高中数学期末试卷

合集下载

人教版高中数学必修二期末考试试题

人教版高中数学必修二期末考试试题

人教版高中数学必修二期末考试试题一、选择题1. 若函数 $f(x)=x^3-3x^2+bx+c$ 的图像过点 $(1,5)$,则$b=$()A.$-1$ B.$-2$ C.$-3$ D.$-4$2. 函数 $y=\frac{x+1}{x-1}$ 的图象关于直线 $y=-x$ 对称。

3. 从集合 $\{1,2,3,4,5,6\}$ 中取两个不同的元素组成一个二元组,则其中不含 $3$ 的二元组的数目为()。

A.$20$ B.$10$ C.$15$ D.$18$4. 已知集合$A=\{x\mid 2x-1\in \mathbb{N}\}$,则$A=$()。

A.$\bigl\{\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots\bigr\}$ B .$\bigl\{\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots,b\bigr\}$C.$\bigl\{1,2,3,\cdots\bigr\}$ D.$\bigl\{\cdots,-\frac{1}{2},\frac{1}{2},\frac{3}{2},\frac{5}{2},\cdots\bigr\}$5. 如图所示,大三角形的三个点坐标分别为 $A(-2,0)$,$B(0,2)$,$C(2,-4)$,以 $C$ 为顶点小三角形顶点的坐标为()。

A.$(-\frac{7}{5},-\frac{14}{5})$ B.$(\frac{7}{5},\frac{6}{5})$C.$(\frac{2}{5},-\frac{18}{5})$ D.$(\frac{6}{5},-\frac{4}{5})$二、填空题6. 下列各组数中互为相反数的是()。

$${1\over3},-{1\over3};\qquad {\sqrt{10}},-\sqrt{10};\qquad -3,3\sqrt{2}$$7. 容量为 $500 \rm mL$ 的杯中盛满水,再加进糖水搅拌,这时每 $100 \rm mL$ 的液体中含糖 $10\%$。

云南省2023-2024学年高二下学期期末普通高中学业水平考试数学试卷

云南省2023-2024学年高二下学期期末普通高中学业水平考试数学试卷

云南省2023-2024学年高二下学期期末普通高中学业水平考试数学试卷一、单选题1.已知集合S ={1,2}集合T ={1,2,3}则S T I 等于( ) A .{}1B .{}2C .{}1,2D .{}1,2,32.已知i 为虚数单位,设复数121i,3i z z =-=+,则12z z +=( ) A .1B .4C .iD .4i3.已知,,a b c 都是实数.若a b >,则( ) A .c c a b > B .ac bc > C .a b c c> D .a c b c ->-4.函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的最小正周期是( )A .4πB .2πC .πD .π25.已知函数()f x x =,则()2f x =( ) A .2xB .xC .2D .16.函数2x y =的最小值为( ) A .0B .1C .2D .37.下列函数中,在()0,∞+上单调递增的是( ) A .2y x =-B .1y x=C .3x y =D .1,11,1x x y x x -≥⎧=⎨-<⎩8.不等式()60x x -…的解集为( )A .{0}x x <∣B .{6}x x >∣C .{0xx ∣…或6}x … D .{}06xx ∣剟 9.PM MN +=u u u u r u u u u r( )A .0rB .NP u u u rC .NM u u u u rD .PN u u u r10.在ABC V 中,内角,,A B C 的对边分别是,,a b c .若2,3,4a b c ===,则cos B =( )A .1116B .712 C .25-D .59-11.已知i 为虚数单位,则复数26i z =--在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限12.在ABC V 中,内角,,A B C 的对边分别是,,a b c ,若111,sin ,sin 63a A B ===,则b =( )A .6B .4C .3D .213.已知平面向量()()1,2,2,a b x ==r r .若a b r r ∥,则实数x 的值是( )A .4B .1C .1-D .4-14.下列函数中,是偶函数的为( )A .()ln f x x =B .()3f x x =C .()sin f x x =D .()e e x xf x -=+15.已知sin 5cos αα=,则tan α=( )A .3B .5C .7D .916.cos cos sin sin αβαβ+=( )A .()cos αβ-B .()cos αβ+C .()sin αβ-D .()sin αβ+17.如图,在正方体1111ABCD A B C D -中,异面直线1BC 与11B D 所成的角等于( )A .π6B .π4C .π3D .π218.设1cos sin 2αα-=,则sin2α=( )A .38B .34C .12D .1819.某单位有职工500人,其中女职工300人,男职工200人.现按男女比例,采用分层随机抽样的方法,从该单位职工中抽取25人进行相关调查研究,则应抽取该单位女职工( )A .10人B .12人C .13人D .15人20.已知0,0a b >>.若1ab =,则lg lg a b +=( )A .0B .1C .2D .321.某同学通过摸球的方式选择参加学校组织的社会实践活动.摸球规则如下:在一个不透明的袋子中有10个大小质地完全相同的球,其中2个红球,8个黄球.该同学从这个袋子中随机摸出1个球.若摸出的球是红球,则参加社区植树;若摸出的球是黄球,则参加社区卫生大扫除.该同学参加社区植树的概率为( )A .15B .14C .13D .1222.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度二、填空题23.已知()1,2P 是角α终边上的一点,则角α的正切值是.24.一商场门口有个球形装饰品.若该球的半径为1米,则该球的表面积为平方米. 25.已知0a >,则9a a+的最小值是. 26.某校为了解今年春季学期开学第一周,高二年级学生参加学校社团活动的时长,有关部门随机抽查了该校高二年级100名同学,统计他们今年春季学期开学第一周参加学校社团活动的时长,并绘制成如图所示的频率分布直方图.其中这100名同学今年春季学期开学第一周参加学校社团活动的时长(单位:小时)范围是[]2,12,数据分组为[)[)[)[)[]2,4,4,6,6,8,8,10,10,12.这100名同学中,今年春季学期开学第一周参加学校社团活动的时长不少于6小时的人数为人.三、解答题27.甲、乙两名同学进行投篮练习,已知甲命中的概率为0.7,乙命中的概率为0.8,且甲、乙两人投篮的结果互不影响,相互独立.甲、乙两人各投篮一次,求下列事件的概率: (1)甲、乙两人都命中; (2)甲、乙两人至少有一人命中.28.如图,在四棱锥P ABCD -中,四边形ABCD 是矩形,,PD DA PD AB ⊥⊥.(1)证明:PD BD ⊥;(2)若π2,3AD DAP ∠==,三棱锥D PBC -PA 与平面PBD 所成角的正弦值.29.已知常数,,a b c 满足a b c >>,且()20,a b c f x ax bx c ++==++.(1)证明:0a >且ca是()f x 的一个零点;(2)若(),m ∞∞∃∈-+,使得()f m a =-,记()1136c T f f m a ⎛⎫=+⋅+ ⎪⎝⎭,下列结论:0,0,0T T T <=>,你认为哪个正确?请说明理由.。

安徽高一高中数学期末考试带答案解析

安徽高一高中数学期末考试带答案解析

安徽高一高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.一中学有90个班,每班60人,若每班选派3人参加“学代会”,则在这个问题中,样本容量是( )A.90B.60C.270D.1802.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差3.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则的值分别为 ( )A.8,8B.5,8C.5,5D.2,54.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间内的频数为 ( )A.18B.36C.54D.725.在区间上随机取一个数,的值介于到1之间的概率为 ( )A.B.C.D.6.要得到函数的图象,只需将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度7.按如下程序框图,若输出结果为,则判断框内应补充的条件为( )A.B.C.D.8.已知圆的半径为2,圆的一条弦的长是3,是圆上的任意一点,则的最大值为 ( ) A.9B.10C.D.9.定义运算为执行如图所示的程序框图输出的值,则的值为 ( )A.B.C.D.10.如图所示为函数的部分图象,其中两点之间的距离为5,那么( )A.B.C.1D.11.已知直线与圆交于两点,且,其中为原点,则实数的值为( )A.2B.C.2或D.或12.已知函数的图象与直线有三个交点的横坐标分别为,那么的值是 ( )A.B.C.D.二、填空题1.若向量,则__________.2.从集合的所有子集中任取一个集合,它含有2个元素的概率为__________.3.的夹角为,,则__________.4.设当时,函数取得最小值,则__________.三、解答题1.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布图中的值,并估计该企业的职工对该部门评分不低于80的概率;(2)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率..2.一台机器由于使用时间较长,生产的零件有一些会有缺损,按不同转速生产出来的零件有缺损的统计数据如表所示:(1)作出散点图;(2)如果与线性相关,求出回归直线方程.(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,,3.设函数.(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的最大值.4.在边长为3的正中,设.(1)用向量表示向量,并求的模;(2)求的值;(3)求与的夹角的大小.5.已知均为锐角,满足,求.6.已知函数是上的偶函数,其图象关于点对称,且在区间上是单调函数,求和的值.安徽高一高中数学期末考试答案及解析一、选择题1.一中学有90个班,每班60人,若每班选派3人参加“学代会”,则在这个问题中,样本容量是( )A.90B.60C.270D.180【答案】C【解析】由题意,是一个分层抽样,每个班中抽三人,总共是40个班,故共抽取120人组成样本,所以,样本容量是120人故选C.2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则 ( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差【答案】C【解析】甲=(4+5+6+7+8)=6,乙=(5×3+6+9)=6,甲的成绩的方差为(22×2+12×2)=2,乙的成绩的方差为(12×3+32×1)=2.4.故选C.【考点】统计中的平均数、中位数、方差、极差及条形图3.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则的值分别为 ( )A.8,8B.5,8C.5,5D.2,5【答案】B【解析】乙组数据平均数=(9+15+18+24+10+y)÷5=16.8;∴y=8;甲组数据可排列成:9,12,10+x,24,27.所以中位数为:10+x=15,∴x=5.故选:C.4.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间内的频数为 ( )A.18B.36C.54D.72【答案】B【解析】每一组的频率等于本组矩形的面积,所以的面积是,所以这组的频数就是,故选A.【考点】频率分布直方图5.在区间上随机取一个数,的值介于到1之间的概率为 ( )A.B.C.D.【答案】D【解析】在区间[−1,1]上随机取一个数x,即x∈[−1,1]时,要使的值介于到1之间,需使∴,区间长度为,由几何概型知的值介于到1之间的概率 .故选A.6.要得到函数的图象,只需将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】由题意得,,则的图象向左平移个单位长度即可得到函数,故选A.7.按如下程序框图,若输出结果为,则判断框内应补充的条件为( )A.B.C.D.【答案】D【解析】经过第一次循环得到S=2,i=3经过第二次循环得到S=2+23=10,i=5经过第三次循环得到S=10+25=42,i=7经过第四次循环得到S=42+27=170,i=9此时,需要输出结果,此时的i满足判断框中的条件故判断框内应补充的条件为:故选:D.8.已知圆的半径为2,圆的一条弦的长是3,是圆上的任意一点,则的最大值为 ( ) A.9B.10C.D.【答案】C【解析】如图所示,连接OA,OB.过点O作OC⊥AB,垂足为C.则.∴cos∠OAB=当且仅当且同向时取等号。

