2013年长沙市高考模拟试卷(理科数学)

合集下载

2013届高三理科数学高考模拟考试4

2013届高三理科数学高考模拟考试4

2013届高三理科数学高考模拟考试4本试卷共4页,21小题, 满分150分.考试用时120分钟.一.选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为( )..35A i + .35B i - .35C i -+ .35D i --2. 设0a >且1a ≠,则“函数()x f x a =在R 上是减函数”是“函数()()32g x a x =-在R 上是增函数”的( )..A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件 3. 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,,960, 分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ). .7A .9B .10C .15D4. 设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是( ).3.,62A ⎡⎤-⎢⎥⎣⎦ 3.,12B ⎡⎤--⎢⎥⎣⎦ [].1,6C - 3.6,2D ⎡⎤-⎢⎥⎣⎦5. 执行右面的程序框图,如果输入4a =,那么输出的n 的值为( )..2A .3B .4C .5D 6. 已知椭圆()2222:10x yC a b a b +=>>的离心率为.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )..A 22182x y += .B 221126x y +=.C 221164x y += .D 221205x y += 7. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )..232A .252B .472C .484D8. 设函数()()()21,,,0f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =的图象有且仅有两个不同的公共点()()1122,,,A x y B x y ,则下列判断正确的是( )..A 当0a <时,12120,0x x y y +<+> .B 当0a <时,12120,0x x y y +>+< .C 当0a >时,12120,0x x y y +<+< .D 当0a >时,12120,0x x y y +>+>二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 若不等式42kx -≤的解集为{}13x x ≤≤,则实数k =__________.10. 如图,正方体1111ABCD A BC D -的棱长为1,,E F 为线段1AA ,1BC 上的点,则三棱锥1D EDF -的体积为___________.11. 设0a >,若曲线y =与直线,0x a y ==所围成封闭图形的面积为2a ,则a =___________.12.定义在R 上的函数()f x 满足()()6f x f x +=,当31x -≤<-时,()()22f x x =-+;当13x -≤<时,()f x x =.则()()()()1232013f f f f ++++= ___________. 13. 如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在()0,1,此时圆上一点P 的位置在()0,0,圆在x 轴上沿正方向滚动.当圆滚动到圆心位于()2,1时,OP的坐标为____________.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,过圆O 外一点p 分别作圆的切线和割线交圆于A ,B ,且PB =7,C 是圆上一点使得BC =5,∠BAC =∠APB , 则AB = .15.(坐标系与参数方程选讲选做题)1A 图 4已知两面线参数方程分别为(0)sin x y θθπθ⎧=⎪≤<⎨=⎪⎩ 和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,它们的交点坐标为___________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16. (本小题满分12分)已知向量()()sin ,1,cos ,cos 202A m x n x x A ⎫==>⎪⎭,函数()f x m n =⋅ 的最大值为6. (1)求A ;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象,求()g x 在50,24π⎡⎤⎢⎥⎣⎦上的值域.17. (本小题满分13分)在如图所示的几何体中,四边形ABCD 是等腰梯形,//AB CD ,60,DAB FC ∠=⊥平面ABCD ,,AE BD CB CD CF ⊥==. (1)求证:BD ⊥平面AED ;(2)求二面角F BD C --的余弦值.18. (本小题满分13分)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .19. (本小题满分14分)在等差数列{}n a 中,345984,73a a a a ++==. (1)求数列{}n a 的通项公式;(2)对任意*m N ∈,将数列{}n a 中落入区间()29,9m m内的项的个数记为m b .求数列{}m b 的前m 项和m S .20. (本小题满分14分)在平面直角坐标系,xOy F 是抛物线()2:20C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 为抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由.(3)若点M 直线1:4l y kx =+与抛物线C 有两个不同的交点,,A B l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值.21. (本小题满分14分) 已知函数()ln xx kf x e +=(k 为常数, 2.71828e = 是自然对数的底数),曲线()y f x =在点()()1,1f 处的切线与x 轴平行. (1)求k 的值;(2)求()f x 的单调区间;(3)设()()()2g x x x f x '=+,其中()f x '为()f x 的导函数,证明:对任意0x >,()21g x e -<+.。

2013学年湖南高考理科数学年卷答案

2013学年湖南高考理科数学年卷答案
x 1 【提示】根据分式有意义的条件是分母不等于零,可得出 x 的取值范围. 【考点】分式有意义的条件. 4.【答案】D 【解析】解:∵ B C ,∴ AB AC 5 ,故选 D. 【提示】根据等腰三角形的性质可得 AB AC ,继而得出 AC 的长. 【考点】等腰三角形的性质. 5.【答案】B 【解析】解:A. 1 (3) 1 ,运算错误,故本选项错误;
3x

6
,解得:
x

2
,将
x

2
代入①可得:
y

1

故方程组的解为
x

y

2 1

【提示】(1)分别进行平方,绝对值,二次根式的化简,然后代入特殊角的三角函数值,继而合并可得出答 案. (2)①+②可得出 x 的值,将 x 的值代入①可得 y 的值,继而得出方程组的解. 【考点】解二元一次方程组,实数的运算,特殊角的三角函数值.
6 / 16
11 个,7 个偶数,4 个奇数,所以, P (抽到偶数) 7 . 11
【提示】先确定出所有大于 0 且小于 100 的“本位数”,再根据概率公式计算即可得解.
【考点】概率公式.
23.【答案】1 或 0
【解析】解:不等式组的解为: a t 3 ,∵不等式组恰有 3 个整数解,∴ 2 a 1. 2
(2)(ⅰ)过点 Q 作 QF BC 于 F ,根据 △BFQ∽△BCE 可得 BF QF ,然后求3
△ADP∽△FPQ
可得
AD PF

AP QF
,然后整理得到
5

3 AP
BF

AP QF
,从而求出

2013年湖南省高考数学试卷(理科)附送答案

2013年湖南省高考数学试卷(理科)附送答案

2013年湖南省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法3.(5分)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.4.(5分)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0 C.D.5.(5分)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.06.(5分)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.7.(5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1 B.C.D.8.(5分)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.10.(5分)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为.11.(5分)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.12.(5分)若x2dx=9,则常数T的值为.13.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.14.(5分)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为.15.(5分)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.16.(5分)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为.(2)若a,b,c是△ABC的三条边长,则下列结论正确的是.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.18.(12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.19.(12分)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.20.(13分)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N 的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x 轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.21.(13分)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(Ⅰ)若k1>0,k2>0,证明:;(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.22.(13分)已知a>0,函数.(Ⅰ)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(Ⅱ)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖南)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数z,根据复数与复平面内点的对应关系可得答案.【解答】解:z=i•(1+i)=﹣1+i,故复数z对应的点为(﹣1,1),在复平面的第二象限,故选B.2.(5分)(2013•湖南)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:总体由男生和女生组成,比例为500:500=1:1,所抽取的比例也是1:1.故拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样法.故选:D.3.(5分)(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.【分析】利用正弦定理可求得sinA,结合题意可求得角A.【解答】解:∵在△ABC中,2asinB=b,∴由正弦定理==2R得:2sinAsinB=sinB,∴sinA=,又△ABC为锐角三角形,∴A=.故选D.4.(5分)(2013•湖南)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0 C.D.【分析】作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=x+2y对应的直线进行平移,可得当x=,y=时,x+2y取得最大值为.【解答】解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(﹣,﹣1),B(,),C(2,﹣1)设z=F(x,y)=x+2y,将直线l:z=x+2y进行平移,当l经过点B时,目标函数z达到最大值∴z=F(,)=最大值故选:C5.(5分)(2013•湖南)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.0【分析】本题考查的知识点是指数函数的图象,要求函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案.【解答】解:在同一坐标系下,画出函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象如图:由图可知,两个函数图象共有2个交点故选B.6.(5分)(2013•湖南)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.【分析】令,,,作出图象,根据图象可求出的最大值、最小值.【解答】解:令,,,如图所示:则,又,所以点C在以点D为圆心、半径为1的圆上,易知点C与O、D共线时达到最值,最大值为+1,最小值为﹣1,所以的取值范围为[﹣1,+1].故选A.7.(5分)(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1 B.C.D.【分析】求出满足条件的该正方体的正视图的面积的范围为即可得出.【解答】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.8.(5分)(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P出发,经BC,CA反射后又回到点P(如图),若光线QR经过△ABC的重心,则AP等于()A.2 B.1 C.D.【分析】建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P的坐标,进而可得AP的值.【解答】解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k==,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=故选D二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.(2013•湖南)在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为3.【分析】直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.【解答】解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.10.(5分)(2013•湖南)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为12.【分析】根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化简得a2+4b2+9c2≥12,由此可得当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12.【解答】解:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=时等号成立由此可得:当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12故答案为:1211.(5分)(2013•湖南)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.【分析】首先利用相交弦定理求出CD的长,再利用勾股定理求出圆心O到弦CD 的距离,注意计算的正确率.【解答】解:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为,则圆心O到弦CD的距离为d===.故答案为:.12.(5分)(2013•湖南)若x2dx=9,则常数T的值为3.【分析】利用微积分基本定理即可求得.【解答】解:==9,解得T=3,故答案为:3.13.(5分)(2013•湖南)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为9.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加a值,并判断满足a>8时输出a的值.【解答】解:程序在运行过程中各变量的聚会如下表示:是否继续循环 a b循环前/1 2第一圈是 3 2第二圈是 5 2第三圈是7 2第四圈是9 2第五圈否故最终输出的a值为9.故答案为:9.14.(5分)(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C 的离心率为.【分析】利用双曲线的定义求出|PF1|,|F1F2|,|PF2|,然后利用最小内角为30°结合余弦定理,求出双曲线的离心率.【解答】解:因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|+|PF2|=6a,不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|﹣|PF2|=2a所以|F1F2|=2c,|PF1|=4a,|PF2|=2a,∵△PF1F2的最小内角∠PF1F2=30°,由余弦定理,∴|PF2|2=|F1F2|2+|PF1|2﹣2|F1F2||PF1|cos∠PF1F2,即4a2=4c2+16a2﹣2×2c×4a×,∴c2﹣2ca+3a2=0,∴c=a所以e==.故答案为:.15.(5分)(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n ∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.【分析】(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.【解答】解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.16.(5分)(2013•湖南)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为{x|0<x≤1} .(2)若a,b,c是△ABC的三条边长,则下列结论正确的是①②③.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.【分析】(1)由集合M中的元素满足的条件,得到c≥a+b=2a,求得的范围,解出函数f(x)=a x+b x﹣c x的零点,利用不等式可得零点x的取值集合;(2)对于①,把函数式f(x)=a x+b x﹣c x变形为,利用指数函数的单调性即可证得结论成立;对于②,利用取特值法说明命题是正确的;对于③,由△ABC为钝角三角形说明f(2)<0,又f(1)>0,由零点的存在性定理可得命题③正确.【解答】解:(1)因为c>a,由a,b,c不能构成一个三角形的三条边长得c≥a+b=2a,所以,则.令f(x)=a x+b x﹣c x=.得,所以.又∵>1,则ln>0,所以x=>0,所以0<x≤1.故答案为{x|0<x≤1};(2)①因为,又,所以对∀x∈(﹣∞,1),.所以命题①正确;②令x=﹣1,a=2,b=4,c=5.则a x=,b x=,c x=.不能构成一个三角形的三条边长.所以命题②正确;③若三角形为钝角三角形,则a2+b2﹣c2<0.f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0.所以∃x∈(1,2),使f(x)=0.所以命题③正确.故答案为①②③.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖南)已知函数f(x)=sin(x﹣)+cos(x﹣),g(x)=2sin2.(Ⅰ)若α是第一象限角,且f(α)=,求g(α)的值;(Ⅱ)求使f(x)≥g(x)成立的x的取值集合.【分析】(1)利用两角和差的三角公式化简函数f(x)的解析式,可得f(α)的解析式,再根据f(α)=,求得cosα的值,从而求得g(α)=2sin2=1﹣cosα的值.(2)由不等式可得sin(x+)≥,解不等式2kπ+≤x+≤2kπ+,k ∈z,求得x的取值集合.【解答】解:(1)∵f(x)=sinx﹣cosx+cosx+sinx=sinx,所以f(α)=sinα=,所以sinα=.又α∈(0,),所以cosα=,所以g(α)=2sin2=1﹣cosα=.(2)由f(x)≥g(x)得sinx≥1﹣cosx,所以sinx+cosx=sin(x+)≥.解2kπ+≤x+≤2kπ+,k∈z,求得2kπ≤x≤2kπ+,k∈z,所以x的取值范围为〔2kπ,2kπ+〕k∈z.18.(12分)(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P (X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y51484542P数学期望为E(Y)=51×+48×+45×+42×=4619.(12分)(2013•湖南)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(Ⅰ)证明:AC⊥B1D;(Ⅱ)求直线B1C1与平面ACD1所成的角的正弦值.【分析】(I)根据直棱柱性质,得BB1⊥平面ABCD,从而AC⊥BB1,结合BB1∩BD=B,证出AC⊥平面BB1D,从而得到AC⊥B1D;(II)根据题意得AD∥B1C1,可得直线B1C1与平面ACD1所成的角即为直线AD与平面ACD1所成的角.连接A1D,利用线面垂直的性质与判定证出AD1⊥平面A1B1D,从而可得AD1⊥B1D.由AC⊥B1D,可得B1D⊥平面ACD1,从而得到∠ADB1与AD与平面ACD1所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△AB1D中算出B1D=,可得cos∠ADB1=,由此即可得出直线B1C1与平面ACD1所成的角的正弦值.【解答】解:(I)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵AC⊥BD,BB1、BD是平面BB1D内的相交直线∴AC⊥平面BB1D,∵B1D⊂平面BB1D,∴AC⊥B1D;(II)∵AD∥BC,B1C1∥BC,∴AD∥B1C1,由此可得:直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ),连接A1D,∵直棱柱ABCD﹣A1B1C1D1中,∠BAD=∠B1A1D1=90°,∴B1A1⊥平面A1D1DA,结合AD1⊂平面A1D1DA,得B1A1⊥AD1又∵AD=AA1=3,∴四边形A1D1DA是正方形,可得AD1⊥A1D∵B1A1、A1D是平面A1B1D内的相交直线,∴AD1⊥平面A1B1D,可得AD1⊥B1D,由(I)知AC⊥B1D,结合AD1∩AC=A可得B1D⊥平面ACD1,从而得到∠ADB1=90°﹣θ,∵在直角梯形ABCD中,AC⊥BD,∴∠BAC=∠ADB,从而得到Rt△ABC∽Rt△DAB 因此,,可得AB==连接AB1,可得△AB1D是直角三角形,∴B1D2=B1B2+BD2=B1B2+AB2+BD2=21,B1D=在Rt△AB1D中,cos∠ADB1===,即cos(90°﹣θ)=sinθ=,可得直线B1C1与平面ACD1所成的角的正弦值为.20.(13分)(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x 轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.【分析】(I)根据“L路径”的定义,可得点P到居民区A的“L路径”长度最小值;(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值,分类讨论,利用绝对值的几何意义,即可求得点P的坐标.【解答】解:设点P的坐标为(x,y),则(I)点P到居民区A的“L路径”长度最小值为|x﹣3|+|y﹣20|,y∈[0,+∞);(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值①当y≥1时,d=|x+10|+|x﹣14|+|x﹣3|+2|y|+|y﹣20|∵d1(x)=|x+10|+|x﹣14|+|x﹣3|≥|x+10|+|x﹣14|≥24∴当且仅当x=3时,d1(x)=|x+10|+|x﹣14|+|x﹣3|的最小值为24∵d2(y)=2|y|+|y﹣20|≥21∴当且仅当y=1时,d2(y)=2|y|+|y﹣20|的最小值为21∴点P的坐标为(3,1)时,点P到三个居民区的“L路径”长度之和的最小,且最小值为45;②当0≤y≤1时,由于“L路径”不能进入保护区,∴d=|x+10|+|x﹣14|+|x﹣3|+1+|1﹣y|+|y|+|y﹣20|此时d1(x)=|x+10|+|x﹣14|+|x﹣3|,d2(y)=1+|1﹣y|+|y|+|y﹣20|=22﹣y ≥21由①知d1(x)=|x+10|+|x﹣14|+|x﹣3|≥24,∴d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.21.(13分)(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(Ⅰ)若k1>0,k2>0,证明:;(Ⅱ)若点M到直线l的距离的最小值为,求抛物线E的方程.【分析】(Ⅰ)由抛物线方程求出抛物线的焦点坐标,写出两条直线的方程,由两条直线方程和抛物线方程联立求出圆M和圆N的圆心M和N的坐标,求出向量和的坐标,求出数量积后转化为关于k1和k2的表达式,利用基本不等式放缩后可证得结论;(Ⅱ)利用抛物线的定义求出圆M和圆N的直径,结合(Ⅰ)中求出的圆M和圆N的圆心的坐标,写出两圆的方程,作差后得到两圆的公共弦所在直线方程,由点到直线的距离公式求出点M到直线l的距离,利用k1+k2=2转化为含有一个未知量的代数式,配方后求出最小值,由最小值等于求出p的值,则抛物线E的方程可求.【解答】解:(I)由题意,抛物线E的焦点为,直线l1的方程为.由,得.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,.所以点M的坐标为,.同理可得点N的坐标为,.于是.由题设k1+k2=2,k1>0,k2>0,k1≠k2,所以0<.故.(Ⅱ)由抛物线的定义得,,所以,从而圆M的半径.故圆M的方程为,化简得.同理可得圆N的方程为于是圆M,圆N的公共弦所在的直线l的方程为.又k2﹣k1≠0,k1+k2=2,则l的方程为x+2y=0.因为p>0,所以点M到直线l的距离为=.故当时,d取最小值.由题设,解得p=8.故所求抛物线E的方程为x2=16y.22.(13分)(2013•湖南)已知a>0,函数.(Ⅰ)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(Ⅱ)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.【分析】(I)利用绝对值的几何意义,分类讨论,结合导数确定函数的单调性,从而可得g(a)的表达式;(II)利用曲线y=f(x)在两点处的切线互相垂直,建立方程,从而可转化为集合的运算,即可求得结论.【解答】解:(I)当0≤x≤a时,;当x>a时,∴当0≤x≤a时,,f(x)在(0,a)上单调递减;当x>a时,,f(x)在(a,+∞)上单调递增.①若a≥4,则f(x)在(0,4)上单调递减,g(a)=f(0)=②若0<a<4,则f(x)在(0,a)上单调递减,在(a,4)上单调递增∴g(a)=max{f(0),f(4)}∵f(0)﹣f(4)==∴当0<a≤1时,g(a)=f(4)=;当1<a<4时,g(a)=f(0)=,综上所述,g(a)=;(II)由(I)知,当a≥4时,f(x)在(0,4)上单调递减,故不满足要求;当0<a<4时,f(x)在(0,a)上单调递减,在(a,4)上单调递增,若存在x1,x2∈(0,4)(x1<x2),使曲线y=f(x)在两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且f′(x1)f′(x2)=﹣1∴•=﹣1∴①∵x1∈(0,a),x2∈(a,4),∴x1+2a∈(2a,3a),∈(,1)∴①成立等价于A=(2a,3a)与B=(,1)的交集非空∵,∴当且仅当0<2a<1,即时,A∩B≠∅综上所述,存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a的取值范围是(0,).。

