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10=________.解析:设数列{a n }的公差为d ,d ≠0,因为a 1-1,a 2-1,a 4-1成等比数列,所以(a 2-1)2=(a 1-1)(a 4-1),即(6-d )2=(6-2d )(6+d ),化简得3d 2-6d =0,因为d ≠0,所以d =2,所以a 10=a 3+7d =7+14=21.答案:216.(2018·常州期末)在各项均为正数的等比数列{a n }中,若a 2a 3a 4=a 2+a 3+a 4,则a 3的最小值为________.解析:依题意有a 2a 4=a 23,a 2a 3a 4=(a 3)3=a 2+a 3+a 4≥a 3+2a 2a 4=3a 3,整理有a 3(a 23-3)≥0,因为a n >0,所以a 3≥3,所以a 3的最小值为 3.答案: 37.等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ≥2,n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值是________.解析:在等差数列{a n }中,设公差为d ,因为“a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤a 1n +n (n -1)2d =n 2-16n +15(n ≥2,n ∈N *)”的二次项系数为1,所以-d2=1,即公差d =-2,令n =2,得a 1=13,所以前n 项和S n =13n +n (n -1)2×(-2)=14n -n 2=49-(n -7)2,故前7项和最大,所以k =7.答案:78.(2019·苏锡常镇四市一模)中国古代著作《张丘建算经》中有这样一个问题:“今有马行转迟,次日减半疾,七日行七百里”,意思是说有一匹马行走的速度逐渐减慢,每天行走的里程是前一天的一半,七天一共行走了700里.那么这匹马最后一天行走的里程数为________.解析:由题意可知,这匹马每天行走的里程数构成等比数列,设为{a n },易知公比q =12,则S 7=a 1(1-q 2)1-q =2a 1⎝ ⎛⎭⎪⎫1-1128=12764a 1=700,所以a 1=700×64127,所以a 7=a 1q 6=700×64127×⎝ ⎛⎭⎪⎫126=700127,所以这匹马最后一天行走的里程数为700127.答案:7001279.(2018·扬州期末)已知各项都是正数的等比数列{a n }的前n 项和为S n ,若4a 4,a 3,6a 5成等差数列,且a 3=3a 22,则S 3=________.解析:设各项都是正数的等比数列{a n }的公比为q ,则q >0,且a 1>0,由4a 4,a 3,6a 5成等差数列,得2a 3=4a 4+6a 5,即2a 3=4a 3q +6a 3q 2,解得q =13.又由a 3=3a 22,解得a 1=13,所以S 3=a 1+a 2+a 3=13+19+127=1327.答案:132710.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析:依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200.答案:20011.(2018·扬州期末)在正项等比数列{a n }中,若a 4+a 3-2a 2-2a 1=6,则a 5+a 6的最小值为________.解析:令a 1+a 2=t (t >0),则a 4+a 3-2a 2-2a 1=6可化为tq 2-2t =6(其中q 为公比),所以t =6q 2-2(q >2),所以a 5+a 6=tq 4=6q 2-2q 4=6⎣⎢⎡⎦⎥⎤4q 2-2+(q 2-2)+4 ≥6⎣⎢⎡⎦⎥⎤24q 2-2·(q 2-2)+4=48(当且仅当q =2时等号成立). 答案:4812.(2019·苏州中学模拟)数列{a n }的前n 项和为S n ,满足a n ≠0,(a n +1-a n )S n +1=(a n +1-2n -1a n )a n +1,n ∈N *.设数列⎩⎨⎧⎭⎬⎫2a n +1-a n a n +1的前n 项和为T n ,则2n -1T n +12n -1=________. 解析:∵(a n +1-a n )S n +1=(a n +1-2n -1a n )a n +1,∴a n S n +1-a n +1S n =2n -1a n +1a n ,又a n ≠0,∴S n +1a n +1-S na n=2n -1.则S 2a 2-S 1a 1=1,S 3a 3-S 2a 2=2,…,S n a n -S n -1a n -1=2n -2(n ≥2,n ∈N *).以上各式相加,得S n a n-S 1a 1=1+2+…+2n -2(n ≥2,n ∈N *).∵S 1a 1=1,∴S n a n-1=2n -1-1,∴S n =2n -1a n (n ≥2,n ∈N *).∵n =1时上式也成立,∴S n =2n -1a n (n ∈N *).∴S n +1=2n a n +1.两式相减,得a n +1=2n a n +1-2n -1a n ,即(2n-1)a n +1=2n -1a n ,则2a n +1-a n a n +1=12n -1,∴T n =1+12+122+…+12n -1=2-12n -1,∴2n -1T n +12n -1=T n +12n -1=2.答案:213.(2019·海安中学模拟)记min {a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,b <a .设数列{a n }是公差为d 的等差数列,数列{b n }是公比为2的等比数列,且a 1=0,b 1=1,c n =min {a n ,b n },n ∈N *,若数列{c n }中存在连续三项成等比数列,则d 的最小值为________.解析:法一:由题意知a n =a 1+(n -1)d =(n -1)d ,b n =2n -1.数列{c n }中存在连续三项成等比数列,不可能是等差数列{a n }中连续的三项,理由:假设是等差数列{a n }中连续的三项,分别记为(k -1)d ,kd ,(k +1)d ,k ≥2,k ∈N *,则k 2d 2=(k -1)d ·(k +1)d ,得d =0,a n =0,所以c n =0,与题意不相符.又数列{a n }中的项为0,d ,2d ,3d ,…,数列{b n }中的项为1,2,4,8,…,所以当d ≤2时,c n =a n ,不满足题意;当2<d <83时,a k <b k (k ≥4,k ∈N *),此时数列{c n }的前三项为0,2,4,从第四项开始c n =a n ,不满足题意;当d ≥83时,数列{c n }的前四项为0,2,4,8,此时,c 2,c 3,c 4成等比数列,满足题意.综上,d 的最小值为83.法二:在平面直角坐标系内,点(n ,b n )在指数函数y =2x -1的图象上,点(n ,a n )在过点(1,0),且斜率为d 的直线l 上.根据min {a ,b }的意义知,{c n }取位于两支曲线中下方曲线上的点的纵坐标.易知数列{c n }中连续三项成等比数列,不可能是等差数列{a n }中的连续三项.如图,当直线l 过点(4,8)时,c 2=b 2=2,c 3=b 3=4,c 4=b 4=8,第一次满足{c n }中连续三项成等比数列,此时直线l的斜率为83,即d 取得最小值,最小值为83.答案:8314.(2018·无锡期末)已知等比数列{a n }满足a 2a 5=2a 3,且a 4,54,2a 7成等差数列,则a 1·a 2·…·a n 的最大值为________.解析:设等比数列{a n }的公比为q , 根据等比数列的性质可得a 2a 5=a 3a 4=2a 3, 由于a 3≠0,可得a 4=2. 因为a 4,54,2a 7成等差数列,所以2×54=a 4+2a 7,可得a 7=14,由a 7=a 4q 3,可得q =12,由a 4=a 1q 3,可得a 1=16,从而a n =a 1q n -1=16×⎝ ⎛⎭⎪⎫12n -1.法一:令a n ≥1可得n ≤5,故当1≤n ≤5时,a n ≥1,当n ≥6时,0<a n <1,所以当n =4或5时,a 1·a 2·…·a n 的值最大,为1 024.法二:令T n =a 1·a 2·…·a n =24×23×22×…×25-n=24+3+2+…+(5-n )=2n (4+5-n )2=2n (9-n )2.因为n ∈N *,所以当且仅当n =4或5时,n (9-n )2取得最大值10,从而T n 取得最大值T 10=210=1 024.答案:1 024B 组——力争难度小题1.已知函数f (x )=x 2-ax +b (a >0,b >0)有两个不同的零点m ,n ,且m ,n 和-2三个数适当排序后,既可成为等差数列,也可成为等比数列,则a +b 的值为________.解析:由题意可得m +n =a ,mn =b ,因为a >0,b >0,可得m >0,n >0,又m ,n ,-2这三个数适当排序后可成等差数列,也可适当排序后成等比数列,可得⎩⎪⎨⎪⎧2n =m -2,mn =4,①或⎩⎪⎨⎪⎧2m =n -2,mn =4.② 解①得m =4,n =1,解②得m =1,n =4. 所以a =5,b =4,则a +b =9. 答案:92.已知等比数列{a n }的各项均为正数且公比q >1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为________.解析:由a 2a 4=a 3得a 23=a 3,又{a n }的各项均为正数,故a 3=1,T 5=a 1a 2a 3a 4a 5=a 53=1,当n =6时,T 6=T 5·a 6,又公比q >1,a 3=1,故a 6>1,T 6>1.答案:63.已知正项数列{a n }满足a n +1=1a 1+a 2+1a 2+a 3+1a 3+a 4+…+1a n +a n +1+1,其中n ∈N *,a 4=2,则a 2 020=________.解析:a n +1=1a 1+a 2+1a 2+a 3+…+1a n +a n +1+1,所以n ≥2时,a n =1a 1+a 2+1a 2+a 3+…+1a n -1+a n +1,两式相减得a n +1-a n =1a n +1+a n (n ≥2),所以a 2n +1-a 2n =1(n ≥2),a 22 020=a 24+(2020-4)×1=2 020,所以a 2 020= 2 020.答案: 2 0204.(2018·南京考前模拟)数列{a n }中,a n =2n -1,现将{a n }中的项依原顺序按第k 组有2k 项的要求进行分组:(1,3),(5,7,9,11),(13,15,17,19,21,23),…,则第n 组中各数的和为________.解析:设数列{a n }的前n 项和为S n ,则S n =n 2,因为2+4+…+2n =n (n +1)=n 2+n ,2+4+…+2(n -1)=n (n -1)=n 2-n .所以第n 组中各数的和为S n 2+n -S n 2-n =(n 2+n )2-(n 2-n )2=4n 3.答案:4n 35.(2019·南通等七市二模)已知集合A ={x |x =2k -1,k ∈N *},B ={x |x =8k -8,k ∈N *},从集合A 中取出m 个不同元素,其和记为S ;从集合B 中取出n 个不同元素,其和记为T .若S +T ≤967,则m +2n 的最大值为________.解析:法一:由题意可得S =m (1+2m -1)2=m 2,T =n (0+8n -8)2=4n 2-4n ,则S +T =m 2+4n 2-4n ≤967,即m 2+(2n -1)2≤968,由基本不等式可得m +(2n -1)2≤m 2+(2n -1)22≤9682=22,则m +(2n -1)≤44,当且仅当m =2n -1=22时取等号,但此时n =232∉N *,所以等号取不到,则当m =22,n =11时,m +2n 取得最大值44.法二:由题意可得S =m (1+2m -1)2=m 2,T =n (0+8n -8)2=4n 2-4n ,则S +T =m2+4n 2-4n ≤967,即m 2+(2n -1)2≤968,令m =968cos θ,2n -1=968sin θ,则m +2n =968cos θ+968sin θ+1= 1 936sin ⎝ ⎛⎭⎪⎫θ+π4+1≤44+1=45,当且仅当m =22,2n -1=22时取等号,但此时n =232∉N *,所以等号取不到,则当m =22,2n -1=21,即n =11时,m +2n 取得最大值44.答案:446.(2018·江苏高考)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为________.解析:所有的正奇数和2n (n ∈N *)按照从小到大的顺序排列构成{a n },在数列{a n }中,25前面有16个正奇数,即a 21=25,a 38=26.当n =1时,S 1=1<12a 2=24,不符合题意;当n =2时,S 2=3<12a 3=36,不符合题意;当n =3时,S 3=6<12a 4=48,不符合题意;当n =4时,S 4=10<12a 5=60,不符合题意;……;当n =26时,S 26=21×(1+41)2+2×(1-25)1-2=441+62=503<12a 27=516,不符合题意;当n =27时,S 27=22×(1+43)2+2×(1-25)1-2=484+62=546>12a 28=540,符合题意.故使得S n >12a n +1成立的n 的最小值为27.答案:27第二讲 | 大题考法——等差、等比数列的综合问题题型(一)等差、等比数列的综合运算主要考查等差、等比数列的通项公式及前n 项和的求解,且常结合数列的递推公式命题.[典例感悟][例1] (2019·南京盐城一模)已知数列{a n },其中n ∈N *. (1)若{a n }满足a n +1-a n =qn -1(q >0,n ∈N *).①当q =2,且a 1=1时,求a 4的值;②若存在互不相等的正整数r ,s ,t ,满足2s =r +t ,且a r ,a s ,a t 成等差数列,求q 的值.(2)设数列{a n }的前n 项和为b n ,数列{b n }的前n 项和为c n ,c n =b n +2-3,n ∈N *,若a 1=1,a 2=2,且|a 2n +1-a n a n +2|≤k 恒成立,求k 的最小值.[解] (1)①由题意知a 4-a 3=4,a 3-a 2=2,a 2-a 1=1,a 1=1,累加得a 4=8. ②因为a n +1-a n =qn -1,所以n ≥2时,a n -a n -1=q n -2,…,a 2-a 1=1.(ⅰ)当q =1时,a n =n -1+a 1(n ≥2).又a 1满足a n =n -1+a 1,所以当q =1时,a n =n -1+a 1(n ∈N *).因为2s =r +t ,所以2a s =a r +a t ,所以q =1满足条件.(ⅱ)当q ≠1且q >0时,a n =1-qn -11-q +a 1(n ≥2).又a 1满足a n =1-qn -11-q +a 1,所以a n =1-q n -11-q+a 1(n ∈N *).若存在满足条件的r ,s ,t ,则可得2q s=q r+q t, 则2=qr -s+qt -s≥2qr +t -2s=2,此时r =t =s ,这与r ,s ,t 互不相等矛盾, 所以q ≠1且q >0不满足条件. 综上所述,符合条件的q 的值为1.(2)由c n =b n +2-3,n ∈N *,可知c n +1=b n +3-3,两式相减可得b n +3=b n +2+b n +1. 因为a 1=1,a 2=2,所以b 1=1,b 2=3,从而c 1=1,c 2=4,可得b 3=4,b 4=7,故b 3=b 2+b 1, 所以b n +2=b n +1+b n 对一切的n ∈N *恒成立.由b n +3=b n +2+b n +1,b n +2=b n +1+b n 得a n +3=a n +2+a n +1. 易知a 3=1,a 4=3,故a n +2=a n +1+a n (n ≥2).因为a 2n +2-a n +1a n +3=(a n +1+a n )2-a n +1·(a n +2+a n +1)=(a n +1+a n )2-a n +1·(a n +2a n +1)=-a 2n +1+a n a n +2,n ≥2,所以当n ≥2时,|a 2n +2-a n +1a n +3|=|a 2n +1-a n a n +2|, 所以当n ≥2时,|a 2n +1-a n a n +2|=5, 当n =1时,|a 2n +1-a n a n +2|=3, 故k 的最小值为5.[方法技巧]1.解决等差、等比数列综合问题的策略解决由等差数列、等比数列组成的综合问题,首先要根据两数列的概念,设出相应的基本量,然后充分使用通项公式、求和公式、数列的性质等确定基本量.解综合题的关键在于审清题目,弄懂来龙去脉,揭示问题的内在联系和隐含条件.2.有关递推数列问题常见的处理方法将第n 项和第n +1项合并在一起,看是否是一个特殊数列.若递推关系式含有a n 与S n ,则考虑是否可以将a n 与S n 进行统一,再根据递推关系式的结构特征确定是否为熟悉的、有固定方法的递推关系式向通项公式转换的类型,否则可以写出数列的前几项,看能否找到规律,即先特殊、后一般、再特殊.[演练冲关](2019·南通等七市一模)已知等差数列{a n }满足a 4=4,前8项和S 8=36. (1)求数列{a n }的通项公式;(2)若数列{b n }满足∑k =1n(b k a 2n +1-2k )+2a n =3(2n-1)(n ∈N *).①证明:{b n }为等比数列;②求集合⎩⎨⎧⎭⎬⎫(m ,p )⎪⎪⎪a m b m=3a pb p,m ,p ∈N *.解:(1)设等差数列{a n }的公差为d .因为等差数列{a n }满足a 4=4,前8项和S 8=36,所以⎩⎪⎨⎪⎧a 1+3d =4,8a 1+8×72d =36,解得⎩⎪⎨⎪⎧a 1=1,d =1. 所以数列{a n }的通项公式为a n =n . (2)①证明:设数列{b n }的前n 项和为B n . 由(1)及错误!由③-④得3(2n-1)-3(2n -1-1)=(b 1a 2n -1+b 2a 2n -3+…+b n -1a 3+b n a 1+2n )-(b 1a 2n -3+b 2a 2n -5+…+b n -1a 1+2n -2)= [b 1(a 2n -3+2)+b 2(a 2n -5+2)+…+b n -1(a 1+2)+b n a 1+2n ]-(b 1a 2n -3+b 2a 2n -5+…+b n -1a 1+2n -2)=2(b 1+b 2+…+b n -1)+b n +2=2(B n -b n )+b n +2.所以3×2n -1=2B n -b n +2(n ≥2,n ∈N *),又3×(21-1)=b 1a 1+2,所以b 1=1,满足上式. 所以2B n -b n +2=3×2n -1(n ∈N *).⑤当n ≥2时,2B n -1-b n -1+2=3×2n -2,⑥由⑤-⑥得,b n +b n -1=3×2n -2.所以b n -2n -1=-(b n -1-2n -2)=…=(-1)n -1(b 1-20)=0,所以b n =2n -1,b n +1b n=2, 又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列.②由a m b m =3a p b p ,得m 2m -1=3p 2p -1,即2p -m=3p m.记c n =a n b n ,由①得,c n =a n b n =n2n -1,所以c n +1c n =n +12n ≤1,所以c n ≥c n +1(当且仅当n =1时等号成立). 由a m b m=3a pb p,得c m =3c p >c p , 所以m <p .设t =p -m (m ,p ,t ∈N *),由2p -m=3p m ,得m =3t2t -3. 当t =1时,m =-3,不合题意; 当t =2时,m =6,此时p =8符合题意; 当t =3时,m =95,不合题意;当t =4时,m =1213<1,不合题意.下面证明当t ≥4,t ∈N *时,m =3t2t-3<1. 不妨设f (x )=2x-3x -3(x ≥4), 则f ′(x )=2xln 2-3>0,所以f (x )在[4,+∞)上单调递增, 所以f (x )≥f (4)=1>0, 所以当t ≥4,t ∈N *时,m =3t2t-3<1,不合题意. 综上,所求集合⎨⎧⎬⎫(m ,p )⎪⎪⎪a m b m=3a pb p,m ,p ∈N *={(6,8)}.题型(二) 等差、等比数列的判定与证明主要考查等差与等比数列的定义、等差与等比中项,且常与数列的递推公式结合命题.[典例感悟][例2] (2019·南师附中、淮阴、天一、海门四月联考)已知q 为常数,正项数列{a n }的前n 项和S n 满足:S n +(a n -S n )q =1,n ∈N *.(1)求证:数列{a n }为等比数列;(2)若q ∈N *,且存在t ∈N *,使得3a t +2-4a t +1为数列{a n }中的项. ①求q 的值;②记b n =log a n +1a n +2,求证:存在无穷多组正整数数组(r ,s ,k ),使得b r ,b s ,b k 成等比数列.[解] (1)证明:由S n +(a n -S n )q =1,n ∈N *,得:a 1=1,(1-q )S n +qa n =1(ⅰ) 所以(1-q )S n +1+qa n +1=1(ⅱ)(ⅱ)-(ⅰ)得:(1-q )a n +1+qa n +1-qa n =0,即a n +1=qa n , 因为a n >0,所以a n +1a n=q ,n ∈N *,且q >0, 结合q 为常数,得数列{a n }为等比数列. (2)①由(1)得a n =qn -1,存在t ∈N *,使得3a t +2-4a t +1是数列{a n }中的项⇔存在t ,p ∈N *, 使得3a t +2-4a t +1=a p ⇔存在t ,p ∈N *,使得3q t +1-4q t =qp -1,即存在t ,p ∈N *,使得3q 2-4q =qp -t(*).因为q ∈N *,且q =1时,(*)式显然不成立, 所以q ≥2,q ∈N *, 所以3q 2-4q ≥4,即qp -t≥4,结合t ,p ∈N *,得p -t ∈N *. 当p -t ≥3时,qp -t-(3q 2-4q )≥q 3-(3q 2-4q )=q (q 2-3q +4)>0,与(*)式矛盾;当p -t =1时,(*)式可化为3q 2-4q =q ,解得q =0(舍)或q =53(舍);当p -t =2时,(*)式可化为3q 2-4q =q 2,解得q =0(舍)或q =2. 综上,q =2. ②证明:由①得a n =2n -1,则b n =n +1n =1+1n,所以数列{b n }为递减数列,因为b r ,b s ,b k 成等比数列,所以不妨设r <s <k ,则b 2s =b r b k ,即⎝ ⎛⎭⎪⎫s +1s 2=r +1r ·k +1k ,即⎝ ⎛⎭⎪⎫s +1s 2·r r +1=k +1k ,所以k =s 2(r +1)2sr +r -s2.令2sr =s 2,即s =2r ,得k =(2r )2(r +1)r=4r 2+4r .所以存在无穷多组正整数数组(r ,2r ,4r 2+4r )(r ∈N *),使得b r ,b s ,b k 成等比数列,从而得证.[方法技巧]判定和证明数列是等差(比)数列的方法[演练冲关]1.(2019·常州期末)已知数列{a n }中,a 1=1,且a n +1+3a n +4=0,n ∈N *. (1)求证:{a n +1}是等比数列,并求数列{a n }的通项公式;(2)数列{a n }中是否存在不同的三项按照一定顺序重新排列后,构成等差数列?若存在,求出所有满足条件的项;若不存在,请说明理由.解:(1)由a n +1+3a n +4=0得a n +1+1=-3(a n +1),n ∈N *. 因为a 1=1,所以a 1+1=2≠0,可得a n +1≠0,n ∈N *, 所以a n +1+1a n +1=-3,n ∈N *,所以{a n +1}是以2为首项,-3为公比的等比数列. 所以a n +1=2(-3)n -1,则数列{a n }的通项公式为a n =2(-3)n -1-1.(2)假设数列{a n }中存在三项a m ,a n ,a k (m <n <k ,m ∈N *,n ∈N *,k ∈N *)符合题意,易知k -n ,k -m ,n -m 都是正整数,分以下三种情形:①当a m 位于a n 和a k 的中间时,2a m =a n +a k , 即2[2(-3)m -1-1]=2(-3)n -1-1+2(-3)k -1-1,所以2(-3)m =(-3)n+(-3)k,两边同时除以(-3)m, 得2=(-3)n -m+(-3)k -m,等式右边是3的倍数,舍去;②当a n 位于a m 和a k 的中间时, 2a n =a m +a k , 即2[2(-3)n -1-1]=2(-3)m -1-1+2(-3)k -1-1,所以2(-3)n =(-3)m+(-3)k,两边同时除以(-3)m, 得2(-3)n -m=1+(-3)k -m,即1=2(-3)n -m-(-3)k -m,等式右边是3的倍数,舍去;③当a k 位于a m 和a n 的中间时,2a k =a m +a n , 即2[2(-3)k -1-1]=2(-3)m -1-1+2(-3)n -1-1,所以2(-3)k=(-3)m+(-3)n,两边同时除以(-3)m,得2(-3)k-m=1+(-3)n-m,即1=2(-3)k-m-(-3)n-m,等式右边是3的倍数,舍去.综上可得,数列{a n}中不存在满足题意的三项.2.(2017·江苏高考)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a na n+k-1+a n+k=2ka n,对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.+1+…+(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.证明:(1)因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d′,所以数列{a n}是等差数列.[课时达标训练]A组——大题保分练1.在数列{a n},{b n}中,已知a1=2,b1=4,且a n,-b n,a n+1成等差数列,b n,-a n,b n+1也成等差数列.(1)求证:{a n +b n }是等比数列; (2)设m 是不超过100的正整数,求使a n -m a n +1-m =a m +4a m +1+4成立的所有数对(m ,n ).解:(1)证明:由a n ,-b n ,a n +1成等差数列可得,-2b n =a n +a n +1,① 由b n ,-a n ,b n +1成等差数列可得,-2a n =b n +b n +1,② ①+②得,a n +1+b n +1=-3(a n +b n ), 又a 1+b 1=6,所以{a n +b n }是以6为首项,-3为公比的等比数列. (2)由(1)知,a n +b n =6×(-3)n -1,③①-②得,a n +1-b n +1=a n -b n =-2,④ ③+④得,a n =6×(-3)n -1-22=3×(-3)n -1-1,代入a n -m a n +1-m =a m +4a m +1+4,得3×(-3)n -1-1-m 3×(-3)n -1-m =3×(-3)m -1+33×(-3)m+3, 所以[3×(-3)n -1-1-m ][3×(-3)m+3]=[3×(-3)n-1-m ][3×(-3)m -1+3],整理得,(m +1)(-3)m+3×(-3)n=0, 所以m +1=(-3)n -m +1,由m 是不超过100的正整数, 可得2≤(-3)n -m +1≤101,所以n -m +1=2或4,当n -m +1=2时,m +1=9,此时m =8,则n =9,符合题意; 当n -m +1=4时,m +1=81,此时m =80,则n =83,符合题意. 故使a n -m a n +1-m =a m +4a m +1+4成立的所有数对(m ,n )为(8,9),(80,83).2.(2019·苏锡常镇二模)已知数列{a n }是各项都不为0的无穷数列,对任意的n ≥3,n ∈N *,a 1a 2+a 2a 3+…+a n -1a n =λ(n -1)a 1a n 恒成立.(1)如果1a 1,1a 2,1a 3成等差数列,求实数λ的值;(2)若λ=1.(ⅰ)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(ⅱ)已知数列{a n}中,a1≠a2.数列{b n}是公比为q的等比数列,满足b1=1a1,b2=1a2,b3=1a i(i∈N*).求证:q是整数,且数列{b n}中的任意一项都是数列⎩⎨⎧⎭⎬⎫1a n中的项.解:(1)因为n≥3且n∈N*时,a1a2+a2a3+…+a n-1a n=λ(n-1)a1a n恒成立,则当n=3时,a1a2+a2a3=2λa1a3,因为数列{a n}的各项都不为0,所以等式两边同时除以a1a2a3得:2λa2=1a1+1a3,又1a1,1a2,1a3成等差数列,所以2a2=1a1+1a3,所以2λa2=2a2,所以λ=1.(2)证明:(ⅰ)当λ=1,n=3时,a1a2+a2a3=2a1a3,①整理得1a1+1a3=2a2,则1a2-1a1=1a3-1a2.②当n=4时,a1a2+a2a3+a3a4=3a1a4,③③-①得:a3a4=3a1a4-2a1a3,得1a1=3a3-2a4,又1a1+1a3=2a2,所以1a4-1a3=1a3-1a2.④当n≥3时,a1a2+a2a3+…+a n-1a n=(n-1)a1a n,a1a2+a2a3+…+a n-1a n+a n a n+1=na1a n+1,两式相减得:a n a n+1=na1a n+1-(n-1)a1a n,因为a n≠0,所以1a1=na n-n-1a n+1,则1a1=n+1a n+1-na n+2,所以na n-n-1a n+1=n+1a n+1-na n+2,整理得1a n+1a n+2=2a n+1,即1a n+2-1a n+1=1a n+1-1a n(n≥3),⑤由②④⑤得:1a n+2-1a n+1=1a n+1-1a n对任意的正整数n恒成立,所以数列⎩⎨⎧⎭⎬⎫1a n成等差数列.(ⅱ)设数列⎩⎨⎧⎭⎬⎫1a n的公差为d,设c n=1a n,c1=1a1=c(c≠0),则b1=c1=c,b2=c2=c+d,d=c2-c1=b2-b1=cq-c.当i=2时,b3=c2=b2,从而q=1,b2=b1,得a1=a2,与已知不符.当i=3时,由b3=c3,cq2=c+2d=c+2c(q-1),得q2=1+2(q-1),得q=1,与已知不符.当i =1时,由b 3=c 1,cq 2=c ,得q 2=1,则q =-1(上面已证q ≠1)为整数. 此时数列{b n }为:c ,-c ,c ,…;数列{c n }中,c 1=c ,c 2=-c ,公差d =-2c .数列{b n }中每一项都是{c n }中的项(c =c 1,-c =c 2).当i ≥4时,由b 3=c i ,cq 2=c +(i -1)d =c +(i -1)c (q -1),得q 2-(i -1)q +(i -2)=0,得q =1(舍去),q =i -2(i ≥4)为正整数.cq =c +d ,b 3=c i ,对任意的正整数k ≥4,欲证明b k 是数列{c n }中的项,只需证b k =cq k -1=c i +xd =b 3+x (cq-c )=cq 2+x (cq -c )有正整数解x ,即证x =q k -1-q 2q -1为正整数.因为x =q k -1-q 2q -1=q 2(q k -3-1)q -1表示首项为q 2,公比为q =i -2(i ≥4),共k -3(k ≥4)项的等比数列的和,所以x 为正整数.因此,{b n }中的每一项都是数列{c n }也即⎩⎨⎧⎭⎬⎫1a n 中的项.3.(2019·盐城三模)在无穷数列{a n }中,a n >0(n ∈N *),记{a n }前n 项中的最大项为k n ,最小项为r n ,令b n =k n r n .(1)若{a n }的前n 项和S n 满足S n =n 2+na 12.①求b n ;②是否存在正整数m ,n ,满足b 2mb 2n =2m -12n ?若存在,请求出这样的m ,n ,若不存在,请说明理由.(2)若数列{b n }是等比数列,求证:数列{a n }是等比数列. 解:(1)①在S n =n 2+na 12中,令n =1,得a 1=S 1=1+a 12,解得a 1=1,∴S n =n 2+n2,当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n ,综上,得a n =n (n ∈N *).显然{a n }为递增数列,∴k n =a n =n ,r n =a 1=1, ∴b n =n .②假设存在满足条件的正整数m ,n ,则m n =2m -12n ,∴m 2m =n 2n ×12, 设c n =n 2n ,则c n +1-c n =n +12n +1-n 2n =1-n 2n +1,∴c 1=c 2>c 3>c 4>c 5>…,由m 2m =n 2n ×12,得c m =12c n <c n ,∴m >n ,则m ≥n +1, 当m =n +1时,m n =2m -12n 显然不成立.当m >n +1时,m n =2m -12n =2m -n -1,设m -n -1=t ,则t ∈N *,n +1+t n =2t ,得n =t +12t -1, 设d n =n +12n -1,则d n +1-d n =(n +1)+12n +1-1-n +12n -1=-n ×2n-1(2n +1-1)(2n-1)<0恒成立, ∴数列{d n }递减.又d 1=2,d 2=1,d 3=47<1,∴n ≥3时,d n <1恒成立.故方程n =t +12t -1的解有且仅有t =1,n =2或t =2,n =1,此时m =4,故满足条件的m ,n 存在,m =4,n =1或n =2.(2)证明:∵a n >0(n ∈N *),且k n ,r n 分别为{a n }前n 项中的最大项和最小项, ∴k n +1≥k n ,r n +1≤r n ,设数列{b n }的公比为q ,显然q >0, (ⅰ)当q =1时,k n +1r n +1k n r n=1,得k n +1k n =r nr n +1,若 k n +1>k n ,则r n +1<r n ,由k n 与r n 的含义可知k n +1>k n 与r n +1<r n 不可能同时成立, 故k n +1=k n ,则r n +1=r n ,则k n =k 1=a 1,r n =r 1=a 1, ∴a n =a 1, ∴a n +1a n=1, ∴数列{a n }是等比数列. (ⅱ)当q >1时,k n +1r n +1k n r n=q >1,得k n +1r n +1k n r n =q 2>1.。