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

湖北省武汉2023-2024学年高一下学期期末考试数学试卷含答案

武汉2023-2024学年度下学期期末考试高一数学试卷(答案在最后)命题教师:考试时间:2024年7月1日考试时长:120分钟试卷满分:150分一、选择题:本题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足(2i)3i z +=-,则z =()A.1i +B.1i- C.1i-+ D.1i--【答案】A 【解析】【分析】先利用复数的除法运算法则化简得到复数z ,再根据共轭复数的概念即可求解.【详解】因为(2i)3i z +=-,所以3i (3i)(2i)1i 2i 41z ---===-++,所以1i z =+.故选:A2.△ABC 中,60A =︒,BC =AC =C 的大小为()A.75︒B.45︒C.135︒D.45︒或135︒【答案】A 【解析】【分析】利用正弦定理可得sin B =45B = ,由三角形内角和即可求解.【详解】由正弦定理可得sin sin BC AC A B=,故32sin 2B ==,由于60A =︒,故0120B ︒︒<<,故45B = ,18075C A B =--= ,故选:A3.已知数据1x ,2x ,L ,9x 的方差为25,则数据131x +,231x +,L ,931x +的标准差为()A.25B.75C.15D.【答案】C 【解析】【分析】根据方差的性质求出新数据的方差,进而计算标准差即可.【详解】因为数据1x ,2x ,L ,9x 的方差为25,所以另一组数据131x +,231x +,L ,931x +的方差为2325225⨯=,15=.故选:C4.在正方形ABCD 中,M 是BC 的中点.若AC AM BD λμ=+,则λμ+的值为()A.43B.53C.158D.2【答案】B 【解析】【分析】建立平面直角坐标系,利用向量的坐标运算求解作答.【详解】在正方形ABCD 中,以点A 为原点,直线AB ,AD 分别为x ,y 轴建立平面直角坐标系,如图,令||2AB =,则(2,0),(2,2),(0,2),(2,1)B C D M ,(2,2),(2,1),(2,2)AC AM BD ===-,(22,2)AM BD λμλμλμ+=-+ ,因AC AM BD λμ=+ ,于是得22222λμλμ-=⎧⎨+=⎩,解得41,33λμ==,53λμ+=所以λμ+的值为53.故选:B5.正三棱柱111ABC A B C -的底面边长为2D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.32【答案】C 【解析】【详解】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B ⋂=,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以11111133133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.6.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C b c C ⎛⎫++= ⎪⎝⎭,3B π=,则a c +的取值范围是()A.332⎛⎝ B.332⎛⎝ C.332⎣ D.332⎡⎢⎣【答案】A 【解析】【分析】利用三角恒等变换及正弦定理将cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭进行化简,可求出b 的值,再利用边化角将a c +化成角,然后利用辅助角公式及角的范围即可得到答案.【详解】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=∴cos cos sin sin sin B C AB bc C ⎛⎫+=⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴sin cos cos 3sin 3A cB bC C ⋅+⋅==∴23sin sin cos cos sin 3AC B C B +=∴23sin sin()sin 3AB C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin cos )3226a c A C A A A A A ππ+=+=+-=+=+ 203A π<<∴5666A πππ<+<∴)26A π<+≤即2a c <+≤故选:A .【点睛】方法点睛:边角互化的方法(1)边化角:利用正弦定理2sin sin sin a b cr A B C===(r 为ABC 外接圆半径)得2sin a r A =,2sin b r B =,2sin c r C =;(2)角化边:①利用正弦定理:sin 2aA r=,sin 2b B r =,sin 2c C r=②利用余弦定理:222cos 2b c a A bc+-=7.设O 为△ABC 的外心,若2AO AB AC =+,则sin BAC ∠的值为()A.4B.4C.4-D.4【答案】D 【解析】【分析】设ABC 的外接圆半径为R ,由已知条件可得,2AC BO = ,所以12AC R =,且//AC BO ,取AC的中点M ,连接OM 可得π2BOM ∠=,计算cos sin BOC MOC ∠=-∠的值,再由余弦定理求出BC ,在ABC 中,由正弦定理即可求解.【详解】设ABC 的外接圆半径为R ,因为2AO AB AC =+ ,2AC AO AB BO =-=,所以1122AC BO R ==,且//AC BO ,取AC 的中点M ,连接OM ,则OM AC ⊥,因为//AC BO ,所以OM BO ⊥,即π2BOM ∠=,所以11π124cos cos sin 24AC RMC BOC MOC MOC OC OB R ⎛⎫∠=+∠=-∠=-=-=-=- ⎪⎝⎭,在BOC中由余弦定理可得:2BC R ===,在ABC中,由正弦定理得:2sin 224RBCBAC RR ∠===.故选:D8.高为8的圆台内有一个半径为2的球1O ,球心1O 在圆台的轴上,球1O 与圆台的上底面、侧面都相切.圆台内可再放入一个半径为3的球2O ,使得球2O 与球1O 、圆台的下底面及侧面都只有一个公共点.除球2O ,圆台内最多还能放入半径为3的球的个数是()A.1 B.2C.3D.4【答案】B 【解析】【详解】作过2O 的圆台的轴截面,如图1.再作过2O 与圆台的轴垂直的截面,过截面与圆台的轴交于圆O .由图1.易求得24OO =.图1这个问题等价于:在以O 为圆心、4为半径的圆上,除2O 外最多还可放几个点,使以这些点及2O 为圆心、3为半径的圆彼此至多有一个公共点.由图2,3sin45sin sin604θ︒<=︒,有4560θ︒<<︒.图2所以,最多还可以放入36013122θ︒⎡⎤-=-=⎢⎣⎦个点,满足上述要求.因此,圆台内最多还可以放入半径为3的球2个.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知某地区有小学生120000人,初中生75000人,高中生55000人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为2000的样本,得到小学生,初中生,高中生的近视率分别为30%,70%,80%.下列说法中正确的有()A.从高中生中抽取了460人B.每名学生被抽到的概率为1125C.估计该地区中小学生总体的平均近视率为60%D.估计高中学生的近视人数约为44000【答案】BD 【解析】【分析】根据分层抽样、古典概型、频率公式等知识对选项进行分析,从而确定正确选项.【详解】高中生抽取5500020004401200007500055000⨯=++人,A 选项错误.每名学生被抽到的概率为200011200007500055000125=++,B 选项正确.学生总人数为1200007500055000250000++=,估计该地区中小学生总体的平均近视率为1200007500055000132.50.30.70.80.53250000250000250000250⨯+⨯+⨯==,C 选项错误.高中学生近视人数约为550000.844000⨯=人,D 选项正确.故选:BD10.G 是ABC 的重心,2,4,120,AB AC CAB P ∠=== 是ABC 所在平面内的一点,则下列结论正确的是()A.0GA GB GC ++= B.AB 在AC上的投影向量等于12- AC .C.3AG =D.()AP BP CP ⋅+ 的最小值为32-【答案】ACD 【解析】【分析】根据向量的线性运算,并结合重心的性质,即可判断A ,根据投影向量的定义,判断B ;根据向量数量积公式,以及重心的性质,判断C ;根据向量数量积的运算率,结合图形转化,即可判断D.【详解】A.以,GB GC 为邻边作平行四边形GBDC ,,GD BC 交于点O ,O 是BC 的中点,因为G 是ABC 的重心,所以,,A G O 三点共线,且2AG GO =,所以2GB GC GD GO +== ,2GA AG GO =-=- ,所以0GA GB GC ++=,故A 正确;B.AB 在AC 上的投影向量等于1cos1204AC AB AC AC ⨯=-,故B 错误;C.如图,因为()12AO AB AC =+ ,所以()222124AO AB AC AB AC =++⋅,即211416224342AO ⎛⎫=+-⨯⨯⨯= ⎪⎝⎭,即3AO = 因为点G 是ABC 的重心,22333AG AO ==,故C 正确;D.取BC 的中点O ,连结,PO PA ,取AO 中点M ,则2PA PO PM += ,()12AO AB AC =+,()()2221124816344AO AB AB AC AC =+⋅+=⨯-+= ,则()()()()221224AP BP CP PA PB PC PA PO PA PO PA PO ⎡⎤⋅+=⋅+=⋅=⨯+--⎢⎥⎣⎦,222132222PM OA PM =-=- ,显然当,P M 重合时,20PM = ,()AP BP CP ⋅+ 取最小值32-,故D 正确.故选:ACD【点睛】关键点点睛:本题的关键是对于重心性质的应用,以及向量的转化.11.如图,在棱长为2的正方体1111ABCD A B C D -中,O 为正方体的中心,M 为1DD 的中点,F 为侧面正方形11AA D D 内一动点,且满足1B F ∥平面1BC M ,则()A.三棱锥1D DCB -的外接球表面积为12πB.动点F 的轨迹的线段为22C.三棱锥1F BC M -的体积为43D.若过A ,M ,1C 三点作正方体的截面Ω,Q 为截面Ω上一点,则线段1AQ 长度的取值范围为45,225⎡⎢⎣⎦【答案】AC 【解析】【分析】选项A :三棱锥1D DCB -的外接球即为正方体的外接球,结合正方体的外接球分析;选项B :分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD ;证明平面1B GH ∥平面1BC M ,从而得到点F 的轨迹为线段GH ;选项C :根据选项B 可得出GH ∥平面1BC M ,从而得到点F 到平面1BC M 的距离为H 到平面1BC M 的距离,再结合线面垂直及等体积法,利用四棱锥的体积求解所求三棱锥的体积;选项D :设N 为1BB 的中点,从而根据面面平行的性质定理可得到截面Ω即为面1AMC N ,从而线段1AQ 长度的最大值为线段11A C 的长,最小值为四棱锥11A AMC N -以1A 为顶点的高.【详解】对于A :由题意可知:三棱锥1D DCB -的外接球即为正方体的外接球,可知正方体的外接球的半径3R =所以三棱锥1D DCB -的外接球表面积为24π12πR =,故A 正确;对于B :如图分别取1AA ,11A D 的中点H ,G ,连接1B G ,GH ,1HB ,1AD .由正方体的性质可得11B H C M ∥,且1B H ⊂平面1B GH ,1C M ⊄平面1B GH ,所以1C M //平面1B GH ,同理可得:1BC //平面1B GH ,且111BC C M C ⋂=,11,BC C M ⊂平面1BC M ,所以平面1B GH ∥平面1BC M ,而1B F ∥平面1BC M ,所以1B F ⊂平面1B GH ,所以点F 的轨迹为线段GH ,其长度为12222⨯=,故B 错误;对于C :由选项B 可知,点F 的轨迹为线段GH ,因为GH ∥平面1BC M ,则点F 到平面1BC M 的距离为H 到平面1BC M 的距离,过点B 作1BP B H ⊥,因为11B C ⊥平面11ABB A ,BP ⊂平面11ABB A ,所以11B C BP ⊥,又1111⋂=B C B H B ,111,B C B H ⊂平面11B C MH ,所以BP ⊥平面11B C MH ,所以1111111111114252232335F BC M H BC M B C MH B B C MH B C MHV V V V S BP ----====⨯=⨯⨯⨯⨯,故C 正确;对于D :如图,设平面Ω与平面11AA B B 交于AN ,N 在1BB 上,因为截面Ω⋂平面11AA D D AM =,平面11AA D D ∥平面11BB C C ,所以1AM C N ∥,同理可证1AN C M ∥,所以截面1AMC N 为平行四边形,所以点N 为1BB 的中点,在四棱锥11A AMC N -中,侧棱11A C 最长,且11A C =设棱锥11A AMC N -的高为h ,因为1AM C M ==1AMC N 为菱形,所以1AMC 的边1AC ,又1AC =则112AMC S =⨯=△1111111142223323C AA M AA M V SD C -=⋅=⨯⨯⨯⨯=△,所以1111114333A AMC AMC C AA M V S h V --=⋅===△,解得3h =.综上,可知1AQ 长度的取值范围是,3⎡⎢⎣,故D 错误.故选:AC【点睛】关键点睛:由面面平行的性质得到动点的轨迹,再由锥体的体积公式即可判断C ,D 选项关键是找到临界点,求出临界值.三、填空题:本小题共3小题,每小题5分,共15分.12.已知复数()221i i()z m m m =-++⋅∈R 表示纯虚数,则m =________.【答案】1-【解析】【分析】根据2i 1=-和复数的分类要求得出参数值;【详解】因为复数()()2221ii=11i()z m m mm m =-++⋅-+-⋅∈R 表示纯虚数,所以210,10,m m ⎧-=⎨-≠⎩解得1m =-,故答案为:1-.13.定义集合(){},02024,03,,Z |A x y x y x y =≤≤≤≤∈,则从A 中任选一个元素()00,x y ,它满足00124x y -+-<的概率是________.【答案】42025【解析】【分析】利用列举法求解符合条件的()00,x y ,即可利用古典概型的概率公式求解.【详解】当0y =时,02024,Z x x ≤≤∈,有2025种选择,当1,2,3y =时,02024,Z x x ≤≤∈,分别有2025种选择,因此从A 中任选一个元素()00,x y ,共有202548100⨯=种选择,若00y =,则022y -=,此时由00124x y -+-<得012x -<,此时0x 可取0,1,2,若01y =或3,则021y -=,此时由00124x y -+-<得013x -<,此时0x 可取0,1,2,3,若02y =,则020y -=,此时由00124x y -+-<得014x -<,此时0x 可取0,1,2,3,4,综上可得满足00124x y -+-<的共有342516+⨯+=种情况,故概率为16481002025=故答案为:4202514.在ABC 和AEF △中,B 是EF的中点,1,6,AB EF BC CA ====,若2AB AE AC AF ⋅+⋅= ,则EF 与BC的夹角的余弦值等于__________.【答案】23【解析】【分析】【详解】由题意有:()()2AB AE AC AF AB AB BE AC AB BF ⋅+⋅=⋅++⋅+=,即22AB AB BE AC AB AC BF +⋅+⋅+⋅= ,而21AB =,据此可得:11,AC AB BE BF ⋅=⨯-=- ,即()112,2BF AC AB BF BC +⋅--=∴⋅= ,设EF 与BC 的夹角为θ,则2cos 2,cos 3BF BC θθ⨯⨯=∴= .四、解答题:本小题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.某学校为了解本校历史、物理方向学生的学业水平模拟测试数学成绩情况,分别从物理方向的学生中随机抽取60人的成绩得到样本甲,从历史方向的学生中随机抽取n 人的成绩得到样本乙,根据两个样本数据分别得到如下直方图:已知乙样本中数据在[70,80)的有10个.(1)求n 和乙样本直方图中a 的值;(2)试估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数(同一组中的数据用该组区间中点值为代表);(3)采用分层抽样的方法从甲样本数据中分数在[60,70)和[70,80)的学生中抽取6人,并从这6人中任取2人,求这两人分数都在[70,80)中的概率.【答案】(1)50n =,0.018a =;(2)物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;(3)25【解析】【分析】(1)由频率分布直方图得乙样本中数据在[70,80)的频率为0.2,这个组学生有10人,由此能求出n ,由乙样本数据直方图能求出a ;(2)利用甲、乙样本数据频率分布直方图能估计估计该校物理方向的学生本次模拟测试数学成绩的平均值和历史方向的学生本次模拟测试数学成绩的第75百位数;(3)由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,利用列举法能求出这两人分数都在[70,80)中的概率.【小问1详解】解:由直方图可知,乙样本中数据在[70,80)的频率为0.020100.20⨯=,则100.20n=,解得50n =;由乙样本数据直方图可知,(0.0060.0160.0200.040)101a ++++⨯=,解得0.018a =;【小问2详解】解:甲样本数据的平均值估计值为(550.005650.010750.020850.045950.020)1081.5⨯+⨯+⨯+⨯+⨯⨯=,乙样本数据直方图中前3组的频率之和为(0.0060.0160.02)100.420.75++⨯=<,前4组的频率之和为(0.0060.0160.020.04)100.820.75+++⨯=>,所以乙样本数据的第75百位数在第4组,设第75百位数为x ,(80)0.040.420.75x -⨯+=,解得88.25x =,所以乙样本数据的第75百位数为88.25,即物理方向的学生本次模拟测试数学成绩的平均值为81.5,历史方向的学生本次模拟测试数学成绩的第75百位数为88.25;【小问3详解】解:由频率分布直方图可知从分数在[60,70)和[70,80)的学生中分别抽取2人和4人,将从分数在[60,70)中抽取的2名学生分别记为1A ,2A ,从分数在[70,80)中抽取的4名学生分别记为1b ,2b ,3b ,4b ,则从这6人中随机抽取2人的基本事件有:12(,)A A ,11(,)A b ,12(,)A b ,13(,)A b ,14(,)A b ,21(,)A b ,22(,)A b ,23(,)A b ,24(,)A b ,12()b b ,,13(,)b b ,14(,)b b ,23(,)b b ,24(,)b b ,34(,)b b 共15个,所抽取的两人分数都在[70,80)中的基本事件有6个,即这两人分数都在[70,80)中的概率为62155=.16.(建立空间直角坐标系答题不得分)如图,在四棱锥11A BCC B -中,平面ABC ⊥平面11BCC B ,△ABC 是正三角形,四边形11BCC B 是正方形,D 是AC 的中点.(1)求证:1//AB 平面1BDC ;(2)求直线BC 和平面1BDC 所成角的正弦值的大小.【答案】(1)证明见解析(2)55【解析】【分析】(1)连接1B C ,交1BC 于点O ,连接OD ,由中位线的性质,可知1//OD AB ,再由线面平行的判定定理,得证;(2)过点C 作1CE C D ⊥于点E ,连接BE ,可证CE ⊥平面1BDC ,从而知CBE ∠即为所求,再结合等面积法与三角函数的定义,得解.【小问1详解】连接1B C ,交1BC 于点O ,连接OD ,则O 为1B C 的中点,因为D 是AC 的中点,所以1//OD AB ,又OD ⊂平面1BDC ,1AB ⊄平面1BDC ,所以1AB ∥平面1BDC .【小问2详解】过点C 作1CE C D ⊥于点E ,连接BE ,因为四边形11BCC B 是正方形,所以1BC CC ⊥,又平面ABC⊥平面11BCC B ,1CC ⊂平面11BCC B ,平面ABC ⋂平面11BCC B BC =,所以1CC ⊥平面ABC ,因为BD ⊂平面ABC ,所以1CC BD ⊥,因为ABC 是正三角形,且D 是AC 的中点,所以BD AC ⊥,又1CC AC C =I ,1,⊂CC AC 平面1ACC ,所以BD ⊥平面1ACC ,因为CE ⊂平面1ACC ,所以BD CE ⊥,又1C D BD D =I ,1,C D BD ⊂平面1BDC ,所以CE ⊥平面1BDC ,所以CBE ∠就是直线BC 和平面1BDC 所成角,设2BC =,在1Rt DCC 中,11CE DC CD CC ⋅=⋅,所以5CE ==,在Rt BCE 中,5sin 25CE CBE BC ∠===.17.甲、乙两人进行乒乓球对抗赛,每局依次轮流发球,连续赢2个球者获胜,且比赛结束,通过分析甲、乙过去比赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为25,不同球的结果互不影响,已知某局甲先发球.(1)求该局打4个球甲赢的概率;(2)求该局打5个球结束的概率.【答案】(1)875(2)44675【解析】【分析】(1)先设甲发球甲赢为事件A ,乙发球甲赢为事件B ,然后分析这4个球的发球者及输赢者,即可得到所求事件的构成,利用相互独立事件的概率计算公式即可求解;(2)先将所求事件分成甲赢与乙赢这两个互斥事件,再分析各事件的构成,利用互斥事件和相互独立事件的概率计算公式即可求得概率.【小问1详解】设甲发球甲赢为事件A ,乙发球甲赢为事件B ,该局打4个球甲赢为事件C ,由题知,2()3P A =,2()5P B =,则C ABAB =,所以23228()()()(()()353575P C P ABAB P A P B P A P B ===⨯⨯⨯=,所以该局打4个球甲赢的概率为875.【小问2详解】设该局打5个球结束时甲赢为事件D ,乙赢为事件E ,打5个球结束为事件F ,易知D ,E 为互斥事件,D ABABA =,E ABABA =,F D E =⋃,所以()()()()()()()P D P ABABA P A P B P A P B P A ==2222281135353675⎛⎫⎛⎫=-⨯⨯-⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()()()()()()()P E P ABABA P A P B P A P B P A ==2222241113535375⎛⎫⎛⎫⎛⎫=⨯-⨯⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以8444()()()()67575675P F P D E P D P E =⋃=+=+=,所以该局打5个球结束的概率为44675.18.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,22cos a c b C -=.(1)求B ;(2)若点D 为边BC 的中点,点E ,F 分别在边AB ,AC (包括顶点)上,π6EDF ∠=,2b c ==.设BDE α∠=,将DEF 的面积S 表示为α的函数,并求S 的取值范围.【答案】(1)π3(2)3ππ,π328sin 23S αα=≤≤⎛⎫- ⎪⎝⎭,3,84S ⎡∈⎢⎣⎦【解析】【分析】(1)由题干及余弦定理可得222a c b ac +-=,再根据余弦定理即可求解;(2)由题可得ABC 为等边三角形,ππ32α≤≤,在BDE 与CDF 中,分别由正弦定理求出DE ,DF ,根据三角形面积公式可得3ππ,2ππ3216sin sin 36S ααα=≤≤⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,由三角恒等变换及正弦函数的图象与性质即可求解.【小问1详解】因为22cos a c b C -=,所以222222222a b c a b c a c b ab a +-+--=⋅=,即222a cb ac +-=,所以2221cos 222a cb ac B ac ac +-===.因为()0,πB ∈,所以π3B =.【小问2详解】由π3B=及2b c==可知ABC为等边三角形.又因为π6EDF∠=,BDEα∠=,所以ππ32α≤≤.在BDE中,2π3BEDα∠=-,由正弦定理可得sin sinDE BDB BED∠=,即32π2sin3DEα=⎛⎫-⎪⎝⎭.在CDF中,π6CFDα∠=-,由正弦定理可得sin sinDF CDC CFD∠=,即π2sin6DFα=⎛⎫-⎪⎝⎭.所以31π3ππsin,2ππ2ππ8632 sin sin16sin sin3636Sααααα=⨯⨯=≤≤⎛⎫⎛⎫⎛⎫⎛⎫----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.因为2ππ11sin sin cos sin sin cos362222αααααα⎛⎫⎛⎫⎛⎫⎛⎫--=+-⎪⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭2213313sin cos cos sin sin2cos224444αααααα=-+=-1πsin223α⎛⎫=-⎪⎝⎭,因为ππ32α≤≤,所以ππ2π2,333α⎡⎤-∈⎢⎥⎣⎦,所以π3sin2,132α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦,所以1π1sin2,2342α⎤⎛⎫-∈⎥⎪⎝⎭⎣⎦.所以2ππ16sin sin36αα⎛⎫⎛⎫⎡⎤--∈⎪ ⎪⎣⎦⎝⎭⎝⎭,所以33,2ππ8416sin sin36αα⎡∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭,所以333,2ππ8416sin sin36Sαα⎡=∈⎢⎛⎫⎛⎫⎣⎦--⎪ ⎪⎝⎭⎝⎭.所以S 的取值范围为3,84⎡⎢⎣⎦.19.(建立空间直角坐标系答题不得分)如图,在三棱柱ADP BCQ -中,侧面ABCD 为矩形.(1)若PD⊥面ABCD ,22PD AD CD ==,2NC PN =,求证:DN BN ⊥;(2)若二面角Q BC D --的大小为θ,π2π,43θ⎡⎤∈⎢⎥⎣⎦,且2cos 2AD AB θ=⋅,设直线BD 和平面QCB 所成角为α,求sin α的最大值.【答案】(1)证明见解析(2)12-【解析】【分析】(1)问题转化为证明DN⊥平面BCP ,即证明ND BC ⊥和DN PC ⊥,ND BC ⊥转化为证明BC ⊥平面PQCD ,而ND BC ⊥则只需证明PDN PCD△△(2)作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,列出sin α的表达式,最后把问题转化为函数最值问题.【小问1详解】因为PD⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥,又CD BC ⊥,PD CD D ⋂=,,PD CD ⊂平面PCD ,所以BC ⊥平面PQCD ,又ND ⊂平面PQCD ,所以ND BC ⊥,在Rt PCD 中,2PD ==,则CD =3PC =,所以2NC =,1PN =,由PN PDND PC=,DPN CPD ∠=∠,所以PDN PCD △△,所以DN PC ⊥,又因为ND BC ⊥,PC BC C ⋂=,,PC BC ⊂平面BCP ,所以DN⊥平面BCP ,又因为BN ⊂平面BCP ,所以DN BN ⊥.【小问2详解】在平面QBC 中,过点C 作CF BC ⊥,因为ABCD 为矩形,所以BC CD ⊥,所以DCF ∠为二面角Q BC D --的平面角,且DCF θ∠=,又⋂=CF CD C ,,CD CF ⊂平面CDF ,所以BC ⊥平面CDF ,在平面CDF 中,过点D 作DG FC ⊥,垂足为G ,连接BG ,因为BC ⊥平面CDF ,DG ⊂平面CDF ,所以DG BC ⊥,又BC FC C ⋂=,,BC FC ⊂平面BCQ ,所以DG ⊥平面BCQ ,所以DBG ∠为直线BD 与平面QCB 所成的角,即DBG α∠=,sin DG DC θ=,又因为2cos 2AD AB θ=⋅,所以222sin 32cos 14cos 2DGBDAB AD αθθ===+++π2π,43θ⎡⎤∈⎢⎥⎣⎦可得12cos ,22θ⎡∈-⎢⎣⎦,21cos 0,2θ⎡⎤∈⎢⎥⎣⎦,设32cos t θ=+,2,32t ⎤∈+⎥⎦,则23cos 2t θ-=,()2223sin 1cos 14t θθ-=-=-,所以()2222563125651sin 14222t t t t α⎛⎫-++ ⎪--+⎝⎭=-=≤=,当且仅当25t =时等号,所以sin α51-.【点睛】关键点点睛:本题的关键是作出二面角Q BC D --的平面角以及直线BD 与平面QCB 所成的角,然后写出sin α的表达式,最后求函数最值问题利用了换元法和基本不等式.。

