一线三等角在全等三角形中的应用
初二《全等三角形》数学模型之“一线三等角”模型.doc
∴∠BAD+∠CAE=90° ∵∠BAD+∠ABD=90° ∴∠CAE=∠ABD 又∵AB=AC ∴△ADB≌△CEA ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE; (2)如图,将(1)中的条件改为:在△ABC 中,AB=AC, D、A、E 三点都在直线 m 上,并且有∠BDA=∠AEC=∠ BAC=a,其中 a 为任意锐角或钝角.请问结论 DE=BD+ CE 是否成立?如成立,请你给出证明;若不成立,请说明 理由. 【解析】 (2)∵∠BDA=∠BAC=α ∴∠DBA+∠BAD=∠BAD+∠CAE=180°—α ∴∠DBA=∠CAE ∵∠BDA=∠AEC=α,AB=AC ∴△ADB≌△CEA ∴AE=BD,AD=CE ∴DE=AE+AD=BD+CE; (3)拓展与应用:如图,D、E 是 D、A、E 三点所在直线 m 上的两动点(D、A、E 三点互不重合),点 F 为∠BAC 平
模型性质总结 1、题目中只要满足“一线三等角”的条件,必相似; 2、题目如果两个条件:“一线三等角”和对应边相等的两 个条件,必全等。 模型常见背景: “一线三等角”的背景图形一般为正方形、等边三角形、等 腰三角形等等。 1. 正方形 ABCD,有一个直角的顶点在边 AB 上 2. 等边三角形 ABC,有一个 60°角的顶点在边 AB 上 3. 等腰直角三角形 ABC,有一个 45°角的顶点在边 AB 上 4.一线三直角 ①∠ACB=90°,AD⊥CE,BE⊥CE ②AD⊥AC,EC⊥AC,DC⊥EC 典型例题 (1)如图,已知:在△ABC 中,∠BAC=90°,AB=AC, 直线 m 经过点 A,BD⊥直线 m, CE⊥直线 m,垂足分别为点 D、E.证明:DE=BD+CE. 【解析】 ∵BD⊥直线 m,CE⊥直线 m ∴∠BDA=∠CEA=90° ∵∠BAC=90°
一线三等角在全等三角形中的应用
线三等角在全等三角形中的应用一图形特征:一条直线上有三个相等的角,三个角可以是锐角,直角,钝角。
二解题方法:利用两角一边证三角形全等找到边之间的关系。
三例题讲解图形一,三等角为锐角图形二,三等角为直角钝角(1)已知,如图①’在^ABC中,ABAC = 90o IAB = 4C,直线m经过点A, BD丄直线m, CEA. 直线m,垂足分别为点D、E,求证:DE = BD + CE.⑵如图②将⑴中的条件改为:在AAEC Φ,AB = AC l O. A、E三点都在直线m上,并且有ABDA = ZAEC = ABAC =α,其中Q 为任意钝角,请问结论DE = ED + CE是否成立?若成立,请你给出证明:若不成立,请说明理由.m ①D AE^图②.∖ΛCAE= ΛABD,∙∕^±ΔADB 和 ACEA 中AABD = ACAEΔBDA = ΔCEA I AB = AC:AADB=^CEA{AAS^证明:(1) ∖∙BD 丄直线g CEL 直线叽90Ol -.ABAC=.∙∙ZBW+∕C4E = 9()∖^BAD^ AABD =四八年级期中期末考试题型八年级期中考试卷,变形后的应用如图①,在zMBC中,乙ACB= 90。
MC = BC,过点C 在ZUBC外作直线I1AMLl于点M,BN丄2于点N.(1)求证:MN=AM + BN・j(2)如图②,若过点C作直线I与线段AB相交UM■丄/于点M J BNlI于点7V(4Λf>BΛΓ),(l)⅛的I结论是否仍然成立?说明理由.(1)证明J ZACB= 90。
.∖厶ACM+ 厶BCN=9Z. 又V AMIMN f BNlMN f•・,乙AMC=乙CNB =90°,•・・乙BCN+ 厶CBN = 90。
,••・^ACM= L CBN.在ZUCM 和ZkCBN 中,(厶ACM 二乙CBN,]乙AMC=乙CNB,[AC = BC f.・・△△CMg ACBN(AAS), .∙. MC=NB,MA=NC,・.・ MN = MC + CN, .∙. MN =AM + BN.八年级期末考试卷,一线三等角在正方形中的应用(2017LIJ东泰安)如图,正方形ABCD中,G为BC 边上一点,BE丄AG于E,DF丄AG于F,连接DE.⑴求证:ΔABE^ΔDAF;⑵若AF"四边形ABED的面积为6,求EF的长.ti G八年级期中考试卷,一线三等角在坐标系当中的应用,作辅助线构成一线三等角(1 )如图①,等腰直角△人BC中,ZΛ5C = 90o, AB = BC3点」、B分别在坐标轴上,若点G的横坐标为2,直接写出点B的坐标____ (提示:过G作CZU"轴于点D ,利用全等三角形求出0〃即可)。
“一线三等角”问题的探究和拓展——以2022年中考数学安徽卷第14题为例
一线三等角 问题的探究和拓展以2022年中考数学安徽卷第14题为例安徽省安庆市宿松县东洪初级中学 曹喜荣 (邮编:246524)摘 要 一线三等角是几何证明中重要的数学模型,本文以2022年中考题为例进一步探讨一线三等角问题,有利于增强学生的几何直观能力,提升学生的数学核心素养.关键词 一线三等角;初中数学;几何模型 ‘义务教育数学课程标准(2022年版)“指出,学业水平考试要 坚持素养立意,凸显育人导向.2022年安徽省中考数学卷第14题是基于 一线三等角 模型的问题,体现 立足基础,源于教材,联系实际,突出能力,强调应用,着意素养 的命题思路.试题以教材习题素材为蓝本进行综合㊁创新㊁改造,引领教师在教学中要注重对教材内容的理解以及在理解的基础上的适度拓展,既提升教材的价值,又拓展学生的思维,培养学生的能力,发展学生数学素养.以该题为例,分析试题立意,进行解法探究,感悟用好教材的方法.1试题及其解答图1如图1,四边形A B C D是正方形,点E 在边A D 上,әB E F 是以E 为直角顶点的等腰直角三角形,E F ,B F 分别交C D 于点M ,N ,过点F 作A D 的垂线交A D 的延长线于点G .连接D F ,请完成下列问题:(1)øF D G =.(2)若D E =1,D F =22,则MN =.受篇幅所限,本文仅讨论题(1).分析观察发现,在直线A D 上出现了三个相等的直角:øA =øB E F =øG ,结合题设易证全等三角形,这是 一线三等角 数学模型应用的典型范例.解析 由题意可得,因为øA B E +øB E A=øB E A +øF E G =90ʎ,同角的余角相等,得øA B E =øF E G .又因为øA =øG =90ʎ,E B =E F ,所以әB E A ɸәE F G A A S .从而B A =E G ,A E =G F .又四边形A B C D 是正方形,B A =A D .得到G D =E G -E D =B A -E D =A D -E D =A E =GF ,所以әDG F 是等腰直角三角形.所以øF D G =45ʎ.说明 一线三等角 是指在一条直线上出现了三个相等的角,在这种情况下,综合性几何题往往就会利用全等以及等腰三角形的性质作为出题和解题的一种形式.2 教材原题溯源本题以沪科版义务教育教科书八年级‘数学“上册第15章轴对称图形与等腰三角形 第140页练习第7题素材为母题,兼顾知识㊁能力㊁思想方法等方面的考查,呈现形式贴近学生,符合学生认知规律.(沪科版教材八年级上册第140页第7题)已知:如图2,在әA B C 中,A B =A C ,点D ㊁E 分别在边B C ㊁A C 上,A D =A E ,若øB A D =30ʎ,求øE D C 的度数.解析 设øE D C =x ,øB =øC =y ,图2则øA E D =øE D C +øC =x +y ,又因为A D =A E ,所以øA D E =øA E D=x +y .则øA D C =øA D E+øE D C =2x +y .又øA D C =øB +øB A D ,所以2x +y =y +30ʎ,解得x =15ʎ,所以øE D C 的度数是15ʎ.注 该题主要考查等腰三角形的性质,当øA D E =øB 时就构造了 一线三等角 模型,熟练掌握该模型的相关特点,可以在解题过程中判定全等三角形㊁相似三角形等几何关系,从而提升学生的数学思维能力.3 模型拓展应用552023年第3期中学数学教学图3拓展1 如图3,D ,E 是直线l 上的两个动点(D ,A ,E 三点互不重合)F 为øB A C 内一点,且әA B F 和әA C F 均为等边三角形,连接F D ,F E ,B D ,C E .若øB D A =øA E C =øB A C ,求证:D F =E F .解析 因为øB D A =øA E C =øB A C ,øB D A +øA B D +øB A D =øB A D +øB A C+øC A E =180ʎ,所以øA B D =øC A E .因为әA B F 和әA C F 均为等边三角形,所以øA B F =øC A F =60ʎ,F B =A B =A F =A C ,所以øD B A +øA B F =øC A E +øC A F ,即øD B F =øE A F .在әA D B 和әC E A中,øA B D =øC A E ,øB D A =øA E C ,A B =C A ,所以әA D B ɸәC E A (A A S ),即B D =A E .在әD B F 和әE A F 中,F B =F A ,øD B F =øE A F ,B D =A E ,所以әD B F ɸәE A F (S A S ),所以D F =E F .注 此题直接给出了 一线三等角 模型的条件,熟悉该模型可在复杂的几何图形中迅速搭建证明思路,实现在等边三角形中的应用.图4在全等三角形之外, 一线三等角 在三角形相似证明中也有充分的应用.拓展2 如图4,在等腰三角形或等边三角形中,ø1=ø2=ø3,可根据三角形内角和及补角得到另一组等角,可得同一三角形中两阴影部分三角形相似.拓展3 如图5,әD E F 的三个顶点分别在等边әA B C 的三条边上,B C =4,øE D F =90ʎ,D ED F=3,则D F 长度的最小值是.解析 由t a nøE F D =D ED F=3,可得图5øE F D =60ʎ,因为әA B C 是等边三角形,所以øA =øC=60ʎ,A B =B C =A C =4,由三角形内角和得øA F E +øA E F =180ʎ-øA =120ʎ,又øA F E +øD F C =180ʎ-øE F D =120ʎ,所以øA E F =øD F C ,可得әA E F ʐәC F D ,所以C D A F =D FE F=c o s øE F D =12,设C D =a ,则A F =2a ,C F =A C -A F =4-2a ,过点F 作F H ʅC D 于点H ,在R t әD F H 中,C H =C F c o s øC =2-a ,F H =C F s i n øC =23-3a ,所以DH =C D -C H=a -(2-a )=2a -2,在R t әD F H 中,D F 2=DH 2+F H 2=(2a -2)2+(23-3a )2=7a 2-20a +16=7(a -107)2+127,所以D F 2的最小值为127,D F 最小值为2217.注 在该题中,单纯运用几何知识难以求出最值,需要串联知识,借助函数的工具.运用一线三等角模型易证三角形相似,在此基础上建立函数关系式便很快突破了难点,解决了问题;提升学生的几何直观能力,根据题设条件特点及图形特征,运用基本结论解决问题的技能是几何教学的重难点之一,也是学生解题需要掌握的基本能力.4 总结2022年版义务教育数学课程标准希望学生在初中阶段形成模型观念㊁数据观念;数学学科核心素养也包括数学抽象和直观想象,逻辑推理和运算能力,数学模型和数据分析.在初中数学教学中,及时归纳如 一线三等角 等数学模型,注重培养学生的模型观念,有利于增强学生的数学能力,提升学生的数学核心素养.参考文献[1] 史宁中.‘义务教育数学课程标准(2022年版)“的修订与核心素养[J ].教师教育学报,2022,9(3):92-96.[2] 孔凡哲,史宁中.中国学生发展的数学核心素养概念界定及养成途径[J ].教育科学研究,2017(6):5-11.(收稿日期:2023-04-11)65中学数学教学2023年第3期。
初中数学_全等三角形AAS定理——一线三等角模型教学设计学情分析教材分析课后反思
教学设计全等三角形AAS定理一线三等角模型课程分析:本节课是在学生学完八年级直角坐标系和一次函数之后,全等三角形定理在函数中的应用过程,包括在坐标系中如何构造全等三角形,要求学生对AAS定理的熟练应用,能在直角坐标系中等腰直角三角形为模版,找出直角点的坐标来。
一线三等角模型在几何和函数中都有重要应用,包括两者结合的综合题,树立学生的一线三等角的数学模型思想,会让学生再解这类题时更加得心应手。
因此,本节课的复习目标是:复习目标:1.能熟练运用AAS定理证三角形全等体会“一线三等角”几何模型在解题中的作用.2.能构造出“一线三等角”模型,能提炼出“一线三等角”几何模型,提高解决问题的能力.学情分析:本班的学生学习数学的热情较高,基础挺好,思维比较活跃,研究的气氛比较浓,但需要进行适当的引导,一方面鼓励他们学习、提问的热情,一方面利用他们不同的见解,不同的看法,推进课堂进度,使问题回归知识本质从而使学生成为课堂的主人。
设计思路:本节课采用“诱思探究教学”,让学生在教师导向性信息的指引下,动用所有的感官,亲身体验,独立思考,自主探究,合作学习。
使本节课的教学任务得以顺利的完成。
充分体现“已诱达思,启智悟道”的教学精髓。
本节课采用学生动手和多媒体教学相结合的教学方法。
一方面增强了学生的动手能力,增加了学生的学习兴趣,另一方面通过演示使得导向性信息更加明确,有利于学生严密思维习惯的养成。
教学过程: 导入:构造全等三角形时,技巧性不够,缺少数学模型思想,针对以上这个问题,引出复习目标。
一:归纳篇: 1.通过做习题1:已知:如图,AB=AD,∠C=∠BAD=∠E=90,点C 、A 、E 共线。
求证:(1)∠1=∠2 (2)△ABC ≌△DAE第一个结论是应用的同角的余角相等这个结论。
第二个全等的结论运用的是AAS 定理的,(让学生 体会用AAS 定理证全等,关键是证角相等) 从而让学生观察本题特点,引出一线三直角 数学模型。
人教版八年级上册数学《全等三角形》辅助线一线三等角问题(“K”字图)
一线三等角问题(“K ”字图)核心母题 已知:如图,在Rt △ABC 中,∠BAC=90°,AB=AC ,D 是BC 边上一点,∠ADE=45°,AD=DE ,求证:BD=EC.练习: 1、已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED ,EF ⊥ED .求证:AE 平分∠BAD .2、两个全等的含30°,60°角的三角板ADE 和三角板ABC 如图所示放置,E ,A ,C 三点在一条直线上,连接BD ,取BD 的中点M ,连接ME ,MC .试判断△EMC 的形状,并说明理由.3、如图,在ABC ∆中,BC AC ACB =︒=∠,90,直线MN 经过点C ,且MNAD ⊥于点D ,MN BE ⊥于点E 。
(1)当直线MN 绕点C 旋转到图(1)的位置时,求证:DE=AD+BE ;(2)当直线MN 绕点C 旋转到图(2)的位置时,求证:DE=AD—BE ;(3)当直线MN 绕点C 旋转到图(3)的位置时,试问:DE,AD ,BE 有怎样的等量关系?请写出等量关系,并加以证明。
N BN4、如图所示,AE ⊥AB ,BC ⊥CD 且AB=AE ,BC=CD ,F 、A 、G 、C 、H 在同一直线上,如按照图中所标注的数据及符号,则图中实线所围成的图形面积是?6、小雨遇到这样一个问题:如图1,直线l 1∥l 2∥l 3 ,l 1与l 2之间的距离是1,l 2与l 3之间的距离是2,试画出一个等腰直角三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并求出所画等腰直角三角形ABC 的面积.小雨是这样思考的:要想解决这个问题,首先应想办法利用平行线之间的距离,根据所求图形的性质尝试用旋转的方法构造全等三角形解决问题.具体作法如图2所示:在直线l 1任取一点A ,作AD ⊥l 2于点D ,作∠DAH =90°,在AH 上截取AE =AD ,过点E 作EB ⊥AE 交l 3于点B ,连接AB ,作∠BAC =90°,交直线l 2于点C ,连接BC ,即可得到等腰直角三角形ABC .请你回答:图2中等腰直角三角形ABC 的面积等于 .参考小雨同学的方法,解决下列问题:如图3,直线l 1∥l 2∥l 3, l 1与l 2之间的距离是2,l 2与l 3之间的距离是1,试画出一个等边三角形ABC ,使三个顶点分别在直线l 1、l 2、l 3上,并直接写出所画等边三角形ABC 的面积(保留画图痕迹).7、如图,在平面直角坐标系中,将直角三角形的直角顶点放在P (5,5)处,两条直角边与坐标轴分别交于点A 和点B.(1)当点A 、点B 分别在x 轴、y 轴正半轴上运动时,试探究OA+0B 的值或取值范围; l 1l 2l 3图3l 1l 2l 3图1 l 1l 2l 3图2 l 1l 2l 3图3(2)点A在x轴正半轴上运动,点B在y轴负半轴上时,试探究OA-OB的值或取值范围,直接写出结果。
