EDI与混床有什么样区分
超纯水设备EDI与混床简介
五、EDI装置与混床离子交换设备比较
EDI装置与混床离子交换设备属于水处理系统中的精处理设备,下面 将两种设备在产水水质、投资量及运行成本方面进行比较,来说明 EDI装置在水处理中应用的优越性。 (1)产水水质比较 EDI装置是一个连续净水过程,因此其产品水水 质稳定,电阻率最高可达18.25MΩ ·cm,达到超纯水的指标。混床离 子交换设施的净水过程是间断式的,在刚刚被再生后,其产品水水质 较高,而在下次再生之前,其产品水水质较差。 (2)投资量比较 与混床离子交换设施相比EDI装置投资量要高约 20%左右,但从混床需要酸碱储存、酸碱添加和废水处理设施及后期 维护、树脂更换来看,两者费用相差在10%左右。随着技术的提高与 批量生产,EDI装置所需的投资量会大大的降低。另外,EDI装置设备 小巧,所需厂房远远小于混床。
3、采用反渗透水处理设备与电去离子(EDI)设备,这是一种制取超 纯水的最新工艺,也是一种环保,经济,发展潜力巨大的超纯水制 备工艺,其基本工艺流程为:原水→原水箱→原水泵→多介质过滤 器→精密过滤器→高压泵→反渗透设备→RO水箱→(EDI)泵→保安 过滤器→紫外线→电去离子(EDI)→纯水箱→纯水泵→后置精密过 滤器→用水点
EDI装置属于精处理水系统,一般多与反渗 透(RO)配合使用,组成预处理、反渗透、 EDI装置的超纯水处理系统,取代了传统水 处理工艺的混合离子交换设备。EDI装置 进水要求为电阻率为0.025-0.5MΩ ·cm, 反渗透装置完全可以满足要求。EDI装置 可生产电阻率高达18MΩ ·cm以上的超纯 水。来自六、 EDI技术的应用
EDI技术在国外广泛的应用有十几年的时间,大多用于制 药行业、微电子行业、发电工业和实验室。在表面清洗、 表面涂装、电解工业和化工工业的应用也日趋广泛。 EDI技术的应用 1、制药行业、微电子行业、发电工业和实验室。 2、在表面清洗、表面涂装、电解工业和化工工业的应 用也日趋广泛。 3、半导体材料、器件、印刷电路板和集成电路; 4、超纯材料和超纯化学试剂; 5、实验室和中试车间; 6、汽车、家电表面抛光处理; 7、光电产品; 8、其他高科技精微产品;
混床离子交换和EDI在电厂锅炉补给刊处理中的分析对比
2 运行成本 、
混 床 系统 不 仅 需 混 床 , 时 还 必 备 酸 、碱 同
贮罐等) 保守估 计占地在10 平方米之 多, 00 而具 家节约一百多亿的资金。 由于补水纯 度提高而给
同等补水能力的E I . D 系统 充其量 占地 不会超 没备带 来的缲护效益 及环 保、 土地 效益等若 计 过5 平 方米 , 混床 系统 大大减 少了土地的 占 入的话 , 0 较 效益更是不可估量。
6 2 3 0 %=4 1 0× 4× 6 ×8 .万吨 , 而这 些水 均需随
小时 的电厂按 每年 工作3 0 计算 , 炉补水 6天 锅 量按 6 T d 时 计, 年的 混 床部 分投 入为 : 0/* 一
参考文献 t l 培元, 辛 火力发电厂 水处理厦水质控制。 北京: 6 × 4 6 × = 1.万元 。 0 2 ×3 0 8 447 力出崩社,( - 2K 的5 的浓水 , 只是其 中的盐份含量高点 , % 也 完全 J 中国电 2 戢达中. 发电厂永处理工程。 . 北京: 国电 中 力出 而同等补水能力f E I l D 系统的 费用如下:  ̄ 可用做对 盐份要求不高的 冷却水或 冲灰水 。 - 版社, o2 也 20 折 旧 费 :按 3 折 旧 ( 实 上 不 止 3 年 事 3 许立国l 、 ’ 火电厂永处理技术。 北京: 中国电 力出 就是说, D 系统完全可以做到零排放 。 EI 年 ),1 补 水 的 待 摊 折 旧 费 用 为30 吨 0万 元 版社,
尘及硫化物 , 二是水处理部分所必须排放的酸、 近百万元的环保治理费。 随 着各电厂对锅炉补水 水质要求的提高, 趋 势, 另一方面由上述分析可以得出, DI E 代替 碱 废液。 据了解 , 一座中型电厂每年为此要 付出 作为高纯 度纯 水制备的E I 显现 出蓬勃发展的 D, 一 O , 时的发电厂每年 可直 、 而E I 靠自 D是 身的电再生 , 本无需外部的 混床后 , 个6 万千瓦/J 根
EDI与混床的比较
• EDI 60m³/h EDI电耗量,每产1吨高纯水需耗电0.18~0.4KWh,根 据进水水质及离子含量确定,双级RO反渗透产水水质≈2-4μs/cm, 经计算每产1吨纯水电耗量≈0.24KWh • 每年EDI耗电费用:0.24度×720吨×0.4元×360天≈2.8万元 • 每年EDI配套泵电费用:7.5度×12时×365天×0.4元≈1.3万元 • 则每年操作人员总工资费用为: 2100元×12月×5人=12.6万元/年 • 综上所述,EDI在正常情况下年运行总费用计: • 人工费12.6万元/年+电耗2.8万元/年+1.3万元 ≈16.7万元/年。
2)EDI与混床操作对比
• EDI
EDI是由几个每小时产水量相同的模块组成,根据实 际纯水的使用量开启或停止EDI模块,手动操作相对频繁, 但操作比较简单,只需开启EDI进水阀门、极水阀门和浓 水阀门,以及打开电源同时根据出水水质调节加药量(氯 化钠)、电解电压和电流的大小即可,对操作工的责任心 要求较高。
• 缺点
混床 1、树脂交换容量利用率低、损耗率大 2、酸碱再生有危险性废液排放 3、细菌易在床层中繁殖 4、阀门较多,操作复杂 5、运行重量高,占用面积大 • EDI 1、初期投资较大 2、 对预处理要求高
5)EDI与混床综合分析