高中数学期末模拟试题一

高中数学期末模拟试题一

2⎨ (0,0) ⎩高中数学期末模拟试题一一、单项选择题(每小题 2 分,共计 20 分):1. 方程 x2+ y 2 = 2 x 在空间直角坐标系中表示().A .圆B .圆柱面C .椭圆抛物面D .圆锥面2.空间直线 x -1 = y +1 = z - 2与 xOy 面的夹角为().-1 1 ππA.B .63 ππC .D .4 2⎧ 3.已知二元函数 f ( x , y ) = ⎪3 - xyxy + 9 , ( x , y ) ≠ (0, 0) 在(0, 0) 点连续,则常数a =( ).⎪ a ,( x , y ) = (0, 0)A . -6B . 6C . 3D . -34. 函数 f (x , y ) = arctan x在点(0,1) 处的梯度为().yA. -iB. - jC. j D . i5. 设函数 z = f (x , y ) 在点(0, 0) 的某邻域内可微,且 f x (0, 0) = -1 , f y (0, 0) = 2 ,则( ).A .函数在(0, 0) 处的全微分dz = 1B .曲面 z = f (x , y ) 在点(0, 0, f (0, 0)) 的法向量为(-1, 2,1)∂fC. 函数在 x 轴正向上的方向导数∂i= 1 (0,0)D.(0, 0) 点一定不是函数的极值点2y -1 6. 二次积分⎰1 dy ⎰f (x , y )dx = ().1x +1 1x -1 A . ⎰0 dx⎰1 12 f (x , y )dy B . ⎰0 dx⎰1 12f (x , y )dy C . ⎰0dx⎰x +1f (x , y )dyD . ⎰0dx⎰x -1f (x , y )dy7. 设曲线积分⎰Lf (x , y ) sin xdx + sin y cos xdy 与路径无关,其中 f (x , y ) 具有二阶连续偏导数,则 f yy (x , y ) = ().n 与∑u 都绝对收敛条件收敛, ∑u 收敛发散, ∑u 收敛与∑u都发散A . 0B .- cos y C . sin y D .cos y8. 设∑ 是半圆锥面 z2= x 2 + y 2 (0 ≤ z ≤ 1) ,则对面积的曲面积分⎰⎰ z 2 dS = ().∑A.⎰⎰x 2+ y 2≤1(x 2 + y 2 )dxdy2(x 2 + y 2 )dxdyB.⎰⎰x 2+ y 2 ≤12(x 2 + y 2 )dxdyx 2 + y 2C.⎰⎰D .x 2+ y 2≤1⎰⎰x 2 + y 2 ≤1dxdy29. 下列说法正确的是( ).∞1A. 级数∑ 2是发散的n =1B. 若级数∑ unn =1∞发散,则∑ un也发散n =1u n +1 C. 若∑ un是正项级数,且lim= +∞ ,则该级数发散n =1n →∞u n∞∞D. 若自某项起u n ≤ v n ,且级数∑vn收敛,则∑ un也收敛10. 设u nn =1= (-1)n ln(1+ 1) , 则 ( ).nn =1A. 级数∑ u n n =1∞2n n =1B. 级数∑ unn =1 ∞2n n =1C. 级数∑ u n n =1 ∞2n n =1D. 级数∑ unn =1∞2 nn =1二、填空题(每空 3 分,共计 15 分):⎧x 2 + y 2 + z 2 = 51. 曲线⎨ ⎩z = 1 在 xOy 面上的投影柱面方程为( ).∞ ∞ ∞ ∞ ∞ ∞y - x 2∞2. 二元函数 z =1 + ln(1- y ) 的定义域是一个( )区域.(选填“有界闭”、“有界开”、“无界闭”或“无界开”)3. 设 z = f (e xy, xy ) ,其中 f (u , v ) 具有连续的偏导数,且有 f u (1, 0) = 1, f v (1, 0) = 2 ,则∂z =∂x (0,1)( ).4. 设 D : x 2 + ( y -1)2 ≤ 1,则⎰⎰ ( x +1) d σ = ( ).D5. 若级数∑{a n} 收敛,则lim an= ( ).n =1n →∞三、计算题(第 1~6 题每题 8 分,第 7 题 9 分,共计 57 分):x -1 y - 2 z - 3 1. 已知直线 L : = = 和直线 L: x + 2 = y -1 = z ,求经过 L 且平行 L 1 1 2 1 22 1 1 1 2的平面方程.(8 分)2. 计算三元函数u = yexyz的一阶偏导数,并求函数在 A (0,1,π) 点沿方向 l = (-1, 0,1) 的方向导 2数.(8 分)3. 求函数 f (x , y ) = x 3 - 4x 2 + 2xy - y 2 的极值.(8 分)4. 计算⎰⎰ x y d σ ,其中 D 为 y =Dx , y = x 2 所围闭区域.(8 分)5. 计算曲线积分⎰L(x + y )2ds ,其中 L 为以(0, 0) 为圆心,1为半径的上半圆周.(8 分)6. 若幂级数∑ n =12n (x - a )nn 3的收敛区间为(2, b ) ,计算其收敛半径 R 和常数a , b 的值,并讨论其在 x = 2 和 x = b 的敛散性.(8 分)7. 设 D 是以 A (1, 0), B (1,1),C (2, 0), D (2,1) 为顶点的正方形区域, L 为其正向边界,试用两种方法计算曲线积分 + x )dy .(9 分)四、应用题(8 分):设平面区域 D 是以(0, 0) 为圆心, a 为半径的上半圆形区域,其上分布着某种不均匀物质,在∞ ⎰ L xydx + ( x 2 1 2任意点(x, y) 处的面密度μ(x, y) 的值为该点到圆心的距离加一.请给出μ(x, y) 的表达式,并计算分布在D 上物质的质量.(8 分)。