2013年高考真题——理科数学(湖南卷)解析

2013年高考真题——理科数学(湖南卷)解析

绝密★启用前2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+ 为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】 B【解析】 z = i ·(1+i) = i – 1,所以对应点(-1,1).选B 选B2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 A .抽签法 B .随机数法 C .系统抽样法 D .分层抽样法 【答案】 D 【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。

选D3.在锐角中A B C ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于A .12π B .6π C .4π D .3π【答案】 D【解析】 3=A 223=sinA sinB 3 = sinB 2sinA :得b 3=2asinB 由ππ⇒<⇒⋅⋅A ,选D4.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .52【答案】 C【解析】 区域为三角形,直线u = x + 2y 经过三角形顶点最大时,35)32,31(=u选C5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2) =2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2 选B6. 已知,a b 是单位向量,0a b = .若向量c 满足1,c a b c --=则的取值范围是A .⎤⎦B .2⎤⎦C .1⎡⎤⎣⎦D .12⎡⎤⎣⎦【答案】 A【解析】向量之差的向量与即一个模为单位c 2.1|c -)b a (||b a -c |,2|b a |向量,是b ,a =+=-=+∴ 的模为1,可以在单位圆中解得12||1-2+≤≤c 。

2013年湖南省高考数学试卷及答案(理科)

2013年湖南省高考数学试卷及答案(理科)

2013年湖南省高考数学试卷及答案(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在答题卡上.1.(5分)i是虚数单位,复数=()3.(5分)如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的体积为()C4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选出三人分别担任书记、5.(5分)若在区域内任取一点P,则点P恰好在单位圆x2+y2=1内的概率为().C D..7.(5分)下列命题正确的有①用相关指数R2来刻画回归效果越小,说明模型的拟合效果越好;②命题p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x2﹣x﹣1≤0”;③设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则;8.(5分)在平面直角坐标系中,定义点P(x1,y1)、Q(x2,y2)之间的“理想距离”为:d(P,Q)=|x1﹣x2|+|y1﹣y2|;若C(x,y)到点A(2,3)、B(8,8)的“理想距离”相等,其中实数x、y满足0≤x≤8、0≤y≤8,则所有满C二、填空题:本大题共8小题,考生作答7小题,每小题0分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)(二)必做题(12~16题)9.计算的值等于_________.10.(5分)如图,点A,B,C是圆O上的点,且,,则圆O的面积等于_________.11.(5分)若曲线C的极坐标方程为ρcos2θ=2sinθ,则曲线C的普通方程为_________.12.(5分)看图程序运行后的输出结果s=_________.13.(5分)已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p 是q的_________条件.14.(5分)为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下:明文密文密文明文.现在加密密钥为y=log a(x+2),如上所示,明文“6”通过加密后得到密文“3”,再发送,接受方通过解密密钥解密得到明文“6”.若接受方接到密文为“4”,则解密后得明文为_________.15.(5分)已知a,b,c成等差数列,则直线ax﹣by+c=0被曲线x2+y2﹣2x﹣2y=0截得的弦长的最小值为_________.16.(5分)已知x,y∈N*,且1+2+3+4+…+y=1+9+92++…+9x﹣1,当x=2时,y=_________;若把y表示成x的函数,其解析式是y=_________.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤17.(12分)已知,设ω>0,,,若f(x)图象中相邻的两条对称轴间的距离等于.(1)求ω的值;(2)在△ABC中,a,b,c分别为角A,B,C的对边,.当f(A)=1时,求b,c的值.18.(12分)在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.某考生有4道题已选对正确答案,其余题中有两道只能分别判断2个选项是错误的,还有两道题因不理解题意只好乱猜.(Ⅰ)求该考生8道题全答对的概率;(Ⅱ)若评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”,求该考生所得分数的分布列.19.(12分)正四棱柱ABCD﹣A1B1C1D1的底面边长是,侧棱长是3,点E、F分别在BB1、DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥面AEF;(2)求截面AEF与底面ABCD所成二面角θ的正切值.20.(13分)京广高铁于2012年12月26日全线开通运营,G808次列车在平直的铁轨上匀速行驶,由于遇到紧急情况,紧急刹车时列车行驶的路程S(t)(单位:m)和时间t(单位:s)的关系为:.(1)求从开始紧急刹车至列车完全停止所经过的时间;(2)求列车正常行驶的速度;(3)求紧急刹车后列车加速度绝对值的最大值.21.(13分)已知抛物线、椭圆和双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程;(2)对于抛物线上任意一点Q,点P(a,0)都满足|PQ|≥|a|,求a的取值范围.22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.22.(13分)已知二次函数f(x)=x2﹣ax+a(x∈R)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.设数列{a n}的前n项和S n=f(n),(1)求数列{a n}的通项公式;(2)数列{b n}中,令,T n=,求T n;(3)设各项均不为零的数列{c n}中,所有满足c i•c i+1<0的正整数i的个数称为这个数列{c n}的变号数.令(n为正整数),求数列{c n}的变号数.∴,∴)∵=∴)由题设时,∵,由。