比较项目 性 操 能 作 混床 ★★ ★ ★ ★ 一般 EDI ★★★ ★★ ★★★ ★★★ 优
一期+二期水处理工程总计面积需1150 m²(土建、投
• b.运行费用比较 b.运行费用比较 • 混床 混床再生周期:60m³/h混床过滤罐,直径为1.6m,流 速30m/h,可连续产水≈720m³,运行12小时再生一次,在 正常锅炉用水情况下,再生周期约为1天再生一次。 • 混床再生所用酸、碱费用计算 • 酸:292.50+50.00=342.00元(浓度为30%,650元/吨) • 碱:350.00+60.00=410.00元(浓度为30%,700元/吨) • 再生一次所用酸、碱总投入:342.50元+410.00元=752.50 元, • 按产每吨水分摊计算,需酸、碱费用1.045元, • 年费用:1.045元/吨×720吨/天×360天/年=27.08万元/年 • 人工费:2100元×12月×8人=20.16万元/年。 • 再生用电费;15kw×360天×0.4元/kw=0.216万元/年 • 综上所述,混床在正常情况下年运行总费用计: • 酸、碱消耗27.08万元+人工费20.16万元+电耗0.216万 ≈47.456万元/年。
EDI高纯水技术代替混床技术的发展阶段
EDI高纯水技术代替混床技术的发展阶段EDI是水处理技术上一项革命性进步。
该技术应用电再生离子交换除盐工艺取代传统混合离子交换除盐工艺DI。
通过离子交换树脂及选择性离子膜达到高脱盐效果,与反渗透结合的联合工艺使产水水质可达10~15MΩ·CM的高规格产水。
EDI高纯水技术代替混床技术的发展阶段EDI(Electrodeionization)是一种具有革命性意义的水处理技术,它巧妙地将电渗析与离子交换有机地结合在一起的膜分离脱盐工艺,属高科技绿色环保技术。
EDI净水设备具有连续出水、无需酸碱再生和无人值守等优点,已在制备纯水的系统中逐步代替混床作为精处理设备使用。
这种先进技术的环保特性好,操作使用简便,愈来愈多地被人们所认可,也愈来愈多广泛地在医药、电子、电力、化工等行业得到推广,至今国际上已有3千多套EDI装置在运行,总容量已超过3万M/H。
它的出现是水处理技术的一次革命性的进步,标志着水处理工业最终全面跨入绿色产业的行业EDI高纯水技术的发展发展阶段、原理及特点一、高纯水水处理技术的发展阶段第一阶段:预处理——>阳床——>阴床——>混合床第二阶段:预处理——>反渗透——>混合床第三阶段:预处理——>反渗透——>EDI装置反渗透(RO)技术是一种利用膜分离去除水中离子的方法,尽管反渗透系统将水中95%-98%的离子去除,但还不能满足工业生产的要求,其后续工艺必须使用离子交换设备。
近几十年以来,混合床离子交换技术一直作为纯水制备的标准工艺。
由于其需要周期性的再生且再生过程中使用大量的化学药品(酸碱)和纯水,因此已很难满足于无酸碱纯水系统。
正因为传统的离子交换已经越来越无法满足现代工业和环保的需要,于是将膜和树脂结合EDI技术成为水处理技术的一场革命。
其离子交换树脂的的再生使用的是电,而不再需要酸碱,因而更满足于当今世界的环保要求。
自从1986年EDI 技术工业化以来,全世界已安装了近2000套EDI 系统,尤其在制药、半导体、电力和表面冲洗等工业中得到了大力的发展,同时在废水处理、饮料及微生物等领域也得到广泛使用。
EDI与传统混床技术相比的优势存在点
EDI与传统混床技术相比的优势存在点?辽宁莱特莱德公司电去离子(EDI)系统主要是在直流电场的作用下,通过隔板的水中电介质离子发生定向移动,利用交换膜对离子的选择透过作用来对水质进行提纯的一种科学的水处理技术。
电渗析器的一对电极之间,通常由阴膜,阳膜和隔板(甲、乙)多组交替排列,构成浓室和淡室(即阳离子可透过阳膜,阴离子可透过阴膜).淡室水中阳离子向负极迁移透过阳膜,被浓室中的阴膜截留;水中阴离子向正极方向迁移阴膜,被浓室中的阳膜截留,这样通过淡室的水中离子数逐渐减少,成为淡水,而浓室的水中,由于浓室的阴阳离子不断涌进,电介质离子浓度不断升高,而成为浓水,从而达到淡化,提纯,浓缩或精制的目的。
内蒙古化肥制造超纯水设备, 内蒙古精细化工行业超纯水设备, 内蒙古化妆品制造超纯水设备自来水中常含有钠、钙、镁、氯、硝酸盐、矽等溶解盐。
这些盐是由负电离子(负离子)和正电离子(正离子)组成。
反渗透可以除去其中超过99%的离子。
自来水也含有微量金属,溶解的气体(如CO2)和其他必须在工业处理中去除的弱离子化的化合物(如矽和硼)。
交换反应在模组的纯化学室进行,在那里阴离子交换树脂用它们的氢氧根据离子(OH)来交换溶解盐中的阴离了(如氯离子C1)。
相应地,阳离子交换树脂用它们的氢离子(H)来交换溶解盐中的阳离子(如Na)。
1、无化学污染持续的树脂电解再生使得无需腐蚀性很强的化学品;如果前级RO系统运作正常,则极少需要清洗。
如异常E-Cell的内部设计足以应付周期性的化学清洗;E-Cell消除了对腐蚀性化学品再生装备的资金投入。
如:合金伐门、管道、水泵、化学药品储存设备等相关部件,省却了这些部分的安装、更新、维护的费用2、连续再生连续再生替代了间歇式再生,这就不再需要备用离子交换设备。
每个模块都可以独立进行化学清洗,剩余的模块可以承担短期的高流量。
3、启动/操作简单与混床的间歇式再生相比,不再需要再生操作;EDI操作简单,所需伐门少,同时也无须操作者花费很大精力;操作只需简单的分析和控制。
EDI系统与混合离子交换技术的区别有哪些
EDI系统与混合离子交换技术的区别有哪些
2020年1月7日
EDI系统与混合离子交换技术的区别有哪些?下面为大家详细介绍,帮助大家更好的选择适合自己的设备系统:
1、占地空间小,省掉了混床和再生设备。