高中《数学》科目期末考试试卷

高中《数学》科目期末考试试卷

★ 祝考试顺利★一、单项选择题(本大题共10小题,每小题4分,共40分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出未选,错选或多选均不得分。

1、下列各角中,与-405°终边相同的角是( )。

A 、135°B 、45°C 、-45°D 、-135° 2、若角α的终边经过点P (-1,2),则sin α为( )。

A 、55B 、552 C .-55 D 、-552 3、若sin α<0且tan α>0,则α是( )。

A 、第一象限角B 、第二象限角C 、第三象限角D 、第四象限角4、点A (-1,0),点B 在y 轴上,直线AB 的倾斜角为60°,则点B 的坐标为( )。

A 、 (3,0)B 、(0,3)C 、 (3 ,0)D 、 (0,- 3)5、直线L 的斜率为直线2x -y +4=0斜率的3倍,且过点(1,-1),则直线L 的方程为( )。

A 、6x +y -5=0B 、2x -y -3=0C 、6x -y -7=0D 、6x -y +7=06、若直线L 1:x +3y -4=0与直线L 2:2x +λy -4=0平行,则λ为( )A 、0B 、-6C 、-4D 、67、A (8,-4),B (0,2)两点,A ,B 两点间的距离和AB 的中点坐标为( )。

A 、10,(4,-1)B 、 8, (-4,1)C 、10, (-1,4)D 、 8, (4,-1) 8、已知正三棱柱的高为5cm,底面边长为4 cm,求其体积为( )cm 3。

A 、 30B 、 152C 、40D 、2039、在10张奖券中,有一张一等奖,2张二等奖,若从中任取1张,则中奖的概率为( )。

A 、101 B 、 102 C 、 103 D 、 10710、下列命题正确的有( )个。

①锐角三角形中两个内角和小于90°是必然事件。

高中数学:2022-2023学年广东省深圳市高二(下)期末数学试卷(含参考答案)

高中数学:2022-2023学年广东省深圳市高二(下)期末数学试卷(含参考答案)