2013年湖南省高考数学试卷(理科)及解析

2013年湖南省高考数学试卷(理科)及解析

2013年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•湖南)复数z=i•(1+i)(i为虚数单位)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2013•湖南)某校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样解答:解:总体由男生和女生组成,比例为500:500=1:1,所抽取的比例也是1:1.故拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样法.故选D3.(5分)(2013•湖南)在锐角△ABC中,角A,B所对的边长分别为a,b.若2asinB=b,则角A等于()A.B.C.D.4.(5分)(2013•湖南)若变量x,y满足约束条件,则x+2y的最大值是()A.B.0C.D.5.(5分)(2013•湖南)函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3B.2C.1D.06.(5分)(2013•湖南)已知,是单位向量,,若向量满足,则的取值范围为()A.B.C.D.点评:本题考查平面向量的数量积运算,根据题意作出图象,数形结合是解决本题的有力工具.7.(5分)(2013•湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1B.C.D.8.(5分)(2013•湖南)在等腰直角三角形ABC中,AB=AC=4,点P是边AB边上异于AB的一点,光线从点P 出发,经BC,CA反射后又回到点P(如图1),若光线QR经过△ABC的重心,则AP等于()A.2B.1C.D.考点:与直线关于点、直线对称的直线方程.专题:直线与圆.分析:建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P 的坐标,进而可得AP的值.解答:解:建立如图所示的坐标系:可得B(4,0),C(0,4),故直线BC的方程为x+y=4,△ABC的重心为(,),设P(a,0),其中0<a<4,则点P关于直线BC的对称点P1(x,y),满足,解得,即P1(4,4﹣a),易得P关于y轴的对称点P2(﹣a,0),由光的反射原理可知P1,Q,R,P2四点共线,直线QR的斜率为k==,故直线QR的方程为y=(x+a),由于直线QR过△ABC的重心(,),代入化简可得3a2﹣4a=0,解得a=,或a=0(舍去),故P(,0),故AP=故选D点评:本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.二、填空题:本大题共8小题,考生作答7小题,第小题5分,共35分.(一)选做题(请考生在第9,10,11三题中任选两题作答、如果全做,则按前两题记分)(二)必做题(12~16题)9.(2013•湖南)在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为3.考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.10.(5分)(2013•湖南)已知a,b,c∈R,a+2b+3c=6,则a2+4b2+9c2的最小值为12.考点:柯西不等式;柯西不等式的几何意义.专题:计算题;不等式的解法及应用.分析:根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)(a2+4b2+9c2)=3(a2+4b2+9c2),化简得a2+4b2+9c2≥12,由此可得当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12.解答:解:∵a+2b+3c=6,∴根据柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化简得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,当且仅当a:2b:3c=1:1:1时,即a=2,b=1,c=时等号成立由此可得:当且仅当a=2,b=1,c=时,a2+4b2+9c2的最小值为12故答案为:12点评:本题给出等式a+2b+3c=6,求式子a2+4b2+9c2的最小值.着重考查了运用柯西不等式求最值与柯西不等式的等号成立的条件等知识,属于中档题.11.(5分)(2013•湖南)如图,在半径为的⊙O中,弦AB,CD相交于点P,PA=PB=2,PD=1,则圆心O到弦CD的距离为.考点:圆內接多边形的性质与判定;与圆有关的比例线段.专题:计算题.分析:首先利用相交弦定理求出CD的长,再利用勾股定理求出圆心O到弦CD的距离,注意计算的正确率.解答:解:由相交弦定理得,AP×PB=CP×PD,∴2×2=CP•1,解得:CP=4,又PD=1,∴CD=5,又⊙O的半径为,则圆心O到弦CD的距离为d===故答案为:.点评:此题主要考查了相交弦定理,垂径定理,勾股定理等知识,题目有一定综合性,是中考中热点问题.12.(5分)(2013•湖南)若,则常数T的值为3.考点:定积分.专题:计算题.分析:利用微积分基本定理即可求得.解答:解:==9,解得T=3,故答案为:3.点评:本题考查定积分、微积分基本定理,属基础题.13.(5分)(2013•湖南)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为9.考点:程序框图.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加a值,并判断满足a>8时输出a的值.解答:解:程序在运行过程中各变量的聚会如下表示:是否继续循环 a b循环前/1 2第一圈是 3 2第二圈是 5 2第三圈是7 2第四圈是9 2第五圈否故最终输出的a值为9.故答案为:9.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.14.(5分)(2013•湖南)设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2=30°的最小内角为30°,则C的离心率为.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线的定义求出|PF1|,|F1F2|,|PF2|,然后利用最小内角为30°结合余弦定理,求出双曲线的离心率.解答:解:因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|+|PF2|=6a,不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|﹣|PF2|=2a所以|F1F2|=2c,|PF1|=4a,|PF2|=2a,∵△PF1F2的最小内角∠PF1F2=30°,由余弦定理,∴|PF2|2=|F1F2|2+|PF1|2﹣2|F1F2||PF1|cos∠PF1F2,即4a2=4c2+16a2﹣2c×4a×,∴c2﹣2ca+3a2=0,∴c= a所以e==.故答案为:.点评:本题考查双曲线的定义,双曲线的离心率的求法,考查计算能力.15.(5分)(2013•湖南)设S n为数列{a n}的前n项和,,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.考点:数列的求和;数列的函数特性.专题:等差数列与等比数列.分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.解答:解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.16.(5分)(2013•湖南)设函数f(x)=a x+b x﹣c x,其中c>a>0,c>b>0.(1)记集合M={(a,b,c)|a,b,c不能构成一个三角形的三条边长,且a=b},则(a,b,c)∈M所对应的f(x)的零点的取值集合为{x|0<x≤1}.(2)若a,b,c是△ABC的三条边长,则下列结论正确的是①②③.(写出所有正确结论的序号)①∀x∈(﹣∞,1),f(x)>0;②∃x∈R,使a x,b x,c x不能构成一个三角形的三条边长;③若△ABC为钝角三角形,则∃x∈(1,2),使f(x)=0.考点:命题的真假判断与应用;函数的零点;进行简单的合情推理.专题:阅读型.分析:(1)由集合M中的元素满足的条件,得到c≥a+b=2a,求得的范围,解出函数f(x)=a x+b x﹣c x的零点,利用不等式可得零点x的取值集合;(2)对于①,把函数式f(x)=a x+b x﹣c x变形为,利用指数函数的单调性即可证得结论成立;对于②,利用取特值法说明命题是正确的;对于③,由△ABC为钝角三角形说明f(2)<0,又f(1)>0,由零点的存在性定理可得命题③正确.解答:解:(1)因为c>a,由c≥a+b=2a,所以,则.令f(x)=a x+b x﹣c x=.得,所以.所以0<x≤1.故答案为{x|0<x≤1};(2)因为,又,所以对∀x∈(﹣∞,1),.所以命题①正确;令x=1,a=b=1,c=2.则a x=b x=1,c x=2.不能构成一个三角形的三条边长.所以命题②正确;若三角形为钝角三角形,则a2+b2﹣c2<0.f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0.所以∃x∈(1,2),使f(x)=0.所以命题③正确.故答案为①②③.点评:本题考查了命题真假的判断与应用,考查了函数零点的判断方法,训练了特值化思想方法,解答此题的关键是对题意的正确理解,此题是中档题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•湖南)已知函数,.(I)若α是第一象限角,且,求g(α)的值;(II)求使f(x)≥g(x)成立的x的取值集合.考点:两角和与差的正弦函数;两角和与差的余弦函数;二倍角的余弦;正弦函数的单调性.专题:计算题;三角函数的图像与性质.分析:(I)根据两角和与差的三角函数公式化简,得f(x)=sinx,结合解出sinα=,利用同角三角函数的基本关系算出cosα=.由二倍角的余弦公式进行降次,可得g(x)=1﹣cosx,即可算出g(α)=1﹣cosα=;(II)f(x)≥g(x),即sinx≥1﹣cosx,移项采用辅助角公式化简整理,得2sin(x+)≥1,再根据正弦函数的图象与性质,即可求出使f(x)≥g(x)成立的x的取值集合.解答:解::∵sin(x﹣)=sinxcos﹣cosxsin=sinx﹣cosxcos(x﹣)=cosxcos+sinxsin=cosx+sinx∴=(sinx﹣cosx)+(cosx+sinx)=sinx而=1﹣cosx(I)∵,∴sinα=,解之得sinα=∵α是第一象限角,∴cosα==因此,g(α)==1﹣cosα=,(II)f(x)≥g(x),即sinx≥1﹣cosx移项,得sinx+cosx≥1,化简得2sin(x+)≥1∴sin(x+)≥,可得+2kπ≤x+≤+2kπ(k∈Z)解之得2kπ≤x≤+2kπ(k∈Z)因此,使f(x)≥g(x)成立的x的取值集合为{x|2kπ≤x≤+2kπ(k∈Z)}点评:本题给出含有三角函数的两个函数f(x)、g(x),求特殊函数值并讨论使f(x)≥g(x)成立的x的取值集合.着重考查了三角恒等变换、同角三角函数的基本关系和三角函数的图象与性质等知识,属于中档题.18.(12分)(2013•湖南)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.考点:离散型随机变量及其分布列;古典概型及其概率计算公式;离散型随机变量的期望与方差.专题:概率与统计.分析:(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.解答:解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)∴只需求出P(X=k)(k=1,2,3,4)即可记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==∴所求的分布列为Y 51 48 45 42P数学期望为E(Y)=51×+48×+45×+42×=46点评:本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.19.(12分)(2013•湖南)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(I)证明:AC⊥B1D;(II)求直线B1C1与平面ACD1所成的角的正弦值.考点:直线与平面所成的角;直线与平面垂直的性质.专题:计算题;证明题;空间位置关系与距离;空间角.分析:(I)根据直棱柱性质,得BB1⊥平面ABCD,从而AC⊥BB1,结合BB1∩BD=B,证出AC⊥平面BB1D,从而得到AC⊥B1D;(II)根据题意得AD∥B1C1,可得直线B1C1与平面ACD1所成的角即为直线AD与平面ACD1所成的角.连接A1D,利用线面垂直的性质与判定证出AD1⊥平面A1B1D,从而可得AD1⊥B1D.由AC⊥B1D,可得B1D⊥平面ACD,从而得到∠ADB1与AD与平面ACD1所成的角互余.在直角梯形ABCD中,根据Rt△ABC∽Rt△DAB,算出AB=,最后在Rt△AB1D中算出B1D=,可得cos∠ADB1=,由此即可得出直线B1C1与平面ACD1所成的角的正弦值.解答:解:解:(I)∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵AC⊥BD,BB1、BD是平面BB1D内的相交直线∴AC⊥平面BB1D,∵B1D⊂平面BB1D,∴AC⊥B1D;(II)∵AD∥BC,B1C1∥BC,∴AD∥B1C1,由此可得直线B1C1与平面ACD1所成的角,等于直线AD与平面ACD1所成的角(记为θ)连接A1D,∵直棱柱ABCD﹣A1B1C1D1中,∠BAD=∠B1A1D1=90°,∴B1A1⊥平面A1D1DA,结合AD1⊂平面A1D1DA,得B1A1⊥AD1又∵AD=AA1=3,∴四边形A1D1DA是正方形,可得AD1⊥A1D∵B1A1、A1D是平面A1B1D内的相交直线,∴AD1⊥平面A1B1D,可得AD1⊥B1D,由(I)知AC⊥B1D,结合AD1∩AC=A可得B1D⊥平面ACD,从而得到∠ADB1=90°﹣θ,∵在直角梯形ABCD中,AC⊥BD,∴∠BAC=∠ADB,从而得到Rt△ABC∽Rt△DAB因此,,可得AB==连接AB1,可得△AB1D是直角三角形,∴B1D2=B1B2+BD2=B1B2+AB2+BD2=21,B1D=在Rt△AB1D中,cos∠ADB1===,即cos(90°﹣θ)=sinθ=,可得直线B1C1与平面ACD1所成的角的正弦值为.点评:本题给出直四棱柱,求证异面直线垂直并求直线与平面所成角的正弦之值,着重考查了直四棱柱的性质、线面垂直的判定与性质和直线与平面所成角的定义等知知识,属于中档题.20.(13分)(2013•湖南)在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.(I)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);(II)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.考点:根据实际问题选择函数类型;绝对值三角不等式.专题:应用题;不等式的解法及应用.分析:(I)根据“L路径”的定义,可得点P到居民区A的“L路径”长度最小值;(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值,分类讨论,利用绝对值的几何意义,即可求得点P的坐标.解答:解:设点P的坐标为(x,y),则(I)点P到居民区A的“L路径”长度最小值为|x﹣3|+|y﹣20|,y∈[0,+∞);(II)由题意知,点P到三个居民区的“L路径”长度之和的最小值为点P到三个居民区的“L路径”长度最小值之和(记为d)的最小值①当y≥1时,d=|x+10|+|x﹣14|+|x﹣3|+2|y|+|y﹣20|∵d1(x)=|x+10|+|x﹣14|+|x﹣3|≥|x+10|+|x﹣14|≥24∴当且仅当x=3时,d1(x)=|x+10|+|x﹣14|+|x﹣3|的最小值为24∵d2(y)=2|y|+|y﹣20|≥21∴当且仅当y=1时,d2(y)=2|y|+|y﹣20|的最小值为21∴点P的坐标为(3,1)时,点P到三个居民区的“L路径”长度之和的最小,且最小值为45;②当0≤y≤1时,由于“L路径”不能进入保护区,∴d=|x+10|+|x﹣14|+|x﹣3|+1+|1﹣y|+|y|+|y﹣20|此时d1(x)=|x+10|+|x﹣14|+|x﹣3|,d2(y)=1+|1﹣y|+|y|+|y﹣20|=22﹣y≥21由①知d1(x)=|x+10|+|x﹣14|+|x﹣3|≥24,∴d1(x)+d2(y)≥45,当且仅当x=3,y=1时等号成立综上所述,在点P(3,1)处修建文化中心,可使该文化中心到三个居民区的“L路径”长度之和最小.点评:本题考查新定义,考查分类讨论的数学思想,考查学生建模的能力,同时考查学生的理解能力,属于难题.21.(13分)(2013•湖南)过抛物线E:x2=2py(p>0)的焦点F作斜率率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2.l1与E交于点A,B,l2与E交于C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l.(I)若k1>0,k2>0,证明:;(II)若点M到直线l的距离的最小值为,求抛物线E的方程.考点:直线与圆锥曲线的关系;平面向量数量积的运算;抛物线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由抛物线方程求出抛物线的焦点坐标,写出两条直线的方程,由两条直线方程和抛物线方程联立求出圆M和圆N的圆心M和N的坐标,求出向量和的坐标,求出数量积后转化为关于k1和k2的表达式,利用基本不等式放缩后可证得结论;(Ⅱ)利用抛物线的定义求出圆M和圆N的直径,结合(Ⅰ)中求出的圆M和圆N的圆心的坐标,写出两圆的方程,作差后得到两圆的公共弦所在直线方程,由点到直线的距离公式求出点M到直线l的距离,利用k1+k2=2转化为含有一个未知量的代数式,配方后求出最小值,由最小值等于求出p的值,则抛物线E的方程可求.解答:解:(I)由题意,抛物线E的焦点为,直线l1的方程为.由,得.设A,B两点的坐标分别为(x1,y1),(x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,.所以点M的坐标为,.同理可得点N的坐标为,.于是.由题设k1+k2=2,k1>0,k2>0,k1≠k2,所以0<.故.(Ⅱ)由抛物线的定义得,,所以,从而圆M的半径.故圆M的方程为,化简得.同理可得圆N的方程为于是圆M,圆N的公共弦所在的直线l的方程为.又k2﹣k1≠0,k1+k2=2,则l的方程为x+2y=0.因为p>0,所以点M到直线l的距离为=.故当时,d取最小值.由题设,解得p=8.故所求抛物线E的方程为x2=16y.点评:本题考查了抛物线的标准方程,考查了平面向量数量积的运算,考查了直线与圆锥曲线的关系,直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法.属难题.22.(13分)(2013•湖南)已知a>0,函数.(I)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;(II)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(I)利用绝对值的几何意义,分类讨论,结合导数确定函数的单调性,从而可得g(a)的表达式;(II)利用曲线y=f(x)在两点处的切线互相垂直,建立方程,从而可转化为集合的运算,即可求得结论.解答:解:(I)当0≤x≤a时,;当x>a时,∴当0≤x≤a时,,f(x)在(0,a)上单调递减;当x>a时,,f(x)在(a,+∞)上单调递增.①若a≥4,则f(x)在(0,4)上单调递减,g(a)=f(0)=②若0<a<4,则f(x)在(0,a)上单调递减,在(a,4)上单调递增∴g(a)max={f(0),f(4)}∵f(0)﹣f(4)==∴当0<a≤1时,g(a)=f(4)=;当1<a<4时,g(a)=f(0)=,综上所述,g(a)=;(II)由(I)知,当a≥4时,f(x)在(0,4)上单调递减,故不满足要求;当0<a<4时,f(x)在(0,a)上单调递减,在(a,4)上单调递增,若存在x1,x2∈(0,4)(x1<x2),使曲线y=f(x)在两点处的切线互相垂直,则x1∈(0,a),x2∈(a,4),且f′(x1)f′(x2)=﹣1∴•=﹣1∴①∵x1∈(0,a),x2∈(a,4),∴x1+2a∈(2a,3a),∈(,1)∴①成立等价于A=(2a,3a)与B=(,1)的交集非空∵,∴当且仅当0<2a<1,即时,A∩B≠∅综上所述,存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直,且a 的取值范围是(0,).点评:本题考查导数知识的运用,考查分类讨论的数学思想,考查学生分析解决问题的能力,正确分类是关键.。

13年高考真题——理科数学(湖南卷)

13年高考真题——理科数学(湖南卷)

2013年普通高等学校招生全国统一考试(湖南)卷数学(理科)一.选择题(本大题共8小题,每小题5分,共40分。

在每小题给也的四个选项中,只有一项是符合题目要求的)1.复数()1z i i =+(i 为虚数单位)在复平面上对应的点位于( )(A)第一象限 (B )第二象限 (C )第三象限 (D )第四象限2.某学校有男、女学生各500名,为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) (A)抽签法 (B)随机数法 (C)系统抽样法 (D)分层抽样法3.锐角ABC ∆中,角,A B 所对边长分别为,a b ,若2sin 3a B b =,则角A 等于( ) (A)12π (B)6π (C)4π (D)3π 4.若变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值是( )(A )52- (B )0 (C)53 (D)525.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为( )(A )3 (B)2 (C)1 (D)06.已知,a b 是单位向量,0a b ⋅=。

若c 满足||1c a b --=,则||c 的取值范围是( )(A )21,2+1⎡⎤-⎣⎦ (B )21,2+2⎡⎤-⎣⎦ (C)1,2+1⎡⎤⎣⎦ (D )1,2+2⎡⎤⎣⎦7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) (A)1 (B)2 (C )212- (D )212+ 8.在等腰三角形ABC 中,=4AB AC =,点P 是边AB 上异于,A B的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1)。

若光线QR 经过ABC ∆的中心,则AP 等( )(A )2 (B )1 (C)83 (D)43二.填空题(本大题共8小题,考生作答7小题,每小题5分,共35分)(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题计分)9.在平面直角坐标系xOy 中,若:x t l y t a =⎧⎨=-⎩(t 为参数)过椭圆3cos :2sin x C y ϕϕ=⎧⎨=⎩(ϕ为参数)的右顶点,则常数a =__________。

2013年高考数学试题理科数学湖南卷试题及参考答案

2013年高考数学试题理科数学湖南卷试题及参考答案

2013年各地高考数学试题(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数()()1z i i i =+为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限【答案】 B 【解析】 z = i·(1+i) = i – 1,所以对应点(-1,1).选B 选B2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法【答案】 D【解析】 因为抽样的目的与男女性别有关,所以采用分层抽样法能够反映男女人数的比例。

选D3.在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin ,a B A =则角等于 A .12πB .6πC .4πD .3π【答案】 D【解析】 3=A 223=sinA sinB 3 = sinB 2sinA :得b 3=2asinB 由ππ⇒<⇒⋅⋅A , 选D4.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,2x y +则的最大值是A .5-2B .0C .53D .52【答案】 C【解析】 区域为三角形,直线u = x + 2y 经过三角形顶点最大时,35)32,31(=u 选C5.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为 A .3 B .2 C .1 D .0【答案】 B【解析】 二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为x=2,g(2) = 1; f(2) =2ln2=ln4>1.所以g(2) < f(2), 从图像上可知交点个数为2选B6. 已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦【答案】 A【解析】向量之差的向量与即一个模为单位c 2.1|c -)b a (||b a -c |,2|b a |向量,是b ,a =+=-=+∴的模为1,可以在单位圆中解得12||1-2+≤≤。

2013年湖南高考数学试题及答案(理科)

2013年湖南高考数学试题及答案(理科)

