Cooling rate inference in aluminum alloy squeeze casting

合集下载

冷却速率对Zr55Cu30Ni5Al10金属玻璃自由体积的影响

冷却速率对Zr55Cu30Ni5Al10金属玻璃自由体积的影响
的意 义 。
B合 金 的 强 度达 到 了 50 MP ; 属 玻 璃 具 有 00 a 金
金属玻璃 中的 自由体积产生主要通过两 个途 径, 一个是快速冷却 , 冷却速率与 自由体积的含量的
良好 的加 工性 能 , T 在 g附近 ,a l i 属 玻璃 L —A —N 金 的延伸率可 以达到 100 3; 50 %[ 与传 统晶态材料相 1
验证金属玻璃 自由体积随急冷速率的变化。
为兰州大学藉政基金科研见习项目资助。
第 1 期 9
崔长黎 : 冷却速率对 z u N A r c 如 i l金属玻璃 自由体积的影响 。
3 2 D C 结果分析 . S
5 7
2 实验 内容
所选体 系为玻 璃化 形成 能力 较强 的 z c ∞ r u N A 。所选用 的原料均为高纯度金属 (9 8 il 。 9. % z , .9 l 99 %N ,99 %C ) r 9 9 %A , .9 i9 .9 u 。样 品制备 9 9 使用水冷铜模 吸铸法和单辊甩带法。 水冷铜模 吸铸法使用真空电弧熔炼炉 , 以名 对 义成分进行配比的原料 , 在熔 T 耗氧的高纯氩气氛 i 围的熔炼炉中电弧熔炼 6次得到均匀 的母合金锭 , 后采用水冷铜模吸铸法得到 的圆柱状样品。 甩带法使用单辊甩带机 , 将已经得到的母合金 锭放进底部带有直径为 0 5 . 小孔的石英管中进行感 应 加热 , 调整 铜辊 线速度 为 2 m/ , 5 s待合 金 锭完 全 熔
当 自由体 积 的含量 增 大时 , 粘度会 减小 , 原子 的 移动 性 变好 , 塑性就会 有所 增强 。 同时 自由体积处 , 原子 密度 较低 , 与周 围基 体 的继续 接合 较弱 , 易受外 力干扰 , 剪切 带启 动和 交 叉 的地 方 。 自由体 积含 是 量越 大 , 会有 更 多 的剪 切 带 同时 启 动 、 就 交叉 , 剪切 带之 间相 互 限制 , 防止 过早 的 断裂 , 致 塑 性 提高 。 导 高 的 自由体积浓 度 会增 加 单 个 原 子 的跳 跃 的概 率 , 从而增 强 了原子 的流动 , 减小 了流变应力 , 即强度或 硬度 。金 属玻 璃 的非 均 匀 塑 性 变 形 会 产 生 自由体 积, 随着 变形 的进行 , 料 内部 的 自由体 积含 量会增 材

热轧后冷却速度和卷取温度对汽车用低合金高强钢板中析出物的影响

热轧后冷却速度和卷取温度对汽车用低合金高强钢板中析出物的影响

第43卷第1期50 2021 年 1 月上海金属SHANGHAI METALS Vol. 43 , No. 1January , 2020热轧后冷却速度和卷取温度对汽车用低合金高强钢板中析出物的影响王畅"2于洋"2王林"2张亮亮李振2陈瑾2(•首钢技术研究院,匕京100043; 2.绿色可循环应铁流程北京市重点实验室,北京100043;3.首首股份公司迁安钢铁公司,河北迁安064404)【摘要】采用Gleeble-3500热模拟试验机研究了层流冷却速度和卷取温度对汽车用低合 金高强钢板热轧过程中析出行为的影响。

结果表明:热轧过程中钢中析出物主要为多边形Nb (C,N)和细小NbC ;随着热轧后层冷速度的增大,析出物尺寸减小、长大速度减慢,其密度从 200个/p m 2减少到了 50个/p m 2。

试样热轧后层冷至400 C 的卷取过程中,由于析出驱动力不足,析出物的数量骤减,其密度从250个/ p m 2减小到了 25个/ p m 2。

控制热轧过程中析出物的 尺寸和数量并尽量减少含Nb 析出物的数量,有利于连续退火后得到细小均匀的组织,产生细晶强化和析出强化的双重强化效果。

【关键词】 低合金高强钢 第二相 析出 铌 层冷速度 卷取温度Effect of Cooling Rate and Coiling Temperature after Hot- rolling onPrecipitates in Low- alloy High- strength Steel for AutomobileWANG Chang 1'2 YU Yang 1'2 WANG Lin 1'2 ZHANG Liangliang 1,LI Zhen 2 CHEN Jin 2(1. Shougang Research Institute of Technology , Beijing 100043 , China ; 2. Beijing Key Laboratory ofGreen Recyclable Process for Iron and Steel Production Technology , Beijing 100043 , China ;作者简介:王畅,女,硕士,高级工程师,主要从事热轧及冷轧产品表面质量控制工作,E-mail : ustb 0321033@3. Qian'an Iron and Steel Company of Shougang Co. , Ltd. , Qian'an Hebei 064404, China )【Abstract 】 Effect of laminar cooling rates and coiling temperatures after hot-rolling on precipitating behavior of low-alloy high-strength steel plate for automobile was investigated by aGleeble- 3500 thermal simulation test machine. The results showed that phases precipitated during hot-rolling were predominantly polygonal Nb (C,N ) and fine NbC , and as the laminar cooling rateafter hot- rolling increased , the precipitates became finer and grew more slowly , with their number density decreasing from 200 per p m 2 to 50 per p m 2. The precipitates in the sample undergoing hot-rolling and laminar cooling to 400 C followed by coiling decreased drastically in amount ,with their number density decreasing from 250 per p m 2 to 25 per p m 2, because of insufficient precipitation driving force. The control of both amount and size of the phases precipitated during hot- rolling and minimizing the amount of niobium- containing precipitates will help to obtain fine and uniform structureand to develop double strengthening effects of fine-grained strengthening and precipitationstrengthening after continuous annealing .【Key Words ] low-alloy high-strength steel , second phase , precipitation , niobium , laminar cooling rate ,coiling temperature第1期王畅等:热轧后冷却速度和卷取温度对汽车用低合金高强钢板中析出物的影响51为了满足减重节能的需要,汽车零部件越来越多地采用高强度钢板制造。

《Al0.1CoCrFeNi高熵合金的电化学腐蚀行为》范文

《Al0.1CoCrFeNi高熵合金的电化学腐蚀行为》范文

《Al0.1CoCrFeNi高熵合金的电化学腐蚀行为》篇一摘要:本文针对Al0.1CoCrFeNi高熵合金的电化学腐蚀行为进行了深入研究。

通过电化学测试、表面分析以及微观结构观察,探讨了该合金在不同环境下的腐蚀机理和耐蚀性能。

研究结果表明,Al0.1CoCrFeNi高熵合金具有良好的耐蚀性能,其电化学腐蚀行为受合金成分、微观结构和环境因素的影响。

一、引言高熵合金作为一种新兴的金属材料,因其优异的力学性能和良好的耐蚀性能而备受关注。

Al0.1CoCrFeNi高熵合金作为其中的一种,具有较高的强度和良好的耐蚀性,在许多领域有着广泛的应用前景。

然而,其在实际应用中面临的电化学腐蚀问题仍需深入探讨。

本文旨在研究Al0.1CoCrFeNi高熵合金的电化学腐蚀行为,为实际应用提供理论依据。

二、实验方法本实验采用电化学测试、表面分析和微观结构观察等方法,对Al0.1CoCrFeNi高熵合金的电化学腐蚀行为进行研究。

首先,制备了Al0.1CoCrFeNi高熵合金试样,并进行了一系列电化学测试,包括动电位极化曲线、恒电位腐蚀测试等。

其次,通过扫描电子显微镜(SEM)和X射线衍射(XRD)等手段,对试样的表面形貌和微观结构进行了观察和分析。

三、实验结果与讨论1. 电化学测试结果通过动电位极化曲线测试,发现Al0.1CoCrFeNi高熵合金在不同环境下的腐蚀电流密度和腐蚀电位有所差异。

在酸性、中性和碱性环境中,该合金均表现出较低的腐蚀电流密度和较正的腐蚀电位,表明其具有良好的耐蚀性能。

2. 表面形貌分析通过SEM观察,发现Al0.1CoCrFeNi高熵合金在电化学腐蚀过程中,表面形成了致密的氧化膜,这层氧化膜有效地阻止了腐蚀介质的进一步侵入,从而提高了合金的耐蚀性能。

此外,合金表面的微观结构对腐蚀行为也有一定影响。

3. 微观结构观察通过XRD分析,确定了Al0.1CoCrFeNi高熵合金的相组成和晶体结构。

结果表明,该合金具有面心立方(FCC)结构,且各元素在合金中分布均匀。

超导合金英文作文

超导合金英文作文

超导合金英文作文Superconducting alloys are a fascinating area of research in the field of materials science. These alloys possess unique properties that make them highly desirablefor various applications. For instance, they exhibit zero electrical resistance at low temperatures, allowing for efficient transmission of electricity. This remarkable characteristic has the potential to revolutionize power generation and distribution systems.Moreover, superconducting alloys also have the abilityto generate intense magnetic fields. This property opens up possibilities for their use in magnetic resonance imaging (MRI) machines, particle accelerators, and even levitating trains. Imagine a world where trains float above the tracks, eliminating friction and enabling high-speed transportation!In addition to their electrical and magnetic properties, superconducting alloys are also known for their incredible strength. This strength, combined with their ability towithstand extreme temperatures, makes them ideal for applications in aerospace and defense industries. These alloys can be used to build lightweight yet sturdystructures for aircraft and spacecraft, enhancing their performance and durability.Furthermore, superconducting alloys have shown promisein the field of energy storage. By utilizing their abilityto store large amounts of electrical energy, these alloys can be used to develop more efficient and compact batteries. This could revolutionize the way we store and utilize energy, leading to a more sustainable and environmentally friendly future.Additionally, superconducting alloys have the potential to revolutionize the field of quantum computing. Their unique properties allow for the creation of qubits, the basic building blocks of quantum computers. These qubitscan store and process information in a way that is exponentially faster than traditional computers. This could lead to breakthroughs in fields such as cryptography, drug discovery, and optimization problems.In conclusion, superconducting alloys are a fascinating area of research with immense potential. Their unique properties make them highly desirable for various applications, ranging from power generation and transportation to aerospace and quantum computing. Continued research and development in this field will undoubtedly lead to exciting advancements that will shape the future of technology.。

退火温度对透明导电InSnGaMo氧化物薄膜性能的影响

退火温度对透明导电InSnGaMo氧化物薄膜性能的影响

退火温度对透明导电InSnGaMo氧化物薄膜性能的影响刘振华;刘宝琴;张春伟;王书昶;刘拥军;何军辉【期刊名称】《材料导报:纳米与新材料专辑》【年(卷),期】2011(025)002【摘要】利用脉冲激光沉积法在石英衬底上制备出可见光透过率高、电阻率极低的Ga、Mo共掺杂ITO基透明导电InSnGaMo复合氧化物薄膜,研究了退火温度对薄膜结构、表面形貌、光电性能的影响。

实验结果表明,退火温度对InSnGaMo复合氧化物薄膜形貌、光电性能均有很大影响。

XRD、SEM和霍尔测试结果表明,随着退火温度的升高,薄膜晶粒度增大,电阻率快速下降,可见光平均透过率明显提高。

当退火温度为500℃时,InSnGaMo复合氧化物薄膜的电阻率最低为1.46×10-4Ω·cm,载流子浓度和迁移率最高分别为6.56×1020cm-3、65cm2/(V·s),在可见及近红外区平均透过率达92%以上,尤其当波长为362nm时,最高透射率可达99%。

【总页数】5页(P331-334,343)【作者】刘振华;刘宝琴;张春伟;王书昶;刘拥军;何军辉【作者单位】扬州大学物理科学与技术学院,扬州225002【正文语种】中文【中图分类】O484.4【相关文献】1.退火温度对ZnO/Mo/ZnO透明导电薄膜结构及光电性能的影响2.退火温度对透明导电Ga2O3/ITO周期多层膜性能的影响3.退火温度对ZnO∶Al透明导电薄膜结构和性能的影响4.透明导电薄膜(I):掺杂透明导电氧化物薄膜5.Mg掺杂量和退火温度对Mg_xZn_(1-x)O∶Al紫外透明导电薄膜结构与性能的影响因版权原因,仅展示原文概要,查看原文内容请购买。