2、产水稳定,出水质量高,而混床在树脂接近失效时水质会变差;EDI系统商品水水质稳定,电阻率一般为15MΩ·cm,较高时可达到18MΩ·cm,到达超纯水的指标。
混床离子交换设备的清水进程是连续式的,在刚刚被再生后,其商品水水质较高,而在下次再生之前,其商品水水质较差。
3、运转费用低,再生只耗电,不用酸碱,节省材料费用;EDI系统运转费用包括电耗、水耗、药剂费及设备折旧费等费用,省去了酸碱耗费、再生用水、废水处理和污水排放等费用。
在电耗方面,EDI系统约0.5kWh/t水,混床技术约0.35kWh/t水,电耗的本钱在电厂来说是相比经济的,可以用电厂用电的报价核算。
在水耗方面,EDI系统产水率高,不用再生用水,因此在此方面运转费用低于混床。
至于药剂费和设备折旧费两者相差不大。
总的来说,在运转费用中,混床运转本钱高于EDI设备。
因此,EDI设备的费用在几年内完全可以收回。
4、环保效益显著,增加了操作的安全性;EDI系统归于环保型技能,离子交换树脂不需酸、碱化学再生,节省很多酸、碱和清洁用水,大大降低了劳动强度。
更主要的是无废酸、废碱液排放,归于非化学式的水处理体系,它无需酸、碱的储存、处理及无废水的排放,因此它对新用户具有格外的吸引力。
医疗用超纯水混床与EDI技术对比
医疗用超纯水混床与EDI技术对比一、前言在体外再生型凝结水处理系统中,树脂作为被转移的对象在混床及各再生设备间进行来回的输送。
当树脂从一设备向另一设备内输送时,如果输送得不彻底,将会造成混床间树脂量有的多有的少,并且会带来阳阴树脂的体积比失调、混床的出水水质变差等一系列不良后果。
医院超纯水设备根据树脂在设备间的输送情况,树脂的送出率主要与设备的内部结构、树脂本身的流动性能及操作方式等因素有关。
由于球形树脂颗粒在水溶液中并非是自由流动的,因而将树脂视为自由流体或忽视设备内部结构的布置,都将影响到树脂的输送效果。
二、树脂的流动性能对于树脂在水中的流动能力,可以用树脂颗粒在水中的休止角(Angle of repose)来表示,休止角的大小随测量方法的不同而稍有差异,一般情况下,当粒状物料的休止角小于30°时较易流动,大于30°时其流动能力将受到一定的限制。
在试验室条件下,可以采用容器倾斜法测试不同类型树脂的休止角,即在一装有除盐水的圆柱体中加入树脂样,使树脂完全沉浸于水中,然后逐渐地倾斜圆柱体,至树脂层表面有树脂颗粒流动为止,此时树脂层表面与水平面所形成的夹角称为树脂的休止角。
树脂休止角的大小与其密度、粒度、形状及阳阴树脂颗粒间的静电效应等因素有关,对于凝结水处理系统中应用的D001、D201普通型树脂,其休止角一般为23—27°;对于高速混床专用的D001MB、D201MB型树脂(粒度性能较好),其休止角通常在21—24°的范围内。
一般来说,阴树脂的流动性能较阳树脂好,混合树脂较阳、阴树脂的流动能力要差,粒度分布较均匀的D001MB、D201MB型树脂的流动性能较粒度分布较差的D001、D201型树脂要好。
实际上,树脂颗粒的流动能力还与树脂层的压实情况有关,例如将混匀的树脂层敲实后,可测得树脂对应的休止角约增大2—4°。
三、分离器内树脂分层后的送出在一些体外型再生系统中,对于分离器内反洗分离后的阴树脂及中间混脂层树脂的送出,一般采用由下往上的方式进行抽取,例如国产T塔型再生系统中,分离器内的阴树脂及混脂的送出装置均为支管与分配器连接的辐射形分布型式。
EDI与混床工艺技术经济性能对比
某60t/h除盐水工程EDI与混床工艺技术经济性能对比:一、运行对比(1)混床在有效交换器内,出水水质稳定,一旦达到失效终点,出水电导率会急剧上升。
工人操作水平、再生剂品质、树脂质量、预处理水质等因素都会影响再生周期。
在系统中至少备用一台混床,以减少混床失效带来的风险。
(2)EDIEDI运行不需要额外的酸碱再生,能节省大量人工。
无需废水处理系统,若出水电导升高,可调节运行电流的大小。
二、操作对比(1)混床混床再生时间较长,再生时需要接触酸、碱,存在一定的危险。
虽然可实现全自动再生但必须进行人工干预。
(2)EDIEDI是由几个相同的模块组成,根据实际纯水的使用量开启或停止EDI模块,手动操作相对频繁,但阀门比较简单,只需开启EDI 进水阀门、极水阀门和浓水阀门,以及打开电源同时根据出水水质调节电解电压和电流大小即可。
三、成本对比(1)一次性投资对比混床:采用60t/h超滤+反渗透+混床全套设备包括:设备配置+运输+管件+电控+调试+安装≈315万;车间使用面积:1450m2 ,室外需要设100m3酸碱中和池EDI:采用60t/h超滤+反渗透+EDI全套设备包括:设备配置+运输+管件+电控+调试+安装≈380万;车间使用面积:1150m2(2)运行费用对比混床:混床再生周期为24h酸碱每次再生费用约752元,年费用约27万元;人工费8人*12月*4000元/月=38.4万;再生电费15kW*360天*0.65元/度=0.35万元;合计年运行总费用为65.75万元。
EDI:电费0.24度/吨*720吨*0.65元/度*360=4万元;人工费8人*12月*4000元/月=38.4万;合计年运行总费用为42.4万元。
(3)维护费用对比混床:混床直径为1.6m,树脂更换周期为3年阳树脂数量为5.2t,阴树脂数量为2.6t,树脂更换价格为5.2吨*1.7万/吨+2.6吨*0.8万/吨=10.9万元平均每年维护费用为10.9万元/3年=3.64万元EDI:EDI模块数量为12块,使用寿命为3年模块更换价格为12块*3万元/块=36万元,平均每年维护费用为42万元/3年=12万元四、对比分析总结(1)混床优点:设备初期投资低;出水水质稳定;预处理要求简单;水的利用率高。