全等三角形中“一线三等角”模型-2023年新八年级数学核心知识点与常见题型(浙教版)(解析版)
重难点:全等三角形中“一线三等角”模型【知识梳理】图一如图一,∠D=∠BCA=∠E=90°,BC=AC 。
结论:Rt △BDC ≌Rt △CEA图二如图二,∠D=∠BCA=∠E ,BC=AC 。
结论:△BEC ≌△CDA【考点剖析】例题1.如图,∠A =∠B =90°,E 是线段AB 上一点,且AE =BC ,∠1=∠2 .(1)求证:ADE ≌BEC △;(2)若CD =10,求DEC 的面积.【详解】(1)∵12∠=∠,C D E BA∴DE CE =,∵∠A =∠B =90°,在Rt ADE △和Rt BEC △中,DE EC AE BC =⎧⎨=⎩,∴Rt ADE △≌Rt BEC △;(2)∵Rt ADE △≌Rt BEC △,∴ADE BEC ∠=∠,∵90ADE AED ∠+∠=︒,∴90AED BEC ∠+∠=︒,∴90DEC ∠=︒,∵12∠=∠,∴DE CE =,∴DEC 为等腰直角三角形,∴其斜边CD 上的高为5, ∴1105252DEC S =⨯⨯=△.【变式1】 .已知,如图,AB ⊥BD 于点B ,CD ⊥BD 于点D ,P 是BD 上一点,且AP=PC ,AP ⊥PC .(1)求证:△ABP ≌△PDC(2)若AB=3,CD=4,连接AC ,求AC 的长.【详解】(1)证明:,AB BD CD BD ⊥⊥90B D∴∠=∠=︒90BAP APB∴∠+∠=︒AP PC⊥90APB CPD∴∠+∠=︒BAP CPD∴∠=∠AP PC=()ABP PDC AAS∴≅;(2)连接AC,()ABP PDC AAS≅3,4AB BP CD===5 AP∴===在,5 Rt APC AP PC==AC∴==【变式2】如图1,∠ACB=90°,AC=BC,AD⊥MN,BE⊥MN,垂足分别为D、E.(1)求证:△ADC≌△CEB;(2)猜想线段AD、BE、DE之间具有怎样的数量关系,并说明理由;(3)题设条件不变,根据图2可得线段AD、BE、DE之间的数量关系是.(1)证明:∵AD⊥MN,BE⊥MN,∴∠CDA =∠BEC =90°.∴∠ACD +∠DAC =90°.∵∠ACB =90°,∴∠ACD +∠BCE =90°.∴∠DAC =∠ECB .在△ADC 和△CEB 中,CDA BEC DAC ECBAC CB ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△CEB .(2)AD =BE +DE .理由如下:由(1)知△ADC ≌△CEB .∴AD =CE ,CD =BE .∴AD =CE =CD +DE =BE +DE .(3)DE =AD +BE .理由:∵AD ⊥MN ,BE ⊥MN ,∴∠ADC=90°,∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACD=90°,∴∠ACD=∠CBE ,又∵∠ADC=∠CEB ,AC=CB ,∴△ADC ≌△CEB ,∴AD=CE ,CD=BE ,∵CD+CE=DE ,∴DE=AD+BE .【变式3】 已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAEAB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,===⎩∠∠⎪⎨⎪⎧∠∠BAD ACE AB ACABD CAE ,∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【变式4】已知:在△ABC 中,∠BAC=90°,AB=AC ,AE 是多点A 的一条直线,且BD ⊥AE 于D ,CE ⊥AE 于点E.当直线AE 处于如图1的位置时,有BD=DE+CE,请说明理由.当直线AE 处于如图2的位置时,则BD 、DE 、CE 的关系如何?请说明理由.解析:(1)∵BD ⊥AE,CE ⊥AE∴∠BDA=∠AEC=90°∴∠A BD+∠BAD=90°∵∠BAC=90°(2)在△ABD 和△CAE ∴∠BAD+∠EAC=90°∴∠ABD=∠EAC 在△ABD 和△CAE 中∠ADB=∠CEA=90°∠ABD=∠EAC AB=CA ∴△ABD ≌△CAE(AAS)AD=CE,BD=AE ∵AE=AD+DE ∴BD=DE+CE 中解析:∵∠B=40°[来源:学,科,网Z,X,X,K]∴∠BAD+∠BDA=140°∵∠ADE=40°∴∠CDE+∠BDA=140°∴∠BAD=∠CDE在△ABD 和△DCE 中∠B=∠C∠BAD=∠CDEAB=DC∴△ABD ≌△∠ADB=∠CEA=90°AB=CA ∴△ABD ≌△CAE (AAS )∴AD=CE,BD=AE∵AE=DE-AD ∴BD=DE-CE.例2、如图,在△ABC 中,AB=AC=2,∠B=∠C=40°,点D 在线段BC 上运动(D 不与B,C 重合),连接AD ,作∠ADE=40°,DE 交线段AC 于点E.当DC 等于多少是,△ABD ≌△DCE?请证明你的结论.DCE 【变式1】(2022秋·八年级课时练习)如图,在△ABC 中,AB =AC =9,点E 在边AC 上,AE的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A.3B .2 【答案】A 【详解】解:∵AB =AC =9,∴∠B =∠C ,∵∠ADE =∠B ,∠BAD =180°﹣∠B ﹣∠ADB ,∠CDE =180°﹣∠ADE ﹣∠ADB ,∴∠BAD =∠CDE ,∵AE 的中垂线交BC 于点D ,∴AD =ED ,在△ABD 与△DCE 中,BAD CDE B CAD ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△DCE (AAS ),∴CD =AB =9,BD =CE ,∵CD =3BD ,∴CE =BD =3故选:A .【变式2】(2022秋·八年级课时练习)如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC 的长.【答案】3.5【详解】解:∠B=∠C=∠FDE=80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD ∴∠=∠在BFD △与CDE 中,B C EDC BFDDE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.【过关检测】一.选择题1.(2021秋•九龙坡区校级期末)如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =7cm ,BE =3cm ,则DE 的长是( )A .3cmB .3.5cmC .4cmD .4.5cm【分析】根据同角的余角相等,得∠CAD =∠BCE ,再利用AAS 证明△ACD ≌△CBE ,得CD =BE =3cm ,CE =AD =7cm ,从而得出答案.【解答】解:∵AD ⊥CE ,BE ⊥CE ,∴∠BEC =∠CDA =90°,∴∠CAD+∠ACD =90°,∵∠ACB =90°,∴∠ACD+∠BCE =90°,∴∠CAD =∠BCE ,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=3cm,CE=AD=7cm,∴DE=CE﹣CD=7﹣3=4cm,故选:C.【点评】本题主要考查了等腰直角三角形的性质,全等三角形的判定与性质,证明△ACD≌△CBE是解题的关键.2.(2021秋•定远县校级期末)如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC =20,AB=8,则BE的长度为()A.12B.10C.8D.6【分析】根据一线三等角模型证明△ABE≌△ECD,可得AB=EC,即可解答.【解答】解:∵∠ABE=∠AED=90°,∴∠A+∠AEB=90°,∠AEB+∠DEC=90°,∴∠A=∠DEC,∵∠ABE=∠ECD=90°,AE=ED,∴△ABE≌△ECD(AAS),∴AB=CE=8∵BC=20,∴BE=BC﹣CE=20﹣8=12,故选:A.【点评】本题考查了等腰直角三角形,全等三角形的判定与性质,熟练掌握一线三等角模型是解题的关键.3.(2021秋•岑溪市期末)如图,在等腰直角三角形ABC中,AB=BC,∠ABC=90°,点B在直线l上,过A作AD⊥l于D,过C作CE⊥l于E.下列给出四个结论:①BD=CE;②∠BAD与∠BCE互余;③AD+CE=DE.其中正确结论的序号是()A.①②B.①③C.②③D.①②③【分析】根据同角的余角相等可得∠ABD=∠BCE,再根据“AAS”可得△ABD≌△BCE,再逐项分析可得结论.【解答】解:∵AD⊥l,CE⊥l,∴∠ADB=∠BEC=90°,∵∠ABC=90°,∴∠ABD+∠EBC=∠BCE+∠EBC=90°,即∠ABD=∠BCE,在△ABD和△BEC中,,∴△ABD≌△BCE(AAS),∴BD=CE,故①正确;∵∠BAD+∠ABD=90°,∠ABD=∠BCE,∴∠BAD+∠BCE=90°,即∠BAD与∠BCE互余,故②正确;∵△ABD≌△BCE,∴AD=EB,DB=CE,∵BE+D=DE,∴AD+CE=DE,故③正确.故选:D.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ABD≌△CBE 是解题的关键.4.(2021秋•龙湾区期中)如图,OA⊥OB,OB=4,P是射线OA上一动点,连接BP,以B为直角顶点向上作等腰直角三角形,在OA上取一点D,使∠CDO=45°,当P在射线OA上自O向A运动时,PD的长度的变化()A.一直增大B.一直减小C.先增大后减小D.保持不变【分析】过点C作CH⊥OB于H,CG⊥OA于G,利用SAS证明△OBP≌△HCB,得OB=CH=4,OP=HB,即可解决问题.【解答】解:过点C作CH⊥OB于H,CG⊥OA于G,∵△CBP是等腰直角三角形,∴BC=BP,∠CBP=90°,∴∠HBC+∠OBP=90°,∵∠CBH+∠HCB=90°,∴∠OBP=∠HCB,在△OBP和△HCB中,,∴△OBP≌△HCB(AAS),∴OB=CH=4,OP=HB,∵∠ODC=45°,CG⊥OD,∴△GCD是等腰直角三角形,∴CG=DG,∴PD=GD﹣PG=CG﹣(OP﹣4)=4+OP﹣(OP﹣4)=8,∴PD的长度保持不变,故选:D.【点评】本题主要考查了等腰直角三角形的判定与性质,全等三角形的判定与性质等知识,构造全等三角形是解题的关键.二.填空题5.(2022秋•拱墅区期中)如图,直线l上有三个边长分别为a,b,c的正方形,则有a2+c2b2(填“>”或“<”或“=”).【分析】证△EFG≌△GMH,推出FG=MH=c,GM=EF=a,再由勾股定理即可得出结论.【解答】解:如图,由正方形的性质得:∠EFG=∠EGH=∠GMH=90°,EG=GH=b,∵∠FEG+∠EGF=90°,∠EGF+∠MGH=90°,∴∠FEG=∠MGH,在△EFG和△GMH中,,∴△EFG≌△GMH(AAS),∴FG=MH=c,GM=EF=a,在Rt△EFG中,由勾股定理得:EF2+FG2=EG2,即a2+c2=b2,故答案为:=.【点评】本题考查了全等三角形的判定与性质、正方形的性质,勾股定理等知识,熟练掌握正方形的性质,证明△EFG≌△GMH是解题的关键.6.(2022秋•南陵县期末)如图,在Rt△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8cm,BE=3cm,则DE=cm.【分析】由余角的性质可证∠CAD=∠BCE,即可证明△CDA≌△BEC,可得CD=BE,CE=AD,根据DE=CE ﹣CD,即可解题.【解答】解:∵∠ACB=90°,BE⊥CE于点E,AD⊥CE于点D,∴∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,∴∠CAD=∠BCE,在△CDA和△BEC中,,∴△CDA≌△BEC(AAS),∴CD=BE,CE=AD,∵DE=CE﹣CD,∴DE=AD﹣BE,∵AD=8cm,BE=3cm,∴DE=5cm,故答案为:5.【点评】本题主要考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△CDA≌△BEC是解题的关键.7.(2021秋•台江区期末)如图,已知∠CDE=90°,∠CAD=90°,BE⊥AD于B,且DC=DE,若BE=7,AB=4,则BD的长为.【分析】利用AAS证明△ACD≌△BDE,得BE=AD,从而解决问题.【解答】解:∵BE⊥AD,∴∠EBD=∠CAD=90°,∴∠BDE+∠ADC=90°,∠BDE+∠E=90°,∴∠E=∠ADC,在△ACD和△BDE中,,∴△ACD≌△BDE(AAS),∴BE=AD,∴BD=AD﹣AB=BE﹣AB=7﹣4=3,故答案为:3.ACD≌△BDE是解题的关键.8.(2023春•城阳区期末)如图,在四边形ABCD中,AB=AD,AB⊥AD,AC⊥DC.过点B作BE⊥CA,垂足为点E.若CD=2,CE=6,则四边形ABCD的面积是.【分析】根据垂直定义可得∠ACD=∠BEA=∠DAB=90°,从而可得∠D+∠DAC=90°,∠DAC+∠EAB=90°,进而可得∠D=∠EAB,然后利用AAS证明△ADC≌△BAE,从而可得AC=BE,DC=AE=2,进而可得BE=AC=8,最后根据四边形ABCD的面积=△ADC的面积+△ABC的面积,进行计算即可解答.【解答】解:∵AB⊥AD,AC⊥DC,BE⊥CA,∴∠ACD=∠BEA=∠DAB=90°,∴∠D+∠DAC=90°,∠DAC+∠EAB=90°,∴∠D=∠EAB,∵AD=AB,∴△ADC≌△BAE(AAS),∴AC=BE,DC=AE=2,∵CE=6,∴BE=AC=AE+CE=2+6=8,∴四边形ABCD的面积=△ADC的面积+△ABC的面积=DC•AC+AC•BE=×2×8+×6×6=8+18=26,故答案为:26.【点评】本题考查了全等三角形的判定与性质,熟练掌握一线三等角全等模型是解题的关键.9.(2022•铁岭三模)如图,小虎用10块高度都是3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为cm.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可,利用全等三角形的性质进行解答.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=9cm,DC=BE=21cm,∴DE=DC+CE=30(cm),答:两堵木墙之间的距离为30cm.故答案为:30.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.10.(2021秋•北仑区期末)如图,等边三角形ABC中,放置等边三角形DEF,且点D,E分别落在AB,BC上,AD=5,连结CF,若CF平分∠ACB,则BE的长度为.【分析】如图,在BC上截取EG=BD,连接FG,根据SAS证明△BED≌△GFE,得FG=CG=BE,最后证明AD=2BE可得结论.