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。

熟练运用数列的通项公式、求和公式。

能够解决数列的综合应用题。

2.能力目标提高学生分析问题和解决问题的能力。

培养学生的逻辑思维能力和创新意识。

二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。

2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。

(2)数列的项:数列中的每一个数叫做数列的项。

(3)数列的项数:数列中项的个数。

(4)数列的通项公式:表示数列中任意一项的公式。

(5)数列的分类:等差数列、等比数列、斐波那契数列等。

3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。

(2)周期性:数列中某些项的值呈周期性变化。

(3)界限性:数列的项有最大值或最小值。

4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。

5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。

(2)数列与方程:利用数列的性质解决方程问题。

(3)数列与不等式:利用数列的性质解决不等式问题。

6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。

(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。

2020届新课标高考数学二轮专题复习讲义全套打包下载4数列

2020届新课标高考数学二轮专题复习讲义全套打包下载4数列

专题四 数 列第1讲 数列的概念、等差数列与等比数列[记牢方能用活]一、由递推公式求数列通项的常用方法 1.形如a n +1=a n +f (n ),常用累加法.利用a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)(n ≥2,n ∈N *)求解. 2.形如a n +1=a n ·f (n ),常用累乘法. 利用a n =a 1·a 2a 1·a 3a 2·…·a n a n -1(n ≥2,n ∈N *)求解.3.形如a n +1=ba n +d (b ≠1),常用构造等比数列法.对a n +1=ba n +d 变形得a n +1+x =b (a n +x )⎝ ⎛⎭⎪⎫其中x =d b -1,则{a n +x }是公比为b 的等比数列,利用它可求出a n .4.形如a n +1=pa n qa n +r ,将其变形为1a n +1=r p ·1a n +qp . 若p =r ,则⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为q p ,可用等差数列的通项公式求1a n,进而求a n ;若p ≠r ,则采用3的方法来求1a n,进而求a n .5.形如a n +2=pa n +1+qa n (p +q =1),常用构造等比数列法.将a n +2=pa n +1+qa n 变形为a n +2-a n +1=(-q )·(a n +1-a n ),则{a n -a n -1}(n ≥2,n ∈N *)是等比数列,且公比为-q ,可以求得a n -a n -1=f (n )(n ≥2,n ∈N *),然后用累加法求a n .二、等差等比的基本运算 1.通项公式等差数列:a n =a 1+(n -1)d ; 等比数列:a n =a 1q n -1(q ≠0). 2.求和公式等差数列:S n =n (a 1+a n )2=na 1+n (n -1)2d ;等比数列:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .三、等差数列的常用性质1.通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).2.若{a n }是等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .3.若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . 4.若{a n },{b n }是等差数列,则{pa n +qb n }(p ,q 是常数)仍是等差数列. 5.若{a n }是等差数列,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)组成公差为md 的等差数列.四、与等差数列各项的和有关的性质1.若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.2.S m ,S 2m ,S 3m 分别为{a n }的前m 项、前2m 项、前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.3.关于非零等差数列奇数项和与偶数项和的性质 (1)若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a n a n +1. (2)若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.4.若两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.五、等比数列的性质1.若数列{a n }是等比数列,则有:(1)数列{c ·a n }(c ≠0),{|a n |},{a n ·b n }({b n }是等比数列),{a 2n},⎩⎨⎧⎭⎬⎫1an 等也是等比数列.(2)数列a m,a m+k,a m+2k,a m+3k,…仍是等比数列.(3)若m+n=p+q(m,n,p,q∈N*),则a m·a n=a p·a q,特别地,若m+n=2p,则a m·a n=a2p.2.若S n是等比数列{a n}的前n项和,则有:(1)当{a n}的公比q≠-1(或q=-1且m为奇数)时,数列S m,S2m-S m,S3m -S2m,…是等比数列.(2)当项数是偶数时,S偶=S奇·q;当项数是奇数时,S奇=a1+S偶·q.调研1数列的有关概念及运算a.S n与a n的关系1.(2018·全国Ⅰ,14,5分)记S n为数列{a n}的前n项和.若S n=2a n+1,则S6=________.答案:-63解析:∵S n=2a n+1,当n≥2时,S n-1=2a n-1+1,∴a n=S n-S n-1=2a n-2a n-1,即a n=2a n-1.当n=1时,a1=S1=2a1+1,得a1=-1.∴数列{a n}是首项a1为-1,公比q为2的等比数列,∴S n=a1(1-q n)1-q=-1(1-2n)1-2=1-2n,∴S6=1-26=-63.2.(2019·上海,8,5分)已知数列{a n}前n项和为S n,且满足S n+a n=2,则S5=________.答案:3116解析:当n=1时,S1+a1=2,∴a1=1.当n≥2时,由S n+a n=2,得S n-1+a n-1=2,两式相减,得a n=12a n-1(n≥2),∴{a n}是以1为首项,12为公比的等比数列,∴S 5=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.小提示:S n 与a n 共存于同一代数式,要么转化为a n ,a n -1的关系,要么转化为S n ,S n -1的关系,a n =S n -S n -1是转化的关键.b .由递推公式到通项公式3.(2014·课标Ⅱ,17,12分)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32.(1)解:由a n +1=3a n +1,得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12. (2)证明:由(1)知,1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n<32.小提示:1.结论中的形式,指明变形的方向,递推公式变形为a n +1+12=3⎝ ⎛⎭⎪⎫a n +12,从而构造等比数列.2.放缩后求和,应用3n -1≥2·3n -1进行放缩转化. [对点提升]1.(2019·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 017的末位数字为( )A .8B .2C .3D .7答案:B 解析:由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,{a n }中的整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,….∵2 017=4×504+1,故b 2 017的末位数字为2.故选B.2.已知数列{a n }满足a 1=1,且a n =13a n -1+⎝ ⎛⎭⎪⎫13n (n ≥2),则a n =________.答案:n +23n 解析:∵a n =13a n -1+⎝ ⎛⎭⎪⎫13n(n ≥2),∴3n a n =3n -1a n -1+1(n ≥2), 即3n a n -3n -1a n -1=1(n ≥2). 又∵a 1=1,∴31·a 1=3,∴数列{3n a n }是以3为首项,1为公差的等差数列, ∴3n a n =3+(n -1)×1=n +2, ∴a n =n +23n (n ∈N *).调研2 等差、等比数列的基本运算 a .等比数列的基本运算1.(2019·全国Ⅰ,9,5分)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n答案:A 解析:设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧ a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.2.(2018·北京,4,5分)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32fB.322fC.1225fD.1227f 答案:D 解析:由题意知,这十三个单音的频率构成首项为f ,公比为122的等比数列,则第八个单音的频率为(122)7f =1227f .故选D. 小提示:第1题中解数列选择题,可以用逐项检验法、排除法或赋值法等“快速”解法.本题若用逐项检验法去验证S 4和a 5,就会发现无法排除错误选项,因此,还是要从通用方法入手.b .等差数列的判定与求和问题3.(2016·天津,18,13分)已知{a n }是各项均为正数的等差数列,公差为d .对任意的n ∈N *,b n 是a n 和a n +1的等比中项.证明:小提示:等差数列的判定方法1.定义法:a n+1-a n=d.2.等差中项法:2a n=a n-1+a n+1(n≥2).3.前n项和公式法:S n=An2+Bn.4.通项公式法:a n=pn+q.c.等差、等比数列中S n的最值与计算4.(2019·福建龙岩新罗区模拟)已知等差数列{a n}的公差为-2,前n项和为S n,a3,a4,a5为某三角形的三边长,且该三角形有一个内角为120°,若S n≤S m对任意的n∈N*恒成立,则实数m=()A.7 B.6C.5 D.4答案:B 解析:∵等差数列{a n }的公差为-2,又a 3,a 4,a 5为某三角形的三边长,且该三角形有一个内角为120°,∴a 23=a 24+a 25-2a 4·a 5cos 120°, 即(a 4+2)2=a 24+(a 4-2)2+2a 4(a 4-2)×12, 化为a 24-5a 4=0,又a 4≠0,解得a 4=5, ∴a 3=7,a 5=3,a 6=1,a 7=-1.∴S n ≤S m 对任意的n ∈N *恒成立,∴实数m =6.故选B.5.(2019·湖南湘潭三模)已知等比数列{a n }的前n 项积为T n ,若a 1=-24,a 4=-89,则当T n 取最大值时,n 的值为( )A .2B .3C .4D .6答案:C 解析:等比数列{a n }中,由a 1=-24,a 4=-89, 可得q 3=a 4a 1=127,解得q =13,小提示:求等差数列{a n }的前n 项和最值的方法如下:d.构造法求通项6.(2019·吉林长白山二模)在数列{a n}中,设f(n)=a n,且f(n)满足f(n+1)-2f(n)=2n(n∈N*),且a1=1.(1)求b n=a n2n-1,并证明数列{b n}为等差数列;(2)求数列{a n}的前n项和S n.解:(1)由已知,得a n+1=2a n+2n,得b n+1=a n+12n=2a n+2n2n=a n2n-1+1=b n+1,所以b n+1-b n=1,又a1=1,所以b1=1,所以b n=n.所以{b n}是首项为1,公差为1的等差数列.(2)由(1)知,b n=a n2n-1=n,所以a n=n·2n-1.所以S n=1+2·21+3·22+…+n·2n-1,两边乘以2,得2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n , 两式相减,得-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1, 所以S n =(n -1)·2n +1. 题目拆解:高考大题综合性较强,求解时,把这类复杂问题拆解成若干个小问题来解决,可化难为易,得步骤分.学会了快速拆解题目,就能在解大题时得高分、得满分.(1)构造b n +1-b n =常数,证明{b n }为等差数列; (2)①求b n 的通项公式,求a n 的通项公式; ②求数列a n 的前n 项和S n . [对点提升]1.(2019·原创冲刺卷一)已知等差数列{a n }的前n 项和为S n ,S 2=3,S 3=6,则S 2n +1=( )A .(2n +1)(n +1)B .(2n +1)(n -1)C .(2n -1)(n +1)D .(2n +1)(n +2)答案:A 解析:设等差数列{a n }的公差为d , 则2a 1+d =3,3a 1+3d =6,所以a 1=d =1,则a n =1+(n -1)×1=n . 因此S 2n +1=(2n +1)(1+2n +1)2=(2n +1)(n +1).2.(2019·安徽巢湖模拟)已知数阵⎝ ⎛⎭⎪⎫a 11 a 12 a 13a 21a 22 a 23a 31a 32a 33中,每行的三个数依次成等差数列,每列的三个数也依次成等差数列,若a 22=5,则该数阵中九个数的和为( )A .18B .27C .45D .54答案:C 解析:由题意得,这九个数的和S 9=a 11+a 12+a 13+a 21+a 22+a 23+a 31+a 32+a 33.根据等差数列的性质,得a 11+a 12+a 13=3a 12,a 21+a 22+a 23=3a 22,a 31+a 32+a 33=3a 32,又因为各列也构成等差数列,则a 12+a 22+a 32=3a 22,所以S 9=9a 22=45.故选C.调研3 等差、等比数列性质的综合应用 a .等比数列公比的讨论1.(2018·浙江,10,4分)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4 答案:B 解析:构造不等式ln x ≤x -1,则a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1, 所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0. 又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1, 所以ln(a 1+a 2+a 3)>0,矛盾. 因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0, 所以a 1>a 3,a 2<a 4. 故选B. 小提示:1.由题中的选项可知要判断0<q 2<1,还是q 2>1.2.由条件可知要利用不等式ln x ≤x -1(x >0),得a 4<0,进而得q <0. 3.直接求q 的取值范围较难,转化为判断q =-1和q <-1时,等式a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)左、右两边的正负,进而得出矛盾.从而得-1<q <0.4.注意a 1>0,而a 2<0,利用-1<q <0得结论. b .等差数列前n 项和的特殊性质2.(2019·广东珠海3月联考)已知数列{a n }中,a 1=1,S n +1S n =n +1n ,则数列{a n }( )A .既非等差数列,又非等比数列B .既是等差数列,又是等比数列C .仅为等差数列D .仅为等比数列答案:B 解析:根据题意,数列{a n }中,S n +1S n =n +1n ,则S n S n -1=nn -1(n ≥2),则S n =S nS n -1×S n -1S n -2×…×S 2S 1×S 1=n n -1×n -1n -2×…×21×1=n (n ≥2),当n =1时,S 1=a 1=1符合,则当n ≥2时,a n =S n -S n -1=n -(n -1)=1,当n =1时,a 1=1符合,故a n =1(n ∈N *),则数列{a n }为非零的常数列,它既是等差数列,又是等比数列,故选B.3.(2019·广东汕头模拟)已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( )A .4B .5C .6D .4或5答案:B 解析:由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4,即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5,故选B. 小提示:与等差数列各项的和有关的性质1.若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.2.S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.3.关于非零等差数列奇数项和与偶数项和的性质 ①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a n a n +1.②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=nn -1.4.若两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.[对点提升]1.(2019·北京东城区模拟)已知数列{a n }满足a 1=a ,a n =a n +1+2,定义数列{b n },使得b n =1a n,n ∈N *,若4<a <6,则数列{b n }的最大项为( )A .b 2B .b 3C .b 4D .b 5答案:B 解析:∵数列{a n }满足a 1=a ,a n =a n +1+2,∴数列{a n }是首项a 1=a ,公差d =a n +1-a n =-2的等差数列,∴a n =a -2(n -1).∵4<a <6,∴{a n }的最后一个正项是a 3=a -4,∴b n =1a -2(n -1)中,当n =3时,数列{b n }取得最大项b 3,故选B.2.(2019·贵州遵义模拟)在数1和2之间插入n 个正数,使得这n +2个数构成递增的等比数列,将这n +2个数的乘积记为A n ,令a n =log 2A n ,n ∈N *,则T n =tan a 2·tan a 4+tan a 4·tan a 6+…+tan a 2n ·tan a 2n +2=________.答案:tan (n +2)-tan 2tan 1-n ,n ∈N * 解析:设在数1和∴a n =log 2A n =n +22. 又tan 1=tan[(n +1)-n ]=tan (n +1)-tan n1+tan (n +1)tan n,∴tan(n +1)tan n =tan (n +1)-tan ntan 1-1,∴tan a 2n ·tan a 2n +2=tan(n +1)tan(n +2)=tan (n +2)-tan (n +1)tan 1-1,n ∈N *,∴T n =tan a 2·tan a 4+tan a 4·tan a 6+…+tan a 2n ·tan a 2n +2=⎝ ⎛⎭⎪⎫tan 3-tan 2tan 1-1+⎝ ⎛⎭⎪⎫tan 4-tan 3tan 1-1+ ⎝ ⎛⎭⎪⎫tan 5-tan 4tan 1-1+…+⎣⎢⎡⎦⎥⎤tan (n +2)-tan (n +1)tan 1-1=tan (n +2)-tan 2tan 1-n ,n ∈N *,故答案为tan (n +2)-tan 2tan 1-n ,n ∈N *.提醒 完成专题训练(十一)第2讲 数列求和及数列的综合应用[记牢方能用活]一、求数列的前n 项和的方法 1.公式法(1)等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式 a .当q =1时,S n =na 1;b .当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q .2.分组求和把一个数列分成几个可以直接求和的数列. 3.裂项相消把一个数列的通项分成两项差的形式,相加过程中消去中间项,只剩有限项再求和.4.错位相减适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. 5.倒序相加把数列正着写和倒着写再相加,例如等差数列前n 项和公式的推导方法. 6.并项求和将某些具有某种特殊性质的项放在一起先求和,再求整体的和. 二、常见的拆项公式1.若{a n }为各项都不为0的等差数列,公差为d (d ≠0),则1a n ·a n +1=1d ⎝⎛⎭⎪⎫1a n -1a n +1; 2.1n (n +k )=1k ⎝⎛⎭⎪⎫1n -1n +k ; 3.1n +n +1=n +1-n ;4.log a ⎝ ⎛⎭⎪⎫1+1n =log a (n +1)-log a n (a >0且a ≠1).三、常见数列的前n 项和 1.1+2+3+…+n =n (n +1)2; 2.2+4+6+…+2n =n 2+n ; 3.1+3+5+…+(2n -1)=n 2; 4.12+22+32+…+n 2=n (n +1)(2n +1)6;5.13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22. 四、放缩为等比数列求和的两种类型1a n <1a n -b n =1a n ⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫b a n ≤1a n -1,a -b ≥1,a ,b >0; 1a n -b ≤1a n -1(a -b )≤1a n -1,a -b ≥1,a ,b >0. 小积累放缩为裂项相消法求和的常见类型1n 2>1n (n +1)=1n -1n +1;1n 2<1n 2-1=12⎝ ⎛⎭⎪⎫1n -1-1n +1,n ≥2; 1n 2<1n 2-14=44n 2-1=2⎝ ⎛⎭⎪⎫12n -1-12n +1; 1(2n -1)2>1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1; 1(2n -1)2<1(2n -1)(2n -3)=12⎝ ⎛⎭⎪⎫12n -3-12n -1,n ≥2; 1n =2n +n >2n +1+n =2(n +1-n ); 1n =2n +n <2n -1+n =2(n -n -1); 1q n -1<q n +1(q n -1)(q n +1-1)=q q -1⎝ ⎛⎭⎪⎫1q n -1-1q n +1-1, q >1;1n 3<1(n -2)(n -1)n =12⎣⎢⎡⎦⎥⎤1(n -2)(n -1)-1(n -1)n , n ≥3;1n 3<1(n -1)n (n +1)=12⎣⎢⎡⎦⎥⎤1(n -1)n -1n (n +1),n ≥2.调研1 数列求和问题 a .简单代数式裂项求和问题1.(2019·湖北十堰调研)已知数列{a n }中,a 1=1,a 2=3,其前n 项和为S n ,且当n ≥2时,a n +1S n -1-a n S n =0.(1)求证:数列{S n }是等比数列,并求数列{a n }的通项公式; (2)令b n =9a n(a n +3)(a n +1+3),记数列{b n }的前n 项和为T n ,求T n .解:(1)当n ≥2时,a n +1S n -1-a n S n =(S n +1-S n )S n -1-(S n -S n -1)S n =S n +1S n -1-S 2n =0,∴S 2n =S n -1S n +1(n ≥2).又由S 1=a 1=1≠0,S 2=a 1+a 2=4≠0,可推知对一切正整数n 均有S n ≠0, ∴数列{S n }是等比数列,S n =4n -1. 当n ≥2时,a n =S n -Sn -1=3×4n -2,又a 1=1,∴a n =⎩⎨⎧1(n =1),3×4n -2(n ≥2). (2)当n ≥2时,b n =9a n(a n +3)(a n +1+3)= 9×3×4n -2(3×4n -2+3)(3×4n -1+3) =3×4n -2(4n -2+1)(4n -1+1), 又知b 1=38,∴b n =⎩⎪⎨⎪⎧38(n =1),3×4n -2(4n -2+1)(4n -1+1)(n ≥2),则T 1=b 1=38.当n ≥2时,b n =3×4n -2(4n -2+1)(4n -1+1)=14n -2+1-14n -1+1, 则T n =38+⎝ ⎛⎭⎪⎫142-2+1-142-1+1+…+⎝ ⎛⎭⎪⎫14n -2+1-14n -1+1=78-14n -1+1,又当n =1时,T 1=38符合上式, ∴T n =78-14n -1+1(n ∈N *).题目拆解:高考大题综合性较强,求解时,把这类复杂问题拆解成若干个小问题来解决,可化难为易,得步骤分.学会了快速拆解题目,就能在解大题时得高分、得满分.本题可以拆分成以下几个小题: (1)①求数列{S n }的通项公式; ②求数列{a n }的通项公式. (2)裂项求数列{b n }的前n 项和. b .复杂代数式的裂项求和问题2.(2018·天津,18,13分)设{a n }是等比数列,公比大于0,其前n 项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(1)求{a n}和{b n}的通项公式.(2)设数列{S n}的前n项和为T n(n∈N*).①求T n;(1)解:设等比数列{a n}的公比为q.由a1=1,a3=a2+2,可得q2-q-2=0.因为q>0,可得q=2,故a n=2n-1.设等差数列{b n}的公差为d,由a4=b3+b5,可得b1+3d=4.由a5=b4+2b6,可得3b1+13d=16,从而b1=1,d=1,故b n=n.所以数列{a n}的通项公式为a n=2n-1,数列{b n}的通项公式为b n=n.小提示:数列问题求解常用方法为应用方程思想,把条件转化为基本量的方程求解,如第(2)①问.求和现象必须观察代数式的结构特点,再选择合适的方法.c .错位相减求和3.(2019·河南百校联盟模拟)已知S n 为等差数列{a n }的前n 项和,a 3=5,S 7=49.(1)求数列{a n }的通项公式;(2)设b n =a n2n ,T n 为数列{b n }的前n 项和,求证:T n <3. (1)解:设数列{a n }的公差为d , 则由已知得⎩⎨⎧a 1+2d =5,7a 1+21d =49,解得⎩⎨⎧a 1=1,d =2,所以a n =a 1+(n -1)d =2n -1. (2)证明:b n =a n 2n =2n -12n , 所以T n =12+34+58+…+2n -12n , 12T n =14+38+516+…+2n -32n +2n -12n +1, 两式相减,得12T n =12+12+14+18+…+12n -1-2n -12n +1 =32-12n -1-2n -12n +1,故T n =3-12n -2-2n -12n =3-2n +32n <3.小提示:错位相减求和常有以下几点易错之处1.作差的代数式写不对,尤其后面两项的变化规律. 2.作差后求和过程中,等比求和易数不对项数. 3.最后细致的计算,合并同类项时一定认真. [对点提升](2019·广东广州一模)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公差为2的等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a 1b 1+a 2b 2+…+a n b n =5-(4n +5)·⎝ ⎛⎭⎪⎫12n,求数列{b n }的前n 项和T n .解:(1)由题意,可得S nn =1+2(n -1), 化简得S n =2n 2-n .∴当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3. 当n =1时,a 1=1对上式也成立. ∴a n =4n -3(n ∈N *).(2)a 1b 1+a 2b 2+…+a n b n =5-(4n +5)⎝ ⎛⎭⎪⎫12n ,∴当n ≥2时,a 1b 1+a 2b 2+…+a n -1b n -1=5-(4n +1)⎝ ⎛⎭⎪⎫12n -1, 两式相减,得a n b n =(4n -3)×⎝ ⎛⎭⎪⎫12n(n ≥2),又a 1b 1=12满足上式,∴a n b n=(4n -3)×⎝ ⎛⎭⎪⎫12n (n ∈N *).∴b n =2n .∴数列{b n }的前n 项和T n =2(2n -1)2-1=2n +1-2.调研2 数列求和中的不等式问题 a .前n 项和与不等式恒成立问题1.(2017·河北“五个一名校联盟”二模)已知数列{a n }的前n 项和为S n ,S n =n 2+2n ,b n =a n a n +1cos[(n +1)π],数列{b n }的前n 项和为T n ,若T n ≥tn 2对n ∈N *恒成立,则实数t 的取值范围是________.答案:(-∞,-5] 解析:当n =1时,a 1=3;当n ≥2时,a n =S n -S n -1=n 2+2n -[(n -1)2+2(n -1)]=2n +1,当n =1时上式也成立,∴a n =2n +1(n ∈N *).∴b n =a n a n +1cos[(n +1)π]=(2n +1)(2n +3)·cos[(n +1)π],当n 为奇数时,cos[(n +1)π]=1; 当n 为偶数时,cos[(n +1)π]=-1.因此,当n 为奇数时,T n =3×5-5×7+7×9-9×11+…+(2n +1)(2n +3)=3×5+4×(7+11+…+2n +1)=15+4×(2n +8)(n -1)4=2n 2+6n +7.∵T n ≥tn 2, ∴2n 2+6n +7≥tn 2,∴t ≤7n 2+6n +2=7⎝ ⎛⎭⎪⎫1n +372+57,∴t <2.当n 为偶数时,T n =3×5-5×7+7×9-9×11+…-(2n +1)(2n +3) =-4×(5+9+13+…+2n +1)=-2n 2-6n . ∵T n ≥tn 2,∴-2n 2-6n ≥tn 2,∴t ≤-2-6n ,∴t ≤-5. 综上可得,t ≤-5. 小提示:先求出a n ,进而得b n ,分析b n 的结构,对n 分奇数和偶数求T n ,进而利用分离参数法转化为求最值问题.b .数列与函数单调性的综合问题2.(2018·江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q =2,若|a n -b n |≤b 1对n =1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1,m2 ],证明:存在d ∈R ,使得|a n -b n |≤b 1对n =2,3,…,m +1均成立,并求d 的取值范围(用b 1,m ,q 表示).(1)解:由条件知,a n =(n -1)d ,b n =2n -1. 因为|a n -b n |≤b 1对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得 73≤d ≤52.因此d 的取值范围为⎣⎢⎡⎦⎥⎤73,52.(2)证明:由条件知,a n =b 1+(n -1)d ,b n =b 1q n -1.若存在d ∈R ,使得|a n -b n |≤b 1对n =2,3,…,m +1均成立, 即|b 1+(n -1)d -b 1q n -1|≤b 1(n =2,3,…,m +1), 即当n =2,3,…,m +1时,d 满足q n -1-2n -1b 1≤d ≤q n -1n -1b 1.因为q ∈(1,m2 ],则1<q n -1≤q m ≤2,从而q n -1-2n -1b 1≤0,q n -1n -1b 1>0,对n =2,3,…,m +1均成立.因此,取d =0时,|a n -b n |≤b 1对n =2,3,…,m +1均成立.下面讨论数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1-2n -1的最大值和数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1n -1的最小值(n =2,3,…,m +1). ①当2≤n ≤m 时,q n -2n -q n -1-2n -1=nq n -q n -nq n -1+2n (n -1)=n (q n -q n -1)-q n +2n (n -1),当1<q ≤21m 时,有q n ≤q m ≤2,从而n (q n -q n -1)-q n +2>0. 因此,当2≤n ≤m +1时,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1-2n -1单调递增, 故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1-2n -1的最大值为q m -2m . ②设f (x )=2x (1-x ),当x >0时,f ′(x )=(ln 2-1-x ln 2)2x <0, 所以f (x )单调递减,从而f (x )<f (0)=1.当2≤n ≤m 时,q nn qn -1n -1=q (n -1)n ≤21n ⎝ ⎛⎭⎪⎫1-1n =f ⎝ ⎛⎭⎪⎫1n <1,因此,当2≤n ≤m +1时,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1n -1单调递减, 故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1n -1的最小值为q mm .因此,d 的取值范围为⎣⎢⎡⎦⎥⎤b 1(q m -2)m ,b 1q m m .小提示:本题是数列的综合题,考查等差数列、等比数列的概念和相关性质. 1.第(1)问主要考查绝对值不等式.2.第(2)问要求d 的取值范围,使得|a n -b n |≤b 1对n =2,3,…,m +1均成立,首先把d 分离出来,变成q n -1-2n -1b 1≤d ≤q n -1n -1b 1,难点在于讨论q n -1-2n -1b 1的最大值和q n -1n -1b 1的最小值.对于数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1-2n -1,可以通过作差讨论其单调性,而对于数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1n -1,要通过作商讨论单调性,∴q nnq n -1n -1=q (n -1)n =q ⎝ ⎛⎭⎪⎫1-1n ,当2≤n ≤m 时,1<q n ≤2.∴q ⎝ ⎛⎭⎪⎫1-1n ≤21n ⎝ ⎛⎭⎪⎫1-1n ,可以构造函数f (x )=2x (1-x ),通过讨论f (x )在(0,+∞)上的单调性去证明f ⎝ ⎛⎭⎪⎫1n <1,得到数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫q n -1n -1的单调性,解出最小值.两个数列,一个作差得到单调性,一个作商得到单调性,都是根据数列本身结构而得,方法自然合理,最后构造函数判断21n ⎝ ⎛⎭⎪⎫1-1n 与1的大小是难点,平时多积累,多思考,也是可以得到的.[对点提升](2019·天津滨海新区模拟)已知数列{a n }的前n 项和S n ,通项a n 满足S na n -1=qq -1(q 是常数,q >0且q ≠1). (1)求数列{a n }的通项公式; (2)当q =14时,证明:S n <13;(3)设函数f (x )=log q x ,b n =f (a 1)+f (a 2)+…+f (a n ),是否存在正整数m ,使1b 1+1b 2+…+1b n ≥m 3对n ∈N *都成立?若存在,求出m 的值;若不存在,请说明理由.(1)解:由题意S n =q q -1(a n -1),得S 1=a 1=q q -1(a 1-1),所以a 1=q . 当n ≥2时,a n =S n -S n -1=q q -1(a n -a n -1),所以a na n -1=q ,故数列{a n }是首项为q ,公比为q 的等比数列, 所以a n =q ·q n -1=q n .(2)证明:由(1)知,当q =14时,a n =14n , 所以S n =14⎝ ⎛⎭⎪⎫1-14n 1-14=13⎝ ⎛⎭⎪⎫1-14n <13. (3)解:因为f (x )=log q x ,所以b n =log q a 1+log q a 2+…+log q a n =log q (a 1a 2…a n ) =log q (q ·q 2·…·q n )=log q q 1+2+…+n =1+2+…+n =n (n +1)2,所以1b n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,所以1b 1+1b 2+…+1b n =2⎝⎛⎭⎪⎫1-1n +1=2n n +1. 欲使2n n +1≥m 3,即m ≤6n n +1=6-6n +1对n ∈N *都成立,需有m ≤⎝ ⎛⎭⎪⎫6-6n +1min ,而当n ∈N *时,6-6n +1随n 的增大而增大, 所以m ≤6-61+1=3,又m 为正整数, 所以m 的值为1,2,3,故使1b 1+1b 2+…+1b n≥m3对n ∈N *都成立的正整数m 存在,其值为1,2,3.调研3 数列的综合应用 a .双数列问题1.(2019·福建晋江期中)已知等比数列{a n },{b n },{c n }的公比分别为2,A ,B .记b n =a 4(n -1)+1+a 4(n -1)+2+a 4(n -1)+3+a 4(n -1)+4,c n =a 4(n -1)+1a 4(n -1)+2a 4(n -1)+3a 4(n -1)+4,n ∈N *,则A B=________.答案:1212 解析:本题考查等比数列的应用.根据题意,等比数列{a n }的公比为2.因为b n =a 4(n -1)+1+a 4(n -1)+2+a 4(n -1)+3+a 4(n -1)+4,则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4,所以A =b n +1b n =a 4n +1+a 4n +2+a 4n +3+a 4n +4a 4(n -1)+1+a 4(n -1)+2+a 4(n -1)+3+a 4(n -1)+4=24.因为c n =a 4(n -1)+1a 4(n -1)+2a 4(n -1)+3a 4(n -1)+4,则c n +1=a 4n +1a 4n +2a 4n +3a 4n +4,所以B =c n +1c n =a 4n +1a 4n +2a 4n +3a 4n +4a 4(n -1)+1a 4(n -1)+2a 4(n -1)+3a 4(n -1)+4=216,则A B =24216=1212.b .数列与导数、三角的渗透问题2.(2019·宁夏银川月考)已知数列{a n }的通项公式是a n =n 2sin ⎝ ⎛⎭⎪⎫2n +12π,则a 1+a 2+a 3+…+a 10=( )A .110B .100C .55D .0答案:C 解析:本题考查数列与三角函数.∵2n +12·π=n π+π2,n ∈N *,∴a n =n 2sin ⎝ ⎛⎭⎪⎫2n +12π=⎩⎪⎨⎪⎧-n 2,n 是奇数,n 2,n 是偶数,∴a 1+a 2+a 3+…+a 10=22-12+42-32+…+102-92=(2-1)×(2+1)+(4-3)×(4+3)+…+(10-9)×(10+9)=1+2+3+…+10=10×(1+10)2=55.故选C.3.(2019·江西宜春3月联考)已知函数f (x )=e x (sin x -cos x ),记f ′(x )是f (x )的导函数,将满足f (x )=0的所有正数x 从小到大排成数列{x n },n ∈N *,则数列{f ′(x n )}的通项公式是( )答案:B解析:[对点提升]如图,设函数y=1x图象上的点与x轴上的点顺次构成等腰Rt△OB1A1,等腰Rt△A1B2A2,…,直角顶点在函数y=1x的图象上,设A n的坐标为(a n,0),A0为原点.(1)求a 1,并求出a n 与a n -1之间的关系式; (2)求数列{a n }的通项公式; (3)设b n =2a n -1+a n(n ≥2,n ∈N *),求数列{b n }的前n 项和S n .解:(1)由题意,B 1⎝ ⎛⎭⎪⎫a 12,2a 1,2×2a 1=a 1,解得a 1=2.过点B n 作B n H ⊥x 轴,垂足为点H .∵△A n -1B n A n 为等腰直角三角形,且B n 为直角顶点, ∴|B n H |=12|A n -1A n |=a n -a n -12,∴点B n 的纵坐标为a n -a n -12.∵△A n -1B n A n 为等腰直角三角形,且B n 为直角顶点, ∴点H 为线段A n -1A n 的中点, ∴点H 的横坐标为a n +a n -12. ∵B n H ⊥x 轴,∴点B n 的横坐标也为a n +a n -12.∵点B n 为函数y =1x (x >0)图象上的点, ∴a n +a n -12·a n -a n -12=1, ∴a 2n -a 2n -1=4.(2)∵a2n-a2n-1=4,a1=2,∴数列{a2n}是首项为4,公差为4的等差数列,∴a2n=4n,∴a n=2n(n∈N*).(3)∵b n=2a n-1+a n=1n-1+n=n-n-1,∴S n=(1-0)+(2-1)+…+(n-n-1) =n(n≥2,n∈N*).提醒完成专题训练(十二)。

2020届高三第二轮数学专题复习教案:数列

2020届高三第二轮数学专题复习教案:数列

2020届高三第二轮数学专题复习教案:数列一、本章知识结构:二、重点知识回忆1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限依旧无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥. 2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的要紧性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.专门地,当2m n p +=时,有2m n p a a a +=.③()()n m a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的要紧性质:①单调性:当1001a q <⎧⎨<<⎩,或101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.专门地,假设2m n p +=,那么2m n pa a a =·.③(0)n m nm a q m n q a -*=∈≠N ,,.④232k k k k kS S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列. 三、考点剖析考点一:等差、等比数列的概念与性质 例1. 〔2018深圳模拟〕数列.12}{2n n S n a n n -=项和的前〔1〕求数列}{n a 的通项公式; 〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n 时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n ++++++=> 时na a a a a a ----+++= 87621.7212)12()6612(222226+-=---⨯⨯=-=n n n n S S n综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n 点评:此题考查了数列的前n 项与数列的通项公式之间的关系,专门要注意n =1时情形,在解题时经常会不记得。