纯水生产复床(混床)与RO—EDI系统对比总结
Ab t a t Comp r dv nt g s a s d a a s o he p e wa e o p e e ( i e d)wih sr c : a e a a a e nd dia v nt ge ft ur t rc m l x b d m x d be t t e RO— h EDIs s e , c o d n o o e a i e ho r t q i m e iia i n, nd c te c y t m a c r i g t p r ton m t d, a eofe u p ntutlz to a os t . Ke r s: o y wo d c mpl x ( xe e mi d) b d; e RO— EDI ma e p e wa e ; o ; k ur . t r c mpa e r
一
由于树脂 需要 再生 ,无 法连续 生产 ,故增 加 套 混床装 置 ,与 阳离 子 、阴离子 交换 器轮替 使
用 ,以保证 生产 的连续 性 。
12 R - D . O E I系统 工 艺 流 程
原水 由原 水 泵 增压 后 进人 多 介质 过 滤 器 ( 内
年 分别 改造原 软水 系统 ,新上一 套 复床加 混床 除 盐水 系统 和一 套 R - D 除盐水 系统 ,每 套产水 OE I
化 I 旋 开 通 讯
・
第 3 7卷Biblioteka 第 6期 21 年 1 月 01 2
7 ・ 4
EDI超纯水装置与混床离子交换器优势对比
EDI超纯水装置与混床离子交换器优势对比传统的超纯水制备设备是电渗析、离子交换器(阳床、阴床、复床、混床)。
新型超纯水制备设备是EDI(连续电除盐技术)设备。
EDI是将电渗析技术和离子交换技术有机结合形成的一种新型除盐技术。
可以有效的去除水中几乎全部的阴阳离子,出水电阻率可稳定在15MΩ.CM以上,连续运行、无化学污染、水的利用率高,在超纯水制备工艺上有着强大的优势广阔的应用前景。
EDI超纯水设备的工作原理:1.经RO反渗透设备产出的纯水进入EDI装置,主要部分流入离子交换树脂/膜内部,而另一部分沿模板外侧流动,以洗去透出膜外的离子。
2.离子交换树脂截留水中的溶存离子。
3.被截留的阴阳离子在电极作用下,阴离子向正极方向运动,阳离子向负极方向运动。
4.阳离子透过阳离子膜,排出离子交换树脂/膜之外。
5.阴离子透过阴离子膜,排出离子交换树脂/膜之外。
6.浓缩了的含离子水(浓水)经废水流路中排出。
7.无离子水(超纯水)从离子交换树脂/膜内流出。
优势对比EDI超纯水设备是应用在RO反渗透系统之后,取代传统的混合离子交换技术(MB-DI)生产稳定的去离子水。
EDI技术与混合离子交换技术相比有如下优点:(1)EDI超纯水设备产水水质稳定;混床往往因为人工再生的不确定性和不准确而造成产水水质不合格。
(2)EDI超纯水设备容易实现全自动控制;混床实现全自动控制十分复杂,成本昂贵,几乎全为手动控制。
(3)EDI超纯水设备连续运行,不会因再生而停机;混床离子交换柱在用酸碱再生过程中不产水,想要连续产水需要至少一用一备。
(4)EDI模块中的离子交换树脂是用电解水中氢离子和氢氧根离子进行再生;混床离子交换柱中的阴树脂是用下行的氢氧化钠再生,阳树脂是用上行的盐酸再生,化学再生操作复杂,有很多的不安全生产因素。
(5)EDI超纯水设备运行费用低,只需要电,但是比电渗析需要的电量小很多;混床消耗的酸液和碱液的成本很大,树脂更换的费用也比较昂贵。
EDI与混床设计说明
关于混床与EDI的区别、分别从四个方面进行分析比较,混床简称“A”;EDI简称“B”一、工作原理:A、混床的工作原理:是利用混床罐体中离子交换树脂的H+、OH-与原水中的阴阳离子进行交换,原水中的阴阳离子就被H+、OH-代替,产生纯水。
当离子交换达到饱和后,再用酸碱与被交换后的离子交换树脂进行再生恢复使用。
B、EDI的工作原理:是在直流电场的作用下,通过隔板的水中电介质离子发生定向移动,利用交换膜对离子的选择透过作用来对水质进行提纯的一种科学的水处理技术。
电渗析器的一对电极之间,通常由阴膜,阳膜和隔板(甲、乙)多组交替排列,构成浓室和淡室(即阳离子可透过阳膜,阴离子可透过阴膜).淡室水中阳离子向负极迁移透过阳膜,被浓室中的阴膜截留;水中阴离子向正极方向迁移阴膜,被浓室中的阳膜截留,这样通过淡室的水中离子数逐渐减少,成为淡水,而浓室的水中,由于浓室的阴阳离子不断涌进,电介质离子浓度不断升高,而成为浓水,从而达到淡化,提纯,浓缩或精制的目的。
二、运行管理:A、混床每工作一个周期,就需要进行一次再生操作,每次再生需要备再生所需酸碱及再生的操作,再生时发生酸碱废液,造成二次污染;B、EDI接通电源后,开始运行,无需人员操作,自动化程度高,节省人工。
三、运行成本:A、贵公司处理量20T/H的阴阳分床罐体:每次再生所需80T RO产水(RO纯水:300元/T,175kg30%酸(30%酸:0.5元/kg,),175kg30%碱(30%碱:0.6元/kg)故每次再生所需费用(每三天再生一次,不含人工费):80*300+175*0.5+175*0.6=2400+87.5+105=2592.5(元)B、E DI只需要提供电源即可20T/h的EDI模组所需的直流电,耗电量极少,可以忽略不计。