【解答】解:如图,在BC上截取EG=BD,连接FG,∵△ABC和△DEF是等边三角形,∴DE=EF,AB=BC,∠DEF=∠B=∠ACB=60°,∵∠DEC=∠BDE+∠B=∠DEF+∠FEG,∴∠BDE=∠FEG,在△BED和△GFE中,,∴△BED≌△GFE(SAS),∴∠B=∠EGF=60°,BE=FG,∵FC平分∠ACB,∴∠ACF=∠ECF=30°,∵∠EGF=∠GFC+∠FCG,∴∠GFC=∠GCF=30°,∴FG=CG=BE,∵AB=BC,BD=EG,∴AD=BE+CG=2BE=5,∴BE=2.5.故答案为:2.5.【点评】本题考查了等边三角形性质,全等三角形判定和性质,解决问题的关键是作辅助线,构造三角形全等.三.解答题11.(2021秋•嵊州市期末)【问题提出】(1)已知:如图1,AD⊥DE于点D,BE⊥DE于点E,点C在线段DE上,AC=BC且AC⊥BC,求证:△ADC≌△CEB.【问题解决】(2)如图2,点D,C,E在直线l上.点A,B在l的同侧,AC⊥BC,若AD=AC=BC=BE=5cm,CD =6cm,求CE的长.【分析】(1)根据同角的余角相等可得∠A=∠BCE,然后利用AAS即可证明结论;(2)作AG⊥CD于G,BH⊥CE于H,根据等腰三角形的性质得CG=3cm,利用勾股定理得AG=4cm,由(1)同理得,△ACG≌△CBH(AAS),得CH=AG=4cm,从而得出答案.【解答】(1)证明:∵AD⊥DE于点D,BE⊥DE,∴∠D=∠E=90°,∴∠ACD+∠BCE=90°,∠ACD+∠A=90°,∴∠A=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);(2)解:作AG⊥CD于G,BH⊥CE于H,∵AD=AC,AG⊥CD,∴CG=3cm,在Rt△ACG中,由勾股定理得,AG=4cm,由(1)同理得,△ACG≌△CBH(AAS),∴CH=AG=4cm,∵BC=BE,BH⊥CE,∴CE=2CH=8cm.【点评】本题主要考查了全等三角形的判定与性质,等腰三角形的性质,勾股定理等知识,熟练掌握基本几何模型是解题的关键.12.(2022秋•青田县校级月考)如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:△BEC≌△CDA.【分析】根据垂直的定义以及等量代换可知∠CBE=∠ACD,根据已知条件∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,根据全等三角形的判定AAS即可证明△BEC≌△CDA.【解答】证明:∵BE⊥CE于E,AD⊥CE于D,∴∠BEC=∠CDA=90°,在Rt△BEC中,∠BCE+∠CBE=90°,在Rt△BCA中,∠BCE+∠ACD=90°,∴∠CBE=∠ACD,在△BEC和△CDA中,∠BEC=∠CDA,∠CBE=∠ACD,BC=AC,∴△BEC≌△CDA.【点评】本题考查了全等三角形的判定定理,本题根据AAS证明两三角形全等,难度适中.13.(2021秋•安陆市校级月考)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.【分析】(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,则∠ADC=∠CEB =90°,根据等角的余角相等得到∠ACD=∠CBE,易得Rt△ADC≌Rt△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根据等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE﹣CD=AD﹣BE.(3)DE、AD、BE具有的等量关系为:DE=BE﹣AD.证明的方法与(2)相同.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)证明:在△ADC和△CEB中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.【点评】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了直角三角形全等的判定与性质.14.(2021秋•南丹县期末)如图1,∠ABC=90°,F A⊥AB于点A,D是线段AB上的点,AD=BC,AF=BD.(1)判断DF与DC的数量关系为,位置关系为.(2)如图2,若点D在线段AB的延长线上,过点A在AB的另一侧作AF⊥AB,并截取AF=BD,连接DC,DF,CF,试说明(1)中结论是否成立,并说明理由.【分析】(1)利用SAS证明△ADF≌△BCD,得DF=CD,∠ADF=∠BCD,从而得出∠ADF+∠CDB=90°,即可证明结论;(2)由(1)同理得△ADF≌△BCD,得DF=CD,∠ADF=∠BCD,从而得出∠ADF+∠CDB=90°,即∠CDF =90°.【解答】解:(1)∵AF⊥AB,∴∠DAF=90°,在△ADF与△BCD中,,∴△ADF≌△BCD(SAS),∴DF=CD,∠ADF=∠BCD,∵∠BCD+∠CDB=90°,∴∠ADF+∠CDB=90°,即∠CDF=90°,∴CD⊥DF,故答案为:相等,垂直;(2)成立,理由如下:∵AF⊥AB,∴∠DAF=90°,∵∠ABC=90°,∴∠CBD=90°,∴∠DAF=∠CBD,在△ADF与△BCD中,,∴△ADF≌△BCD(SAS),∴DF=CD,∠ADF=∠BCD,∵∠BCD+∠CDB=90°,∴∠ADF+∠CDB=90°,即∠CDF=90°,∴CD⊥DF.【点评】本题主要考查全等三角形的判定与性质,熟悉基本的一线三等角模型是解题的关键.15.(2021秋•东至县期末)如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,若DE=10,BD=3,求CE的长.【分析】由∠AEC=∠BAC=α,推出∠ECA=∠BAD,再根据AAS证明△BAD≌△ACE得CE=AD,AE=BD=3,即可得出结果.【解答】解:∵∠AEC=∠BAC=α,∴∠ECA+∠CAE=180°﹣α,∠BAD+∠CAE=180°﹣α,∴∠ECA=∠BAD,在△BAD与△ACE中,,∴△BAD≌△ACE(AAS),∴CE=AD,AE=BD=3,∵DE=AD+AE=10,∴AD=DE﹣AE=DE﹣BD=10﹣3=7.∴CE=7.【点评】本题考查了全等三角形的判定与性质,证明△BAD≌△ACE是解题的关键.16.(2022秋•沭阳县月考)已知:如图,AB⊥BD,ED⊥BD,C是BD上的一点,AC⊥CE,AB=CD,求证:BC=DE.【分析】根据直角三角形全等的判定方法,ASA即可判定三角形全等.【解答】证明:∵AB⊥BD,ED⊥BD AC⊥CE(已知)∴∠ACE=∠B=∠D=90°(垂直的意义)∵∠BCA+∠DCE+∠ACE=180°(平角的意义)∠ACE=90°(已证)∴∠BCA+∠DCE=90°(等式性质)∵∠BCA+∠A+∠B=180°(三角形内角和等于180°)∠B=90°(已证)∴∠BCA+∠A=90°(等式性质)∴∠DCE=∠A (同角的余角相等)在△ABC和△CDE中,,∴△ABC≌△CDE(ASA)∴BC=DE.(全等三角形对应边相等)【点评】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.17.(2022•鹿城区二模)如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.【分析】(1)根据AAS可证明△ABD≌△DCE;(2)得出AB=DC=5,CE=BD=3,求出AC=5,则AE可求出.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△ABD与△DCE中,,∴△ABD≌△DCE(AAS);(2)解:∵△ABD≌△DCE,∴AB=DC=5,CE=BD=3,∵AC=AB,∴AC=5,∴AE=AB﹣EC=5﹣3=2.【点评】本题考查了全等三角形的判定与性质,等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.18.(2022秋•浠水县期中)已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.【分析】(1)利用平角的定义和三角形内角和定理得∠CAE=∠ABD,再利用AAS证明△ABD≌△CAE,得BD =AE,CE=AD;(2)由(1)同理可得△ABD≌△CAE,得BD=AE,CE=AD,可得答案;(3)分△DAB≌△ECA或△DAB≌△EAC两种情形,分别根据全等三角形的性质可解决问题.【解答】解:(1)∵∠BDA=∠AEC=∠BAC,∴∠BAD+∠CAE=∠BAD+∠ABD,∴∠CAE=∠ABD,∵∠BDA=∠AEC,BA=CA,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,故答案为:BD=AE,CE=AD;(2)DE=BD+CE,由(1)同理可得△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∴DE=BD+CE;(3)存在,当△DAB≌△ECA时,∴AD=CE=2cm,BD=AE=7cm,∴t=1,此时x=2;当△DAB≌△EAC时,∴AD=AE=4.5cm,DB=EC=7cm,∴t=,x=7÷=,综上:t=1,x=2或t=,x=.【点评】本题是三角形综合题,主要考查了全等三角形的判定与性质,熟练掌握一线三等角基本模型是解题的关键,同时渗透了分类讨论的数学思想.19.(2021秋•岳阳楼区期末)直线l经过点A,△ABC在直线l上方,AB=AC.(1)如图1,∠BAC=90°,过点B,C作直线l的垂线,垂足分别为D、E.求证:△ABD≌△CAE;(2)如图2,D,A,E三点在直线l上,若∠BAC=∠BDA=∠AEC=α(α为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明;(3)如图3,∠BAC=90°过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作∠DAE=90°,使得AE=AD,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.【分析】(1)由直角三角形的性质证出∠ABD=∠CAE,可证明△ABD≌△CAE(AAS);(2)证明△ABD≌△CAE(AAS),由全等三角形的性质得出BD=AE,DA=EC,则可得出结论;(3)分别过点C、E作CM⊥l,EN⊥l,由(1)可知△ABF≌△CAM,△ADF≌△EAN,得出AF=CM,AF=EN,证明△CMG≌△ENG(AAS),由全等三角形的性质得出CG=EG,则可得出结论.【解答】(1)证明:∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°,∴∠ABD+∠DAB=90°,∵∠BAC=90°,∴∠CAE+∠DAB=90°,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS);(2)解:猜想:DE=BD+CE,∵∠BDA=∠BAC=α,∴∠ABD+∠DAB=180°﹣∠BDA=180°﹣α,∠CAE+∠DAB=180°﹣∠BAC=180°﹣α,∴∠ABD=∠CAE,在△ABD与△CAE中,,∴△ABD≌△CAE(AAS),∴BD=AE,DA=EC,∴DE=AE+DA=BD+CE;(3)证明:分别过点C、E作CM⊥l,EN⊥l,由(1)可知△ABF≌△CAM,△≌△EAN,∴AF=CM,AF=EN,∴CM=EN,∵CM⊥l,EN⊥l,∴∠CMG=∠ENG=90°,在△CMG与△ENG中,,∴△CMG≌△ENG(AAS),∴CG=EG,∴G为CE的中点.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.20.(2021秋•涡阳县期末)如图,把一块直角三角尺ABC的直角顶点C放置在水平直线MN上,在△ABC 中,∠C=90°,AC=BC,试回答下列问题:(1)若把三角尺ABC绕着点C按顺时针方向旋转,当AB∥MN时,∠2=度;(2)在三角尺ABC绕着点C按顺时针方向旋转过程中,分别作AM⊥MN于M,BN⊥MN与N,若AM =6,BN=2,求MN.(3)三角尺ABC绕着点C按顺时针方向继续旋转到图3的位置,其他条件不变,则AM、BN与MN之间有什么关系?请说明理由.【分析】(1)先求出∠B=45°,再用平行线的性质,即可求出答案;(2)先用同角的余角相等判断出∠2=∠CAM,同理:∠1=∠CBN,进而判断出△AMC≌△CNB(ASA),得出AM=CN,MC=BN(3)同(2)的方法,即可得出结论.【解答】解:(1)在△ABC中,AB=AC,∠ACB=90°,∴∠B=∠A=45°,∵AB∥MB,∴∠2=∠B=45°,故答案为45;(2)∵AM⊥MN于M,BN⊥MN于N,∴∠AMC=90°,∠BNC=90°.∴∠1+∠CAM=90°,又∵∠1+∠2=90°,∴∠2=∠CAM,同理:∠1=∠CBN,在△AMC和△CNB中,,∴△AMC≌△CNB(ASA),∴AM=CN,MC=BN,∴MN=MC+CN=AM+BN=2+6=8;(3)MN=BN﹣AM,理由:同(2)的方法得,△AMC≌△CNB(ASA),∴AM=CN,MC=BN,∴MN=MC﹣CN=BN﹣AM.【点评】此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,同角的余角相等,判断出△AMC≌△CNB是解本题的关键.21.(2022•信阳模拟)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(3)先由α=120°和AF平分∠BAC得到∠BAF=∠CAF=60°,然后结合AB=AF=AC得到△ABF和△ACF 是等边三角形,然后得到FA=FC、∠FCA=∠FAB=60°,然后结合△BDA≌△EAC得到∠BAD=∠ACE、AD =CE,从而得到∠FAD=∠FCE,故可证△FAD≌△FCE,从而得到DF=EF、∠DFA=∠EFC,最后得到∠DFE=∠DFA+∠AFE=∠EFC+∠AFE=60°,即可得证△DEF是等边三角形.【解答】解:(1)DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)△DEF是等边三角形,理由如下,∵α=120°,AF平分∠BAC,∴∠BAF=∠CAF=60°,∵AB=AF=AC,∴△ABF和△ACF是等边三角形,∴FA=FC,∠FCA=∠FAB=∠AFC=60°,同(2)可得,△BDA≌△AEC,∴∠BAD=∠ACE,AD=CE,∴∠FAD=∠FCE,∴△FAD≌△FCE(SAS),∴DF=EF,∠DFA=∠EFC,∴∠DFE=∠DFA+∠AFE=∠EFC+∠AFE=∠AFC=60°,∴△DEF是等边三角形.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质,解题的关键是熟练应用一线三等角模型证明三角形全等.22.(2022秋•东台市月考)【一线三等角模型】如图1:点A、B、C在一条直线上,∠A=∠DBE=∠C,当BD=BE时,有△ABD≌△CEB.理由:∵∠A=∠DBE,∴∠D+∠DBA=180°﹣∠A,∠DBA+∠CBE=180°﹣∠DBE,∴∠D=∠CBE﹣﹣﹣﹣﹣﹣﹣﹣请将全等证明过程补充完整.【模型运用】如图2:∠ABC=∠CAD=90°,AB=4,AC=AD,求△BAD的面积;【能力提升】如图3:在等边△DEF中,A,C分别为DE、DF边上的动点,AE=2CD,连接AC,以AC 为边在△DEF内作等边△ABC,连接BF,当点A从点E向点D运动(不与点D重合)时,∠CFB的度数变化吗?如不变请求出它的度数,如变化,请说明它是怎样变化的?【分析】【一线三等角模型】如图1:根据AAS证明三角形全等即可;【模型运用】如图2:过点D作DT⊥BA交BA的延长线于点T.构造全等三角形解决问题即可;【能力提升】∠CFB=30°不变.如图3中,在CF上取一点N,使得FN=DC.证明△ADC≌△CNB(SAS),推出BN=CD,∠D=∠BNC=60°,可得结论.【解答】【一线三等角模型】证明:如图1:∵∠A=∠DBE,∴∠D+∠DBA=180°﹣∠A,∠DBA+∠CBE=180°﹣∠DBE,∴∠D=∠CBE,在△ABD和△CEB中,,∴△ABD≌△CEB(AAS);【模型运用】解:如图2:过点D作DT⊥BA交BA的延长线于点T.