电子信息类专业词汇

电子信息类专业词汇

whatsoever=whatever0switchboard(电话)交换台bipolar(电子)双极的premise(复)房屋,前提cursor(计算机尺的)游标,指导的elapse(时间)经过,消失vaporize(使)蒸发subsystem(系统的)分部,子系统,辅助系统metallic(像)金属的,含金属的,(声音)刺耳的dispatch(迅速)派遣,急件consensus(意见)一致,同意deadline(最后)期限,截止时间tomographic X线体层摄像的alas唉,哎呀cluster把…集成一束,一组,一簇,一串,一群encyclopedia百科全书millionfold百万倍的semiconductor半导体radius半径范围,半径,径向射线half-duplex transmission半双工传输accompaniment伴随物,附属物reservation保留,预定quotation报价单,行情报告,引语memorandum备忘录redundancy备用be viewed as被看作…be regards as被认为是as such本身;照此;以这种资格textual本文的,正文的verge边界variation变化,变量conversion 变化,转化identity标识;标志criterion标准,准则in parallel on并联到,合并到juxtapose并置,并列dialing pulse拨号脉冲wave-guide波导wavelength division multiplexed波分复用baud rate波特率playback播放(录音带,唱片)no greater than不大于update不断改进,使…适合新的要求,更新asymmetric不对称的irrespective不考虑的,不顾的inevitably不可避免的inevitable不可避免的,不可逃避的,必定的segment部分abrasion擦伤,磨损deploy采用,利用,推广应用take the form of采用…的形式parameter参数,参量layer层dope掺杂FET(field effect transistors)场效应管audio recording唱片ultra-high-frequency(UHF)超高频in excess of超过in excess of超过hypertext超文本ingredient成分,因素ingredient成分,组成部分,要素metropolitan-area network(WAN)城域网metropolitan area network(WAN)城域网,城市网络congestion充满,拥挤,阻塞collision冲突extractive抽出;释放出extract抽取,取出,分离lease出租,租约,租界期限,租界物pass on传递,切换transmission传输facsimile传真innovative=innovatory创新的,富有革新精神的track磁道impetus促进,激励cluster簇stored-program control(SPC)存储程序控制a large number of 大量的peal大声响,发出supersede代替supplant代替,取代out-of-band signaling带外信号simplex transmission单工传输monochromatic单色的,单色光的,黑白的ballistic弹道的,射击的,冲击的conductor导体hierarchy等级制度,层次infrastructure底层结构,基础结构geographic地理的,地区的geographically地理上GIS(ground instrumentation system)地面测量系统ground station地面站earth orbit地球轨道extraterrestrial 地球外的,地球大气圈外的Land-sat地球资源卫星rug地毯,毯子ignite点火,点燃,使兴奋electromagnetic电磁的inductive电感arc电弧telephony电话(学),通话dielectric电介质,绝缘材料;电解质的,绝缘的capacitor电容telecommunication电信,无线电通讯scenario电影剧本,方案modem pool调制解调器(存储)池superimposing叠加,重叠pin钉住,扣住,抓住customize定做,定制monolithic独立的,完全统一的aluminize镀铝strategic对全局有重要意义的,战略的substantial多的,大的,实际上的multi-path fading多径衰落multi-path多路,多途径;多路的,多途径的multi-access多路存取,多路进入multiplex多路复用multiplex多路复用的degradation恶化,降级dioxide二氧化碳LED(light-emitting-diode)发光二极管evolution发展,展开,渐进feedback反馈,回授dimension范围,方向,维,元scenario方案scenario方案,电影剧本amplifer放大器noninvasive非侵略的,非侵害的tariff费率,关税率;对…征税distributed functional plane(DFP)分布功能平面DQDB(distributed queue dual bus)分布式队列双总线hierarchy分层,层次partition分成segmentation分割interface分界面,接口asunder分开地,分离地detached分离的,分开的,孤立的dispense分配allocate分配,配给;配给物centigrade分为百度的,百分度的,摄氏温度的fractal分形molecule分子,微小,些微cellular蜂窝状的cellular蜂窝状的,格形的,多孔的auxiliary storage(also called secondary storage)辅助存储器decay腐烂,衰减,衰退negative负电vicinity附近,邻近vicinity附近地区,近处sophisticated复杂的,高级的,现代化的high-frequency(HF)高频high definition television高清晰度电视chromium铬annotate给…作注解in terms of根据,按照disclosure公布,企业决算公开public network公用网functionality功能,功能度mercury汞resonator共鸣器resonance共振whimsical古怪的,反复无常的administration管理,经营cursor光标(显示器),游标,指针optical computer光计算机photoconductor光敏电阻optical disks光盘optically光学地,光地wide-area networks广域网specification规范,说明书silicon硅the international telecommunication union(ITU)国际电信联盟excess过剩obsolete过时的,废弃的maritime海事的synthetic合成的,人造的,综合的synthetic合成的,综合性的rational合乎理性的rationalization合理化streamline合理化,理顺infrared红外线的,红外线skepticism怀疑论ring network环形网hybrid混合物counterpart伙伴,副本,对应物electromechanical机电的,电动机械的Robot机器人Robotics机器人技术,机器人学accumulation积累infrastructure基础,基础结构substrate基质,底质upheaval激变,剧变compact disc激光磁盘(CD)concentrator集中器,集线器centrex system集中式用户交换功能系统converge on集中于,聚集在…上lumped element集总元件CAI(computer-aided instruction)计算机辅助教学computer-integrated manufacturing(CIM)计算机集成制造computer mediated communication(CMC)计算机中介通信record记录register记录器,寄存器expedite加快,促进weight加权accelerate加速,加快,促进categorize加以类别,分类in addition加之,又,另外hypothetical假设的rigidly坚硬的,僵硬的compatibility兼容性,相容性surveillance监视surveillance监视retrieval检索,(可)补救verification检验simplicity简单,简明film胶片,薄膜take over接管,接任ruggedness结实threshold界限,临界值with the aid of借助于,用,通过wire line金属线路,有线线路coherent紧凑的,表达清楚的,粘附的,相干的compact紧密的approximation近似undertake进行,从事transistor晶体管elaborate精心制作的,细心完成的,周密安排的vigilant警戒的,警惕的alcohol酒精,酒local area networks(LANs)局域网local-area networks(LANs)局域网drama剧本,戏剧,戏剧的演出focus on聚集在,集中于,注视insulator绝缘root mean square均方根uniform均匀的open-system-interconnection(OSI)开放系统互连expire开始无效,满期,终止immunity抗扰,免除,免疫性take…into account考虑,重视…programmable industrial automation可编程工业自动化demountable可拆卸的tunable可调的reliable可靠be likely to 可能,大约,像要videotex video可视图文电视negligible可以忽略的aerial空气的,空中的,无形的,虚幻的;天线broadband宽(频)带pervasive扩大的,渗透的tensile拉力的,张力的romanticism浪漫精神,浪漫主义discrete离散,不连续ion离子force力量;力stereophonic立体声的continuum连续统一体,连续统,闭联集smart灵巧的;精明的;洒脱的token令牌on the other hand另一方面hexagonal六边形的,六角形的hexagon六角形,六边形monopoly垄断,专利video-clip录像剪辑aluminum铝pebble卵石,水晶透镜forum论坛,讨论会logical relationships逻辑关系code book码本pulse code modulation(PCM)脉冲编码调制roam漫步,漫游bps(bits per second)每秒钟传输的比特ZIP codes美国邮区划分的五位编码susceptible(to)敏感的,易受…的analog模拟,模拟量pattern recognition模式识别bibliographic目录的,文献的neodymium钕the european telecommunication standardization institute(ETSI)欧洲电信标准局coordinate配合的,协调的;使配合,调整ratify批准,认可bias偏差;偏置deviate偏离,与…不同spectrum频谱come into play其作用entrepreneurial企业的heuristic methods启发式方法play a …role(part)起…作用stem from起源于;由…发生organic器官的,有机的,组织的hypothesis前提front-end前置,前级potential潜势的,潜力的intensity强度coincidence巧合,吻合,一致scalpel轻便小刀,解剖刀inventory清单,报表spherical球的,球形的distinguish区别,辨别succumb屈服,屈从,死global functional plane(GFP)全局功能平面full-duplex transmission全双工传输hologram全息照相,全息图deficiency缺乏thermonuclear热核的artifact人工制品AI(artificial intelligence)人工智能fusion熔解,熔化diskettes(also called floppy disk)软盘sector扇区entropy熵uplink上行链路arsenic砷neural network神经网络very-high-frequency(VHF)甚高频upgrade升级distortion失真,畸变identification识别,鉴定,验明pragmatic实际的implementation实施,实现,执行,敷设entity实体,存在vector quantification矢量量化mislead使…误解,给…错误印象,引错vex使烦恼,使恼火defy 使落空facilitate使容易,促进retina视网膜compatible适合的,兼容的transceiver收发两用机authorize授权,委托,允许data security数据安全性data independence数据独立data management数据管理database数据库database management system(DBMS)数据库管理信息系统database transaction数据库事务data integrity数据完整性,数据一致性attenuation衰减fading衰落,衰减,消失dual双的,二重的transient瞬时的deterministic宿命的,确定的algorithm算法dissipation损耗carbon碳diabetes糖尿病cumbersome讨厌的,麻烦的,笨重的razor剃刀,剃go by the name of通称,普通叫做commucation session通信会话traffic通信业务(量)synchronous transmission同步传输concurrent同时发生的,共存的simultaneous同时发生的,同时做的simultaneous同时发生的,一齐的coaxial同轴的copper铜statistical统计的,统计学的dominate统治,支配invest in投资perspective透视,角度,远景graphics图示,图解pictorial图像的coating涂层,层deduce推理reasoning strategies推理策略inference engine推理机topology拓扑结构heterodyne外差法的peripheral外界的,外部的,周围的gateway网关hazardous危险的microwave微波(的)microprocessor微处理机,微处理器microelectronic微电子nuance微小的差别(色彩等)encompass围绕,包围,造成,设法做到maintenance维护;保持;维修satellite communication卫星通信satellite network卫星网络transceiver无线电收发信机radio-relay transmission无线电中继传输without any doubt无疑passive satellite无源卫星sparse稀少的,稀疏的downlink下行链路precursor先驱,前任visualization显像feasibility现实性,可行性linearity线性度constrain限制,约束,制约considerable相当的,重要的geo-stationary相对地面静止by contrast相反,而,对比起来coorelation相关性mutual相互的mutually相互的,共同的interconnect相互连接,互连one after the other相继,依次minicomputer小型计算机protocol协议,草案protocol协议,规约,规程psycho-acoustic心理(精神)听觉的;传音的channelization信道化,通信信道选择run length encoding行程编码groom修饰,准备virtual ISDN虚拟ISDNmultitude许多,大批,大量whirl旋转preference选择,喜欢avalanche雪崩pursue寻求,从事interrogation询问dumb哑的,不说话的,无声的subcategory亚类,子种类,子范畴orbital眼眶;轨道oxygen氧气,氧元素service switching and control points(SSCPs)业务交换控制点service control points(SCPs)业务控制点service control function(SCF)业务控制功能in concert一致,一齐handover移交,越区切换at a rate of以……的速率in the form of以…的形式base on…以…为基础yttrium钇(稀有金属,符号Y)asynchronous transmission异步传输asynchronous异步的exceptional异常的,特殊的voice-grade音频级indium铟give rise to 引起,使产生cryptic隐义的,秘密的hard disk硬盘hard automation硬自动化by means of用,依靠equip with用…装备subscriber用户telex用户电报PBX(private branch exchange)用户小交换机或专用交换机be called upon to 用来…,(被)要求…superiority优势predominance优势,显著active satellite有源卫星in comparison with与…比较comparable to与…可比preliminary预备的,初步的premonition预感,预兆nucleus原子核valence原子价circumference圆周,周围teleprocessing远程信息处理,遥控处理perspective远景,前途constrain约束,强迫mobile运动的,流动的,机动的,装在车上的convey运输,传递,转换impurity杂质impurity杂质,混杂物,不洁,不纯regenerative再生的improve over在……基础上改善play important role in在…中起重要作用in close proximity在附近,在很近underlying在下的,基础的in this respect在这方面entail遭遇,导致presentation赠与,图像,呈现,演示narrowband窄(频)带deploy展开,使用,推广应用megabit兆比特germanium锗positive正电quadrature正交orthogonal正交的quadrature amplitude modulation(QAM)正交幅度调制on the right track正在轨道上sustain支撑,撑住,维持,持续outgrowh支派;长出;副产品dominate支配,统治knowledge representation知识表示knowledge engineering知识工程knowledge base知识库in diameter直径helicopter直升飞机acronym只取首字母的缩写词as long as只要,如果tutorial指导教师的,指导的coin制造(新字符),杜撰fabrication制造,装配;捏造事实proton质子intelligence智能,智力,信息intelligent network智能网intermediate中间的nucleus(pl.nuclei)中心,核心neutrons中子terminal终端,终端设备overlay重叠,覆盖,涂覆highlight重要的部分,焦点charge主管,看管;承载dominant主要的,控制的,最有力的cylinder柱面expert system专家系统private network专用网络transition转变,转换,跃迁relay转播relay转播,中继repeater转发器,中继器pursue追赶,追踪,追求,继续desktop publish桌面出版ultraviolet紫外线的,紫外的;紫外线辐射field字段vendor自动售货机,厂商naturally自然的;天生具备的synthesize综合,合成integrate综合,使完全ISDN(intergrated services digital network)综合业务数字网as a whole总体上bus network总线形网crossbar纵横,交叉impedance阻抗initial最初的,开始的optimum最佳条件appear as作为…出现。