(全国通用)2020版高考数学二轮复习 提升专题 数列 教案讲义

(全国通用)2020版高考数学二轮复习 提升专题  数列 教案讲义

第1讲 等差数列、等比数列[例1] (1)(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n(2)(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.[答案] (1)A (2)1213[解析] (1)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2. 所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.(2)由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.∴S 5=13(1-35)1-3=1213.[解题方略] 等差(比)数列基本运算的解题思路 (1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[跟踪训练]1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A.12 B.54 C.45D.-45解析:选C 因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(2019·开封市定位考试)等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( )A.-1B.1C.-2D.2解:(1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0.解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+2n -1=n 2.解析:选C 法一:因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.法二:因为a 3+4S 2=0,所以a 2q +4a 2q +4a 2=0,因为a 2≠0,所以q +4q+4=0,即(q+2)2=0,所以q =-2,故选C.3.(2019·全国卷Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.[例2] (1)(2019·长春市质量监测一)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.(2)在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] (1)法一:设数列{a n }的公比为q (q >0且q ≠1),由题意可得⎩⎪⎨⎪⎧S 6=a 1(1-q 6)1-q=30, ①S 9=a 1(1-q 9)1-q =70,②①÷②得,1-q 61-q 9=1+q 31+q 3+q 6=37,又由q >0,得q 3=2,再由S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=13,得S 3=13S 6=10. 法二:由题意可得(S 6-S 3)2=S 3(S 9-S 6),即(30-S 3)2=40S 3,即S 23-100S 3+900=0,解得S 3=10或S 3=90,又数列{a n }的各项均为正数,所以S 3<S 6,S 3=90(舍去),故S 3=10.(2)设{a n }的公差为d .法一:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得6.5≤n ≤7.5. 因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7(13-2×7+15)2=49.法二:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15. 所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] (1)10 (2)49[解题方略] 与数列性质有关问题的求解策略[跟踪训练]1.在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A.-2+22B.- 2C. 2D.-2或 2解析:选B 设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.2.(2019·四省八校双教研联考)在公差不为0的等差数列{a n }中,4a 3+a 11-3a 5=10,则15a 4=( ) A.-1 B.0 C.1D.2解析:选C 法一:设{a n }的公差为d (d ≠0),由4a 3+a 11-3a 5=10,得4(a 1+2d )+(a 1+10d )-3(a 1+4d )=10,即2a 1+6d =10,即a 1+3d =5,故a 4=5,所以15a 4=1,故选C.法二:设{a n }的公差为d (d ≠0),因为a n =a m +(n -m )d ,所以由4a 3+a 11-3a 5=10,得4(a 4-d )+(a 4+7d )-3(a 4+d )=10,整理得a 4=5,所以15a 4=1,故选C.法三:由等差数列的性质,得2a 7+3a 3-3a 5=10,得4a 5+a 3-3a 5=10,即a 5+a 3=10,则2a 4=10,即a 4=5,所以15a 4=1,故选C.3.数列{a n }是首项a 1=m ,公差为2的等差数列,数列{b n }满足2b n =(n +1)a n ,若对任意n ∈N *都有b n ≥b 5成立,则m 的取值范围是________.解析:由题意得,a n =m +2(n -1), 从而b n =n +12a n =n +12[m +2(n -1)].又对任意n ∈N *都有b n ≥b 5成立,结合数列{b n }的函数特性可知b 4≥b 5,b 6≥b 5,故⎩⎪⎨⎪⎧52(m +6)≥3(m +8),72(m +10)≥3(m +8),解得-22≤m ≤-18.答案:[-22,-18][例3] 设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列⎩⎨⎧⎭⎬⎫1b n 是等差数列还是等比数列,并求数列{b n }的通项公式.[解] (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1; 当n ≥2时,a n =S n -S n -1=a n -1-a n , 即a n a n -1=12(n ≥2,n ∈N *). 所以数列{a n }是首项为1, 公比为12的等比数列,故数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).所以数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1.[解题方略]数列{a n }是等差数列或等比数列的证明方法(1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).(2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[跟踪训练]已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值.(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n . 解:(1)因为数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). 所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)因为S n =2a n -3n , 所以S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3,①把b n =a n +3及b n +1=a n +1+3,代入①式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1,所以a n =b n -3=6×2n -1-3=3(2n-1).逻辑推理——等比数列运算中的分类讨论[典例] 已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A.(-∞,-1] B.(-∞,0)∪[1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)[解析] 设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1q +1+q =1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2(-q )·⎝ ⎛⎭⎪⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞). [答案] D[素养通路]等比数列的公比q <0时,相邻两项一定异号,相隔一项的两项符号一定相同;等比数列的公比q >0时,数列中的各项符号相同.用等比数列前n 项和公式时,如果其公比q 不确定,要分q =1和q ≠1两种情况进行讨论.本题考查了逻辑推理及数学运算的核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A.16B.8C.4D.2解析:选C 由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.2.(2019·湖南省五市一校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6=( )A.6B.7C.8D.9解析:选B 法一:由题意知,数列{a n }是等差数列,设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d +a 1+5d =12,a 1+a 1+2d +a 1+4d =9,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以a 1+a 6=a 1+a 1+5d =7,故选B. 法二:由题意知,数列{a n }是等差数列,将a 2+a 4+a 6=12与a 1+a 3+a 5=9相加可得3(a 1+a 6)=12+9=21,所以a 1+a 6=7,故选B.3.(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A.32B.31C.64D.63解析:选 B 法一:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B. 法二:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.4.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2019=( ) A.1 B.-2 C.3D.-3解析:选A 因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n-1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.5.(2019届高三·西安八校联考)若等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A.10B.11C.12D.13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n+1<0的正整数n 的值为12,故选C.6.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A.0B.-9C.9D.1解析:选 C 由已知可得,数列{a n }为等差数列,f (x )=sin2x +cos x +1,∴f ⎝ ⎛⎭⎪⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin2x -cos x +1,∴f (π-x )+f (x )=2,∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.二、填空题7.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.解析:设等比数列的公比为q ,则a n =a 1qn -1=qn -1.∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34,即4q 2+4q +1=0,∴q =-12,∴S 4=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:588.(2019·北京高考)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:∵a 2=a 1+d =-3,S 5=5a 1+10d =-10, ∴a 1=-4,d =1, ∴a 5=a 1+4d =0, ∴a n =a 1+(n -1)d =n -5.令a n <0,则n <5,即数列{a n }中前4项为负,a 5=0,第6项及以后为正. ∴S n 的最小值为S 4=S 5=-10. 答案:0 -109.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.解析:由S n S 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,得⎩⎪⎨⎪⎧d =2,k =14,∴数列{a n }的公差为2.答案:2 三、解答题10.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d .因为a 1=-10, 所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=-30.11.(2019·广西梧州、桂林、贵港等期末)设S n 为等差数列{a n }的前n 项和,a 2+a 3=8,S 9=81.(1)求{a n }的通项公式;(2)若S 3,a 14,S m 成等比数列,求S 2m .解:(1)∵⎩⎪⎨⎪⎧S 9=9a 5=9(a 1+4d )=81,a 2+a 3=2a 1+3d =8,∴⎩⎪⎨⎪⎧a 1=1,d =2, 故a n =1+(n -1)×2=2n -1. (2)由(1)知,S n =n (1+2n -1)2=n 2.∵S 3,a 14,S m 成等比数列,∴S 3·S m =a 214,即9m 2=272,解得m =9,故S 2m =182=324.12.(2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列?解:(1)证明:∵a 3=7,a 3=3a 2-2,∴a 2=3, ∴a n =2a n -1+1, ∴a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n, ∴a n =2n-1,∴S n =2(1-2n)1-2-n =2n +1-n -2,∴n +S n -2a n =n +(2n +1-n -2)-2(2n-1)=0,∴n +S n =2a n ,即n ,a n ,S n 成等差数列.B 组——大题专攻强化练1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n(n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明:数列{b n }为等差数列;(2)设c n =n a n,求数列{c n }的前n 项和S n . 解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n=3a n +3n3n=a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝ ⎛⎭⎪⎫1-13n =32-12·3n -1.2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.3.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.4.已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2020成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1.(2)由(1)知,b n =2n+1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n)1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1031,f (10)=211+10-2=2056, 故使b 1+b 2+…+b n >2020成立的最小正整数n 的值是10.第2讲 数列通项与求和[例1] (1)已知S n 为数列{a n }的前n 项和,a 1=1,当n ≥2时,S n -1+1=a n ,则a 8=________.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________. [解析] (1)当n =2时,S 1+1=a 2,即a 2=2.当n ≥2时,⎩⎪⎨⎪⎧S n -1+1=a n ,S n +1=a n +1,相减得a n +1=2a n ,又a 1=1,所以a 2=2a 1.所以数列{a n }构成一个等比数列, 所以a 8=a 2·q 6=2×26=128.(2)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. [答案] (1)128 (2)22n -1[解题方略]1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[跟踪训练]1.已知S n 是数列{a n }的前n 项和,且log 5(S n +1)=n +1,则数列{a n }的通项公式为________.解析:由log 5(S n +1)=n +1,得S n +1=5n +1,所以S n =5n +1-1.当n ≥2时,a n =S n -S n -1=4×5n;当n =1时,a 1=S 1=24,不满足上式.所以数列a n 的通项公式为a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2. 答案:a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2 2.已知首项为2的数列{a n }满足a n +1(2n -1)=a n (2n +1)(n ∈N *),则数列{a n }的通项公式为a n =________.答案:4n -2解析:因为a n +1(2n -1)=a n (2n +1)(n ∈N *),且a 1=2,所以a n +1a n =2n +12n -1,得a n =a 1×a 2a 1×a 3a 2×…×a n a n -1=2×31×53×…×2n -12n -3=4n -2. 考点二数列的求和题型一 分组转化求和[例2] 已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n .[解] (1)设{a n }的公差为d ,因为a 2=3,{a n }前4项的和为16,所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88,所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n-1=3n.(2)由(1)得b n =3n+2n -1,所以S n =(3+32+33+ (3))+(1+3+5+…+2n -1) =3(1-3n)1-3+n (1+2n -1)2=32(3n -1)+n 2 =3n +12+n 2-32. [解题方略]求解此类题的关键:一是会“列方程”,即会利用方程思想求出等差数列与等比数列中的基本量;二是会“用公式”,即会利用等差(比)数列的通项公式,求出所求数列的通项公式;三是会“分组求和”,观察数列的通项公式的特征,若数列是由若干个简单数列(如等差数列、等比数列、常数列等)组成,则求前n 项和时可用分组求和法,把数列分成几个可以直接求和的数列;四是会“用公式法求和”,对分成的各个数列的求和,观察数列的特点,一般可采用等差数列与等比数列的前n 项和公式求和.题型二 裂项相消求和[例3] (2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.[解] (1)由已知有S n -S n -1=1(n ≥2,n ∈N ), ∴数列{S n }为等差数列,又S 1=a 1=1, ∴S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,∴a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,∴n ≥5,∴n 的最小值为5. [解题方略]求解此类题需过“三关”:一是定通项关,即会利用求通项的常用方法,求出数列的通项公式;二是巧裂项关,即能将数列的通项公式准确裂项,表示为两项之差的形式;三是消项求和关,即把握消项的规律,求和时正负项相消,准确判断剩余的项是哪几项,从而准确求和.题型三 错位相减求和[例4] (2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式.(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3, 故a n =3+3(n -1)=3n ,b n =3×3n -1=3n.所以,{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n. (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n). 记T n =1×31+2×32+…+n ×3n,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33- (3)+n ×3n +1=-3(1-3n)1-3+n ×3n +1=(2n -1)3n +1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).[解题方略]运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }是不是一个为等差数列,一个为等比数列;二是错开位置,为两式相减不会看错列做准备;三是相减,相减时一定要注意最后一项的符号,学生在解题时常在此步出错,一定要小心.[跟踪训练]1.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8. (1)求数列{a n }的通项公式a n ;(2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解:(1)依题意,设等比数列{a n }的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2=8,则3q 2-4q -4=0,而q >0,∴q =2.于是a 1=2,∴数列{a n }的通项公式为a n =2n. (2)由(1)得b n =log 2a n a n =n2n ,∴T n =12+222+323+…+n2n ,12T n =122+223+…+n -12n +n 2n +1, 两式相减得,12T n =12+122+123+…+12n -n 2n +1,∴T n =1+12+122+…+12n -1-n2n=1-⎝ ⎛⎭⎪⎫12n1-12-n2n =2-n +22n.2.(2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),求T n .解:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, ∴1a 1=1,1a 2=32,∴1a 2-1a 1=12, ∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.∴1a n =1+12(n -1)=12(n +1), 即a n =2n +1. (2)∵4b n =a n -1a n (n ≥2), ∴b n =1n (n +1)=1n -1n +1(n ≥2),∴T n =b 1+b 2+…+b n =⎛⎪⎫1-12+ ⎛⎪⎫12-13+…+ ⎛⎪⎫1n -1n +1=1-1n +1=n n +1. [例5] (2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.[解] (1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2(舍去).所以a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3.(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝ ⎛⎭⎪⎫1-12n 1-12=8⎝ ⎛⎭⎪⎫1-12n <8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.[解题方略]求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.[跟踪训练](2019·重庆市七校联合考试)已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2-dx -3<0的解集为(-1,3).(1)求数列{a n }的通项公式;(2)若b n =2a n +12+a n ,求数列{b n }的前n 项和S n .解:(1)由题意知,方程a 1x 2-dx -3=0的两个根分别为-1和3.则⎩⎪⎨⎪⎧d a 1=2,-3a 1=-3,解得⎩⎪⎨⎪⎧d =2,a 1=1.故数列{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)由(1)知a n =2n -1,所以b n =2a n +12+a n =2n+(2n -1), 所以S n =(2+22+23+…+2n )+(1+3+5+…+2n -1)=2n +1+n 2-2.数学运算——数列的通项公式及求和问题[典例] 设{a n }是公比大于1的等比数列,S n 为其前n 项和,已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =a n +ln a n ,求数列{b n }的前n 项和T n . [解] (1)设数列{a n }的公比为q (q >1).由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 1(1-6q +q 2)=-7. 由q >1,解得⎩⎪⎨⎪⎧a 1=1,q =2,故数列{a n }的通项公式为a n =2n -1.(2)由(1)得b n =2n -1+(n -1)ln2,所以T n =(1+2+22+…+2n -1)+[0+1+2+…+(n -1)]ln2=1-2n1-2+n (n -1)2ln2=2n-1+n (n -1)2ln2.[素养通路]数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等.本题通过列出关于首项与公比的方程组,并解此方程组得出首项与公比,从而得出通项公式;通过分组分别根据等比数列求和公式、等差数列求和公式求和.考查了数学运算这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.若数列{a n }的通项公式是a n =(-1)n +1·(3n -2),则a 1+a 2+…+a 2020=( )A.-3027B.3027C.-3030D.3030解析:选C 因为a 1+a 2+…+a 2020=(a 1+a 2)+(a 3+a 4)+…+(a 2019+a 2020)=(1-4)+(7-10)+…+[(3×2019-2)-(3×2020-2)]=(-3)×1010=-3030,故选C.2.已知数列{a n }满足a n +1a n +1+1=12,且a 2=2,则a 4=( )A.-12B.23C.12D.11解析:选D 因为数列{a n }满足a n +1a n +1+1=12,所以a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2,则a 4+1=22(a 2+1)=12,解得a 4=11.3.(2019·广东省六校第一次联考)数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)na n (n ∈N *),则数列{b n }的前50项和为( )A.49B.50C.99D.100解析:选A 由题意得,当n ≥2时,a n =S n -S n -1=2n ,当n =1时,a 1=S 1=3,所以数列{b n }的前50项和为(-3+4)+(-6+8)+…+(-98+100)=1+2×24=49,故选A.4.已知数列{a n }是等差数列,若a 2,a 4+3,a 6+6构成公比为q 的等比数列,则q =( ) A.1 B.2 C.3D.4解析:选A 令等差数列{a n }的公差为d ,由a 2,a 4+3,a 6+6构成公比为q 的等比数列,得(a 4+3)2=a 2(a 6+6),即(a 1+3d +3)2=(a 1+d )·(a 1+5d +6),化简得(2d +3)2=0,解得d =-32.所以q =a 4+3a 2=a 1-92+3a 1-32=a 1-32a 1-32=1.故选A.5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处浮雕共7层,每上层的数量是下层的2倍,总共有1016个浮雕,这些浮雕构成一幅优美的图案,若从最下层往上,浮雕的数量构成一个数列{a n },则log 2(a 3a 5)的值为( )A.8B.10C.12D.16解析:选C 依题意得,数列{a n }是以2为公比的等比数列, 因为最下层的浮雕的数量为a 1,所以S 7=a 1(1-27)1-2=1016,解得a 1=8,所以a n =8×2n -1=2n +2(1≤n ≤7,n ∈N *),所以a 3=25,a 5=27,从而a 3×a 5=25×27=212, 所以log 2(a 3a 5)=log 2212=12,故选C.6.(2019·洛阳市统考)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,b n =2a n(2a n -1)(2a n +1-1),若k >T n 恒成立,则k 的最小值为( )A.17 B.149 C.49D.8441解析:选B ∵6S n =a 2n +3a n ,∴6S n +1=a 2n +1+3a n +1, ∴6a n +1=(a n +1+a n )(a n +1-a n )+3(a n +1-a n ), ∴(a n +1+a n )(a n +1-a n )=3(a n +1+a n ), ∵a n >0,∴a n +1+a n >0,∴a n +1-a n =3, 又6a 1=a 21+3a 1,a 1>0,∴a 1=3.∴{a n }是以3为首项,3为公差的等差数列,∴a n =3n ,∴b n =17·⎝ ⎛⎭⎪⎫18n -1-18n +1-1,∴T n =17·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫18-1-182-1+⎝ ⎛⎭⎪⎫182-1-183-1+…+⎝ ⎛⎭⎪⎫18n -1-18n +1-1=17·⎝ ⎛⎭⎪⎫17-18n +1-1<149, ∴k ≥149,∴k 的最小值为149,故选B.二、填空题7.在各项都为正数的等比数列{a n }中,已知a 1=2,a 2n +2+4a 2n =4a 2n +1,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q >0,因为a 1=2,a 2n +2+4a 2n =4a 2n +1, 所以(a n q 2)2+4a 2n =4(a n q )2,化为q 4-4q 2+4=0, 解得q 2=2,q >0,解得q = 2.则数列{a n }的通项公式a n =2×(2)n -1=2n +12.答案:2n +128.(2019·安徽合肥一模改编)设等差数列{a n }满足a 2=5,a 6+a 8=30,则a n =________,数列⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为________. 解析:设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,∴a 7-a 2=5d .又a 2=5,则d =2.∴a n =a 2+(n -2)d =2n +1.∴1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4(n +1).答案:2n +1n4(n +1)9.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,∴数列{a n }是等比数列,首项是1,公比是2,所以a n =2n -1.因为a n b n =-n 2+9n -20,所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6} 三、解答题10.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.11.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n2n +2n .(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n +1-2-2n +2=2n,当n =1时,a 1=S 1=2,所以a n =2n .(2)∵b n =a n2n +2n =2n +1,∴a n b n =(2n +1)·2n.∴T n =3×2+5×22+7×23+…+(2n +1)·2n, 2T n =3×22+5×23+7×24+…+(2n +1)·2n +1,∴-T n =6+23+24+…+2n +1-(2n +1)·2n +1=6+23(1-2n -1)1-2-(2n +1)2n +1=-2-(2n -1)·2n +1.∴T n =(2n -1)·2n +1+2.12.(2019·郑州市第二次质量预测)数列{a n }满足:a 12+a 23+…+a nn +1=n 2+n ,n ∈N *.(1)求{a n }的通项公式;(2)设b n =1a n ,数列{b n }的前n 项和为S n ,求满足S n >920的最小正整数n .解:(1)由题意知,a 12+a 23+…+a nn +1=n 2+n ,当n ≥2时,a 12+a 23+…+a n -1n =(n -1)2+n -1,两式相减得,a nn +1=2n ,a n =2n (n +1)(n ≥2).当n =1时,a 1=4也符合,所以a n =2n (n +1),n ∈N *. (2)b n =1a n=12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1), 由S n =n 2(n +1)>920得n >9,所以满足条件的最小正整数n 为10.B 组——大题专攻强化练1.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得a 1=S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2),又a 1=S 1=1,所以a n =n -n -1.(2)b n =(-1)na n =(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. ∴S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,∴(3a 1+5)2=(2a 1+2)·(4a 1+12), 解得a 1=1, ∴a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1-12n +1=-2n +22n +1.∴T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数,-2n +22n +1,n 为奇数.3.(2019·江苏高考题节选)定义首项为1且公比为正数的等比数列为“M ­数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M ­数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.求数列{b n }的通项公式.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0, 解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M ­数列”.(2)因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ). 当n ≥2时,由b n =S n -S n -1,得b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). 4.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 解:(1)由a n +1=n +1n a n +n +12n 可得a n +1n +1=a n n +12n, 又b n =a n n ,所以b n +1-b n =12n ,由a 1=1,得b 1=1,所以当n ≥2时,(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,所以b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,即b n =2-12n -1(n ≥2),易知b 1=1满足上式,所以b n =2-12n -1(n ∈N *).(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1,①12T n =121+222+323+…+n2n ,② 由①-②得,12T n =120+121+122+…+12n -1-n 2n =120-12n1-12-n 2n =2-n +22n . 所以T n =4-n +22n -1.所以数列{a n }的前n 项和S n =n (n +1)-4+n +22n -1.[思维流程——找突破口][典例] 已知数列{a n }满足a 1=1,na n +1=2(n +1)·a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [快审题][稳解题] (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列. 理由如下: 由条件可得a n +1n +1=2a nn, 即b n +1=2b n ,又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[题后悟道] 等差、等比数列基本量的计算模型(1)分析已知条件和求解目标,确定为最终解决问题需要首先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,确定解题的逻辑次序.(2)注意细节.在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等.[针对训练]已知正数数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式.(2)设b n =(1-a n )2-a (1-a n ),若b n +1>b n 对任意n ∈N *恒成立,求实数a 的取值范围.。

2020版高考数学二轮复习专题教案汇编全集 理

2020版高考数学二轮复习专题教案汇编全集  理

第1讲 三角函数的图象与性质[做小题——激活思维]1.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( ) A .4π B .2π C .πD .π2C [函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为2π2=π.故选C.] 2.函数y =cos 2x 图象的一条对称轴方程是( ) A .x =π12B .x =π6C .x =π3D .x =π2D [由题意易知其一条对称轴的方程为x =π2,故选D.]3.函数g (x )=3sin ⎝ ⎛⎭⎪⎫x -π12在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值为________.-32 [因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3.当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.]4.函数y =cos ⎝⎛⎭⎪⎫π4-2x 的单调递减区间为________.⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ) [由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝ ⎛⎭⎪⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z ),解得k π+π8≤x ≤k π+5π8(k ∈Z ),所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z ).]5.函数y =A sin(ωx +φ)A >0,ω>0,|φ|<π2的部分图象如图所示,则该函数的解析式为________.y =2sin ⎝⎛⎭⎪⎫2x -π3[由题图易知A =2,由T =2×⎝⎛⎭⎪⎫2π3-π6=π,可知ω=2πT =2ππ=2.于是y =2sin(2x+φ),把⎝⎛⎭⎪⎫π6,0代入y =2sin(2x +φ)得,0=2sin ⎝ ⎛⎭⎪⎫2×π6+φ,故π3+φ=k π(k ∈Z ),又|φ|<π2,故φ=-π3,综上可知,该函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π3.]6.将函数y =sin ⎝ ⎛⎭⎪⎫x +π6的图象上所有的点向左平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为________.y =sin ⎝ ⎛⎭⎪⎫x 2+5π12 [将函数y =sin ⎝ ⎛⎭⎪⎫x +π6――――――――――――→函数图象上所有的点向左平移π4个单位长度y =sin ⎝ ⎛⎭⎪⎫x +5π12―――――――――――→横坐标扩大到原来的2倍纵坐标不变y =sin 12x +5π12.][扣要点——查缺补漏]1.函数y =A sin(ωx +φ)表达式的确定A 由最值确定;ω由周期确定T =2πω;φ由五点中的零点或最值点作为解题突破口,列方程确定即ωx i +φ=0,π2,π,3π2,2π,如T 5.2.三种图象变换:平移、伸缩、对称注意:由y =A sin ωx 的图象得到y =A sin(ωx +φ)的图象时,需向左或向右平移⎪⎪⎪⎪⎪⎪φω个单位,如T 6.3.函数y =A sin(ωx +φ)(ω>0,A >0)的性质研究三角函数的性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正、余弦函数与复合函数的性质求解.(1)T =2πω,如T 1.(2)类比y =sin x 的性质,将y =A sin(ωx +φ)中的“ωx +φ”看作一个整体t ,可求得函数的对称轴、对称中心、单调性、最值.①y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得,对称中心可由ωx +φ=k π(k ∈Z )求得.②y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得,对称中心可由ωx +φ=k π+π2(k ∈Z )求得.注意对称中心必须写成点坐标.如T 2.③y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数,对称中心可由ωx +φ=k π2(k ∈Z )求得.④单调性、最值,如T 3,T4.三角函数的值域、最值问题(5年3考)[高考解读] 高考对该点的考查常与三角恒等变换交汇命题,求最值时,一般化为f x =A sin ωx +φ+B 的形式或化f x 为二次函数形式,难度中等.预测2020年会依旧延续该命题风格.1.(2019·全国卷Ⅰ)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.-4 [∵f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2-3cos x=-cos 2x -3cos x =-2cos 2x -3cos x +1, 令t =cos x ,则t ∈[-1,1],∴f (x )=-2t 2-3t +1.又函数f (x )图象的对称轴t =-34∈[-1,1],且开口向下,∴当t =1时,f (x )有最小值-4.]2.(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.1 [f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎪⎫cos x -322+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1],∴当cos x =32时,f (x )取得最大值,最大值为1.] 3.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. -332[因为f (x )=2sin x +sin 2x , 所以f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4⎝ ⎛⎭⎪⎫cos x -12(cos x +1),由f ′(x )≥0得12≤cos x ≤1,即2k π-π3≤x ≤2k π+π3,k ∈Z ,由f ′(x )≤0得-1≤cos x ≤12,2k π+π3≤x ≤2k π+π或2k π-π≤x ≤2k π-π3,k ∈Z ,所以当x =2k π-π3(k ∈Z )时,f (x )取得最小值,且f (x )min =f ⎝ ⎛⎭⎪⎫2k π-π3=2sin ⎝ ⎛⎭⎪⎫2k π-π3+sin 2⎝ ⎛⎭⎪⎫2k π-π3=-332.] [教师备选题]1.(2013·全国卷Ⅰ)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________.-255 [y =sin x -2cos x =5⎝ ⎛⎭⎪⎫15sin x -25cos x ,设15=cos α,25=sin α, 则y =5(sin x cos α-cos x sin α)=5sin(x -α). ∵x ∈R ∴x -α∈R ,∴y max = 5. 又∵x =θ时,f (x )取得最大值, ∴f (θ)=sin θ-2cos θ= 5. 又sin 2θ+cos 2θ=1,∴⎩⎪⎨⎪⎧sin θ=15,cos θ=-25,即cos θ=-255.]2.(2014·全国卷Ⅱ)函数f (x )=sin(x +2φ)-2sin φ·cos(x +φ)的最大值为________.1 [∵f (x )=sin(x +2φ)-2sin φcos(x +φ) =sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ+cos(x +φ)sin φ-2sin φcos(x +φ) =sin(x +φ)cos φ-cos(x +φ)sin φ =sin[(x +φ)-φ]=sin x , ∴f (x )的最大值为1.]三角函数值域(最值)的3种求法(1)直接法:利用sin x ,cos x 的有界性直接求.(2)单调性法:化为y =A sin(ωx +φ)+B 的形式,采用整体思想,求出ωx +φ的范围,根据y =sin x 的单调性求出函数的值域(最值).(3)换元法:对于y =a sin 2x +b sin x +c 和y =a (sin x +cos x )+b sin x cos x +c 型常用到换元法,转化为二次函数在限定区间内的最值问题.1.(求取得最值时的变量x )当函数y =3sin x -cos x (0≤x <2π)取得最大值时,x =________.2π3 [∵y =3sin x -cos x =2⎝ ⎛⎭⎪⎫32sin x -12cos x =2sin ⎝ ⎛⎭⎪⎫x -π6.∵0≤x <2π,∴-π6≤x -π6<11π6.∴当x -π6=π2,即x =2π3时,函数取得最大值.]2.(求参数的范围)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)在⎝ ⎛⎭⎪⎫π12,π3上有最大值,但没有最小值,则ω的取值范围是________.⎝ ⎛⎭⎪⎫34,3 [函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)在⎝ ⎛⎭⎪⎫π12,π3上有最大值,但没有最小值,所以ω·π12+π4<π2<ω·π3+π4≤3π2⇒ω∈⎝ ⎛⎭⎪⎫34,3.] 3.(与导数交汇求最值)已知函数f (x )=2cos x +sin 2x ,则f (x )的最大值为________. 332 [∵f ′(x )=-2sin x +2cos 2x =2-4sin 2x -2sin x =-2(2sin x -1)(sin x +1),由f ′(x )=0得sin x =12或sin x =-1.∴当-1<sin x <12时,f ′(x )>0,当12<sin x <1时,f ′(x )<0.∴当sin x =12时,f (x )取得极大值.此时cos x =-32或cos x =32. 经验证可知,当cos x =32时,f (x )有最大值,又f (x )=2cos x (sin x +1), ∴f (x )max =2×32×⎝ ⎛⎭⎪⎫1+12=332.]三角函数的图象(5年5考)[高考解读] 高考对该点的考查主要有两种:一是由图象求解析式;二是图象的平移变换.前者考查图象的识别和信息提取能力,后者考查逻辑推理能力.估计2020年高考会侧重考查三角函数图象变换的应用.1.(2016·全国卷Ⅱ)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝ ⎛⎭⎪⎫x +π6 D .y =2sin ⎝⎛⎭⎪⎫x +π3 A [根据图象上点的坐标及函数最值点,确定A ,ω与φ的值.由图象知T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,故T =π,因此ω=2ππ=2.又图象的一个最高点坐标为⎝ ⎛⎭⎪⎫π3,2,所以A =2,且2×π3+φ=2k π+π2(k ∈Z ),故φ=2k π-π6(k ∈Z ),结合选项可知y =2sin ⎝⎛⎭⎪⎫2x -π6.故选A.]2.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2D [因为y =sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +2π3-π2=cos ⎝ ⎛⎭⎪⎫2x +π6,所以曲线C 1:y =cos x上各点的横坐标缩短到原来的12,纵坐标不变,得到曲线y =cos 2x ,再把得到的曲线y =cos2x 向左平移π12个单位长度,得到曲线y =cos 2⎝ ⎛⎭⎪⎫x +π12=cos ⎝⎛⎭⎪⎫2x +π6.故选D.] [教师备选题](2016·全国卷Ⅲ)函数y =sin x -3cos x 的图象可由函数y =sin x +3cos x 的图象至少向右平移________个单位长度得到.2π3 [因为y =sin x +3cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,y =sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,所以把y =2sin ⎝ ⎛⎭⎪⎫x +π3的图象至少向右平移2π3个单位长度可得y =2sin ⎝⎛⎭⎪⎫x -π3的图象.]求函数y =A sin(ωx +φ)+Β(Α>0,ω>0)解析式的方法字母确定途径 说明A 、B 由最值确定 A =y max -y min 2,B =y max +y min2ω由函数的 周期确定 利用图象中最高点、最低点与x 轴交点的横坐标确定周期φ由图象上的 特殊点确定代入图象上某一个已知点的坐标,表示出φ后,利用已知范围求φ提醒:三角函数图象的平移问题(1)当原函数与所要变换得到的目标函数的名称不同时,首先要将函数名称统一,如T 2. (2)将y =sin ωx (ω>0)的图象变换成y =sin(ωx +φ)的图象时,应把ωx +φ变换成ω⎝⎛⎭⎪⎫x +φω,根据⎪⎪⎪⎪⎪⎪φω确定平移量的大小,根据φω的符号确定平移的方向.1.(知图求值)函数f (x )=A sin(ωx +φ)(A >0,ω>0,0≤φ<2π)的部分图象如图所示,则f (2 019)的值为________.-1 [由题图易知,函数f (x )的最小正周期T =4×⎝ ⎛⎭⎪⎫52-1=6,所以ω=2πT =π3,所以f (x )=A sin ⎝ ⎛⎭⎪⎫π3x +φ,将(0,1)代入,可得A sin φ=1,所以f (2 019)=f (6×336+3)=f (3)=A sin ⎝ ⎛⎭⎪⎫π3×3+φ=-A sin φ=-1.]2.(平移变换的应用)将偶函数f (x )=sin(3x +φ)(0<φ<π)的图象向右平移π12个单位长度后,得到的曲线的对称中心为( )A.⎝ ⎛⎭⎪⎫k π3+π4,0(k ∈Z )B.⎝ ⎛⎭⎪⎫k π3+π12,0(k ∈Z )C.⎝⎛⎭⎪⎫k π3+π6,0(k ∈Z ) D.⎝⎛⎭⎪⎫k π3+7π36,0(k ∈Z )A [因为函数f (x )=sin(3x +φ)为偶函数且0<φ<π,所以φ=π2,f (x )的图象向右平移π12个单位长度后可得g (x )=sin ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π12+π2=sin ⎝ ⎛⎭⎪⎫3x +π4的图象,分析选项知⎝ ⎛⎭⎪⎫k π3+π4,0(k ∈Z )为曲线y =g (x )的对称中心.故选A.]3.(与函数的零点交汇)设函数f (x )=⎩⎪⎨⎪⎧2sin x ,x ∈[0,π],|cos x |,x ∈π,2π],若函数g (x )=f (x )-m 在[0,2π]内恰有4个不同的零点,则实数m 的取值范围是( )A .(0,1)B .[1,2]C .(0,1]D .(1,2)A [画出函数f (x )在[0,2π]上的图象,如图所示: 若函数g (x )=f (x )-m 在[0,2π]内恰有4个不同的零点,即y =f (x )和y =m 在[0,2π]内恰有4个不同的交点,结合图象,知0<m <1.]三角函数的性质及应用(5年7考)[高考解读] 高考对该点的考查主要立足两点,一是函数性质的判断或求解,二是利用性质求参数的范围值,准确理解y =sin x y =cos x 的有关性质是求解此类问题的关键.预测2020年以考查函数性质的应用为主.1.(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 D [A 项,因为f (x )=cos ⎝⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确.B 项,由f ⎝⎛⎭⎪⎫8π3=cos ⎝ ⎛⎭⎪⎫8π3+π3=cos 3π=-1,可知B 正确;C 项,由f (x +π)=cos ⎝ ⎛⎭⎪⎫π+π3+x =-cos ⎝ ⎛⎭⎪⎫x +π3得f ⎝ ⎛⎭⎪⎫π6+π=-cos π2=0,故C正确.D 项,由f ⎝⎛⎭⎪⎫2π3=cos π=-1可知,D 不正确.]2.[一题多解](2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4 B.π2C.3π4D .πA [法一:(直接法)f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A.法二:(单调性法)因为f (x )=cos x -sin x ,所以f ′(x )=-sin x -cos x ,则由题意,知f ′(x )=-sin x -cos x ≤0在[-a ,a ]上恒成立,即sin x +cos x ≥0,即2sin ⎝ ⎛⎭⎪⎫x +π4≥0在[-a ,a ]上恒成立,结合函数y =2sin ⎝⎛⎭⎪⎫x +π4的图象(图略),可知有⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,解得a ≤π4,所以0<a ≤π4,所以a 的最大值是π4,故选A.]3.[重视题][一题多解](2019·全国卷Ⅰ)关于函数f (x )=sin|x |+|sin x |有下述四个结论:①f (x )是偶函数;②f (x )在区间⎝ ⎛⎭⎪⎫π2,π单调递增;③f (x )在[-π,π]有4个零点;④f (x )的最大值为2.其中所有正确结论的编号是( ) A .①②④ B .②④ C .①④D .①③C [法一:f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),∴f (x )为偶函数,故①正确;当π2<x <π时,f (x )=sin x +sin x =2sin x ,∴f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减,故②不正确;f (x )在[-π,π]的图象如图所示,由图可知函数f (x )在[-π,π]只有3个零点,故③不正确;∵y =sin|x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )可以取到最大值2,故④正确.综上,正确结论的序号是①④.故选C.法二:∵f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),∴f (x )为偶函数,故①正确,排除B ;当π2<x <π时,f (x )=sin x +sin x=2sin x ,∴f (x )在⎝⎛⎭⎪⎫π2,π单调递减,故②不正确,排除A ;∵y =sin |x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )的最大值为2,故④正确.故选C.法三:画出函数f (x )=sin|x |+|sin x |的图象,由图象可得①④正确,故选C.][教师备选题]1.(2015·全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z D [由图象知,最小正周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D.]2.(2016·全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5B [先根据函数的零点及图象、对称轴,求出ω,φ满足的关系式,再根据函数f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,则⎝ ⎛⎭⎪⎫π18,5π36的区间长度不大于函数f (x )周期的12,然后结合|φ|≤π2计算ω的最大值.因为f (x )=sin(ωx +φ)的一个零点为x =-π4,x =π4为y =f (x )图象的对称轴,所以T 4·k =π2(k 为奇数).又T =2πω,所以ω=k (k 为奇数).又函数f (x )在⎝⎛⎭⎪⎫π18,5π36上单调,所以π12≤12×2πω,即ω≤12.若ω=11,又|φ|≤π2,则φ=-π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4,f (x )在⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在⎝⎛⎭⎪⎫3π44,5π36上单调递减,不满足条件.若ω=9,又|φ|≤π2,则φ=π4,此时,f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4,满足f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调的条件.故选B.]1.求三角函数单调区间的方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,得y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间. 2.判断对称中心与对称轴的方法利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.求三角函数周期的常用结论(1)y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.(2)正弦曲线(余弦曲线)相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期;正切曲线相邻两对称中心之间的距离是12个周期.1.(求单调区间)(2019·武昌调研)已知函数f (x )=3sin ωx -cos ωx (ω>0)的最小正周期为2π,则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ) C.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ) B [因为f (x )=232sin ωx -12cos ωx =2sin ωx -π6,f (x )的最小正周期为2π,所以ω=2π2π=1,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,由2k π-π2≤x -π6≤2k π+π2(k ∈Z ),得2k π-π3≤x ≤2k π+2π3(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),故选B.]2.(求参数的值)已知函数f (x )=sin ωx 的图象关于点⎝ ⎛⎭⎪⎫2π3,0对称,且f (x )在⎣⎢⎡⎦⎥⎤0,π4上为增函数,则ω=( )A.32 B .3 C.92D .6A [依题意,f ⎝ ⎛⎭⎪⎫2π3=sin ⎝ ⎛⎭⎪⎫2π3ω=0,∴2π3ω=k π(k ∈Z ). ∴ω=3k2(k ∈Z ).又f (x )=sin ωx 在⎣⎢⎡⎦⎥⎤0,π4上为增函数,∴0<ω·π4≤π2,即0<ω≤2.∴k =1,ω=32,故选A.]3.(求参数的范围)(2019·攀枝花模拟)已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +φ+π3(ω>0)同时满足下列三个条件:①|f (x 1)-f (x 2)|=2时,|x 1-x 2|的最小值为π2;②y =f ⎝⎛⎭⎪⎫x -π3是奇函数;③f (0)<f ⎝ ⎛⎭⎪⎫π6.若f (x )在[0,t )上没有最小值,则实数t 的取值范围是( )A.⎝⎛⎦⎥⎤0,5π12B.⎝⎛⎦⎥⎤0,5π6C.⎝⎛⎦⎥⎤5π12,11π12D.⎝⎛⎦⎥⎤5π6,11π12D [由①得周期为π,ω=2.由y =f ⎝ ⎛⎭⎪⎫x -π3是奇函数且f (0)<f ⎝ ⎛⎭⎪⎫π6,可得其中一个φ=-2π3,那么f (x )=sin ⎝⎛⎭⎪⎫2x -π3.∵x ∈[0,t ),∴2x -π3∈⎣⎢⎡⎭⎪⎫-π3,2t -π3.因为f (x )在[0,t )上没有最小值, 可得t >0,且f (0)=f ⎝ ⎛⎭⎪⎫5π6=-32,4π3<2t -π3≤3π2, 解得5π6<t ≤11π12,故选D.]第2讲 恒等变换与解三角形[做小题——激活思维]1.在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15 B.59 C.53D .1B [根据a sin A =bsin B,有313=5sin B ,得sin B =59.故选B.] 2.在△ABC 中,已知a 2=b 2+bc +c 2,则角A 为( ) A.π3 B.π6 C.2π3D.π3或2π3C [由a 2=b 2+bc +c 2, 得b 2+c 2-a 2=-bc ,由余弦定理的推论得:cos A =b 2+c 2-a 22bc =-12,∴A =2π3.]3.若sin(α-β)sin β-cos(α-β)cos β=45,且α为第二象限角,则tan ⎝ ⎛⎭⎪⎫α+π4=( )A .7B .17C .-7D .-17B [sin(α-β)sin β-cos(α-β)cos β=-[cos(α-β)cos β-sin(α-β)sin β]=-cos(α-β+β)=-cos α=45,即cos α=-45.又α为第二象限角,∴tan α=-34,∴tan ⎝⎛⎭⎪⎫α+π4=1+tan α1-tan α=17.] 4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,a =3,C =π3,△ABC 的面积为334,则c =( )A .13B .3 3C .7D .13C [∵△ABC 的面积为334,∴12ab sin C =12×3×b ×32=334,∴b =1,∴由余弦定理得c =a 2+b 2-2ab cos C =32+12-2×3×1×12=7.故选C.]5.已知tan α=-13,则sin 2α-cos 2α1+cos 2α=________.-56 [sin 2α-cos 2α1+cos 2α=2sin αcos α-cos 2α1+2cos 2α-1 =2sin αcos α-cos 2α2cos 2α=tan α-12=-56.] 6.函数y =32sin 2x +cos 2x 的最小正周期为________. π [∵y =32sin 2x +cos 2x =32sin 2x +12cos 2x +12=sin ⎝⎛⎭⎪⎫2x +π6+12,∴函数的最小正周期T =2π2=π.][扣要点——查缺补漏]1.正弦定理a sin A =b sin B =csin C =2R (其中R 为△ABC 外接圆的半径),如T 1. 2.余弦定理及其变形a 2=b 2+c 2-2bc cos A , cos A =b 2+c 2-a 22bc,如T 2.3.如图所示,在△ABC 中,AD 平分角A ,则AB AC =BDDC.4.两角和与差的正弦、余弦、正切公式(1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan α1∓tan αtan β,如T 3.5.面积公式S =12ab sin C =12ac sin B =12bc sin A =12(a +b +c )·r (其中r 为△ABC 内切圆的半径),如T 4.6.二倍角公式及其变形 (1)sin 2α=2sin αcos α; (2)(3)tan 2α=2tan α1-tan2α.如T5. 7.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中sin φ=ba2+b2,cos φ=aa2+b2,如T6.三角恒等变换(5年3考)[高考解读] 高考对该点的考查突出一个“变”字,即“变角、变名、变形”.从“角”入手,用活三角恒等变换公式是破解此类问题的关键.预测2020年高考还是以给值求值为主.1.[一题多解](2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α =( )A.725 B.15 C .-15 D .-725D [法一:(公式法)cos π4-α=35,sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-α=2cos 2⎝ ⎛⎭⎪⎫π4-α-1=-725,故选D.法二:(整体代入法)由cos ⎝ ⎛⎭⎪⎫π4-α=22(sin α+cos α)=35,得sin α+cos α=352,所以(sin α+cos α)2=1+2sin αcos α=1825,即sin 2α=2sin αcos α=-725.]2.(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.-12 [∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.][教师备选题]1.(2015·全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32 C .-12 D.12D [sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.]2.[一题多解](2014·全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2B [法一:由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎫0,π2,∴由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α,∴2α-β=π2.法二:tan α=1+sin βcos β=1+cos ⎝ ⎛⎭⎪⎫π2-βsin ⎝ ⎛⎭⎪⎫π2-β=2cos 2⎝ ⎛⎭⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎫π4-β2=cot ⎝ ⎛⎭⎪⎫π4-β2=tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-β2=tan ⎝ ⎛⎭⎪⎫π4+β2, ∴α=k π+⎝ ⎛⎭⎪⎫π4+β2,k ∈Z ,∴2α-β=2k π+π2,k ∈Z . 当k =0时,满足2α-β=π2,故选B.]三角函数式化简求值的“三看”原则(1)看“角”:分析未知角与已知角间的差别与联系,实现角的合理拆分; (2)看“名”:常采用切化弦或诱导公式实现函数名称的统一;(3)看“形”,常借助和、差、倍、半角公式实现三角函数式的形式统一.1.(给值求值)若α,β都是锐角,且cos α=55,sin(α+β)=35,则cos β=( ) A.2525B.255 C.2525或255D.55或525A [因为α,β都是锐角,且cos α=55<12,所以π3<α<π2,又sin(α+β)=35>12,所以π2<α+β<5π6, 所以cos(α+β)=-1-sin 2α+β=-45,sin α=1-cos 2α=255,cos β=cos(α+β-α)=cos(α+β)cos α+sin(α+β)sin α=2525,故选A.]2.(给角求值)(2019·安阳模拟)化简sin 235°-12cos 10°cos 80°等于( )A .-2B .-12C .-1D .1C [sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-cos 70°sin 20°=-1.]3.(给值求角)如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为210,255,则α+2β的值为________.3π4 [∵cos α=210,α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=7210,∴tan α=7;cos β=255,β∈⎝ ⎛⎭⎪⎫0,π2,∴sin β=55, ∴tan β=12,∴tan 2β=2tan β1-tan 2β=43, ∴tan(α+2β)=7+431-7×43=-1,∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,∴α+2β∈⎝⎛⎭⎪⎫0,3π2,∴α+2β=3π4.]利用正、余弦定理解三角形(5年11考)[高考解读] 高考对该点的考查常以平面几何图形为载体,借助三角恒等变换公式及正余弦定理实现边角的相互转化,从而达到求值的目的,预测2020年高考依旧这样考查. 1.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2 B.π3 C.π4D.π6C [根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c22ab=cosC ,所以在△ABC 中,C =π4.]2.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.切入点:△ABC 面积公式S △ABC =12ab sin C =12bc sin A =12ac sin B .关键点:余弦定理公式的变形:a 2=(b +c )2-2bc -2bc cos A. [解](1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A.故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题意得12bc sin A =a23sin A ,a =3,所以bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9.由bc =8,得b +c =33. 故△ABC 的周长为3+33. [教师备选题]1.[一题多解](2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若b =6,a =2c ,B =π3,则△ABC 的面积为____________.63 [法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3. 法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.]2.(2018·全国卷Ⅰ)在平面四边形ABCD 中,∠ADC =90°,∠A =45°,AB =2,BD =5. (1)求cos∠ADB ; (2)若DC =22,求BC .[解](1)在△ABD 中,由正弦定理得BD sin A =ABsin∠ADB .由题设知,5sin 45°=2sin∠ADB ,所以sin∠ADB =25.由题设知,∠ADB <90°,所以cos∠ADB =1-225=235. (2)由题设及(1)知,cos∠BDC =sin∠ADB =25.在△BCD中,由余弦定理得BC2=BD2+DC2-2·BD·DC·cos∠BDC=25+8-2×5×22×2 5=25.即BC=5.用正、余弦定理求解三角形注意2点,1分析已知的边角关系,选择恰当的公式、定理.,结合三角形固有的性质三角形内角和,大边对大角等求解三角形.2在三角形中,正、余弦定理可以实现边角互化,尤其在余弦定理a2=b2+c2-2bc cos A中,有b2+c2和bc两项,二者的关系b2+c2=b+c2-2bc经常用到.提醒:解三角形时忽视对三角形解的个数讨论而出错.1.(以平面图形为载体)在平面四边形ABCD 中,∠D =90°,∠BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B. 6C.7D .2 2C [如图,在△ACD 中,∠D =90°,AD =1,AC =2,所以∠CAD =60°.又∠BAD =120°,所以∠BAC =∠BAD -∠CAD =60°.在△ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos∠BAC =7,所以BC =7.故选C.]2.(知识间的内在联系)已知△ABC 的面积为S ,三个内角A ,B ,C 的对边分别为a ,b ,c ,若4S =a 2-(b -c )2,bc =4,则S =( )A .2B .4 C. 3D .2 3A [由4S =a 2-(b -c )2可得4×12bc sin A =a 2-b 2-c 2+2bc ,∴2bc sin A =2bc -2bc cos A , 即sin A +cos A =1, 所以sin ⎝⎛⎭⎪⎫A +π4=22, 又0<A <π,所以π4<A +π4<5π4,即A +π4=3π4,∴A =π2.∴S △ABC =12bc sin A =12×4=2.故选A.]3.(以空间图形为载体)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.1039 [设CD =h ,则AD =h3,BD =3h .在△ADB 中,∠ADB =180°-20°-40°=120°, 则由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝ ⎛⎭⎪⎫-12,解得h =1039,故塔的高度为1039 m .]4.(恒等变换与解三角形)(2019·北京高考)在△ABC 中,a =3,b -c =2,cos B =-12.(1)求b ,c 的值; (2)求sin(B -C )的值.[解](1)∵a =3,b -c =2,cos B =-12.∴由余弦定理,得b 2=a 2+c 2-2ac cos B=9+(b -2)2-2×3×(b -2)×⎝ ⎛⎭⎪⎫-12,∴b =7,∴c =b -2=5.(2)在△ABC 中,∵cos B =-12,∴s in B =32,由正弦定理:c sin C =bsin B ,∴sin C =c sin Bb =5×327=5314,∵b >c ,∴B >C ,∴C 为锐角, ∴cos C =1114,∴sin(B -C )=sin B cos C -cos B sin C =32×1114-⎝ ⎛⎭⎪⎫-12×5314=437. 与三角形有关的最值(范围)问题(5年1考)[高考解读] 与三角形有关的最值范围问题主要涉及三角形的内角、边长、周长、面积等的最大、最小值问题,借助三角函数的有界性及均值不等式建立不等关系是解答此类问题的关键所在.(2019·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A +C2=b sin A.(1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围. 切入点:(1)借助正弦定理及三角形内角和定理求解;(2)由△ABC 为锐角三角形求得C 的范围,借助正弦定理及三角函数的有界性求面积的取值范围.[解](1)由题设及正弦定理得sin A sin A +C2=sin B sin A.因为sin A ≠0,所以sinA +C2=sin B .由A +B +C =180°,可得sinA +C 2=cosB 2,故cos B 2=2sin B 2cos B2.因为cos B 2≠0,故sin B 2=12,因此B =60°.(2)由题设及(1)知△ABC 的面积S △ABC =34a . 由正弦定理得a =c sin A sin C =sin 120°-C sin C =32tan C +12. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°.由(1)知A +C =120°,所以30°<C <90°,故12<a <2,从而38<S △ABC <32.因此,△ABC 面积的取值范围是⎝ ⎛⎭⎪⎫38,32. [教师备选题]1.(2015·全国卷Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是________.(6-2,6+2) [如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CFB 中,∠FCB =30°,CF =BC =2,∴BF =22+22-2×2×2cos 30°=6- 2.在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,B Esin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2.]2.(2013·全国卷Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.[解](1)由题意及正弦定理得sin A =sin B cos C +sin C sin B , ① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C , ②由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.与三角形有关的最值(范围)问题的求解策略策略一:可选择适当的参数将问题转化为三角函数的问题处理,解题中要借助于正弦定理、余弦定理等工具将边角问题统一转化为形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))的函数的最值问题,然后根据参数的范围求解.策略二:借助正、余弦定理,化角为边,然后借助均值不等式对含有a 2+b 2,a +b ,ab 的等式求最值.1.(角度的最值范围问题)(2019·武汉模拟)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成等比数列,则角B 的取值范围是( )A.⎝ ⎛⎦⎥⎤0,π6B.⎣⎢⎡⎭⎪⎫π6,πC.⎝⎛⎦⎥⎤0,π3 D.⎣⎢⎡⎭⎪⎫π3,πC [∵a ,b ,c 成等比数列,∴b 2=ac ,由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,又B ∈(0,π),∴B ∈⎝⎛⎦⎥⎤0,π3,故选C.] 2.(长度的最值范围问题)在△ABC 中,若C 是钝角,且B =π3,则ca 的取值范围是________.(2,+∞) [∵C 为钝角,∴C =2π3-A >π2,∴0<A <π6.由正弦定理,得c a =sin ⎝ ⎛⎭⎪⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1tan A .∵0<tan A <33,∴1tan A>3, ∴c a >12+32×3=2,即ca>2.] 3.(综合应用)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,向量m =(sin A ,sin B ),n =(sin C ,sin A ),且m ∥n .(1)若cos A =12,b +c =6,求△ABC 的面积;(2)求absin B 的取值范围.[解] 因为m ∥n ,所以sin 2A =sinB sinC ,结合正弦定理可得a 2=bc . (1)因为cos A =12,所以b 2+c 2-a 22bc =12,即b +c 2-3bc 2bc =12,解得bc =9.从而△ABC 的面积S △ABC =12bc sin A =12×9×32=934,故△ABC 的面积为934.(2)因为a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc ≥2bc -bc 2bc =12(当且仅当b =c 时,取等号).因为0<A <π,所以角A 的取值范围是⎝⎛⎦⎥⎤0,π3.由正弦定理,知0<absin B =sin A ≤32,所以a b sin B 的取值范围是⎝⎛⎦⎥⎤0,32.解密高考① 三角函数问题重在“变”——变式、变角————[思维导图]————————[技法指津]————1.常用的变角技巧(1)已知角与特殊角的变换,如:75°=30°+45°; (2)已知角与目标角的变换,如:π3+α=π2-⎝ ⎛⎭⎪⎫π6-α; (3)角与其倍角的变换, 如:α+β=2·α+β2;(4)两角与其和差角的变换以及三角形内角和定理的变换运用.如:α=(α+β)-β=(α-β)+β,α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β等.2.常用的变式技巧(1)解决与三角函数性质有关的问题,常先将它的表达式统一化为y =A sin(ωx +φ)+B 的形式;(2)涉及sin x ±cos x 、sin x ·cos x 的问题,常做换元处理,如令t =sin x ±cos x ∈[-2,2],将原问题转化为关于t 的函数来处理;(3)在解决三角形的问题时,常利用正、余弦定理化边为角或化角为边等.母题示例:2019年全国卷Ⅰ,本小题满分12分△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若2a+b=2c,求sin C. 本题考查:三角恒等变换、正(余)弦定理等知识,等价转化、转化化归的能力,数学运算、逻辑推理等核心素养.[审题指导·发掘条件](1)看到sin A、sin B、sin C的等量关系,想到利用正(余)弦定理求A;(2)看到边a,b,c的等量关系想到利用正弦定理化边为角,看到求sin C想到B=180°-A-C;缺与角C的相关的三角函数值,借助同角三角函数的关系补找该条件.[构建模板·四步解法] 三角函数类问题的求解策略第一步找条件第二步巧转化第三步得结论第四步再反思分析寻找三角形中的边角关系根据已知条件,选择使用的定理或公式,确定转化方向,实现边角互化利用三角恒等变换进行变形,得出结论审视转化过程的等价性与合理性母题突破:2019年天津高考,本小题满分12分在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a,3c sin B =4a sin C . (1)求cos B 的值; (2)求sin ⎝⎛⎭⎪⎫2B +π6的值. [解](1)在△ABC 中,由正弦定理b sin B =csin C,得b sin C =c sin B ,又由3c sin B =4a sinC ,得3b sin C =4a sin C ,即3b =4a . 1分又因为b +c =2a ,得到b =43a ,c =23a . 2分由余弦定理得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.4分(2)由(1)得sin B =1-cos 2B =154, 5分 从而sin 2B =2sin B cos B =-158, 6分 cos 2B =cos 2B -sin 2B =-78,8分故sin ⎝ ⎛⎭⎪⎫2B +π6=sin 2B cos π6+cos 2B sin π6 10分=-158×32-78×12=-35+716. 12分第1讲 等差数列、等比数列[做小题——激活思维]1.在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( ) A .9 B .22 C .24D .32C [依题意得,数列{a n }是公差为2的等差数列,a 1=a 2-2=3,因此数列{a n }的前4项和等于4×3+4×32×2=24,选C.]2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2-8nD .S n =12n 2-2nA [设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧S 4=0,a 5=5,∴⎩⎪⎨⎪⎧4a 1+4×32d =0,a 1+4d =5,解得⎩⎪⎨⎪⎧a 1=-3,d =2,∴a n =a 1+(n -1)d =-3+2(n -1)=2n -5,S n =na 1+n n -12d =n 2-4n .故选A.]3.如果等差数列{a n }中,a 3+a 4+a 5=12,那么a 1+a 2+…+a 7等于( ) A .14 B .21 C .28D .35C [∵a 3+a 4+a 5=12,∴3a 4=12,a 4=4.∴a 1+a 2+…+a 7=(a 1+a 7)+(a 2+a 6)+(a 3+a 5)+a 4=7a 4=28.]4.已知数列{a n }满足3a n +1+a n =0,a 2=-13,则{a n }的前10项和等于________.34⎝ ⎛⎭⎪⎫1-1310 [由3a n +1+a n =0,a 2=-13得{a n }成首项为1,公比q =-13的等比数列,∴S 10=1-⎝ ⎛⎭⎪⎫-13101+13=34⎝ ⎛⎭⎪⎫1-1310.] 5.在等比数列{a n }中,a n +1<a n ,a 2a 8=6,a 4+a 6=5,则a 4a 6等于________.32 [因为a 2a 8=a 4a 6=6 ①,又a 4+a 6=5 ②,联立①②,解得⎩⎪⎨⎪⎧a 4=3,a 6=2或⎩⎪⎨⎪⎧a 4=2,a 6=3(舍),所以a 4a 6=32.][扣要点——查缺补漏]1.判断等差(比)数列的常用方法 (1)定义法:若a n +1-a n =d ,d 为常数⎝ ⎛⎭⎪⎫a n +1a n =q ,q 为常数,q ≠0,则{a n }为等差(比)数列,如T 1,T 4.(2)中项公式法. (3)通项公式法.2.等差数列的通项公式及前n 项和公式 (1)a n =a 1+(n -1)d =a m +(n -m )d ; (2)S n =n a 1+a n2=na 1+n n -12d .如T 2.3.等比数列的通项公式及前n 项和公式 (1)a n =a 1qn -1=a m ·qn -m(q ≠0);(2)S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.如T 4.4.等差数列与等比数列的性质(1)在等差数列中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .如T 3.(2)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列.(3)在等差数列{a n }中,S n ,S 2n -S n ,S 3n -S 2n 也成等差数列.(4)在等比数列中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q .如T 5. (5)在等比数列中,S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外).等差(比)数列的基本运算(5年9考) [高考解读] 高考对该点的考查以等差数列、等比数列的通项公式与求和公式为考查目。