同法可证△ATD≌△CBA(AAS),∴DT=AB=4,∴S△ABD=×AB×DT=×4×4=8;【能力提升】解:∠CFB=30°不变.理由:如图3中,在CF上取一点N,使得FN=DC.∵△ABC,△DEF都是等边三角形,∴∠D=∠ACB=60°,DA=DF,CA=CB,∵AE=2CD,CD=FN,∴DA=CN,∵∠ACN=∠ACB+∠BCN=∠D+∠CAD,∴∠BCN=∠DAC,在△ADC和△CNB中,,∴△ADC≌△CNB(SAS),∴BN=CD,∠D=∠BNC=60°,∵NF=CD,∴NB=NF,∴∠NBF=∠NFB,∵∠BNC=∠NBF+∠NFB=60°,∴∠NFB=∠NBF=30°,∴∠CFB=30°.【点评】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造一线三等角模型,利用全等三角形解决问题.23.(2021秋•江汉区期末)如图,在等边△ABC中,D,E分别为AB,BC边上的点,DE=EF,∠DEF=60°.(1)如图1,若点F在AC边上,求证:AD=CF;(2)如图2,连CF.若∠FCB=30°,求证:AD=2BE;(3)如图3,O是BC的中点,点H在△ABC内,∠BHC=120°,点M,N分别在CH,BH上,MO⊥NO,若∠CAM=α,直接写出∠BAN的度数(用含有α的式子表示).【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可得出,∠AFD=∠FEC,所以△ADF≌△CFE(AAS),则AD=CF;(2)过点F作JK∥AC交AB于点J,交BC于点K,过点F作PI∥AB交AC于P,交BC于点I,连接DF,则△BJK和△CPI是等边三角形,△BDE≌△JFD≌KEF,所以DJ=BE=FK,因为AB∥PI,FK∥AC,所以四边形AJFP是平行四边形,则AJ=PF,易得△CPI为等边三角形,由∠FCB=30°可得CF平分∠PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE;(3)延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,先得到△BOG≌△COM(SAS),再得到△ACQ≌△ABN(SAS)和△BNG≌△CQM(SAS),所以∠NAM=∠MAQ =∠CAM+∠CAQ=∠CAM+∠BAN,所以∠CAM+∠BAN=30°,则∠CAM=α,所以∠BAN=30°﹣α.【解答】(1)证明:如图,连接DF,∵DE=EF,∠DEF=60°,∴△DEF是等边三角形,∴DF=EF,∵△ABC是等边三角形,∴∠A=∠C=60°,∵∠AFE=∠AFD+∠DFE=60°+∠AFD,∠AFE=∠C+∠EFC=60°+∠FEC,∴∠AFD=∠FEC,∵∠A=∠C,DF=EF,∴△ADF≌△CFE(AAS),∴AD=CF;(2)证明:如图,过点F作JK∥AC交AB于点J,交BC于点K,过点F作PI∥AB交AC于P,交BC于点I,连接DF,∴∠BJK=∠BAC=∠BKJ=∠ACB=60°=∠ABC,∠CPI=∠BAC=∠B=∠CIP=60°=∠ACB,∴△BJK和△CPI是等边三角形,∵∠DEF=60°,DE=EF,∴△DEF是等边三角形,由(1)中结论可知,△BDE≌△JFD≌KEF,∴DJ=BE=FK,∵AB∥PI,FK∥AC,∴四边形AJFP是平行四边形,∴AJ=PF,∵∠FIK=∠FKI=60°,∴FI=FK,∵△CPI为等边三角形,∠FCB=30°,∴∠FCI=∠FCP=30°,∴CF平分∠PCI,∵△CPI是等边三角形,∴FI=FP,∵FP=AJ,FK=BE=DJ,FI=FK,∴AJ=DJ=BE,即AD=AJ+DJ=(3)解:如图,延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,∵MO⊥NO,OM=OG,∴NG=MN,∵MO=OG,BO=OC,∠MOC=∠BOG,∴△BOG≌△COM(SAS),∴BG=CM,∠GBO=∠OCM,∴BG∥CM,∴∠NBG=180°﹣∠BHC=60°,∵BHC=120°,∴∠HBC+∠HCB=60°,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∴∠ABH+∠HBC=∠ACH+∠HCB=60°,∴∠ABH=∠HCB,∠HBC=∠ACH,∵∠ACQ=∠ABN,AB=AC,BN=CQ,∴△ACQ≌△ABN(SAS),∴AN=AQ,∠BAN=∠CAQ,∵∠ACB=∠ACH+∠BCH=60°,∠ABN=∠BCH=∠ACQ,∴∠MCQ=∠ACM+∠ACQ=∠ACH+∠BCH=60°=∠NBG,∵BN=CQ,BG=CM,∴△BNG≌△CQM(SAS),∴NG=MQ,∵NG=NM,∴MQ=MN,∵AN=AQ,AM=AM,∴△NAM≌△QAM(SSS),∴∠NAM=∠MAQ=∠CAM+∠CAQ=∠CAM+∠BAN,又∵∠NAM+∠CAM+∠BAN=60°,∴∠CAM+∠BAN=30°,∴∠CAM=α,∴∠BAN=30°﹣α.【点评】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键.。
12.2三角形全等的判定-一线三等角全等模型(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与“一线三等角”全等模型相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器来构造满足“一线三等角”条件的三角形,并验证它们的全等关系。
3.能够运用“一线三等角”全等模型解决实际问题,如几何图形的拼接、角度的求解等。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.增强空间观念:通过“一线三等角”全等模型的探究,使学生能够把握图形的空间特征,提高空间想象力和直观感知能力。
2.提升逻辑推理能力:在学习SSA判定方法的过程中,培养学生严谨的逻辑思维,让学生学会从特殊到一般、从具体到抽象的分析和解决问题。
- SSA判定方法的应用:重点讲解在已知一边和两个角(其中一个为非夹角)的情况下,如何判定两个三角形全等,并强调在应用时需要注意角的对应关系。
-实际问题的解决:将全等知识应用于解决实际问题,如测量、建筑、艺术等领域的问题。
举例:在讲解“一线三等角”全等模型时,可以给出以下例题进行强调:
问题:在直线MN上,有∠AMN=∠BPN=∠CQO=90°,AB=BC,证明△ABC全等于△PQN。
其次,实践活动中的分组讨论环节,我发现有些学生参与度不高,可能是由于主题难度较大或者他们对讨论的主题不够感兴趣。针对这个问题,我计划在下次的活动中,提供更多元化的讨论主题,或者引入一些竞争机制,以提高学生的参与度和积极性。
在学生小组讨论环节,我发现很多学生能够提出有见地的观点,但他们的表达和逻辑推理能力还有待提高。在接下来的教学中,我将更加注重培养学生的表达能力和逻辑思维,通过提问和引导,帮助他们更好地组织语言和思考。
第12章:一线三等角与全等三角形
第12章:一线三等角与全等三角形-CAL-FENGHAI.-(YICAI)-Company One12一线三等角与全等三角形一、一线三等角概念“一线三等角”指的是有三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。
二、一线三等角的类型同侧:锐角 直角 钝角异侧:三、“一线三等角”的性质当∠1=∠2=∠3,且当等角所对的边相等时,则两个三角形全等. 如右图,若 CE=ED ,则△AEC ≌△BDE. 四、“一线三等角”的应用 1.适用于直角的情况例1:在ABC Rt ∆中,︒=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F .(1)当直线l 绕点C 旋转到如图1的位置时,○1图中有几对相等的锐角 ○2求证:AEC ∆≌CFB ∆; ○3试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; (3)当直线l 绕点C 旋转到如图3的位置时,试探究AE 、BF 、EF 之间的数量关系,不必说明理由.图1 图2 图3lFE BACl FEBAC lFEBAC DCCDC D BADB CAAB3巩固提高1:1.如图,ABC ∆是等腰三角形,DE 过直角顶点A ,︒=∠=∠90E D ,则下列结论正确的个数有( )○1AE CD =; ○221∠=∠; ○3︒=∠+∠9043; ○4BE AD =. (A )1个 (B )2个 (C )3个 (D )4个2.适用于锐角或钝角的情况例2:如图,在△ABC 中,AB =AC ,BD =CF ,BE =CD ,若∠A =40°,则∠EDF 的度数为( )A.75°B.70°C.65°D.60° ?演练题:1.如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F .若25=AB ,4=AE ,则=EF __________.2.如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且CD AE ⊥于点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE ,则=AB _________.3.如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若︒=∠45BED ,4=AE ,则=AB ___________.4321EB DC Al F EBACEC DBAEC DAB4.(1)已知△ABC是直角三角形,∠BAC=90°,AB=AC,直线l经过点A,分别从点B、C向直线l作垂线,垂足分别为D、E.当点B,C位于直线l的同侧时(如图1),易证△ABD≌△CAE.如图2,若点BC在直线l的异侧,其它条件不变,△ABD≌△CAE是否依然成立若成立,请写出证明过程;若不成立,请说明理由.(2)变式一:如图3,△ABC中,AB=AC,直线l经过点A,点D、E分别在直线l上,点B、C 位于l的同一侧,如果∠CEA=∠ADB=∠BAC,求证:△ABD≌△CAE.(3)变式二:如图4,△ABC中,依然有AB=AC,若点B,C位于l的两侧,如果∠BDA+∠BAC =180°,∠BDA=∠AEC,求证:BD=CE+DE.5.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;4。
专题2 全等模型——一线三等角(K字)
初中数学 ︵一线三等角 ︶培优篇全等三角形在中考数学几何模块中占据着重要地位,也是必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握.【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等.【常见模型及证法】 同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角 条件:A CED B + CE=DE证明思路:,A B C BED +任一边相等⇒△BED ≅△ACE例1.(1)如图1,已知:在△ABC 中,90BAC AB AC ,,直线m 经过点A ,BD 直线m ,CE 直线m ,垂足分别为点D 、E .证明:DE BD CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB AC ,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC ,其中α为任意钝角,请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.初中数学 ︵ 一线三等角 ︶培优篇例2.在直线m 上依次取互不重合的三个点D 、A 、E ,在直线m 上方有AB AC ,且满足BDA AEC BAC .(1)如图1,当90 时,猜想线段,,DE BD CE 之间的数量关系是____________; (2)如图2,当0180 时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;初中数学 ︵ 一线三等角 ︶培优篇 例3.如图(1)AB =9cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =7cm ,点P 在线段AB 上以2cm /s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动,它们运动的时间为t (s ).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,请说明理由;(2)在(1)的前提条件下,判断此时线段PC 和线段PQ 的位置关系,并证明; (3)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB ”为改“∠CAB =∠DBA =50°”,其他条件不变.设点Q 的运动速度为xcm /s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.初中数学 ︵ 一线三等角 ︶培优篇【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等.【常见模型及证法】 异侧型一线三等角:锐角一线三等角 直角一线三等角 钝角一线三等角条件:FAC ABD CED + 任意一边相等证明思路:,A B C BED +任一边相等⇒△BED ≅△ACE例1.老师在上课时,在黑板上写了一道题:“如图,ABCD 是正方形,点E 在BC 上,DF ⊥AE 于F ,请问图中是否存在一组全等三角形?”小杰同学经过思考发现:△ADF ≌△EAB .理由如下:因为ABCD 是正方形(已知)所以∠B =90°且AD =AB 和AD ∥BC 又因为DF ⊥AE (已知)即∠DF A =90°(垂直的意义) 所以∠DF A =∠B (等量代换)又AD ∥BC 所以∠1=∠2(两直线平行,内错角相等)在△ADF 和△EAB 中12DFA B AD AB所以△ADF ≌△EAB (AAS )小胖却说这题是错误的,这两个三角形根本不全等.初中数学 ︵ 一线三等角 ︶培优篇 你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF 全等的三角形,请能说出此线段的做法吗?并说明理由.初中数学 ︵ 一线三等角 ︶培优篇 例2.过正方形ABCD (四边都相等,四个角都是直角)的顶点A 作一条直线MN .(1)当MN 不与正方形任何一边相交时,过点B 作BE MN 于点E ,过点D 作DF MN 于点F 如图(1),请写出EF ,BE ,DF 之间的数量关系,并证明你的结论.(2)若改变直线MN 的位置,使MN 与CD 边相交如图(2),其它条件不变,EF 、BE 、DF 的关系会发生变化,请直接写出EF 、BE 、DF 的数量关系,不必证明;(3)若继续改变直线MN 的位置,使MN 与BC 边相交如图(3),其它条件不变,EF 、BE 、DF 的关系又会发生变化,请直接写出EF 、BE 、DF 的数量关系,不必证明.初中数学 ︵ 一线三等角 ︶培优篇1.如图,在△ABC 中,AB =AC =9,点E 在边AC 上,AE 的中垂线交BC 于点D ,若∠ADE =∠B ,CD =3BD ,则CE 等于( )A .3 B.22.如图,桌面上竖直放置着一个等腰直角三角板面的距离分别为AD 、BE .(1)求证:ADC CEB △≌△3.(1)【问题发现】如图1,△ABC 与△CDE 中,∠B =∠E =∠ACD =90°,AC =CD ,B 、C 、E 三点在同一直线上,AB =3,ED =4,则BE =_____.(2)【问题提出】如图2,在Rt △ABC 中,∠ABC =90°,BC =4,过点C 作CD ⊥AC ,且CD =AC ,求△BCD 的面积.初中数学 ︵ 一线三等角 ︶培优篇4.已知:CD是经过∠BCA 的顶点C 的一条直线,CA =CB ,E 、F 是直线CD 上两点,∠BEC =∠CF A =∠α.(1)若直线CD 经过∠BCA 的内部,∠BCD >∠ACD .①如图1,∠BCA =90°,∠α=90°,写出BE ,EF ,AF 间的等量关系: . ②如图2,∠α与∠BCA 具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA 的数量关系 .(2)如图3.若直线CD 经过∠BCA 的外部,∠α=∠BCA ,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.初中数学 ︵ 一线三等角 ︶培优篇。