词以类记

词以类记

地理学insular海岛的peninsula半岛islet小岛oasis绿洲ledge暗礁ebb退潮endemic地方的cosmopolitan全世界的cleft crevice裂缝longitudealtitudelatitudemeridian子午线,正午Antarctic南极的,Antarctica南极洲arctic北极的,北极contour轮廓,海岸线plateau高原ranges射程表尺度salinity盐度,盐分sediment沉积物elevation高地,海拔geothermy 地热tropics回归线,热带temperate温和的地质学vainpitballholefieldstoneemaldgranitleadlimestonerubybronazamineralvainsedimentfossilpetrifygeologyaluminumcore crdiamand glacialglacia icebergplatetramer earthquake cizem magnitude mantlelayercrustfalsesquirterupt outbirst eruption volcanic动物学gor 群居的swarmflockherd mammal cornival appetite preditorprey 变温动物micro primate灵长vertebrite finthfowl monster insectwormbeast aquetic amphebian migrate grazegasppeck woodpecker trotdomant休眠的offspringsppregnant hatchbreed domestic驯养fertilize reproduce squeekchirp hibernate camouflauge extinction monog单配的nestnichehabitat chimanpze grilladinosarbatfamilyclass suborder ordergenus tentaclebrainspine spinelesstoebillbeakfuzzyheadhumpscalewingflufy nercousfatgreeceturtlebeaverjellyfishstarfishdolphineproneshirimpspongeorstercoralcrab法律illicit违法的(unlawful,illegal)unruly 不守法的illegitimate非法的,私生的default不履行责任(nonfulfilment)infringe违犯be obliged to do: i was obliged to finish the work by the end of this week.domineeringmandatoryheirship继承权confiscate没收be convicted of a crimeindemnity赔偿put sb on trialdetain 拘留,阻止extenuate 使(罪过等)显得轻微saddle使负担plea恳求oath誓言pledge誓言,使发誓plaintiff原告,defendantplead抗辩,恳求proscribe禁止abstain from doing sth. 戒什么veto否决stipulate约定,规定substantiate证实impeach弹劾,控告indictment起诉incriminateprosecutedenounce告发query问题,询问interrogate审问,询问impunity免罚condone宽恕remit赦免absolve赦免,解除(责任等)acquit宣告无罪The court acquited Max of all charges.decree法令,规定prescribe规定;开药方化学陈腐的腐蚀性的erosionerodestalerotrottendecaycrodedecompositonrustsilicalimestonecrystalgasolinehplasticintermedia催化剂使褪色bleachtense上色dyechemistrybiochemalartificial离子molecuarsosolution solvant desolve element impurity blend compond substance particle explosive blast explode burning kindlesearignite action combination neutralize poly functional synthetic carbon copper lead mercury plesivertinzinccalhisiliconsinitrogen oxygen环境学有害的pollute pollutant pollution contaminate wastefume habitat balance ecosystem分贝臭氧层教育学dydactic leading initiateinstill instruct enlighten leaddirect conduct curriculum displine经济学precious prosperity rearasset fortune finance economicdepressionbidding drawbackexlease redress补偿compensation deficitlevyrebait merchandise commerce enterprise currency inventory terrif inflationdealyeoncause consume dispurse deputy discount audit shipment surplus account banqsavingcollabillcheckcoin depreciate merge reinbirth garner underestimate exchange assess consolidate loanrefundutility selection option economics output goods opportunity benefit contract lotterytransaction budget partronchoosechoicebarger purchase deposit commision佣金tollchargebond公债cobounseinterestmeansdebtfundrevenue军事confidential cipher disimulate disarm发音disarmingscultfortfortureshadegararmer装甲,武器军团armamentenlist征召recruitarray袭击charge猛攻encroachdispoil夺取invadeassault exterminate extinguish absolveonset repulse expedition远征seige envolope beset beseige mandate tacticsnavalmilitary考古archeology invaluable unearth scoopexoom exvate metholic originarchic ascend originate primitive remaints poslan antique artifact农业多产的richfertle harvest argriculture argricultral indegeous fertilizer harzbigery graze cultivate cultivation manuer施肥insecticideirrigate pesticide ragesilttractor squash garlichay haystack vegetable weed livestock buffelo cattlefowlsow contherm barn cowshield grainay greenhouse sheepfold 果园pigpen pigsty plantation trof气象humid humidity damp moisture saturate drought eride chillychillfri晴朗的temperate gail hurricane atomsphere climatemild气压计breezeblasttyphoonmedcurrentsmogfog precipetate凝结drizzleblazed downpour dropletfrostvaporshowerhail condense crystal人类学juvenileadulthuman anthropology ethenicdehybrid intellegence aborginal ancester forrunner人物counselcrew船员aviator playwriter clergyauditor athelete sculptorastronaut spaceman boscult侦查员geographer facultyarchpaletmedanthroartist imigist inventor mechanic biosensor phisian ecologist critic attoney congressman 鉴赏家entropren principal staff commander commentator attendant trapper oraltoridiot illiterate deputy consumer employer raize employee debtor arbitrator super apprentice tenatedonator peronel benefactor moral company audience receipent exponent resident inhabitant bachlor idol believer cult adherent faithful deciple champion assen bandet burglar babarian exelrebel addict egoist eyewod spectator spouse couple beneficiary inferiorzp alumani skeptic malcontent opponent rival celebrity figurehead veterain tra advocate humanthrong civilan平民conservative 使者delegate democrate independant candidate社会学urban ruthetic community metropolitan exotic conventional convention institutionalize clanstatusbabooethic household生物学parasite模仿symb symbiotic creature oganism speciesvitalripeevolve evolutionary darextinct dinosaur breed reproduction vase繁衍propagate sucexist发酵respiration secret assimulate immune新陈代谢m microscope caloryglo protein organ数学rank discrete sequence dual induction inference circular circulate probability qualitative dis verticalpupright cubic迂回的radious facet sphere loop trianglecca diameter figure circlecube colomn angle area diagram poly intersect radius square parelevel deduction degree geometry mathmatics arith satistics evendisratio estimate caculate enumerate evaluate variant variable abacus sum caculation caculator digit function subtract addtion minus multiply numerial percentage plus equation quarter fraction divide estate 天文学universeorbitcometgalaxyasteroidplanetclusterdwarfstarstelarcosmoscosmic cosmologyspaceintergcosolarphsu sience astronomics astrophysicslunarmarsmecurywemissioninfiniteradiationrevolvelandspaceship telescope物理学cohesive有凝聚力的horizontalbulk容积brink brim rim edge consitituent elasticity弹性impetusrelease decelerate减速precipitate向下投掷expedite加速speed up quiver振动jarvibrationdiffuse传播,扩散transpire发散,排出molecule 分子ionattomnuclearphysicsthermtempraturesourcentigsublimate蒸馏chaosequlibriandensityliquiddilutedehydrotedefoamevaporate thermdynamicechosonabandelectrisityelectronicamplyfierchipconductorinsulatormagnetesemitransistor microwave mechanicsstatics relativityvelosotycurrentaccelerate transparentopakeopticalopticsrayspetrum wavelengthlens医学contagiouscatching迷人的contract感染invalid 有病的morbid病态的unconsciousfragilesusceptiblemalady疾病corpse 尸体gash深的切口symptomfracture骨折crack relapse recurbruisefester使化脓decay intoxicateremedydissect解剖sterile消过毒的anatomy解剖学hygiene sanitation卫生sustenance 营养物malnourished spiritualsubject实验对象艺术rehearse预演,排练prelude序幕profilerenaissanceconjour变出音乐ephoneouseuphonious悦耳的~harshmovement乐章note音符score乐谱episode插曲conservatory音乐学校orchestrachoruspercussion打击乐器,震荡string wind strain语言学succinct简明的cogent potentphonetics语言学version说法genre 风格verse诗fiction小说byword adagemaxim格言proverb mottofarce 闹剧synopsis大纲,梗概outline summarycompile收集,编纂adapt改编,使适应exerptabridgecoin政治factious partisandiplomatic有策略的diplomacyconfederateaffiliate加盟unconventionaldictatorialpotent congent 强权的petition请愿,向。

When_fish_doorbell_hears_当鱼儿来敲门

When_fish_doorbell_hears_当鱼儿来敲门

Crazy English2022.6当产卵的鱼群在荷兰乌得勒支的运河中穿行时,它们经常会被水闸挡住——尤其是在春季,水闸很少打开。

不过,该市居民现在正在使用网上的“鱼门铃”系统帮助鱼儿通过水闸。

When fish doorbell hears河南刘同功当鱼儿来敲门1Tasked with helping ensure Utrecht s canals remain full of life and convincing every⁃one it wasn t an April Fools Day joke,two ecologists in the Dutch city have invented the world s first “fish doorbell ”.2An underwater,live ⁃streaming camera at the Weerdsluis lock door allows resi⁃dents to ring a virtual doorbell heard by the local lock keeper when they see that fish are trying to get through .A lock is a gate that raises or lowers canal boats into different levels of water separated by two doors,and sluices are small fish⁃sized doors that allow wa⁃ter and fish to pass between them.3“You have to see the canal as a motorway for fish.Sometimes you see literally dozens of fish floundering in front of the lock gate,so a fish jam is created,”said underwater na⁃ture expert Mark van Heukelum.“The Weerdsluis is the link between the Vecht and the Kromme Rijn.In the winter,the fish swim deeper;it is warmer and safer there.In the sum⁃mer,they want to go to shallow water so that they can reproduce,”he added.4Mark van Heukelum came up with the doorbell idea while working with wildlife ecologist Anne Nijs on a project to highlight the biodiversity in Utrecht s canals when theynoticed how lock keeper Patrick opened the sluice to allow a large group of arriving fish to 30疯狂英语(新悦读)pass through.5Nijs said it s a great way to connect residents with their aquatic (水中的)neighbors,and noted that when Mark took the idea to the municipality (市政府),they were very ex⁃cited.The only uncertainty was why create a camera and a signal to Patrick when they could just install a motion⁃activated (动作感应的)sensor.6Mark van Heukelum explained,“Technically that is probably possible,but this is of course much more fun.”He said,“I am already addicted to it myself and watch it every night.You suddenly see a large pike swimming by or a lobster.It would be nice if youcould spot a rarer fish such as an eel.”Reading CheckChoose the best answers according to the text Inference 1.What can we know about the Weerdsluis?A.It connects two places on Utrecht s canals.B.It is a fish species found in Utrecht s canals.C.It is a group of residents on Utrecht s canals.D.It controls the water temperatures in Utrecht s canals.Vocabulary 2.What does the word “floundering ”in Para.3most probably mean?A.Playing. B.Settling down.C.Struggling. D.Giving birth.Detail 3.What gave Mark van Heukelum the idea of a “fish doorbell ”?A.Anne Nijs suggestion.B.A government program.C.An April Fools Day joke.D.A scene at the Weerdsluis lock door.Inference 4.Why did Mark van Heukelum prefer a “fish doorbell ”?A.It is much more interesting.B.It costs much less to build.C.It s technically much easier.D.It s environmentallyfriendly.(下转第34页)31Crazy English 2022.6Language StudyAnalyze some difficult sentences in the text1.The painting,called We Rise Together with the Light of the Moon ,is engraved into a specially⁃designed aluminum⁃gold plate to survive the massive temperature changes on the Moon.为了应对月球上剧烈的温度变化,这件名为《我们在月光下一起站起来》的绘画作品被雕刻在一种特制的镀金铝板上。