2022-2023学年广东省深圳市高二(下)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B =( ) A .{﹣1,0,1}B .{0,1}C .{﹣1,1,2}D .{1,2}2.(5分)设复数z 满足(1+i )z =4﹣2i ,则z =( ) A .1﹣3iB .1+3iC .3﹣iD .3+i3.(5分)已知tan α=2,则cos2α=( ) A .45B .35C .−45D .−354.(5分)已知a →=(−2,1),b →=(x ,−2),若a →∥b →,则x =( ) A .1B .﹣1C .4D .﹣45.(5分)白酒又名烧酒、白干,是世界六大蒸馏酒之一,据《本草纲目》记载:“烧酒非古法也,自元时创始,其法用浓酒和糟入甑(蒸锅),蒸令气上,用器承滴露”,而饮用白酒则有专门的白酒杯,图1是某白酒杯,可将它近似的看成一个圆柱挖去一个圆台构成的组合体,图2是其直观图(图中数据的单位为厘米),则该组合体的体积为( )A .55π6cm 3B .51π6cm 3 C .47π6cm 3D .43π6cm 36.(5分)若正实数m ,n 满足m +n =2,则下列不等式恒成立的为( ) A .lnm +lnn ≥0B .1m+1n≥2C .m 2+n 2≤2D .√m +√n ≤√27.(5分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过原点的直线l 与C 交于A ,B 两点,若AF⊥BF ,且|AF |=3|BF |,则C 的离心率为( ) A .√104B .√105 C .25D .138.(5分)已知点A 在直线x =2上运动,若过点A 恰有三条不同的直线与曲线y =x 3﹣x 相切,则点A 的轨迹长度为( ) A .2B .4C .6D .8二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(多选)9.(5分)某校举办数学文化节活动,10名教师组成评委小组,给参加数学演讲比赛的选手打分.已知各位评委对某名选手的打分如下: 45 48 46 52 47 49 43 51 47 45 则下列结论正确的为( ) A .平均数为48 B .极差为9C .中位数为47D .第75百分位数为51(多选)10.(5分)已知函数f(x)=cos(2x +φ)(0<φ<π2)的图像关于直线x =−π6对称,则( )A .f(π6)=−12B .f (x )在区间(−π4,π6)单调递减C .f (x )在区间(−π2,π2)恰有一个极大值点D .f (x )在区间(0,π3)有两个零点(多选)11.(5分)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,过F 的一条直线与C 交于A ,B 两点,若点M 在l 上运动,则( ) A .当|AM |=|AF |时,AM ⊥lB .当|AM |=|AF |=|MF |时,|AF |=2|BF |C .当MA ⊥MB 时,A ,M ,B 三点的纵坐标成等差数列D .当MA ⊥MB 时,|AM |•|BM |≥2|AF |•|BF |(多选)12.(5分)在四面体ABCD 中,有四条棱的长度为1,两条棱的长度为m ,则( ) A .当AB =AD =m 时,AC ⊥BDB .当AB =CD =m 时,四面体ABCD 的外接球的表面积为(m 2+2)π2C .m 的取值范围为(0,√2)D .四面体ABCD 体积的最大值为√312三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(x +1x 2)6的展开式中常数项是 .(用数字作答) 14.(5分)记S n 为等比数列{a n }的前n 项和,若a 3﹣a 1=3,a 4﹣a 2=6,则S 5= .15.(5分)已知定义在R 上的函数f (x ),满足f (x )=2f (x +2),当x ∈(0,2]时,f (x )=4x (2﹣x ),若方程f (x )=a 在区间(112,+∞)内有实数解,则实数a 的取值范围为 . 16.(5分)已知线段AB 是圆C :(x ﹣1)2+(y ﹣1)2=4上的一条动弦,且|AB|=2√3,设点O 为坐标原点,则|OA →+OB →|的最大值为 ;如果直线l 1:x ﹣my ﹣3m +1=0与l 2:mx +y +3m +1=0相交于点M ,则MA →⋅MB →的最小值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知数列{a n }满足a 1=1,a n+1=a na n +1(n ∈N ∗). (1)证明:数列{1a n}是等差数列,并求数列{a n }的通项公式; (2)设b n =a n a n +1,求数列{b n }的前n 项和T n .18.(12分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且bcosA +12a =c .(1)求B ;(2)若c =2a ,且b =3√3,求△ABC 的面积.19.(12分)如图,已知三棱锥P ﹣ABC 的三个顶点A ,B ,C 在圆O 上,AB 为圆O 的直径,△P AC 是边长为2的正三角形,且平面PBC ⊥平面P AC . (1)证明:平面P AC ⊥平面ABC ;(2)若BC =2√3,点E 为PB 的中点,点F 为圆O 上一点,且F 与C 位于直径AB 的两侧,当EF ∥平面P AC 时,求平面EFB 与平面ABC 的夹角的余弦值.20.(12分)甲参加某多轮趣味游戏,在A ,B 两个不透明的盒内摸球.规定在一轮游戏中甲先在A 盒内随机取出1个小球放入B 盒,再在B 盒内随机取出2个小球.若每轮游戏的结果相互独立,且每轮游戏开始前,两盒内小球的数量始终如表(小球除颜色外大小质地完全相同):(1)求在一轮游戏中甲从A,B两盒内取出的小球均为白球的概率;(2)已知每轮游戏的得分规则为:若从B盒内取出的小球均为红球,则甲获得5分;若从B盒内取出的小球中只有1个红球,则甲获得3分;若从B盒内取出的小球没有红球,则甲获得1分.(i)记甲在一轮游戏中的得分为X,求X的分布列;(ii)假设甲共参加了5轮游戏,记5轮游戏甲的总得分为Y,求E(Y).21.(12分)已知f(x)=axe2x(a∈R).(1)当a≠0时,讨论f(x)的单调性;(2)若关于x的不等式f(x)﹣2x﹣lnx≥0恒成立,求实数a的取值范围.22.(12分)已知双曲线C:x 2a2−y2b2=1(a>0,b>0)的离心率为√2,且C的一个焦点到其一条渐近线的距离为1.(1)求C的方程;(2)设点A为C的左顶点,若过点(3,0)的直线l与C的右支交于P,Q两点,且直线AP,AQ与圆O:x2+y2=a2分别交于M,N两点,记四边形PQNM的面积为S1,△AMN的面积为S2,求S1S2的取值范围.附:参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B =( ) A .{﹣1,0,1}B .{0,1}C .{﹣1,1,2}D .{1,2}【解答】解:集合A ={﹣1,0,1,2},B ={x |0<x <3},则A ∩B ={1,2}, 故选:D .2.(5分)设复数z 满足(1+i )z =4﹣2i ,则z =( ) A .1﹣3iB .1+3iC .3﹣iD .3+i【解答】解:因为(1+i )z =4﹣2i , 所以z =4−2i 1+i =(4−2i)(1−i)(1+i)(1−i)=2−6i2=1−3i , 故z =1+3i . 故选:B .3.(5分)已知tan α=2,则cos2α=( ) A .45B .35C .−45D .−35【解答】解:因tan α=2,则cos2α=cos 2α−sin 2α=cos 2α−sin 2αcos 2α+sin 2α=1−tan 2α1+tan 2α=−35. 故选:D .4.(5分)已知a →=(−2,1),b →=(x ,−2),若a →∥b →,则x =( ) A .1B .﹣1C .4D .﹣4【解答】解:由a →∥b →可得,﹣2×(﹣2)﹣x =0,解得x =4. 故选:C .5.(5分)白酒又名烧酒、白干,是世界六大蒸馏酒之一,据《本草纲目》记载:“烧酒非古法也,自元时创始,其法用浓酒和糟入甑(蒸锅),蒸令气上,用器承滴露”,而饮用白酒则有专门的白酒杯,图1是某白酒杯,可将它近似的看成一个圆柱挖去一个圆台构成的组合体,图2是其直观图(图中数据的单位为厘米),则该组合体的体积为( )A .55π6cm 3B .51π6cm 3 C .47π6cm 3D .43π6cm 3【解答】解:由题意可得该组合体的体积V =π×(32)2•6−13π[(32)2+12+1×32]•(6﹣2)=43π6.故选:D .6.(5分)若正实数m ,n 满足m +n =2,则下列不等式恒成立的为( ) A .lnm +lnn ≥0B .1m+1n≥2C .m 2+n 2≤2D .√m +√n ≤√2【解答】解:由m +n =2及m ,n 均为正实数可得:0<mn ≤(m+n 2)2=1,当且仅当m =n =1时取等号, 选项A ,函数y =lnx 在(0,+∞)上单调递增,所以lnm +lnn =ln (mn )≤ln 1=0,A 错误;选项B ,由均值不等式,1m+1n≥2√1mn≥2,当且仅当m =n =1时取等.B 正确;选项C ,m 2+n 2=(m +n )2﹣2mn =4﹣2mn ≥2,当且仅当m =n =1时取等,C 错误;选项D ,(√m +√n )2=m +n +2√mn =2+2√mn ≤4,当且仅当m =n =1时取等,所以√m +√n ≤2,D 错误. 故选:B .7.(5分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过原点的直线l 与C 交于A ,B 两点,若AF⊥BF ,且|AF |=3|BF |,则C 的离心率为( ) A .√104B .√105 C .25D .13【解答】解:设左焦点为F ′,由O 是FF ′,AB 的中点, ∴|AF ′|=|BF |,AF ⊥AF ′,设|BF |=m ,则|AF |=3m ,又|AF ′|+|AF |=2a , ∴m =12a ,∴|AF |=32a ,|AF ′|=12a ,∴(12a )2+(32a )2=(2c )2,∴c2a2=1016∴e=ca=√104.故选:A.8.(5分)已知点A在直线x=2上运动,若过点A恰有三条不同的直线与曲线y=x3﹣x相切,则点A的轨迹长度为()A.2B.4C.6D.8【解答】解:由题意设点A(2,a),过点A的直线l与曲线y=x3﹣x相切于点B(x0,y0),∵y=x3﹣x,∴y′=3x2﹣1,∴l的方程为y=(3x02−1)(x−x0)+x03−x0,把A(2,a)代入,可得(3x02−1)(2−x0)=a−x03+x0,化简得a=−2x03+6x02−2,设g(x)=﹣2x3+6x2﹣2,g′(x)=﹣6x2+12x,∴g(x)在区间(﹣∞,0),(2,+∞)上单调递减,在区间(0,2)上单调递增,∵若过点A恰有三条不同的直线与曲线y=x3﹣x相切,∴满足条件的x0恰有3个,∴g(0)<a<g(2),即﹣2<a<6,则点A的轨迹长度为8.故选:D.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(多选)9.(5分)某校举办数学文化节活动,10名教师组成评委小组,给参加数学演讲比赛的选手打分.已知各位评委对某名选手的打分如下:45 48 46 52 47 49 43 51 47 45则下列结论正确的为()A.平均数为48B.极差为9C.中位数为47D.第75百分位数为51【解答】解:平均数是110×(45+48+46+52+47+49+43+51+47+45)=47.3,选项A错误;极差为52﹣43=9,选项B正确;按从小到大顺序排列为:43,45,45,46,47,47,48,49,51,52;所以中位数是12×(47+47)=47,选项C正确;因为10×75%=7.5,所以第75百分位数是第8个数,为49,选项D错误.故选:BC.(多选)10.(5分)已知函数f(x)=cos(2x+φ)(0<φ<π2)的图像关于直线x=−π6对称,则()A.f(π6)=−12B.f(x)在区间(−π4,π6)单调递减C.f(x)在区间(−π2,π2)恰有一个极大值点D.f(x)在区间(0,π3)有两个零点【解答】解:∵f(x)的图像关于直线x=−π6对称,∴2×(−π6)+φ=kπ,k∈Z,得φ=π3+kπ,k∈Z,∵0<φ<π2,∴当k=0时,φ=π3,则f(x)=cos(2x+π3),则f(π6)=cos(2×π6+π3)=cos2π3=−12,故A正确,当−π4<x<π6时,−π2<2x<π3,−π6<2x+π3<2π3,则f(x)不单调,故B错误,当−π2<x<π2时,﹣π<2x<π,−2π3<2x+π3<4π3,则当2x+π3=0时,函数f(x)取得唯一一个极大值,故C正确.当0<x<π3,0<2x<2π3,π3<2x+π3<π,则只有当2x+π3=π2时,函数f(x)=0,即f(x)在区间(0,π3)只有1个零点,故D错误.故选:AC.(多选)11.(5分)已知抛物线C:y2=2px(p>0)的焦点为F,准线为l,过F的一条直线与C交于A,B两点,若点M在l上运动,则()A.当|AM|=|AF|时,AM⊥lB.当|AM|=|AF|=|MF|时,|AF|=2|BF|C.当MA⊥MB时,A,M,B三点的纵坐标成等差数列D.当MA⊥MB时,|AM|•|BM|≥2|AF|•|BF|【解答】解:对于选项A:由抛物线定义可知,若|AM|=|AF|,则AM⊥l,故选项A正确;对于选项B :当|AM |=|AF |=|MF |时,△AMF 为正三角形,∴直线AB 的倾斜角为π3 设直线AB 的方程为y =√3(x −p2),A (x 1,y 1),B (x ,y 2),由{y =√3(x −p2)y 2=2px,可得y 23−p 2=0,∴y 1=√3p ,y 2=−√33p , ∴|AF||BF|=|y 1||y 2|=3,故选项B 错误;对于选项C :过点A ,B 作直线垂直于l ,垂足分别为A ',B ',由B 可知A ′(−p 2,y 1),B ′(−p2,y 2),作AB 的中点N ,∵MA ⊥MB ,∴|MN|=12|AB|,由定义可知|AB |=|AF |+|BF |=|AA ′|+|BB ′|,∴|MN |=12(|AA ′|+|BB ′|),∴M 为A 'B '的中点,∴A ,M ,B 三点的纵坐标成等差数列,故选项C 正确;对于选项D :设M (−p2,y 0),直线MF 的斜率为k 1,直线AB 的斜率为k 2,则k 1=y 0−p 2−p 2=−y 0p ,由B 可知k 2=y 1−y 2x 1−x 2=y 1−y 2y 122p −y 222p=2py 1+y 2, 由C 可知y 1+y 2=2y 0,k 2=2p y 1+y 2=py 0,k 1k 2=−y 0p •p y 0=−1,∴MF ⊥AB , 又∵MA ⊥MB ,|AM |﹣|BM |=|MF |•|AB |,且|MF |2=|AF ||BF |,由基本不等式可得|AM |•|BM |=|MF ||AB |=(|AF |+|BF |)•√|AF|⋅|BF|≥2|AF |•|BF |,故选项D 正确. 故选:ACD .(多选)12.(5分)在四面体ABCD 中,有四条棱的长度为1,两条棱的长度为m ,则( ) A .当AB =AD =m 时,AC ⊥BDB .当AB =CD =m 时,四面体ABCD 的外接球的表面积为(m 2+2)π2C .m 的取值范围为(0,√2)D .四面体ABCD 体积的最大值为√312【解答】解:当AB =AD =m 时,可知△ABD 与△BCD 为等腰三角形,取BD 中点E , ∵AB =AD ,BC =CD ,∴AE ⊥BD ,CE ⊥BD ,∵AE ∩EC =E ,∴BD ⊥平面AEC ,可得AC ⊥BD ,故A 正确; 当AB =CD =m 时,可知四面体ABCD 的所有对棱相等, 将四面体ABCD 补为长方体,其中四面体ABCD 的各条棱为该长方体各面的对角线,∴四面体ABCD的外接球即为该长方体的外接球,设该长方体的三条棱的长度分别为x,y,z,则x2+y2=1,y2+z2=1,x2+z2=m2,∴外接球的半径为R=12√x2+y2+z2=12√m2+22=14√2m2+4,∴四面体ABCD的外接球的表面积为(m2+2)π2,故B正确;当AB=AD=m时,取BD的中点E,则AE=√m2−14,CE=√32,AC=1,则在△ACE中,由三角形性质可得√m2−14+√32>1,√m2−14−√32<1,解得:√2−√3<m<√2+√3;当AB=CD=m时,取CD的中点F,则AF=BF=√1−m2 4,则在△ABF中由三角形性质可知2√1−m24>m,∴0<m<√2.综上可得,0<m<√2+√3,故C错误;当AB=AD=m时,若四面体ABCD的体积最大时,则底面BCD上的高为1,即AC⊥平面BCD,此时四面体ABCD体积的最大值为√3 12;当AB=CD=m时,由(3)可知此时AF=BF=√1−m2 4,则△ABF的面积为12m⋅√1−m22,∴四面体ABCD的体积为16m2⋅√1−m22=16√m4(2−m2)2,设f(x)=x4(2﹣x2),f′(x)=2x3(4﹣3x2),当x∈(0,2√33)时,f′(x)>0,当x∈(2√33,√2)时,f′(x)<0,∴当x=2√33时,f(x)的最大值为3227,∴四面体ABCD体积的最大值为2√327,又√312>2√327,∴四面体ABCD体积的最大值为√312,故D正确.故选:ABD.三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(x+1x2)6的展开式中常数项是15.(用数字作答)【解答】解:(x+1x2)6展开式的通项T k+1=C6k x6−k(1x2)k=C6k x6−3k,令6﹣3k=0,解得k=2,所以常数项是C62=15.故答案为:15.14.(5分)记S n为等比数列{a n}的前n项和,若a3﹣a1=3,a4﹣a2=6,则S5=31.【解答】解:因为等比数列{a n}中,a3﹣a1=3,a4﹣a2=(a3﹣a1)q=6,所以q=2,则a3﹣a1=4a1﹣a1=3,所以a1=1,则S5=1−251−2=31.故答案为:31.15.(5分)已知定义在R上的函数f(x),满足f(x)=2f(x+2),当x∈(0,2]时,f(x)=4x(2﹣x),若方程f(x)=a在区间(112,+∞)内有实数解,则实数a的取值范围为[0,34).【解答】解:因为f(x)=2f(x+2),所以f (x ﹣2)=2f (x ),f (x )=12f (x ﹣2),又因为当x ∈(0,2]时,f (x )=4x (2﹣x ), 所以当x ∈(2,4]时,x ﹣2∈(0,2],所以f (x )=12f (x ﹣2)=12×4(x ﹣2)(4﹣x )=2(x ﹣2)(4﹣x ),当x ∈(4,6]时,x ﹣2∈(2,4],所以f (x )=12f (x ﹣2)=(x ﹣4)(6﹣x ),所以f (112)=(112−4)•(6−112)=34, ……作出函数f (x )的部分图象,如图所示:又因为方程f (x )=a 在区间(112,+∞)内有实数解, 即y =a 与y =f (x )的图象在(112,+∞)内有交点, 结合图象可知a ∈[0,34).故答案为:[0,34).16.(5分)已知线段AB 是圆C :(x ﹣1)2+(y ﹣1)2=4上的一条动弦,且|AB|=2√3,设点O 为坐标原点,则|OA →+OB →|的最大值为 2√2+2 ;如果直线l 1:x ﹣my ﹣3m +1=0与l 2:mx +y +3m +1=0相交于点M ,则MA →⋅MB →的最小值为 6−4√2 . 【解答】解:设D 为AB 中点,则|CD |=1, ∴点D 的轨迹方程为(x ﹣1)2+(y ﹣1)2=1,∴|OA →+OB →|=2|OD →|,则最大值为2√2+2; 又直线l 1:x ﹣my ﹣3m +1=0与l 2:mx +y +3m +1=0, ∴l 1⊥l 2,且l 1过定点(﹣1,﹣3),l 2过定点(﹣3,﹣1), ∴点M 的轨迹为(x +2)2+(y +2)2=2,∴MA →⋅MB →=(MD →+DA →)(MD →+DB →)=(MD →+DA →)(MD →−DA →)=MD →2−DA →2, ∴MA →⋅MB →=|MD →|2−3,又∵|MD →|⩾√(1+2)2+(1+2)2−1−√2=2√2−1, ∴MA →⋅MB →=|MD →|2−3⩾(2√2−1)2−3=6−4√2, ∴MA →⋅MB →的最小值为6−4√2. 故答案为:2√2+2;6−4√2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知数列{a n }满足a 1=1,a n+1=a na n +1(n ∈N ∗). (1)证明:数列{1a n}是等差数列,并求数列{a n }的通项公式; (2)设b n =a n a n +1,求数列{b n }的前n 项和T n . 【解答】(1)证明:依题意,由a n+1=a na n +1两边取倒数, 可得1a n+1=a n +1a n=1a n+1,即1a n+1−1a n=1,∵1a 1=1,∴数列{1a n}是以1为首项,1为公差的等差数列, ∴1a n=1+1•(n ﹣1)=n ,∴a n =1n,n ∈N *.(2)解:由(1)可得,b n =a n a n +1=1n •1n+1=1n −1n+1,则T n =b 1+b 2+…+b n=1−12+12−13+⋯+1n −1n+1=1−1 n+1=nn+1.18.(12分)记△ABC的内角A,B,C的对边分别为a,b,c,且bcosA+12a=c.(1)求B;(2)若c=2a,且b=3√3,求△ABC的面积.【解答】解:(1)由正弦定理asinA=bsinB=csinC和bcosA+12a=c,可得sinBcosA+12sinA=sinC,又∵sin C=sin(A+B)=sin A cos B+sin B cos A,∴sinBcosA+12sinA=sinC=sinAcosB+sinBcosA,∴12sinA=sinAcosB∵A∈(0,π),∴sin A>0,∴cosB=1 2,∵0<B<π,∴B=π3.(2)记△ABC的面积为S,由余弦定理b2=a2+c2﹣2ac cos B,及B=π3,b=3√3可得a2+c2﹣ac=27,将c=2a代入上式,得a2=9,故a=3,c=6,∴S=12acsinB=9√32.19.(12分)如图,已知三棱锥P﹣ABC的三个顶点A,B,C在圆O上,AB为圆O的直径,△P AC是边长为2的正三角形,且平面PBC⊥平面P AC.(1)证明:平面P AC⊥平面ABC;(2)若BC=2√3,点E为PB的中点,点F为圆O上一点,且F与C位于直径AB的两侧,当EF∥平面P AC时,求平面EFB与平面ABC的夹角的余弦值.【解答】解:(1)证明:取PC的中点D,∵△P AC为等边三角形,∴AD⊥PC,∵平面PBC⊥平面P AC,平面PBC∩平面P AC=PC,∴AD⊥平面PBC,∵BC⊂平面PBC,∴BC⊥AD,∵AB为圆O的直径,∴BC⊥AC,又∵AC∩AD=A,∴BC⊥平面P AC,∵BC⊂平面ABC,∴平面P AC⊥平面ABC.(2)(法一)由三角形中位线的性质可知EO∥AP,又∵EO⊄平面P AC,AP⊂平面P AC,∴EO∥平面P AC,∵EF∥平面P AC,EO∩EF=E,∴平面EOF∥平面P AC,∵平面EOF∩平面AFBC=FO,平面P AC∩平面AFBC=AC,∴FO∥AC,由题可知BC=2√3,AB=4,取AC中点M连接PM,则PM⊥AC,∵平面P AC∩平面AFBC=AC,由(1)可知PM⊥平面ABC,如图1建立空间直角坐标系,∴P(0,0,√3),A(1,0,0),B(−1,2√3,0),E(−12,√3,√32),F(2,√3,0),∴BF →=(3,−√3,0),EF →=(52,0,−√32),设平面BEF 的一个法向量m →=(x ,y ,z),则{3x −√3y =0,5x −√3z =0,令x =√3,则y =3,z =5,∴m →=(√3,3,5), 由(1)可知平面ABC 的一个法向量n →=(0,0,1), ∴设平面BEF 与平面ABC 的夹角为θ, 则cosθ=m →⋅n →|m →⋅n →|=√37=5√3737,∴平面BEF 与平面ABC 的夹角的余弦值为5√3737. (法二)如图2,由三角形中位线的性质可知EO ∥AP ,又∵EO ⊄平面P AC ,AP ⊂平面P AC ,∴EO ∥平面P AC ,∵EF ∥平面P AC ,EO ∩EF =E , ∴平面EOF ∥平面P AC , ∵平面EOF ∩平面AFBC =FO ,平面P AC ∩平面AFBC =AC ,∴FO ∥AC ,由题可知BC =2√3,AB =4,取AC 中点M 连接PM , 则PM ⊥AC ,∵平面P AC ∩平面AFBC =AC ,由(1)可知PM ⊥平面ABC ,连接BM ,过点E 作EH ∥PM , ∴H 为BM 的中点,且EH ⊥平面ABC ,∵BF ⊂平面ABC ,∴EH ⊥BF ,过点H 作HN ⊥BF ,垂足为N ,连接EN ,∵EH ∩HN =H , ∴BF ⊥平面ENH ,∴EN ⊥BF ,则∠ENH 为平面EFB 与平面ABC 的夹角, 在△BHF 中,FH =52,∠BFH =π6,∴HN =FHsin π6=54,∵EH=12PM=√32,由勾股定理可得EN=√374,cos∠ENH=54√374=5√3737,∴平面BEF与平面ABC的夹角的余弦值为5√37 37.20.(12分)甲参加某多轮趣味游戏,在A,B两个不透明的盒内摸球.规定在一轮游戏中甲先在A盒内随机取出1个小球放入B盒,再在B盒内随机取出2个小球.若每轮游戏的结果相互独立,且每轮游戏开始前,两盒内小球的数量始终如表(小球除颜色外大小质地完全相同):(1)求在一轮游戏中甲从A,B两盒内取出的小球均为白球的概率;(2)已知每轮游戏的得分规则为:若从B盒内取出的小球均为红球,则甲获得5分;若从B盒内取出的小球中只有1个红球,则甲获得3分;若从B盒内取出的小球没有红球,则甲获得1分.(i)记甲在一轮游戏中的得分为X,求X的分布列;(ii)假设甲共参加了5轮游戏,记5轮游戏甲的总得分为Y,求E(Y).【解答】解:(1)记“在一轮游戏中甲从A,B两盒内取出的小球均为白球”为事件C,根据条件概率可知P(C)=15×C22C62=175,故在一轮游戏中甲从A,B两盒内取出的小球均为白球的概率为1 75.(2)(i)X的可能取值为1,3,5,对应概率分别为:P(X=5)=25×C32C62+25×C22C62+15×C22C62=325,P(X=3)=25×C31C31C62+25×C21C41C62+15×C21C41C62=1425,P(X=1)=25×C32C62+25×C42C62+15×C42C62=825,故X的分布列为:(ii)由(i)中分布列可知:E(X)=5×325+3×1425+1×825=135,甲共参加了5轮游戏,记5轮游戏甲的总得分为Y ,每轮游戏的结果相互独立,根据期望的性质公式可知E (Y )=5E (X )=13. 21.(12分)已知f (x )=axe 2x (a ∈R ). (1)当a ≠0时,讨论f (x )的单调性;(2)若关于x 的不等式f (x )﹣2x ﹣lnx ≥0恒成立,求实数a 的取值范围. 【解答】解:(1)f ′(x )=a (e 2x +xe 2x •2)=a (2x +1)e 2x ,∵当a >0时,由f ′(x )>0,解得x >−12,由f ′(x )<0,解得x <−12,当a <0时,由f ′(x )>0,解得x <−12,由f ′(x )<0,解得x >−12,∴当a >0时,f (x )的单调增区间为(−12,+∞),单调减区间为(−∞,−12),当a <0时,f (x )的单调增区间为(−∞,−12),单调减区间为(−12,+∞).(2)由f (x )﹣2x ﹣lnx ≥0,得axe 2x ﹣2x ﹣lnx ≥0,……① 令g (x )=axe 2x ﹣2x ﹣lnx ,则g ′(x)=a(1+2x)e 2x −2−1x =(1+2x)(axe 2x −1)x, ∵当a ⩽0时,g (1)=ae 2﹣2<0不满足条件,∴a ⩽0不成立, 当a >0时,令k (x )=axe 2x ﹣1,k ′(x )=a (1+2x )e 2x >0,∵当x →0+时,k(x)→−1,k(1a)=e 2a −1>0,∴∃x 0∈(0,1a),使得k (x 0)=0,即ax 0e 2x 0=1,∴当x ∈(0,x 0)时,k (x )<0,当x ∈(x 0,+∞)时,k (x )>0,∴g (x )在区间(0,x 0)上单调递减,在区间(x 0,+∞)上单调递增,当x =x 0时,g (x )取得最小值g (x 0),由ax 0e 2x 0=1,取对数得lna +lnx 0+2x 0=0,则g(x 0)=ax 0e 2x 0−2x 0−lnx 0=1+lna , 要使不等式①恒成立,需1+lna ⩾0,解得a ⩾1e ,∴实数a 的取值范围是[1e,+∞).22.(12分)已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的离心率为√2,且C 的一个焦点到其一条渐近线的距离为1. (1)求C 的方程;(2)设点A 为C 的左顶点,若过点(3,0)的直线l 与C 的右支交于P ,Q 两点,且直线AP ,AQ 与圆O:x2+y2=a2分别交于M,N两点,记四边形PQNM的面积为S1,△AMN的面积为S2,求S1S2的取值范围.【解答】解:(1)考虑右焦点到一条渐近线的距离,由题可知C的一条渐近线方程为bx﹣ay=0,右焦点为(c,0),∴右焦点到渐近线的距离d=|bc|√b+a2=b=1,由离心率e=ca=√2,有√a2+b2a=√2,解得a=1,∴双曲线C的方程为x2﹣y2=1.(2)设直线l的方程:x=ty+3,P(x1,y1),Q(x2,y2),由{x2−y2=1x=ty+3⇒(t2﹣1)y2+6ty+8=0,因为直线l与双曲线C的右支交于两点,Δ=(6t)2﹣4(t2﹣1)×8=4t2+32>0恒成立,还需{y1y2=8t2−1<0t2−1≠0,解得﹣1<t<1,∵A点坐标为(﹣1,0),∴k AP⋅k AQ=y1x1+1⋅y2x2+1=y1y2(ty1+4)(ty2+4)=y1y2t2y1y2+4t(y1+y2)+16,将y1+y2=−6tt2−1,y1y2=8t2−1代入,得k AP⋅k AQ=8t2−1t2⋅8t2−1+4t⋅−6tt2−1+16=88t2−24t2+16t2−16=−12,设AP:x=m1y﹣1,AQ:x=m2y﹣1,且|m1|>1,|m2|>1,∴1m1⋅1m2=−12,即m1•m2=﹣2,故|m1|•|m2|=2,∵|m2|=2|m1|>1,∴1<|m1|<2,由{x2−y2=1x=m1y−1⇒(m12−1)y2−2m1y=0,∴y P=2m1m12−1,同理可得y Q=2m2m22−1,由{x2+y2=1x=m1y−1⇒(m12+1)y2−2m1y=0,∴y M=2m1m12+1,同理可得y N=2m2m22+1,∴S△APQS△AMN=12|AQ||AP|sin∠QAP12|AN||AM|sin∠QAP=|AQ||AP||AN||AM|=y Q⋅y Py N⋅y M=2m2m22−1⋅2m1m12−12m2m22+1⋅2m1m12+1=(m12+1)(m21+1)(m12−1)(m22−1)=m12m22+m12+m22+1m12m22−m12−m22+1=5+(m12+m22)5−(m12+m22),令t=m12+m22,由|m1|•|m2|=2,1<|m1|<2,得t=m12+4m12,t∈[4,5),∴S△APQS△AMN=5+t5−t=10−t+5−1,t∈[4,5),令f(t)=10−t+5−1,t∈[4,5),∵f(t)在区间[4,5)上为增函数,所以f(t)的取值范围为[9,+∞),∵S1S2=S MNPQS AMN=S△APQ−S△AMNS△AMN,∴S1S2的取值范围为[8,+∞).。