第12章:一线三等角与全等三角形
一线三等角与全等三角形一、一线三等角概念“一线三等角”指的是有三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。
二、一线三等角的类型同侧:锐角 直角 钝角 异侧:三、“一线三等角”的性质当∠1=∠2=∠3,且当等角所对的边相等时,则两个三角形全等. 如右图,若 CE=ED ,则△AEC ≌△BDE. 四、“一线三等角”的应用 1.适用于直角的情况例1:在ABC Rt ∆中,︒=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F . (1)当直线l 绕点C 旋转到如图1的位置时,○1图中有几对相等的锐角? ○2求证:AEC ∆≌CFB ∆; ○3试探究AE 、BF 、EF 之间的数量关系,并说明理由; (2)当直线l 绕点C 旋转到如图2的位置时,试探究AE 、BF 、EF 之间的数量关系,并说明理由; (3)当直线l 绕点C 旋转到如图3的位置时,试探究AE 、BF 、EF 之间的数量关系,不必说明理由.图1 图2 图3lFE B ACl FEB AC lFEBAC DCCA BD C D BAD B CAACB巩固提高1:1.如图,ABC ∆是等腰三角形,DE 过直角顶点A ,︒=∠=∠90E D ,则下列结论正确的个数有( ) ○1AE CD =; ○221∠=∠; ○3︒=∠+∠9043; ○4BE AD =. (A )1个 (B )2个 (C )3个 (D )4个2.适用于锐角或钝角的情况例2:如图,在△ABC 中,AB =AC ,BD =CF ,BE =CD ,若∠A =40°,则∠EDF 的度数为( ) A. 75° B. 70° C. 65° D. 60° 演练题:1.如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,直线l 经过点C ,且l AE ⊥于点E ,l BF ⊥于点F .若25=AB ,4=AE ,则=EF __________.2.如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,点D 为斜边AB 上一点,且CD AE ⊥于点E ,CD BF ⊥交CD 的延长线于点F .若2:1:=AE BF ,4=AE ,则=AB _________.3.如图,在ABC Rt ∆中,︒=∠90ACB ,BC AC =,点D 为斜边AB 上一点,连接CD ,过点A 作CD AE ⊥于点E .若︒=∠45BED ,4=AE ,则=AB ___________.4321EB DC Al F EBACFEC DBAEC DAB4.(1)已知△ABC是直角三角形,∠BAC=90°,AB=AC,直线l经过点A,分别从点B、C向直线l作垂线,垂足分别为D、E.当点B,C位于直线l的同侧时(如图1),易证△ABD≌△CAE.如图2,若点BC在直线l的异侧,其它条件不变,△ABD≌△CAE是否依然成立?若成立,请写出证明过程;若不成立,请说明理由.(2)变式一:如图3,△ABC中,AB=AC,直线l经过点A,点D、E分别在直线l上,点B、C位于l的同一侧,如果∠CEA=∠ADB=∠BAC,求证:△ABD≌△CAE.(3)变式二:如图4,△ABC中,依然有AB=AC,若点B,C位于l的两侧,如果∠BDA+∠BAC=180°,∠BDA=∠AEC,求证:BD=CE+DE.5.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B 运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;。
全等模型:一线三等角(K字)2023-2024学年八年级数学上册常见几何模型解读(浙教版)解析版
全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。
模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角 直角一线三等角(“K 型图”) 钝角一线三等角条件:A CED B ∠=∠=∠+ CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE ⇒≅ ,已知:在ABC 中,【答案】(1)见解析;(2)成立,见解析【分析】(1)根据AAS 可证明ADB CEA ≌,可得AE BD AD CE ==,,可得DE BD CE =+.(2)由已知条件可知180BAD CAE α∠+∠=︒−,180DBA BAD α∠+∠=︒−,可得DBA CAE ∠=∠,结合条件可证明ADB CEA ≌,同(1)可得出结论.【详解】证明:(1)如图1,∵BD ⊥直线m ,CE ⊥直线m ,∴90BDA CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴CAE ABD ∠=∠,在ADB 和CEA 中,BDA CEA CAE ABDAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADB CEA ≌△△,∴AE BD AD CE ==,,∴DE AE AD BD CE =+=+;(2)如图2,∵BDA BAC α∠=∠=,∴180DBA BAD BAD CAE ∠∠∠∠α+=+=︒−,∴DBA CAE ∠=∠,在ADB 和CEA 中,BDA CEA CAE ABDAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADB CEA ≌△△,∴AE BD AD CE ==,,∴DE AE AD BD CE =+=+.【点睛】本题主要考查了全等三角形的判定和性质,由条件证明三角形全等得到AE BD AD CE ==,是解题的关键.例2.(2023春·上海·七年级专题练习)在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE △的面积之和.【答案】(1)DE =BD+CE(2)DE =BD+CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD+∠EAC =∠BAD+∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD+CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD+∠EAC =∠BAD+∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD+CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【详解】(1)解:DE =BD+CE ∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD+∠EAC =∠BAD+∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD+AE =BD+CE ,故答案为:DE =BD+CE .(2)DE =BD+CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD+∠EAC =∠BAD+∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD+AE =BD+CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC•h =12,S △ABF =12BF•h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF+S △ABD =S △FBD+S △ACE =4,∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质,三角形的面积,解题的关键是熟练掌握全等三角形的判定与性质.【答案】(1)△ACP 与△BPQ 全等,理由见解析;(2)PC ⊥PQ ,证明见解析;(3)存在,当t =1s ,x =2cm/s或t =94s ,x =289cm/s 时,△ACP 与△BPQ 全等.【分析】(1)利用SAS 定理证明ACP BPQ ∆≅∆;(2)根据全等三角形的性质判断线段PC 和线段PQ 的位置关系;(3)分ACP BPQ ∆≅∆,ACP BQP ∆≅∆两种情况,根据全等三角形的性质列式计算.【详解】(1)△ACP 与△BPQ 全等,理由如下:当t =1时,AP =BQ =2,则BP =9﹣2=7,∴BP =AC ,又∵∠A =∠B =90°,在△ACP 和△BPQ 中,AP BQ A B CA PB =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS );(2)PC ⊥PQ ,证明:∵△ACP ≌△BPQ ,∴∠ACP =∠BPQ ,∴∠APC+∠BPQ =∠APC+∠ACP =90°.∴∠CPQ =90°,即线段PC 与线段PQ 垂直;(3)①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴9﹣2t =7,解得,t =1(s ),则x =2(cm/s );②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,则2t =12×9,解得,t =94(s ),则x =7÷94=289(cm/s ),故当t =1s ,x =2cm/s 或t =94s ,x =289cm/s 时,△ACP 与△BPQ 全等.【点睛】本题考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分 类讨论思想的灵活运用是解题的关键.例4.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ∠=︒,AC BC =,直线l 过点C ,过点A 作AD l ⊥,过点B 作BE l ⊥,垂足分别为D 、E .求证:CD BE =.(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为()4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x =−+与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45︒后,所得的直线交x 轴于点R .求点R 的坐标.【答案】(1)见详解;(2)点M 的坐标为(1,3);(3)R (203,0)【分析】(1)先判断出∠ACB=∠ADC ,再判断出∠CAD=∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(2)过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,判断出MF=NG ,OF=MG ,设M (m ,n )列方程组求解,即可得出结论;(3)过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,先求出OP=4,由y=0得x=1,进而得出Q (1,0),OQ=1,再判断出PQ=SQ ,即可判断出OH=5,SH=OQ=1,进而求出直线PR 的解析式,即可得出结论.【详解】(1)证明:∵∠ACB =90°,AD ⊥l ,∴∠ACB =∠ADC .∵∠ACE =∠ADC+∠CAD ,∠ACE =∠ACB+∠BCE ,∴∠CAD =∠BCE ,∵∠ADC =∠CEB =90°,AC =BC .∴△ACD ≌△CBE ,∴CD =BE ,(2)解:如图2,过点M 作MF ⊥y 轴,垂足为F ,过点N 作NG ⊥MF ,交FM 的延长线于G ,由已知得OM =ON ,且∠OMN =90°,∴由(1)得△OFM ≌△MGN ,∴MF =NG ,OF =MG ,设M (m ,n ),∴MF =m ,OF =n ,∴MG =n ,NG =m ,∵点N 的坐标为(4,2)∴42m n n m +=⎧⎨−=⎩解得13m n =⎧⎨=⎩∴点M 的坐标为(1,3);(3)如图3,过点Q 作QS ⊥PQ ,交PR 于S ,过点S 作SH ⊥x 轴于H ,对于直线y =﹣4x+4,由x =0得y =4,∴P (0,4),∴OP =4,由y =0得x =1,∴Q (1,0),OQ =1,∵∠QPR =45°,∴∠PSQ =45°=∠QPS .∴PQ =SQ .∴由(1)得SH =OQ ,QH =OP .∴OH =OQ+QH =OQ+OP =4+1=5,SH =OQ =1.∴S (5,1),设直线PR 为y =kx+b ,则451b k b =⎧⎨+=⎩,解得435b k =⎧⎪⎨=−⎪⎩.∴直线PR 为y =35-x+4. 由y =0得,x =203,∴R (203,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。
第05讲 一线三垂直模型构造全等三角形
第05讲一线三垂直模型构造全等三角形【应对方法与策略】一线三垂直问题,通常问题中有一线段绕某一点旋转900,或者问题中有矩形或正方形的情况下考虑,作辅助线,构造全等三角形形或相似三角形,建立数量关系使问题得到解决。
【知识总结】过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。