回扣四 数列与不等式-高中数学必备考试技能之回扣溯源、查缺补漏(2020版)(原卷版)

回扣四 数列与不等式-高中数学必备考试技能之回扣溯源、查缺补漏(2020版)(原卷版)

回扣4:数列与不等式一.知识汇总*经典提炼二.核心解读*方法重温1.已知数列的前n 项和S n 求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n≥2时,a n =S n -S n -1.[回扣问题1] 在数列{a n }中,a 1+a 22+a 33+…+a nn=2n -1(n ∈N *),则a n =________.2.等差数列中不能熟练利用数列的性质转化已知条件,并灵活整体代换进行基本运算.如等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,已知S n T n =n +12n +3,求a nb n时,无法正确赋值求解.[回扣问题2] 等差数列{a n },{b n }的前n 项和分别为S n ,T n ,且S n T n =3n -12n +3,则a 8b 8=________.3.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q≠1两种情况进行讨论.[回扣问题3] 等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.4.利用等差数列定义求解问题时,易忽视a n -a n -1=d(常数)中,n≥2,n ∈N *的限制,类似地,在等比数列中,b nb n -1=q(常数且q≠0),忽视n≥2,n ∈N *的条件限制. [回扣问题4] 已知数列{a n }中,a 1=a 2=1,a n +1=a n +12(n≥2),则数列{a n }的前9项和等于________.5.利用错位相减法求和,切忌漏掉第一项和最后一项;裂项相消求和,相消后剩余的前、后项数要相等. [回扣问题5] 已知等差数列{a n }的前n 项和为S n ,a 3=6,S 4=20. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .6.对于通项公式中含有(-1)n 的一类数列,在求S n 时,切莫忘记讨论n 为奇数、偶数;遇到已知a n +1-a n -1=d 或a n +1a n -1=q(n≥2),求{a n }的通项公式时,要注意对n 的讨论.[回扣问题6] 若a n =2n -1,b n =(-1)n -1a n ,则数列{b n }的前n 项和T n =________.7.解形如ax 2+bx +c>0的一元二次不等式时,易忽视系数a 的讨论导致漏解或错解,要注意分a>0,a<0,a =0进行讨论.[回扣问题7] 设命题甲:ax 2+2ax +1>0的解集是实数集R ;命题乙:0<a<1,则命题甲是命题乙成立的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件8.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f(x)=x 2+2+1x 2+2的最值,就不能利用基本不等式求解最值. [回扣问题8] 若直线x a +yb=1(a>0,b>0)过点(1,2),则2a +b 的最小值为________.9.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y)与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y)到点(1,1)的距离的平方等. [回扣问题9] 若变量x ,y 满足⎩⎪⎨⎪⎧x +y≤2,2x -3y≤9,x≥0,则x 2+y 2的最大值是( )A.4B.9C.10D.1210.求解不等式、函数的定义域、值域时,其结果一定要用集合或区间表示,另外一元二次不等式的解集表示形式受到二次项系数符号的影响.[回扣问题10] 已知关于x 的不等式ax 2+bx +c<0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x<-2,或x>-12,则ax 2-bx +c>0的解集为________.三.新题好题*保持手感1.(2020·涡阳县第九中学高三三模)已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-2.(2020·湖南省长郡中学高三三模)若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( ) A .3944B .58C .1516D .13223.(2020·曲靖市第二中学高三二模)等比数列{}n a 的前n 项和为n S ,若22S =,36S =-,则5S =( ) A .18B .10C .-14D .-224.(2020·全国高三三模)已知等差数列{}n a 的前n 项和为n S ,满足33a =,()21223n n n S S S n --+=+≥,则( )A .2n n S na n -= B .2n n S na n +=C .21n n S a n-=D .21n n S a n+=5.(2020·海口市第四中学高三三模)当x ∈R 时,不等式210kx kx -+>恒成立,则k 的取值范围是( ) A .(0,)+∞B .[)0,+∞C .[)0,4D .(0,4)6.(2020·甘肃省张掖市第二中学高三三模)若直线l :20(0,0)ax by a b -+=>>过点(1,2)-,当21a b+取最小值时直线l 的斜率为( )A .2B .12CD .7.(2020·安徽省高三二模)已知数列{}n a 、{}n b 、{}n c 中,11a =,1121n n n a a +=+-,1n n b n a =+,11n n nc a b =-. (1)求证:数列{}n b 是等比数列,并求数列{}n a ,{}n b 的通项公式; (2)求数列{}n c 的前n 项和n S .8.(2020·山东省高三二模)已知数列{}n a 的前n 项和为0121n n n n n n S C C C C -=++++L ,数列{}n b 满足2log n n b a =,(1)求数列{}n a 、{}n b 的通项公式;(2)求()12222212341n n nT b b b b b +=-+-++-L .。