四、维护费用:A、贵公司的分床规格为φ1000*4500,阴阳树脂各2000L,更换一次的费用为(1-2年更换一次):阳离子交换树脂:21元/L(罗门哈斯)阴树脂交换树脂:45元/L(罗门哈斯)2000*21+2000*45=42000+90000=132000元B、E DI运行中需要定期清洗,每次清洗的费用为(根据贵公司用水要求,清洗频率为6个月清洗一次),EDI模块正常使用寿命为:5年:酸性清洗剂:50kg(纳尔科的药剂:60元/kg)碱性清洗剂:50kg(纳尔科的药剂:60元/kg)每次的清洗费用为:50*60+50*60=6000元以上从四个方面分析了一下混床与EDI的区别,混床运行主要是维护繁琐,运行与维护成本高,而且再生时会产生再生酸碱废液,人工费用高,而EDI的运行成本及维护成本较低,自动化程度高,运行时产生的浓水也可以回流至前段水箱进行回用,无资源浪费,节省人工,管理方便等优点。
EDI的一般常识
EDI的一般常识1、EDI和混床有什么区别吗?当然不同,EDI深度脱盐装置是一种专用于高纯水制备的深度去离子装置,其具有无需酸碱自动加电再生,具有出水水质稳定,操作简便,运行稳定等显著优点,EDI运行会产生浓水和极水。
2、什么是EDI?EDI技术是将电渗析和离子交换相结合的除盐新工艺,该设备取电渗析和混床离子交换两者之长,弥补对方之短,即可利用离子交换做深度处理,且不用药剂进行再生,利用电离产生的H+和OH-,达到再生树脂的目的。
3、什么是混床?混床,就是把一定比例的阳、阴离子交换树脂混合装填于同一交换装置中,对流体中的离子进行交换、脱除。
4、EDI与混床的区别此2种设备常用于工业超纯水设备中反渗透设备后续处理系统中,EDI不需要再生,进水有一定的要求,运行中会产生一定的浓缩水。
混床运行中不会产生废水,但树脂吸附饱和后需再生,再生时会产生一定的废水。
5、EDI的工艺原理:连续电除盐(EDI,Electro-deionization),是利用混合离子交换树脂吸附给水中的阴阳离子,同时这些被吸附的离子又在直流电压的作用下,分别透过阴阳离子交换膜而被去除的过程,此过程离子交换树脂不需要利用酸和碱再生。
EDI是离子交换和电渗析技术相结合的产物,因此在脱盐过程中具有离子交换和电渗析的所有工作特征。
6、与传统的离子交换相比,EDI所具有的优点为:●EDI无需化学再生,节省酸和碱。
●EDI可以连续运行。
●提供稳定的水质。
●操作管理方便,自动化程度高,劳动强度小。
●运行费用低。
7、EDI的给水要求如下:●给水:二级反渗透产水。
●TEA(总可交换阴离子,以CaCo3计):<35ppm。
●PH:6.0~9.0 EDI最佳工作的PH范围为8.0~9.0。
●总硬度低于0.1ppm时。
●温度:5℃~35℃。
●进水压力:<4bar(60psi)。
浓/极水的入口压力一般低于产品水的出口压力0.3~0.5kgf/cm²。
与混床的比较PPT课件
1)EDI与混床运行对比
• EDI
电除盐,是将两种已经成熟的水净化技术--电渗析 和离子交换相结合,溶解的盐在低能耗的条件下被去除, 在运行过程中不需要化学再生,并且其出水电阻率较混床 出水还要高,可达10-18.2MΩ.CM.
4)EDI与混床对比分析
• 优点
• 混床 1、设备初期投入低 2、出水水质稳定 3、预处理要求简单 4、水的利用率较高
• EDI 1、设想周到的堆叠式设 2、水质稳定 3、无需酸碱再生,无危害性废液排放 4、连续运行,简单操作 5、运行费用低 6、占地面积小 7、便于安装及保养 8、水的利用率高
若电导率较高时只需调节运行电流的大小和加药量 (氯化钠)的大小,离子交换树脂不需酸、碱化学再生, 节约大量酸、碱和清洗用水,大大降低了劳动强度。更重 要的是无废酸、废碱液排放,属于非化学式的水处理系统, 它无需酸、碱的贮存、处理及无废水的排放。
2)EDI与混床操作对比
• 混床 混床再生时间比较长,再生中需耗用大量的RO水将混
全套设备包括:全套设备配置+运输+管件+电控+调试+安装 交钥匙工程≈370 万元左右(总工程款)
车间使用面积≈600m² 一期+二期水处理工程总计面积需1150 m²(土建、投 资用方计算)
• b.运行费用比较 • 混床
混床再生周期:60m³/h混床过滤罐,直径为1.6m,流 速30m/h,可连续产水≈720m³,运行12小时再生一次,在 正常锅炉用水情况下,再生周期约为1天再生一次。 • 混床再生所用酸、碱费用计算 • 酸:292.50+50.00=342.00元(浓度为30%,650元/吨) • 碱:350.00+60.00=410.00元(浓度为30%,700元/吨) • 再生一次所用酸、碱总投入:342.50元+410.00元=752.50 元, • 按产每吨水分摊计算,需酸、碱费用1.045元, • 年费用:1.045元/吨×720吨/天×360天/年=27.08万元/年 • 人工费:2100元×12月×8人=20.16万元/年。 • 再生用电费;15kw×360天×0.4元/kw=0.216万元/年 • 综上所述,混床在正常情况下年运行总费用计: • 酸、碱消耗27.08万元+人工费20.16万元+电耗0.216万 ≈47.456万元/年。
混床与edi技术及经济比较
混床与E D I技术及经济比较刘亮明徐启明(中机新能源开发有限公司,河南郑州450008) H商要】高纯水精除盐工艺常用的有f E床和ED I,本文分别从技术和经济的角度比较了二者之闻的优钝董。
鹾键词】精除盐;混床;ED I1混床技术该设备是将阴、阳离子交换树脂按一定比例填装于同一交换器内的离子交换装置,—般称为混合离子交换器。
均匀混合的树脂层阳树脂与阴树脂紧密地交错排列,每一对阳树脂与阴树脂颗粒类似于一组复床,故可以把混床视做无数组复床的串联运行的离子交换设备。
由于通过混合离子交换后进入水中的氢离子与氢氧离子,立即生成电离度很低的水分子(H20),很少可能形成阳离子或阴离子交换时的反离子,可以使交换反应进行得十分彻底,活水水质优良。