海尔 NoFrost 底冻冰箱 KGN36NLEA 产品说明书

海尔 NoFrost 底冻冰箱 KGN36NLEA 产品说明书

Series 2, free-standing fridge-freezer with freezer at bottom, 186 x 60 cm, Stainless steel lookKGN36NLEA The NoFrost bottomfreezer with MultiBox: Has enough room for all your food• Perfect Fit: place your fridge right next to walls or in a niche.• LED interior light: Illuminates the refrigerator evenly and glare-free, and lasts for its entire life.Energy Efficiency Class (Regulation (EU) 2017/1369): .....................E Average annual energy consumption in kilowatt hour per year(kWh/a) (EU) 2017/1369: ..........................................239 kWh/annum Sum of volume of frozen compartments (EU 2017/1369): ............89 l Sum of volume of chill- and unfrozen compartments (EU 2017/1369): ....................................................................................................216 l Airborne acoustical noise emissions (EU 2017/1369): .42 dB(A) re 1 pWAirborne acoustical noise emission class (EU 2017/1369): ..............D Built-in / Free-standing: .................................................Free-standing Number of compressors: . (1)Number of independent cooling systems: (1)Width of the appliance: ..........................................................600 mm Height: .................................................................................1860 mm Depth of the product: ............................................................660 mm Net weight: ..............................................................................60.5 kg Door panel options: ........................................................Not possible Door hinge: ................................................................Right reversible Number of Adjustable Shelves in fridge compartment: (3)Shelves for Bottles: ........................................................................No Frost free system: ...................................................................Freezer Interior ventilator: ..........................................................................No Reversible Door Hinge: ..................................................................Yes Length electrical supply cord: ..............................................240.0 cm Noise level: ..............................................................42 dB(A) re 1 pW Multi-Flow Air Tower: ....................................................................Yes Fast cooling switch: ........................................................................No Fast freezing switch: ......................................................................Yes Temperature Controlled Drawer: ....................................................No Humidity Control Drawer: ...............................................................No Number of Door Bins - Refrigerator: .. (4)Door bin adjustability - Refrigerator: ..............................................No Tilt-out door bins in fridge: .............................................................No Gallon wide door bins: ..................................................................Yes Number of Gallon storage: . (1)Motorized Shelf: .............................................................................No Material ofthe shelves: .....................................................Safety glass Door opened indicator freezer: .......................................................No Automatic motor-driven ice-maker: .................................................No Connection rating: ....................................................................100 W Fuse protection: ...........................................................................10 A Voltage: ...............................................................................220-240 V Frequency: .................................................................................50 Hz Storage Period in Event of Power Failure (h): ..............................12 h Door panel options: ........................................................Not possible Noise level: ..............................................................42 dB(A) re 1 pW Energy Star Qualified: .....................................................................No Plug type: .......................................................Gardy plug w/ earthing Required cutout/niche size for installation (in): .. (x)Dimensions of the packed product: ..................75.70 x 25.74 x 30.31 Net weight: .......................................................................133.000 lbs Gross weight: ...................................................................148.000 lbsSeries 2, free-standing fridge-freezerwith freezer at bottom, 186 x 60 cm, Stainless steel lookKGN36NLEAThe NoFrost bottomfreezer with MultiBox: Has enough room for all your food Performance and consumptionDesign and Styling- Doors Stainless steel look, side panels Pearl grey (VZF 07127)- Integrated horizontal handle- LED with Soft Start in fridge sectionConvenience & Safety- NoFrost - never again defrosting!- LED electronic control- Super Freezing: manual activationFridge Compartment- Multi Airflow-System- 4 safety glass shelves of which 3 are height adjustable- 4 door binsFreshness System- MultiBox: transparent drawer with wave bottom, ideal for the storage of fruits and vegetablesFreezer Section- 3 freezer drawers, incl. 1 EasyAccess Freezer BoxDimensions- Dimensions ( H x W x D): 186.0 cm x 60.0 cm x 66.0 cmTechnical Information- Door right hinged, reversible- Height adjustable front feet- Connected load: 100 W- Nominal voltage: 220 - 240 VAccessories- 1 egg tray- Ice cube trayCountry Specific Options- Based on the results of the standard 24-hour test. Actual consumption depends on usage/position of the appliance.- To achieve the declared energy consumption, the attached distanceholders have to be used. As a result, the appliance depth increases by about 3.5 cm. The appliance used without the distance holder is fully functional, but has a slightly higher energy consumption.Environment and SafetyInstallationGeneral Information- Vario Zone - removable glass shelves for extra space- Super Cooling: No- Freezing possible in all freezer compartmentsSeries 2, free-standing fridge-freezer with freezer at bottom, 186 x 60 cm, Stainless steel lookKGN36NLEA。

钠钙玻璃熔体电阻率测量影响因素及边界条件研究

钠钙玻璃熔体电阻率测量影响因素及边界条件研究
势并且不同可移动离子的直径存在差异时,玻璃才在离子迁移过程中表现出混合碱效应 [17] 。 精确测量玻璃
熔体电阻率可以为电熔窑结构和电极设计提供重要的技术参数。
基于此,本文选用钠钙玻璃,研究了试样颗粒尺寸、试样在瓷舟中的填充率、降温速率等因素对玻璃熔体
电阻率测量的影响规律,从而确定最佳的测量边界条件,进一步为玻璃熔体电阻率试验方法和标准制定起到
玻璃熔体的电阻率不仅是电熔化系统设计的重要依据 [2-3] ,而且对优化电熔窑的生产操作参数以及研
究熔融态玻璃结构也十分重要 [14] 。 尽管科技工作者针对玻璃熔体高温电阻特性已经开展了大量工作,但是
关于玻璃熔体电阻率测试方法的相关研究报道相对较少,因此探究玻璃熔体电阻率测量影响因素及其边界
条件对于推进电熔窑技术的发展具有重要意义。
device was constructed in this work, and the influences of feed-in voltage, frequency of alternating current, particle size of
sample and filling rate on the resistivity of soda-lime glass melt at 900 ~ 1 450 ℃ were discussed. The results show that when
的馈入电压范围内,玻璃熔体电阻率的测量结果与馈入电压大小无关。
图 2 玻璃熔体电阻率与温度及电压作用关系
同有很大差异,当电流经过玻璃熔体时,半径较大的碱金属离子相对半径较小的离子更难通过玻璃网络结构
间隙,甚至会堵塞间隙,阻碍半径较小的离子通过,导致离子迁移速率降低,电阻率增大 [2-3,17] 。 当两种碱金

伊士特克 IT-180ABS IT-180ATC 高Tg、低CTE、多功能填充环氧树脂和酚醛固化层压

伊士特克 IT-180ABS IT-180ATC 高Tg、低CTE、多功能填充环氧树脂和酚醛固化层压

IT-180ABS/IT-180ATCHigh Tg, Low CTE, Multifunctional Filled Epoxy Resin and Phenolic-Cured Laminate & PrepregIT-180A is an advanced high Tg (175℃ by DSC) multifunctional filled epoxy with low CTE, high thermal reliability and CAF resistance. It’s design for high layer PCB and can pass 260℃ Lead free assembly and sequential lamination process.Key Features =============================== Advanced High Tg Resin TechnologyIndustrial standard material with high Tg (175℃ by DSC) multifunctional filled epoxy resin and excellent thermal reliability. Lead-Free Assembly CompatibleRoHS compliant and suitable for high thermal reliability needs, and Lead free assemblies with a maximum reflow temperature of 260℃. Friendly Processing and CAF ResistanceFriendly PCB process like high Tg FR4. Users can short the learning curve when using this material.CAF ResistanceLow thermal expansion coefficient (CTE) helps to excellent thermal reliability and CAF resistance providing long-term reliability for industrial boards and automobile application.Available in Variety of ConstructionsAvailable in a various of constructions, copper weights and glass styles, including standard(HTE), RTF and VLP copper foil. ApplicationsMultilayer and High Layer PCB AutomobileBackplanesServers and Networking TelecommunicationsData StorageHeavy Copper ApplicationIndustrial ApprovalUL 94 V-0IPC-4101C Spec / 99/ 101/ 126 RoHS CompliantGlobal AvailabilityITEQ Laminate/ Prepreg : IT-180ATC / IT-180ABS IPC-4101C Spec / 99 / 101 / 126LAMINATE( IT-180ATC)Thickness<0.50 mm[0.0197 in] Thickness≧0.50 mm[0.0197 in] Units Test MethodPropertyTypical Value Spec Typical Value Spec Metric(English) IPC-TM-650 (or as noted)Peel Strength, minimumA. Low profile copper foil and very low profilecopper foil - all copper weights > 17µm[0.669 mil]B. Standard profile copper foil1.After Thermal Stress2.At 125°C [257 F]3.After Process Solutions 0.88 (5.0)1.23 (7.0)1.05 (6.0)1.05 (6.0)0.70 (4.00)0.80 (4.57)0.70 (4.00)0.55 (3.14)0.88 (5.0)1.40 (8.0)1.23 (7.0)1.23 (7.0)0.70 (4.00)1.05 (6.00)0.70 (4.00)0.80 (4.57)N/mm(lb/inch)2.4.82.4.8.22.4.8.3Volume Resistivity, minimumA. C-96/35/90B. After moisture resistanceC. At elevated temperature E-24/125 3.0x1010--5.0x1010106--103--3.0x10101.0x1010--104103MΩ-cm 2.5.17.1Surface Resistivity, minimumA. C-96/35/90B. After moisture resistanceC. At elevated temperature E-24/125 3.0x1010--4.0x1010104--103--3.0x10104.0x1010--104103MΩ 2.5.17.1Moisture Absorption, maximum - 0.12 0.8 % 2.6.2.1 Dielectric Breakdown, minimum - - 60 40 kV 2.5.6 Permittivity (Dk, 50% resin content)(Laminate & Laminated Prepreg)A. 1MHzB. 1GHzC. 2GHzD. 5GHzE. 10GHz 4.44.44.24.14.05.44.44.44.34.14.15.4 -- 2.5.5.92.5.5.13Loss Tangent (Df, 50% resin content)(Laminate & Laminated Prepreg)A. 1MHzB. 1GHzC. 2GHzD. 5GHzE. 10GHz 0.0150.0150.0150.0160.0170.0350.0140.0150.0150.0160.0160.035 -- 2.5.5.92.5.5.13Flexural Strength, minimumA. Length directionB. Cross direction --------580(84,300)450(65,400)415 (60,190)345 (50,140)N/mm2(lb/in2) 2.4.4Arc Resistance, minimum 125 60 125 60 s 2.5.1Thermal Stress 10 s at 288°C [550.4F],minimumA. UnetchedB. Etched PassPassPass VisualPass VisualPassPassPass VisualPass VisualRating 2.4.13.1Electric Strength, minimum(Laminate & Laminated Prepreg) 45 30 -- -- kV/mm 2.5.6.2 Flammability,(Laminate & Laminated Prepreg) V-0 V-0 V-0 V-0 Rating UL94 Glass Transition Temperature(DSC) 175 170 minimum 175 170 minimum ˚C 2.4.25 Decomposition Temperature -- -- 345 340 minimum ˚C 2.4.24.6(5% wt loss) X/Y Axis CTE (40℃ to 125℃) -- -- 10-13 -- PPM/˚C 2.4.24Z-Axis CTEA. Alpha 1B. Alpha 2C. 50 to 260 Degrees C ------------452102.760 maximum300 maximum3.0 maximumPPM/˚CPPM/˚C%2.4.24Thermal ResistanceA. T260B. T288 -------->60>3030 minimum15 minimumMinutesMinutes2.4.24.1CAF Resistance -- -- Pass AABUS Pass/Fail 2.6.25 Comparative Tracking Index(CTI) -- -- 175~250V -- V UL-746 The above data and fabrication guide provide designers and PCB shop for their reference. We believe that these information are accurate, however, the data may vary depend on the test methods and specification used. The actual sales of the product should be according to specification in the agreement between ITEQ and its customer. ITEQ reserves the right to revise its data at any time without notice and maintain the bestinformation available to users.IT-180ABS/IT-180ATCHigh Tg, Low CTE, Multifunctional Filled Epoxy Resin and Phenolic-Cured Laminate & Prepreg---------------------------------------------------------------------------------------------------------------------------------------------- Process Guideline1. Prepreg Handling & Storage(1) Shelf life is at least 3 months when prepreg stored in a cool dry environment (Temperature: <20 ℃ and Humidity: <50%).(2) Prepreg exposed to humidity should be resealed to minimize moisture absorption.(3)Prepreg should be stored in controlled environment for 12 hours prior to use.(4)Prepreg supplied in rolls or panels should be stored horizontally. To avoid damage, no stacking is recommended.2. Laminate Handling & Storage(1) Laminates should be stored in a dry environment(2) Laminate should always be stored flat3. Inner Layer Process(1)First around must be taken to determine suitable parameters (such as dimensional compensation, etc) before mass production.(2) Inner layers should be baked for at least 40 min at 120 ℃ after black or brown oxides treatment.Note: The material temperature is not allowed to >195 ℃ in lamination process if brown oxide treatment is used.4. Lamination Overview(1)Stacks must be prepared in lay-up room to avoid moisture absorption.(2) Recommended pressure ranges should be as follows:Hydraulic/350~400psiVacuum Hydraulic/300~400psi(3) For Lien Chieh press, heating rate is 1.3~1.8℃/min from 80℃ to 140℃, and for Burkle press, the heating rate is 1.5~3.0℃/min from 80℃to 140℃. Cooling rate below 3℃/min is recommended.(4) When the board temperature reaches 180℃ during the pressing process, the lamination process should be kept for at least 60 minutes.5. DrillingDrilling parameters are mainly dependent on the hole size, layer thickness, layer number, copper thickness, and stack height. The following drilling parameters are for reference only. Typical drilling parameters for 0.4~1.0 mm drills are as follows:Spindle speed: 45~105 KRPM Feed rate: 50~150 IPMRetract rate: 500~1000 IPM Max. hit count: <1000 HITSStack height: ≤2pnls(2~6layers), 1pnl(≥8layers) Entry Material: 0.2mm AluminumBack-up Material: 1.5mm Phenolic laminate Drilling Machine: Hitachi ND-6L210EBaking condition: After Drilling: 170 °C /2 hours6. DesmearThe following desmear parameters are for reference only:Horizontal (JETCHEM)Swell : 75℃ for 100 s Mn+7 : 55-65 g/ l at 85℃ for 180sVertical (ROHMHAAS)Swell : 65℃ for 365 s Mn+7 : 65-75 g/ l at 75℃ for 750sNormally, the typical parameters used to desmear FR-4 product may not produce optimum hole topography for IT-180A. One should consult with your chemical supplier to optimize your desmear condition, e.g. desmear two times or adjust other parameters, etc.。