河南省部分重点高中2024届高三普通高等学校招生全国统一考试(期末联考)数学试卷

河南省部分重点高中2024届高三普通高等学校招生全国统一考试(期末联考)数学试卷
【分析】根据复数的除法运算求出 z = -i ,从而可求解.
【详解】因为 zi - i = z +1,则 -z (1- i) = 1+ i ,
所以
z
=
- 11 +-
i i
=
-
(1+ i)2 (1- i)(1+ i)
=
-i

故 z +1 = 1- i = 12 + (-1)2 = 2 ,故 A 正确.
D(
X
)
Î
é êë
2 9
,
8 9
ù úû

故选:C. 9.CD 【分析】根据平均数,中位数,百分位数以及方差的计算公式即可逐一求解.
【详解】A
选项,这五名同学成绩的平均数为
68
+
72
+
76 5
+
80
+
84
=
76
,A
错误;
B 选项,将五名同学的成绩按从小到大排列:68,72,76,80,84,则这五名同学成绩的 中位数为 76,B 错误;
X012 P a a + ba - b
A.
1 3
B.
2 3
C.
8 9
D.1
二、多选题 9.某高中从本校的三个年级中随机调查了五名同学关于生命科学科普知识的掌握情况,
五名同学的成绩如下:84,72,68,76,80,则( )
A.这五名同学成绩的平均数为 78
B.这五名同学成绩的中位数为 74
C.这五名同学成绩的上四分位数为 80 D.这五名同学成绩的方差为 32
【分析】根据分布列中概率和为1可得 a 的值和 b 的范围,再求出 E ( X ) , D ( X ) 的表达式,

高中必修一期末数学试卷

高中必修一期末数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 下列各数中,属于有理数的是()A. √2B. πC. 3/4D. 0.1010010001…2. 已知函数f(x) = 2x - 1,若f(a) = f(b),则a和b的关系是()A. a = bB. a + b = 1C. a - b = 1D. a - b = 23. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°4. 已知等差数列{an}的首项为2,公差为3,则第10项an是()A. 29B. 30C. 31D. 325. 下列各函数中,在定义域内是单调递减的是()A. y = 2x - 1B. y = -x^2 + 1C. y = log2xD. y = x^3二、填空题(每题5分,共25分)6. 若x^2 - 3x + 2 = 0,则x的值为______。

7. 若sinα = 1/2,且α在第二象限,则cosα的值为______。

8. 等比数列{an}的首项为3,公比为2,则第5项an是______。

9. 若复数z = 1 + i,则|z|的值为______。

10. 若直线l的斜率为2,且经过点(1, 3),则直线l的方程为______。

三、解答题(每题15分,共60分)11. (解答题)已知函数f(x) = ax^2 + bx + c,若f(1) = 3,f(-1) = 1,且f(x)的图像开口向上,求a、b、c的值。

12. (解答题)已知等差数列{an}的首项为3,公差为2,求该数列的前10项和。

13. (解答题)在平面直角坐标系中,点A的坐标为(2, 3),点B的坐标为(-3, 5),求直线AB的方程。

14. (解答题)已知复数z = 2 + 3i,求z的模|z|。

15. (解答题)若函数f(x) = x^3 - 3x在区间[0, 2]上单调递增,求函数f(x)在区间[-2, 0]上的单调性。

2023-2024学年高一下学期期末考试数学试卷

2023-2024学年高一下学期期末考试数学试卷

秘密★启用前【考试时间:2024年6月18日14:00-16:00】2023~2024学年度下期高中2023级期末联考数学考试时间120分钟,满分150分注意事项:1.答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用0.5毫米的黑色签字笔填写清楚,考生考试条形码由监考老师粘贴在答题卡上的“贴条形码区”.2.选择题使用2B 铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案;非选择题用0.5毫米的黑色签字笔在答题卡的对应区域内作答,超出答题区域答题的答案无效;在草稿纸上、试卷上答题无效.3.考试结束后由监考老师将答题卡收回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知1cos 2α=,则cos2α=( )12 D.12−2.MN PQ MP −−=( )A.QNB.NQC.PMD.MP3.在ABC 中,3,4,5AB BC AC ===,则CB CA ⋅=( )A.-16B.16C.32D.-324.一个水平放置的平面图形OABC 按斜二测画法得到的直观图O A B C ′′′′如图所示.知24,O A C B O C A B ′===′′′′′′′,则平面图形OABC 的面积为( )A.3B.6C. 5.把函数()sin f x x =的图象向左平移π6个单位长度,再把横坐标变为原来的6π倍(纵坐标不变),得到函数()g x 的图象,下列关于函数()g x 的说法正确的是( ) A.函数()y g x =的最小正周期6T = B.函数()y g x =在区间()2,8上单调递减C.函数()2y g x =+是奇函数 D.函数()2y g x =+在区间[]3,4上的最大值为126.某一时段内,从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm ).24小时降雨量的等级划分如下: 24小时降雨量(精确到0.1)0.1~9.910.024.9∼25.049.9∼50.0~99.9降雨等级小雨中雨大雨暴雨在一次降雨过程中,用一个侧棱180mm AA =的三棱柱容器收集的24小时的雨水如图所示,当侧面11AA B B 水平放置时,水面恰好过1111,,,AC BC AC B C 的中点.则这24小时的降雨量的等级是( )A.小雨B.中雨C.大雨D.暴雨7.如图,圆锥PO 的底面直径和高均为12,过PO 上一点O ′作平行于底面的截面,以该截面为底面挖去一个圆柱,我们称该圆柱为圆锥的内接圆柱.则该圆锥的内接圆柱侧面积的最大值为( )A.12πB.24πC.36πD.72π8.在ABC 中,4AB AC BC ===,点P 满足BP tBC =,且1AP BC BC⋅=,则t =( ) A.34 B.14 C.34− D.14−二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求;全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,m n 是两条不同的直线,α是平面,若m ∥,n αα⊂,则,m n 的关系可能为( )A.平行B.垂直C.相交D.异面10.ABC 的内角,,A B C 的对边分别为,,a b c ,下列结论正确的是( ) A.若222sin sin sin sin sin A B C B C =+−,则角π3A =B.存在,,A B C ,使tan tan tan tan tan tan A B C A B C ++>成立C.若sin2sin2A B =,则ABC 为等腰或直角三角形D.若30ab A ,则ABC 有两解 11.如图,在正方体1111ABCD A B C D −中,E 为棱AB 上的动点,DF ⊥平面1,D EC F 为垂足,下列结论正确的是( )A.1FD FC =B.三棱锥1C DED −的体积为定值C.11ED A D ⊥D.1BC 与AC 所成的角为45三、填空题:本题共3小题,每小题5分,共15分.12.已知,a b为共线向量,且()()()3,1,,2ab x x =∈R ,则x =__________.13.在ABC 中,,D E 分别为,AC BC 的中点,AE 交BD 于点M .若2,4AB AC ==,π3BAC ∠=,则cos EMD ∠=__________.14.降维类比和升维类比主要应用于立体几何的学习,将空间三维问题降为平面二维或者直线一维问题就是降维类比.平面几何中多边形的外接圆,即找到一点,使得它到多边形各个顶点的距离相等.这个点就是外接圆的圆心,距离就是外接圆的半径.若这样的点存在,则这个多边形有外接圆,若这样的点不存在,则这个多边形没有外接圆.事实上我们知道,三角形一定有外接圆,如果只求外接圆的半径,我们可通过正弦定理来求,我们也可以关注九年义教初中《几何》第三册第94页例2.的结论:三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商.借助求三角形外接圆的方法解决问题:若等腰梯形ABCD 的上下底边长分别为6和8,高为1,这个等腰梯形的外接圆半径为__________;轴截面是旋转体的重要载体,圆台的轴截面中包含了旋转体中的所有元素:高、母线长、底面圆的半径,通过研究其轴截面,可将空间问题转化为平面问题.观察图象,通过类比,我们可以找到一般圆台的外接球问题的研究方法,正棱台可以看作由圆台切割得到.研究问题:如图,正三棱台的高为1,上、下底面边长分别为和一球面上,则该球的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知1111ABCD A B C D −是棱长为2的正方体.(1)求三棱锥11D A BC −的体积;(2)若N 是1D C 的中点,M 是1BC 的中点,证明:NM ∥平面ABCD .16.(15分)已知向量,a b 满足,4,a b == ,且a 在b 上的投影向量为b − . (1)求,a b 及a b ⋅ 的值;(2)若()()2a b a b λ−⊥+,求λ的值.17.(15分)记ABC 的内角,,A B C 的对边分别为,,a b c ,若cos πsin 2cos 6BC A=−,且sin 2sin b C B =. (1)求A 及c ;(2)若点D 在边BC 上,且3,BC BD AD ==ABC 的面积. 18.(17分)在平行四边形ABCD 中,2,45,,AB ADA E F == 分别为,AB AD 的中点,将三角形ADE 沿DE 翻折,使得二面角A ED C −−为直二面角后,得到四棱锥A EBCD −.(1)求证:EF ∥平面ABC ;(2)求证:平面AED ⊥平面ACD ; (3)求EC 与平面ACD 所成角的正弦值. 19.(17分)“费马点”是由十七世纪法国数学家费马提出并征解的一个问题,该问题是:“在一个三角形内求作一点,使其与此三角形的三个顶点的距离之和最小”.如图1,三个内角都小于120 的ABC 内部有一点P ,连接,,PA PB PC ,求PA PB PC ++的最小值.我们称三角形内到三角形三个顶点距离之和最小的点为费马点.要解决这个问题,首先应想办法将这三条端点重合于一点的线段分离,然后再将它们连接成一条折线,并让折线的两个端点为定点,这样依据“两点之间,线段最短”,就可求出这三条线段和的最小值.某数学研究小组先后尝试了翻折、旋转、平移的方法,发现通过旋转可以解决这个问题,具体的做法如图2,将APC 绕点C 顺时针旋转60 ,得到EDC ,连接,PD BE ,则BE 的长即为所求,此时与三个顶点连线恰好三等分费马点P 的周角.同时小组成员研究教材发现:已知对任意平面向量(),AB x y = ,把AB绕其起点沿逆时针方向旋转θ角得到向量()cos sin ,sin cos AQ x y x y θθθθ=−+.(1)已知平面内点()(1,2,12A B +−,把点B 绕点A 沿顺时针方向旋转π4后得到点P ,求点P 的坐标;(2)在ABC 中,30,12,5ACB BC AC ∠===,借助研究成果,直接写出PA PB PC ++的最小值;(3)已知点()()()1,0,1,0,0,2A B C −,求ABC 的费马点P 的坐标.。