2013年湖南高考数学试题及答案 (理科)一、选择题 1. 复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 1.B [解析] 由题z =i·(1+i)=i +i 2=-1+i ,在复平面上对应的点坐标为(-1,1),即位于第二象限,选B.2. 某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法2.D [解析] 根据抽样方法的特点可知,应选用分层抽样法. 3. 在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A 等于( )A.π12B.π6C.π4D.π33.D [解析] 由正弦定理可得2sin A sin B =3sin B ,又sin B ≠0,所以可得sin A =32,又A 为锐角,故A =π3,选D.4. 若变量x ,y 满足结束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53 D.524.C [解析] 根据题意,画出x ,y 满足的可行域,如图,可知在点C ⎝⎛⎭⎫13,23处x +2y 取最大值为53. 5., 函数f (x )=2ln x 的图像与函数g (x )=x 2-4x +5的图像的交点个数为( )A .3B .2C .1D .05.B [解析] 法一:作出函数f (x )=2ln x ,g (x )=x 2-4x +5的图像如图:可知,其交点个数为2,选B. 法二:也可以采用数值法:x 1 2 4 f (x )=2ln x 0 2ln 2=ln 4>1ln 42<5 g (x )=x 2-4x +5215可知它们有2个交点,选B.6. 已知,是单位向量,=0,若向量满足|--|=1,则||的取值范围是( ) A .[2-1,2+1] B .[2-1,2+2] C .[1,2+1] D .1,2+2 6.A [解析] 由题可知·=0,则⊥,又||=||=1,且|--|=1,不妨令=(x ,y ),=(1,0),=(0,1),则(x -1)2+(y -1)2=1,又||=x 2+y 2,故根据几何关系可知||max =12+12+1=1+2,||min =12+12-1=2-1,故选A.7. 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于( ) A .1 B. 2 C.2-12 D.2+127.C [解析] 由题可知,该正方体的俯视图恰好是正方形,则正视图最大值应是正方体的对角面,最小值为正方形,故面积范围为[1,2],因2-12∉[1,2],故选C. 8. 在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图1-1所示),若光线QR 经过△ABC 的重心,则AP 等于( )图1-1A .2B .1 C.83 D.438.D [解析] 不妨设AP =m (0≤m ≤4),建立坐标系,设AB 为x 轴,AC 为y 轴,则A (0,0),B (4,0),C (0,4),Q (x Q ,y Q ),R (0,y R ),P (m ,0),可知△ABC 的重心为G ⎝⎛⎭⎫43,43,根据反射性质,可知P 关于y 轴的对称点P 1(-m ,0)在直线QR 上,P 关于x +y =4的对称点P 2(4,4-m )在直线RQ 上,则QR 的方程为y -04-m =x +m 4+m ,将G ⎝⎛⎭⎫43,43代入可得3m 2-4m =0,即m =43或m =0(舍),选D.9. 在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.9.3 [解析] 将参数方程化为普通方程可得,直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,即y =x -a ,椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ,即x 29+y 24=1,可知其右顶点为(3,0),代入直线方程可得a =3.10. 已知a ,b ,c ∈,a +2b +3c =6,则a 2+4b 2+9c 2的最小值为________.10.12 [解析] 因a +2b +3c =6,由柯西不等式可知(a 2+4b 2+9c 2)(12+12+12)≥(a +2b +3c )2,可知a 2+4b 2+9c 2≥363=12,即最小值为12.图1-311. 如图1-2所示,在半径为7的⊙O 中,弦AB ,CD 相交于点P .P A =PB =2,PD =1,则圆心O 到弦CD 的距离为________.11.32[解析] 由相交弦定理可知P A ·PB =PC ·PD ,得PC =4,故弦CD =5,又半径r =7,记圆心O 到直线CD 的距离为d ,则d 2+⎝⎛⎭⎫522=7,即d 2=34,故d =32. 12. 若⎠⎛0T x 2d x =9,则常数T 的值为________.12.3 [解析] 由积分运算公式可得⎠⎛0T x 2d x =⎪⎪13x 3T 0=13T 3=9,解得T =3.13. 执行如图1-3所示的程序框图,如果输入a =1,b =2,则输出的a 的值为________.图1-313.9 [解析] 根据程序框图所给流程依次可得,a =1,b =2,①a =3,②a =5,③a =7,④a =9,满足条件输出a =9.14. 设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则C 的离心率为________.14.3 [解析] 若最小角为∠F 1PF 2,由对称性设|PF 1|>|PF 2|,由|PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a ,得|PF 1|=4a ,|PF 2|=2a ,此时|PF 2|<|F 1F 2|,故∠F 1PF 2不可能为最小角.由双曲线对称性,不妨记最小角为∠PF 1F 2=30°,则|PF 1|>|PF 2|,由|PF 1|+|PF 2|=6a ,|PF 1|-|PF 2|=2a ,得|PF 1|=4a ,|PF 2|=2a ,由余弦定理可得4a 2=16a 2+4c 2-2×4a ×2c ×cos 30°,即3a 2-2 3ac +c 2=0,解得c =3a ,即e =ca= 3.15., 设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈*,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.15.(1)-116 (2)13⎝⎛⎭⎫12100-1 [解析] (1)因S n =(-1)n a n -12n ,则S 3=-a 3-18,S 4=a 4-116,解得a 3=-116.(2)当n 为偶数时,S n =a n -12n ,当n 为奇数时,S n =-a n -12n ,可得当n 为奇数时a n =-12n +1,又S 1+S 2+…+S 100=⎝⎛⎭⎫-a 1-12+⎝⎛⎭⎫a 2-122+…+⎝⎛⎭⎫-a 99-1299+⎝⎛⎭⎫a 100-12100 =-a 1+a 2+…-a 99+a 100-⎝⎛⎭⎫12+122+…+1299+12100 =S 100-2(a 1+a 3+…+a 99)-⎝⎛⎭⎫1-12100 =S 101-a 101-2⎝⎛⎭⎫-122-124-…-12100-⎝⎛⎭⎫1-12100 =-12102-⎝⎛⎭⎫-12102+2×122⎣⎡⎦⎤1-⎝⎛⎭⎫122501-122-⎝⎛⎭⎫1-12100 =-13⎝⎛⎭⎫1-12100=13⎝⎛⎭⎫12100-1. 16.,, 设函数f (x )=a x +b x -c x ,其中c >a >0,c >b >0.(1)记集合M ={(a ,b ,c )|a ,b ,c 不能构成一个三角形的三条边长,且a =b },则(a ,b ,c )∈M 所对应的f (x )的零点的取值集合为________;(2)若a ,b ,c 是△ABC 的三条边长,则下列结论正确的是________.(写出所有正确结论的序号)①∀x ∈(-∞,1),f (x )>0;②∃x ∈,使a x ,b x ,c x 不能构成一个三角形的三条边长; ③若△ABC 为钝角三角形,则∃x ∈(1,2),使f (x )=0.16.(1){x |0<x ≤1} (2)①②③ [解析] (1)因a =b ,所以函数f (x )=2a x -c x ,又因a ,b ,c 不能构成一个三角形,且c >a >0,c >b >0,故a +b =2a <c ,令f (x )=2a x -c x =0,即f (x )=c x⎣⎡⎦⎤2⎝⎛⎭⎫a c x-1=0,故可知⎝⎛⎭⎫a c x=12,又0<a c <12,结合指数函数性质可知0<x ≤1,即取值集合为{x |0<x ≤1}.(2)因f (x )=a x+b x-c x=c x⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1,因c >a >0,c >b >0,则0<a c <1,0<bc <1,当x ∈(-∞,1)时,有⎝⎛⎭⎫a c x >a c ,⎝⎛⎭⎫b c x >b c ,所以⎝⎛⎭⎫a c x +⎝⎛⎭⎫b c x>a c +b c ,又a ,b ,c 为三角形三边,则定有a +b >c ,故对∀x ∈(-∞,1),⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,即f (x )=a x +b x -c x =c x ⎣⎡⎦⎤⎝⎛⎭⎫a c x+⎝⎛⎭⎫b c x-1>0,故①正确;取x =2,则⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2<a c +b c ,取x =3,则⎝⎛⎭⎫a c 3+⎝⎛⎭⎫b c 3<⎝⎛⎭⎫a c 2+⎝⎛⎭⎫b c 2,由此递推,必然存在x =n 时,有⎝⎛⎭⎫a c n+⎝⎛⎭⎫b c n <1,即a n +b n <c n,故②正确;对于③,因f (1)=a +b -c >0,f (2)=a 2+b 2-c 2<0(C 为钝角),根据零点存在性定理可知,∃x ∈(1,2),使f (x )=0,故③正确.故填①②③.17. 已知函数f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3,g (x )=2sin 2x 2. (1)若α是第一象限角,且f (α)=3 35,求g (α)的值; (2)求使f (x )≥g (x )成立的x 的取值集合. 17.解:f (x )=sin ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫x -π3 =32sin x -12cos x +12cos x +32sin x =3sin x .g (x )=2sin 2x2=1-cos x .(1)由f (α)=3 35得sin α=35.又α是第一象限角,所以cos α>0.从而g (α)=1-cos α=1-1-sin 2α=1-45=15.(2)f (x )≥g (x )等价于3sin x ≥1-cos x ,即3sin x +cos x ≥1,于是sin ⎝⎛⎭⎫x +π6≥12. 从而2k π+π6≤x +π6≤2k π+5π6,k ∈,即2k π≤x ≤2k π+2π3,k ∈故使f (x )≥g (x ) 成立的x 的取值集合为18. 某人在如图1-4所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物,根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率; (2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.图1-418.解:(1)所种作物总株数N =1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有C 13C 112=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8种.故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为836=29. (2)先求从所种作物中随机选取的一株作物的年收获量Y 的分布列. 因为P (Y =51)=P (X =1),P (Y =48)=P (X =2),P (Y =45)=P (X =3),P (Y =42)=P (X =4).所以只需求出P (X =k )(k =1,2,3,4)即可. 记n k 为其“相近”作物恰有k 株的作物株数(k =1,2,3,4), 则n 1=2,n 2=4,n 3=6,n 4=3. 由P (X =k )=n kN得P (X =1)=215,P (X =2)=415,P (X =3)=615=25,P (X =4)=315=15.故所求的分布列为Y 51 48 45 42 P2154152515所求的数学期望为E (Y )=51×215+48×415+45×25+42×15=34+64+90+425=46.19. 如图1-4所示,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.图1-419.解:方法一(1)证明:如图所示,因为BB1⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BB1.又AC⊥BD,所以AC⊥平面BB1D,而B1D⊂平面BB1D,所以AC⊥B1D.(2)因为B1C1∥AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为θ).如图所示,联结A1D,因为棱柱ABCD-A1B1C1D1是直棱柱,且∠B1A1D1=∠BAD=90°,所以A1B1⊥平面ADD1A1,从而A1B1⊥AD1.又AD=AA1=3,所以四边形ADD1A1是正方形,于是A1D⊥AD1,故AD1⊥平面A1B1D,于是AD1⊥B1D.由(1)知,AC⊥B1D,所以B1D⊥平面ACD1.故∠ADB1=90°-θ.在直角梯形ABCD中,因为AC⊥BD,所以∠BAC=∠ADB,从而Rt△ABC∽Rt△DAB,故ABDA=BCAB,即AB=DA·BC= 3.联结AB1,易知△AB1D是直角三角形,且B1D2=BB21+BD2=BB21+AB2+AD2=21,即B1D=21.在Rt△AB1D中,cos∠ADB1=ADB1D=321=217,即cos(90°-θ)=217,从而sin θ=217.即直线B1C1与平面ACD1所成角的正弦值为21 7.方法二(1)证明:易知,AB,AD,AA1两两垂直,如图所示,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).从而B 1D →=(-t ,3,-3),AC →=(t ,1,0),BD →=(-t ,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0,解得t =3或t =-3(舍去). 于是B 1D →=(-3,3,-3),AC →=(3,1,0). 因为AC →·B 1D →=-3+3+0=0, 所以AC →⊥B 1D →,即AC ⊥B 1D .(2)由(1)知,AD →1=(0,3,3),AC →=(3,1,0),B 1C 1→=(0,1,0). 设=(x ,y ,z )是平面ACD 1的一个法向量,则⎩⎪⎨⎪⎧·AC →=0,n ·AD 1→=0,即⎩⎨⎧3x +y =0,3y +3z =0.令x =1,则=(1,-3,3).设直线B 1C 1与平面ACD 1所成角为θ,则 sin θ=|cos 〈,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪·B 1C 1→|n |·|B 1C 1→|=37=217. 即直线B 1C 1与平面ACD 1所成角的正弦值为217. 20. 在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径称为M 到N 的一条“L 路径”.如图1-5所示的路径MM 1M 2M 3N 与路径MN 1N 都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点A (3,20),B (-10,0),C (14,0)处,现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(1)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(2)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度之和最小.图1-520.解:设点P 的坐标为(x ,y ).(1)点P 到居民区A 的“L 路径”长度最小值为 |x -3|+|y -20|,x ∈,y ∈[0,+∞).(2)由题意知,点P 到三个居民区的“L 路径”长度之和的最小值为点P 分别到三个居民区的“L 路径”长度最小值之和(记为d )的最小值.①当y ≥1时,d =|x +10|+|x -14|+|x -3|+2|y |+|y -20|. 因为d 1(x )=|x +10|+|x -14|+|x -3|≥|x +10|+|x -14|.(*) 当且仅当x =3时,不等式(*)中的等号成立. 又因为|x +10|+|x -14|≥24.(**)当且仅当x ∈[-10,14]时,不等式(**)中的等号成立. 所以d 1(x )≥24,当且仅当x =3时,等号成立.d 2(y )=2y +|y -20|≥21,当且仅当y =1时,等号成立.故点P 的坐标为(3,1)时,P 到三个居民区的“L 路径”长度之和最小,且最小值为45. ②当0≤y ≤1时,由于“L 路径”不能进入保护区,所以 d =|x +10|+|x -14|+|x -3|+1+|1-y |+|y |+|y -20|. 此时,d 1(x )=|x +10|+|x -14|+|x -3|, d 2(y )=1+|1-y |+|y |+|y -20|=22-y ≥21. 由①知,d 1(x )≥24,故d 1(x )+d 2(y )≥45, 当且仅当x =3,y =1时等号成立.综上所述,在点P (3,1)处修建文化中心,可使该文化中心到三个居民区的“L 路径”长度之和最小.21. 过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2.l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D 以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM →·FN →<2p 2;(2)若点M 到直线l 的距离的最小值为7 55,求抛物线E 的方程.21.解:(1)证明:由题意,抛物线E 的焦点为F ⎝⎛⎭⎫0,p 2,直线l 1的方程为y =k 1x +p 2. 由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py得x 2-2pk 1x -p 2=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根,从而x 1+x 2=2pk 1.y 1+y 2=k 1(x 1+x 2)+p =2pk 21+p .所以点M 的坐标为⎝⎛⎭⎫pk 1,pk 21+p 2,FM →=(pk 1,pk 21). 同理可得点N 的坐标为⎝⎛⎭⎫pk 2,pk 22+p 2,FN →=(pk 2,pk 22).于是FM →·FN →=p 2(k 1k 2+k 21k 22). 由题设,k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<⎝⎛⎭⎫k 1+k 222=1. 故FM →·FN →<p 2(1+12)=2p 2.(2)由抛物线的定义得|F A |=y 1+p 2,|FB |=y 2+p 2,所以|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p .故圆M 的方程为(x -pk 1)2+⎝⎛⎭⎫y -pk 21-p 22=(pk 21+p )2. 化简得x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0. 同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0.于是圆M ,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0. 又 k 2-k 1≠0,k 1+k 2=2,则l 的方程为x +2y =0. 因为p >0,所以点M 到直线l 的距离d =|2pk 21+pk 1+p |5=p |2k 21+k 1+1|5=p 2⎝⎛⎭⎫k 1+142+785.故当k 1=-14时,d 取最小值7p8 5.由题设7p 8 5=7 55,解得p =8.故所求的抛物线E 的方程为x 2=16y . 22. 已知a >0,函数f (x )=x -ax +2a. (1)记f (x )在区间[0,4]上的最大值为g (a ),求g (a )的表达式;(2)是否存在a ,使函数y =f (x )在区间(0,4)内的图像上存在两点,在该两点处的切线互相垂直?若存在,求a 的取值范围;若不存在,请说明理由.22.解:(1)当0≤x ≤a 时,f (x )=a -x x +2a ;当x >a 时,f (x )=x -ax +2a .因此,当x ∈(0,a )时,f ′(x )=-3a(x +2a )2<0,f (x )在(0,a )上单调递减;当x ∈(a ,+∞)时,f ′(x )=3a(x +2a )2>0,f (x )在(a ,+∞)上单调递增.①若a ≥4,则f (x )在[0,4]上单调递减,g (a )=f (0)=12.②若0<a <4,则f (x )在[0,a ]上单调递减,在(a ,4]上单调递增,所以g (a )=max{f (0),f (4)},而f (0)-f (4)=12-4-a 4+2a =a -12+a ,故当0<a ≤1时,g (a )=f (4)=4-a 4+2a ;当1<a <4时,g (a )=f (0)=12.综上所述,g (a )=⎩⎨⎧4-a4+2a,0<a ≤1,12,a >1.(2)由(1)知,当a ≥4时,f (x )在(0,4)上单调递减,故不满足要求. 当0<a <4时,f (x )在(0,a )上单调递减,在(a ,4)上单调递增,若存在x 1,x 2∈(0,4)(x 1<x 2),使曲线y =f (x )在(x 1,f (x 1)),(x 2,f (x 2))两点处的切线互相垂直,则x 1∈(0,a ),x 2∈(a ,4),且f ′(x 1)·f ′(x 2)=-1,即-3a (x 1+2a )2·3a(x 2+2a )2=-1, 亦即x 1+2a =3ax 2+2a.(*)由x 1∈(0,a ),x 2∈(a ,4)得x 1+2a ∈(2a ,3a ),3a x 2+2a ∈3a4+2a,1.11 故(*)成立等价于集合A ={x |2a <x <3a }与集合B =x⎪⎪⎪ )3a 4+2a<x <1的交集非空. 因为3a 4+2a<3a ,所以当且仅当0<2a <1,即0<a <12时,A ∩B ≠∅. 综上所述,存在a 使函数f (x )在区间(0,4)内的图像上存在两点,在该两点处的切线互相垂直,且a 的取值范围是.。