高考数学二轮复习 考前回扣教案 文-人教版高三全册数学教案

高考数学二轮复习 考前回扣教案 文-人教版高三全册数学教案

考前回扣一、集合、复数与常用逻辑用语知识方法1.集合的概念、关系及运算(1)集合中元素的特性:确定性、互异性、无序性,求解含参数的集合问题时要根据互异性进行检验.(2)集合与集合之间的关系:A⊆B,B⊆C⇒A⊆C,空集是任何集合的子集,含有n个元素的集合的子集数为2n,真子集数为2n-1,非空真子集数为2n-2.2.复数(1)复数的相等:a+bi=c+di(a,b,c,d∈R)⇔a=c,b=d.(2)共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(3)运算:(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)= +i(c+di≠0).(4)复数的模:|z|=|a+bi|=r=(r≥0,r∈R).3.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.4.充分条件与必要条件假设p⇒q,那么p是q的充分条件,q是p的必要条件;假设p⇔q,那么p,q互为充要条件.5.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定 p:∃x0∈M, p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定 p:∀x∈M, p(x).易忘提醒1.遇到A∩B=⌀时,注意“极端〞情况:A=⌀或B=⌀;同样在应用条件A∪B=B⇔A∩B=A⇔A⊆B 时,不要忽略A=⌀的情况.2.区分命题的否定和否命题的不同,否命题是对命题的条件和结论都否定,而命题的否定仅对命题的结论否定.3.“A的充分不必要条件是B〞是指B能推出A,但A不能推出B;而“A是B的充分不必要条件〞那么是指A能推出B,但B不能推出A.4.复数z为纯虚数的充要条件是a=0且b≠0(z=a+bi(a,b∈R)).还要注意巧妙运用参数问题和合理消参的技巧.习题回扣(命题人推荐)1.(集合的运算)设U=R,A={x|1≤x≤3},B={x|2<x<4},那么A∩B=,A∪B= ,A∪∁U B= .答案:{x|2<x≤3}{x|1≤x<4}{x|x≤3或x≥4}2.(复数的运算)(1+2i)=4+3i,那么z= ,= .答案:2-i -i3.(充分必要条件)“a>b〞是“a2>b2〞的条件.答案:既不充分也不必要4.(命题的否定)p:∃x0∈R,-x0+1≤0,那么 p为.答案:∀x∈R,x2-x+1>0二、平面向量、框图与合情推理知识方法1.平面向量中的四个基本概念(1)零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2)长度等于1个单位长度的向量叫单位向量,与a同向的单位向量为.(3)方向相同或相反的向量叫共线向量(平行向量).(4)向量的投影:|b|cos<a,b>叫做向量b在向量a方向上的投影.2.平面向量的两个重要定理(1)向量共线定理:向量a(a≠0)与b共线当且仅当存在唯一一个实数λ,使b=λa.(2)平面向量基本定理:如果e1,e2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中e1,e2是一组基底.3.平面向量的两个充要条件假设两个非零向量a=(x1,y1),b=(x2,y2),那么(1)a∥b⇔a=λb⇔x1y2-x2y1=0;(2)a⊥b⇔a·b=0⇔x1x2+y1y2=0.4.平面向量的三个性质(1)假设a=(x,y),那么|a|==.(2)假设A(x1,y1),B(x2,y2),那么||=.(3)假设a=(x1,y1),b=(x2,y2),θ为a与b的夹角,那么cos θ==.易忘提醒1.假设a=0,那么a·b=0,但由a·b=0,不能得到a=0或b=0,因为a⊥b时,a·b=0.2.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价.习题回扣(命题人推荐)1.(平面向量的线性运算)设D,E,F分别是△ABC的边BC,CA,AB上的点,且AF=AB,BD=BC,CE=CA,假设记=m,=n,那么= (用m,n表示).答案:-m-n2.(平面向量的坐标运算)设向量=(k,12),=(4,5),=(10,k),假设A,B,C三点共线,那么k= .答案:-2或113.(平面向量的数量积)向量a与b不共线,|a|=3,|b|=4,假设a+kb与a-kb垂直,那么k= .答案:±4.(类比推理)在等差数列{a n}中,假设a10=0,那么有a1+a2+…+a n=a1+a2+…+a19-n(n<19,且n∈N*)成立,类比上述性质,在等比数列{b n}中,假设b9=1,那么有.答案:b1b2…b n=b1b2…b17-n(n<17且n∈N*)三、不等式与线性规划知识方法1.一元二次不等式的解法先化为一般形式ax2+bx+c>0(a>0),再求相应一元二次方程ax2+bx+c=0(a>0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.2.线性规划(1)判断二元一次不等式表示的平面区域的方法在直线Ax+By+C=0的某一侧任取一点(x0,y0),通过Ax0+By0+C的符号来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.(2)解决线性规划问题首先要找到可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数取到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.3.五个重要的不等式(1)|a|≥0,a2≥0(a∈R);(2)a2+b2≥2ab(a,b∈R);(3)≥(a>0,b>0);(4)ab≤2(a,b∈R);(5)≥≥≥(a>0,b>0).易忘提醒1.解分式不等式时注意同解变形.2.作可行域时,注意边界线的虚实;及非线性目标函数的几何意义.3.在利用基本不等式求最值时,不要忽略“一正、二定、三相等〞.习题回扣(命题人推荐)1.(求线性目标函数的最值)假设x,y满足约束条件那么z=3x+5y的最大值为,最小值为.答案:17 -112.(不等式的解法)假设关于x的一元二次方程mx2-(1-m)x+m=0没有实数根,那么m的取值范围为.答案:(-∞,-1)∪,+∞3.(利用基本不等式求最值)函数f(x)=x+的值域是.答案:(-∞,-2]∪[2,+∞)四、函数图象与性质、函数与方程知识方法1.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减〞的原那么;(2)奇偶性:①假设f(x)是偶函数,那么f(x)=f(-x);②假设f(x)是奇函数,0在其定义域内,那么f(0)=0;③奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;(3)周期性:①假设y=f(x)对x∈R,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,那么y=f(x)是周期为2a 的周期函数;②假设y=f(x)是偶函数,其图象又关于直线x=a对称,那么f(x)是周期为2|a|的周期函数;③假设y=f(x)是奇函数,其图象又关于直线x=a对称,那么f(x)是周期为4|a|的周期函数;④假设f(x+a)=-f(x)或f(x+a)=,那么y=f(x)是周期为2|a|的周期函数.2.函数的图象对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.3.函数的零点与方程的根(1)函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.(2)零点存在性定理注意以下两点:①满足条件的零点可能不唯一;②不满足条件时,也可能有零点.易忘提醒1.函数具有奇偶性时,定义域关于原点对称,但定义域关于原点对称的函数不一定具有奇偶性.2.求单调区间时易忽略函数的定义域,切记:单调区间必须是定义域的子集且当同增(减)区间不连续时,不能用并集符号连接.3.忽略函数的单调性、奇偶性、周期性的定义中变量取值的任意性.4.画图时容易忽略函数的性质,图象左右平移时,平移距离容易出错.习题回扣(命题人推荐)1.(奇偶性)假设函数f(x)=x2-mx+m+2是偶函数,那么m= .答案:02.(单调性)假设函数f(x)=x2+mx-2在区间(-∞,2)上是单调减函数,那么实数m的取值范围为.答案:(-∞,-4]3.(函数图象)函数y=log a(x+b)的图象如下图,那么a= ;b= .答案: 34.(零点的应用)假设方程7x2-(m+13)x-m-2=0的一个根在区间(0,1)上,另一个根在区间(1,2)上,那么实数m的取值范围是.答案:(-4,-2)五、导数的简单应用知识方法1.导数的几何意义函数y=f(x)在x=x0处的导数f'(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,即k=f'(x0).2.导数与函数单调性的关系(1)假设可导函数y=f(x)在区间(a,b)上单调递增,那么f'(x)≥0在区间(a,b)上恒成立;假设可导函数y=f(x)在区间(a,b)上单调递减,那么f'(x)≤0在区间(a,b)上恒成立.可导函数y=f(x)在区间(a,b)上为增函数是f'(x)>0的必要不充分条件.(2)可导函数y=f(x)在x=x0处的导数f'(x0)=0是y=f(x)在x=x0处取得极值的必要不充分条件.3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,假设有唯一的极值,那么此极值一定是函数的最值.易忘提醒1.求切线方程时,注意“在点A处的切线〞与“过点A的切线〞的区别.2.利用导数研究函数的单调性时不要忽视函数的定义域.3.函数y=f(x)在区间上单调递增不等价于f'(x)≥0.一般来说,函数y=f(x)单调递增,可以得到f'(x)≥0(有等号);求函数y=f(x)的单调递增区间,解f'(x)>0(没有等号)和确定定义域.4.对与不等式有关的综合问题要有转化为函数最值的化归思想;对含参数的综合问题要有分类讨论的思想.习题回扣(命题人推荐)1.(导数的几何意义)曲线y=在点M(π,0)处的切线方程为.答案:y=-+12.(极值)函数f(x)=x(x-c)2在x=2处有极大值,那么c= .答案:63.(最值)函数f(x)=x2+px+q,当x=1时,f(x)有最小值4,那么p= ,q= .答案:-2 54.(单调性)函数f(x)=x+cos x,x∈0,的单调增区间为.答案:0,六、导数的综合应用知识方法1.利用导数求函数最值的几种情况(1)假设连续函数f(x)在(a,b)内有唯一的极大值点x0,那么f(x0)是函数f(x)在[a,b]上的最大值,min{f(a),f(b)}是函数f(x)在[a,b]上的最小值;假设函数f(x)在(a,b)内有唯一的极小值点x0,那么f(x0)是函数f(x)在[a,b]上的最小值,max{f(a),f(b)}是函数f(x)在[a,b]上的最大值.(2)假设函数f(x)在[a,b]上单调递增,那么f(a)是函数f(x)在[a,b]上的最小值,f(b)是函数f(x)在[a,b]上的最大值;假设函数f(x)在[a,b]上单调递减,那么f(a)是函数f(x)在[a,b]上的最大值,f(b)是函数f(x)在[a,b]上的最小值.(3)假设函数f(x)在[a,b]上有极值点x1,x2,…,x n(n∈N*,n≥2),那么将f(x1),f(x2),…,f(x n)与f(a),f(b)作比较,其中最大的一个是函数f(x)在[a,b]上的最大值,最小的一个是函数f(x)在[a,b]上的最小值.2.与不等式有关的恒成立与存在性问题(1)f(x)>g(x)对一切x∈I恒成立⇔I是f(x)>g(x)的解集的子集⇔[f(x)-g(x)]min>0(x∈I).(2)存在x0∈I使f(x)>g(x)成立⇔I与f(x)>g(x)的解集的交集不是空集⇔[f(x)-g(x)]max>0(x∈I).(3)对∀x1,x2∈D使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.(4)对∀x1∈D1,∃x2∈D2使得f(x1)≥g(x2)⇔f(x)min≥g(x)min,f(x)定义域为D1,g(x)定义域为D2.3.证明不等式问题不等式的证明可转化为利用导数研究函数的单调性、极值和最值,再由单调性或最值来证明不等式,其中构造一个可导函数是用导数证明不等式的关键.易忘提醒1.不要忽略函数的定义域.2.在需分类讨论时,要做到不重不漏,不要忽略导函数中二次项系数的正负,以及根的大小比较.3.存在性问题与恒成立问题容易混淆,它们既有区别又有联系:假设f(x)≤m恒成立,那么f(x)max≤m;假设f(x)≥m恒成立,那么f(x)min≥m.假设f(x)≤m有解,那么f(x)min≤m;假设f(x)≥m有解,那么f(x)max≥m.习题回扣(命题人推荐)1.(导数几何意义的应用)如图,直线l和圆C,当l从l0开始在平面上绕点O按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积S是时间t的函数,这个函数的图象大致是( D )2.(比较大小)当x∈(0,π)时,sin x x.答案:<七、三角函数的图象与性质、三角恒等变换知识方法1.“巧记〞诱导公式对于“±α,k∈Z的三角函数值〞与“角α的三角函数值〞的关系可按下面口诀记忆:奇变偶不变,符号看象限.2.“牢记〞三角公式(1)两角和与差的正弦、余弦、正切公式sin(α±β)=sin αcos β±cos αsin β;cos(α±β)=cos αcos β∓sin αsin β;tan(α±β)= .(2)二倍角的正弦、余弦、正切公式sin 2α=2sin αcos α;cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;tan 2α=;cos2α=,sin2α=.3.三种三角函数的图象和性质函数y=sin x y=cos x y=tan x 图象单调性在-+2kπ,+2kπ(k∈Z)上单调递增;在+2kπ,+2kπ(k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在-+kπ,+kπ(k∈Z)上单调递增续表函数y=sin x y=cos x y=tan x对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:+kπ,0(k∈Z);对称轴:x=kπ(k∈Z)对称中心:,0(k∈Z);无对称轴易忘提醒1.求单调区间时应先把变量系数化为正值再求解,且不要忘记周期性及k∈Z.2.注意“在区间[a,b]上单调递增(减)〞与“单调区间是[a,b]〞的区别.3.图象变换时,变换前后的函数名称要一致.4.图象变换时,注意“先相位后周期〞与“先周期后相位〞图象平移的单位个数的区别.(平移只对“x〞而言)5.解三角变换问题的基本思路是:一角、二名、三结构.习题回扣(命题人推荐)1.(同角三角函数间关系)sin α+cos α=(0<α<π),那么tan α=.答案:-2.(同角三角函数间关系)设tan α=-,那么= .答案:-13.(三角函数图象变换)要得到函数y=3sin2x+的图象,只需将y=3sin 2x的图象个单位长度.答案:向左平移4.(三角函数性质)函数y=sin x+的单调递增区间为.答案:2kπ-,2kπ+(k∈Z)八、解三角形知识方法1.正弦定理===2R(2R为△ABC外接圆的直径).变形:a=2Rsin A,b=2Rsin B,c=2Rsin C.sin A=,sin B=,sin C=.a∶b∶c=sin A∶sin B∶sin C.2.余弦定理a2=b2+c2-2bccos A,b2=a2+c2-2accos B,c2=a2+b2-2abcos C.推论:cos A=,cos B=,cos C=.3.面积公式S△ABC=bcsin A=acsin B=absin C.4.解三角形(1)两角及一边,利用正弦定理求解.(2)两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一.(3)两边及其夹角,利用余弦定理求解.(4)三边,利用余弦定理求解.易忘提醒1.三角函数值求角时,要注意角的范围的挖掘.2.利用正弦定理解三角形时,注意解的个数的讨论,可能有一解、两解或无解.在△ABC 中,A>B⇔sin A>sin B.3.两边和其中一边的对角,利用余弦定理求第三边时,应注意检验,否那么易产生增根.4.在判断三角形的形状时,注意等式两边的公因式不要约掉,要移项提取公因式,否那么会有漏掉一种形状的可能.习题回扣(命题人推荐)1.(正弦定理)在△ABC中,a=6,b=6,B=120°,那么c= .答案:62.(余弦定理)在△ABC中,(a+b+c)(b+c-a)=3bc,那么A= .答案:3.(求三角形面积)在△ABC中,c=10,A=45°,C=30°,那么b= ,S△ABC= .答案:5+525(+1)4.(三角形形状判断)在△ABC中,a2tan B=b2tan A,那么△ABC是三角形.答案:等腰或直角5.(解三角形实际应用问题)在一座20 m高的观测台顶测得对面水塔塔顶的仰角为60°,塔底俯角为45°,那么这座水塔的高度是m.答案:20(1+)九、等差数列与等比数列知识方法1.等差、等比数列的通项公式及前n项和公式等差数列等比数列通项a n=a1+(n-1)d a n=a1q n-1(q≠0)公式前n S n=(1)q≠1,项和=na1+ dS n==;(2)q=1,S n=na1 2.等差、等比数列的性质类型等差数列等比数列项的性质2a k=a m+a l(m,k,l∈N*且m,k,l成等差数列)=a m·a l(m,k,l∈N*且m,k,l成等差数列) a m+a n=a p+a q(m,n,p,q∈N*,且m+n=p+q) a m·a n=a p·a q(m,n,p,q∈N*且m+n=p+q)和的性质当n为奇数时,S n=n当n为偶数时,=q(公比)依次每k项的和:S k,S2k-S k,S3k-S2k,…构成等差数列依次每k项的和:S k,S2k-S k,S3k-S2k,…构成等比数列(公比q≠-1)3.证明(或判断)数列是等差(比)数列的四种基本方法(1)定义法:a n+1-a n=d(常数)(n∈N*)⇒{a n}是等差数列;=q(q是非零常数)⇒{a n}是等比数列.(2)等差(比)中项法:2a n+1=a n+a n+2(n∈N*)⇒{a n}是等差数列;=a n·a n+2(n∈N*,a n≠0)⇒{a n}是等比数列.(3)通项公式法:a n=pn+q(p,q为常数)⇒{a n}是等差数列;a n=a1·q n-1(其中a1,q为非零常数,n ∈N*)⇒{a n}是等比数列.(4)前n项和公式法:S n=An2+Bn(A,B为常数)⇒{a n}是等差数列;S n=Aq n-A(A为非零常数,q≠0,1)⇒{a n}是等比数列.4.等差、等比数列的单调性(1)等差数列的单调性d>0⇔{a n}为递增数列,S n有最小值.d<0⇔{a n}为递减数列,S n有最大值.d=0⇔{a n}为常数列.(2)等比数列的单调性当或时,{a n}为递增数列.当或时,{a n}为递减数列.易忘提醒1.忽略公式a n=S n-S n-1成立的条件是n≥2,n∈N*.2.证明一个数列是等差或等比数列时,由数列的前几项,想当然得到通项公式,易出错,必须用定义证明.3.应用等比数列的前n项和公式时,应注意条件是否暗示了q的范围,否那么,应注意讨论.4.等差数列的单调性只取决于公差d的正负,等比数列的单调性既要考虑公比q又要考虑首项a1.习题回扣(命题人推荐)1.(等差数列综合)等差数列{a n}中,a1=,d=-,S n=-5,那么a n= .答案:-2.(等差数列最值问题)等差数列{a n}中,a1=16,公差d=-,那么|a n|最小时,n= .答案:22十、数列求和及简单应用知识方法1.数列的通项公式数列综合问题一般先求数列的通项公式,这是做好该类题的关键.假设是等差数列或等比数列,那么直接运用公式求解,否那么常用以下方法求解:(1)a n=(2)递推关系形如a n+1-a n=f(n),常用累加法求通项公式.(3)递推关系形如=f(n),常用累乘法求通项公式.(4)递推关系形如“a n+1=pa n+q(p,q是常数,且p≠1,q≠0)〞的数列求通项公式,常用待定系数法.可设a n+1+λ=p(a n+λ),经过比较,求得λ,那么数列{a n+λ}是一个等比数列.2.数列求和常用的方法(1)分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法(其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列).(2)裂项相消法:将数列的通项分成两个代数式的差,即a n=f(n+1)-f(n)的形式,然后通过累加抵消中间假设干项的求和方法.形如(其中{a n}是各项均不为0的等差数列,c为常数)的数列等.(3)错位相减法:形如{a n·b n}(其中{a n}为等差数列,{b n}为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n.易忘提醒1.求解{a n}的前n项和的最值时,无论是利用S n还是a n,都要注意条件n∈N*.2.运用错位相减法求和时,相减后,要注意右边的n+1项中的前n项,哪些项构成等比数列,以及两边需除以代数式时,注意要讨论代数式是否为零.习题回扣(命题人推荐)1.(分组法求和)(a-1)+(a2-2)+…+(a n-n)= .答案:2.(裂项法求和)数列的前n项和S n= .答案:3.(错位相减法求和)+2×2+3×3+…+n×n= .答案:2-(n+2)×n十一、空间几何体的三视图、表面积与体积知识方法1.棱柱、棱锥(1)棱柱的性质侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形.(2)棱锥的性质棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面上的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形.2.三视图(1)正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的投影图.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高;(2)三视图排列规那么:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.3.几何体的切接问题(1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即是棱柱的体对角线.(2)解决柱、锥的内切球问题的关键是找准切点位置,化归为平面几何问题.4.柱体、锥体、台体和球的表面积与体积(不要求记忆)(1)表面积公式①圆柱的表面积S=2πr(r+l);②圆锥的表面积S=πr(r+l);③圆台的表面积S=π(r'2+r2+r'l+rl);④球的表面积S=4πR2.(2)体积公式①柱体的体积V=Sh;②锥体的体积V=Sh;③台体的体积V=(S'++S)h;④球的体积V=πR3.【温馨提示】在有关体积、表面积的计算应用中要注意等积法的应用.易忘提醒1.台体可以看成是由锥体截得的,但要注意截面与底面平行.2.空间几何体以不同位置放置时,对三视图会有影响.3.画三视图的轮廓线时,可见轮廓线在三视图中为实线,不可见轮廓线为虚线.习题回扣(命题人推荐)1.(直线与球的关系)一条直线被一个半径为5的球截得的线段长为8,那么球心到直线的距离为.答案:32.(球与几何体的接切问题)一个正方体的8个顶点都在同一个球面上,那么球的表面积与正方体的全面积之比为.答案:3.(三视图)一几何体按比例绘制的三视图如下图(单位:m),那么它的体积为.答案: m34.(几何体间的关系)正三棱柱的内切圆柱与外接圆柱的体积比为.答案:1∶4十二、点、直线、平面之间的位置关系知识方法1.直线与平面平行的判定和性质(1)判定:①判定定理:a∥b,b⊂α,a⊄α⇒a∥α;②面面平行的性质:α∥β,a⊂α⇒a∥β;③a⊥b,α⊥b,a⊄α,那么a∥α.(2)性质:l∥α,l⊂β,α∩β=m⇒l∥m.2.直线与平面垂直的判定和性质(1)判定:①判定定理:a⊥b,a⊥c,b,c⊂α,b∩c=O ⇒a⊥α.②a∥b,a⊥α⇒b⊥α.③l⊥α,α∥β⇒l⊥β.④α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.(2)性质:①l⊥α,a⊂α⇒l⊥a.②l⊥α,m⊥α⇒l∥m.3.两个平面平行的判定和性质(1)判定:①判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒β∥α.②l⊥α,l⊥β⇒α∥β.③α∥γ,α∥β⇒β∥γ.(2)性质:α∥β,γ∩α=a,γ∩β=b⇒a∥b.4.两个平面垂直的判定和性质(1)判定:a⊂α,a⊥β⇒α⊥β.(2)性质:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.易忘提醒1.在应用平行或垂直的判定定理时,常因忽略定理的条件或步骤跳跃而失分.2.“展开〞“翻折〞问题易忽略展开及翻折前后元素之间的关系.3.将空间问题转化为平面问题时,易忽略挖掘平面图形的几何性质.习题回扣(命题人推荐)1.(两平行平面的性质):如图,α∥β,点P是平面α,β外的一点,直线PA,PD分别与α,β相交于点A,B和C,D.PA=4 cm,AB=5 cm,PC=3 cm,那么PD= .答案: cm2.(两直线的关系)如图,在三棱锥A BCD中,E,F,G,H分别是边AB,BC,CD,DA的中点,那么(1)AC与BD 时,四边形EFGH为菱形;(2)AC与BD 时,四边形EFGH为正方形.答案:(1)相等(2)相等且垂直3.(线面垂直的判定)如图,在△ABC中,M为边BC的中点,沿AM将△ABM折起,使点B在平面ACM外.当时,直线AM垂直于平面BMC.答案:AB=AC4.(两平面的关系):如图,平面α⊥平面β,在α与β的交线l上取线段AB=4 cm,AC,BD分别在平面α和平面β内,它们都垂直于交线l,并且AC=3 cm,BD=12 cm,那么CD= . 答案:13 cm十三、直线与圆、圆锥曲线的概念、方程与性质知识方法1.直线方程的五种形式名称方程适用范围点斜式y-y0=k(x-x0) 不含垂直于x轴的直线斜截式y=kx+b 不含垂直于x轴的直线续表名称方程适用范围两点式=不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式+=1 不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A2+B2≠0)平面直角坐标系内的直线都适用2.直线的两种位置关系(1)两直线平行①对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔k1=k2且b1≠b2.②对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0.(2)两直线垂直①对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1⊥l2⇔k1·k2=-1.②对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔A1A2+B1B2=0.3.三种距离公式(1)点A(x1,y1),B(x2,y2)间的距离:|AB|=.(2)点P(x0,y0)到直线l:Ax+By+C=0的距离:d=.(3)两平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0(C1≠C2)间的距离为d=.【温馨提示】运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线的距离公式时,需先把两平行线方程中x,y的系数化为相同的形式.4.圆的方程的两种形式(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),其中(a,b)为圆心,r为半径.(2)圆的一般方程:x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0,其中圆心为-,-,半径r=.5.直线与圆、圆与圆的位置关系(1)直线与圆的位置关系:相交、相切、相离,根据圆心到直线的距离与半径的关系判断直线与圆的位置关系.(2)圆与圆的位置关系:相交、相切、相离,根据圆心距离与半径之和差的关系判断两圆的位置关系.6.圆锥曲线的定义、标准方程与几何性质名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2|)|PF|=|PM|,点F不在直线l上,PM⊥l于M标准方程+=1(a>b>0)-=1(a>0,b>0)y2=2px(p>0)图形范围|x|≤a,|y|≤b|x|≥a x≥0顶点(±a,0),(0,±b)(±a,0)(0,0)对称性关于x轴,y轴和原点对称关于x 轴对称焦点(±c,0),0轴长轴长2a,短轴长2b实轴长2a,虚轴长2b离心率e==(0<e<1)e==(e>1)e=1准线x=-渐近线y=±x【温馨提示】 (1)椭圆、双曲线的很多问题有相似之处,在学习中要注意应用类比的方法,但一定要把握好它们的区别和联系.(2)与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线〞,这是解决抛物线焦点弦有关问题的重要途径.(3)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,假设过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,假设不过焦点,那么用一般弦长公式.易忘提醒1.求直线方程时要注意判断直线斜率是否存在;根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.2.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.3.过圆外一定点求圆的切线,应该有两个结果,假设只求出一个结果,应该考虑切线斜率不存在的情况.4.求圆的弦长问题,注意应用圆的性质解题,即用圆心与弦中点连线与弦垂直的性质,可以用勾股定理或斜率之积为-1列方程来简化运算.5.抛物线中出现与焦点有关的问题时,易忽略定义的使用.6.圆锥曲线中焦点位置没有明确给出时,应对焦点位置进行分情况讨论.7.混淆椭圆、双曲线中a,b,c的关系,椭圆:a2=b2+c2,双曲线:c2=a2+b2.习题回扣(命题人推荐)1.(两直线垂直的条件)直线l1:(m+2)x-(m-2)y+2=0,直线l2:3x+my-1=0,且l1⊥l2,那么m的值为.答案:-1或62.(圆的方程)半径为5的圆过点P(-4,3),且圆心在直线2x-y+1=0上,那么该圆的方程为.答案:(x-1)2+(y-3)2=25或(x+1)2+(y+1)2=253.(椭圆的方程)假设椭圆+=1(a>b>0)过点(3,-2),离心率为,那么a= ,b= .答案:4.(双曲线的性质)双曲线的方程为-=1,过点(a,0),(0,b)的直线的倾斜角为150°,那么双曲线的离心率为.答案:5.(抛物线定义的应用)抛物线y2=4x上一点到焦点的距离为5,那么该点的坐标为.答案:(4,4)或(4,-4)6.(双曲线的方程)双曲线的离心率等于,且与椭圆+=1有公共焦点,那么双曲线的方程为.答案:-y2=1十四、直线与圆锥曲线的位置关系知识方法1.直线与圆锥曲线的位置关系的判定方法将直线方程与圆锥曲线方程联立,由方程组解的组数确定直线与圆锥曲线的位置关系,特别地,当直线与双曲线的渐近线平行时,该直线与双曲线只有一个交点;当直线与抛物线的对称轴平行时,该直线与抛物线只有一个交点.2.有关弦长问题有关弦长问题应注意运用弦长公式及根与系数的关系,“设而不求〞;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),那么所得弦长|P1P2|=或|P1P2|=.(2)当斜率k不存在时,可求出交点坐标,直接计算弦长.3.弦的中点问题。

高考数学二轮复习 板块四 考前回扣 回扣4 数列学案 文

高考数学二轮复习 板块四 考前回扣 回扣4 数列学案 文

回扣4 数列1.牢记概念与公式等差数列、等比数列等差数列等比数列通项公式a n=a1+(n-1)d a n=a1q n-1(q≠0)前n项和S n=n(a1+a n)2=na1+n(n-1)2d(1)q≠1,S n=a1(1-q n)1-q=a1-a n q1-q;(2)q=1,S n=na12.活用定理与结论(1)等差、等比数列{a n}的常用性质等差数列等比数列性质①若m,n,p,q∈N*,且m+n=p+q,则a m+a n=a p+a q;②a n=a m+(n-m)d;③S m,S2m-S m,S3m-S2m,…仍成等差数列①若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q;②a n=a m q n-m;③S m,S2m-S m,S3m-S2m,…仍成等比数列(S m≠0)(2)判断等差数列的常用方法①定义法a n+1-a n=d(常数)(n∈N*)⇔{a n}是等差数列.②通项公式法a n=pn+q(p,q为常数,n∈N*)⇔{a n}是等差数列.③中项公式法2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列.④前n项和公式法S n=An2+Bn(A,B为常数,n∈N*)⇔{a n}是等差数列.(3)判断等比数列的常用方法①定义法a n+1a n=q(q是不为0的常数,n∈N*)⇔{a n}是等比数列.②通项公式法a n=cq n(c,q均是不为0的常数,n∈N*)⇔{a n}是等比数列.③中项公式法a2n+1=a n·a n+2(a n·a n+1·a n+2≠0,n∈N*)⇔{a n}是等比数列.3.数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和.(2)形如{a n·b n}(其中{a n}为等差数列,{b n}为等比数列)的数列,利用错位相减法求和.(3)通项公式形如a n=c(an+b1)(an+b2)(其中a,b1,b2,c为常数)用裂项相消法求和.(4)通项公式形如a n=(-1)n·n或a n=a·(-1)n(其中a为常数,n∈N*)等正负项交叉的数列求和一般用并项法.并项时应注意分n为奇数、偶数两种情况讨论.(5)分组求和法:分组求和法是解决通项公式可以写成c n=a n+b n形式的数列求和问题的方法,其中{a n}与{b n}是等差(比)数列或一些可以直接求和的数列.(6)并项求和法:先将某些项放在一起求和,然后再求S n.1.已知数列的前n项和求a n,易忽视n=1的情形,直接用S n-S n-1表示.事实上,当n=1时,a1=S1;当n≥2时,a n=S n-S n-1.2.易混淆几何平均数与等比中项,正数a,b的等比中项是±ab.3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,已知S n T n =n +12n +3,求a nb n时,无法正确赋值求解.4.易忽视等比数列中公比q ≠0导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解.5.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q ≠1两种情况进行讨论.6.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项. 7.裂项相消法求和时,裂项前后的值要相等, 如1n (n +2)≠1n -1n +2,而是1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.8.通项中含有(-1)n的数列求和时,要把结果写成n 为奇数和n 为偶数两种情况的分段形式.1.设等差数列{a n }的前n 项和为S n ,已知S 13>0,S 14<0,若a k ·a k +1<0,则k 等于( ) A .6 B .7 C .13 D .14 答案 B解析 因为{a n }为等差数列,S 13=13a 7,S 14=7(a 7+a 8), 所以a 7>0,a 8<0,a 7·a 8<0,所以k =7.2.已知在等比数列{a n }中,a 1+a 2=3,a 3+a 4=12,则a 5+a 6等于( ) A .3 B .15 C .48 D .63 答案 C 解析a 3+a 4a 1+a 2=q 2=4,所以a 5+a 6=(a 3+a 4)·q 2=48. 3.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0, ∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.4.已知数列{a n }满足13n a +=9·3n a(n ∈N *)且a 2+a 4+a 6=9,则13log (a 5+a 7+a 9)等于( )A .-13B .3C .-3 D.13答案 C解析 由已知13n a+=9·3n a=23n a +,所以a n +1=a n +2,所以数列{a n }是公差为2的等差数列,a 5+a 7+a 9=(a 2+3d )+(a 4+3d )+(a 6+3d )=(a 2+a 4+a 6)+9d =9+9×2=27,所以13log (a 5+a 7+a 9)=13log 27=-3.故选C.5.已知正数组成的等比数列{a n },若a 1·a 20=100,那么a 7+a 14的最小值为( ) A .20 B .25 C .50 D .不存在答案 A解析 在正数组成的等比数列{a n }中,因为a 1·a 20=100,由等比数列的性质可得a 1·a 20=a 7·a 14=100,那么a 7+a 14≥2a 7·a 14=2100=20,当且仅当a 7=a 14=10时取等号,所以a 7+a 14的最小值为20.6.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n 等于( ) A .2n +1B .2nC .2n -1D .2n -2答案 A解析 a n +1=S n +1-S n =2a n +1-4-(2a n -4)⇒a n +1=2a n ,再令n =1,∴S 1=2a 1-4⇒a 1=4, ∴数列{a n }是以4为首项,2为公比的等比数列, ∴a n =4·2n -1=2n +1,故选A.7.已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3等于( )A .2B .3C .5D .7 答案 B解析 ∵在等差数列{a n }中,a 2,a 4,a 8成等比数列,∴a 24=a 2a 8,∴(a 1+3d )2=(a 1+d )(a 1+7d ),∴d 2=a 1d ,∵d ≠0,∴d =a 1, ∴a 1+a 5+a 9a 2+a 3=15a 15a 1=3,故选B.8.已知S n 为数列{a n }的前n 项和,若a n (4+cos n π)=n (2-cos n π)(n ∈N *),则S 20等于( ) A .31 B .122 C .324 D .484答案 B解析 由题意可知,因为a n (4+cos n π)=n (2-cos n π), 所以a 1=1,a 2=25,a 3=3,a 4=45,a 5=5,a 6=65,…,所以数列{a n }的奇数项构成首项为1,公差为2的等差数列,偶数项构成首项为25,公差为25的等差数列,所以S 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=122,故选B.9.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3(n ∈N *)的最小值为( )A .4B .3C .23-2 D.92答案 A解析 由题意a 1,a 3,a 13成等比数列,可得(1+2d )2=1+12d ,解得d =2,故a n =2n -1,S n =n 2,因此2S n +16a n +3=2n 2+162n +2=n 2+8n +1=(n +1)2-2(n +1)+9n +1=(n +1)+9n +1-2,由基本不等式知,2S n +16a n +3=(n +1)+9n +1-2≥2(n +1)×9n +1-2=4,当且仅当n =2时取得最小值4. 10.已知F (x )=f ⎝ ⎛⎭⎪⎫x +12-1是R 上的奇函数,数列{a n }满足a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为( )A .a n =n -1B .a n =nC .a n =n +1D .a n =n 2答案 C解析 由题意F (x )=f ⎝ ⎛⎭⎪⎫x +12-1是R 上的奇函数,即F (x )关于(0,0)对称, 则f (x )关于⎝ ⎛⎭⎪⎫12,1对称. 即f (0)+f (1)=2,f ⎝ ⎛⎭⎪⎫12=1,f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =2,f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n =2,则a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝⎛⎭⎪⎫n -1n +f (1)=n +1.11.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10, 3a 5+a 7=3(a 1+4d )+(a 1+6d )=4a 1+18d =2×10=20.12.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________. 答案 50解析 ∵数列{a n }为等比数列,且a 10a 11+a 9a 12=2e 5, ∴a 10a 11+a 9a 12=2a 10a 11=2e 5,∴a 10a 11=e 5, ∴ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20) =ln(a 10a 11)10=ln(e 5)10=ln e 50=50.13.数列{a n }的前n 项和为S n ,已知a 1=2,S n +1+(-1)nS n =2n ,则S 100=____________. 答案 198解析 当n 为偶数时,S n +1+S n =2n ,S n +2-S n +1=2n +2,所以S n +2+S n =4n +2,故S n +4+S n +2=4(n +2)+2,所以S n +4-S n =8,由a 1=2知,S 1=2,又S 2-S 1=2,所以S 2=4,因为S 4+S 2=4×2+2=10,所以S 4=6,所以S 8-S 4=8,S 12-S 8=8,…,S 100-S 96=8,所以S 100=24×8+S 4=192+6=198.14.若数列{a n }满足a 2-a 1>a 3-a 2>a 4-a 3>…>a n +1-a n >…,则称数列{a n }为“差递减”数列.若数列{a n }是“差递减”数列,且其通项a n 与其前n 项和S n (n ∈N *)满足2S n =3a n +2λ-1()n ∈N *,则实数λ的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞解析 当n =1时,2a 1=3a 1+2λ-1,a 1=1-2λ,当n >1时,2S n -1=3a n -1+2λ-1,所以2a n =3a n -3a n -1,a n =3a n -1,所以a n =()1-2λ3n -1,a n -a n -1=()1-2λ3n -1-()1-2λ3n -2=()2-4λ3n -2,依题意()2-4λ3n -2是一个递减数列,所以2-4λ<0,λ>12.15.S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解 (1)设{a n }的公差为d ,据已知有7+21d =28, 解得d =1.所以{a n }的通项公式为a n =n (n ∈N *).b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.16.各项均为正数的数列{a n }的前n 项和为S n ,且满足:S n =14a 2n +12a n +14(n ∈N *).(1)求a n ;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,证明:对一切正整数n ,都有T n <54.(1)解 由S n =14a 2n +12a n +14,①可知当n ≥2时,S n -1=14a 2n -1+12a n -1+14,②由①-②化简得(a n +a n -1)(a n -a n -1-2)=0, 又数列{a n }各项为正数,∴当n ≥2时,a n -a n -1=2,故数列{a n }成等差数列,公差为2,又a 1=S 1=14a 21+12a 1+14,解得a 1=1,∴a n =2n -1(n ∈N *).(2)证明 T n =1a 21+1a 22+1a 23+…+1a 2n -1+1a 2n=112+132+152+…+1(2n -3)2+1(2n -1)2.∵1(2n -1)2=14n 2-4n +1<14n 2-4n =14n (n -1)=14⎝ ⎛⎭⎪⎫1n -1-1n ,∴T n =112+132+152+…+1(2n -3)2+1(2n -1)2<1+14⎝ ⎛⎭⎪⎫11-12+14⎝ ⎛⎭⎪⎫12-13+…+14⎝ ⎛⎭⎪⎫1n -2-1n -1+14⎝ ⎛⎭⎪⎫1n -1-1n=1+14⎝ ⎛⎭⎪⎫11-12+12-13+…+1n -2-1n -1+1n -1-1n =1+14-14n <54.。

高考数学二轮复习指导三回扣溯源查缺补漏考前提醒4数列不等式

高考数学二轮复习指导三回扣溯源查缺补漏考前提醒4数列不等式

4.数列、不等式1.等差数列的有关概念及运算(1)等差数列的判断方法:定义法a n +1-a n =d (d 为常数)或a n +1-a n =a n -a n -1(n ≥2).(2)等差数列的通项:a n =a 1+(n -1)d 或a n =a m +(n -m )d .(3)等差数列的前n 项和:S n =n (a 1+a n )2,S n =na 1+n (n -1)2d . [回扣问题1] 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14 答案 C2.等差数列的性质(1)当公差d ≠0时,等差数列的通项公式a n =a 1+(n -1)d =dn +a 1-d 是关于n 的一次函数,且斜率为公差d ;前n 项和S n =na 1+n (n -1)2d =d 2n 2+(a 1-d 2)n 是关于n 的二次函数且常数项为0.(2)若公差d >0,则为递增等差数列;若公差d <0,则为递减等差数列;若公差d =0,则为常数列.(3)当m +n =p +q 时,则有a m +a n =a p +a q ,特别地,当m +n =2p 时,则有a m +a n =2a p .(4)S n ,S 2n -S n ,S 3n -S 2n 成等差数列.[回扣问题2] 设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9 答案 A3.等比数列的有关概念及运算(1)等比数列的判断方法:定义法a n +1a n =q (q 为常数),其中q ≠0,a n ≠0或a n +1a n =a n a n -1(n ≥2). (2)等比数列的通项:a n =a 1q n -1或a n =a m q n -m .(3)等比数列的前n 项和:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q. (4)等比中项:若a ,A ,b 成等比数列,那么A 叫做a 与b 的等比中项.值得注意的是,不是任何两数都有等比中项,只有同号两数才存在等比中项,且有两个,即为±ab .如已知两个正数a ,b (a ≠b )的等差中项为A ,等比中项为B ,则A 与B 的大小关系为A >B .[回扣问题3] 等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为________.答案 1或-124.等比数列的性质(1)若{a n },{b n }都是等比数列,则{a n b n }也是等比数列.(2)若数列{a n }为等比数列,则数列{a n }可能为递增数列、递减数列、常数列和摆动数列.(3)等比数列中,当m +n =p +q 时,a m a n =a p a q .[回扣问题4] 等比数列{a n }的各项均为正数,且a 4a 5a 6=8,则log 2a 1+log 2a 2+…+log 2a 9=( )A .9B .6C .4D .3 答案 A5.数列求和的常见方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构.(1)分组法求数列的和:如a n =2n +3n ;(2)错位相减法求和:如a n =(2n -1)2n ;(3)裂项法求和:如求1+11+2+11+2+3+…+11+2+3+…+n;(4)倒序相加法求和. [回扣问题5] 若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( )A .2n +n 2-1B .2n +1+n 2-1C .2n +1+n 2-2D .2n+n 2-2 答案 C6.求数列通项常见方法(1)已知数列的前n 项和S n ,求通项a n ,可利用公式a n =⎩⎪⎨⎪⎧S 1(n =1),S n -S n -1(n ≥2).由S n 求a n 时,易忽略n =1的情况.(2)形如a n +1=a n +f (n )可采用累加求和法,例如{a n }满足a 1=1,a n =a n -1+2n ,求a n ;(3)形如a n +1=ca n +d 可采用构造法,例如a 1=1,a n =3a n -1+2,求a n .(4)归纳法,例如已知数列{a n }的前n 项和为S n ,且S 2n -(a n +2)S n +1=0,求S n ,a n .[回扣问题6] 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.答案 a n =13n 7.不等式两端同时乘以一个数或同时除以一个数,必须讨论这个数的正负或是否为零.两个不等式相乘时,必须注意同向同正时才能进行.[回扣问题7] 若a >b >0,c <d <0,则一定有( )A.a d >b cB.a d <b cC.a c >b dD.a c <b d答案 B8.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示,不能直接用不等式表示.[回扣问题8] 已知关于x 的不等式ax 2+bx +c <0的解集是{x |x <-2,或x >-12},则ax 2-bx +c >0的解集为________.答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x <2 9.基本不等式:a +b 2≥ab (a ,b >0),当且仅当a =b 时,“=”成立. (1)推广:a 2+b 22≥a +b 2≥ab ≥21a +1b(a ,b ∈R +). (2)用法:已知x ,y 都是正数,则①若积xy 是定值p ,则当x =y 时,和x +y 有最小值2p ;②若和x +y 是定值s ,则当x =y 时,积xy 有最大值14s 2. 利用基本不等式求最值时,要注意验证“一正、二定、三相等”的条件.[回扣问题9] (1)已知x >1,则x +4x -1的最小值为________. (2)已知x >0,y >0且x +y =1,且3x +4y的最小值是________. 答案 (1)5 (2)7+4 310.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负.[回扣问题10] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .8答案 B 精美句子1、善思则能“从无字句处读书”。