2023北京大兴区高一(下)期末数学试题及答案

2023北京大兴区高一(下)期末数学试题及答案

2023北京大兴高一(下)期末数学2023.07考生须知1.本试卷共4页,共两部分,21道小题.满分150分.考试时间120分钟.2.在试卷和答题卡上准确填写学校名称、班级、姓名和准考证号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题用2B 铅笔作答,其他题用黑色字迹签字笔作答.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复数()21i +=()A.0B.2C.2iD.2i-2.已知向量()1,2a =-r 与()2,b m = ,且2b a =,则m =()A.4- B.1- C.1D.43.某学校现有小学和初中学生共2000人,为了解学生的体质健康合格情况,决定采用分层抽样的方法从全校学生中抽取一个容量为400的样本,其中被抽到的初中学生人数为180,那么这所学校的初中学生人数为()A.800B.900C.1000D.11004.已知在复平面内复数z 对应的点的坐标为()3,4-,则z =()A.3B.4C.5D.5.已知平面α,β,直线l ⊂α,则“//l β”是“//αβ”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.设a ,b 为非零向量,且满足a b a b +=- ,则a b ⋅= ()A.0B.-1C.1D.27.在ABC中,3a =,2b c -=,1cos 2B =-,则b =()A.B. C.5D.78.某校举办知识竞赛,将100人的成绩整理后画出的频率分布直方图如下.则根据频率分布直方图,下列结论正确的是()A.中位数估计为75B.众数估计为70C.平均数估计为68.5D.第85百分位数估计为859.已知边长为3的正方形ABCD ,点E 是边BC 上动点,则AE DE ⋅的最大值是()A.274B.9C.43D.1010.已知点P 在棱长为2的正方体1111ABCD A B C D -表面运动,且1PB PD =,则线段AP 的长的取值范围是()A.[0,23]B.[1,3]C.23]D.2,3]2第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数z 满足1z +为纯虚数,则z 的实部为___________.12.对于一组数据2,3,3,4,6,6,8,8,则第50百分位数是___________.13.已知向量a ,b 在正方形网格中的位置如图所示,则a ,b的夹角的余弦为___________.14.一个铁制的底面半径为4,侧面积为16π3的实心圆柱的体积为___________,将这个实心圆柱熔化后铸成一个实心球体,则这个铁球的半径为___________.15.如图,已知菱形ABCD 中,2AB =,120BAD ∠=︒,E 为边BC 的中点,将ABE 沿AE 翻折成1AB E △(点1B 位于平面ABCD 上方),连接1B C 和1B D ,F 为1B D 的中点,则在翻折过程中,给出下列四个结论:①平面1⊥AB E 平面1B EC ;②1AB 与CF 的夹角为定值π3;③三棱锥1B AED -体积最大值为233;④点F 的轨迹的长度为π2;其中所有正确结论的序号是___________.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知向量a ,b满足10a = ,()3,4b = .(1)求b;(2)若//a b r r,求a 的坐标;(3)若a b ⊥,求a b - .17.已知tan 2α=.(1)求πtan 4α⎛⎫+ ⎪⎝⎭的值;(2)求2sin 2cos 1cos 2ααα-+的值.18.如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,M ,N 分别为11A B ,AC 的中点.(1)求证:MN //平面11BCC B ;(2)再从条件①、条件②这两个条件中选择一个作为已知,求证:1AB BB ⊥.条件①:AB MN ⊥;条件②:,AB BC BM MN ==.注:如果选择条件①和条件②分别解答,按第一个解答计分.19.某工厂生产某款产品,该产品市场平级规定:评分在10分及以上的为一等品,低于10分的为二等品.下面是检验员从一批产品中随机抽样的10件产品的评分:9.610.19.79.810.09.710.09.810.110.2经计算得1021198.04810i i x ==∑,其中i x 为抽取的第i 件产品的评分,1,2,3,,10i =⋅⋅⋅.(1)求这组样本平均数和方差;(2)若厂家改进生产线,使得生产出的每件产品评分均提高0.2.根据以上随机抽取的10件产品改进后的评分,估计改进后该厂生产的产品评分的平均数和方差;(3)在第(2)问前提下,再从改进后生产的产品中随机抽取10件产品,估计这10件产品的平均等级是否为一等品?说明理由.20.在ABC 中,222a c b ac +-=,D 是AC 边上的点,1CD =,3AD BD ==.(1)求B 的大小;(2)求tan A 的值;(3)求BCD △的面积.21.如图,从长、宽,高分别为a ,b ,c 的长方体AEBF GCHD -中截去部分几何体后,所得几何体为三棱锥A BCD -.(1)求三棱锥A BCD -的体积;(2)证明:三棱锥A BCD -的每个面都是锐角三角形;(3)直接写出一组a ,b ,c 的值,使得二面角D AB C --是直二面角.参考答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.题号12345678910答案CABCBADCBD第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.1-12.513.35.14.32π3;215.①②④.(全选对5分,漏选1个3分,漏选2个2分,不选或选错0分)三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.(I)因为()3,4b =,所以5b== ;……………4分(II )设(),a x y = ,由10a = ,//a b r r,得10430x y =-=⎪⎩,解得68x y =-⎧⎨=-⎩或68x y =⎧⎨=⎩,所以a的坐标为()6,8--或()6,8;(III )若a b⊥ ,则0a b ⋅=,故a b -=.……………5分17.(I)因为tan 2α=,所以πtan tanπ214tan 3π41211tan tan 4ααα++⎛⎫+===- ⎪-⨯⎝⎭-.……………7分(II )2222sin 2cos 2sin cos cos cos (2sin cos )1cos 212cos 12cos ααααααααααα---==++-.2sin cos 2cos ααα-=1tan 2α=-13222=-=……………7分18.(I)取BC 的中点P ,连接,PM PC ,因为M ,P 分别为11A B ,11B C 的中点,所以11//PM A C 且1112PM A C =,因为四边形11ACC A 为平行四边形,且N 为AC 的中点,所以11//CN A C 且1112CN A C =,所以//PM CN 且PM CN =,所以四边形PMNC 是平行四边形,所以//MN PC ,又MN ⊄平面11BCC B ,PC ⊂平面11BCC B ,所以MN //平面11BCC B ;……………6分(II )因为平面11BCC B ⊥为正方形,所以1BC BB ⊥又因为平面11BCC B ⊥平面11ABB A ,且平面11BCC B 平面111ABB A BB =,所以BC ⊥平面11ABB A 所以BC AB⊥选①,因为AB MN ⊥,所以1AB PB ⊥,又11,,PB BC P PB BC ⋂=⊂平面11BCC B ,所以AB ⊥平面11BCC B ,又1BB ⊂平面11BCC B ,所以1AB BB ⊥.选②,取AB 的中点Q ,连接,MQ NQ ,因为M ,N 分别为11A B ,AC 的中点,所以//NQ BC 且12NQ BC =,1//QM BB ,因为BC ⊥平面11ABB A ,所以NQ ⊥平面11ABB A ,又MQ Ì平面11ABB A ,所以NQ MQ ⊥,即90MQN ∠=︒,因为AB BC =,所以12NQ AB BQ ==,又,MN MB MQ MQ ==,所以MBQ MNQ ≅ ,所以90MQB MQN ∠=∠=︒,所以MQ AB ⊥,又1//QM BB ,所以1AB BB ⊥ (8)分19.(I)样本平均值为9.610.19.79.810.09.710.09.810.110.29.910x +++++++++==,样本方差为()101022222111198.0489.90.0381010i ii i s x x x x ===-=-=-=∑∑,……………5分(II )因为改进后随机抽取的10件产品是改进前抽取的10件产品每个提高0.2分,所以估计改进后生产的产品评分的平均数0.210.1X x =+=,方差为220.038S s ==,……………6分(III )可以认为是一等品,因为改进后该厂生产的产品评分由样本数据估计平均数为10.110>,所以可以认为这10件产品平均等级为一等品,不一定是一等品,因为样本数据具有随机性,所以新样本平均值不一定达到10分以上,所以新样本平均等级不一定是一等品.……………3分20.(I)因为222a c b ac +-=,由余弦定理2221cos 22a cb B ac +-==,又()0,πB ∈,所以π3B =.……………4分(II )如图,令A α∠=,因为3AD BD ==,所以ABD A α∠=∠=,所以π3DBC α∠=-,2π3C α∠=-,2BDC α∠=,在BCD △中,由正弦定理得sin sin BD CDBCD DBC=∠∠,即312ππsin sin 33αα=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,所以2ππsin 3sin 33αα⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭,即2π2πππsin cos cos sin3sin cos cos sin 3333αααα⎛⎫-=-⎪⎝⎭,所以3131cos sin3cos sin2222αααα⎛⎫+=-⎪⎪⎝⎭,解得tan2α=,即3tan2A=.(III )由2222sin cos2tan43sin sin2sin cos tan17BDCααααααα∠====++,所以114363sin132277BCDS BD CD BDC=⋅∠=⨯⨯⨯=.……………5分21.(I)在长方体AEBF GCHD-中,三棱锥11113326A GCD GCDV AG S c a b abc-=⋅=⨯⨯⨯=,同理可得16C ABED ABF C BHDV V V abc---===,所以AEBF GCHDV abc-=,所以114634AEBF GCHDA BCD A GCDV V abc abc abcV----==-⨯=.……………5分(II)由已知易得三棱锥A BCD-的每个面的三角形的三条边均为不妨设a b c≥≥为最大边,各面的最大角为θ,则2222222cos0b c c a a bθ+++-+=,又()0,πθ∈,所以各面的最大角为θ为锐角,所以三棱锥A BCD-的每个面都是锐角三角形.(III)a b==1c=,(满足a b==或2222220a cbc a b+-=均可)(答案不唯一),连接EF 交AB 于点O ,连接OC 、OD ,则AD BD AC BC ====O 为AB 的中点,所以OC AB ⊥,OD AB ⊥,所以COD ∠为二面角D AB C --的平面角,又112OE OF EF ====,2DC ==,OC OD ===,所以222OC OD DC +=,所以OC OD ⊥,即90COD ∠=︒,所以二面角D AB C --是直二面角.。