丁二烯与氯气在甲醇中反应机理

丁二烯与氯气在甲醇中反应机理

丁二烯与氯气在甲醇中反应机理丁二烯是一种具有四个碳原子的烯烃化合物,而氯气则是一种非常活泼的气体。

当丁二烯与氯气在甲醇中进行反应时,会发生一系列复杂的反应过程和机理。

本文将深入探讨丁二烯与氯气在甲醇中反应的机理,并进行全面评估。

1. 反应前提综述在探讨具体的反应机理之前,我们首先来了解一些基础知识。

丁二烯是一种具有双键的烯烃,它的分子结构中有两个双键,分别位于第一和第三个碳原子之间。

而氯气则是由二个氯原子组成的分子,它具有较强的活性和氧化性。

2. 反应的初步步骤丁二烯与氯气在甲醇中反应的初步步骤可以概括为以下几个阶段:2.1 双键开裂丁二烯的双键会发生开裂,形成对应的共轭二烯烃中间体。

这个开裂反应是一个自由基反应,需要外界提供能量。

在甲醇作为溶剂的情况下,可以通过加热反应混合物来促进双键的开裂。

2.2 氯原子加成在丁二烯的双键开裂后,氯气中的氯原子会加成到共轭二烯烃中间体上。

这个加成反应是一个自由基反应,需要氯气中的氯原子释放自由基,然后与共轭二烯烃中间体反应。

2.3 单质氯的生成当氯原子加成到共轭二烯烃中间体上后,会形成一个新的自由基中间体。

这个自由基中间体会与甲醇中的氢原子发生反应,生成单质氯和甲醇中的自由基。

3. 反应机理的进一步探究接下来,我们来深入探究丁二烯与氯气在甲醇中反应的机理。

3.1 双键开裂的机理丁二烯的双键开裂属于典型的自由基反应。

当双键被破坏时,会产生两个自由基,分别位于双键两侧的碳原子上。

这个反应需要外界能量的供应,可以通过加热反应混合物来提供能量。

3.2 氯原子加成的机理氯原子加成是指氯原子与共轭二烯烃中间体发生化学反应。

这个反应需要氯气中的氯原子释放自由基,然后与共轭二烯烃中间体上的碳原子形成键合。

氯原子加成反应的速率很快,且具有较高的选择性。

3.3 单质氯的生成机理在氯原子加成之后,会形成一个新的自由基中间体。

这个自由基中间体会与甲醇中的氢原子发生反应,生成单质氯和甲醇中的自由基。

三聚氰胺亚锡磷酸盐玻璃协效二乙基次膦酸铝阻燃尼龙6

三聚氰胺亚锡磷酸盐玻璃协效二乙基次膦酸铝阻燃尼龙6

级;添加量增加至17% 时,可将PA6 阻燃等级提高 达到20%时,复合材料能够克服滴落现象,垂直燃
到 但 用量大,不仅成本 UL94 V0@ 1. 6 mm. AlPi 烧测试证明其达到UL94 V0@ 3. 0 mm 阻燃等级.
高,还会使得PA6 的加工性能和力学性能明显变 差. 通过加入其他阻燃剂复配可提高阻燃效率,降低
锥形量热、热重- 红外联用、热重分析以及残炭的扫描电镜和X 射线能谱分析等表明,
MEPglass 与AlPi 在气相和凝聚相对PA6 均存在较强的阻燃协效作用.
关键词: 亚锡磷酸盐玻璃;三聚氰胺;二基次膦酸铝;PA6;阻燃剂;协效
中图分类号: TQ317. 3
( ) 文章编号: 1000565X 2019 05003909
三聚氰胺亚锡磷酸盐玻璃协效二乙基次膦酸铝 阻燃尼龙 6
刘述梅 夏巍 朱睿哲 蔡佳楠 赵建青
(华南理工大学材料科学与工程学院,广东广州510640)
摘 要: 以摩尔比为5050 的氧化亚锡和五氧化二磷为原料,在500 ℃ 下熔融制备亚锡
磷酸盐玻璃,再与三聚氰胺通过离子键结合形成三聚氰胺亚锡磷酸盐玻璃(MEPglass). 将
4 0
华南理工大学学报(自然科学版)
第47 卷
1 实验
1. 5 测试与表征
1. 5. 1 傅里叶变换红外光谱(FTIR)分析
1. 1 主要原料
上海五阿氧拉化丁二生化磷科(P技2 O股5 )份:A有CS限级公(司纯生度产≥;9氧8.化0%亚)锡, (SnO):分析纯,上海阿拉丁生化科技股份有限公司 生产;MEL:纯度99% ,上海阿拉丁生化科技股份有 限公司生产;无水乙醇:分析纯,天津富宇精细化工 有限公司生产;PA6:工业级,牌号TP 4208,台湾集 盛实业股份有限公司生产;AlPi:牌号OP , 1230 Clariant Chemicals 公司生产,购自东莞市三威化工 有限公司.

石墨烯量子点等离激元的激发频率

石墨烯量子点等离激元的激发频率

石墨烯量子点等离激元的激发频率下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!石墨烯作为一种新型的材料,在纳米科技领域中备受关注。

2195铝锂合金绝热剪切带内纳米结构的特征及其热稳定性的开题报告

2195铝锂合金绝热剪切带内纳米结构的特征及其热稳定性的开题报告

2195铝锂合金绝热剪切带内纳米结构的特征及其热稳定性的开题报告题目:2195铝锂合金绝热剪切带内纳米结构的特征及其热稳定性的研究一、研究背景及意义轻量化材料的需求日益增加,铝锂合金因其优异的耐热、耐腐蚀等综合性能被广泛应用于航空航天、汽车、船舶等领域。