2ED I技术介绍E D I(E l e ct r odei oni za t i on)技术,或称电脱盐、电去离子技术,是近年来出现的一项革新的高,超纯水制备技术。
它把传统的电渗析技术和离子交换技术有机地结合起来,即克服了电渗析不能深度脱盐的缺点,又弥补了离子交换不能连续工作、需消耗酸碱再生的不足,这些显著优势使得该技术在各个行业得以迅速地推广。
E D I实际上是在电渗析器的淡水室中填入混床树脂,因此也被称为。
填充床电渗析”。
其工作原理的如图1所示:H f a’●一■_一O一■■■o图l即I工作原嘲图进水中的盐离子在E D I元件中发生下列三种迁移:离子与阴、阳树脂发生离子交换而结合到树脂颗粒上:离子在电场作用下经树脂颗粒构成的离子通道迁移。
这是因为在E D I应用的体系中,树脂的导电能力要比水溶液本身高数个数量级:离子经过离子交换膜迁移到浓水室,从而完成水的脱盐过程;在一定的电流密度下,树脂、膜、水之间的界面处因产生浓差极化而迫使水分解成H+和O H一,从而同时再生了树脂。
可见,在E D I中,既有离子交换的工作过程,又有电渗析的工作过程,还有树脂的再生过程,这三个过程同时发生,使得E D I能够连续、稳定地实现水的深度脱盐,提供高纯水或者超纯水。
混床与EDI的对比(表格)
EDI 与混床的对比
EDI 混床系统外观
脱盐单元
EDI元件(含:阳、阴树脂,阴阳膜,电极等)混床树脂(阳、阴树脂)
1 / 4
脱盐原理
(图)
EDI脱盐过程示意图(含:离子交换树脂脱盐过程)离子交换树脂脱盐过程示意图产水工艺
过程
EDI-CR10N浓水排放,不加盐,降低人工成本;
2 / 4
EDI-CR10C浓水循环,加盐,产水水质较好一点;
再生过程
在直流电流作用下,水分子发生裂解生成氢离子(H+)和
氢氧根离子(OH-),所生成的氢离子和氢氧根离子对离子
交换树脂进行再生。
步骤分:反洗,阳阴树脂分层,酸碱同时进再生,混合,长
时间的冲洗
需要酸碱再生,有EHS风险,增加相应费用
再生无需化学品再生,意味着不需要相关化学品的运输,储存
和使用,避免人工接触酸碱,也避免了相关的EHS风险,并
且大大降低了系统的运行费用。
无酸碱废液产生,因此也就不需要酸碱中和池再生会生成酸/碱废液,需要用碱/酸对之进行中和处理
中和药剂
的需要
低
水利用率由于没有化学再生的需要,其系统的水利用率为95%,这对
于中大型系统、水资源紧缺地区的节水效益尤为明显
运行成本EDI的运行的费用几乎全部为电耗,成本往往低于混床;水
高
利用率高,降低成本。
3 / 4
4 / 4。
电除盐与混床比较
电除盐(EDI)与混合离子交换的比较电除盐(EDI)精处理技术一.EDI的基本工作原理电除盐(EDI)是一种将离子交换与电渗析相结合的精处理除盐技术。
该技术利用离子交换能深度脱盐来解决因电渗析极化而脱盐不彻底的问题,又利用电渗析极化而发生水电离产生H+和OH-实现树脂自再生来克服树脂失效后通过化学药剂再生的缺陷,是20世纪80年代以来逐渐兴起的新技术。
EDI装置包括阴、阳离子交换膜,离子交换树脂,直流电源等。
其中阴离子交换膜只允许离子透过,不允许阳离子通过,而阳离子交换膜只允许阳离子透过,不允许阴离子通过。
离子交换树脂充填在阴、阳离子交换膜之间形成单个处理单元,并构成淡水室。
单元与单元之间用网状物隔开,形成浓水室。
在单元组两端的直流电源阴、阳电极形成电场。
来水流经淡水室,水中的阴、阳离子在电场作用下通过阴、阳离子交换膜进入浓水室被“清除”。
在离子交换膜之间充填的离子交换树脂大大地提高了离子被“清除”的速度。
同时,水分子在电场作用下产生氢离子和氢氧根离子,这些离子对离子交换树脂进行连续再生,以使离子交换树脂保持最佳状态。
EDI装置将给水分成三股独立的水流:纯水、浓水、和极水。
纯水(90%~95%)、浓水(5%~10%)可以再循环处理,极水(1%)排放掉。
EDI装置属于精处理系统,一般多与反渗透(RO)配合使用,组成预处理、反渗透、EDI装置的超纯水水的处理系统,可取代传统水处理工艺的混合离子交换设备。
EDI装置进水要求为电阻率为0.025~0.5MΩ·cm(40~2μs/cm),反渗透装置完全可以满足要求。
EDI装置可生产电阻率高达15MΩ·cm以上的超纯水。
二、EDI装置的特点EDI装置不需要化学再生,可连续运行,进而不需要传统水处理工艺的混合离子交换设备再生所需的酸碱液,以及再生所排放的废水。
其主要特点如下:(1)连续运行,产品水水质稳定。
(2)容易实现全自动控制。
(3)无需用酸、碱再生,对环境友好,是环保型设备。
电子厂超纯水设备和传统混床系统优势对比
电子厂超纯水设备和传统混床系统优势对比
现在,电子厂超纯水设备应用在各类生产生活中的数量呈现出逐年增长的态势,是因为新一代新型超纯水系统无论是在材料使用上面,还是在产水质量方面都进行了改进,相对于传统混床制备系统其在环境保护、能源消耗方面都有着无法比拟的优势。
新一代新型超纯水系统彻底解决了二次污染问题。
电子厂超纯水设备和传统混床制备系统相比较,操作方面要简单很多,并且设备不需要再生,可以不间断提供产水。
让使用单位减少大批量的劳力。
EDI超纯水系统最终的废物排放量非常少,在实际生产过程中,EDI超纯水系统排出的污水能够回收再次利用,再次被作为系统进水使用。
EDI电子超纯水设备制水步骤变少、资金使用变少。
但是传统混床系统在消耗耗材方面却异常的大量,树脂以及化学再生物质等都使用非常多,与此同时,还会出现大量难处理的废水。
电子超纯水设备主要动力源是电能,虽然EDI膜堆使用一段时间之后需要清洗或者替换,但是产水量不变的前提下,新型EDI设备使用的劳动力以及废水产出量都比传统设备要少很多。