过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:图1 图2【多题一解】1.(2022•鹿城区二模)如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.2.(2022•东港区校级一模)感知:数学课上,老师给出了一个模型:如图1,点A在直线DE上,且∠BDA=∠BAC=∠AEC=90°,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角“模型.应用:(1)如图2,Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(2)如图3,在△ABC中,D是BC上一点,∠CAD=90°,AC=AD,∠DBA=∠DAB,AB=2,求点C到AB边的距离.(3)如图4,在▱ABCD中,E为边BC上的一点,F为边AB上的一点.若∠DEF=∠B,AB=10,BE=6,求的值.3.(2022•齐齐哈尔三模)综合与实践数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB⊥BD于点B,CD⊥BD于点D,P是BD上一点,AP=PC,AP⊥PC,则△ABP ≌△,请你说明理由.(2)利用结论,直接应用:如图2,四边形ABCD、EFGH、NHMC都是正方形,边长分别为a、b、c,A、B、N、E、F五点在同一条直线上,则△CBN≌△,c=(用含a、b的式子表示).如图3,四边形ABCD中,AB∥DC,AB⊥BC,AB=2,CD=4,以BC上一点O为圆心的圆经过A、D两点,且∠AOD=90°,则圆心O到弦AD的距离为.(3)弱化条件,变化引申:如图4,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=45°,且DM交AC于点F,ME 交BC于点G,连接FG,则△AMF与△BGM的关系为:,若,AF=3,则FG =.4.(2022•湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.5.(2022•沈河区校级开学)在△ABC中,AB=AC.(1)在图(a)中,D为BC边上一点,E为AC边上一点,∠ADE=∠B=60°.求证:BD•CD=AB•CE.(2)在图(b)中,∠ADE=∠B=60°,EF⊥AD于点F,若CD=2BD,求的值.(3)在图(c)中,∠ADB=∠ABC=45°,DB、AC交于点E,若AD=2,CE=,请直接写出BE 的长度.6.(2022•信阳模拟)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.7.(2021•平房区二模)在平面直角坐标系中,O为坐标原点,直线AB与y轴交于点A,与x轴交于点B,OA=2,△AOB的面积为2.(1)如图1,求直线AB的解析式.(2)如图2,线段OA上有一点C,直线BC为y=kx﹣2k(k<0),AD⊥y轴,将BC绕点B顺时针旋转90°,交AD于点D,求点D的坐标.(用含k的式子表示)(3)如图3,在(2)的条件下,连接OD,交直线BC于点E,若3∠ABC﹣∠BDO=45°,求点E的坐标.【一题多解】1.(2022•泰州)如图①,矩形ABCD与以EF为直径的半圆O在直线l的上方,线段AB与点E、F都在直线l上,且AB=7,EF=10,BC>5.点B以1个单位/秒的速度从点E处出发,沿射线EF方向运动,矩形ABCD随之运动,运动时间为t秒.(1)如图②,当t=2.5时,求半圆O在矩形ABCD内的弧的长度;(2)在点B运动的过程中,当AD、BC都与半圆O相交时,设这两个交点为G、H.连接OG、OH,若∠GOH为直角,求此时t的值.2.如图,在平面直角坐标系xOy中,抛物线y=ax2+x+c(a≠0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,其中A(﹣2,0),tan∠ACO=,D为抛物线顶点.(1)求该抛物线的解析式;(2)如图1,点E在线段BD上方抛物线上运动(不含端点B、D),求S△EDB的最大值及此时点E的坐标;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点O,M为平移后的抛物线的对称轴直线l上一动点,将线段AC沿直线BC平移,平移后的线段记为A′C′(线段A'C′始终在直线l左侧),是否存在以A′、C′、M为顶点的等腰直角△A'C′M?若存在,请写出满足要求的所有点M的坐标,并写出其中一种结果的求解过程,若不存在,请说明理由.3.(2022•抚顺县二模)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,顶点为D.(1)求抛物线的解析式;(2)若在线段BC上存在一点M,使得∠BMO=45°,过点O作OH⊥OM交BC的延长线于点H,求点M的坐标;(3)点P是y轴上一动点,点Q是在对称轴上一动点,是否存在点P,Q,使得以点P,Q,C,D为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.4.(2021•金华二模)如图,平面直角坐标系中,A(0,4),C(﹣4,0),D是OC中点,E是直线AD上的一动点,以OE为边作正方形OFGE(顺时针标记),连结FC交AE于点H.(1)当D与E重合时,求直线FC解析式;(2)在(1)的条件下,连结OH,求△AOH的面积;(3)设E的横坐标为t,若△HFE与△OAD相似,请求出t的值.。
第七讲一线三等角型相似三角形
第七讲一线三等角型相似三角形在前几讲我们已经学习了相似三角形的概念和判定方法,本讲我们将继续学习一线三等角型相似三角形。
一线三等角型相似三角形是指两个三角形的对应角均相等,并且有一对对应边成比例。
下面我们将详细讨论这一概念。
一线三等角型相似三角形可以分为三种情况:一线三等角型全等三角形、一线三等角型相似背边相等三角形和一线三等角型相似底角相等三角形。
下面我们分别介绍这三种情况。
一、一线三等角型全等三角形当两个三角形的对应角全部相等,并且对应边成比例时,这两个三角形就是一线三等角型全等三角形。
例如,已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,∠C=∠F,且AB/DE=BC/EF=AC/DF=k(k为常数),则可以判定三角形ABC全等于三角形DEF。
这是由于全等三角形的定义所决定的。
全等三角形的定义是:对于两个三角形ABC和DEF,如果它们的三个对应角全部相等,且对应边成比例,则可以判定三角形ABC全等于三角形DEF。
因此,根据已知条件,我们可以判定三角形ABC和三角形DEF是一线三等角型全等三角形。
二、一线三等角型相似背边相等三角形当两个三角形的对应角全部相等,并且其中一对对应边成比例时,这两个三角形就是一线三等角型相似背边相等三角形。
例如,已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,∠C=∠F,且AB/DE=k(k为常数),则可以判定三角形ABC相似于三角形DEF,并且AB/DE=k。
这是由于相似三角形的定义所决定的。
相似三角形的定义是:对于两个三角形ABC和DEF,如果它们的三个对应角全部相等,并且其中一对对应边成比例,则可以判定三角形ABC相似于三角形DEF,并且对应边成比例。
因此,根据已知条件,我们可以判定三角形ABC和三角形DEF是一线三等角型相似背边相等三角形。
三、一线三等角型相似底角相等三角形当两个三角形的对应角全部相等,并且底边成比例时,这两个三角形就是一线三等角型相似底角相等三角形。
全等典型模型:“一线三等角”模型
《三角形证明》题型解读11 全等典型模型:“一线三等角”模型【知识梳理】(一)“一线三等角模型”题型特征:图形的某条线段上出现三个相等的角,如图中∠B=∠2=∠C解题方法:只要题目再出现一组等边(BE=AC 或EF=AE 或BF=EC ),必证△BEF ≌△CAE (AAS 或ASA )(二)“三垂直模型”(“一线三直角模型”)1.基本图形题型特征:图形的某条线段上出现三个直角,如图中∠B=∠AED=∠C=90°解题方法:只要题目再出现一组等边(AB=EC 或BE=DC 或AE=DE ),必证△ABE ≌△ECD (AAS 或ASA )2.两种变化图形(1)“交叉型”三垂直模型(2)“L 型”三垂直模型【典型例题】 例1.如图,在△ABC 中,AB=AC=2,∠B=40º,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE=40º,DE 交线段AC 于点E .(1)当∠BDA=115°时,∠EDC=________,∠AED=___________;(2)线段DC 的长度为何值时,△ABD ≌△DCE ,请说明理由; (3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,求∠BDA 的度数;若不可以,请说明理 由.证∠1+∠2=°,∠2+∠A=°,∴∠1=∠A 又∠B=∠C ,若AB ≅FC若AB ~FC 21A B F E D C 证∠1+∠2=°,∠2+∠A=°,∴∠1=∠A 又∠B=∠C ,若AB ≅EC若AB ~EC 21A B CE D 证明:∵∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A 又∵∠B=∠C ,若其中有一组边相等,则证ABE ≅FCD;若没有边相等,则证ABE ~FCD;C (1(2ED CB A(1)若有等边,则△ABE≌△BDC(AAS )(2)若无等边,则△ABE∽△BDC(AA )D CA CE D B例2.如图,长方形ABCD 中,E 在AD 上,且EF ⊥EC ,EF=EC ,DE=2,长方形的周长为16,求AE 的长..例3.在△ABC 中AB =AC ,∠BAC =90°,分别过B 、C 作过A 点的直线的垂线,垂足为D 、E .(1)求证:△AEC ≌△BDA ;(2)如果CE =2,BD =4,求ED 的长是多少?例4.(1)已知,如图①,在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥m 于点D ,CE ⊥m 于点E ,求证:DE=BD+CE ;(2)如图②,将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE 是否成立?若成立,请你给出证明;若不成立,请说明理由.例5.如图,正方形ABCD 中,P 、Q 分别是边AB 、BC 上的两个动点,P 、Q 同时分别从A 、B 出发,点P 沿AB 向B 运动;点Q 沿BC 向C 运动,速度都是1个单位长度/秒.运动时间为t 秒.连结AQ 、DP 相交于点F ,求证:AQ ⊥DP ;A C E D BA B C D E F 图F E DC B A。
专题11 全等三角形中的一线三等角模型(解析版)
专题11全等三角形中的一线三等角模型【模型1】三垂直全等模型【说明】上图三垂直模型中,只要知道一组对应边相等,即可证明两三角形全等。
【模型2】一线三直角全等模型【说明】上图中的两个三角形中三组对应角相等,只要知道一组对应边相等,即可证明两三角形全等。
【模型3】一线三等角与一组对应边相等全等模型【说明】上图中可根据平角的概念和三角形内角和定理可求得的两个三角形中三组对应角相等,只要再知道一组对应边相等,即可证明两三角形全等。
【例1】如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于()A .6cmB .8cmC .10cmD .4cm【答案】B 【分析】根据题意证明ABC CDE △≌△即可得出结论.【解析】解:∵AB ⊥BD ,ED ⊥BD ,∴90ABC CDE ∠=∠=︒,∵∠ACE =90°,∴90ACB DCE ∠+∠=︒,∵90ACB BAC ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 和CDE △中,90ABC CDE BAC DCE AC CE ∠=∠=︒⎧⎪∠=∠⎪⎨⎪⎪⎩=,∴()ABC CDE AAS ≌,∴6cm AB CD ==,2cm BC DE ==,∴268cm BD BC CD =+=+=,故选:B .【例2】如图所示,ABC 中,,90AB AC BAC =∠=︒.直线l 经过点A ,过点B 作BE l ⊥于点E ,过点C 作CF l ⊥于点F .若2,5==BE CF ,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【解析】解:∵BE ⊥l ,CF ⊥l ,∴∠AEB =∠CFA =90°.∴∠EAB +∠EBA =90°.又∵∠BAC =90°,∴∠EAB +∠CAF =90°.∴∠EBA =∠CAF .在△AEB 和△CFA 中∵∠AEB =∠CFA ,∠EBA =∠CAF ,AB =AC ,∴△AEB ≌△CFA .∴AE =CF ,BE =AF .∴AE +AF =BE +CF .∴EF =BE +CF .∵2,5==BE CF ,∴257EF =+=;故答案为:7.【例3】(1)观察理解:如图1,∠ACB =90°,AC =BC ,直线l 过点C ,点A ,B 在直线l 同侧,BD ⊥l ,AE ⊥l ,垂足分别为D ,E ,求证:△AEC ≌△CDB .(2)理解应用:如图2,过△ABC边AB、AC分别向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I.利用(1)中的结论证明:I是EG的中点.(3)类比探究:①将图1中△AEC绕着点C旋转180°得到图3,则线段ED、EA和BD的关系_______;∥,AB⊥BC,AD=2,BC=3,将腰DC绕D点逆②如图4,直角梯形ABCD中,AD BC时针旋转90°至DE,△AED的面积为.【答案】(1)见解析;(2)见解析;(3)①ED=EA-BD;②1【分析】(1)根据同角的余角相等可得∠A=∠BCD,再利用AAS证得△AEC≌△CDB,即可;(2)分别过点E、G向HI作垂线,垂足分别为M、N,由(1)可证得△EMA≌△AHB,△ANG ≌△CHA ,从而得到EM =GN ,可得到△EMI ≌△GNI ,从而得到EI =IG ,即可求证;(3)①由(1)得:△AEC ≌△CDB ,可得CE =BD ,AE =CD ,即可;②过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据旋转的性质可得根据题意得:∠CDE =90°,CD =DE ,再由(1)可得△CDP ≌△DEQ ,从而得到DP =EQ ,然后根据两平行线间的距离,可得AP =BC ,进而得到PD =1,即可求解.【解析】(1)证明:∵BD ⊥l ,AE ⊥l ,∴∠AEC =∠BDC =90°,又∵∠ACB =90°∴∠A +∠ACE =∠ACE +∠BCD =90°,∴∠A =∠BCD ,在△AEC 和△CDB 中,AEC CDB A BCD AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEC ≌△CDB (AAS );(2)证明:分别过点E 、G 向HI 作垂线,垂足分别为M 、N,由(1)得:△EMA ≌△AHB ,△ANG ≌△CHA ,∴EM =AH ,GN =AH ,∴EM =GN ,在△EMI 和△GNI 中,90EIM GIN EMI GNI EM GN ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△EMI ≌△GNI (AAS );∴EI =IG ,即I 是EG 的中点;(3)解:①由(1)得:△AEC ≌△CDB ,∴CE =BD ,AE =CD ,∵ED =CD -CE ,∴ED =EA -BD ;故答案为:ED =EA -BD②如图,过点C 作CP ⊥AD 交AD 延长线于点P ,过点E 作EQ ⊥AD 交AD 延长线于点Q ,根据题意得:∠CDE =90°,CD =DE ,由(1)得:△CDP ≌△DEQ ,∴DP =EQ ,直角梯形ABCD 中,AD BC ∥,AB ⊥BC ,∴AB ⊥AD ,∴AB ∥CP ,∴BC ⊥CP ,∵BC =3,∴AP =BC =3,∵AD =2,∴DP =AP -AD =1,∴EQ =1,∴△ADE 的面积为1121122AD EN 创=.故答案为:1一、单选题1.如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为()A .B .2C .4D .【答案】A【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【解析】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴=PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE ∴∆的面积12BD EF =⋅,142=⨯⨯,=故选:A .2.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),∠ACB =90°,AC =BC ,从三角板的刻度可知AB =20cm ,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方的是().A .20013cm 2B .15013cm 2C .10013cm 2D .5013cm 2【答案】A【分析】设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,然后证明△DAC ≌△ECB 得到CD =BE =2x cm ,再利用勾股定理求解即可.【解析】解:设每块砖的厚度为x cm ,则AD =3x cm ,BE =2x cm ,由题意得:∠ACB =∠ADC =∠BEC =90°,∴∠ACD +∠DAC =∠ACD +∠BCE =90°,∴∠DAC =∠ECB ,又∵AC =CB ,∴△DAC ≌△ECB (AAS ),∴CD =BE =2x cm ,∵222AC BC AB +=,222AD DC AC +=,∴()()222232220x x +=,∴220013x =,故选A .3.