2013届高考模拟卷试题卷(理科)

2013届高考模拟卷试题卷(理科)

湖南省长沙市2013届高三模拟考试数学试卷(理科)时量:120分钟 满分:150分 命题: .选择题:本大题共 8小题,每小题5分,共40分. 是符合题目要求的.uuu向量BA 在向量 BC 方向上的 1投影的数量为( )B.込C.3D 142226.若随机变量X :N(1,2), Y2X 1,则DY( )A.2B.4C.8D.167.已知x 0, y 0,x 2y2xy 8 ,则x 2y 的最小值是( )A.3B.4C.3、2 D.^21•设A {x|x 24x 5 0}, B {x||x 1| 1},则 AI BA{x| 5}B.{x| 1 x5}C.{x| 0}D.{x|x 0或 x 2}2.已知i 为虚数单位,复数1 ai2 i为纯虚数,则实数a 等于 B.- 3 D.2 3.阅读右面程序框图,如果输出的函数值在区间则输入的实数x 的取值范围是 [丄,1]内, 4 2 ( ) 开始 输入xA[ 1,2] B.[ 2, 1] C.( , 2] D. [2,) 否xx [ 2,2是■f(x) 2f(x) 24.某几何体的三视图如图所示,则它的体积是 2输出f (x), |_结束D.825.已知 ABC 的外接圆的圆心为 O ,半径为1,uu u AB AC UULT2AO ,uuu uuur 且 |OA| | AC |,则 明德中学高三数学备课组在每小题给出的四个选项中 ,只有一项交双曲线右支于点 P ,若 T 为线段FP 的中点,则该双曲线的渐近线方程为 16.若一个二进制数中1的个数多于0的个数,则称此数为 好数” ⑴6位二进制数中 好数”的个数为8.已知函数f (x )-4 k2 21(x R ),若对于任意实数x 1,x 2,x 3 ,总存在以 1f (xj, f (X 2), f (X 3)为三边边长的三角形, 则实数k 的取值范围是1 A[齐]B.[1,4]C.[D.[1,)二•填空题:本大题共 8小题,考生作答中对应题号后的横线上.7小题,每小题5分,共35分把答案填在答题卡(一)选做题(请考生在第 9,10,11三题中任选两题作答,如果全做,则按前2题给分)9.已知直线l 的极坐标方程为:cos(寸2,则极点0到直线I 的距离为 ________ .10.如图,已知O O 的半径为2, PA 是O O 的切线,A 为切点,且PA 2. 2,过点P 的一条割线与O O 交于B,C 两点,圆心O 到割线的距离为,3,则PB11.若不等式|2x 1||2x 5| a 无解,则实数a 的取值范围是(二)必做题(12 —16题)1 6-)的展开式中的常数项为x212.二项式(X 13•给出下列命题: ①函数ysin 2x 在[0, —]上是增函数;②在 ABC 中,sin A sin B 4 的充要条件是A B ;③函数 f(x)sin 2 x, x (,0] 的最大周期为.其中真命题的个数为14.已知点P (x, y )的坐标满足: 2xy 2y0,则x 2 2—匕的取值范围为xy2x15.过双曲线—- a2=1(a>0,b>0)的左焦点 bF 引圆2 2y a 的切线,切点为T ,延长FT⑵6位二进制数中所有 好数”的和为 .(结果用十进制数表示)三•解答题:本大题共 6小题,共75分,解得应写出文字说明,证明过程或演算步骤 •17.(本小题满分12分)锐角 ABC 的三个内角A 、 B 、 C 所对边的长分别为a 、 b , c .设向量ur rur rm (c a,b a), n (a b, c),且m// n.⑴求角B 的大小;⑵若b 1,求a c 的取值范围.18.(本小题满分12分)某人将一颗粒 P 放于坐标原点 0,他通过掷一颗骰子来移动点 P :若掷出的点数大于2,则将点P 右移一个单位,否则,上移一个单位 .他一共抛掷了 5次.⑴求点P 移到了点Q(3,2)的概率;⑵若点P 移到了点Q(x, y),设 |x y |,求随机变量的分布列和数学期望19.(本小题满分12分)已知正四棱柱 ABCD A ,B 1C 1D 1 中,AB 1,AA 1 2.⑴求证:BQ //平面ABD ;⑵求直线AD 与平面ABD 所成角的正弦值; ⑶若点P 平面ABD , AP 平面ABD ,在如图所示 的空间直角坐标系中求点 P 的坐标.⑶求证:对任意n N*且n 2有1 1 cos — cos L cos 1L4 62n 2320.(本小题满分13分)1113 已知数列{a n }满足:a a( a 1),a n 1a ; a n (n 22 4 4N ).证明:⑴数列{a n }是递增数列;⑵ |印 1| |a ;1| L |a n 1| 2(n N ).21.(本小题满分13 分)已知焦点为F 1( 1,0), F 2(1,0)的椭圆经过点 A, B 两点,其中O 为坐标原点.uuu uuu⑴求椭圆的方程;⑵求 OAgOB 的范围.22.(本小题满分13 分)已知函数f(x) Sin ^,x0 x2⑴求证:f (x)为单调递减函数;⑵当 0 x 时,4k 的最小值;1一 1 sin sin L sin . n 46 2n,直线I 过点F 2与椭圆交于 f(x)湖南省长沙市2013届高三模拟考试数学试卷(理科)参考答案时量:120分钟 满分:150分 命题:明德中学高三数学备课组.选择题:本大题共 8小题,每小题5分,共40分•在每小题给出的四个选项中 ,只有一项 是符合题目要求的•7•解:x 2y 2xy 8 9 (1 x)(1 2y) [(1 x) (1 2y)'2(二)必做题(12 —16题)512.答案:15 13.答案:214 •答案:[2,-]215.答案:2x y 016.答案:⑴16;⑵85316•解:⑴后5位中,1的个数至少有3个,所求个数为C ; C ; C? 16 ⑵所求和为 16 25(C : C : C :)(24 23 22 2 1) 853.三、解答题:本大题共 6小题,共75分,解得应写出文字说明,证明过程或演算步骤 17.(本小题满分 解:⑴m // n , 12分) • (c a)c(b a)(a b) 0, • 2 2 …a cb 2 ac ,2 2 .2a c b1 1即,cosB,B . 6分2ac2 2 3• B ,二 2 AC —3, 3ABC 为锐角三角形,•••0 A -,0 C2 ,…—A, 7分23262高三数学(理科)第5页共9页2y 4当且仅当x 8•解:2,y 1时取等号,所以(x 2y )min , k t k2x,则函数化为f (x ) g (t ) 1(0,1时, k 2f (x )的值域为(1 --- ],问题,3解得1时, f (x )的值域为{1},符合;1时, k 2f (x )的值域为[亠上1),问题2〉3解得综上,实数一 1k 的取值范围是[—,4]2本大题共 8小题,考生作答7小题,每小题5分,二、填空题:中对应题号后的横线上(一)选做题(请考生在第 9,10,11三题中任选两题作答,如果全做, 9•答案:2 10答案:211.答案: 共35分把答案填在答题卡 则按前 2题给分) (,6]2sin Asin B —,且 b 1,sin Cbsin A bsinCsin Bsin A sin(2A)32 3...3(2sinA、.、3 sin A cos A 2sin( A10分c (.3,2].12分18.(本小题满分 解:⑴点P 由原点移到点Q(3,2),需向右移 3 2 3 1 2 80 p c ;(n 3(:)23 3 24312 分) 3次,向上移2次, 故所求概率为⑵点Q 所有可能的位置为(0,5),(1,4),(2,3),(3,2),(4,1),(5,0),于是随机变量 的取值为: 的所有可能P( 1) P(3) P( 5) 1,3,5. C 3(2)3_(1)2 c 2(2)2g (1)3 120 C 5( ) a :)C 5( ) a ;)3 3 3 243 g 1 C 12g ^1)490 「C 5 c(_) 3 3 3 2432 1 33 c 5(-)5 c 0(-)53 3 2433 2、33 c ;(|)4 3 ”2 - i八3' 随机变量的分布列为: 1 3 5 P 120 90 33243 243 243120 90 33 185 E 1 3 5243 243 243 81 19. (本小题满分 12分) 解:⑴证明:••• A 1B 1 P AB P cD , •••四边形 A ,BQD 为平行四边形, EC // A 1D , 又BC 平面ABD , A ,D 平面A ,BD , 所以B 1C //平面A ,BD 4分 uuu BD ( 1,1,0),r设平面ABD 的一个法向量为nruur r uuu nBD n gBD 0 x r UULT r uuirn BA , ngBAj 0 uuu r x cos UULT r AD, n ADgn 2uuu L |ADgn|3⑵在如图所示的空间直角坐标系中, uur uiu BA 「WAD (O,1,。