铝锂合金在加工过程中容易出现剪切带,这对其性能和应用造成了不利影响。

因此,对铝锂合金剪切带的研究愈发重要。

目前已有许多研究报道了铝锂合金剪切带的形成、演化及其对力学性能的影响。

但是,对于绝热剪切带内纳米结构的研究还不够深入。

了解绝热剪切带内纳米结构的特征以及其在高温条件下的热稳定性,对于优化铝锂合金的微观组织以及提高其综合性能有着重要的意义。

二、研究内容本研究的主要内容包括以下几个方面:1. 选择适当的加工参数制备出不同绝热剪切带内纳米结构的2195铝锂合金样品。

2. 利用透射电子显微镜(TEM)等显微镜技术对样品的微观结构进行表征,包括剪切带内纳米晶体的尺寸、结晶度等方面。

3. 利用热电偶和差热扫描仪等热分析技术,研究不同剪切带结构的2195铝锂合金样品在高温条件下的热稳定性。

4. 探讨不同绝热剪切带内纳米结构对2195铝锂合金性能的影响,包括力学性能、电学性能等方面。

三、研究方法1. 样品制备选择适宜的加工参数(温度、压力、变形量等),采用高温拉伸制备不同绝热剪切带内纳米结构的2195铝锂合金样品。

采用光学显微镜(OM)观察样品表面形貌以及剪切带位置,并进行金相观察。

2. 显微结构表征采用透射电子显微镜(TEM)观察样品中剪切带内纳米结构的形貌和分布情况,并进行晶体结构、尺寸等细节的研究。

同时,也将使用扫描电子显微镜(SEM)等技术进行形貌和分布情况的观察。

3. 热稳定性测试采用热电偶和差热扫描仪等热分析技术,研究不同剪切带结构的2195铝锂合金样品在高温条件下的热稳定性。

通过分析样品的热处理历史、微观结构和力学性能等参数,研究铝锂合金在高温条件下的微观组织演变和力学性能的变化规律。

玻璃冷却速率对锂铝硅微晶玻璃晶化行为和结构的影响

玻璃冷却速率对锂铝硅微晶玻璃晶化行为和结构的影响

玻璃冷却速率对锂铝硅微晶玻璃晶化行为和结构的影响董伟;卢金山;冯志军;李要辉【摘要】The glass cooling rate during forming process has significant effect on the crystallization behavior and structural uniformity of Li2O-Al2O3-SiO2 (LAS) glass-ceramics. Finite element analysis indicated that the cooling rate of 10 mm thick glass was notably lower than that of 2 mm thick glass. The central temperature of LAS glass was still above 700℃ even after the sample was cooled for 15 s, which led to the formation of crystal stones in the parent glass. The microstructure of LAS glass and glass-ceramics with different thickness were analyzed using DTA, IR and SEM. Since the 8 mm thick glass cooled slowly, primary crystal nuclei were generated in the glass interior. After heat treat-ment, a β-spodumene phase wa s formed in the interior, while a β-quartz solid solution phase formed on the surface. On the contrary, primary crystal nuclei were not generated in the 3 mm thick glass due to its high cooling rate. A single and uniform P-quartz solid solution phase was found after heat treatment. Therefore, the high glass cooling rate and the temperature uniformity of glass are very important for the preparation of structurally uniform LAS glass-ceramics.%玻璃成型过程中冷却速率对Li2O-Al2O3-SiO2(LAS)微晶玻璃的晶化行为及其结构均匀性具有重要影响.有限元分析表明,10 mm厚玻璃冷却速率显著低于2 mm厚玻璃,冷却15s以上玻璃的中心温度仍高于700℃,对应的基础玻璃极易出现“析晶结石”.利用DTA、IR、SEM等技术分析不同厚度LAS玻璃及其微晶玻璃的显微结构,8 mm厚的玻璃冷却速率低,样品心部析出初始晶核,并在热处理阶段形成β-锂辉石固溶体相,而样品表面层却为β-石英固溶体相;与此相反,3 mm厚的玻璃冷却速率高,没有初始晶核生成,热处理后得到单一均匀的β-石英固溶体相.因此,提高玻璃冷却速率、控制玻璃温度均匀性是制备结构均匀LAS微晶玻璃的关键.【期刊名称】《无机材料学报》【年(卷),期】2012(027)004【总页数】5页(P400-404)【关键词】锂铝硅微晶玻璃;冷却速率;有限元分析;组织结构【作者】董伟;卢金山;冯志军;李要辉【作者单位】南昌航空大学材料科学与工程学院,南昌330063;南昌航空大学材料科学与工程学院,南昌330063;南昌航空大学材料科学与工程学院,南昌330063;中国建筑材料科学研究总院玻璃科学研究所,北京100024【正文语种】中文【中图分类】TQ171Li2O-Al2O3-SiO2(LAS)透明微晶玻璃具有低热膨胀系数、高可见光透过率以及较高强度等优异性能, 广泛应用于电子封装、防火门窗、光学仪器以及雷达天线外罩等领域[1-2]. LAS微晶玻璃通常经过玻璃粉料熔化、玻璃成型、热处理等工艺步骤制备,玻璃成型过程对于微晶玻璃的结构均匀性具有重要影响[3]. 如果玻璃长时间停留在有利于晶体形成和生长的条件下, 玻璃内部将出现“析晶结石”现象,这种结构不均匀现象不仅影响了玻璃的外观和性能,也会影响微晶玻璃的结构和力学性能[4]. 数值模拟具有灵活高效的优点, 不仅可以缩短玻璃产品的开发周期, 而且能直观显示玻璃内部温度场变化, 利用ANSYS软件可对玻璃熔窑结构优化、玻璃渗锡、玻璃成型过程等进行数值模拟[5]. 本工作采用ANSYS有限元分析方法模拟玻璃成型过程的温度场, 结合不同厚度玻璃的工艺实验, 研究玻璃冷却速率对 LAS微晶玻璃晶化行为和显微结构的影响及其机理, 并提出改善微晶玻璃结构均匀性的途径.1 实验1.1 数值模拟利用 ANSYS有限元分析软件, 模拟成型过程中厚度分别为2和10 mm的LAS玻璃温度场及其随冷却时间的变化, 有限元模拟的基本步骤如下:(1)表 1为 LAS玻璃的基本组分, 首先计算出LAS玻璃各项性能参数[4], 如表2所示.通过公式(1)计算玻璃液1650℃的密度为2.337 g/cm3.其中ρ为玻璃密度, 单位为g/cm3,Ρi为玻璃密度加和系数, ni为玻璃成分物质的摩尔数.根据公式(2)计算玻璃的比热, 通过计算, 1650℃时玻璃液的比热容为1102.73kJ/(kg·℃).表1 LAS玻璃的基础组分/wt%Table 1 Composition of LAS glass/wt%Composition SiO2 Al2O3 Li2O TiO2 ZrO2 Content 60.0 23.0 4.0 1.5 2.5 Composition Na2O P2O5 BaO ZnO Sb2O3 Content 2.0 1.5 1.5 1.5 1.5表2 LAS玻璃性能参数(1650℃)Table 2 Performance parameter of LAS glass (1650℃)Parameter Value Specific heat/ (kJ·kg−1·℃−1) 1102.73 Thermal conductivity/(W·m−1·K−1) 10.584 Density/(g·cm−3) 2.337 Viscosity/(dPa·s) 30其中α=∑wiai, c0=∑wici, wi为氧化物的质量分数(%), αi为计算因子, ci为玻璃中各氧化物比热容计算因子, T为玻璃液温度.玻璃的导热系数按照公式(3)计算得到.其中λi为玻璃成分的膨胀因子, ωi为玻璃化学组成(wt%), 计算得到1650℃时玻璃的导热系数为10.584 W/(m·K).根据富切尔公式(4)计算玻璃液在1650℃的黏度为30 dPa·s.η为玻璃黏度dPa·s, A、B、T0为玻璃常数, T为玻璃液实际温度(℃).(2)建模: 采用二维模型, 模拟成型后不同冷却时间的玻璃温度场.(3)边界条件: 热端温度载荷为1650℃, 冷端温度载荷为25℃(室温).(4)设定初始条件: 设定玻璃的平均初始温度为1650℃.(5)加载: 激活边界条件和初始条件.(6)运行 ANSYS软件: 选择 thermal模块, quad55单元, 对所建模型进行加载运算.(7)输出后处理结果.1.2 LAS微晶玻璃的制备按照表1玻璃组分配制混合粉料, 球磨1 h后在高纯氧化铝坩埚中加热至1650℃熔制4 h. 熔制好的玻璃液分别以1和6 cm/s流速浇铸于事先预热的不锈钢板上, 得到厚度为3和8 mm的LAS玻璃, 然后迅速置于600℃退火炉中, 并随炉冷却. LAS玻璃在一定温度下晶化热处理, 制备出 LAS微晶玻璃.1.3 结构测试与分析利用美国热电尼高力公司FTIR Nicolet 5700型傅里叶变换红外光谱仪分析原始玻璃的结构, 玻璃样品研磨成粉末(~48 μm), 测试波长范围为2500~380 cm-1. 将LAS玻璃研磨成粉末(~150 μm),采用 DZ-3331差热分析仪(DTA)分析其析晶行为,升温速度为10 ℃/ min,最高测试温度为950℃. 采用D8 advance X射线衍射仪(XRD)分析LAS微晶玻璃的晶相结构, 使用Cu靶Kα射线, 工作电压40 kV,工作电流 250 mA, 扫描范围10°~70°, 扫描速度5º/min. 采用 JSM-6700F场发射扫描电子显微镜(FE-SEM)观察 LAS微晶玻璃的显微结构, 试样经过切割磨抛, 在5vol%HF水溶液中浸渍腐蚀 30 s,试样清洗后表面镀上导电Au膜.2 结果与讨论2.1 玻璃温度场的有限元模拟图1和图2分别为2和10 mm厚玻璃成型后的温度场有限元模拟结果, 玻璃温度随冷却时间延长而降低, 厚度2 mm的玻璃成型2 s后中心温度已经降至470℃, 而厚度为10 mm的玻璃成型15 s后中心温度仍然高达794℃.图1 2 mm厚玻璃不同冷却时间的温度场Fig. 1 Temperature distribution in 2 mm thick glass with different cooling time(a) 1 s; (b) 2 s图2 10 mm厚玻璃不同冷却时间的温度场Fig. 2 Temperature distribution in 10 mm thick glass with different cooling time(a) 1 s; (b) 15 s图3 不同厚度玻璃中心温度随冷却时间变化曲线Fig. 3 Relationship between the central temperature of glass with different thicknesses and the cooling time图3为两种厚度的玻璃中心温度与冷却时间的关系曲线, 10 mm厚玻璃随时间延长降温较慢, 降温幅度减小; 而厚度为2 mm的玻璃随时间延长温度急剧降低, 当冷却时间超过 5 s时玻璃中心温度趋于平稳, 并接近室温. 由此可见 10 mm厚玻璃蓄热量大, 冷却速率低, 玻璃内部较长时间高于700℃,由于LAS微晶玻璃的成核温度在700℃左右, 当玻璃内部温度长时间高于成核温度, 将有初始晶核形成[6-7]. 在后续热处理过程中初始晶核将优先长大,影响玻璃表层与内部的结构均匀性, 因此应当适当调整制备工艺, 使玻璃整体温度迅速降低至成核温度以下, 防止玻璃内部出现析晶.2.2 LAS玻璃的结构与晶化行为图4为不同厚度LAS玻璃的红外光谱, 1381和1621 cm−1处吸收峰为玻璃表面吸附的羟基引起的吸收, 1200~1000 cm−1对应于Si−O−Si键反对称伸缩振动以及O−Si−O 键伸缩振动引起的吸收峰; 800~600 cm−1是Si−O−Al振动吸收峰, 460~420 cm−1为[AlO4]5−振动吸收峰[8-9]. 当玻璃转变成微晶玻璃时, 部分Al3+和Li+离子将取代[SiO4]中的Si4+离子,出现O−Al键振动[10-11]. 由图4可知, 成型速率低的厚玻璃红外吸收带明显变宽, 说明玻璃结构已经发生了变化. 由于Al3+电负性低于Si4+, Al3+离子部分取代 [SiO4]中Si4+离子, 使得Si−O−Si 键极性增大,振动频率提高, 导致相应的红外吸收带宽化, 且强度降低. Al3+离子取代证明了玻璃内部已形成初始晶核, 玻璃的非晶态结构已经被破坏. 厚度大的玻璃冷却速率低, 内部温度高于成核温度, 有利于玻璃成核析晶, 这与有限元分析结果一致.图5为不同厚度玻璃的DTA曲线, 3 mm的薄玻璃晶化峰温度为830℃, 而8 mm 的厚玻璃晶化峰温度为833℃, 但前者强度明显高于后者. 玻璃 DTA曲线中晶化峰强度和温度与样品中晶核数目有关,可以作为分析玻璃析晶的依据[12]. 由有限元模拟和玻璃IR光谱分析可知, 8 mm的厚玻璃内部冷却速率低, 长时间停留在成核温度以上, 出现析晶现象,玻璃热处理时, 析出的晶粒直接长大, 导致晶化峰强度明显降低.图4 不同厚度LAS玻璃的红外吸收光谱Fig. 4 Infrared spectra of LAS glass with different thicknesses图5 不同厚度LAS玻璃DTA曲线Fig. 5 DTA curves of LAS glasses with different thicknesses将3和8 mm厚的玻璃样品在830℃处理1 h, 其外观如图6所示, 3 mm厚的微晶玻璃整体无色透明; 8 mm厚的微晶玻璃内部为乳白色而表面层为无色透明, 两者界面上出现大量裂纹. 图 7为不同厚度微晶玻璃表面XRD图谱, 热处理后玻璃已结晶, 透明区域都为β-石英固溶体相(图7(a)). 对8 mm厚的微晶玻璃内部白色区域进行XRD结构分析(图7(b)),证实内部为β-锂辉石固溶体相, 说明厚度大的微晶玻璃表面与内部形成不同晶相. 延长热处理时间至 10 h, 微晶玻璃全部转变为乳白色的β-锂辉石固溶体相, 表明表面层的β-石英固溶体相在长时间热处理后也将转变为β-锂辉石固溶体相.图6 不同厚度LAS微晶玻璃的数码照片Fig. 6 Digital picture of LAS glass-ceramics with different thicknesses2.3 LAS微晶玻璃的组织结构图8为不同厚度LAS微晶玻璃的FE-SEM照片, 8 mm厚的微晶玻璃表面层为无色透明区(左上)和乳白色区(右下)组成, 其界面存在大量微裂纹(图8(a)). 无色透明区中晶粒为棒状, 长度为~300 nm,宽度为 50~100 nm, 晶粒间存在大量玻璃相(HF酸腐蚀后留下空隙), 且棒状晶粒表面有一些粒径为50 nm球状小晶粒(图8(b)); 乳白色区中晶粒形貌比较单一, 由50 nm左右的球状颗粒相互连接成珊瑚状(图 8(c)), 晶粒间隙小(玻璃相少), 比透明区致密得多. 与此相反, 3 mm厚的薄微晶玻璃晶粒细小均匀, 晶粒尺寸为100 nm左右(图8(d)).由上述XRD分析可知, 8 mm的厚微晶玻璃表面层无色透明区与内部乳白色区具有不同的晶相,导致微晶玻璃出现分层, 并且由于两者热膨胀系数差异大, 界面出现大量裂纹, 这与两个区域的形貌差异是一致的, 说明内部的球状晶粒为β-锂辉石固溶体相, 而表面层的棒状晶粒和球状小晶粒均为β-石英固溶体相, 球状小晶粒的形成机制有待于进一步研究. 3 mm厚的玻璃由于成型后厚度薄, 冷却速率高, 内部没有初始晶核生成, 热处理阶段通过体积析晶形成晶核并长大, 得到晶粒尺寸均匀的β-石英固溶体相.对于冷却速率低的玻璃, 热处理后其表面与内部具有不同晶粒形貌和显微结构, 表明微晶玻璃存在两种析晶机制: 表面层主要表现为表面析晶, 而内部为体积析晶[13-14]. 这种析晶差异可能与玻璃内部通过分相形成的初始晶核有关[15], 对于存在初始晶核的玻璃内部, 热处理阶段在初始晶核基础上直接析晶, 形成β-锂辉石固溶体; 而表面层冷却速率高, 初始晶核密度低, 主要通过表面析晶, 形成β-石英固溶体. 因此, 制备透明且结构均匀的LAS微晶玻璃的关键是提高玻璃冷却速率, 并控制玻璃内部与表面的温度均匀性, 使成型后的玻璃温度迅速降至成核温度以下, 避免玻璃内部出现析晶.图7 不同厚度LAS微晶玻璃的XRD图谱Fig. 7 XRD patterns of LAS glass-ceramics with different thicknesses(a) LAS glass-ceramic surfaces; (b) White portion of 8 mm thick glass-ceramics图8 LAS微晶玻璃的FE-SEM照片Fig. 8 FE-SEM images of LAS glass-ceramics(a) Glass-ceramics interface of 8 mm thick glass-ceramics; (b) Transparent portion of 8 mm thick glass-ceramics; (c) White portion of 8 mm thick glass-ceramics; (d) 3 mm thick glass-ceramics3 结论1) 有限元分析结果表明, 厚度为2 mm的LAS玻璃, 高温冷却2 s后, 中心温度470℃; 而厚度为10 mm的LAS玻璃, 冷却15 s后, 中心温度仍高于玻璃成核温度, 极易出现“析晶结石”.2) 厚玻璃冷却速率低, 内部有初始晶核形成,热处理阶段表面与内部形成不同的晶相, 导致 LAS微晶玻璃出现分层失透现象.3) LAS微晶玻璃的结构均匀性取决于成型过程中玻璃的冷却速率, 提高玻璃冷却速率, 控制温度均匀性, 可以防止玻璃内部形成初始晶核, 确保玻璃在热处理阶段通过体积析晶, 形成单一结构的晶相.参考文献:【相关文献】[1] 殷海荣, 吕承珍, 李阳, 等. 零膨胀锂铝硅透明微晶玻璃的研究与应用现状. 硅酸盐通报, 2008,27(3): 537−541.[2] LI Yao-Hui, CAO Jian-Wei, LU Jin-Shan, et al. Stability of microstructure and properties of transparent Li2O-Al2O3-SiO2 glassceramics. Journal of Inorganic Materials, 2009, 24(5): 1031−1035.[3] 吴松全, 李亚娟, 王福平. Li2O-Al2O3-SiO2系微晶玻璃的制备.硅酸盐通报, 2005(1): 76−80.[4] 田英良, 孙诗兵. 新编玻璃工艺学. 北京: 中国轻工业出版社, 2009: 398.[5] 邵宏根. 浮法玻璃成型的数值模拟与实验研究. 秦皇岛: 燕山大学博士论文, 2004: 30−51.[6] 程金树, 李宏, 汤李缨, 等. 微晶玻璃. 北京: 化学工业出版社, 2006: 30−34.[7] 隋普辉, 陆雷. 锂铝硅系微晶玻璃的显微结构及性能. 宇航材料工艺, 2009(6): 33−37.[8] Li Y H, Cao J W, Xu B, et al. Spectroscopic study of optical property and structural state of vanadium ions in lithium aluminosilicate glass-ceramics. Spectroscopy Letters, 2011,44(1): 67−76.[9] 郑伟宏, 林墨洲, 程金树, 等. 氟对锂铝硅系统玻璃结构及析晶的影响. 材料工程, 2010(4): 22−26.[10] 常鹰, 李溪滨. Li2O-A12O3-SiO2系微晶玻璃的IR、DTA、XRD和SEM研究. 硅酸盐通报, 2006, 25(3): 146−150.[11] Arvind A, Rakesh K, Deo M N, et al. Preparation, structural and thermo-mechanical properties of lithium aluminum silicate glass-ceramics. Ceramics International, 2009, 35(4): 1661−1666.[12] Gupta P K, Baranta G, Denry I L. DTA peak shift studies of primary crystallization in glasses. Journal of Non-Crystalline Solids, 2003, 317(3): 254−269.[13] 李香庭, 曾毅, 高建华, 等. 玻璃的显微结构研究. 电子显微学报, 2004, 23(4): 462−462.[14] XU Chang-Ming, WANG Shi-Wei, HUANG Xiao-Xian, et al. Crystallization and amorphization of cristobalite. Journal of Inorganic Materials, 2007, 22(4): 577−582. [15] 陆在平, 赵团, 高占勇, 等. 核化温度对 CaO-Al2O3-SiO2系微晶玻璃晶化行为的影响. 中国陶瓷, 2009, 45(6): 42−44.。