一天课间,顽皮的小明同学拿着老师的等腰直角三角板玩,不小心将三角板掉到两根柱子之间,如图所示,这一幕恰巧被数学老师看见了,于是有了下面这道题:如果每块砖的厚度a =8cm ,则DE 的长为()A .40cmB .48cmC .56cmD .64cm【答案】C 【分析】由等腰直角三角形的性质可得∠ACB =90°,AC =CB ,因此可以考虑证明△ACD 和△CBE 全等,可以证明DE 的长为7块砖的厚度的和.【解析】解:由题意得∠ADC =∠CEB =∠ACB =90°,AC =CB ,∴∠ACD =90°﹣∠BCE =∠CBE ,在△ACD 和△CBE 中,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD=BE=3a,AD=CE=4a,∴DE=CD+CE=3a+4a=7a,∵a=8cm,∴7a=56cm,∴DE=56cm,故选C.二、填空题4.如图,直线l1⊥l3,l2⊥l3,垂足分别为P、Q,一块含有45°的直角三角板的顶点A、B、C分别在直线l1、l2、线段PQ上,点O是斜边AB的中点,若PQ,则OQ的长等于_____.【答案】6【分析】由“AAS”可证△ACP≌△CBQ,可得AP=CQ,PC=BQ,由“AAS”可证△APO≌△BHO,可得AP=BH,OP=OH,由等腰直角三角形的性质和直角三角形的性质可求解.【解析】解:如图,连接PO,并延长交l2于点H,∵l1⊥l3,l2⊥l3,∴l1∥l3,∠APC=∠BQC=∠ACB=90°,∴∠PAC+∠ACP=90°=∠ACP+∠BCQ,∴∠PAC=∠BCQ,在△ACP和△CBQ中,∠=∠⎧⎪∠=∠⎨⎪=⎩PAC BCQ APC BQC AC BC ,∴△ACP ≌△CBQ (AAS ),∴AP =CQ ,PC =BQ ,∴PC +CQ =AP +BQ =PQ,∵AP ∥BQ ,∴∠OAP =∠OBH ,∵点O 是斜边AB 的中点,∴AO =BO ,在△APO 和△BHO 中,∠=∠⎧⎪∠=∠⎨⎪=⎩AOP BOH APO BHO AO BO ,∴△APO ≌△BHO (AAS ),∴AP =BH ,OP =OH ,∴BH +BQ =AP +BQ =PQ ,∴PQ =QH,∵∠PQH =90°,∴PHPQ =12,∵OP =OH ,∠PQH =90°,∴OQ =12PH =6.故答案为:65.如图,已知ABC 是等腰直角三角形,∠ACB =90°,AD ⊥DE 于点D ,BE ⊥DE 于点E ,且点C 在DE 上,若AD =5,BE =8,则DE 的长为_____.【答案】13【分析】先根据AD ⊥DE ,BE ⊥DE ,∠ADC =∠CEB =90°,则∠DAC +∠DCA =90°,△ABC 是等腰直角三角形,∠ACB =90°,可得AC =CB ,推出∠DAC =∠ECB ,即可证明△DAC ≌△ECB得到CE =AD =5,CD =BE =8,由此求解即可.【解析】解:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠DAC +∠DCA =90°,∵△ABC 是等腰直角三角形,∠ACB =90°,∴∠DCA +∠BCE =90°,AC =CB∴∠DAC =∠ECB ,∴△DAC ≌△ECB (AAS ),∴CE =AD =5,CD =BE =8,∴DE =CD +CE =13,故答案为:13.三、解答题6.已知:如图,AB ⊥BD ,ED ⊥BD ,C 是BD 上的一点,AC ⊥CE ,AB =CD ,求证:BC =DE.【答案】见解析【分析】根据直角三角形全等的判定方法,ASA 即可判定三角形全等.【解析】证明:∵AB ⊥BD ,ED ⊥BD ,AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中,A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)7.如图,∠B =∠C =∠FDE =80°,DF =DE ,BF =1.5cm ,CE =2cm ,求BC的长.【答案】3.5【分析】由平角定义及三角形内角和定理解得EDC BFD ∠=∠,继而证明()BFD CDE AAS ≅V V ,得到=1.5,=2BF CD BD CE ==,最后根据线段的和差解题.【解析】解:∠B =∠C =∠FDE =80°,100,100BDF EDC BDF BFD ∴∠+∠=︒∠+∠=︒EDC BFD∴∠=∠在BFD △与CDE △中,B C EDC BFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()BFD CDE AAS ∴≅=1.5,=2BF CD BD CE ∴==2 1.5 3.5BC BD DC ∴=+=+=.8.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BC AC=______.我们把这个模型称为“一线三等角”模型.应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC 边上的一个动点,且APD B ∠=∠.①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.【答案】感知:(1)AEDE;应用:(2)①见解析;②3.6;拓展:(3)2或113【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分PA=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【解析】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP=∠CPD,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCD;②BC=12,点P为BC中点,∴BP=PC=6,·∵△ABP∽△PCD,∴AB BPPC CD=,即1066CD=,解得:CD=3.6;拓展:(3)当PA=PD时,△ABP≌△PCD,∴PC=AB=10,∴BP=BC-PC=12-10=2;当AP=AD时,∠ADP=∠APD,∵∠APD =∠B =∠C ,∴∠ADP =∠C ,不合题意,∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B ,∵∠C =∠C ,∴△BCA ∽△ACP ,∴BC AC AC CP =,即121010CP=,解得:253CP =,∴25111233BP BC CP =-=-=,综上所述,当APD △为等腰三角形时,BP 的长为2或113.9.问题背景:(1)如图①,已知ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E ,易证:DE =______+______.(2)拓展延伸:如图②,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠,请求出DE ,BD ,CE 三条线段的数量关系,并证明.(3)实际应用:如图③,在ACB △中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点A 的坐标为()6,3-,请直接写出B 点的坐标.【答案】(1)BD ;CE ;证明见详解;(2)DE=BD+CE ;证明见详解;(3)点B 的坐标为()1,4B .【分析】(1)根据全等三角形的判定和性质得到AE BD =,AD CE =,结合图形解答即可;(2)根据三角形内角和定理、平角的定义证明ABD CAE ∠=∠,证明ABD CAE ≌,根据全等三角形的性质得到AE BD =,AD CE =,结合图形解答即可;(3)根据AEC CFB ≌,得到3CF AE ==,4BF CE OE OC ==-=,根据坐标与图形性质解答即可.【解析】(1)证明:∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵90BAD ABD ∠+∠=︒,∴ CAE ABD ∠=∠,在ADB 和CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADB CEA ≌,∴AE BD =,AD CE =,∴DE AE AD BD CE =+=+,即:DE BD CE =+,故答案为:BD ;CE ;(2)解:数量关系:DE BD CE =+,证明:在ABD 中,180ABD ADB BAD ∠=︒-∠-∠,∵180CAE BAC BAD ∠=︒-∠-∠,BDA AEC ∠=∠,∴ABD CAE ∠=∠,在ABD 和CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩===∴ABD CAE ≌,∴AE BD =,AD CE =,∴DE AD AE BD CE =+=+;(3)解:如图,作AE x ⊥轴于E ,BF x ⊥轴于F,由(1)可知,AEC CFB ≌,∴3CF AE ==,4BF CE OE OC ==-=,∴1OF CF OC =-=,∴点B 的坐标为()1,4B .10.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA =∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.【答案】(1)DE=BD+CE.(2)DE=BD+CE仍然成立,证明见解析【分析】(1)由∠BDA=∠BAC=∠AEC=90°得到∠BAD+∠EAC=∠BAD+∠DBA=90°,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE;(2)由∠BDA=∠BAC=∠AEC=α得到∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,进而得到∠DBA=∠EAC,然后结合AB=AC得证△DBA≌△EAC,最后得到DE=BD+CE.【解析】(1)解:DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE =AD +AE =BD +CE ;11.如图,90,ABC FA AB ∠=⊥于点A ,点D 在直线AB 上,,AD BC AF BD ==.(1)如图1,若点D 在线段AB 上,判断DF 与DC 的数量关系和位置关系,并说明理由;(2)如图2,若点D 在线段AB 的延长线上,其他条件不变,试判断(1)中结论是否成立,并说明理由.【答案】(1)DF =DC ,DF ⊥DC ;理由见解析(2)成立,理由见解析【分析】(1)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直;(2)先证△ADF ≌△BCD ,得DF =DC ,ADF BCD ∠=∠,再证∠FDC =90°即可得垂直.【解析】(1)解:∵90,ABC FA AB ∠=⊥,∴90ABC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵90,ABC FA AB ∠=⊥,∴90DBC DAF ∠∠==,在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCD ,∴DF =DC ,ADF BCD ∠=∠,∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .12.在直线m 上依次取互不重合的三个点,,D A E ,在直线m 上方有AB AC =,且满足BDA AEC BAC α∠=∠=∠=.(1)如图1,当90α=︒时,猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2,当0180α<<︒时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE 的面积之和.【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立,理由见解析(3)△FBD 与△ACE 的面积之和为4【分析】(1)由∠BDA =∠BAC =∠AEC =90°得到∠BAD +∠EAC =∠BAD +∠DBA =90°,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(2)由∠BDA =∠BAC =∠AEC =α得到∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,进而得到∠DBA =∠EAC ,然后结合AB =AC 得证△DBA ≌△EAC ,最后得到DE =BD +CE ;(3)由∠BAD >∠CAE ,∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,由AAS 证得△ADB ≌△CAE ,得出S △ABD =S △CEA ,再由不同底等高的两个三角形的面积之比等于底的比,得出S △ABF 即可得出结果.【解析】(1)解:DE =BD +CE ,理由如下,∵∠BDA =∠BAC =∠AEC =90°,∴∠BAD +∠EAC =∠BAD +∠DBA =90°,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴AD =CE ,BD =AE ,∴DE =AD +AE =BD +CE ,故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立,理由如下,∵∠BDA =∠BAC =∠AEC =α,∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α,∴∠DBA =∠EAC ,∵AB =AC ,∴△DBA ≌△EAC (AAS ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ,∠BDA =∠AEC =∠BAC ,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CAE (AAS ),∴S △ABD =S △CAE ,设△ABC 的底边BC 上的高为h ,则△ABF 的底边BF 上的高为h ,∴S △ABC =12BC •h =12,S △ABF =12BF •h ,∵BC =3BF ,∴S △ABF =4,∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4,∴△FBD 与△ACE 的面积之和为4.13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC =,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【解析】解:(1)∵ABC DAE △≌△,∴AC DE =;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,如图所示:∴90DAH ADH ∠+∠=︒,∵90BAD ∠=︒,∴90BAF DAH ∠+∠=︒,∴BAF ADH ∠=∠,∵BC AF ⊥,∴90BFA AHD ∠=∠=︒,∵AB DA =,∴△ABF ≌△DAH ,∴AF =DH ,同理可知AF =EQ ,∴DH =EQ ,∵DH ⊥FG ,EQ ⊥FG ,∴90DHG EQG ∠=∠=︒,∵DGH EGQ∠=∠∴△DHG ≌△EQG ,∴DG =EG ,即点G 是DE 的中点;(3)12S S =,理由如下:如图所示,过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M∵四边形ABCD 与四边形DEGF 都是正方形∴∠ADC =∠90°,AD =DC ,DF =DE∵DO ⊥AF ,CM ⊥OD ,∴∠AOD =∠CMD =90°,∠OAD +∠ODA =90°,∠CDM +∠DCM =90°,又∵∠ODA +∠CDM =90°,∴∠ADO =∠DCM ,∴△AOD ≌△DMC ,∴AOD DMC S S =△△,OD =MC ,同理可以证明△FOD ≌△DNE ,∴FOD DNE S S =△△,OD =NE ,∴MC =NE ,∵EN ⊥OD ,CM ⊥OD ,∠EPN =∠CMP ,∴△ENP ≌△CMP ,∴ENP CMP S S △△=,∵,ADF AOD FOD DCE DCM CMP DEN ENP SS S S S S S S =+=-++,∴DCE DCM DEN AOD FOD S S S S S =+=+,∴DCE ADF S S △△=即12S S =.14.