数列-2020年高考数学(理)二轮专项复习

数列-2020年高考数学(理)二轮专项复习

专题05 数 列本专题的主要内容是数列的概念、两个基本数列——等差数列、等比数列.这部分知识应该是高考中的重点内容.考察数列知识时往往与其他知识相联系,特别是函数知识.数列本身就可以看作特殊(定义在N *)的函数.因此解决数列问题是常常要用到函数的知识,进一步涉及到方程与不等式.本专题的重点还是在两个基本数列——等差数列、等比数列上,包括概念、通项公式、性质、前n 项和公式.§5-1 数列的概念【知识要点】1.从函数的观点来认识数列,通过函数的表示方法,来认识数列的表示方法,从而得到数列的常用表示方法——通项公式,即:a n =f (n ).2.对数列特有的表示方法——递推法有一个初步的认识.会根据递推公式写出数列的前几项,并由此猜测数列的一个通项公式.3.明确数列的通项公式与前n 项和公式的关系: S n =a 1+a 2+…+a n ;⎩⎨⎧≥==-)2()1(11n -S S n S a n n n .特别注意对项数n 的要求,这相当于函数中的定义域. 【复习要求】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式). 2.了解数列是自变量为正整数的一类函数. 【例题分析】例1 根据数列的前几项写出该数列的一个通项公式:(1)3231,1615,87,43,21; (2)2,-6,18,-54,162; (3)9,99,999,9999,99999; (4)1,0,1,0,1,0;(5)12133,1091,857,631,413,23; (6)52,177,73,115,21,53;【分析】本题需要观察每一项与项数之间存在的函数关系,猜想出一个通项公式.这种通过特殊的元素得到一般的规律是解决问题的常用方法,但得到的规律不一定正确,可经过证明来验证你的结论.解:(1)nn n n a 211212-=-= ; (2)a n =2×(-3)n -1;(3)a n =10n -1; (4)⎩⎨⎧为偶数为奇数n n a n 01;(5)nn a n 2112+-=; (6)232++=n n a n . 【评析】(1)中分数的考察要把分子、分母分开考察,当然有时分子分母之间有关系;(2)中正负相间的情况一定与(-1)的方次有关;(3)中的情况可以扩展为7,77,777,7777,77777⇒)110(97-=n n a ;(4)中的分段函数的写法再一次体现出数列是特殊的函数,也可写成2)1(11--+=n n a ,但这种写法要求较高;(5)中的假分数写成带分数结果就很明显了;(6)中的变换要求较高,可根据分子的变化,变换整个分数,如==42218463=,根据分子,把21变为84,其他类似找到规律.例2 已知:数列{a n }的前n 项和S n ,求:数列{a n }的通项公式a n , (1)S n =n 2-2n +2;(2)1)23(-=n n S .【分析】已知数列前n 项和S n 求通项公式a n 的题目一定要考虑n =1与n ≥2两种情况,即:a n =S n -S n -1不包含a 1,实际上相当于函数中对定义域的要求.解:(1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -3,则⎩⎨⎧≥-==23211n n n a n .(2)当n =1时,,2111==S a 当n ≥2时,11)23(21--<=-=n n n n S S a ,此公式也适合n =1时的情况, 则1)23(21-⨯=n n a . 【评析】分情况求出通项公式a n 后,应考察两个式子是否能够统一在一起,如果能够统一还是写成一个式子更加简洁;如果不能统一就要写成分段函数的形式,总之分情况讨论后应该有一个总结性结论.例3完成下列各题:(1)数列{a n }中,a 1=2)11ln(1na a n n ++=+,则a 3=( )A .2+ln3B .2+2ln3C .2+3ln3D .4(2)已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ) A .-165 B .-33 C .-30 D .-21 (3)数列{a n }中,a n =4n −52,a 1+a 2+⋯+a n =an 2+bn,n ∈N ∗,其中a ,b 为常数,则ab =______.【分析】本题中三个小题都涉及数列的递推关系,这类问题,最好的办法是给n 赋值,通过特殊的项找到一般的规律.解:(1)∵n n a nn a n a a n n n n ln )1ln(1ln )11ln(1-++=++=++=+, ∴a 2=a 1+ln(1+1)-ln1=2+ln2, a 3=a 2+ln(2+1)-ln2=2+ln3,选A .(2)∵a p +q =a p +a q ,∴,36111112-=⇒-=+==+a a a a a ∴a 3=a 2+1=a 2+a 1=-6-3=-9, a 5=a 3+2=a 3+a 2=-9-6=-15, a 10=a 5+5=a 5+a 5=-30.选C . (3)∵a 1+a 2+…+a n =an 2+bn ,∴⎩⎨⎧+=++=ba a a ba a 24211,∵254-=n a n ,∴⎪⎩⎪⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧+=++=212242112323b a b a b a ,∴ab =-1.【评析】这种通过特殊的项解决数列问题的方法今后经常用到,希望大家掌握. 例4 已知:函数f (x )=a 1+a 2x +a 3x 2+…+a n x n -1,21)0(=f ,且数列{a n }满足f (1)=n 2a n (n ∈N *),求:数列{a n }的通项.【分析】首先要应用f (0)与f (1)这两个条件,由题可看出可能与S n 与a n 关系有关.解:由题知:21)0(1==a f ,f (1)=a 1+a 2+…+a n =n 2a n , 即:S n =n 2a n ,则S n -1=(n -1)2a n -1(n ≥2), ∴a n =S n -S n -1=n 2a n -(n -1)2a n -1(n ≥2),∴(n 2-1)a n =(n -1)2a n -1(n ≥2),即:)2(111≥+-=-n n n aa n n,∴)2(31425313211122334211≥⨯⨯⨯⨯--⨯-⨯+-=⨯⨯⨯⨯⨯---n n n n n n n a a a a a a a a a a n n n n ,即)2(21111≥⨯⨯+=n nn a a n ,∴)2()1(1≥+=n n n a n , ∵当n =1时,212111=⨯=a 上式也成立, ∴)()1(1*N ∈+=n n n a n .【评析】本题中,题目给出函数的条件,而f (0)与f (1)的运用就完全转化为数列问题,S n 与a n 的关系应该是要求掌握的,尤其是在n -1出现时,要注意n ≥2的限制,这相当于函数中的定义域.而叠乘的方法是求数列通项的基本方法之一.练习5-1一、选择题: 1.数列1614,1311,108,75,42---…的通项公式为( ) A .1313)1(1+--+n n n B .1313)1(+--n n n C .1323)1(---n n nD .1333)1(---n n n2.若数列的前四项是3,12,30,60,则此数列的一个通项公式是( )A .2)2)(1(++n n nB .5n 2-6n +4C .2)1(93-+n n D .2127ln 12+-n3.数列{a n }中,若a 1=1,a 2=1,a n +2=a n +1+a n ,则a 7=( )A .11B .12C .13D .14 4.数列{a n }的前n 项和为S n ,若Sn =2(a n -1),则a 2=( ) A .-2 B .1 C .2 D .4 二、填空题:5.数列2,5,2,5,…的一个通项公式______.6.数列{a n }的前n 项和S n =n 2,数列{a n }的前4项是______,a n =______. 7.若数列{a n }的前n 项和S n =2n 2-3n +1,则它的通项公式是______. 8.若数列{a n }的前n 项积为n 2,则a 3+a 5=______. 三、解答题:9.已知:数列{a n }中,若n n na a a a a =+++=211,21, 求:数列{a n }前4项,并猜想数列{a n }的一个通项公式.10.已知:数列1,2,2,3,3,3,4,4,4,4,5…,求:数列的第50项.§5-2 等差数列与等比数列【知识要点】1.熟练掌握等差数列、等比数列的定义:a n -a n -1=d (常数)(n ≥2)⇔数列{a n }是等差数列;q a a n n=-1(常数)(n ≥2)⇔数列{a n }是等比数列;由定义知:等差数列中的项a n 及公差d 均可在R 中取值,但等比数列中的项a n 及公比q 均为非零实数.应该注意到,等差数列、等比数列的定义是解决数列问题的基础,也是判断一个数列是等差数列、等比数列的唯一依据.2.明确等差中项与等比中项的概念,并能运用之解决数列问题:c b a ca b 、、⇔+=2成等差数列,b 叫做a 、c 的等差中项,由此看出:任意两个实数都有等差中项,且等差中项唯一;b 2=ac ⇔a 、b 、c 成等比数列,b 叫做a 、c 的等比中项,由此看出:只有同号的两个实数才有等比中项,且等比中项不唯一;3.灵活运用等差数列、等比数列的通项公式a n 及前n 项和公式S n : 等差数列{a n }中,a n =a m +(n -m )d =a 1+(n -1)d ,d n n na n a a S n n 2)1(211-+=+=; 等比数列{a n }中,a n =a m q n -m =a 1q n -1,⎪⎩⎪⎨⎧=/--==)1(1)1()1(11q qq a q na S n n ;4.函数与方程的思想运用到解决数列问题之中:等差数列、等比数列中,首项a 1、末项a n 、项数n ,公差d (公比q )、前n 项和S n ,五个量中,已知三个量,根据通项公式及前n 项和公式,列出方程可得另外两个量.等差数列中,n da n d S d a dn a n n )2(2121-+=-+=、,可看作一次函数与二次函数的形式,利用函数的性质可以解决数列问题.5.等差数列、等比数列的性质:等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ; 等比数列{a n }中,若m +n =p +q ,则a m ·a n =a p ·a q ; 【复习要求】1.理解等差数列、等比数列的概念.2.掌握等差数列、等比数列的通项公式与前n 项和公式.3.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、等比数列与指数函数的关系. 【例题分析】例1完成下列各题:(1)若等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=( ) A .138 B .135 C .95 D .23 (2)各项均为正数的等差数列{a n }中必有( )A .8664a aa a <B .8664a aa a ≤C .8664a aa a >D .8664a aa a ≥【分析】本题在于考察等差数列的基本知识,通项公式及前n 项和公式是一切有关数列中考察的重点,注意数列中项数之间的关系.解:(1)∵等差数列{a n }中a 2+a 4=4,a 3+a 5=10, ∴a 3=2,a 4=5,∴公差d =3,首项a 1=-4, ∴a 10=a 1+9d =-4+27=23,∴9510210110=⨯+=a a S .选C. (2)等差数列{a n }中a 4+a 8=2a 6, ∵等差数列{a n }各项均为正数,∴由均值不等式2628484)2(a a a a a =+≤⋅,当且仅当a 4=a 8时等号成立 即:8664a aa a ≤,选B .【评析】本题中涉及到等差数列中的重要性质:若m +n =p +q ,则a m +a n =a p +a q ,(1)中可直接应用这一性质:a 2+a 4=a 3+a 3=2a 3得到结论,但题中所给的答案可看作这一性质的证明,同时,等差数列中通项公式并不一定要用首项表示,可以从任何一项开始表示a n ,这也是常用的方法,(2)注意观察数列中项数的关系,各项均为正数的要求恰好给运用均值不等式创造了条件,注意等号成立的条件.例2完成下列各题:(1)等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7=( ) A .64 B .81 C .128 D .243(2)各项均为正数的等比数列{a n }的前n 项和为S n ,若S 10=2,S 30=14,则S 40=( ) A .80 B .30 C .26 D .16 【分析】本题中各小题是在运用等比数列的基本知识来解决,通项公式与前n 项和公式要熟练运用.解:(1)∵数列{a n }是等比数列,∴⎩⎨⎧=+=+=+=+63211321121q a q a a a q a a a a ,∴⎩⎨⎧==211q a ,a 7=a 1·q 6=26=64.选A . (2)方法一:∵等比数列{a n }的前n 项和为S n ,(*)21)1(10110=--=qq a S ,(**)141)1(30130=--=q q a S , 两式相除:7111030=--qq ,即:1+q 10+q 20=7⇒q 10=2或q 10=-3(舍), 把q 10=2代入(*)中得到:211-=-qa , ∴.30)21)(2(1)1(440140=--=--=qq a S 选B . 方法二:a 1+a 2+…+a 10、a 11+a 12+…+a 20、a 21+a 22+…+a 30、a 31+a 32+…+a 40、……也构成等比数列,设新等比数列的公比为p则:a 1+a 2+…+a 10=S 10=2、a 11+a 12+…+a 20=2p 、a 21+a 22+…+a 30=2p 2 ∵S 30=2+2p +2p 2=14,∴p =-3或p =2, ∵等比数列{a n }的各项均为正数,∴p =2,∴a 1+a 2+…+a 10=2、a 11+a 12+…+a 20=4、a 21+a 22+…+a 30=8、a 31+a 32+…+a 40=16,∴S 40=2+4+8+16=30.【评析】(2)中方法一仍是解决此类问题的基本方法,注意把qa -11看成整体来求,方法二的方法在等差数列及等比数列中均适用,即:等比数列中第1个n 项和、第2个n 项和、…第n 个n 项和仍然成等比数列,此时,你知道这时的公比与原数列的么比的关系吗?例3 已知:等差数列{a n }的前n 项和为S n ,且S 5=16,S 10=64,求:S 15=?.【分析】本题是对等差数列的知识加以进一步考察,可以用求和公式,也可运用等差数列的性质加以解决.解:方法一:由⎪⎪⎩⎪⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=⨯+==⨯+=2532251664291010162455111015d a d a S d a S ,则:1442141515115=⨯+=d a S ; 方法二:等差数列中:a 1+a 2+a 3+a 4+a 5、a 6+a 7+a 8+a 9+a 10, a 11+a 12+a 13+a 14+a 15这三项也构成等差数列, 即a 1+a 2+a 3+a 4+a 5=S 5=16,a 6+a 7+a 8+a 9+a 10=S 10-S 5=64-16=48, a 11+a 12+a 13+a 14+a 15=S 15-S 10=S 15-64, ∴2×48=16+S 15-64,∴S 15=144.方法三:∵596,48166452106106610=+=-=⨯+=-∴a a a a S S ,∵a 1+a 15=a 6+a 10 ∴14415259615215115=⨯=⨯+=a a S .【评析】本题中方法一是直接应用前n 项和公式,得出首项与公差,再用公式得出所求,应是基本方法,但运算较繁锁;方法二充分注意到等差数列这一条件,得到的结论可以扩展为等差数列中第1个n 项和、第2个n 项和、……第n 个n 项和仍然成等差数列,你知道这时的公差与原数列的公差的关系吗?这一方法希望大家掌握;方法三是前n 项和公式与等差数列的性质的综合应用,大家可以借鉴.例4已知:等差数列{a n }中,且na a ab nn +++= 21, (1)求证:数列{b n }是等差数列; (2)若23,1132113211=++++++=b b b a a a a ,求数列{a n }{b n }的通项公式.【分析】运用等差数列的两个公式,两个数列都是等差数列,所求通项就离不开首项和公差.解:(1)∵数列{a n }是等差数列,设公差为d ,∴2,2121121nn n n n a a n a a a b n a a a a a +=+++=⨯+=+++∴ , ∴)2(222211111≥=-=⋅+-+=---⋅-n da a a a a ab b n n n n n n ,∴数列{b n }是等差数列,公差为2d;(2)∵1,1121==+++=∴a b na a ab nn , ∵数列{a n }、{b n }是等差数列,∴31,232·66,23132132117713113113113113211321==++==++=⨯+⨯+=++++++∴∴d d b d a b a b b a a b b a a b b b a a a , ∴656161)1(1,323131)1(1+=-+=+=⨯-+=n n b n n a n n . 【评析】(1)中遇到了证明数列是等差(等比)数列,采取的方法只能是运用定义,满足定义就是,不满足定义就不是.例5 已知:等差数列{a n }中,a 3=12,S 12>0,S 13<0, 求数列{a n }的公差d 的取值范围;【分析】按照所给的条件,把两个不等的关系转化为关于公差d 的不等式. 解:(1)∵数列{a n }是等差数列,∴⎪⎩⎪⎨⎧<⨯+=>⨯+=013201221311312112a a S a a S ,即:⎩⎨⎧<++-=+>++-=+01020923313133121d a d a a d a d a a a α,∴⎪⎪⎩⎪⎨⎧-<->332827a d a d ,即:3724-<<-d , 【评析】也可直接运用d n n na S n 2)1(1-+=得到关于a 1与d 的不等式,再通过通项公式得到a 3与a 1的关系.例6 已知:四个数中,前三个数成等差数列,后三个数成等比数列,第一、四个数的和为16,第二、三个数的和为12,求这四个数.【分析】本题中,方程的思想得到明显的体现,实际上数列问题总体上就是解方程的问题,根据所给的条件,加上通项公式、前n 项和公式列出方程,解未知数,通过前面的例题大家应该有所体会了.解:方法一:设这四个数为:a ,b ,12-b ,16-a则根据题意得,⎩⎨⎧==⇒⎪⎩⎪⎨⎧-=--+=40)16()12(1222b a a b b ba b 或⎩⎨⎧==915b a ,则这四个数为0、4、8、16或15、9、3、1.方法二:设这四个数为:a -d ,a ,a +d ,ad a 2)(+ 则根据题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=++=+-441216)(2d a d a a a d a d a 或⎩⎨⎧-==69d a , 则这四个数为:0、4、8、16或15、9、3、1.【评析】列方程首先就要设未知数,题目中要求四个数,但不要就设四个未知数,要知道,方程的个数与未知数的个数一样时才有可能解出,因此在设未知数时就要用到题目中的条件.方法一是用“和”设未知数,用数列列方程;方法二是用数列设未知数,用“和”列方程.例7 已知:等差数列{a n }中,a 4=10,且a 5,a 6,a 10成等比数列,求数列{a n }前20项的和S 20.【分析】本题最后要求的是等差数列的前20项和,因此,求首项、公差以及通项公式就是必不可少的.解:∵数列{a n }是等差数列,∴a 5=a 4+d =10+d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d ,∵a 5,a 6,a 10成等比数列,∴a 62=a 5·a 10,即:(10+2d )2=(10+d )(10+6d ) ∴d =0或d =-15,当d =0时,a n =a 4=10,S 20=200;当d =-15时,a n =a 4+(n -4)d =-15n +70,1750202)230(5520220120-=⨯-+=⨯+=a a S ; 【评析】这种等差、等比数列综合运用时,往往出现多解的情况,对于多个解都要一一加以验证,即使不合题意也要说明,然后舍去.例8 已知:等差数列{a n }中,a n =3n -16,数列{b n }中,b n =|a n |,求数列{b n }的前n 项和S n .【分析】由于对含有绝对值的问题要加以讨论,因此所求的前n 项和S n 应该写成分段函数的形式.解:(1)当n ≤5时,a n <0,则:b n =|a n |=16-3n ,且b 1=13,n n n n S n 229232316132+-=⨯-+=;(2)当n ≥6时,a n >0,则:b n =|a n |=3n -16,此时:S 5=35,b 6=2,7022923)5(21632352+-=-⨯-++=n n n n S n , 由(1)(2)知,⎪⎩⎪⎨⎧≥+-≤+-=)6(7022923)5(2292322n n n n nn S n .【评析】当n ≥6时,前5项和要加在S n 中是经常被忽略的,得到的结果形式上比较复杂,可通过赋值的方法加以验证.练习5-2一、选择题:1.若等差数列的首项是-24,且从第10项开始大于零,则公差d 的取值范围是( ) A .38>d B .d <3 C .338<≤d D .338≤<d 2.若等差数列{a n }的前20项的和为100,则a 7·a 14的最大值为( ) A .25 B .50 C .100 D .不存在 3.等比数列{a n }中,若a 1+a 2=40,a 3+a 4=60,则a 7+a 8=( ) A .80 B .90 C .100 D .135 4.等差数列{a n }的前2006项的和S 2006=2008,其中所有的偶数项的和是2,则a 1003=( ) A .1 B .2 C .3 D .4 二、填空题:5.(1)等差数列{a n }中,a 6+a 7+a 8=60,则a 3+a 11=______; (2)等比数列{a n }中,a 6·a 7·a 8=64,则a 3·a 11=______;(3)等差数列{a n }中,a 3=9,a 9=3,则a 12=______; (4)等比数列{a n }中,a 3=9,a 9=3,则a 12=______.6.等比数列{a n }的公比为正数,若a 1=1,a 5=16,则数列{a n }前7项的和为______. 7.等差数列{a n }中,若a n =-2n +25,则前n 项和S n 取得最大值时n =______. 8.等比数列{a n }中,a 5a 6=-512,a 3+a 8=124,若公比为整数,则a 10=______. 三、解答题:9.求前100个自然数中,除以7余2的所有数的和.10.已知:三个互不相等的数成等差数列,和为6,适当排列后这三个数也可成等比数列,求:这三个数.11.已知:等比数列{a n }中,a 1=2,前n 项和为S n ,数列{a n +1}也是等比数列,求:数列{a n }的通项公式a n 及前n 项和S n .§5-3 数列求和【知识要点】1.数列求和就是等差数列、等比数列的求和问题,还应掌握与等差数列、等比数列有关的一些特殊数列的求和问题,2.数列求和时首先要明确数列的通项公式,并利用通项公式找到所求数列与等差数列、等比数列之间的联系,利用等差数列、等比数列的求和公式解决问题,3.三种常见的特殊数列的求和方法:(1)直接公式法:解决一个等差数列与一个等比数列对应项相加而成的新数列的求和问题;(2)错位相减法:解决一个等差数列与一个等比数列对应项相乘而成的新数列的求和问题;(3)裂项相消法:解决通项公式是等差数列相邻两项乘积的倒数的新数列的求和问题. 【复习要求】特殊数列求和体现出知识的“转化”思想——把特殊数列转化为等差数列、等比数列,而在求和的过程中又体现出方程的思想 【例题分析】例1 求和下列各式(1))21(412211n n ++++ ; (2)1×2+2×22+3×23+…+n ×2n ; (3))12)(12(1751531311+-++⨯+⨯+⨯n n ;(4)11431321211++++++++n n .【分析】我们遇到的数列求和的问题是一些特殊的数列,即与等差、等比数列密切相关的数列,最后还是回到等差、等比数列求和的问题上.解:(1))212121()21()21(4122112n n n n +++++++=++++ nn n n n n 211)1(21211)211(212)1(-++=--++=. (2)设:S n =1×2+2×22+3×23+…+n ×2n1321322222222)1(22212)++⨯-++++=-⨯+⨯-+⋯+⨯+⨯=-n n n n n n n S n n S则:22)1(21)21(2211+-=---⨯=++n n n n n n S .(3))12)(12(1751531311+-++⨯+⨯+⨯n n )]121121()5131()311[(21+--++-+-=n n 12)1211(21+=+-=n nn . (4)11431321211+++++++++n n111342312-+=-+++-+-+-=n n n .【评析】(1)中数列可看成一个等差数列与一个等比数列对应项相加而成,直接运用前n项和公式即可;(2)中数列可看成一个等差数列与一个等比数列对应项相乘而成,采用错位相减的方法,相减以前需要每一项乘以等比数列的公比,然后错位相减,还是利用等比数列的前n 项和公式,注意错位后最后一项相减时出现的负号,这是极容易出错的地方;(3)(4)都是裂项相消,都与等差数列有关,(3)中的形式更加常见一些,注意裂项后的结果要与裂项前一致,经常要乘一个系数(这个系数恰好是等差数列的公差的倒数).例2求下列数列的前n 项和S n .(1)1,-5,9,-13,17,-21,…,(-1)n -1(4n -3);(2)n+++++++ 3211,,3211,211,1; (3)1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n -1;【分析】对于一个数列来说,最重要的是通项公式,有了通项公式,就可以写出所有的项,就可以看出其与等差、等比数列的关系,从而利用等差、等比数列的前n 项和得出结论.解:(1)方法一:(当n 是奇数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3) =(1+9+17+4n -3)-[5+13+21+(4n -7)].12)21(2745)21(2341-=-⨯-+-+⨯-+=n n n n n (当n 是偶数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3) =(1+9+17+4n -7)-[5+13+21+(4n -3)].22234522741n nn n n -=⨯-+-⨯-+=方法二:(当n 是奇数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3) =(1-5)+(9-13)+(17-21)+…+(4n -11+4n -7)+(4n -3).12)34(21)4(-=-+-⨯-=n n n (当n 是偶数时,1+(-5)+9+(-13)+17+(-21)+…+(-1)n -1(4n -3) =(1-5)+(9-13)+(17-21)+…+(4n -7+4n -3).22)4(n n-=⨯-= (2)此数列中的第n 项)111(2)1(22)1(13211+-=+=+=++++=n n n n n n n a n 则n+++++++++++ 321132112111 ⋅+=+-=+-++-+-+-=12)111(2)]111()4131()3121()211[(2n nn n n(2)此数列中的第n 项1221212221n 12-=--=++++=-n n n a则1+(1+2)+(1+2+22)+…(1+2+22+…+2n -1) =(21-1)+(22-1)+(23-1)+…(2n -1)n n n n n n--=---=-++++=+2221)21(2)2222(1321.【评析】(1)中带有(-1)n ,需要讨论最后一项的正负,方法一是把正、负项分开,看成两个等差数列,方法二应该是多观察的结果,当都要对n 加以讨论,(2)(3)都要先写出通项,然后每一项按照通项的形式写出,很明显地看出方法.例3 数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设12-=n nn a b ,求证:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .【分析】对于证明数列是等差、等比数列的问题,还是要应用定义.解:(1)证明:∵,2,2111nn n n n n a b a b ++-==∴ ∴12;122222211111111====-=-=--+-++a b a a a a b b n n n n n n n n n n n , ∴数列{b n }是首项、公差都为1的等差数列,即:b n =n .(2)由(1)中结果,设12-=n n n a b 时,b n =n ,则:a n=n ·2n -1∴S n =1×20+2×21+3×22+4×23+…+(n -1)2n -2+n ·2n-1nn n nn n n n S n n n S 22222122)1(2)2(2322212)13212321⋅⋅-+++++=-+-+-++⨯+⨯+⨯=----12)1(21212+-=---=⋅⋅n nnn n n S .【评析】证明数列是等差、等比数列时,如果可能应强调首项与公差,证明后,往往要用到整个数列,因此证明完后应把数列的通项写出,便于解决其他问题.例4 已知:数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *, (1)求证:数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)证明不等式S n +1≤4S n ,对任意n ∈N *皆成立.【分析】证明等比数列是应该应用定义,比较大小最有效的方法是作差. (1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n )( n ∈N *),∵a 1-1=1≠0,∴4)()1(1=-+-+n a n a n n ,∴数列{a n -n }是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n . 则数列{a n }的前n 项和⋅++-=++++++=-2)1(314)4()24()14(11n n n S n n n(3)证明:2)1(43442)2)(1(3144111+---+++-=-+++n n n n S S n n n n.02)1)(43()43(212≤-+-=-+-=n n n n∴不等式S n +1≤4S n ,对任意n ∈N *皆成立.练习5-3一、选择题: 1.数列n n 21)12(1617815413211+-、、、、、 的前n 项之和S n =( ) A .n n 2112-+ B .n n n 21122-+-C .12211--+n nD .n n n 2112-+-2.若数列1111311211110,,10,10,10n ,…它的前n 项的积大于105,则正整数n 的最小值是( ) A .12B .11C .10D .83.数列{a n }的通项公式11++=n n a n ,若前n 项和S n =3,则n =( )A .3B .4C .15D .164.数列{a n }的前n 项和为S n ,若)1(1+=n n a n 则S 5等于( )A .1B .65 C .61 D .301 二、填空题: 5.若)1(11216121+++++=n n S n ,且431=⋅+n n S S ,则n =______. 6.若lg x +lg x 2+lg x 3+…+lg x n =n 2+n ,则x =______.7.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1)的前99项和是______.8.正项等比数列{a n }满足:a 2·a 4=1,S 3=13,若b n =log 3a n ,则数列{b n }的前10项的和是______. 三、解答题:9.已知:等差数列{a n }的前n 项和为S n ,且S 7=7,S 15=75,求数列}{nsn的前n 项和T n .10.已知:等比数列{a n }中,公比nn n n a a a T a a a S q 111,,12121+++=+++=≠ . (1)用a 1、q 、n 表示nnT S ; (2)若5533113T S T S T S 、、-成等差数列,求q 的值;11.已知:数列{a n }中,a 3=2,a 5=1,数列⎭⎬⎫⎩⎨⎧+11n a 是等差数列,(1)数列{a n }的通项公式; (2)若na b n n 1+=,求数列{b n }的前n 项和S n .§5-4 数学归纳法【知识要点】1.数学归纳法是证明与正整数有关的命题的一种方法. 2.数学归纳法证明包含两个步骤:(1)证明n =n 0时命题成立(n 0是第一个使命题成立的正整数)(2)假设n =k (k ≥n 0)时命题成立,由此证明n =k +1时命题也成立.注意到,数学归纳法是一种自动证明的方法,其中(1)是基础,(2)是一种递推的结构,在证明n =k +1命题成立时,必须要用上n =k 成立时的归纳假设. 【复习要求】了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. 【例题分析】例1 求证:)()12(2)1()12)(12(532311*222N ∈++=+-++⨯+⨯n n n n n n n 【分析】等式的证明应该是利用数学归纳法常见的命题,注意从k 到k +1时书写一定要清晰,不能模棱两可,蒙混过关.证明:(1)当n =1时,左31)12(2)11(1,313112=+⨯+⨯===⨯=右,则当n =1时原式成立 (2)假设当n =k 时原式成立,即:,)12(2)1()12)(12(532311222++=+-++⨯+⨯k k k k k k 则当n =k +1时,左)32)(12()1()12)(12(5323112222+++++-++⨯+⨯=k k k k k k )32)(12()1()12(2)1(2++++++=k k k k k k )32)(12(2)1(2)32)(1(2++++++=k k k k k k右=+++=+++++=)32(2)2)(1()32)(12(2)12)(2)(1(k k k k k k k k .故当n =k +1时原式也成立.∴由(1)(2)知:当n ∈N *时,原式均成立.【评析】数学归纳法的关键在第二步,本题中利用归纳假设把k +1个式子的和转化为两个式子的和是关键,后面的运算主要是提取公因式,最好把要变成的形式先写出来,这样就有了一个目标.例2 求证:)2,(12131211*≥∈+>++++n n n n n N 【分析】本题中n 0=2,在利用归纳假设证明n =k +1不等式也成立时,我们可以利用不等式的其他证明方法.证明:(1)当n =2时,左=+⨯=>=+=12223423211右, 则当n =2时原式成立.(2)假设当n =k 时原式成立,即:,12131211+>++++k k k 则,当n =k +1时, 左,1)1()1(2,112111*********+++=++=+++>++++++=k k k k k k k k k 右 ∵,0)2)(1()2)(1(2422521)1()1(211222>++=++---++=+++-++k k k k k k k k k k k k k ∴,1)1()1(211131211+++>++++++k k k k 故当n =k +1时原式也成立,∴由(1)(2)知:当n ∈N *,n ≥2时,原式均成立.【评析】在第二步中,利用比较法得到原式成立的结果,这种方法需要大家掌握. 例3 已知:正数数列{a n }的前n 项之和为S n ,且满足2)21(+=n n a S (1)求:a 1,a 2,a 3,a 4的值;(2)猜测数列{a n }的通项公式,并用数学归纳法加以证明.【分析】本题首先要求出前四项,应注意到正数数列这一条件,需要利用S n 与a n 的关系.解:(1),3)21(,1)21(22221212111=⇒+=+==⇒+==a a a a S a a a S ,7)21(,5)21(424432143233213=⇒+=+++==⇒+=++=a a a a a a S a a a a a S(2)猜想:a n =2n -1,证明:①当n =1时,猜想显然成立②假设当n =k 时猜想成立,即:a k =2k -1,此时,)21(22k a S k k =+= 则当n =k +1时,22111)21(k a S S a k k k k -+=-=+++, 整理得到:a k +12-2a k +1-(2k +1)(2k -1)=0,即:(a k +1+2k -1)(a k +1-2k -1)=0, ∵a n >0,∴a k +1=2k +1=2(k +1)-1, 故当n =k +1时猜想也成立. ∴由①②知:a n =2n -1(n ∈N *).【评述】这种归纳、猜想、证明的题目应该是我们解决问题中常见的,体现了由特殊到一般的过程,关键是归纳,前四项不要算错,否则就猜不出来了.例4 已知:数列{a n }、{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).求:a 2,a 3,a 4及b 2,b 3,b 4,猜测{a n },{b n }的通项公式,并证明你的结论. 【分析】利用等差中项与等比中项的条件,找到a n 、b n 、a n +1、b n +1的关系.解:由条件得2b n =a n +a n +1,121++=n n n b b a由此可得⎩⎨⎧==⇒=+=⎪⎩⎪⎨⎧962222122211b a b b a a a b ;同理得到:⎩⎨⎧==⎩⎨⎧==2520,16123433b a b a ,由此猜测a n =n (n +1),b n =(n +1)2,下面用数学归纳法证明:a n =n (n +1),b n =(n +1)2,①当n =1时,a 1=1×2=2,b 1=(1+1)2=4,猜想成立. ②假设当n =k 时,猜想成立,即a k =k (k +1),b k =(k +1)2, 则当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2),2211)2(+==++k b a b kkk , 故当n =k +1时,猜想也成立.由①②知a n =n (n +1),b n =(n +1)2对一切正整数都成立.练习5-4 1.某个命题与正整数有关,若n =k (k ∈N +)时,命题成立,那么可推出当n =k +1时,该命题也成立.现已知当n =5时,该命题不成立,那么可以推得( ) A .当n =6时,该命题不成立 B .当n =6时,该命题成立 C .当n =4时,该命题不成立 D .当n =4时,该命题成立2.平面上有n 条直线,它们任意两条不平行,任意三条不共点,若k 条这样的直线把平面分成f (k )个区域,则f (k +1)-f (k )=( ) A .k +1 B .k C .k -1 D .2k 3.利用数学归纳法证明不等式2413212111>+++++n n n 的过程中,从n =k 到n =k +1时,不等式的左边添加的代数式是______. 4.观察下列式子:474131211,3531211,23211222222<+++<++<+,…,则可以猜想的结论为:_______.5.求证:1×2+2×5+3×8+…+n (3n -1)=n 2(n +1).6.求证:12)1211()511)(311)(111(+>-++++n n .7.求证:4n +15n -1能被9整除.8.已知:递增数列{a n }满足:a 1=1,2a n +1=a n +a n +2(n ∈N *),且a 1、a 2、a 4成等比数列.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }满足:b n +1=2n b -(n -2)b n +3(n ∈N *),且b 1≥1,用数学归纳法证明:b n ≥a n .§5-5 数列综合问题【知识要点】1.灵活运用等差数列、等比数列的两个公式及其性质来解决综合问题, 2.能解决简单的由等差数列、等比数列形成的新数列的问题,3.能够利用等差数列、等比数列的定义来确定所给数列是等差数列、等比数列. 【复习要求】通过简单综合问题的解决,加深对等差数列、等比数列中,定义、通项、性质、前n 项和的认识.加深数列是特殊的函数的认识,符合高中阶段知识是以函数为主线的展开. 【例题分析】例1 完成下列各题:(1)数列{a n }中,若11121,1++=-=n n n a a a ,则a 5=______. (2)数列{a n }中,若a 1=2,a n +1=a n +n +1,则通项a n =______.【分析】叠加的方法应该是解决数列的通项以及求和问题中常见的方法. 解:(1)3451122334455212121)()()()(++=+-+-+-+-=a a a a a a a a a a 1212++ 3247=, (2)∵a n +1=a n +n +1,∴a n +1-a n =n +1 ∴利用叠加法,有:a 2-a 1=1+1a 3-a 2=2+1 a 4-a 3=3+1 ………1)1()1+-=-+-n a a n n)1)(2(214321-+=++++=-n n n a a n 整理222++=n n a n .【评析】叠加时一定要注意首、尾项的变化,尤其是符号. 例2已知:数列{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.【分析】应该是等差数列中的基本问题,还是利用两个基本公式解决问题. 解:(1)设{a n }的公差为d , 由已知条件,⎩⎨⎧-=+=+54111d a d a ,解出a 1=3,d =-2.∴a n =a 1+(n -1)d =-2n +5;(2)4)2(42)1(221+--=+-=-+=n n n d n n na S n .∴n =2时,S n 取到最大值4. 【评析】对于等差数列的前n 项和的最值问题,看成二次函数的最值问题应该是基本方法.例3 已知:数列{a n }中,a 1=1,221+=+n n a a ,设11++=n n n a a b ,求数列{b n }的前n 项和S n .【分析】注意观察所给数列变形后与等差、等比数列有哪些联系,这个联系一定要找到,而且一定有联系,显然本题中}{2na 是等差数列. 解:由题知:数列{a n }中a n >0, ∵1,2,22122121=+=+=++∴a a a a a n n n n ,∴数列}{2n a 是首项为1,公差为2的等差数列,∴12,0,122)1(12-=>-=⨯-+=∴n a a n n a n n n ,∵11++=n n n a a b ,∴)1212(2112121--+=++-=n n n n b n , ∴)112(21)1212573513(21-+=--+++-+-+-=n n n S n .【评析】对于开方的问题一定要考虑正、负,而裂项求和(也可以看作分母的有理化)在前一节中也比较多地提到.例4已知:等差数列{a n }的各项均为正数,a 1=3,等比数列{b n }中,b 1=1且b 2(a 1+a 2)=64,b 3(a 1+a 2+a 3)=960.求数列{a n }、{b n }的通项公式.【分析】还是方程思想在数列中的体现,利用所给条件,列出方程得到公差与公比,从而得到通项公式.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , ∵等差数列{a n }的各项均为正数,∴d >0,则等差数列{a n }中,a 1+a 2=2a 1+d =6+d ,a 1+a 2+a 3=3a 1+3d =9+3d , 等比数列{b n }中,b 2=b 1q =q ,b 3=q 2, ∵b 2(a 1+a 2)=64,b 3(a 1+a 2+a 3)=960,∴⎩⎨⎧=+=+960)39(64)6(2d q d q ,得d =2或56-=d , ∵d >0,∴d =2,此时q =8,∴a n =2n +1,b n =8n -1;【评析】注意题目中所给的条件如何运用,例如:等差数列{a n }的各项均为正数,隐含着给出d >0,从而对最后的结果产生影响.例5 完成下列各题:(1)若一个直角三角形三边长成等比数列,则( )A .三边长之比3∶4∶5B .三边长之比为1:2:3C .较大锐角的正弦为215- D .较小锐角的正弦为215- (2)△ABC 中,如果角A 、B 、C 成等差数列,边a 、b 、c 成等比数列,那么△ABC 一定是( )A .直角三角形B .等腰直角三角形C .等边三角形D .钝角三角形【分析】解决三角形中的问题是一定要用到正弦定理、余弦定理,三角形的内角和等于π恰好使等差数列的条件得以运用,从而得到角B 为3π的结论,再利用余弦定理找到边之间的关系,应该是数列与三角综合问题中常见的方法.解:(1)由题中条件可设三边为a 、aq 、aq 2(q >1),由勾股定理:a 2+a 2q 2=a 2q 4,则25101224+=⇒=--q q q , 设较小锐角为A ,其对边为a ,则215512sin 2-=+==aq a A .选D . (2)∵△ABC 中,角A 、B 、C 成等差数列,∴⎩⎨⎧=+++=π2C B A C A B ,∴3π=B ,由余弦定理212cos 222=-+=ac b c a B ,得a 2+c 2-b 2=ac , ∵三条边a 、b 、c 成等比数列,∴b 2=ac ,∴a 2+c 2-2ac =0,即a =c ,∴△ABC 一定是等边三角形.选C . 【评析】解决与三角形有关的问题时,一定要想到正弦定理、余弦定理,与数列综合时,应把角的关系转化为边的关系,因为边成等比数列,所以用边判断三角形形状应该是正确的选择.例6 已知数列{a n }的前n 项和S n =npa n ,且a 1≠a 2, (1)确定p 的值;(2)判断数列{a n }是否为等差数列. 【分析】本题中存在递推的关系,解决时还是通过赋值,找到结论,赋值时要多赋几个,以免出现冲突.解:(1)∵S n =npa n ,∴S 1=a 1=pa 1,∴a 1=0或p =1,∵S 2=a 1+a 2=2pa 2,∴当p =1时,有a 1+a 2=2a 2⇒a 1=a 2与已知矛盾, ∴p ≠1,∴a 1=0(且a 2≠0),∵S 2=a 1+a 2=2pa 2,a 2≠0,∴21=P ; (2)由(1)中结论:n n na S 21=,即:2S n =na n ,则2S n +1=(n +1)a n +1, ∴两式相减:2(S n +1-S n )=2a n +1=(n +1)a n +1-na n ①, 同理得到:2a n =na n -(n -1)a n -1(n ≥2) ②,∴①-②得2a n +1-2a n =(n +1)a n +1-2na n +(n -1)a n -1(n ≥2), 整理得到2(n -1)a n =(n -1)a n +1+(n -1)a n -1(n ≥2),∵n ≥2,∴2a n =a n +1+a n -1,即:a n +1-a n =a n -a n -1, ∴数列{a n }是等差数列.【评析】(1)中对n =1得到的结论要加以验证,这也是为什么要多赋几个值的原因,(2)中开始由S n 求a n 的方法应该掌握,而后面①-②得到结论的方法并不多见,实际上是在找数列中连续三项存在的关系,最后得到的也是等差数列的定义,即:每一项与其前一项的差都相等,这与a n -a n -1是常数略有不同,希望大家了解.例7在数列{a n }中,S n +1=4a n +2,且a 1=1,(1)若b n =a n +1-2a n ,求证:数列{b n }是等比数列;(2)若nnn a c 2=,求证:数列{c n }是等差数列; (3)求数列{a n }的通项公式a n 及前n 项和公式S n . 【分析】还是要应用定义来证明等差、等比数列.解:(1)∵S n +1=4a n +2,∴S n =4a n -1+2(n ≥2),∴a n +1=S n +1-S n =4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1),即b n =2b n -1,∵S n +1=4a n +2,a 1=1,∴S 2=a 1+a 2=4a 1+2,∴a 2=5,∴b 1=a 2-2a 1=3,∴数列{b n }是首项为3,公比为2的等比数列,即:b n =3·2n -1; (2)∵n n n n n n n n n n n n n n b a a a a c c a c 22222,211111-----=-=-=-=∴ ∵b n =3·2n -1,∴,432232211=⋅==----n n n n n n b c c ∵21211==a c ∴数列{c n }是首项为21,公差为等差数列43, 即⋅-=4143n c n(3)∵),4143(22,2-===⋅⋅∴n c a a c nnn n n n n )4143(248245242232-⨯++⨯+⨯+⨯=n S n n)4143(2)222(431)4143(2)41)1(43(24524222)132132-⨯-++++=--⨯+--⨯++⨯+⨯=-++n S n n S n n n n n n∴S n =(3n -4)·2n -1+2.【评析】前两问实际上是第三问的铺垫,证明等差、等比数列后,要写出通项公式,为下一步的问题作准备.错位相减时要注意计算,方法再好,结果是错的,也不能说明你的水平.练习5-5一、选择题:1.已知{a n }为等差数列,{b n }为正项等比数列,公比q ≠1,若a 1=b 1,a 11=b 11,则( ) A .a 6=b 6 B .a 6>b 6 C .a 6<b 6 D .a 6>b 6或a 6<b 62.设数列{a n }的前n 项和S n ,且a n =-2n +1,则数列}{nsn的前11项为( )A .-45B .-50C .-55D .-66 3.已知等比数列(a n )中a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,0)∪(1,+∞) B .(-∞,-1] C .(-∞,-1]∪[3,+∞) D .[3,+∞)4.△ABC 中,tan A 是等差数列{a n }的公差,且a 3=-1,a 7=1,tan B 是等比数列{b n }的公比,且b 3=9,316=b ,则这个三角形是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .等腰三角形 二、填空题:5.若等差数列{a n }中,a 1+a 3=5,a 8+a 10=19,则前10项和S 10=______. 6.设等比数列{a n }的公比q =2,前n 项和为S n ,则24a S=______.7.等差数列{a n }中,a 1>0,S 4=S 9,当S n 取得最大值时,n =______. 8.数列{a n }中,若a 1=1,n n a n na 11+=+,则通项公式a n =______. 三、解答题:9.已知:递增等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2、a 4的等差中项. 求{a n }的通项公式a n ;10.已知数列{x n }的首项x 1=3,x n =2n p +nq ,且x 1,x 4,x 5成等差数列,(1)求:常数p ,q 的值;(2)求:数列{x n }的前n 项的和S n 的公式.11.已知{a n }是正数组成的数列,a 1=1,且点),(1+n n a a 在函数y =x 2+1的图象上.(1)求:数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b n +12.。