最新湖南省高考数学模拟试卷附参考答案与详细解析优秀名师资料

最新湖南省高考数学模拟试卷附参考答案与详细解析优秀名师资料

2013年湖南省高考数学模拟试卷(附参考答案与详细解析) 2013年湖南省高考模拟试卷理科?数学一、选择题(本大题8小题,每小题5分,共40分)1((5分)设集合,集合B是f(x)=ln(1,|x|)的定义域,则A?B( )A( B( (,1,2] C( (,1,1)?(1,2)D ((, 1,2) []2((5分)已知曲线的一条切线的斜率为,则切点的横坐标为( )A( 3 B( 2 C( 1 D(3((5分)已知定义在R上的函数y=f(x)和y=g(x),则“y=f(x)和y=g(x)都是奇函数”是“y=f(x)+g(x)是奇函数”的( )条件(A( 充分不必要 B( 必要不充分C( 充要 D( 既不充分也不必要4((5分)函数的最大值为( )A( B( C( D(5((5分)四棱锥S,ABCD的底面为正方形,SD?底面ABCD,如下列结论中不正确的是(( )AB?SA A(B( BC?平面SADC( BC与SA所成的角等于AD与SC所成的角D( SA与平面SBD所成的角等于SC与平面SBD所成的角6((5分)已知数列{a}的通项公式为,则数列{a}( ) nnA( 有最大项,没有最小项 B( 有最小项,没有最大项C( 既有最大项又有最小项 D( 既没有最大项也没有最小项7((5分)若0,x,,则4x与3sin2x的大小关系(( )A( 4x,3sin2x B( 4x,3sin2x C( 4x=3sin2x D(与 x的取值有关8((5分)ω是正实数,设S={θ|f(x)=cos[ω(x+θ)]是奇函数},若对每个实数a,S?(a,a+1)ωω的元素不超过4个,则ω的取值范围是( ) A( (0,π] B( (0,2π] C( (0,3π] D(( 0,4π]二、填空题:本大题7小题,每小题5分,共35分(9((5分)已知i为虚单位,则复数的虚部为 _________ (10((5分)若的图象关于原点对称,是a= _________ (11((5分)在直角坐标系xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,M是C与y轴的交点,则M的极坐标为 _________ (12((5分)?ABC中,它的三边分别为a,b,c,若A=120?,a=5,则b+c的最大值为 _________ (r13((5分)已知(fx)=rx,x(x,0),其中r是区间(0,1)上的常数,则(fx)的单调增区间为 _________ (14((5分)把12支足球队平均分成3组,则甲、乙两队分在同一组的概率为_________ (15((5分)定义在R上的函数f(x)满足:f(1)=1,且对于任意的x?R,都有f′(x),,则不等式f(logx),的解集为 _________ ( 2三、解答题:本大题共6小题,共75分,应写出相应的文字说明或解答过程(216((12分)f(x)=sinωx+(ω,0),且函数y=f(x)的图象相邻两条对称轴之间的距离为((1)求ω的值及f(x)的单调递增区间;(2)在?ABC中,a,b,c分别是角A,B,C的对边,若a=1,b=,f(A)=1,求角C(17((12分)(2010•四川)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为(甲、乙、丙三位同学每人购买了一瓶该饮料( (?)求甲中奖且乙、丙都没有中奖的概率;(?)求中奖人数ξ的分布列及数学期望Eξ(18((12分)在直三棱柱ABC,ABC中,?ABC为等腰三角形,?BAC=90?,且AB=AA,E、F分1111别为CC、BC的中点( 1(1)求证:BF?平面AEF; 1(2)求二面角B,AE,F的余弦值( 1219((13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合( (?)求抛物线D的方程;(?)已知动直线l过点P(4,0),交抛物线D于A、B两点((i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值,如果存在,求出m的方程;如果不存在,说明理由( 20((13分)某家庭为小孩买教育保险,小孩在出生的第一年父母就交纳保险金,数目为a,以后每年1交纳的数目均比上一年增加d(d,0),因此,历年所交纳的保险金数目为a,a,…是一个公差为d的12等差数列,与此同时保险公司给予优惠的利息政策,不仅采用固定利率,而且计算复利,这就是说,如,n1果固定利率为r(r,0),那么,在第n年末,第一年所交纳的保险金就变为a(1+r),第二年所交1,n2纳的保险金就变为a(1+r),…,以Tn表示到第n年末所累计的保险金总额( 2(1)写出T与T的递推关系(n?1); nn+1(2)若a=1,d=0.1,求{T}的通项公式((用r表示) 1n21((13分)已知函数f(x)=lnx,g(x)=,(a?0)(1)若b=2,且h(x)=f(x),g(x)在定义域上不单调,求a的取值范围;(2)若a=1,b=,2设f(x)的图象C与g(x)的图象C交于点P、Q,过线段PQ的中点作x轴的12垂线分别交C,C于点M、N,M、N的横坐标是m,求证:f′(m),g′(m)( 1232013年湖南省高考模拟试卷理科数学参考答案与试题解析一、选择题(本大题8小题,每小题5分,共40分)1((5分)设集合,集合B是f(x)=ln(1,|x|)的定义域,则A?B( )A( B( (,1,2] C( (,1,1)?(1,2)D ((, 1,2) []考点: 并集及其运算(专题: 计算题(分析: 首先通过解分式不等式化简集合A,然后求出对数型函数的定义域得到集合B,直接取并集( 解答: 解:由,得,所以A={x|}={x|},由1,|x|,0,得,1,x,1,所以B={x|,1,x,1}(所以A?B={x|}?{x|,1,x,1}=(,1,2)(故选D(点评: 本题考查了并集及其运算,属于以数轴为工具,求集合的并集的基础题,也是高考常考的题型(2((5分)已知曲线的一条切线的斜率为,则切点的横坐标为( )A( 3 B( 2 C( 1 D(考点: 导数的几何意义(分析: 根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间( 解答: 解:设切点的横坐标为(x,y) 00?曲线的一条切线的斜率为,?y′=,=,解得x=3或x=,2(舍去,不符合题意),即切点的横坐标为3 00 故选A(点评: 考查导数的几何意义,属于基础题,对于一个给定的函数来说,要考虑它的定义域(比如,该题的定义域为{x,0}(3((5分)已知定义在R上的函数y=f(x)和y=g(x),则“y=f(x)和y=g(x)都是奇函数”是“y=f(x)+g(x)是奇函数”的( )条件(A( 充分不必要 B( 必要不充分C( 充要 D( 既不充分也不必要考点: 必要条件、充分条件与充要条件的判断(专题: 计算题(4分析: 当“y=f(x)和y=g(x)都是奇函数”,由奇函数的定义可证“y=f(x)+g(x)是奇函数”;但由“y=f(x)+g(x)是奇函数”不能推出“y=f(x)和y=g(x)都是奇函数”,可通过反例来说明( 解答: 解:因为“y=f(x)和y=g(x)都是奇函数”,所以f(,x)=,f(x),g(,x)=,g(x),所以f(,x)+g(,x)=,f(x),g(x)=,[f(x)+g(x)],即“y=f(x)+g(x)是奇函数”,故由“y=f(x)和y=g(x)都是奇函数”可推得“y=f(x)+g(x)是奇函数”;但由“y=f(x)+g(x)是奇函数”不能推出“y=f(x)和y=g(x)都是奇函数”,22如,f(x)=x,x,g(x)=x+x,显然有f(x)+g(x)=2x为奇函数,但f(x)、g(x)均不是奇函数(故“y=f(x)和y=g(x)都是奇函数”是“y=f(x)+g(x)是奇函数”的充分不必要条件(故选A点评: 本题为充要条件的判断,熟练掌握函数的奇偶性是解决问题的关键,属基础题(4((5分)函数的最大值为( )A( B( C( D(考点: 两角和与差的正弦函数(专题: 三角函数的图像与性质(分析: 将函数y解析式第一项利用诱导公式化简,第二项利用两角和与差的余弦函数公式及特殊角的三角函数值化简,整理后,再利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域,即可得出y的最大值(解答: 解:y=sin(x+)+cos(,x)=cosx+cosx+sinx=cosx+sinx=(cosx+sinx)=sin(x+θ)(其中sinθ=,cosθ=),?,1?sin(x+θ)?1,?函数y的最大值为(故选C点评: 此题考查了两角和与差的正弦、余弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,熟练掌握公式是解本题的关键(5((5分)四棱锥S,ABCD的底面为正方形,SD?底面ABCD,如下列结论中不正确的是(( )AB?SA A(B( BC?平面SADC( BC与SA所成的角等于AD与SC所成的角D( SA与平面SBD所成的角等于SC与平面SBD所成的角考点: 棱锥的结构特征(专题: 空间位置关系与距离(分析: 利用三垂线定理可得选项A正确,利用线面垂直的判定定理可得选项B 正确,根据直线和平面5所成的角的定义和求法,可得选项C不正确,选项D正确,从而得出结论( 解答: 解:由于ABCD 为正方形,SD?底面ABCD,故AD是SA在底面ABCD内的射影,再由正方形ABCD中,AB?AD,可得AB?SA,故选项A正确(由于正方形ABCD中,BC?AD,AD?面ABCD,AC不在面ABCD 内,故有BC?平面SAD,故选项B正确(由于正方形ABCD中,BC?AD,故锐角?SAD即为BC与SA所成的角(由于AD?平面SDC,故BC?平面SDC,而SC在平面SDC内,故有AD?SC,故BC与SA所成的角不等于AD与SC所成的角,故选项C不正确(设AC与BD的交点为O,则由题意可得AC垂直于平面SBD,SA与平面SBD成的角为?ASO,SC与平面SBD成的角为?CSO,AO=SO(由于tan?ASO=,tan?ASO=,故tan?ASO=tan?ASO,故有?ASO=?ASO,故选项D 正确(故选C(点评: 本题主要考查棱锥的结构特征,空间角与空间位置关系的确定,属于基础题(6((5分)已知数列{a}的通项公式为,则数列{a}( ) nnA( 有最大项,没有最小项 B( 有最小项,没有最大项C( 既有最大项又有最小项 D( 既没有最大项也没有最小项考点: 数列的函数特性(专题: 探究型(分析: 把数列的通项公式看作函数解析式,令,换元后是二次函数解析式,内层是指数函数,由指数函数的性质可以求出t的大致范围,在求出的范围内分析二次函数的最值情况( 解答: 解:令,则t是区间(0,1]内的值,而=,所以当n=1,即t=1时,a取最大值,使最接近的n的值为数列{a}中的最小项, nn所以该数列既有最大项又有最小项(故选C(点评: 本题考查了数列的函数特性,考查了换元法,解答此题的关键是由外层二次函数的最值情况断定n的取值,从而说明使数列取得最大项和最小项的n都存在,属易错题(7((5分)若0,x,,则4x与3sin2x的大小关系(( )A( 4x,3sin2x B( 4x,3sin2x C( 4x=3sin2x D(与 x的取值有关考点: 利用导数求闭区间上函数的最值;正弦函数的定义域和值域(专题: 计算题;导数的综合应用(分析: 根据题目给出的两个值的特点,可以设2x=t,把问题转化为比较2t和3sint的大小,设辅助函数,求导后判断原函数的单调性,说明2t与sint的大小与t的取值有关,从而说明4x与3sin2x的大小与x的取值有关(解答: 解:令2x=t,因为0,x,,所以t?(0,)6则4x=2t,3sin2x=3sint,令f(t)=2t,3sint,′则f(t)=2,3cost,′由f(t)=2,3cost,0,得t,,′由f(t)=2,3cost,0,得t,,因此2t与3sint的大小与t的取值有关,亦即4x与3sin2x的大小与x在区间(0,)上的取值有关(故选D(点评: 本题考查了两个代数式的大小比较,考查了换元思想和转化思想,解答的关键是换元后构造辅助函数,借助于函数的导函数说明原函数的单调性,从而确定要比较的结论( 8((5分)ω是正实数,设S={θ|f(x)=cos[ω(x+θ)]是奇函数},若对每个实数a,S?(a,a+1)ωω的元素不超过4个,则ω的取值范围是( ) A( (0,π] B( (0,2π] C( (0,3π] D(( 0,4π]考点: 余弦函数的定义域和值域;交集及其运算(专题: 计算题(分析: 由S={θ|f(x)=cos[ω(x+θ)]是奇函数},推出S的范围,S?(a,a+1)的元素不超过4个,ωωω推出,求得ω的范围(解答: 解:S={θ|f(x)=cos[ω(x+θ)]是奇函数}?S={θ|θ=π,ωωk?Z}={,…}因为对每个实数a,S?(a,a+1)的元素不超过4个,ω区间(a,a+1)的间隔小于1,则S中5个相邻的元素之间隔必大于等于于1,ω5个相邻元素之间的间隔为4×,即1,所以ω?4π,又ω,0(所以0,ω?4π(故选D(点评: 本题考查余弦函数的奇偶性,集合的包含关系判断及应用,考查计算推理能力,是中档题(二、填空题:本大题7小题,每小题5分,共35分(9((5分)已知i为虚单位,则复数的虚部为 ,1 (考点: 复数的基本概念(专题: 计算题(分析: 两个复数相除,分子和分母同时乘以分母的共轭复数,化简可得复数z,从而得到复数的虚部( 解答: 解:===,i?复数的虚部为,17故答案为:,1点评: 本题考查复数的乘除运算及复数的基本概念,熟练掌握复数的运算法则是解题的关键,属于基础题(10((5分)若的图象关于原点对称,是a= (考点: 奇偶函数图象的对称性(专题: 计算题;函数的性质及应用(分析: 利用函数的图象关于原点对称,可得函数是奇函数,利用奇函数的定义,可求得结论( 解答:解:?的图象关于原点对称,?函数是奇函数,即f(,x)=,f(x)?=,()解得2a=1?a=故答案为:点评: 本题考查函数的对称性,考查函数的奇偶性,考查学生的计算能力,属于基础题(11((5分)在直角坐标系xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,M是C与y轴的交点,则M的极坐标为 () (考点: 点的极坐标和直角坐标的互化(专题: 选作题(分析: 将曲线C的极坐标方程化为普通方程,只要令x=0,即可求出y,进而求出M的极坐标(解答: 解:由曲线C的极坐标方程为,展开为,?,令x=0,则y=(故曲线C与y轴的交点M的极坐标为(,)(故答案为(,)(点评: 将曲线C的极坐标方程化为普通方程,求出答案之后,再化为极坐标,是解决此类问题的常用方法之一(812((5分)?ABC中,它的三边分别为a,b,c,若A=120?,a=5,则b+c的最大值为 (考点: 基本不等式;余弦定理(专题: 解三角形(分析: 根据余弦定理可求出b与c的等式,然后利用不等式bc?可求出b+c的最大值( 解答: 解:A=120?,a=5,由余弦定理可得cos120?=22化简得b+c+bc=252即(b+c)=25+bc?25+当且仅当b=c时取等号2?(b+c)?25即b+c?故答案为:点评: 本题主要考查了余弦定理的应用,以及基本不等式的应用,同时考查了运算求解的能力,属于基础题(r13((5分)已知f(x)=rx,x(x,0),其中r是区间(0,1)上的常数,则f(x)的单调增区间为 (1,+?) (考点: 利用导数研究函数的单调性(专题: 计算题(r分析: 已知f(x)=rx,x(x,0),其中r是区间(0,1)上的常数,其单调增函数,说明f′(x)大于0,从而解出f(x)的单调增区间;r解答: 解:?f(x)=rx,x(x,0),,,r1r1f′(x)=r,rx=r(1,x)=r(1,),0,1,r,1,求f(x)单调增区间,?f′(x)=r(1,),0,r,0,?0,,1,0,1,r,1,?x,1,?f(x)的单调增区间为(1,+?);故答案为:(1,+?);点评: 本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,是一道基础题;14((5分)把12支足球队平均分成3组,则甲、乙两队分在同一组的概率为 ( 考点: 古典概型及其概率计算公式(专题: 计算题(9分析:由平均分组的知识可得:12支足球队平均分成3组共有种分法,而甲、乙两队分在同一组共有种分法,由古典概型的求法可得答案(解答: 解:由排列组合平均分组的知识可得:12支足球队平均分成3组共有种分法,而甲、乙两队分在同一组共有种分法,故概率为:P===故答案为:点评: 本题为古典概型的求解,正确运用平均分组来求基本事件的个数是解决问题的关键,属基础题(15((5分)定义在R上的函数f(x)满足:f(1)=1,且对于任意的x?R,都有f′(x),,则不等式f(logx),的解集为 (0,2) ( 2考点: 其他不等式的解法;对数函数的单调性与特殊点(专题: 计算题(分析: 设g(x)=f(x),x,由f′(x),,得到g′(x)小于0,得到g(x)为减函数,将所求不等式变形后,利用g(x)为减函数求出x的范围,即为所求不等式的解集( 解答: 解:设g(x)=f(x),x,?f′(x),,?g′(x)=f′(x),,0,?g(x)为减函数,又f(1)=1,?f(logx),=logx+, 22即g(logx)=f(logx),logx,=g(1)=f(1),=g(log2), 2222?logx,log2,又y=logx为底数是2的增函数, 222?0,x,2,10则不等式f(logx),的解集为(0,2)( 2故答案为:(0,2)点评: 此题考查了其他不等式的解法,涉及的知识有:利用导数研究函数的增减性,对数函数的单调性及特殊点,以及对数的运算性质,是一道综合性较强的试题(三、解答题:本大题共6小题,共75分,应写出相应的文字说明或解答过程(216((12分)f(x)=sinωx+(ω,0),且函数y=f(x)的图象相邻两条对称轴之间的距离为((1)求ω的值及f(x)的单调递增区间;(2)在?ABC中,a,b,c分别是角A,B,C的对边,若a=1,b=,f(A)=1,求角C(考点: 余弦定理;三角函数中的恒等变换应用;正弦定理(专题: 计算题(分析: (1)将f(x)解析式第一项利用二倍角的余弦函数公式化简,第二项第二个因式利用诱导公式变形,再利用二倍角的正弦函数公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,由y=f(x)的图象相邻两条对称轴之间的距离为,得到f(x)的周期为π,利用周期公式求出ω的值,确定出f(x)的解析式,由正弦函数的递增区间为[2kπ,,2kπ+],k?Z,列出关于x的不等式,求出不等式的解集得到f(x)的递增区间;(2)由第一问确定出的f(x)解析式,根据f(A)=1,利用特殊角的三角函数值求出A的度数,由a与b的值,利用正弦定理求出sinB的值,由b大于a,得到B大于A,利用特殊角的三角函数值求出B的度数,利用三角形的内角和定理即可求出C的度数(解答: 2解:(1)?f(x)=sinωx+cosωx•cos(,ωx)=(1,cos2ωx)+sin2ωx=sin(2ωx,)+,?y=f(x)的图象相邻两条对称轴之间的距离为,?y=f(x)的周期为π,?ω=1,?f(x)=sin(2x,)+,令2kπ,?2x,?2kπ+,k?Z,解得:kπ,?x?kπ+,x?Z,则f(x)的单调递增区间为[kπ,,kπ+],k?Z;(2)?f(A)=1,?sin(2A,)+=1,即sin(2A,)=,?2A,=或2A,=,即A=,?a=1,b=,?由正弦定理=得:sinB==,11?B=或,则C=或(点评: 此题考查了正弦、余弦定理,二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,正弦函数的单调性,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键(17((12分)(2010•四川)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为(甲、乙、丙三位同学每人购买了一瓶该饮料( (?)求甲中奖且乙、丙都没有中奖的概率;(?)求中奖人数ξ的分布列及数学期望Eξ(考点: 离散型随机变量及其分布列;随机事件(专题: 计算题(分析: (1)甲、乙、丙三位同学每人是否中奖相互独立,可利用独立事件的概率求解,甲中奖概率为,乙、丙没有中奖的概率为,相乘即可((2)中奖人数ξ的所有取值为0,1,2,3,是二项分布(ξ,B(3,)解答: 解:(1)设甲、乙、丙中奖的事件分别为A、B、C,那么P(A)=P(B)=P(C)=,P()=P(A)P()P()=,答:甲中奖且乙、丙都没有中奖的概率为((2)ξ的可能值为0,1,2,3,P(ξ=k)=(k=0,1,2,3)所以中奖人数ξ的分布列为E=0×+1×+2×+3×=( ξ点评: 本题考查相互独立事件、互斥事件的概率、离散型随机变量的分布列、二项分布及期望等知识(同时考查利用所学知识分析问题解决问题的能力(18((12分)在直三棱柱ABC,ABC中,?ABC为等腰三角形,?BAC=90?,且AB=AA,E、F分1111别为CC、BC的中点( 1(1)求证:BF?平面AEF; 1(2)求二面角B,AE,F的余弦值( 112考点: 用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法(专题: 计算题;空间角;空间向量及应用(分析: (1)由题设条件推导出AF?面BFE,故BF?AF,设AB=1,能够推导出=,11故BF?EF,所以BF?平面 AEF( 11(2)以AB为x轴,以AC为y轴,以AA为z轴,建立空间直角坐标系,设AB=1,则=1(1,0,1),=(),=(0,1,),分别求出平面ABE的法向量为和平面AEF1的法向量为,利用向量法能够求出二面角B,AE,F的余弦值( 1解答: (1)证明:在直三棱柱ABC,ABC中, 111??ABC为等腰三角形,?BAC=90?,F为BC的中点,?AF?BC,AF?BB, 1?AF?面BFE, 1?BF?面BFE, 11?BF?AF, 1设AB=1,?AB=AA, 1?AB=AA=AC=BB=1,BF=CF=, 11?=,EF==,=,?=,?BF?EF, 1所以BF?平面 AEF( 1(2)以AB为x轴,以AC为y轴,以AA为z轴,建立空间直角坐标系,设AB=1, 1则A(0,0,0),B(1,0,1),F(,,0),E(0,1,), 1?=(1,0,1),=(),=(0,1,),设平面ABE的法向量为=(x,y,z),则=0,=0, 1111?,?=(1,,,1)(设平面AEF的法向量为=(x,y,z), 22213则,=0,?,?=(1,,1,2),设二面角B,AE,F的平面角为θ, 1则cosθ=|cos,,|=||=(?二面角B,AE,F的余弦值为( 1点评: 本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,仔细解答,注意向量法的合理运用(19((13分)已知抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合( (?)求抛物线D的方程;(?)已知动直线l过点P(4,0),交抛物线D于A、B两点((i)若直线l的斜率为1,求AB的长;(ii)是否存在垂直于x轴的直线m被以AP为直径的圆M所截得的弦长恒为定值,如果存在,求出m的方程;如果不存在,说明理由( 考点: 直线与圆锥曲线的综合问题;椭圆的应用(专题: 综合题(分析:(?)根据抛物线D的顶点是椭圆的中心,焦点与该椭圆的右焦点重合,设出抛物线方程,即可求得抛物线D的方程;(?)设A(x,y),B(x,y)((i)直线l的方程代入抛物线方程,利用韦达定理可求|AB|; 112214(?) 设存在直线m:x=a满足题意,则圆心,过M作直线x=a的垂线,垂222足为E,设直线m与圆M的一个交点为G,可得:|EG|=|MG|,|ME|=,由此可得结论(2解答: 解:(?)由题意,可设抛物线方程为y=2px(p,0)(…(1分)22椭圆中a,b=4,3=1,得c=1,?抛物线的焦点为(1,0),2?=1,?p=2,?抛物线D的方程为y=4x(…(3分)(?)设A(x,y),B(x,y)( 1122(i)直线l的方程为:y=x,4,…(4分)2联立,整理得:x,12x+16=0…(5分)?x+x=12,xx=16 1212?|AB|==(…(7分)(?) 设存在直线m:x=a满足题意,则圆心,过M作直线x=a的垂线,垂222足为E,设直线m与圆M的一个交点为G,可得:|EG|=|MG|,|ME|,…(9分)222即|EG|=|MA|,|ME|====…(11分)2当a=3时,|EG|=3,此时直线m被以AP为直径的圆M所截得的弦长恒为定值(…(12分)因此存在直线m:x=3满足题意…(13分)点评: 本题考查抛物线的标准方程,考查直线与抛物线的位置关系,考查弦长的计算,解题的关键是联立方程,利用韦达定理求解,属于中档题(20((13分)某家庭为小孩买教育保险,小孩在出生的第一年父母就交纳保险金,数目为a,以后每年1交纳的数目均比上一年增加d(d,0),因此,历年所交纳的保险金数目为a,a,…是一个公差为d的12等差数列,与此同时保险公司给予优惠的利息政策,不仅采用固定利率,而且计算复利,这就是说,如,n1果固定利率为r(r,0),那么,在第n年末,第一年所交纳的保险金就变为a(1+r),第二年所交1,n2纳的保险金就变为a(1+r),…,以Tn表示到第n年末所累计的保险金总额( 2(1)写出T与T的递推关系(n?1); nn+1(2)若a=1,d=0.1,求{T}的通项公式((用r表示) 1n考点: 数列的应用;数列递推式(专题: 计算题;等差数列与等比数列(分析: (1)通过已知条件求出等差数列的通项公式,然后根据条件写出T与T的递推关系(n?1); nn+115(2)通过(1)的递推关系式,利用待定系数法,构造新数列,求出数列的通项公式,即可得到{T}的通项公式( n解答: 解:(1)因为数目为a,以后每年交纳的数目均比上一年增加d(d,0), 1 因此,历年所交纳的保险金数目为a,a,…是一个公差为d的等差数列,所以a=a+nd, 12n1与此同时保险公司给予优惠的利息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定利率为r(r,0),,n1那么,在第n年末,第一年所交纳的保险金就变为a(1+r), 1,n2第二年所交纳的保险金就变为a(1+r),…,所以T=T(1+r)+a(n?2)( ,2nn1n ?T=T(1+r)+a+nd (6分) n+1n1(2)T=T(1+r)+,T=a=1 n+1n11用待定系数法:T+A(n+1)+B=(1+r)(T+An+B) n+1n解得:A=,所以{T+n+}是以1为首项以1+r为公比的等比数列, n?T+n+= n解得:T=(7分) n点评: 本题考查数列模型的构建,考查等比数列求和的基本方法的运用,解题的关键是正确构建数列模型(21((13分)已知函数f(x)=lnx,g(x)=,(a?0)(1)若b=2,且h(x)=f(x),g(x)在定义域上不单调,求a的取值范围; (2)若a=1,b=,2设f(x)的图象C与g(x)的图象C交于点P、Q,过线段PQ的中点作x轴的12垂线分别交C,C于点M、N,M、N的横坐标是m,求证:f′(m),g′(m)( 12考点: 导数在最大值、最小值问题中的应用;利用导数研究函数的单调性( 专题: 综合题;导数的综合应用(分析: (1)h(x)=f(x),g(x)在定义域上不单调,等价于h'(x)=0在(0,+?)有实根,且不为重根,由此可求a的取值范围;(2)利用分析法证明,设P(x,y) Q(x,y),且x,x,证明f′(m),g′(m),只112212要证明,2即可(解答: (1)解:?函数f(x)=lnx,g(x)=,(a?0),b=2,?h(x)=lnx,,2x,x?(0,+?)?h(x)=f(x),g(x)在定义域上不单调,?h'(x)=在(0,+?)有实根,且不为重根2即ax+2x,1=0在(0,+?)有实根,且不为重根16?a,0或?a,0或,1,a,0?a的取值范围是(,1,0)?(0,+?)((2)证明:f'(x)=,g'(x)=x,2设P(x,y) Q(x,y),且x,xPQ中点为(),只要证明112212 ,2又只要证明: 只要证明:令,只要证明:,t?(1,+?) 令F(t)=lnt,,则F'(t),0,所以F(t)在(1,+?)范围内为增函数又F(1)=0,所以F(t),0在(1,+?)范围内恒成立;故得证(点评: 本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,考查学生分析解决问题的能力,属于中档题(17。