Lab.gruppen FP 14000 旅行放大器系列说明书

Lab.gruppen FP 14000 旅行放大器系列说明书

A Benchmark For Touring AmplificationOver the past decade, the tight and transparent sound of Lab.gruppen touring amplifiers has earned the praise of renowned F OH engineers and leading sound rental companies worldwide. FP 14000, the new flagship model of the FP+ Series, advances this tradition by further augmenting effective power output to effortlessly handle extreme low-frequency loads. The Regulated Switch Mode Power Supply (R.SMPS) has been updated to provide more sustained high power during extended bursts of low frequency content, while at the same time ensuring stable rail voltages even with wide fluctua-tions of external mains voltage. The forceful, high-current (90 A peak) output stage relies on Lab.gruppen’s patented Class TD topology, a breakthrough in amplifier technology that approaches the efficiency of Class D while retaining the sonic purity of proven Class B designs.A highly refined and efficient circuit layout further optimizes the inter-action of R.SMPS and Class TD to produce the unprecedented power density of the FP 14000.To keep its cool under extreme demands, the F P 14000 relies on Lab.gruppen’s proprietary Intercooler. This innovation uses thou-sands of copper fins to multiply the exposed heatsink surface’s rapid heat dissipation. Also, all output devices are mounted transverse to the airflow for uniform cooling. As a result, the F P 14000 delivers Lab.gruppen’s’ trademark “all the power, all the time” with no degradation of sonic performance.To maximize headroom in any application, the F P 14000 offers adjustable input gain along with Lab.gruppen’s exclusive Voltage Peak Limiter (VPL). Adjustable on a per-channel basis, VPL optimizes the output for any load, from a single massive subwoofer to a series of HF compression drivers.The comprehensive warning and protection features on the FP 14000 safeguard output circuits and connected loads while also extending amplifier life and minimizing the chance of service interup-tions. Whether it’s a matter of faulty wiring, improper use, or extreme ambient temperatures, the F P 14000 gives clear indication of any problems. Automatic protection measures engage only at critical thresholds. Operating conditions are re-checked every six seconds and, if a fault is detected, normal operation is resumed when mea-surements return to nominal.The F P 14000 is shipped with a NomadLink network interface as standard. In conjunction with DeviceControl software, or the leading third party control platforms, NomadLink network allows monitoring of all key amplifier parameters and remote control of power on/off, channel mutes, and channel solo functions. (NomadLink requires the separate NLB 60E NomadLink Bridge & Network Controller).▸Unprecedented power density – The FP 14000 delivers a total of 14000 W (2 x 7000 W @ 2 ohms) in only 2U.▸Lab.gruppen sound quality – The FP 14000 is optimized for sus-tained performance into extreme low-frequency loads, yet it also maintains Lab.gruppen’s reputation for exceptionally smooth and transparent mid- and high-frequency response.▸NomadLink® network ready – Monitoring and control of key functions accessible via the intuitive DeviceControl software and the robust, daisy-chained NomadLink network, as well as by the leading third party control platforms.▸Patented Class TD® amplifier topology – Road-proven output stage delivers Class B audio quality with Class D efficiency.▸Regulated Switch Mode Power Supply (R.SMPS™) – Output power remains constant even with significant drops in the mains voltage.▸Efficient cooling system – Unique, lightweight Intercooler®copper cooling system dissipates more heat to allow extended peak output.▸Adjustable parameters – Selectable Gain, scalable Voltage Peak Limiter (VPL™), and bridge-mode operation allow custom configu-ration for any system or application.▸XLR input and link connectors▸Heavy-duty binding posts▸Comprehensive protection and warning – Excessive output current, DC, high temperature, very high frequency (VHF), short circuit, open load, mains fuse protection, and soft start.FP 14000Technical Data FP+ Series: Dedicated Touring AmplifiersItem no. TDS-FP14000_V5L a b .g r u p p e n a b ▸ S w e d e ni n t e r n a t i o n a L c o n t a c t ▸ i n f o @L a b g r u p p e n .c o m | u S & c a n a d a c o n t a c t ▸ i n f o @t c g -a m e r i c a S .c o mw w w .l a b g r u p p e n .c omGeneralNumber of channels2Peak total output both channels driven 14000 W Peak output voltage per channel 195 VMax. output current per channel 90 A peakMax. Output Power2 ohms 4 ohms 8 ohms 16 ohms Per ch. (both ch.’s driven)7000 W 4400 W 2350 W 1200 W Bridged per ch.3)14000 W 8800 W 4700 WPerformance with Gain: 35 dB and VPL: 195 V THD 20 Hz - 20 kHz for 1 W<0.1%THD at 1 kHz and 1 dB below clipping <0.05%Signal To Noise Ratio>112 dBA Channel separation (Crosstalk) at 1 kHz>70 dBFrequency response (1 W into 8 ohms) +0/-3 dB 2 Hz - 34.2 kHz Input impedance20 kOhmCommon Mode Rejection (CMR)>54 dB, 20 Hz to 20 kHz Output impedance @ 100 Hz19 mOhmVoltage Peak Limiter (VPL), max. peak output VPL, selectable per ch.195, 170, 140, 116, 100, 80, 66, 54 V VPL, selectable when bridged 1)390, 340, 280, 232, 200, 160, 132, 108 V Voltage Peak Limiter mode (per ch.)Hard / SoftGain and LevelAmplifier gain selectable (all channels) 1) – rear-panel switches 23, 26, 29, 32, 35, 38, 41, 44 dBDefault gain38 dBLevel adjustment (per ch.)Front-panel potentiometer, 31 position detented from -inf to 0 dBConnectors and Switches Input connectors (per ch.)3-pin XLR, electronically balanced Output connectors (per ch.)Binding Posts 2-poleOutput bridge mode per two ch.’s A+B - Ch. A is signal input sourceNomadLink network On board, 2 x RJ45 etherCON ® connectors, IN and OUT Intelligent fans (on/off)Yes, depending on presence of output signal Power on/off and Remote enable on/off Individual switches on front-panelCoolingTwo fans, front-to-rear airflow, temperature controlled speedFront-panel indicators:Common NomadLink network; Power Average Limiter (PAL) 2); Power onPer channelSignal present / High-impedance; -20 dB, -15 dB, -10 dB and -4 dB output signal;Voltage Peak Limiter (VPL); Current Peak Limiter (CPL); Very High Frequency (VHF); High temperature; Fault; MutePowerOperating voltage, 230 V / 115 V nominal 4)130-265 V / 65-135 V Minimum power-up voltage, 230 V / 115 V 171 V / 85 V Power Average Limiter (PAL) 2)YesSoft start / Inrush Current Draw Yes / max. 5 AMains connector 230 V CE: 16 A, CEE7; 115 V ETL: 30 A Twist lockDimensions W: 483 mm (19”), H: 88 mm (2 U), Overall D: 396 mm (15.6”), Mounting D: 358 mm (14.1”) Weight 12 kg (26.4 lbs.)FinishBlack painted steel chassis with black painted steel / aluminum front ApprovalsCE, ANSI/UL 60065 (ETL), CSA C22.2 NO. 60065, FCCNote 1): Automatic -6 dB gain compensation when bridging channels.Note 2): PAL can reduce the maximum output power to keep the power supply operating safely, and/or to prevent excessive current draw tripping the mains breaker. Refer to the FP+ Operation Manual section 7.5.8 Power Average Limiter (PAL) for more information.Note 3): The amplifier will be fully operational at bridge-mode 2 ohm loads, but due to physical constraints in the construction, the max. output power will not be significanty higher than running individual channels and therefore this mode of operation is not recommended.Note 4): Separate 230 V or 115 V versions available. Not selectable on the amplifier.All specifications are subject to change without notice.Intercooler, NomadLink and Class TD are national and/or international registered trademarks of Lab.gruppen AB. R.SMPS and VPL are trademarks of Lab.gruppen AB. All other trademarks remain the property of their respective owners. Copyright © 2010 Lab.gruppen AB. All rights reserved.Specifications FP 14000。

冰模板法 金属

冰模板法 金属

冰模板法金属(原创版)目录1.冰模板法简介2.冰模板法在金属领域的应用3.冰模板法的优势与局限性4.我国在冰模板法研究方面的发展正文冰模板法是一种通过冰晶生长机制制备有序多孔金属材料的方法,该方法操作简便,具有广泛的应用前景。

冰模板法在金属领域的应用主要包括制备多孔金属材料、金属纳米线、金属纳米管等。

冰模板法的基本原理是利用溶液中的离子在冰晶生长过程中选择性地吸附在冰晶表面,从而形成有序的孔道结构。

这种方法具有制备过程简单、能耗低、可控性强等优点,因此在金属材料制备领域受到广泛关注。

冰模板法在金属领域的应用主要包括以下几个方面:1.制备多孔金属材料:冰模板法可以制备出具有高比表面积、孔径分布均匀的多孔金属材料,这些材料在催化、电化学、吸附等方面具有广泛的应用。

2.金属纳米线制备:冰模板法可以制备出直径均匀、长度可控的金属纳米线,这些纳米线在电子器件、传感器等领域有潜在应用。

3.金属纳米管制备:冰模板法可以制备出管径均匀、管壁厚度可控的金属纳米管,这些纳米管在电子器件、催化剂等领域具有潜在应用。

尽管冰模板法在金属领域具有广泛的应用前景,但它也存在一定的局限性。

例如,冰模板法的制备过程受温度和溶液浓度等因素影响较大,因此需要严格控制制备条件。

此外,冰模板法主要适用于金属离子在溶液中浓度较低的情况,对于高浓度的金属离子溶液,冰模板法的效果可能会受到影响。

我国在冰模板法研究方面取得了显著进展。

近年来,我国科研人员在冰模板法制备多孔金属材料、金属纳米线、金属纳米管等方面取得了一系列研究成果,这些成果为金属领域的发展提供了有力支持。

同时,我国政府也高度重视新材料产业的发展,为冰模板法等研究领域的资金投入和政策支持提供了有力保障。

总之,冰模板法作为一种具有广泛应用前景的金属材料制备方法,在多孔金属材料、金属纳米线、金属纳米管等领域具有重要意义。

铝电解质初晶温度和氧化铝溶解度的理论计算

铝电解质初晶温度和氧化铝溶解度的理论计算

铝电解质初晶温度和氧化铝溶解度的理论计算吕晓军;双亚静;胡凌云;刘建华;李劼【期刊名称】《轻金属》【年(卷),期】2015(0)9【摘要】了解掌握铝电解质物理化学性质是实现铝电解工艺参数协同配置和过程高效控制的前提。

本文基于我国工业铝电解质的基本体系,通过Factsage软件计算系统研究了AlF3、Al2O3、CaF2、LiF、MgF2对铝电解质初晶温度和氧化铝溶解度的影响规律,结果表明:当AlF3含量为5wt.%-15wt.%时,各添加剂对电解质初晶温度的影响顺序为:LiF〉MgF2〉AlF3〉CaF2,每添加1%的LiF、MgF2、AlF3、CaF2,电解质初晶温度分别降低8.5~9、5~8.4、3.5~4、2.4~3℃,且电解质中每增加1%的Al2O3,电解质初晶温度降低7℃。

当AlF3含量为10wt.%~15wt.%时,各添加剂对Al2O3溶解度的影响顺序为:LiF〉MgF2〉CaF2〉A1F3,且平均每添加1%的LiF、MgF2、CaF2、AlF3,Al2O3溶解度分别降低0.65%-0.53%、0.44%~0.46%、0.42%~0.36%、0.22%-0.33%。

【总页数】5页(P27-31)【关键词】铝电解质;初晶温度;Al2O3溶解度;熔盐化学【作者】吕晓军;双亚静;胡凌云;刘建华;李劼【作者单位】中南大学冶金与环境学院【正文语种】中文【中图分类】TF801.1【相关文献】1.铝电解质初晶温度测定装置及初晶点数模的研究 [J], 任凤莲;李海斌;蔡震峰;游玉萍2.铝电解质温度与初晶温度实时测量系统及应用 [J], 黄涌波;周孑民;瞿向东;孙志强3.铝电解质初晶温度的XRD参数计算法测定探讨 [J], 李琳;陆金生4.NaC l、LiF对K_3AlF_6-Na_3AlF_6-AlF_3体系初晶温度和Al_2O_3溶解度的影响 [J], 张亮;陈建设;李斌川;韩庆;刘奎仁5.镁电解质初晶温度的研究——CaF_2及MgCl_2对电解质初晶温度的影响 [J], 王延浜;张曰强因版权原因,仅展示原文概要,查看原文内容请购买。