根据进水水质和出水的品质,比起用混和离子交换,操作消耗更少。
电子厂超纯水设备厂家对其设备的设计资金投入和传统混床制备系统设计资金花费要少很多。
在实际制水过程中,反渗透系统一般做为EDI系统进水预处理单元。
(财务知识)EDI与混床离子交换法的经济性比较
EDI与混床离子交换法的经济性比较电去离子法(EDI)作为一种水处理技术在各种领域已有10余年的商业运行经验,它是一种利用电能对水质进行净化处理的技术EDI膜堆中各膜对为板框式组装,每个膜对由精选的离子交换膜(一张阳膜、一张阴膜)及允许水流通过和促进水流在流道中湍流的隔栅组成。
另外,交错的膜对间填充满象混合离子交换树脂之类的离子化导电物质。
膜对中对进水起纯化作用的单元称为淡水室,起聚集离子作用的单元称为浓水室。
多个膜对构成一个膜堆,膜堆设计为水平放置,在膜堆的两侧安装有一副电极(阳极及阴极),整个的组件通常称为一个EDI膜堆。
在直流电场的作用下,离子从淡水室中选择性地透过离子膜进入到浓水室中,最后在淡水室中制出除盐的产品水。
浓水室中的废水可以回收至水处理系统的前端或回收至其它设备中使用,小流量的极水可以同设备的废水一样进行排放处理。
EDI最适合于应用在经RO脱盐后的水质精处理阶段。
EDI设备无需化学药剂的再生,可以连续运行。
在具体的应用中,仅调节EDI的运行电流就可以改变其出水水质。
在进水电导率为60ms/cm或更低的条件下,EDI可制出1-18MW.cm的产品水。
一些供应商现在已经为各个行业包括实验室、蒸汽站、制药及半导体在内的厂家生产和销售EDI系统以制取高纯水,EDI产业应用的焦点集中在中到大型出力纯水制备的使用上(50gpm及以上),在这些应用中,EDI可带来环境、安全及运行方面的显著效益,它作为RO出水的纯化装置技术上合理、经济上可完全替代混合床离子交换技术,本报告对新投产的EDI及混床技术将作经济上的比较。
由于EDI为膜堆式设计,属于非化学式的水处理系统,它无需酸、碱的贮存、处理及无废水的排放,因而它对新用户具有特别的吸引力。
采用EDI对旧系统进行改造也是非常经济的,因为EDI可完全地利用现有的厂房及辅助设施。
主要的研究点总则研究的目标是将作为经RO预脱盐的后续处理的EDI与混床离子交换精化方式作经济性比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
EDI与混床有什么样区分EDI作为一种经济实用型的环保超纯水处理解决方案,相对与混床具有如下优点: 无需再生化学品的再生,运行成本低;没有中和药剂的需要;水利用率高;地面和高空作业能够极大地减少;全自动操作;减小了EHS风险;连续工作,出水水质稳定等优势。
EDI技术是超纯水降低生产成本,提高生产效率,减少废水排放,将生产地的危险降至最低的有效手段在生产超纯水方面,现在都推荐用EDI,而慢慢淘汰混床。
经常有客户问到EDI与混床有什么区别 ,为使您对混床与EDI的性能有一个较为具体的了解,益民水处理现就混床与EDI进行运行、操作、成本等方面作如下对比分析:EDI技术在超纯水生产将由于其突出的优势,将越来越多成为超纯水水处理的首选技术。
(一)混床与EDI的性能对比:1)EDI与混床运行对比混床混床在有效的交换周期内,出水水质稳定,其电阻率可达14MΩ,一旦到达失效终点,则电导率会急剧上升,出水水质也随之不稳定。
由于其交换周期受操作工的操作水平、再生剂质量、预处理水质以及树脂本身的质量等因素的影响,故存在有效周期时间长短不确定的因素。
所以,在反渗透+混床的系统中至少存在两个混床,一用一备,以减小混床突然失效带来的风险。
2)EDI与混床操作对比EDI又称连续电除盐(EDI,Electro deionization或CDI,continuous electrode ionization),是将两种已经成熟的水净化技术--电渗析和离子交换相结合,溶解的盐在低能耗的条件下被去除,在运行过程中不需要化学再生,并且其出水电阻率较混床出水还要高,可达10-18.2MΩ.CM,满足国家电子级水I级标准。
EDI对一级反渗透出水电导率没有太高的要求,进水电导率在4-30us∕cm其都能够合格产水。
可能需增加软化装置,去除水中的钙、镁离子。
若电导率较高时只需调节运行电流的大小和加药量(氯化钠)的大小。
属于环保型技术,离子交换树脂不需酸、碱化学再生,节约大量酸、碱和清洗用水,大大降低了劳动强度。
更重要的是无废酸、废碱液排放,属于非化学式的水处理系统,它无需酸、碱的贮存、处理及无废水的排放。
混床混床再生时间比较长,再生中需耗用大量的RO水将混床冲洗合格。
混床的设备操作在纯化水系统中是比较复杂的,从一开始的配酸、碱到最后的再生结束最少需经过两个班、多人的配合,劳动强度较大,同时由于混床的交换有效周期的缩短带来了混床的频繁再生,进一步加大了再生时的劳动强度。
混床再生时操作工需与酸、碱进行接触,是一种危险性的操作,而且再生时虽然操作工穿戴有劳动保护用品,但仍使操作工的人身安全存在一定危险。
混床再生后的使用有效期与操作工的经验、工作责任心及再生用酸碱的质量有很大的关系,由于其操作大部分靠经验操作,难免会出现混床再生后在备用期内就失效,不能使用的事情。
这样就有可能会影响正常生产。
EDIEDI是由几个每小时产水量相同的模块组成,根据实际纯水的使用量开启或停止EDI模块,手动操作相对频繁,但操作比较简单,只需开启EDI进水阀门、极水阀门和浓水阀门,以及打开电源同时根据出水水质调节加药量(氯化钠)、电解电压和电流的大小即可,对操作工的责任心要求较高。
3)EDI与混床成本对比混床详见10m3/h反渗透+混床(10MΩ)纯水处理系统运行成本分析表。