2013年湖南省高考真题数学试卷及答案(理科)word版

2013年湖南省高考真题数学试卷及答案(理科)word版

2013年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试卷包括选择题、填空题和解答题三部分,共5页,时量120分钟,满分150分。

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数1z i i i 为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法 B.随机数法 C .系统抽样法 D .分层抽样法3.在锐角中ABC ,角,A B 所对的边长分别为,a b .若2sin 3,a B b A 则角等于A .12 B .6 C .4 D .34.若变量,x y 满足约束条件211yx x yy ,2x y 则的最大值是A .5-2 B .0 C .53 D .525.函数2ln f x x 的图像与函数245g xx x 的图像的交点个数为A .3 B .2 C .1 D.0 6. 已知,a b 是单位向量,0a b .若向量c 满足1,c a b c 则的取值范围是A .2-1,2+1, B .2-1,2+2, C .1,2+1, D.1,2+2,7.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于A .1B .2C .2-12 D .2+128.在等腰三角形ABC 中,=4AB AC ,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图1).若光线QR 经过ABC 的中心,则AP 等。

数学_2013年湖南省长沙市高考数学一模试卷(理科)(含答案)

数学_2013年湖南省长沙市高考数学一模试卷(理科)(含答案)

2013年湖南省长沙市高考数学一模试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知z 是复数,i 是虚数单位,(1−i)z 在复平面中对应的点为P ,若P 对应的复数是模等于2的负实数,那么z =( )A −1−iB −1+iC 1−iD −i2. 已知不等式x−2ax+b >0的解集为(−1, 2),m 是二项式(ax −bx 2)6的展开式的常数项,那么ma a +2b =( )A −15B −5C −5aD 5 3. 以双曲线x 24−y 25=1的离心率为首项,以函数f(x)=4x −2的零点为公比的等比数列的前n 项的和S n =( )A 3×(2n −1)−32 B 3−32n C2n+13−23 D 43−2n 34. 已知几何体M 的正视图是一个面积为2π的半圆,俯视图是正三角形,那么这个几何体的表面积和体积为( ) A 6π和4√33π B 6π+4√3和8√33π C 6π+4√3和4√33π D 4(π+√3)和4√33π 5. 执行下列的程序框图,输出的s =( )A 9900B 10100C 5050D 49506. 与抛物线y 2=8x 相切倾斜角为1350的直线l 与x 轴和y 轴的交点分别是A 和B ,那么过A 、B 两点的最小圆截抛物线y 2=8x 的准线所得的弦长为( )A 4B 2√2C 2D √27. 已知直线与平面α平行,P 是直线上的一定点,平面α内的动点B 满足:PB 与直线成60∘.那么B 点轨迹是( )A 双曲线B 椭圆C 抛物线D 两直线8. 使得函数f(x)=15x 2−45x −75(a ≤x ≤b)的值域为[a, b](a <b)的实数对(a, b)有( )对.A 1B 2C 3D 无数二.填空题:(每大题共4小题,考生作答7小题,每小题5分,共35分,把答案填在题中的横线上)选做题(从13题、14题和15题中选两题作答,全做则按前两题记分) 9. G(x)表示函数y =2cosx +3的导数,在区间[−π3,π]上,随机取值a ,G(a)<1的概率为________.10. 已知向量a →=(x, y),b →=(x −2, 1),设集合P ={x|a →⊥b →},Q ={x||b →|<√5},当x ∈P ∩Q 时,y 的取值范围是________. 11. 计算:∫(21x 2−1x )dx =________.12. 从正方体的各表面对角线中随机取两条,这两条表面对角线成的角的度数的数学期望为________.选做题:极坐标和参数方程4-4(共1小题,每小题5分,满分5分)13. 极坐标系中,质点P 自极点出发作直线运动到达圆:ρ+4cosθ=0的圆心位置后顺时针方向旋转60∘后直线方向到达圆周ρ+4cosθ=0上,此时P 点的极坐标为________.选做题:几何证明4-1(共1小题,每小题5分,满分5分)14. 已知⊙O 1和⊙O 2交于点C 和D ,⊙O 1上的点P 处的切线交⊙O 2于A 、B 点,交直线CD于点E ,M 是⊙O 2上的一点,若PE =2,EA =1,∠AMB =30∘,那么⊙O 2的半径为________.选做题:不等式4-5(共2小题,每小题0分,满分5分) 15. 已知x >0,y >0,z >0,x +2y +3z =3,那么(x +14y)2+(2y +16z)2+(3z +12x)2的最小值为________. 16. 方程x 2a +y 2b=1(a, b ∈{1, 2, 3, 4, ..., 2013})的曲线中,所有圆面积的和等于________,离心率最小的椭圆方程为________.三、解答题:(前三题各12分,后三道题各13分,满分75分.解答应写出文字说明,证明过程或演算步骤)17. 函数f(x)=6cos 2ωx 2+√3sinωx −3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B .C 为图象与x 轴的交点,且△ABC 为正三角形. (1)若x ∈[0, 1],求函数f(x)的值域; (2)若f(x 0)=8√35,且x 0∈(−103, 23),求f(x 0)+1的值.18. 如图一,△ABC 是正三角形,△ABD 是等腰直角三角形,AB =BD =2.将△ABD 沿边AB 折起,使得△ABD 与△ABC 成30∘的二面角D −AB −C ,如图二,在二面角D −AB −C 中. (1)求D 、C 之间的距离;(2)求CD 与面ABC 所成的角的大小;(3)求证:对于AD 上任意点H ,CH 不与面ABD 垂直.19. 某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定对这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当16≤x ≤24时,这种食品市场日供应量p 万千克与市场日需量q 万千克近似地满足关系:p =2(x +4t −14),(x ≥16, t ≥0),q =24+8ln 20x ,(16≤x ≤24).当p =q 市场价格称为市场平衡价格.(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元? 20. 设命题p :函数f(x)=(a+5)x+b x+1在(0, +∞)上是增函数,命题q :方程x 2−ax +b −2=0有两个不相等的负实数根.求使得p ∧q 是真命题的实数对(a, b)为坐标的点的轨迹图形及其面积.21.已知A(14, 0),点B 是y 轴上的动点,过B 作AB 的垂线l 交x 轴于点Q ,若AP →+AQ →=2AB →,M(4, 0).(1)求点P 的轨迹方程;(2)是否存在定直线x =a ,以PM 为直径的圆与直线x =a 的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由.22. (1)已知a+b+c=1,a,b,c∈(0, +∞),求证:alog3a+blog3b+clog3c≥−1;(2)已知a1+a2+...+a3n=1,a i>0(i=1, 2, 3,…,3n),求证:a1log3a1+a2log3a2+a3log3a3+...+a3n log3a3n≥−n.2013年湖南省长沙市高考数学一模试卷(理科)答案1. A2. D3. B4. C5. B6. C7. A8. B9. 7810. (−8, 1]11. 73−ln212. 60∘13. (2, 4π3)14. 315. 27416. 2027091π,x22013+y22012=1或y22013+x22012=117. 解:(1)由已知得f(x)=6cos2ωx2+√3sinωx−3=3cosωx+√3sinωx=2√3sin(ωx+π3)又△ABC为正三角形,且高为2√3,可得BC=4.∴ 函数f(x)的最小正周期为8,即2πω=8,解得ω=π4,∴ f(x)=2√3sin(π4x+π3),∵ x∈[0, 1],∴ π4x+π3∈[π3, 7π12],∴ sin(π4x+π3)∈[√32, 1]∴ f(x)∈[3, 2√3],∴ 函数f(x)的值域为:[3, 2√3];(2)∵ f(x0)=8√35,∴ f(x 0)+1=8√35+1.18. 解:(1)依题意,∠ABD =90∘,建立如图的坐标系使得△ABC 在yoz 平面上,∵ △ABD 与△ABC 成30∘的二面角,∴ ∠DBY =30∘, 又AB =BD =2,∴ A(0, 0, 2),B(0, 0, 0), C(0, √3, 1),D(1, √3, 0),|CD|=√12+02+(−1)2=√2,(2)∵ x 轴与面ABC 垂直,∴ (1, 0, 0)是面ABC 的一个法向量. 设CD 与面ABC 成的角为θ, ∵ CD →=(1, 0, −1),∴ sinθ=|(1,0,0)⋅(1,0.−1)|⋅=√22. ∵ θ∈[0, π2],∴ θ=π4;∴ CD 与平面ABC 的所成角是π4.(3)设AH →=tAB →=t(1, √3, −2)=(t, √3t, −2t),∴ CH →=CA →+AH →=(0, −√3, 1)+(t, √3t, −2t)=(t, √3t −√3, −2t +1), 若CH →⊥BA →,则(t, √3t −√3, −2t +1)⋅(0, 0, 2)=0, 解得t =12,∴ 此时CH →=(12, −√32, 0) ∵ BD →=(1, √3, 0),∴ CH →⋅BD →=12−32=−1≠0,∴ CH和BD不垂直,即CH不可能同时垂直BD和BA,即对于AD上任意点H,CH不与面ABD垂直.19. 解:(1)由P=Q得2(x+4t−14)=24+8ln20x (16≤x≤24, t>0).t=132−14x+ln20x(16≤x≤24).3分∵ t′=−14−1x<0,∴ t是x的减函数.∴ t min=132−14×24+ln2024=12+ln2024=12+ln56;5分t max=132−14×16+ln2016=52+ln54,∴ 值域为[12+ln56, 52+ln54]7(2)由(1)t=132−14x+ln20x(16≤x≤24).而x=20时,t=132−14×20+ln2020=1.5(元/千克)9分∵t是x的减函数.欲使x≤20,必须t≥1.5(元/千克)要使市场平衡价格不高于每千克20元,政府补贴至少为1.5元/千克.2分20. 解:f(x)=(a+5)x+bx+1,f′(x)=a−b+5(x+1)2;∵ f(x)在(0, +∞)上是增函数,∴ f′(x)>0,∴ a−b+5>0;∵ 方程x2−ax+b−2=0有两个不相等的负实数根;∴ {a2−4b+8>0a<0b−2>0;∵ p∧q为真命题,∴ p,q都为真命题;∴ {a−b+5>0a2−4b+8>0a<0b−2>0∴ 该不等式所表示的区域如图所示:图中阴影部分便是(a, b)为坐标的点的轨迹图形,它的面积计算如下:S =∫(−2−3x +5−2)dx +∫(0−214x 2+2−2)dx =(12x 2+3x)|−3−2+112x 3|−20=76.21. 解:(1)设B(0, t),设Q(m, 0),t 2=14|m|,∵ m ≤0,∴ m =−4t 2, ∴ Q(−4t 2, 0),设P(x, y),则AP →=(x −14, y),AQ →=(−4t 2−14, 0),2AB →=(−12, 2t),∵ AP →+AQ →=2AB →.∴ (x −14, y)+(−4t 2−14, 0)=(−12, 2t),∴ x =4t 2,y =2t ,∴ y 2=x ,此即点P 的轨迹方程; (2)存在定直线x =154,以PM 为直径的圆与直线x =154的相交弦长为定值√15.事实上,由(1)知点P 的轨迹方程是y 2=x . 设P(y 2, y),∵ M (4, 0),则以PM 为直径的圆的圆心即PM 的中点T(y 2+42,y 2),以PM 为直径的圆与直线x =a 的相交弦长: L =2√(y 2+42−4)2+(y 2−0)2−(y 2+42−a)2 =2√(a −4)(y 2−a)+y 24=2√(a −154)y 2−a(a −4) 若a 为常数,则对于任意实数y ,L 为定值的条件是a −154=0,即a =154时,L =√152. ∴ 存在定直线x =154,以PM 为直径的圆与直线x =154的相交弦长为定值√152. 22. 证明:(1)令f(x)=xlog 3x , 则f′(x)=log 3x +x ⋅1xln3=log 3x +1ln3,f″(x)=1xln3>0,由于a +b +c =1,a ,b ,c ∈(0, +∞),由琴声不等式(琴生不等式以丹麦数学家约翰•琴生(JoℎanJensen)命名,也称为詹森不等式) 得:alog 3a+blog 3b+clog 3c3≥f(a+b+c 3),即alog 3a +blog 3b +clog 3c ≥3f(a+b+c 3)=3×(a+b+c 3log 3a+b+c 3)=3×13log 313=−1;(2)因为a1+a2+...+a3n=1,a i>0(i=1, 2, 3,…,3n),所以,由琴声不等式得:a1log3a1+a2log3a2+a3log3a3+...+a3n log3a3n≥3n(a1+a2+⋯+a3n3n log3a1+a2+⋯+a3n3n)=log33−n=−n.。