(全国通用)2020版高考数学二轮复习 提升专题 数列 教案讲义

(全国通用)2020版高考数学二轮复习 提升专题  数列 教案讲义

第1讲 等差数列、等比数列[例1] (1)(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,已知S 4=0,a 5=5,则( )A.a n =2n -5B.a n =3n -10C.S n =2n 2-8nD.S n =12n 2-2n(2)(2019·全国卷Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.[答案] (1)A (2)1213[解析] (1)设首项为a 1,公差为d .由S 4=0,a 5=5可得⎩⎪⎨⎪⎧a 1+4d =5,4a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=-3,d =2. 所以a n =-3+2(n -1)=2n -5,S n =n ×(-3)+n (n -1)2×2=n 2-4n .故选A.(2)由a 24=a 6得(a 1q 3)2=a 1q 5,整理得q =1a 1=3.∴S 5=13(1-35)1-3=1213.[解题方略] 等差(比)数列基本运算的解题思路 (1)设基本量:首项a 1和公差d (公比q ).(2)列、解方程(组):把条件转化为关于a 1和d (或q )的方程(组),然后求解,注意整体计算,以减少运算量.[跟踪训练]1.(2019·福州市质量检测)已知数列{a n }中,a 3=2,a 7=1.若数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,则a 9=( )A.12 B.54 C.45D.-45解析:选C 因为数列⎩⎨⎧⎭⎬⎫1a n 为等差数列,a 3=2,a 7=1,所以数列⎩⎨⎧⎭⎬⎫1a n 的公差d =1a 7-1a 37-3=1-127-3=18,所以1a 9=1a 7+(9-7)×18=54,所以a 9=45,故选C.2.(2019·开封市定位考试)等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( )A.-1B.1C.-2D.2解:(1)设{a n }的公比为q ,由题设得2q 2=4q +16,即q 2-2q -8=0.解得q =-2(舍去)或q =4.因此{a n }的通项公式为a n =2×4n -1=22n -1.(2)由(1)得b n =(2n -1)log 22=2n -1,因此数列{b n }的前n 项和为1+3+…+2n -1=n 2.解析:选C 法一:因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.法二:因为a 3+4S 2=0,所以a 2q +4a 2q +4a 2=0,因为a 2≠0,所以q +4q+4=0,即(q+2)2=0,所以q =-2,故选C.3.(2019·全国卷Ⅱ)已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和.[例2] (1)(2019·长春市质量监测一)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.(2)在等差数列{a n }中,已知a 1=13,3a 2=11a 6,则数列{a n }的前n 项和S n 的最大值为________.[解析] (1)法一:设数列{a n }的公比为q (q >0且q ≠1),由题意可得⎩⎪⎨⎪⎧S 6=a 1(1-q 6)1-q=30, ①S 9=a 1(1-q 9)1-q =70,②①÷②得,1-q 61-q 9=1+q 31+q 3+q 6=37,又由q >0,得q 3=2,再由S 3S 6=a 1(1-q 3)1-q a 1(1-q 6)1-q=11+q 3=13,得S 3=13S 6=10. 法二:由题意可得(S 6-S 3)2=S 3(S 9-S 6),即(30-S 3)2=40S 3,即S 23-100S 3+900=0,解得S 3=10或S 3=90,又数列{a n }的各项均为正数,所以S 3<S 6,S 3=90(舍去),故S 3=10.(2)设{a n }的公差为d .法一:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15.由⎩⎪⎨⎪⎧a n ≥0,a n +1≤0得⎩⎪⎨⎪⎧-2n +15≥0,-2(n +1)+15≤0,解得6.5≤n ≤7.5. 因为n ∈N *,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=7(13-2×7+15)2=49.法二:由3a 2=11a 6,得3(13+d )=11(13+5d ), 解得d =-2,所以a n =13+(n -1)×(-2)=-2n +15. 所以S n =n (13+15-2n )2=-n 2+14n =-(n -7)2+49,所以当n =7时,数列{a n }的前n 项和S n 最大,最大值为S 7=49. [答案] (1)10 (2)49[解题方略] 与数列性质有关问题的求解策略[跟踪训练]1.在等比数列{a n }中,a 3,a 15是方程x 2+6x +2=0的根,则a 2a 16a 9的值为( ) A.-2+22B.- 2C. 2D.-2或 2解析:选B 设等比数列{a n }的公比为q ,因为a 3,a 15是方程x 2+6x +2=0的根,所以a 3·a 15=a 29=2,a 3+a 15=-6,所以a 3<0,a 15<0,则a 9=-2,所以a 2a 16a 9=a 29a 9=a 9=-2,故选B.2.(2019·四省八校双教研联考)在公差不为0的等差数列{a n }中,4a 3+a 11-3a 5=10,则15a 4=( ) A.-1 B.0 C.1D.2解析:选C 法一:设{a n }的公差为d (d ≠0),由4a 3+a 11-3a 5=10,得4(a 1+2d )+(a 1+10d )-3(a 1+4d )=10,即2a 1+6d =10,即a 1+3d =5,故a 4=5,所以15a 4=1,故选C.法二:设{a n }的公差为d (d ≠0),因为a n =a m +(n -m )d ,所以由4a 3+a 11-3a 5=10,得4(a 4-d )+(a 4+7d )-3(a 4+d )=10,整理得a 4=5,所以15a 4=1,故选C.法三:由等差数列的性质,得2a 7+3a 3-3a 5=10,得4a 5+a 3-3a 5=10,即a 5+a 3=10,则2a 4=10,即a 4=5,所以15a 4=1,故选C.3.数列{a n }是首项a 1=m ,公差为2的等差数列,数列{b n }满足2b n =(n +1)a n ,若对任意n ∈N *都有b n ≥b 5成立,则m 的取值范围是________.解析:由题意得,a n =m +2(n -1), 从而b n =n +12a n =n +12[m +2(n -1)].又对任意n ∈N *都有b n ≥b 5成立,结合数列{b n }的函数特性可知b 4≥b 5,b 6≥b 5,故⎩⎪⎨⎪⎧52(m +6)≥3(m +8),72(m +10)≥3(m +8),解得-22≤m ≤-18.答案:[-22,-18][例3] 设S n 为数列{a n }的前n 项和,对任意的n ∈N *,都有S n =2-a n ,数列{b n }满足b 1=2a 1,b n =b n -11+b n -1(n ≥2,n ∈N *).(1)求证:数列{a n }是等比数列,并求{a n }的通项公式;(2)判断数列⎩⎨⎧⎭⎬⎫1b n 是等差数列还是等比数列,并求数列{b n }的通项公式.[解] (1)当n =1时,a 1=S 1=2-a 1,解得a 1=1; 当n ≥2时,a n =S n -S n -1=a n -1-a n , 即a n a n -1=12(n ≥2,n ∈N *). 所以数列{a n }是首项为1, 公比为12的等比数列,故数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)因为a 1=1,所以b 1=2a 1=2.因为b n =b n -11+b n -1,所以1b n =1b n -1+1,即1b n -1b n -1=1(n ≥2).所以数列⎩⎨⎧⎭⎬⎫1b n 是首项为12,公差为1的等差数列.所以1b n =12+(n -1)·1=2n -12,故数列{b n }的通项公式为b n =22n -1.[解题方略]数列{a n }是等差数列或等比数列的证明方法(1)证明数列{a n }是等差数列的两种基本方法: ①利用定义,证明a n +1-a n (n ∈N *)为一常数; ②利用等差中项,即证明2a n =a n -1+a n +1(n ≥2).(2)证明{a n }是等比数列的两种基本方法: ①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).[跟踪训练]已知数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). (1)求a 1,a 2,a 3的值.(2)设b n =a n +3,证明数列{b n }为等比数列,并求通项公式a n . 解:(1)因为数列{a n }的前n 项和为S n ,且S n =2a n -3n (n ∈N *). 所以n =1时,由a 1=S 1=2a 1-3×1,解得a 1=3,n =2时,由S 2=2a 2-3×2,得a 2=9, n =3时,由S 3=2a 3-3×3,得a 3=21.(2)因为S n =2a n -3n , 所以S n +1=2a n +1-3(n +1), 两式相减,得a n +1=2a n +3,①把b n =a n +3及b n +1=a n +1+3,代入①式, 得b n +1=2b n (n ∈N *),且b 1=6,所以数列{b n }是以6为首项,2为公比的等比数列, 所以b n =6×2n -1,所以a n =b n -3=6×2n -1-3=3(2n-1).逻辑推理——等比数列运算中的分类讨论[典例] 已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A.(-∞,-1] B.(-∞,0)∪[1,+∞) C.[3,+∞)D.(-∞,-1]∪[3,+∞)[解析] 设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝ ⎛⎭⎪⎫1q +1+q =1+q +1q.当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立;当公比q <0时,S 3=1-⎝ ⎛⎭⎪⎫-q -1q ≤1-2(-q )·⎝ ⎛⎭⎪⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞). [答案] D[素养通路]等比数列的公比q <0时,相邻两项一定异号,相隔一项的两项符号一定相同;等比数列的公比q >0时,数列中的各项符号相同.用等比数列前n 项和公式时,如果其公比q 不确定,要分q =1和q ≠1两种情况进行讨论.本题考查了逻辑推理及数学运算的核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.(2019·全国卷Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A.16B.8C.4D.2解析:选C 由题意知⎩⎪⎨⎪⎧a 1>0,q >0,a 1+a 1q +a 1q 2+a 1q 3=15,a 1q 4=3a 1q 2+4a 1,解得⎩⎪⎨⎪⎧a 1=1,q =2,∴a 3=a 1q 2=4.故选C.2.(2019·湖南省五市一校联考)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 1+a 6=( )A.6B.7C.8D.9解析:选B 法一:由题意知,数列{a n }是等差数列,设公差为d ,则⎩⎪⎨⎪⎧a 1+d +a 1+3d +a 1+5d =12,a 1+a 1+2d +a 1+4d =9,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以a 1+a 6=a 1+a 1+5d =7,故选B. 法二:由题意知,数列{a n }是等差数列,将a 2+a 4+a 6=12与a 1+a 3+a 5=9相加可得3(a 1+a 6)=12+9=21,所以a 1+a 6=7,故选B.3.(2019·福州市质量检测)等比数列{a n }的各项均为正实数,其前n 项和为S n .若a 3=4,a 2a 6=64,则S 5=( )A.32B.31C.64D.63解析:选 B 法一:设首项为a 1,公比为q ,因为a n >0,所以q >0,由条件得⎩⎪⎨⎪⎧a 1·q 2=4,a 1q ·a 1q 5=64,解得⎩⎪⎨⎪⎧a 1=1,q =2,所以S 5=31,故选B. 法二:设首项为a 1,公比为q ,因为a n >0,所以q >0,由a 2a 6=a 24=64,a 3=4,得q =2,a 1=1,所以S 5=31,故选B.4.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2,n ∈N *),那么a 2019=( ) A.1 B.-2 C.3D.-3解析:选A 因为a n +1=a n -a n -1(n ≥2),所以a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n-1=(a n -1-a n -2)-a n -1=-a n -2(n ≥3).所以a n +3=-a n (n ∈N *),所以a n +6=-a n +3=a n , 故{a n }是以6为周期的周期数列. 因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.5.(2019届高三·西安八校联考)若等差数列{a n }的前n 项和为S n ,若S 6>S 7>S 5,则满足S n S n +1<0的正整数n 的值为( )A.10B.11C.12D.13解析:选C 由S 6>S 7>S 5,得S 7=S 6+a 7<S 6,S 7=S 5+a 6+a 7>S 5,所以a 7<0,a 6+a 7>0,所以S 13=13(a 1+a 13)2=13a 7<0,S 12=12(a 1+a 12)2=6(a 6+a 7)>0,所以S 12S 13<0,即满足S n S n+1<0的正整数n 的值为12,故选C.6.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin2x +2cos 2x 2,记y n =f (a n ),则数列{y n }的前9项和为( )A.0B.-9C.9D.1解析:选 C 由已知可得,数列{a n }为等差数列,f (x )=sin2x +cos x +1,∴f ⎝ ⎛⎭⎪⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin2x -cos x +1,∴f (π-x )+f (x )=2,∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.二、填空题7.(2019·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.解析:设等比数列的公比为q ,则a n =a 1qn -1=qn -1.∵a 1=1,S 3=34,∴a 1+a 2+a 3=1+q +q 2=34,即4q 2+4q +1=0,∴q =-12,∴S 4=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:588.(2019·北京高考)设等差数列{a n }的前n 项和为S n ,若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.解析:∵a 2=a 1+d =-3,S 5=5a 1+10d =-10, ∴a 1=-4,d =1, ∴a 5=a 1+4d =0, ∴a n =a 1+(n -1)d =n -5.令a n <0,则n <5,即数列{a n }中前4项为负,a 5=0,第6项及以后为正. ∴S n 的最小值为S 4=S 5=-10. 答案:0 -109.设某数列的前n 项和为S n ,若S nS 2n为常数,则称该数列为“和谐数列”.若一个首项为1,公差为d (d ≠0)的等差数列{a n }为“和谐数列”,则该等差数列的公差d =________.解析:由S n S 2n =k (k 为常数),且a 1=1,得n +12n (n -1)d =k ⎣⎢⎡⎦⎥⎤2n +12×2n (2n -1)d ,即2+(n -1)d =4k +2k (2n -1)d ,整理得,(4k -1)dn +(2k -1)(2-d )=0,∵对任意正整数n ,上式恒成立,∴⎩⎪⎨⎪⎧d (4k -1)=0,(2k -1)(2-d )=0,得⎩⎪⎨⎪⎧d =2,k =14,∴数列{a n }的公差为2.答案:2 三、解答题10.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d .因为a 1=-10, 所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2=(a 2+10)(a 4+6). 所以(-2+2d )2=d (-4+3d ). 解得d =2.所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=-30.11.(2019·广西梧州、桂林、贵港等期末)设S n 为等差数列{a n }的前n 项和,a 2+a 3=8,S 9=81.(1)求{a n }的通项公式;(2)若S 3,a 14,S m 成等比数列,求S 2m .解:(1)∵⎩⎪⎨⎪⎧S 9=9a 5=9(a 1+4d )=81,a 2+a 3=2a 1+3d =8,∴⎩⎪⎨⎪⎧a 1=1,d =2, 故a n =1+(n -1)×2=2n -1. (2)由(1)知,S n =n (1+2n -1)2=n 2.∵S 3,a 14,S m 成等比数列,∴S 3·S m =a 214,即9m 2=272,解得m =9,故S 2m =182=324.12.(2019·广州市调研测试)设S n 为数列{a n }的前n 项和,已知a 3=7,a n =2a n -1+a 2-2(n ≥2).(1)证明:数列{a n +1}为等比数列;(2)求数列{a n }的通项公式,并判断n ,a n ,S n 是否成等差数列?解:(1)证明:∵a 3=7,a 3=3a 2-2,∴a 2=3, ∴a n =2a n -1+1, ∴a 1=1,a n +1a n -1+1=2a n -1+2a n -1+1=2(n ≥2),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列. (2)由(1)知,a n +1=2n, ∴a n =2n-1,∴S n =2(1-2n)1-2-n =2n +1-n -2,∴n +S n -2a n =n +(2n +1-n -2)-2(2n-1)=0,∴n +S n =2a n ,即n ,a n ,S n 成等差数列.B 组——大题专攻强化练1.(2019·湖南省湘东六校联考)已知数列{a n }满足a n +1-3a n =3n(n ∈N *)且a 1=1. (1)设b n =a n3n -1,证明:数列{b n }为等差数列;(2)设c n =n a n,求数列{c n }的前n 项和S n . 解:(1)证明:由已知得a n +1=3a n +3n,得b n +1=a n +13n=3a n +3n3n=a n3n -1+1=b n +1,所以b n +1-b n =1,又a 1=1,所以b 1=1, 所以数列{b n }是首项为1,公差为1的等差数列. (2)由(1)知,b n =a n3n -1=n ,所以a n =n ·3n -1,c n =13n -1,所以S n =1×⎝ ⎛⎭⎪⎫1-13n 1-13=32⎝ ⎛⎭⎪⎫1-13n =32-12·3n -1.2.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 解:(1)设{a n }的公差为d . 由S 9=-a 5得a 1+4d =0. 由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n . (2)由(1)得a 1=-4d ,故a n =(n -5)d ,S n =n (n -9)d 2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0,解得1≤n ≤10,所以n 的取值范围是{n |1≤n ≤10,n ∈N }.3.(2019·全国卷Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)证明:由题设得4(a n +1+b n +1)=2(a n +b n ),即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2. 又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1,所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.4.已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)求使b 1+b 2+…+b n >2020成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5.又由a n -2a n +1+a n +2=0知,a n +2-a n +1=a n +1-a n =…=a 2-a 1=2, 故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n +1.(2)由(1)知,b n =2n+1.于是b 1+b 2+…+b n =(21+22+ (2))+n =2(1-2n)1-2+n =2n +1+n -2.令f (n )=2n +1+n -2,易知f (n )是关于n 的单调递增函数,又f (9)=210+9-2=1031,f (10)=211+10-2=2056, 故使b 1+b 2+…+b n >2020成立的最小正整数n 的值是10.第2讲 数列通项与求和[例1] (1)已知S n 为数列{a n }的前n 项和,a 1=1,当n ≥2时,S n -1+1=a n ,则a 8=________.(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________. [解析] (1)当n =2时,S 1+1=a 2,即a 2=2.当n ≥2时,⎩⎪⎨⎪⎧S n -1+1=a n ,S n +1=a n +1,相减得a n +1=2a n ,又a 1=1,所以a 2=2a 1.所以数列{a n }构成一个等比数列, 所以a 8=a 2·q 6=2×26=128.(2)因为a 1+3a 2+…+(2n -1)a n =2n ,①故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1),② ①-②得(2n -1)a n =2,所以a n =22n -1, 又n =1时,a 1=2适合上式, 从而{a n }的通项公式为a n =22n -1. [答案] (1)128 (2)22n -1[解题方略]1.给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .2.形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列.[跟踪训练]1.已知S n 是数列{a n }的前n 项和,且log 5(S n +1)=n +1,则数列{a n }的通项公式为________.解析:由log 5(S n +1)=n +1,得S n +1=5n +1,所以S n =5n +1-1.当n ≥2时,a n =S n -S n -1=4×5n;当n =1时,a 1=S 1=24,不满足上式.所以数列a n 的通项公式为a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2. 答案:a n =⎩⎪⎨⎪⎧24,n =1,4×5n,n ≥2 2.已知首项为2的数列{a n }满足a n +1(2n -1)=a n (2n +1)(n ∈N *),则数列{a n }的通项公式为a n =________.答案:4n -2解析:因为a n +1(2n -1)=a n (2n +1)(n ∈N *),且a 1=2,所以a n +1a n =2n +12n -1,得a n =a 1×a 2a 1×a 3a 2×…×a n a n -1=2×31×53×…×2n -12n -3=4n -2. 考点二数列的求和题型一 分组转化求和[例2] 已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n .[解] (1)设{a n }的公差为d ,因为a 2=3,{a n }前4项的和为16,所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88,所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n-1=3n.(2)由(1)得b n =3n+2n -1,所以S n =(3+32+33+ (3))+(1+3+5+…+2n -1) =3(1-3n)1-3+n (1+2n -1)2=32(3n -1)+n 2 =3n +12+n 2-32. [解题方略]求解此类题的关键:一是会“列方程”,即会利用方程思想求出等差数列与等比数列中的基本量;二是会“用公式”,即会利用等差(比)数列的通项公式,求出所求数列的通项公式;三是会“分组求和”,观察数列的通项公式的特征,若数列是由若干个简单数列(如等差数列、等比数列、常数列等)组成,则求前n 项和时可用分组求和法,把数列分成几个可以直接求和的数列;四是会“用公式法求和”,对分成的各个数列的求和,观察数列的特点,一般可采用等差数列与等比数列的前n 项和公式求和.题型二 裂项相消求和[例3] (2019·湖南省湘东六校联考)已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N ),且a 1=1.(1)求数列{a n }的通项公式a n ; (2)记b n =1a n ·a n +1,T n 为{b n }的前n 项和,求使T n ≥2n成立的n 的最小值.[解] (1)由已知有S n -S n -1=1(n ≥2,n ∈N ), ∴数列{S n }为等差数列,又S 1=a 1=1, ∴S n =n ,即S n =n 2.当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又a 1=1也满足上式,∴a n =2n -1.(2)由(1)知,b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 由T n ≥2n得n 2≥4n +2,即(n -2)2≥6,∴n ≥5,∴n 的最小值为5. [解题方略]求解此类题需过“三关”:一是定通项关,即会利用求通项的常用方法,求出数列的通项公式;二是巧裂项关,即能将数列的通项公式准确裂项,表示为两项之差的形式;三是消项求和关,即把握消项的规律,求和时正负项相消,准确判断剩余的项是哪几项,从而准确求和.题型三 错位相减求和[例4] (2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式.(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3, 故a n =3+3(n -1)=3n ,b n =3×3n -1=3n.所以,{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n. (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎢⎡⎦⎥⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n). 记T n =1×31+2×32+…+n ×3n,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33- (3)+n ×3n +1=-3(1-3n)1-3+n ×3n +1=(2n -1)3n +1+32.所以,a 1c 1+a 2c 2+…+a 2n c 2n =3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).[解题方略]运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }是不是一个为等差数列,一个为等比数列;二是错开位置,为两式相减不会看错列做准备;三是相减,相减时一定要注意最后一项的符号,学生在解题时常在此步出错,一定要小心.[跟踪训练]1.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8. (1)求数列{a n }的通项公式a n ;(2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解:(1)依题意,设等比数列{a n }的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2=8,则3q 2-4q -4=0,而q >0,∴q =2.于是a 1=2,∴数列{a n }的通项公式为a n =2n. (2)由(1)得b n =log 2a n a n =n2n ,∴T n =12+222+323+…+n2n ,12T n =122+223+…+n -12n +n 2n +1, 两式相减得,12T n =12+122+123+…+12n -n 2n +1,∴T n =1+12+122+…+12n -1-n2n=1-⎝ ⎛⎭⎪⎫12n1-12-n2n =2-n +22n.2.(2019·江西七校第一次联考)设数列{a n }满足:a 1=1,3a 2-a 1=1,且2a n =a n -1+a n +1a n -1a n +1(n ≥2).(1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,且b 1=12,4b n =a n -1a n (n ≥2),求T n .解:(1)∵2a n =a n -1+a n +1a n -1a n +1(n ≥2),∴2a n =1a n -1+1a n +1(n ≥2).又a 1=1,3a 2-a 1=1, ∴1a 1=1,1a 2=32,∴1a 2-1a 1=12, ∴⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为12的等差数列.∴1a n =1+12(n -1)=12(n +1), 即a n =2n +1. (2)∵4b n =a n -1a n (n ≥2), ∴b n =1n (n +1)=1n -1n +1(n ≥2),∴T n =b 1+b 2+…+b n =⎛⎪⎫1-12+ ⎛⎪⎫12-13+…+ ⎛⎪⎫1n -1n +1=1-1n +1=n n +1. [例5] (2019·昆明市诊断测试)已知数列{a n }是等比数列,公比q <1,前n 项和为S n ,若a 2=2,S 3=7.(1)求{a n }的通项公式;(2)设m ∈Z ,若S n <m 恒成立,求m 的最小值.[解] (1)由a 2=2,S 3=7得⎩⎪⎨⎪⎧a 1q =2,a 1+a 1q +a 1q 2=7, 解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=1,q =2(舍去).所以a n =4·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -3.(2)由(1)可知,S n =a 1(1-q n )1-q =4⎝ ⎛⎭⎪⎫1-12n 1-12=8⎝ ⎛⎭⎪⎫1-12n <8.因为a n >0,所以S n 单调递增.又S 3=7,所以当n ≥4时,S n ∈(7,8). 又S n <m 恒成立,m ∈Z ,所以m 的最小值为8.[解题方略]求解数列与函数交汇问题注意两点:(1)数列是一类特殊的函数,其定义域是正整数集(或它的有限子集),在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件.[跟踪训练](2019·重庆市七校联合考试)已知等差数列{a n }的公差为d ,且关于x 的不等式a 1x 2-dx -3<0的解集为(-1,3).(1)求数列{a n }的通项公式;(2)若b n =2a n +12+a n ,求数列{b n }的前n 项和S n .解:(1)由题意知,方程a 1x 2-dx -3=0的两个根分别为-1和3.则⎩⎪⎨⎪⎧d a 1=2,-3a 1=-3,解得⎩⎪⎨⎪⎧d =2,a 1=1.故数列{a n }的通项公式为a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)由(1)知a n =2n -1,所以b n =2a n +12+a n =2n+(2n -1), 所以S n =(2+22+23+…+2n )+(1+3+5+…+2n -1)=2n +1+n 2-2.数学运算——数列的通项公式及求和问题[典例] 设{a n }是公比大于1的等比数列,S n 为其前n 项和,已知S 3=7,a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项公式;(2)令b n =a n +ln a n ,求数列{b n }的前n 项和T n . [解] (1)设数列{a n }的公比为q (q >1).由已知,得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 1(1-6q +q 2)=-7. 由q >1,解得⎩⎪⎨⎪⎧a 1=1,q =2,故数列{a n }的通项公式为a n =2n -1.(2)由(1)得b n =2n -1+(n -1)ln2,所以T n =(1+2+22+…+2n -1)+[0+1+2+…+(n -1)]ln2=1-2n1-2+n (n -1)2ln2=2n-1+n (n -1)2ln2.[素养通路]数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.主要包括:理解运算对象,掌握运算法则,探究运算思路,选择运算方法,设计运算程序,求得运算结果等.本题通过列出关于首项与公比的方程组,并解此方程组得出首项与公比,从而得出通项公式;通过分组分别根据等比数列求和公式、等差数列求和公式求和.考查了数学运算这一核心素养.[专题过关检测]A 组——“6+3+3”考点落实练一、选择题1.若数列{a n }的通项公式是a n =(-1)n +1·(3n -2),则a 1+a 2+…+a 2020=( )A.-3027B.3027C.-3030D.3030解析:选C 因为a 1+a 2+…+a 2020=(a 1+a 2)+(a 3+a 4)+…+(a 2019+a 2020)=(1-4)+(7-10)+…+[(3×2019-2)-(3×2020-2)]=(-3)×1010=-3030,故选C.2.已知数列{a n }满足a n +1a n +1+1=12,且a 2=2,则a 4=( )A.-12B.23C.12D.11解析:选D 因为数列{a n }满足a n +1a n +1+1=12,所以a n +1+1=2(a n +1),即数列{a n +1}是等比数列,公比为2,则a 4+1=22(a 2+1)=12,解得a 4=11.3.(2019·广东省六校第一次联考)数列{a n }的前n 项和为S n =n 2+n +1,b n =(-1)na n (n ∈N *),则数列{b n }的前50项和为( )A.49B.50C.99D.100解析:选A 由题意得,当n ≥2时,a n =S n -S n -1=2n ,当n =1时,a 1=S 1=3,所以数列{b n }的前50项和为(-3+4)+(-6+8)+…+(-98+100)=1+2×24=49,故选A.4.已知数列{a n }是等差数列,若a 2,a 4+3,a 6+6构成公比为q 的等比数列,则q =( ) A.1 B.2 C.3D.4解析:选A 令等差数列{a n }的公差为d ,由a 2,a 4+3,a 6+6构成公比为q 的等比数列,得(a 4+3)2=a 2(a 6+6),即(a 1+3d +3)2=(a 1+d )·(a 1+5d +6),化简得(2d +3)2=0,解得d =-32.所以q =a 4+3a 2=a 1-92+3a 1-32=a 1-32a 1-32=1.故选A.5.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处浮雕共7层,每上层的数量是下层的2倍,总共有1016个浮雕,这些浮雕构成一幅优美的图案,若从最下层往上,浮雕的数量构成一个数列{a n },则log 2(a 3a 5)的值为( )A.8B.10C.12D.16解析:选C 依题意得,数列{a n }是以2为公比的等比数列, 因为最下层的浮雕的数量为a 1,所以S 7=a 1(1-27)1-2=1016,解得a 1=8,所以a n =8×2n -1=2n +2(1≤n ≤7,n ∈N *),所以a 3=25,a 5=27,从而a 3×a 5=25×27=212, 所以log 2(a 3a 5)=log 2212=12,故选C.6.(2019·洛阳市统考)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,且a n >0,6S n =a 2n +3a n ,b n =2a n(2a n -1)(2a n +1-1),若k >T n 恒成立,则k 的最小值为( )A.17 B.149 C.49D.8441解析:选B ∵6S n =a 2n +3a n ,∴6S n +1=a 2n +1+3a n +1, ∴6a n +1=(a n +1+a n )(a n +1-a n )+3(a n +1-a n ), ∴(a n +1+a n )(a n +1-a n )=3(a n +1+a n ), ∵a n >0,∴a n +1+a n >0,∴a n +1-a n =3, 又6a 1=a 21+3a 1,a 1>0,∴a 1=3.∴{a n }是以3为首项,3为公差的等差数列,∴a n =3n ,∴b n =17·⎝ ⎛⎭⎪⎫18n -1-18n +1-1,∴T n =17·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫18-1-182-1+⎝ ⎛⎭⎪⎫182-1-183-1+…+⎝ ⎛⎭⎪⎫18n -1-18n +1-1=17·⎝ ⎛⎭⎪⎫17-18n +1-1<149, ∴k ≥149,∴k 的最小值为149,故选B.二、填空题7.在各项都为正数的等比数列{a n }中,已知a 1=2,a 2n +2+4a 2n =4a 2n +1,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q >0,因为a 1=2,a 2n +2+4a 2n =4a 2n +1, 所以(a n q 2)2+4a 2n =4(a n q )2,化为q 4-4q 2+4=0, 解得q 2=2,q >0,解得q = 2.则数列{a n }的通项公式a n =2×(2)n -1=2n +12.答案:2n +128.(2019·安徽合肥一模改编)设等差数列{a n }满足a 2=5,a 6+a 8=30,则a n =________,数列⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为________. 解析:设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,∴a 7-a 2=5d .又a 2=5,则d =2.∴a n =a 2+(n -2)d =2n +1.∴1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4(n +1).答案:2n +1n4(n +1)9.(2019·福州市质量检测)已知数列{a n }的前n 项和为S n ,a 1=1,且S n =λa n -1(λ为常数),若数列{b n }满足a n b n =-n 2+9n -20,且b n +1<b n ,则满足条件的n 的取值集合为________.解析:因为a 1=1,且S n =λa n -1(λ为常数), 所以a 1=λ-1=1,解得λ=2,所以S n =2a n -1,所以S n -1=2a n -1-1(n ≥2),所以a n =2a n -1,∴数列{a n }是等比数列,首项是1,公比是2,所以a n =2n -1.因为a n b n =-n 2+9n -20,所以b n =-n 2+9n -202n -1, 所以b n +1-b n =n 2-11n +282n=(n -4)(n -7)2n<0,解得4<n <7,又因为n ∈N *,所以n =5或n =6. 即满足条件的n 的取值集合为{5,6}. 答案:{5,6} 三、解答题10.(2019·江西七校第一次联考)数列{a n }满足a 1=1,a 2n +2=a n +1(n ∈N *). (1)求证:数列{a 2n }是等差数列,并求出{a n }的通项公式; (2)若b n =2a n +a n +1,求数列{b n }的前n 项和.解:(1)由a 2n +2=a n +1得a 2n +1-a 2n =2,且a 21=1, 所以数列{a 2n }是以1为首项,2为公差的等差数列, 所以a 2n =1+(n -1)×2=2n -1,又由已知易得a n >0,所以a n =2n -1(n ∈N *). (2)b n =2a n +a n +1=22n -1+2n +1=2n +1-2n -1,故数列{b n }的前n 项和T n =b 1+b 2+…+b n =(3-1)+(5-3)+…+(2n +1-2n -1)=2n +1-1.11.已知数列{a n }的前n 项和S n =2n +1-2,b n =a n2n +2n .(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n +1-2-2n +2=2n,当n =1时,a 1=S 1=2,所以a n =2n .(2)∵b n =a n2n +2n =2n +1,∴a n b n =(2n +1)·2n.∴T n =3×2+5×22+7×23+…+(2n +1)·2n, 2T n =3×22+5×23+7×24+…+(2n +1)·2n +1,∴-T n =6+23+24+…+2n +1-(2n +1)·2n +1=6+23(1-2n -1)1-2-(2n +1)2n +1=-2-(2n -1)·2n +1.∴T n =(2n -1)·2n +1+2.12.(2019·郑州市第二次质量预测)数列{a n }满足:a 12+a 23+…+a nn +1=n 2+n ,n ∈N *.(1)求{a n }的通项公式;(2)设b n =1a n ,数列{b n }的前n 项和为S n ,求满足S n >920的最小正整数n .解:(1)由题意知,a 12+a 23+…+a nn +1=n 2+n ,当n ≥2时,a 12+a 23+…+a n -1n =(n -1)2+n -1,两式相减得,a nn +1=2n ,a n =2n (n +1)(n ≥2).当n =1时,a 1=4也符合,所以a n =2n (n +1),n ∈N *. (2)b n =1a n=12n (n +1)=12⎝ ⎛⎭⎪⎫1n -1n +1,所以S n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1), 由S n =n 2(n +1)>920得n >9,所以满足条件的最小正整数n 为10.B 组——大题专攻强化练1.(2019·河北省九校第二次联考)已知{a n }是各项都为正数的数列,其前n 项和为S n ,且S n 为a n 与1a n的等差中项.(1)求数列{a n }的通项公式;(2)设b n =(-1)na n,求{b n }的前n 项和T n .解:(1)由题意知,2S n =a n +1a n,即2S n a n -a 2n =1,①当n =1时,由①式可得a 1=S 1=1;当n ≥2时,a n =S n -S n -1,代入①式,得2S n (S n -S n -1)-(S n -S n -1)2=1, 整理得S 2n -S 2n -1=1.所以{S 2n }是首项为1,公差为1的等差数列,S 2n =1+n -1=n . 因为{a n }的各项都为正数,所以S n =n , 所以a n =S n -S n -1=n -n -1(n ≥2),又a 1=S 1=1,所以a n =n -n -1.(2)b n =(-1)na n =(-1)nn -n -1=(-1)n(n +n -1),当n 为奇数时,T n =-1+(2+1)-(3+2)+…+(n -1+n -2)-(n +n -1)=-n ;当n 为偶数时,T n =-1+(2+1)-(3+2)+…-(n -1+n -2)+(n +n -1)=n .所以{b n }的前n 项和T n =(-1)nn .2.(2019·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. ∴S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,∴(3a 1+5)2=(2a 1+2)·(4a 1+12), 解得a 1=1, ∴a n =2n -1. (2)b n =(-1)n4na n a n +1=(-1)n⎝⎛⎭⎪⎫12n -1+12n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1+12n +1=-2n2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝ ⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1,∴T n =-1-12n +1=-2n +22n +1.∴T n=⎩⎪⎨⎪⎧-2n 2n +1,n 为偶数,-2n +22n +1,n 为奇数.3.(2019·江苏高考题节选)定义首项为1且公比为正数的等比数列为“M ­数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M ­数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.求数列{b n }的通项公式.解:(1)证明:设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0, 解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M ­数列”.(2)因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ). 当n ≥2时,由b n =S n -S n -1,得b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). 4.已知数列{a n }满足:a 1=1,a n +1=n +1n a n +n +12n . (1)设b n =a nn,求数列{b n }的通项公式; (2)求数列{a n }的前n 项和S n . 解:(1)由a n +1=n +1n a n +n +12n 可得a n +1n +1=a n n +12n, 又b n =a n n ,所以b n +1-b n =12n ,由a 1=1,得b 1=1,所以当n ≥2时,(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=121+122+…+12n -1,所以b n -b 1=12⎝ ⎛⎭⎪⎫1-12n -11-12=1-12n -1,即b n =2-12n -1(n ≥2),易知b 1=1满足上式,所以b n =2-12n -1(n ∈N *).(2)由(1)可知a n =2n -n 2n -1,设数列⎩⎨⎧⎭⎬⎫n 2n -1的前n 项和为T n ,则T n =120+221+322+…+n2n -1,①12T n =121+222+323+…+n2n ,② 由①-②得,12T n =120+121+122+…+12n -1-n 2n =120-12n1-12-n 2n =2-n +22n . 所以T n =4-n +22n -1.所以数列{a n }的前n 项和S n =n (n +1)-4+n +22n -1.[思维流程——找突破口][典例] 已知数列{a n }满足a 1=1,na n +1=2(n +1)·a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [快审题][稳解题] (1)由条件可得a n +1=2(n +1)na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列. 理由如下: 由条件可得a n +1n +1=2a nn, 即b n +1=2b n ,又b 1=1,所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.[题后悟道] 等差、等比数列基本量的计算模型(1)分析已知条件和求解目标,确定为最终解决问题需要首先求解的中间问题.如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)等,确定解题的逻辑次序.(2)注意细节.在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等.[针对训练]已知正数数列{a n }的前n 项和为S n ,满足a 2n =S n +S n -1(n ≥2),a 1=1. (1)求数列{a n }的通项公式.(2)设b n =(1-a n )2-a (1-a n ),若b n +1>b n 对任意n ∈N *恒成立,求实数a 的取值范围.。