5G通信设备用锂铝硅微晶玻璃结构与性能研究

5G通信设备用锂铝硅微晶玻璃结构与性能研究

5G通信设备用锂铝硅微晶玻璃结构与性能研究
李铭涵;王闻之;马艳平;姜宏
【期刊名称】《建筑玻璃与工业玻璃》
【年(卷),期】2024()2
【摘要】0引言.目前,全球已进入5G时代。

5G信号FR1为分米波~厘米波,具有频率高(0.45~6GHz)、波长短的特性。

手机等电子设备所用材料会影响5G信号的传输效率,产生介电损耗。

为了尽可能提高传输效率,减少损耗发生,人们针对各种材料的高频介电特性展开研究。

其中,微晶玻璃作为在电子设备上广泛使用的材料,引起了研究人员的重视。

【总页数】7页(P2-8)
【作者】李铭涵;王闻之;马艳平;姜宏
【作者单位】海南大学南海海洋资源利用国家重点实验室;海南大学海南省特种玻璃实验室
【正文语种】中文
【中图分类】TN9
【相关文献】
1.锂锌铝硅系微晶玻璃的显微结构及性能
2.玻璃冷却速率对锂铝硅微晶玻璃晶化行为和结构的影响
3.锂铝硅微晶玻璃结构与性能热稳定性研究
4.B_2O_3对锂铝硅系统微晶玻璃结构性能的影响
5.氧化锆含量对锂铝硅微晶玻璃析晶及理化性能的影响
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cooling rate inference in aluminum alloy squeeze castingA.Boschetto a ,G.Costanza b ,F.Quadrini b ,M.E.Tata b,⁎a Department of Mechanics and Aeronautics,University of Rome La Sapienza,Via Eudossiana 18,00184Rome,Italy bDepartment of Mechanical Engineering,University of Rome Tor Vergata,Via del Politecnico 1,00133Rome,ItalyReceived 1August 2006;accepted 19October 2006Available online 7November 2006AbstractAn indirect method for the evaluation of cooling rate of a squeeze cast aluminum alloy is proposed.Cooling rate is inferred by simple local mechanical tests such as microhardness or indentation.A predictive model is used to correlate cooling rate and mechanical properties.An aluminum alloy (EN-AB46000)was squeeze cast.Four cylindrical samples were fabricated at different values of the squeezing pressure (from 0to 100MPa).Samples were cut longitudinally at the middle height and microhardness was measured along the sample radius as well as dendrite size.Moreover yielding stress was evaluated by means of FIMEC test in the centre of the sample section.Mechanical properties can be related to dendrite size and used for cooling rate inference.©2006Elsevier B.V .All rights reserved.Keywords:Metals and alloys;Solidification;Microstructure;Mechanical properties1.IntroductionCooling rate evaluation is a very difficult task generally for all the casting processes.This is particularly true for aluminum alloy squeeze casting as cooling rate can reach very high values and a direct temperature measurement is practically impossible due to the mold thermal inertia.It is well known that squeeze pressure decreased the percent-age of porosity and increased density as well as grain size.It is often observed that grain size depends on solidification rate during casting.In fact the combination of high pressures and metal molds leads to high heat transfer coefficients which in turn leads to a refinement of microstructure [1–3].Cooling rate,the most important parameter influencing casting mechanical properties,is never directly measured except for some cases when thermocouples are inserted inside casting.Lee et al.studied the effect of the gap distance on the cooling behavior and the microstructure of an indirect squeeze cast and gravity die cast aluminum alloy.They inserted thermocouples through the die and located at the centre of each casting.How-ever a numerical model was used to calculate temperature profile and was preferred for the cooling rate extraction due to the intrinsic dispersion of measured cooling curves [4].In fact too many factors affect the temperature profile during casting from melt turbulence in injection to mold transient phase.Britnell and Neailey placed thermocouples inside the die near the mold –melt interface to study the macrosegregation in thin walled squeeze cast samples but thermal traces can be used just for a qualitative analysis [5].If cooling rate is already difficult to extract from laboratory tests,it seems really impossible in industrial processes.How-ever local mechanical testing can be always performed on cast parts.As mechanical properties are correlated to cooling rate,the latter can be inferred from the former.Costanza et al.defined a predictive model which correlates mechanical properties and cooling rate.In this study the authors employ the same law to infer in small cast parts the cooling rate after mechanical testing.This information can be used for process optimization as well as for the validation of process numerical simulations [6].2.The predictive modelA simple law which correlates mechanical properties (yield strength and Vickers hardness)to cooling rate is presentinMaterials Letters 61(2007)2969–2972/locate/matlet⁎Corresponding author.Tel.:+390672597181;fax:+39062021351.E-mail address:elisa.tata@uniroma2.it (M.E.Tata).0167-577X/$-see front matter ©2006Elsevier B.V .All rights reserved.doi:10.1016/j.matlet.2006.10.048scientific literature [6].The average grain size can be correlated to the mechanical properties by Hall –Petch:r Y ¼r 0þK Y k −1=2ð1ÞHV ¼HV 0þK H k −1=2:ð2ÞFurthermore a relationship between the cooling rate (ε)and the average dendrite cell size (λ)is:k ¼B e n :ð3ÞCombining Eqs.(1),(2)and (3)a direct correlation between the cooling rate and both the final yield strength and hardness is obtained:r Y ¼r 0þC Y e m where C Y ¼K Y B −1=2m ¼−n28<:ð4ÞHV ¼HV 0þC H e m where C H ¼K H B −1=2:ð5ÞMaterial constants of Eqs.(1–5)were extracted from labo-ratory tests on small specimens for the EN-AB46000aluminum alloy [6].3.Materials and experimental methodsThe examined material,aluminum alloy EN-AB46000,has nominal composition (wt.%):8.0–11.0Si,0.6–1.1Fe,2.0–4.0Cu,0.55Mn,0.15–0.55Mg,0.15Cr,0.55Ni,1.2Zn,0.35Pb,0.25Sn,0.2Ti,and Al to balance.It is a hypoeutectic Al –Si alloy,generally employed in die casting processes.A laboratory squeeze casting machine was constructed on purpose to fabricate specimens for the experimentation.A single cylindrical sample was fabricated at once (100mm in length and 30mm in radius).The die was designed without mold separation to avoid flash during squeezing.Alloy melting was performed in a muffle kiln inside a crucible.Subsequently the molten metal was poured in the cylindrical mold.The die was preheated by means of a kantal resistance kiln.Pressure was applied directly on the solidifying cast via a punch.After solidification,part extraction was performed by means of a steel pin connected to the punch.Four different squeezing conditions were used during the experimentation.The melt temperature was 750°C,the mold temperature 350°C,the applied pressure was 0MPa (A),50MPa (B),75MPa (C),and 100MPa (D).A delay time of 15s between the melt injection and the squeeze beginning was kept.Pressure was applied for 30s and the sample was ex-tracted after its complete solidification.Finally,the external surface roughness (Ra)was measured longitudinally on each sample.After casting,all the specimens were cut longitudinally to observe the circular section in the middle height.Each specimen section was preliminarily subjected to metallographic prepara-tion,etched with 1%HF aqueous solution to reveal the micro-structure and observed with an optical microscope.FIMEC (Flat-top Cylinder Indenter for Mechanical Characterization)and microhardness Vickers tests were performed in different points of the samplesections.Fig.1.Micrographs of metallographic sections of squeezed samples:a)sample A (0MPa)in the middle zone;b)sample A (0MPa)at the edge;c)sample D (100MPa)in the middle zone;d)sample D (100MPa)at the edge.2970 A.Boschetto et al./Materials Letters 61(2007)2969–2972The microhardness was measured along the radius as well as the alloy dendrite size whereas the FIMEC test was performed at the centre of the section.The FIMEC test is based on the penetration,at constant rate,of a flat punch of small size (2mm diameter and 1.5mm height)[7].During the test the applied load and the depth of penetration are measured.A limit load is reached after an initial linear stage.The yielding stress can be directly extracted from this limit load.A WC indenter,a 10N pre-load,a 0.1mm/min penetration rate and a 1mm depth were employed for testing.4.Experimental resultsA comparison among different microstructure aspects is provided in Fig.1for the maximum and minimum pressure in two different points (the centre and the edge).Fig.2shows the experimental curves obtained both from microhardness test (Fig.2-a)and FIMEC test (Fig.2-b).The higher the pressure,the higher the microhardness mean values and the lower the data scattering.The squeezing pressure has a significant effect also on FIMEC curves as they shift toward higher force values,increasing pressure.Finally,Table 1summarizes the mechanical,morphological and microstructural data.5.DiscussionThe effects of squeezing phase on cast properties are evident on all the material characteristics (Table 1).The surface aspect is clearly dependent on pressure due to the better metal-mold matching during squeezing.Roughness is strongly dependent on pressure not only in terms of mean value over the surface but also of dispersion.Also the microstructure is strongly affected by pressure (Fig.1).All the microstructures show primary aluminum dendrites,particles and eutectic constituent but a different dendrite size distribution is observed across the sample.The dendrite size appears to be comparable for all the pressures near the sample skin.The microhardness is directly correlated to the microstructure.A similar value is measured near the skin for all the squeezing pressures whereas a sig-nificant difference is observed toward the centre.Moreover a higher data scattering around is observed at lower pressure values.At 100MPa the trend tends to be a horizontal line and a lower dispersion is measured.The microhardness values and dendrite size ones of Table 1are evaluated in the same points along the radius.Instead theTable 1Mechanical,microstructural and morphological data extracted from squeezed samples in different points SampleFIMEC testRoughness (Ra)Distance from centre Micrographs MicrohardnessYielding stress in the centre Mean value Dispersion Dendrite cell size Local Vickers microhardness [MPa][μm][μm][mm][μm][HV]A120.43.080.82150.180.26.535.795.2831.398.11318103.4B 130.50.320.13135.782.7627.591.41315.9103C 144.00.360.07128.684.8625.895.61316.3111.6D 204.50.390.05129.694727.11031317.6103.4Fig.2.Mechanical tests for all the squeezing pressures:a)microhardness profiles along the sample radius;b)FIMEC tests at the centre.2971A.Boschetto et al./Materials Letters 61(2007)2969–2972yielding stress is always evaluated at the centre of the samples.Experimental data and model ones for yielding stress and microhardness are reported in Fig.3-a together with the theoretical trends extracted respectively from Eqs.(1)and (2).The semi-empirical models were fitted using the constants of Ref.[6].Costanza et al.evaluated these constants performing squeezing tests on small specimens of the same alloy.There is a good agreement between the experimental data and pre-dicted ones.A higher distance is observable for yielding stress and is probably due to the higher dimension of the zone interested to the indentation.As experimental data are in agreement with prediction of Eqs.(1)and (2),it is expected that Eqs.(4)and (5)can be used for the same alloy to infer cooling rate during solidification.In Fig.3-b microhardness values of Table 1were used to infer cooling rate at the different squeezing conditions in three sample positions.It is evident that the cooling rate is similar near the edge for all the squeezing pressures.6.ConclusionCooling rate can be extracted from cast parts by means of a simple indentation test.This is an important operation not only to provide correct information for process numerical simulation but above all to optimize the same casting process.In fact it is difficult to define a correct correlation among process para-meters and cycle time.Moreover the cycle time is strongly dependent on cooling rate.During die casting optimization,performing simple indentation tests on the first cast parts could allow to converge rapidly toward the process optimum.Material Eqs.(4)and (5)were fitted once by laboratory specimens but they are applicable on cast products for every casting condition.It would be possible to characterize all the interesting alloys and to use the results to calibrate industrial processes.Nomenclature σY Yield strength σU Ultimate tensile strength HV Vickers hardnessσ0,K Y Constants of Hall –Petch equation for yield strength HV 0,K H Constants of Hall –Petch equation for hardness λAverage dendrite cell size εCooling rate B ,n Alloy specific constants in the relationship between λand εC Y ,m Constants in the relationship between σY and εC H ,m Constants in the relationship between HV and εReferences[1]M.T.Abou El-khair,Materials Letters 59(2005)894–900.[2]P.Vijian,V .P.Arunachalam,Journal of Materials Processing Technology170(2005)32–36.[3]M.S.Yong,A.J.Clegg,Journal of Materials Processing Technology 145(2004)134–141.[4]J.H.Lee,H.S.Kim, C.W.Won, B.Cantor,Materials Science &Engineering.A,Structural Materials:Properties,Microstructure and Processing 338(2002)182–190.[5]D.J.Britnell,K.Neailey,Journal of Materials Processing Technology 138(2003)306–310.[6]G.Costanza,F.Quadrini,M.E.Tata,International Journal of Materials &Product Technology 20(5/6)(2004)345–357.[7]A.Donato,P.Gondi,R.Montanari,L.Moreschi,A.Sili,S.Storai,Journalof Nuclear Materials 258–263(1998)446–451.Fig.3.Theoretical predictions:a)comparison between experimental and theoretical data for mechanical properties;b)cooling rate inference by microhardness values at different squeezing pressures.2972 A.Boschetto et al./Materials Letters 61(2007)2969–2972。

相关文档
最新文档