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D ,E .求证:DE BD CE =+.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A ,E 三点都在直线l 上,并且有BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过ABC 的边AB ,AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△,则AEI S =△______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,同(1)可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【解析】解:(1)证明:如图1中,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中,∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ADB 和△CEA 中,BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE .(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N.∴∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∴EM =GN在△EMI 和△GNI 中,GIN EIM EM GN GNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.15.(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB =90°,CB =CA ,直线ED 经过点C ,过A 作AD ⊥ED 于D ,过B 作BE ⊥ED 于E .求证:△BEC ≌△CDA ;(2)模型应用:①已知直线y =34x +3与y 轴交于A 点,与x 轴交于B 点,将线段AB 绕点B 逆时针旋转90度,得到线段BC ,过点A ,C 作直线,求直线AC 的解析式;②如图3,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A ,C 分别在坐标轴上,P 是线段BC 上动点,已知点D 在第一象限,且是直线y =2x ﹣5上的一点,若△APD 是不以A 为直角顶点的等腰直角三角形,请直接写出所有符合条件的点D的坐标.【答案】(1)见解析;(2)137y x =-+;(3)(3,1)或(913),或1923(33,【分析】(1)由条件可求得EBC ACD ∠=∠,利用AAS 可证明BEC CDA ≌;(2)由直线解析式可求得A 、B 的坐标,利用模型结论可得CE BO =,BE AO =,从而可求得C 点坐标,利用待定系数法可求得直线AC 的解析式;(3)分两种情况考虑:如图2所示,当90ADP ∠=︒时,AD PD =,设D 点坐标为(,25)x x -,利用三角形全等得到1128x x -+=,易得D 点坐标;如图3所示,当90APD ∠=︒时,AP PD =,设点P 的坐标为(8,)m ,表示出D 点坐标为(14,8)m m -+,列出关于m 的方程,求出m 的值,即可确定出D 点坐标;如图4所示,当90ADP ∠=︒时,AD PD =时,同理求出D 的坐标.【解析】解:(1)由题意可得,90ACB ADC BEC ∠=∠=∠=︒,∴90EBC BCE BCE ACD ∠+∠=∠+∠=︒,∴EBC ACD ∠=∠,在BEC △和CDA 中EBC ACD E D BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BEC CDA AAS ≌;(2)过点C 作CD x ⊥轴于点D ,如图2,在334y x =+中,令0y =可求得4x =-,令0x =可求得3y =,∴3OA =,4OB =同(1)可证得CDB BOA ≌,∴4CD BO ==,3BD AO ==,∴437OD =+=,∴()7,4C -且()0,3A ,设直线AC 解析式为3y kx =+,把C 点坐标代入可得734k -+=,解得17k =-,∴直线AC 解析式为137y x =-+;(3)如图2,当90ADP ∠=︒时,AD PD =,过点D 作DE OA ⊥于E ,过点D 作DF BC ⊥于F ,同理可得:AED DFP△≌△设D 点坐标为(,25)x x -,则6(25)112AE DF x x ==--=-,∵DE DF EF BC +==,即1128x x -+=,解得3x =,可得D 点坐标(3,1);如图3,当90APD ∠=︒时,AP PD =,过点P 作PE OA ⊥于E ,过点D 作DF PE ⊥于F ,设点P 的坐标为()8,m ,同理可得:APE PDF ≌△△,∴6PF AE m ==-,8DF PE ==,∴D 点坐标为()14,8m m -+,∴()82145m m +=--,得5m =,∴D 点坐标(913),;如图4,当90ADP ∠=︒时,AD PD =时,同理可得ADE DPF △△≌,设(,25)D n n -,则DE PF n ==,25OE n =-,AE DF =则256211DF AE n n ==--=-,∵8DE DF EF OC +===∴2118n n +-=,解得193n =,23253n -=∴D 点坐标1923()33,,综上可知满足条件的点D 的坐标分别为(3,1)或(913),或1923(33,.。
建构数学模型 深化解题策略——以“一线三等角全等”模型为例
技法点拨互成60°角的大小相等的两个水平恒力F 作用下,经过一段时间,物体获得的速度为v ,在力的方向上获得的速度分别为v 1、v 2,总位移为s 。
W 合=3Fs =12mv 2v 1=v2W 分=Fs cos30°=14mv 2≠12mv 12=16mv 2可见本题中对力所在的方向使用动能定理是错误的,能量依旧不能分解。
这是不是说明例题1的做法只是个例、巧合,完全没有可取之处呢?也不尽然,经典统计力学的“能量均分定理”告诉我们分子在每个自由度上都具有相同的平均动能。
由此可见,能量在某些情况下是可以分解的。
对比例题1、例题2以及能量均分定理可以发现,例题1和能量均分定理中都是在直角坐标系中进行分解,而例题2可以看做是在一个斜坐标系中分解。
似乎动能能否分方向使用是由分解坐标系的选取决定的,以下我们就直接证明直角坐标系和斜坐标系中是否能够使用。
1.直角坐标W 合=Fs =12mv 2W x =F x s x =Fs cos 2θ=12mv x 2=12mv 02cos 2θW y =F y s y =Fs sin 2θ=12mv y 2=12mv 02sin 2θ由于v 02cos 2θ+v 02sin 2θ=v 02,可以得到W 合=W x +W y ,同理空间直角坐标系中也可以得到同样的结论,所以在直角坐标系中动能定理是可以分方向使用的。
2.斜坐标系W 合=Fs =12mv 2W x =F x s x =Fs cos 2θ=12mv x 2=12mv 02cos 2θW y =F y s y =Fs cos 2α=12mv y 2=12mv 02cos 2α此时v 02cos 2θ+v 02cos 2α≠v 02,W 合≠W x +W y ,同理在空间斜坐标系可以得到一样的结论。
所以,在斜坐标系中动能定理不能分方向使用。
根据上面的证明,我们会发现只有在直角坐标系中动能定理分方向使用才成立,而且这只是在直角坐标系中数学计算恰好和动能定理计算相同,不能证明能量可以分解。
第7讲 一线三等角模型与全等三角形
第7讲一线三等角模型与全等三角形基本模型1如下图,AB=AC,BD⊥DE,AB⊥AC,CE⊥DE,则△ADB≡△CEA规律:含有等腰直角三角形的条件,通常可以构造一线三垂直,利用全等三角形进行边角的等量转化。
练习:如图,A(3,0),C(0,6),AC⊥BC,且AC=BC,求点B的坐标。
变式2如图,已知B(4,0),C(0,2),AC⊥BC,AC=BC,求点A的坐标变式3如图,△ABC中,AC=BC,∠ACB=90°,C在X轴上,BC交Y轴于M,BM=CM,C(-1,,0),点A的横坐标为-3,求点B的坐标练习(武汉第三寄宿中学10月月考14.)如图,点C在线段AB上,DA⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=49︒则∠DFE=____︒分析:构造三垂直:△ADB≌△CBF,∴DB=BF,DB⊥BF,∠DFB=45°∵BE=AC,FC=AB,∴△ACF≌△EBA,AE=AF,AE⊥AF,∠AFE=45°∴∠DFE=∠AFE+∠DFB-∠AFB=45°+45°-49°=41°基本模型2:如图1,∠D=∠BAC=∠E,AB=AC则△ADB≌△CEA.如图2,∠BAC=∠BDF=∠CEF,AB=AC,则△ADB≌ACEA.图1图2教材变式1如图,点D、A、E在一条直线上,AB=AC,∠ADB=∠AEC=∠BAC=60°,试探究BD、CE与DE之间的数量关系.解:DE=DB+CE,证△ADB≌△CEA;教材变式2如图,D、A、E三点都在一条直线上,且∠BDA=∠AEC=∠BAC,AB=AC.试探究BD,CE与DE之间的数量关系。
解:∠BDA=∠BAC=α,∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,∵∠BDA=∠AEC=α,AB=AC ,∴.△ADB ≌△CEA.∴AE=BD ,AD=CE,∴DE=AE+AD=BD+CE.教材变式3如图,AB=AC.∠BAC=60°,D 、E 为AD 上两点,∠ADB=∠AEC=120°.探究BD 、CE 与DE 之间的数量关系。
第一章全等三角形——全等三角形中的一线三等角AAA2023—2024学年苏科版数学八年级上册
B
OA
x
C
应用
变式:将直线AB绕点A按逆时针方向旋转45°交y轴于点C,求 直线AC的解析式.
y
B
OA
x
C
三、小结
课后练习
1.如图,四边形ACFD是正方形,∠CEA和∠ABF都是直 角且点E、A、B三点共线,AB=6,则阴影部分的面积是 ____________.
课后练习
2.如图正方形ABCD的边长为10,点A的坐标为(6,0),
点B在y轴上,若
y k (k 0) x
的图像过点C,求该反比例函
数的解析式.
y
D
O
Ax
C
B
课后练习
3
.一次函数
y
2 3
x
2
的图象分别与x轴、y轴交于点A、B,以线段AB为边
在第一象限内作等腰Rt△ABC,∠BAC= 90°
(1)请写出A,B两点坐标并在方格纸中画出函数图象与等腰Rt△ABC;
(2)求过B、C两点直线的函数关系式.
全等三角形中的 “一线三等角”
热身练习
●1.如图,B、A、D三点在一直线上, CB⊥BD,ED⊥BD , AC⊥AE,且AC=AE,若BC=4cm, ED=3cm,则BD= __________ cm.
C
E
B A
D
一线三等角模型(又称“K”字形全等)
条件:如图:B、A、D三点在一条直线上,且∠B=∠CAE=∠D,CA=EA 结论:(1)△ABC≌△EDA (2)BD=BC+DE
C
C
C
E
E
E
B
A
DB
A
D
B
A
D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线三等角在全等三角形中的应用一图形特征:一条直线上有三个相等的角,三个角可以是锐角,直角,钝角。
二解题方法:利用两角一边证三角形全等找到边之间的关系。
三例题讲解
图形一,三等角为锐角
图形二,三等角为直角钝角
(1)已知,如图①’在^ABC中,ABAC = 90o I
AB = 4C,直线m经过点A, BD丄直线m, CEA.直线m,垂足分别为点D、E,求证:
DE = BD + CE.
⑵如图②将⑴中的条件改为:在AAEC Φ,
AB = AC l O. A、E三点都在直线m上,并且有ABDA = ZAEC = ABAC =α,其中Q 为任意钝角,请问结论DE = ED + CE是否成立?若
成
立,请你给出证明:若不成立,请说明理由.
m ①D AE^
图②
.∖ΛCAE= ΛABD,
∙∕^±ΔADB 和 ACEA 中
AABD = ACAE
ΔBDA = ΔCEA I AB = AC
:AADB=^CEA{AAS^
证明:(1) ∖∙BD 丄直线g CEL 直线叽
90O l
-.ABAC= 9()。
,
.∙∙ZBW+∕C4E = 9()
∖^BAD^ AABD =
四八年级期中期末考试题型
八年级期中考试卷,变形后的应用
如图①,在zMBC中,乙ACB= 90。
MC = BC,过点C 在ZUBC外作直线I1AMLl于点M,BN丄2于点N.
(1) 求证:MN=AM + BN・j
(2) 如图②,若过点C作直线I与线段AB相交UM
■
丄/于点M J BNlI于点7V(4Λf>BΛΓ),(l)⅛ 的
结论是否仍然成立?说明理由. I
(1)证明J ZACB= 90。
.∖ 厶ACM+ 厶BCN=9Z. 又V AMIMN f BNlMN f
•・,乙AMC=乙CNB =90°,
•・・乙BCN+ 厶CBN = 90。
,••・^ACM= L CBN.
在ZUCM 和ZkCBN 中,
(厶ACM 二乙CBN,
]乙AMC=乙CNB,
[AC = BC f
.・・△△CMg ACBN(AAS), .∙.
MC=NB,MA=NC,
・.・MN = MC + CN, .∙. MN = AM + BN.
八年级期末考试卷,一线三等角在正方形中的应用
(2017LIJ东泰安)如图,正方形ABCD中,G 为BC 边上一点,BE丄AG于E,DF丄AG于F,连接DE.
⑴求证:ΔABE^ΔDAF;
⑵若AF"四边形ABED的面积为6,求EF的长.
ti G
ti G
八年级期中考试卷,一线三等角在坐标系当中的应用,作辅助线构成一线三等角
(1 )如图①,等腰直角△人BC中,
ZΛ5C = 90o, AB = BC3点」、B分别在坐
标轴上,若点G的横坐标为2,直接写出点B
的坐标 ____ (提示:过G作CZU"轴于点D ,利用全等三角形求出0〃即可)。
(2)如图②,若点4的坐标为(-6√)),点B 在”轴的正半轴上运动时,分别以OB. AB
为边在第一.第二象限作等腰直角△OBF J
等腰直角厶ABE3连接EF交"轴于点P,当点3在“轴的正半轴上移动时,卩〃的长度是化,求厂〃的取值范围。
否发生改变?若不变,求出尸〃的值。
若变
(1 )如图「作CjD丄〃D于D,
因为ZCBn+ ZΛBO=90o, ZABo + /LBAO =90°,
所以ZC0D = ZBJO,
ξEΔABθffiΔBCDφ,
因为ZCGD + ZABO=OO0, LABO + ZBAo
= 90°,
fWλ∆CBD = ΔBAO, 在厶ABC)和厶BCD中,
(ΛBOA = ZBDC = 90°
< ZCBD = LBAO , [AI3 = BC
所以Z∖4"O M ABCD (AAS),
所以CD = BO = 2,
所以〃点坐标为(0.2) o
证明:如图2,作EG 丄9轴于G,
图
2
因为ZβAO + ZOR4=90o, ZoBA + AEBG =90°,
所以40 =上EBG,
^E^BAO^∖ ^EBG中,
(ΛAOB = ABGE = 90°
I ABAO= AEBG ,
[AB = BE
所以△/MO M ^EBG (AAS) J
所以BG = AO, EG = OB,
因为= BF,
所以BF = EG5
tt∆EG f Fffi∆FBFφ,
(ZEPG = LFPB
∖ ZEGP = ZFEP = 90°, [EG = UF
所以Z∖EG J PM ∕∖FBP (AAS) 5所以PB = PG,
所以卩〃 =∖E G= ^AO = 3,
2 2
故的长度不变,长度为3。