全年一条10m3/h反渗透+混床(10MΩ)纯水处理系统运行成本在350400元左右。
EDI详见10m3/h反渗透+EDI(10MΩ)纯水处理系统运行成本分析表。
全年一条10m3/h反渗透+EDI(10MΩ)纯水处理系统运行成本在334400元左右。
4)EDI与混床对比分析A、EDI与混床优、缺点分析优点混床1、设备初期投入低2、出水水质稳定3、预处理要求简单4、水的利用率较高EDI1、设想周到的堆叠式设2、水质稳定3、无需酸碱再生,无危害性废液排放4、连续运行,简单操作5、运行费用低6、占地面积小7、便于安装及保养8、水的利用率高缺点混床1、树脂交换容量利用率低、损耗率大2、酸碱再生有危险性废液排放3、细菌易在床层中繁殖4、阀门较多,操作复杂5、运行重量高,占用面积大EDI1、初期投资较大2、对预处理要求高二、EDI与混床综合分析比较项目混床EDI性能★★★★★操作★★★运行费用★★★★环保★★★★综合一般优综上所述,对于高纯水系统,无论从产水质量、性能和操作等方面考虑,还是从运行费用和环保等方面考虑,反渗透+EDI工艺都是一个理想的选择。
EDI设备EDI技术的发展图2 混床与EDI模块运行状态的比较扩展阅读:EDI与混床的比较EDI相对与混床具有如下的优势:无需再生化学品的再生;不需要中和池及中和的酸碱;地面和高空作业能够极大地减少;所有的水处理系统操作都能够在控制室内完成–无需前往现场;减小了EHS 风险;连续工作,不是间歇操作,长时间稳定的出水水质;没有废弃树脂污染排放的风险。
3.1无需再生化学品的再生无需化学品再生,意味着不需要相关化学品的运输,储存和使用(如图6),也避免了相关的ESH风险,并且大大降低了系统的运行费用。
图6 化学品的运输,储存和使用过程3.2 没有中和药剂的需要混床再生会生成酸/碱废液,需要用碱/酸对之进行中和处理。
相比之下,EDI无酸碱废液产生,因此也就不需要酸碱中和池。
此外,一般情况下,EDI的浓水可以完全回用;而且极水也可以在气液分离后回用。
EDI系统能很好的满足ISO14000的要求。
图7 EDI没有中和药剂的需要3.3 运行成本低EDI的运行的费用几乎全部为电耗,成本大幅往往低于混床。
以E-Cell MK-3为例,平均产水1吨,其运行所需的电耗仅为0.132~0.396KWhr;而且其运行过程中,几乎不需要人工操作,降低了人工费用。
3.4 水利用率高以E-Cell MK-3为例,相比于混床,由于没有化学再生的需要,其系统的水利用率为95~99%,这对于中大型系统、水资源紧缺地区的节水效益尤为明显3.5 极大地减少了地面和高空作业E-cell是EDI模块化设计技术的倡导者和领导者,现在E-cell 模块化技术已经成为一种行业标准。
这种设计既使得EDI模块及其系统的安装十分简便,不同水量的系统就像搭积木一样方便。
图8为EDI系统示意图,对于一般的EDI系统而言,其高度在2.25米左右,因此,高空作业也就很少。
图8 EDI系统示意图3.4. 所有的水处理系统操作都能够在控制室内完成–无需前往现场图9 EDI系统控制示意图EDI 系统的自动化程度很高,以 E-cell 为例,GE 在欧美具有二十几年的 EDI 系统工程自动化经验,EDI系统所有的操作均可以在中空室完成。
这样平时操作,用户不再需要到现场,从而降低了劳动强度。
3.5. 连续工作,不是间歇操作,长时间稳定的出水水质如图10所示,混床运行过程为间歇运行过程,混床在运行一段时间后,树脂会被穿透,此时产水电阻率会下降,这时就需要对混床进行停机再生,再生后的混床将能继续提供高品质的产水,直到下一次再生。
如图11所示,EDI运行过程为连续过程,EDI 在运行过程中将能持续不断地提供10~18Mohm•cm的产水,在运行过程中,几乎不需要人工干预,没有复杂的操作,并不需要化学药品的再生。
图12 实际运行的E-Cell系统产水电阻率图图12为某实际运行的E-Cell系统产水电阻率,当进水水质发生波动的时候,产水水质能很好的稳定在18Mohm•cm左右。
当用户要求对二氧化硅,硼,钠等进行控制的时候,EDI相对混床的优势就进一步体现出来。
比如,混床运行过程中,常会出现硅先于电阻率穿透的现象,即使产水电阻率合格,但硅已经超过控制标准,这就意味着混床需要更为频繁的再生。
而E-CellTM率先对二氧化硅出水水质提供了担保,按照其进水中二氧化硅的含量可以提供<5ppb,<10ppb,<20ppb的担保(具体数据清参照表2)表2 E-Cell TM对于硅的保证值产水SiO2Ppb 进水SiO2Ppb 进水TEAppm CaCO3 进水CO2Ppm 温度Deg. C20 ppb <=500 20 7.5 1010 ppb <=250 20 7.5 105 ppb <=150 15 5.0 10EDI对于二氧化硅的去除率相当高,一般在94.6~99.4%之间,图13为实际运行的E-Cell系统对于硅的去处效果。
图13 E-Cell系统对于二氧化硅的去除率3.6设备占地空间更小相对与混床及其附属设备而言,EDI系统的占地空间更小,下图为的单套17~120t/hr产水量的E-Cell系统占地空间,而对于更大的系统,仅需将系统做相应的延伸或者增加套数即可。
表1标准E-CellTM系统的尺寸产水t/hrE-cell系统体积(长×宽×高)90-1206.2m×2.2m×2.1m45-1105.3m×2.2m×2.1m35-804.7m×2.0m×2.1m20-553.3m×1.3m×2.1m17-412.2m×1.3m×2.1m由表1可见,E-CellTM系统所需要的空间很小,而且对厂房的要求不高。
此外,其运输和安装重量也较轻。