2020高三数学高考复习回归课本教案:数列

2020高三数学高考复习回归课本教案:数列

2020高考复习数学回归课本:数列一.考试内容:数列.等差数列及其通项公式.等差数列前n 项和公式. 等比数列及其通项公式.等比数列前n 项和公式.二.考试要求:(1)理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项. (2)理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题. 【注意】本部分内容考查的重点是等差、等比数列的通项公式与前n 项 和公式的灵活运用,特别要重视数列的应用性问题,尤其是数列与函数、数列与方程、数列 与不等式等的综合应用.三.基础知识:1.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ). 2.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 3.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.4.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 5.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 四.基本方法和数学思想1.由S n 求a n ,a n ={),2()1(*11N n n S S n S n n ∈≥-=- 注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出。

2020届高三数学(理)二轮复习专题集训:专题四数列4.2Word版含解析.doc

2020届高三数学(理)二轮复习专题集训:专题四数列4.2Word版含解析.doc

A1.已知数列 { a n } 中, a 1=a 2= 1, a n + 2=a n + 2, n 是奇数,20 和数列 { a n } 的前2a n , n 是偶数,()A .1 121B . 1 122C .1 123D . 1 124分析: 由 意可知,数列 { a 2n } 是首 1,公比 2 的等比数列,数列 { a 2n - 1} 是首1,公差1× 1- 210+10× 1+ 10× 9× 2=1 123.2 的等差数列, 故数列 { a n } 的前 20 和1- 22C.答案: C2.若数列 { a n } 足 a 1= 15,且 3a n +1= 3a n - 2, 使 a k ·a k + 1< 0 的 k( )A .22B . 21C .24D . 23分析:因 3a n + 1= 3a n -2,因此 a n + 1- a n =- 2,因此数列 { a n } 是首15,公差32的等差数列,因此22 n + 47 ,令 a n =- 2 47 > 0,得 n < 23.5,所 - a n = 15- ·(n - 1)=-3 3n + 3333以使 a k ·a k + 1< 0 的 k23.答案: D3.(2017 广· 省五校 作体第一次 断考)数列 { a n } 足 a 1=1,且 a n +1= a 1+ a n + n(n∈N *), 1 + 1+⋯+1 等于 ( )a 1 a 2 a 2 0164 0324 028 A.2 017 B .2 015 2 0152 014C.2 016D . 2 015分析:由 a 1= 1, a n +1 =a 1 +a n +n 可得 a n + 1- a n =n + 1,利用累加法可得a n - a 1=n - 1 n +2n 2+ n1 2 11 1 1 1,因此a n =,因此= 2+ n = 2 - ,故 + + ⋯ +=2n n n n + 1 1 a 2 a 2 0162 a a 1 -1 111- 1 = 21 4 032 , A.2 1 2 +-+⋯+2 0161-2 017=2 017232 017 答案:A4.(2017 湖·北省七市 (州 ) 考 )在各 都 正数的数列{ a n } 中,首 a 1= 2,且点 (a n 2,a n 2- 1)在直 x - 9y = 0 上, 数列 { a n } 的前 n 和 S n 等于 ()nA .3 -1C.2分析:由点 (a n 2,a n 2- 1)在直nB .1- -33n 2+ nD .222x - 9y = 0 上,得 a n - 9a n - 1= 0,即 (a n + 3a n -1 )(a n - 3a n - 1)= 0,又数列 { a n } 各 均 正数,且 a 1= 2,∴ a n + 3a n - 1>0,∴ a n - 3a n -1= 0,即a n= 3,∴a n - 1n n数列 { a n } 是首 a 1= 2,公比a 1 1- q2× 3-1n q = 3 的等比数列,其前 n 和 S n ==3- 1= 31- q-1,故 A.答案:A5.已知等比数列 { a n } 的前 n 和 S n ,若 a 2= 12,a 3·a 5 = 4, 以下 法正确的选项是 ()A . { a n } 是 减数列B . { S n } 是 减数列C .{ a 2n } 是 减数列D . { S 2n } 是 减数列分析:因为 { a n } 是等比数列, a 3 a 5=a 42= 4,又 a 2= 12, a 4>0,a 4= 2,q 2= 1,当6q =-6, { a n } 和 { S n } 不拥有 性, A 和 B ; a 2n = a 2q2n - 2= 12× 1 n - 166减, C 正确;当 q =-6, { S 2n } 不拥有 性, D .6答案: C6.在数列 { a n } 中, a 1= 1, a n + 2+ (- 1)n a n = 1. S n是数列 { a n } 的前 n 和,S 100 =________.分析:当 n =2k , a 2k + 2+ a 2k = 1;当 n = 2k - 1 , a 2k + 1= a 2k - 1+ 1,因此 a 2k - 1= 1+ (k - 1)× 1= k.因此 S 100= (a 1+ a 3+ ⋯ + a 99) + (a 2+ a 4+ a 6+ a 8+ ⋯ + a 100 )= 1+ 50×50+ 25 2= 1 275+ 25= 1 300.答案:1 3007. (2016 ·国卷乙全 ) 等比数列 { a n } 足 a 1+ a 3= 10,a 2+a 4= 5, a 1 a 2⋯a n 的最大________.分析:等比数列 { a n } 的公比1 q , 由 a 1+ a 3= 10,a 2+ a 4=q(a 1+ a 3 )= 5,知 q = .2又 a 1+ a 1q 2= 10,∴ a 1=8.故 a 1a 2⋯ a n = a 1n q 1+ 2+ ⋯+(n -1)= 23n ·1n - 1 n2 2= 23n -n 2+ n = 2-n 2+7n.222 22 t =- n+7n=- 1(n 2- 7n),2 22合 n∈N*可知 n= 3 或 4 , t 有最大 6.t6又 y= 2 增函数,进而a1a2⋯ a n的最大 2 = 64.8.某数列的前n 和 S n,若S n常数,称数列“和数列”.若一个首S2n1,公差 d(d≠ 0)的等差数列 { a n} “和数列”,等差数列的公差d= ________.n11S分析:由S2n=k( k 常数 ),且 a1= 1,得 n+2n(n- 1)d= k 2n+2×2n2n- 1 d ,即 2+( n- 1)d= 4k+ 2k(2n- 1)d,整理得, (4k- 1)dn+ (2k- 1)(2- d)= 0.∵ 随意正整数 n,上d 4k- 1 =0,d= 2,1∴数列 { a n} 的公差 2.式恒建立,∴得2k- 1 2-d =0,k=4,答案: 2nn+1+ a(n∈N*n,且 6S n=3).9.已知等比数列 { a } 的前 n 和S(1)求 a 的及数列 { a n} 的通公式;1(2)若 b n= (1- an)log 3(a n2·a n+1),求数列b n的前 n 和 T n.n+ 1*分析:(1) ∵6S n= 3+a(n∈ N),当 n≥2 , 6a n= 6(S n- S n-1)= 2× 3n,即 a n= 3n-1,∵ { a n} 是等比数列,∴ a1= 1, 9+ a= 6,得 a=- 3,∴数列 { a n} 的通公式a n= 3n-1(n∈N* ).(2)由 (1) 得 b n= (1- an)log 3( a n2·a n+1)= (3n-2)(3 n+1) ,∴T =1+1+⋯+1n b1b2b n=1+1+⋯+1 1×4 4×73n- 2 3n+ 1=11-1+1-1+⋯+1-1 34473n- 23n+ 1=n.3n+ 1*3x2x10.数列{ a n } 的前 n 和S n,且点 (n, S n)(n∈N )在函数 y=2-2的象上.(1)求数列 { a n} 的通公式;(2) b n=a n+ 2n+1 ,求数列{ b n }的前n和T n. 32分析:(1) 因 点 (n , S n )(n ∈ N * )在函数 y =3x- x的 象上,22因此 3n 2 -n = 2S n ,①因此当 n ≥ 2 , 3(n - 1)2- (n - 1)= 2S n - 1,② 由①-②,得6n - 4= 2a n ,因此 a n = 3n -2.因 n = 1 , 3×12-1= 2a 1,因此 a 1= 1,切合上式,因此数列{ a n } 的通 公式a n=3n - 2.a n + 2 3n n12 3 n(2)因 b n = 3 n + 1 = 3 n + 1= 3n , T n =3 + 32+33+ ⋯+ 3n ,③2 3 n 3T n = 1+3+ 32+ ⋯ +3n -1,④1 n1 n1 1 1 n 1×1-3n31-3n 由④-③,得2T n = 1+ 3+32 +⋯ + 3n -1-3n = 1- 3n =2- 3n ,1- 33 - 1 n3 2n + 3 .因此 T n =n -1- n = - n4 4·32·3 4 4·3B1. (2017 全·国卷Ⅰ )几位大学生响 国家的 呼吁,开 了一款 用 件. 激 大家学 数学的 趣,他 推出了“解数学 取 件激活 ”的活 . 款 件的激活下边数学 的答案:已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,⋯,此中第一 是20,接下来0,10,1, 2N :N>100的两 是 2 2 ,再接下来的三 是 2 2 2 ,依此 推.求 足以下条件的最小整数且 数列的前N 和 2 的整数 .那么 款 件的激活 是()A .440B . 330C .220D . 110分析:首 第1 ,接下来的两 第2 ,再接下来的三 第3 ,依此推, 第 n 的 数 n ,前 n 的 数和n 1+ n.2由 意知, N>100,令n 1+ n>100 ? n ≥ 14,且 n ∈ N *,即 N 出 在第 13 以后.2nn第 n 的各 和 1- 2= 2n - 1,前 n 全部 的和2 1-2 - n = 2n +1- 2-n.1-21-2N 是第 n + 1 的第 k ,若要使前 N 和 2 的整数 , N -n1+ n的和即2第 n + 1 的前 k 的和 2k -1 与- 2- n 互 相反数,即 2k - 1=2+ n(k ∈ N * , n ≥ 14), k=log 2(n + 3)? n 最小29,此 k =5, N =29×1+ 29+ 5= 440.故 A.2答案: A2. (2017 昆·明市教课 量 )在平面直角坐 系上,有一点列P 1, P 2,⋯, P n ,⋯ (n*), 点 P n 的坐2 *), 点 P n ,P n + 1 的直 与两坐 所∈N(n ,a n ),此中 a n = (n ∈Nn成的三角形的面b n , S n 表示数列 { b n } 的前 n 和, S 5= ________.22 - 2n,即分析:由 意得, 点 P n , P n + 1 的直y - n=n +12x +n(n + 1)y - 2(2nx - n n + 1 - n+1) = 0.令 y = 0,得 x = 2n + 1,令 x = 0,得 y =22n +1 ,因此 b n = 1× (2n +1) ×2 2n + 1=n n +1 2 n n + 14+ 11 -11 1 1 1 1 125= 4+ n + 1,因此 S 5= 4×5+ 1- + - + ⋯ + - = .n n + 1 n 2 2 3 5 6 6答案:12563.已知△ ABC 的角 A 、 B 、 C 的 分a 、b 、c ,其面S = 4 3, B = 60°,且 a 2+ c 2=2b 2;等差数列 { a n } 中, a 1= a ,公差 d =b.数列 { b n } 的前 n 和 T n ,且 T n -2b n + 3=0, n ∈ N * .(1)求数列 { a n } 、 { b n } 的通 公式;a n , n 奇数(2) c n =,求数列 { c n } 的前 2n + 1 和 P 2n + 1.b n , n 偶数分析:(1) ∵S = 1acsin B =4 3,∴ ac = 16,2又 a 2+ c 2= 2b 2,b 2 =a 2+ c 2- 2accos B ,∴ b 2= ac =16,∴ b =4,进而 (a + c)2= a 2+ c 2+ 2ac = 64, a + c = 8, ∴ a = c = 4.a 1= 4,故可得∴ a n = 4n.d = 4,∵ T n - 2b n + 3= 0,∴当 n = 1 , b 1= 3,当 n ≥2 , T n - 1- 2b n -1 +3= 0,两式相减,得 b n = 2b n - 1(n ≥ 2),n - 1∴数列 { b n } 等比数列,∴b n = 3·2.4n , n 奇数(2)依 意,c n =3·2n - 1, n 偶数 .P 2n + 1= (a 1+ a 3+ ⋯+ a 2n + 1)+ (b 2+ b 4+ ⋯ +b 2 n )=[4+ 4 2n +1 ] n + 1 +6 1-4n21-4= 22n -1+ 4n 2+ 8n + 2.4.已知数列 { a n } 足 a n +1- a n = 2[f(n +1) -f(n)](n ∈ N * ).(1)若 a 1= 1, f(x) =3x + 5,求数列 { a n } 的通 公式;(2)若= 6, f(x) =2x 且 λa n + n + 2λ 全部a 1 n >2n ∈ N * 恒建立,求 数λ的取 范 .分析:(1) 因 a n + 1-a n = 2[f(n + 1)- f(n)](n ∈N * ), f(n)= 3n + 5,因此 a n + 1- a n = 2(3n + 8- 3n - 5)= 6, 因此 { a n } 是等差数列,首a 1=1,公差6,即 a n = 6n - 5.(2)因 f(x)= 2x ,因此 f(n + 1)- f(n)= 2n +1- 2n =2n , 因此 a n + 1- a n = 2·2n = 2n +1.当 n ≥2 , a n = (a n - a n -1)+ ( a n - 1- a n -2 )+ ⋯+ (a 2- a 1)+ a 1= 2n + 2n - 1+ ⋯ + 22+ 6= 2n+1+ 2,当 n =1 , a = 6,切合上式,因此a =2 n +1+ 2.1n由 λa n2n + n 1 nn + 1n 1-n或 n =+ n + 2λ,得 λ>n + 1 = + n + 1,而n +2- n + 1=n + 2 ≤ 0,因此当 n = 1n >222 22 22n+ n 3,故 λ的取 范3,+∞ .2n +1 获得最大2 , 244。

2020届二轮复习 数列 学案(全国通用)

2020届二轮复习      数列       学案(全国通用)

高考冲刺: 数列【高考展望】1.等差(比)数列的基本知识是必考内容,这类问题既有选择题、填空题,也有解答题;难度易、中、难三类皆有.2.数列中n a 与n S 之间的互化关系是高考解答题的一个热点.3.函数思想、方程思想、分类讨论思想等数学思想方法在解决问题中常常用到,解答试题时要注意灵活应用.4.解答题的难度有逐年增大的趋势,还有一些新颖题型,如与导数和极限相结合等. 【知识升华】1.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n 项和公式等.2.运用方程的思想解等差(比)数列,是常见题型,解决此类问题需要抓住基本量1a 、d (或q ),掌握好设未知数、列出方程、解方程三个环节,常通过“设而不求,整体代入”来简化运算.3.分类讨论的思想在本章尤为突出.学习时考虑问题要全面,如等比数列求和要注意1q =和1q ≠两种情况等等.4.等价转化是数学复习中常常运用的,数列也不例外.如n a 与n S 的转化;将一些数列转化成等差(比)数列来解决等.复习时,要及时总结归纳.5.深刻理解等差(比)数列的定义,能正确使用定义和等差(比)数列的性质是学好本章的关键.6.解题要善于总结基本数学方法.如观察法、类比法、错位相减法、待定系数法、归纳法、数形结合法,养成良好的学习习惯,定能达到事半功倍的效果.7.数列应用题也是命题点,这类题关键在于建模及数列的一些相关知识的应用.8.本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法.应用问题考查的重点是现实客观事物的数学化,常需构造数列模型,将现实问题转化为数学问题来解决. 【典型例题】类型一:正确理解和运用数列的概念与通项公式例1.在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以()f n 表示第n 堆的乒乓球总数,则()f 3= ;()f n = (答案用n 表示).……【思路点拨】从图中观察各堆最低层的兵乓球数分别是1,3,6,10, …,推测出第n 层的球数。

2020届二轮复习 数列 学案(全国通用)

2020届二轮复习    数列   学案(全国通用)

高中数学精讲精练 第五章 数列【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证. 2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等. 5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课 数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系; 3. 能通过一些基本的转化解决数列的通项公式和前n 项和的问题。

【基础练习】1.已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =3-。

分析:由a 1=0,)(1331++∈+-=N n a a a n n n 得⋅⋅⋅⋅⋅⋅==-=,0,3,3432a a a 由此可知: 数列}{n a 是周期变化的,且三个一循环,所以可得: .3220-==a a2.在数列{}n a 中,若11a =,12(1)n n a a n +=+≥,则该数列的通项n a = 2n-1 。

3.设数列{}n a 的前n 项和为n S ,*1(31)()2n n a S n N -=∈ ,且454a =,则1a =____2__. 4.已知数列{}n a 的前n 项和(51)2n n n S +=-,则其通项n a = 52n -+. 【范例导析】例1.设数列{}n a 的通项公式是285n a n n =-+,则(1)70是这个数列中的项吗?如果是,是第几项? (2)写出这个数列的前5项,并作出前5项的图象; (3)这个数列所有项中有没有最小的项?如果有,是第几项?分析:70是否是数列的项,只要通过解方程27085n n =-+就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。

2020高考数学二轮复习 数列的概念教案 精品

2020高考数学二轮复习 数列的概念教案 精品

数列的概念【考点概述】①了解数列的概念和几种简单的表示方法(列表、图像、通项公式). ②了解数列是自变量为正整数的一类函数. 【重点难点】:理解数列的概念,探索并掌握数列的几种简单的表示法(列表、图象、通项公式);了解数列是一种特殊的函数;发现数列规律找出可能的通项公式. 【知识扫描】 1. 数列的概念按照 叫做数列,其一般形式为 ,可简记为{a n },其中a n 叫数列{a n }的通项. 2. 数列的通项公式如果数列{}n a 的 可以用一个公式 a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.通项公式可以看成数列的函数解析式. 3. 数列的分类① 若按照数列的 可分为有穷数列、无穷数列;② 若按照数列的 可分为递增数列、递减数列、摆动数列和常数列. 4.数列的表示方法 ; ; 5. 数列与函数的关系从函数观点看,数列可以看成是以 为定义域的函数)(n f a n =,当自变量按照从小到大的顺序依次取值时所对应的一列函数值. 反过来,对于函数)(x f y =,如果)(i f ,...)3,2,1(=i 有意义,那么可以得到一个数列 .6. 递推公式:形如7. 数列的前n 项和数列{a n }的前n 项和a 1+a 2+…a n 通常用S n 表示,即S n =a 1+a 2+…+a n ,则a n =____(1),____(2).n n =⎧⎨≥⎩【热身练习】1.一个数列的前四项为-1,1,3,5,7,……,则它的一个通项公式是 。

2. 已知数列{}n a 的通项公式是254n a n n =-+,则54是这个数列中第 项. 3. 若数列{}n a 的前n 项和22n S n n =+,则678a a a ++=_____。

4.记数列{}n a 的前n 项和为n S ,且)1(2-=n n a S ,则=2a ___.5. 数列{}n a 的通项公式nn a n ++=11,它的前n 项和为9n S =,则n =_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回扣4 数列1.牢记概念与公式等差数列、等比数列等差数列等比数列通项公式a n=a1+(n-1)d a n=a1q n-1(q≠0)前n项和S n=n(a1+a n)2=na1+n(n-1)2d(1)q≠1,S n=a1(1-q n)1-q=a1-a n q1-q;(2)q=1,S n=na12.活用定理与结论(1)等差、等比数列{a n}的常用性质等差数列等比数列性质①若m,n,p,q∈N*,且m+n=p+q,则a m+a n=a p+a q;②a n=a m+(n-m)d;③S m,S2m-S m,S3m-S2m,…仍成等差数列①若m,n,p,q∈N*,且m+n=p+q,则a m·a n=a p·a q;②a n=a m q n-m;③S m,S2m-S m,S3m-S2m,…仍成等比数列(S m≠0)(2)判断等差数列的常用方法①定义法a n+1-a n=d(常数)(n∈N*)⇔{a n}是等差数列.②通项公式法a n=pn+q(p,q为常数,n∈N*)⇔{a n}是等差数列.③中项公式法2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列.④前n项和公式法S n =An 2+Bn (A ,B 为常数,n ∈N *)⇔{a n }是等差数列.(3)判断等比数列的常用方法 ①定义法a n +1a n=q (q 是不为0的常数,n ∈N *)⇔{a n }是等比数列. ②通项公式法a n =cq n (c ,q 均是不为0的常数,n ∈N *)⇔{a n }是等比数列.③中项公式法a 2n +1=a n ·a n +2(a n ·a n +1·a n +2≠0,n ∈N *)⇔{a n }是等比数列.3.数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和.(2)形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列,利用错位相减法求和. (3)通项公式形如a n =c(an +b 1)(an +b 2)(其中a ,b 1,b 2,c 为常数)用裂项相消法求和.(4)通项公式形如a n =(-1)n·n 或a n =a ·(-1)n(其中a 为常数,n ∈N *)等正负项交叉的数列求和一般用并项法.并项时应注意分n 为奇数、偶数两种情况讨论.(5)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(6)并项求和法:先将某些项放在一起求和,然后再求S n .1.已知数列的前n 项和求a n ,易忽视n =1的情形,直接用S n -S n -1表示.事实上,当n =1时,a 1=S 1;当n ≥2时,a n =S n -S n -1.2.易混淆几何平均数与等比中项,正数a ,b 的等比中项是±ab .3.等差数列中不能熟练利用数列的性质转化已知条件,灵活整体代换进行基本运算.如等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,已知S n T n =n +12n +3,求a nb n时,无法正确赋值求解.4.易忽视等比数列中公比q ≠0导致增解,易忽视等比数列的奇数项或偶数项符号相同造成增解. 5.运用等比数列的前n 项和公式时,易忘记分类讨论.一定分q =1和q ≠1两种情况进行讨论. 6.利用错位相减法求和时,要注意寻找规律,不要漏掉第一项和最后一项. 7.裂项相消法求和时,裂项前后的值要相等, 如1n (n +2)≠1n -1n +2,而是1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.8.通项中含有(-1)n的数列求和时,要把结果写成n 为奇数和n 为偶数两种情况的分段形式.1.设等差数列{a n }的前n 项和为S n ,已知S 13>0,S 14<0,若a k ·a k +1<0,则k 等于( ) A .6 B .7 C .13 D .14 答案 B解析 因为{a n }为等差数列,S 13=13a 7,S 14=7(a 7+a 8), 所以a 7>0,a 8<0,a 7·a 8<0,所以k =7.2.已知在等比数列{a n }中,a 1+a 2=3,a 3+a 4=12,则a 5+a 6等于( ) A .3 B .15 C .48 D .63 答案 C 解析a 3+a 4a 1+a 2=q 2=4,所以a 5+a 6=(a 3+a 4)·q 2=48. 3.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( ) A .6 B .7 C .12 D .13答案 C解析 ∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零, 又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0, ∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12.4.已知数列{a n }满足13n a +=9·3n a(n ∈N *)且a 2+a 4+a 6=9,则13log (a 5+a 7+a 9)等于( )A .-13B .3C .-3 D.13答案 C解析 由已知13n a+=9·3n a=23na +,所以a n +1=a n +2,所以数列{a n }是公差为2的等差数列,a 5+a 7+a 9=(a 2+3d )+(a 4+3d )+(a 6+3d )=(a 2+a 4+a 6)+9d =9+9×2=27,所以13log (a 5+a 7+a 9)=13log 27=-3.故选C.5.已知正数组成的等比数列{a n },若a 1·a 20=100,那么a 7+a 14的最小值为( ) A .20 B .25 C .50 D .不存在答案 A解析 在正数组成的等比数列{a n }中,因为a 1·a 20=100,由等比数列的性质可得a 1·a 20=a 7·a 14=100,那么a 7+a 14≥2a 7·a 14=2100=20,当且仅当a 7=a 14=10时取等号,所以a 7+a 14的最小值为20. 6.已知数列{a n }的前n 项和为S n ,若S n =2a n -4(n ∈N *),则a n 等于( ) A .2n +1B .2nC .2n -1D .2n -2答案 A解析 a n +1=S n +1-S n =2a n +1-4-(2a n -4)⇒a n +1=2a n ,再令n =1,∴S 1=2a 1-4⇒a 1=4, ∴数列{a n }是以4为首项,2为公比的等比数列, ∴a n =4·2n -1=2n +1,故选A.7.已知等差数列{a n }的公差和首项都不等于0,且a 2,a 4,a 8成等比数列,则a 1+a 5+a 9a 2+a 3等于( )A .2B .3C .5D .7 答案 B解析 ∵在等差数列{a n }中,a 2,a 4,a 8成等比数列,∴a 24=a 2a 8,∴(a 1+3d )2=(a 1+d )(a 1+7d ),∴d 2=a 1d ,∵d ≠0,∴d =a 1, ∴a 1+a 5+a 9a 2+a 3=15a 15a 1=3,故选B.8.已知S n 为数列{a n }的前n 项和,若a n (4+cos n π)=n (2-cos n π)(n ∈N *),则S 20等于( ) A .31 B .122 C .324 D .484答案 B解析 由题意可知,因为a n (4+cos n π)=n (2-cos n π), 所以a 1=1,a 2=25,a 3=3,a 4=45,a 5=5,a 6=65,…,所以数列{a n }的奇数项构成首项为1,公差为2的等差数列,偶数项构成首项为25,公差为25的等差数列,所以S 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=122,故选B.9.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3(n ∈N *)的最小值为( ) A .4 B .3 C .23-2 D.92答案 A解析 由题意a 1,a 3,a 13成等比数列,可得(1+2d )2=1+12d ,解得d =2,故a n =2n -1,S n =n 2,因此2S n +16a n +3=2n 2+162n +2=n 2+8n +1=(n +1)2-2(n +1)+9n +1=(n +1)+9n +1-2,由基本不等式知,2S n +16a n +3=(n +1)+9n +1-2≥2(n +1)×9n +1-2=4,当且仅当n =2时取得最小值4. 10.已知F (x )=f ⎝ ⎛⎭⎪⎫x +12-1是R 上的奇函数,数列{a n }满足a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为( ) A .a n =n -1 B .a n =n C .a n =n +1 D .a n =n 2答案 C解析 由题意F (x )=f ⎝ ⎛⎭⎪⎫x +12-1是R 上的奇函数,即F (x )关于(0,0)对称,则f (x )关于⎝ ⎛⎭⎪⎫12,1对称. 即f (0)+f (1)=2,f ⎝ ⎛⎭⎪⎫12=1,f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =2,f ⎝ ⎛⎭⎪⎫2n +f ⎝ ⎛⎭⎪⎫n -2n =2,则a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1)=n +1.11.在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案 20解析 设公差为d ,则a 3+a 8=2a 1+9d =10, 3a 5+a 7=3(a 1+4d )+(a 1+6d )=4a 1+18d =2×10=20.12.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________. 答案 50解析 ∵数列{a n }为等比数列,且a 10a 11+a 9a 12=2e 5, ∴a 10a 11+a 9a 12=2a 10a 11=2e 5,∴a 10a 11=e 5, ∴ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln(a 10a 11)10=ln(e 5)10=ln e 50=50.13.数列{a n }的前n 项和为S n ,已知a 1=2,S n +1+(-1)nS n =2n ,则S 100=____________. 答案 198解析 当n 为偶数时,S n +1+S n =2n ,S n +2-S n +1=2n +2,所以S n +2+S n =4n +2,故S n +4+S n +2=4(n +2)+2,所以S n +4-S n =8,由a 1=2知,S 1=2,又S 2-S 1=2,所以S 2=4,因为S 4+S 2=4×2+2=10,所以S 4=6,所以S 8-S 4=8,S 12-S 8=8,…,S 100-S 96=8,所以S 100=24×8+S 4=192+6=198.14.若数列{a n }满足a 2-a 1>a 3-a 2>a 4-a 3>…>a n +1-a n >…,则称数列{a n }为“差递减”数列.若数列{a n }是“差递减”数列,且其通项a n 与其前n 项和S n (n ∈N *)满足2S n =3a n +2λ-1()n ∈N *,则实数λ的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,+∞解析 当n =1时,2a 1=3a 1+2λ-1,a 1=1-2λ,当n >1时,2S n -1=3a n -1+2λ-1,所以2a n =3a n -3a n -1,a n =3a n -1,所以a n =()1-2λ3n -1,a n -a n -1=()1-2λ3n -1-()1-2λ3n -2=()2-4λ3n -2,依题意()2-4λ3n -2是一个递减数列,所以2-4λ<0,λ>12.15.S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解 (1)设{a n }的公差为d ,据已知有7+21d =28, 解得d =1.所以{a n }的通项公式为a n =n (n ∈N *).b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.16.各项均为正数的数列{a n }的前n 项和为S n ,且满足:S n =14a 2n +12a n +14(n ∈N *).(1)求a n ;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,证明:对一切正整数n ,都有T n <54.(1)解 由S n =14a 2n +12a n +14,①可知当n ≥2时,S n -1=14a 2n -1+12a n -1+14,②由①-②化简得(a n +a n -1)(a n -a n -1-2)=0, 又数列{a n }各项为正数,∴当n ≥2时,a n -a n -1=2,故数列{a n }成等差数列,公差为2,又a 1=S 1=14a 21+12a 1+14,解得a 1=1,∴a n =2n -1(n ∈N *).(2)证明 T n =1a 21+1a 22+1a 23+…+1a 2n -1+1a 2n=112+132+152+…+1(2n -3)2+1(2n -1)2. ∵1(2n -1)2=14n 2-4n +1<14n 2-4n =14n (n -1)=14⎝ ⎛⎭⎪⎫1n -1-1n ,∴T n =112+132+152+…+1(2n -3)2+1(2n -1)2<1+14⎝ ⎛⎭⎪⎫11-12+14⎝ ⎛⎭⎪⎫12-13+…+14⎝ ⎛⎭⎪⎫1n -2-1n -1+14⎝ ⎛⎭⎪⎫1n -1-1n=1+14⎝ ⎛⎭⎪⎫11-12+12-13+…+1n -2-1n -1+1n -1-1n =1+14-14n <54.。

相关文档
最新文档