湖南省长沙市2013届高考数学模拟试题 理 湘教版

湖南省长沙市2013届高考数学模拟试题 理 湘教版

侧视俯视湖南省长沙市2013届高考数学模拟试题 理 湘教版注意事项:1. 答题前,考生务必将自己的姓名、准考证号写在答题卡和该试题卷的封面上,并认真核对条形码的姓名、准考证号和科目。

2. 选择题和非选择题均须在答题卡上作答,在本试题卷和草稿纸上作答无效。

考生在答题卡上按答题卡中注意事项的要求答题。

3. 本试题卷共5页。

如缺页,考生须及时报告监考老师,否则后果自负。

4. 考试结束后,将本试题卷和答题一并交回。

满分:150分 时量:120分钟说明:本卷为试题卷,要求将所有试题答案或解答做在答题卷指定位置上.一、选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知z 是复数,i 是虚数单位,()1i z - 在复平面中对应的点为P ,若P 对应的复数是模等于2的负实数,那么=z A .i --1 B .i +-1C .i -1D .i -2.已知不等式20x ax b->+的解集为()1,2-,m 是二项式62()b ax x-的展开式的常数项,那么772ma a b=+A .15-B .5-C .a 5-D .53.以双曲线15422=-y x 的离心率为首项,以函数()24-=xx f 的零点为公比的等比数列的前n 项的和=n SA .()23123--⨯nB .n 233-C .32321-+nD .3234n- 4.已知几何体M 的正视图是一个面积为2π的表面积和体积为A .6π和334πB .6π+43和338πC .6π+43和34π D .4(π+3)和34πA .9900B .10100C .5050D .4950 6.与抛物线x y 82=相切倾斜角为0135的直线L 与x 轴和y 轴的交点分别是A 和B ,那么过A 、B 两点的最小圆截抛物线x y 82=的准线所得的弦长为 A .4B .22C .2D .27.已知直线l 与平面α平行,P 是直线l 上的一点,平面α内的动点B 满足:PB 与直线 l 成060。

新 课 标 2013 届 高 考 模 拟 试 卷1

新 课 标 2013 届 高 考 模 拟 试 卷1

新 课 标 2013 届 高 考 模 拟 试 卷( 理 科 数 学)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一个选项是符合题目要求的) 1.若iim -+1是纯m 的值为( )A .1-B .0C .1D .22.已知集合}13|{},1|12||{>=<-=x x N x x M ,则N M ⋂=( ) A .φB .}0|{<x xC .}1|{<x xD .}10|{<<x x3.若)10(02log ≠><a a a 且,则函数)1(log )(+=x x f a 的图像大致是( )4.已知等比数列}{n a 的公比为正数,且1,422475==⋅a a a a ,则1a =( )A .21B .22C .2D .25.已知变量x 、y 满足的约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y ,则y x z 23+=的最大值为( )A .-3B .25 C .-5 D .46.过点(0,1)且与曲线11-+=x x y 在点(3,2)处的切线垂直的直线的方程为( ) A .012=+-y x B .012=-+y xC .022=-+y xD .022=+-y x7.函数)sin (cos 32sin )(22x x x x f --=的图象为C ,如下结论中正确的是( ) ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫ ⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫-⎪⎝⎭,内是增函数; ④由x y 2sin 2=的图角向右平移π3个单位长度可以得到图象C (A )①②③ (B )②③④ (C )①③④ (D )①②③④8.已知6260126(12)x a a x a x a x -=+++⋅⋅⋅+,则0126a a a a +++⋅⋅⋅+=( )A .1B .1-C .63D .629.若函数)(x f 的导函数34)('2+-=x x x f ,则使得函数)1(-x f 单调递减的一个充分不必要条件是x ∈( )A .[0,1]B .[3,5]C .[2,3]D .[2,4]10.设若2lg ,0,()3,0,ax x f x x t dt x >⎧⎪=⎨+≤⎪⎩⎰((1))1f f =,则a 的值是( ) A. -1 B. 2 C. 1 D.-211.△ABC 中,∠A=60°,∠A 的平分线AD 交边BC 于D ,已知AB=3,且)(31R AB AC AD ∈+=λλ,则AD 的长为( )A .1B .3C .32D .312.在三棱锥S —ABC 中,AB ⊥BC,AB=BC=2,SA=SC=2,,二面角S —AC —B 的余弦值是33-,若S 、A 、B 、C 都在同一球面上,则该球的表面积是( ) A .68 B .π6 C .24π D .6π 二、填空题:(本大题4小题,每小题5分,共20分) 13.在△ABC 中,B=3π中,且34=⋅BC BA ,则△ABC 的面积是 14.若函数1)(2++=mx mx x f 的定义域为R ,则m 的取值范围是15.已知向量b a ,满足:2||,1||==b a ,且6)2()(-=-⋅+b a b a ,则向量a 与b 的夹角是 16.某几何体的三视图如图所示,则它的体积是 正视图 侧视图 俯视图三、解答题(本大题共6小题,共70分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

侧视
俯视2013年长沙市高考模拟试卷(一)
数 学(理科)
长沙市教科院组织名优教师联合命制
满分:150分 时量:120分钟
说明:本卷为试题卷,要求将所有试题答案或解答做在答题卷指定位置上.
一、选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有
一项是符合题目要求的) 1.已知z 是复数,i 是虚数单位,()1i z - 在复平面中对应的点为P ,若P 对应的复数是模等于2的负实数,那么=z A .i --1
B .i +-1
C .i -1
D .i -
2.已知不等式
20x ax b
->
+的解集为()1,2-,m 是二项式6
2
()
b ax x
-
的展开式的常数项,那么
7
7
2m a a b
=
+
A .15-
B .5-
C .a 5-
D .5
3.以双曲线
15
42
2
=-
y
x 的离心率为首项,以函数()24
-=x
x f 的零点为公比的等比数列
的前n 项的和=n S A .()2
3123-
-⨯n B .n
2
33-
C .
3
23
2
1
-
+n D .
3
2
3
4n
-
4.已知几何体M 的正视图是一个面积为2π的半圆,俯视图是正三角形,那么这个几何体的表面积和体积为 A .6π和
3
34π B .6π+43和
3
38π C .6π+43和
34π
D .4(π+3)和34π
A .9900
B .10100
C .5050
D .4950
6.与抛物线x y 82
=相切倾斜角为0135的直线L 与x 轴和y 轴的交点分别是A 和B ,那么过A 、B 两点的最小圆截抛物线x y 82
=的准线所得的弦长为 A .4 B .22 C .2 D .2
7.已知直线l 与平面α平行,P 是直线l 上的一点,平面α内的动点B 满足:PB 与直线 l 成
60。

那么B 点轨迹是
A..双曲线
B .椭圆
C .抛物线
D .两直线
8.使得函数()()b x a
x x x f ≤≤-
-
=
5
75
45
12
的值域为[]()b a b a <,的实数对()b a ,
有( )对
A .1
B .2
C .3
D .无数
二.填空题:(每大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在题中
的横线上)选做题(从13题、14题和15题中选两题作答,全做则按前两题记分) 9.()x G 表示函数3cos 2+=x y 的导数,在区间⎥

⎤⎢⎣
⎡-ππ,3上,随机取值a ,()1<a G 的概率
为 ;
10.已知向量()y x a ,=,()1,2-=x b ,设集合{}b a x P
⊥=|
,{
|Q x b =<
,当
x P Q ∈ 时,y 的取值范围是 ;
11.计算:
2211x dx x ⎛⎫
-=
⎪⎝
⎭⎰_____________; 12.从正方体的各表面对角线中随机取两条,这两条表面对角线成的角的度数的数学期望
为 ;
13.(极坐标和参数方程4-4)极坐标系中,质点P 自极点出发作直线运动到达圆:
0cos 4=+θρ的圆心位置后顺时针方向旋转60o
后直线方向到达圆周0
cos 4=+θρ上,此时P 点的极坐标为 ; 14.(几何证明4-1)已知⊙O 1和⊙O 2交于点C 和D ,
⊙O 1上的点P 处的切线交⊙O 2于A 、B 点,交直 线CD 于点E ,M 是⊙O 2上的一点,若PE=2, EA=1,∠AMB=30o
,那么⊙O 2的半径为 ;
15.(不等式4-5)已知332,0,0,0=++>>>z y x z y x ,那么222)213()612()41(x
z z
y y
x +++++ 的
最小值为 ; 16.方程
a
x
2
+
b
y
2
=1(∈b a ,{1,2,3,4,…,2013})的曲线中,所有圆面积的和等于 ,
离心率最小的椭圆方程为 .
A B
C
D
P
M
E O 1
O 2
三、解答题:(前三题各12分,后三道题各13分,满分75分。

解答应写出文字说明,证明
过程或演算步骤)
17.函数()()03sin 32
cos 62>-+=ωωωx x
x f 在一个周期内的图像如图所示,A 为图像
的最高点,B.C 为图像与x 轴的交点,且ABC ∆为正三角形.
(1)若[]1,0∈x ,求函数()x f 的值域; (2)若()5
380=
x f ,且⎪⎭


⎛-
∈32,3
100x ,求()10+x f 的值.
18.如图一,△ABC 是正三角形,△ABD 是等腰直角三角形,AB=BD=2。

将△ABD 沿边AB 折起,
使得△ABD 与△ABC 成30o
的二面角C AB D --,如图二,在二面角C AB D --中. (1) 求D 、C 之间的距离;
(2) 求CD 与面ABC 所成的角的大小;
(3) 求证:对于AD 上任意点H ,CH 不与面ABD 垂直。

19.某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定
A
B
D
C 图一 图二
对这种食品生产厂家提供政府补贴,设这种食品的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当1624x ≤≤时,这种食品市场日供应量p 万千克与市场日需量q 万千克近似地满足关系:
()()
2414,16,0p x t x t =+-≥≥,
()
20248ln
,1624q x x
=+≤≤。

当q p =市场价格称为市场平衡价格。

(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;
(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元?
20.设命题p:函数()1
)5(+++=
x b
x a x f 在()+∞,0上是增函数;命题q:方程022=-+-b ax x 有
两个不相等的负实数根。

求使得p ∧q 是真命题的实数对()b a ,为坐标的点的轨迹图形及其面积。

21.已知)0,4
1
(A ,点B 是y 轴上的动点,过B 作AB 的垂线l 交x 轴于点Q ,若
AB AQ AP 2=+,()0,4M . (1)求点P 的轨迹方程;
(2)是否存在定直线a x =,以PM 为直径的圆与直线a x =的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由。

22.(1)已知()+∞∈=++,0,,,1c b a c b a ,求证:1log log log 333-≥++c c b b a a ;
(2)已知1321=+++n a a a ,i a >0(i=1,2,3,…,3n ),求证: 1a 3
log
1a +2a 3
log
2a +3a 3
log
3a +…+n a 33
log
n a n -≥3。

相关文档
最新文档