高中数学 2023-2024学年山东省青岛高一(下)期末数学试卷

高中数学 2023-2024学年山东省青岛高一(下)期末数学试卷

2023-2024学年山东省青岛五十八中高一(下)期末数学试卷一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)A .2B .2或-2C .-2D .-41.(5分)若复数z =a 2-4+(a -2)i 为纯虚数,则实数a 的值为( )A.60°B .45°C .90°D .120°2.(5分)正方体ABCD -A 1B 1C 1D 1中,异面直线AD 1与BD 所成角为( )A .-B .C .2D .-23.(5分)已知向量a =(1,m ),b =(2,-1),且a ∥b ,则m =( )→→→→1212A .100,50B .100,1050C .200,50D .200,10504.(5分)某地区中小学生人数比例和近视情况分别如图甲和图乙所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法随机抽取2%的学生进行调查,其中被抽取的小学生有80人,则样本容量和该地区的初中生近视人数分别为( )A .若b ∥a ,a ⊂α,则b ∥αB .若a ⊂α,b ⊂α,c ⊥a ,c ⊥b ,则c ⊥αC .若a ⊂α,b ⊂α,a ∥β,b ∥β,则α∥βD .若a ⊥α,a ∥b ,b ⊂β,则α⊥β5.(5分)已知α,β表示两个不同的平面,a ,b ,c 表示三条不同的直线,( )A .100πB .120πC .150πD .300π6.(5分)已知圆锥的侧面展开图是一个半径为13,弧长为10π的扇形,则该圆锥的体积为( )二、多项选择题(本大题共3小题,每小题6分,共18分.)A .0B .1C .2D .37.(5分)某同学投掷一枚骰子5次,分别记录每次骰子出现的点数,已知这组数据的平均数为3,方差为0.4,则点数2出现的次数为( )A .(,)B .(,)C .(,)D .(,+∞)8.(5分)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,面积为S ,且(+-)=4S ,若c =1,则△ABC 面积的取值范围是( )M 3a 2c 2b 2M 38M 34M 38M 32M 34M 32M 38A .z 0=3+iB .=10C .在复平面内z 0对应的向量为(3,-1)D .|z -z 0|的最小值为-19.(6分)已知复数z 0,z 满足(z 0-2)i =1+i ,|z |=1,则( )z 0z 0M 10A .A 与B 互斥B .C 与D 互斥C .A 与D 独立D .B 与C 独立10.(6分)抛掷两枚质地均匀的骰子,设事件A =“第一枚出现奇数点”,事件B =“第二枚出现偶数点”,事件C =“两枚骰子出现点数和为8”,事件D =“两枚骰子出现点数和为9”,则( )A .按照折法①,三棱锥D 1-ABC 的外接球表面积恒为4πB .按照折法①,存在D 1满足AB ⊥CD 1C .按照折法②,三棱锥A 1-BCD 体积的最大值为D .按照折法②,存在A 1满足A 1C ⊥平面A 1BD ,且此时BC 与平面A 1BD 所成线面角正弦值为11.(6分)如图,在四边形ABCD 中,△ACD 和△ABC 是全等三角形,AB =AD ,∠ABC =90°,∠BAC =60°,AB =1.下面有两种折叠方法将四边形ABCD 折成三棱锥.折法①;将△ACD 沿着AC 折起,得到三棱锥D 1-ABC ,如图1.折法②:将△ABD 沿着BD 折起,得到三棱锥A 1-BCD ,如图2.下列说法正确的是( )M 38M 63三、填空题(本大题共3小题,每小题5分,共15分)四、解答题(本大题共5小题,共77分。

校园高中数学期末考试卷

校园高中数学期末考试卷

校园高中数学期末考试卷一、选择题(每题3分,共30分)1. 若a > 0,b < 0,且|a| = |b|,则a + b的值等于:A. 0B. -2aC. 2aD. 2b2. 函数f(x) = 2x^3 - 3x^2 + 1在x = 1处的导数值为:A. 5B. -1C. 3D. -53. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,根据勾股定理,此三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定4. 圆的方程为(x - 3)^2 + (y + 4)^2 = 25,圆心坐标为:A. (3, -4)B. (-3, 4)C. (0, 0)D. (4, -3)5. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果为:A. {1, 2, 3}B. {2, 3}C. {1, 2, 3, 4}D. {1, 4}6. 函数y = sin(x)的周期为:A. πB. 2πC. 3πD. 4π7. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值为:A. 7B. 9C. 11D. 138. 抛物线y^2 = 4x的焦点坐标为:A. (1, 0)B. (0, 1)C. (1, 1)D. (0, 0)9. 已知复数z = 3 + 4i,其共轭复数为:A. 3 - 4iB. -3 + 4iC. 3 - 4iD. -3 - 4i10. 根据二项式定理,(a + b)^3的展开式中含a^2b的项的系数为:A. 3B. 6C. 9D. 12二、填空题(每题2分,共10分)11. 已知等比数列的首项为2,公比为3,第3项为________。

12. 函数f(x) = x^2 - 4x + 4的最小值为________。

13. 已知直线l1:2x - 3y + 6 = 0与l2:x + y - 5 = 0平行,求l1到l2的距离为________。

高中生期末考试的数学试卷

高中生期末考试的数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^2 - 4x + 3$,则函数的对称轴为()。

A. $x=2$B. $x=1$C. $x=3$D. $x=0$2. 若$a > b > 0$,则下列不等式中成立的是()。

A. $\frac{1}{a} < \frac{1}{b}$B. $a^2 > b^2$C. $a + b > 2\sqrt{ab}$D. $\frac{a}{b} > 1$3. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若$sinA =\frac{1}{2}$,$cosB = \frac{\sqrt{3}}{2}$,则角C的度数为()。

A. $30°$B. $45°$C. $60°$D. $90°$4. 已知数列$\{a_n\}$的通项公式为$a_n = 3^n - 2^n$,则数列的前5项之和为()。

A. 185B. 190C. 195D. 2005. 若函数$f(x) = ax^2 + bx + c$的图像开口向上,且顶点坐标为$(1, -2)$,则下列说法正确的是()。

A. $a > 0$,$b = -2$,$c = -2$B. $a > 0$,$b = 2$,$c = -2$C. $a < 0$,$b = -2$,$c = -2$D. $a < 0$,$b = 2$,$c = -2$6. 已知等差数列$\{a_n\}$的前5项之和为25,第5项与第10项的和为35,则数列的公差为()。

A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(2, 3),点B(-3, 1),则线段AB的中点坐标为()。

A. (2, 2)B. (-1, 2)C. (-1, 3)D. (2, 1)8. 若函数$f(x) = |x - 2| + |x + 1|$,则函数的最小值为()。

高中期末数学试题及答案

高中期末数学试题及答案

高中期末数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式2x + 3 > 5的解集?A. x > 1B. x < 1C. x ≤ 1D. x ≥ 12. 函数f(x) = 2x^2 - 4x + 3的顶点坐标是?A. (1, -1)B. (2, -1)C. (1, 1)D. (2, 1)3. 圆的方程x^2 + y^2 - 6x - 8y + 25 = 0的半径是多少?A. 1B. 2C. 3D. 44. 已知三角形ABC的边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是?A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形5. 抛物线y = -2x^2 + 4x + 1的对称轴方程是?A. x = -1B. x = 1C. x = 2D. x = -26. 函数y = 3sin(x)的周期是?A. πB. 2πC. π/2D. 4π7. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}8. 已知数列{an}是等差数列,且a1 = 2,d = 3,则a5等于?A. 14B. 17C. 20D. 239. 函数y = ln(x)的定义域是?A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. (0, -∞)10. 已知复数z满足|z| = 1,且z的实部为1/2,则z的虚部是?A. √3/2B. -√3/2C. √3/2 或 -√3/2D. 0二、填空题(每题4分,共20分)11. 计算:(3x - 2)(2x + 3) = __________。

12. 已知向量a = (1, 2),向量b = (3, -1),则向量a与向量b的夹角θ满足cosθ = __________。

13. 圆心在原点,半径为5的圆的方程是 __________。

高中期末数学试卷真题

高中期末数学试卷真题

一、选择题(每题5分,共50分)1. 已知等差数列{an}的首项为a1,公差为d,则第n项an的值为()A. a1 + (n-1)dB. a1 - (n-1)dC. a1 + ndD. a1 - nd2. 已知等比数列{bn}的首项为b1,公比为q,则第n项bn的值为()A. b1 q^(n-1)B. b1 / q^(n-1)C. b1 q^(n+1)D. b1 / q^(n+1)3. 已知函数f(x) = 2x^2 - 3x + 1,则f(2)的值为()A. 1B. 3C. 5D. 74. 已知圆的方程为x^2 + y^2 = 4,则圆心坐标为()A. (0, 0)B. (1, 0)C. (0, 1)D. (2, 0)5. 已知直线l的方程为y = 2x + 1,则直线l的斜率为()A. 2C. 1/2D. -1/26. 已知三角形ABC的三个内角分别为A、B、C,且A + B + C = 180°,则三角形ABC为()A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等腰三角形7. 已知平行四边形ABCD的对角线AC和BD相交于点O,若AB = 5,AD = 3,则对角线AC的长度为()A. 8B. 10C. 12D. 158. 已知函数f(x) = |x - 2|,则f(-1)的值为()A. 1B. 2C. 3D. 49. 已知数列{an}的通项公式为an = n^2 - 1,则数列{an}的前10项和为()A. 30B. 50C. 7010. 已知函数f(x) = x^3 - 3x^2 + 2x,则f'(1)的值为()A. -2B. -1C. 0D. 1二、填空题(每题5分,共50分)1. 已知等差数列{an}的首项为2,公差为3,则第5项an的值为______。

2. 已知等比数列{bn}的首项为3,公比为2,则第4项bn的值为______。

3. 已知函数f(x) = x^2 + 2x + 1,则f(-1)的值为______。

高中期末考试满分数学试卷

高中期末考试满分数学试卷

考试时间:120分钟满分:150分一、选择题(每题5分,共50分)1. 下列各数中,绝对值最小的是:A. -3B. -2C. 0D. 1.52. 若a、b是方程x^2 - 5x + 6 = 0的两个实数根,则a+b的值为:A. 2B. 3C. 4D. 53. 函数y = 2x - 1在x=2时的函数值是:A. 1B. 3C. 4D. 54. 在直角坐标系中,点A(-2,3)关于原点对称的点是:A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,3)5. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 平行四边形D. 矩形6. 下列各式中,正确的是:A. a^2 = -aB. (a+b)^2 = a^2 + b^2C. (a-b)^2 = a^2 - 2ab + b^2D. (a+b)^2 = a^2 + 2ab + b^27. 在等腰三角形ABC中,AB=AC,若∠BAC=40°,则∠B的度数是:A. 40°B. 50°C. 60°D. 70°8. 若等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 49. 若函数y=kx+b(k≠0)的图象经过点(2,3),则k和b的关系是:A. k+b=3B. 2k+b=3C. k=3+bD. 2k=3+b10. 下列各数中,不是有理数的是:A. √9B. 0.25C. -1/3D. π二、填空题(每题5分,共50分)1. 若a、b是方程2x^2 - 4x + 3 = 0的两个实数根,则a+b的值为______,ab 的值为______。

2. 函数y = -x^2 + 2x + 1的顶点坐标是______。

3. 在直角坐标系中,点P(-1,2)到原点O的距离是______。

4. 若等腰三角形ABC的底边BC=6cm,腰AB=AC=8cm,则三角形ABC的周长是______cm。

昆山高中期末数学试卷答案

昆山高中期末数学试卷答案

一、选择题1. 下列各数中,属于有理数的是()A. √2B. πC. 0.1010010001...D. 3/4答案:D解析:有理数是可以表示为两个整数之比的数,包括整数、小数(有限小数和无限循环小数)。

3/4是两个整数之比,因此是有理数。

2. 函数f(x) = x^2 - 4x + 4的图像是()A. 双曲线B. 抛物线C. 直线D. 圆答案:B解析:函数f(x) = x^2 - 4x + 4是一个二次函数,其图像是抛物线。

3. 若a > b > 0,则下列不等式中正确的是()A. a^2 > b^2B. a^3 > b^3C. a^2 < b^2D. a^3 < b^3答案:B解析:当a > b > 0时,a的立方大于b的立方,即a^3 > b^3。

4. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项an的值为()A. 21B. 19C. 17D. 15答案:A解析:等差数列的通项公式为an = a1 + (n - 1)d,代入a1 = 3,d = 2,n = 10,得到an = 3 + (10 - 1)×2 = 21。

5. 下列各式中,不是函数的是()A. y = x^2B. y = 1/xC. y = 2x + 1D. y = √x答案:B解析:函数的定义是对于每一个自变量x的值,都有唯一的因变量y与之对应。

在y = 1/x中,当x = 0时,y无定义,因此不是函数。

二、填空题6. 已知等比数列{an}的首项a1 = 2,公比q = 3,则第5项an的值为__________。

答案:162解析:等比数列的通项公式为an = a1 × q^(n - 1),代入a1 = 2,q = 3,n = 5,得到an = 2 × 3^(5 - 1) = 162。

7. 函数f(x) = (x - 1)^2的图像的对称轴为__________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学期末试卷
一.选择题
1.任何一个算法都必须有的基本结构是().
A 顺序结构
B 条件结构
C 循环结构
D 三个都有
2.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为( )
A.5,10,15,20
B.2,6,10,14
C.2,4,6,8
D.5,8,11,
14
3.下列给出的赋值语句中正确的是().
A.4M B.MM C.3BA D.0xy
4.甲、乙两位同学都参加了由学校举办的篮球比赛,它们都参加了全部的7场比赛,平均得分均为16分,标准差分别为
5.09和3.72 ,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )
A、甲
B、乙
C、甲、乙相同
D、不能确定
5.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )
A、16
B、12
C、13 D.15
6.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这
100个铜板下面情况更可能正确的是()
A.这100个铜板两面是一样的B.这100个铜板两面是不同的
C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的
7.设,AB为两个事件,且 3.0 AP,则当()时一定有 7.0 BP
A.A与B互斥 B.A与B对立C.BA D. A不包含B 二.填空题
8.为了了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容
量为40的样本,考虑用系统抽样,则分段的间隔k为______ .
9.掷两枚骰子,出现点数之和为3的概率是____。

10.某城市有学校500所,其中大学10所,中学200所,小学290所.现在取50所学校作为一个样本进行一项调查,用分层抽样进行抽样,应该选取大学_______所,中学_______所,小学________所.
11、在频率分布直方图中,所有矩形的面积和为______
三.解答题
12、(12分)袋中有大小相同的红、黄两种颜色的球各1个,从中任取一只,有放回地抽取3次.求:
Ⅰ、3只全是红球的概率;
Ⅱ、3只颜色全相同的概率;
Ⅲ、3只颜色不全相同的概率。

13.为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:
甲 12 13 14 15 10 16 13 11 15 11
乙 11 16 17 14 13 19 6 8 10 16
哪种小麦长得比较整齐?(10分)。

相关文档
最新文档