圆的有关概念-教学下载PPT课件

合集下载

圆的认识免费ppt课件

圆的认识免费ppt课件
对于任意两个相交的圆, 它们的交点满足两圆的方 程,因此可以用两圆的方 程解出交点坐标。
交点的求法
将两个圆的方程联立,解 出交点坐标。
圆的组合图形
圆与直线的组合图形
当直线与圆相切或相交时,会形成一些特殊的组合图形,如扇形 、弓形等。
圆与圆之间的组合图形
两个或两个以上的圆可以形成一些特殊的组合图形,如椭圆、双曲 线等。
圆与其他图形的组合图形
圆与其他图形也可以组合成一些复杂的图形,如圆形花坛、圆形水 池等。
感谢您的观看
THANKS
05
圆的拓展知识
圆的切线
01
02
03
切线的定义
切线是指与圆只有一个公 共点的直线,这个公共点 叫做切点。
切线的判定
若直线与圆心的距离为零 ,则该直线为圆的切线。
切线的性质
切线垂直于过切点的半径 ,且切线长度等于半径长 度。
圆的交点
交点的定义
两个或两个以上的圆相交 于某一点,该点叫做交点 。
交点的性质
04
圆的定理
圆内角定理
总结词
圆内角定理描述了圆内角与其所对应 的弧之间的关系。
详细描述
圆内角定理指出,在同圆或等圆中, 相等的圆心角所对应的弧相等,相等 的圆周角所对应的弧也相等。这个定 理是圆的基本性质之一,是解决与圆 相关问题的重要依据。
圆外角定理
总结词
圆外角定理描述了圆外角与其所对应的弦之间的关系。
半径
从圆心到圆上任意一点的线段称为半径,半径的长度等于直 径的一半。点沿圆周移动一 圈的距离之和,计算公式为 C = 2πr ,其中 r 是圆的半径。
面积
圆的面积是圆所占平面的大小,计算 公式为 A = πr^2,其中 r 是圆的半径 。

圆的概念及性质 ppt课件

圆的概念及性质 ppt课件

圆中”,而所谓“等圆”,是指圆心不同,但半径相等的
圆,如“面积相等”“周长相等”的两个圆都是等圆.正确
理解这两个概念是避免出现错误的关键.
28.1 圆的概念及性质
方 ■方法:利用圆的定义证明多点共圆问题(数形结合)

这类问题一般是给出一个圆和另一个几何图形,判断几

巧 何图形上某些点是否在同一个圆上.解决此类问题时,可运
[答案] 解:连接 OC,如图,∵CE=AO,OA=OC,


题 ∴OC=EC,∴ ∠E = ∠1,∴∠2 =∠E+∠1 =2∠E,
型 ∵OC=OD,∴∠D=∠2=2∠E,∵∠BOD=∠E+∠D,

破 ∴∠E+2∠E=75°,∴∠E=25°.
28.1 圆的概念及性质
变式衍生 如图,OA 是⊙O 的半径,B 为 OA 上一点


题 (且不与点 O,A 重合),过点 B 作 OA 的垂线交⊙O 于
型 点 C.以 OB,BC 为边作矩形 OBCD,连接 BD.若 BD=10

破 ,BC=8,则 AB 的长为 ______.
4
28.1 圆的概念及性质
易 ■判断“等弧”忽略在“在同圆或等圆中”

例 下列说法错误的是 (




续表
优弧
大于半圆的弧(用三个点表示,如图中的
ABC,读作“弧 ABC”)叫做优弧

劣弧
图示
小于半圆的弧(如图中的AC,读作“弧
AC”)叫做劣弧
28.1 圆的概念及性质






续表
能够完全重合的两个圆叫做等圆

圆的基本概念和性质PPT课件

圆的基本概念和性质PPT课件
第14页/共19页
圆的相关概念
1、弧:圆上任意两点间的部分叫做圆弧,简称弧.
AB”. 以A,B两点为端点的弧.记作 A⌒B 读作“弧
2、弦:连接圆上任意两点间的线段叫做弦(如弦AB).
3、直径:经过圆心的弦叫做直径(如直径AC).
4、半圆:直径将圆分成两部分,每一部分都叫做半圆(如
弧 ABC).
B
定义二:圆是到定点的距离等于定长的点的集合。
2、点与圆的位置关系:
设⊙O的半径为r,则点P与⊙O的位置关系有: (1)点P在⊙O上 OP=r
(2)点P在⊙O内 (3)点P在⊙O外
OP<r OP>r
3、证明几个点在同一个圆上的方法。
要证明几个点在同一个圆上,只要证明这几个点 与一个定点的距离相等。
第17页/共19页
1:在以AB=5cm为直径的圆上到直线AB的距离为2.5cm 的点有 ( C ) A.无数个 B.1个 C.2个 D.4个
2:圆的半径是5cm,圆心的坐标是(0,0),点P 的坐标为(4,2),点P与⊙O的位置关系是(A )
A.点P在⊙O内 C.点P在⊙O外
B.点P在⊙O上 D.点P在⊙O上或⊙O外
(分别以点A、B为圆心,2厘米长为
半径的⊙A的内部与⊙ B的内部的公共
AA
BB
部分,即图中阴影部分,不包括阴影的
边界)
第12页/共19页
设AB=3cm,作图说明满足下列要求的图形:
(5)到点A的距离小于2cm,且到点B的距离大于2 cm的所有点组成的图形.
(分别以点A、B为圆心分,即图中阴影部分,不包括阴影的
边界)
A
B
第13页/共19页
如图菱形ABCD的对角线AC和BD相交于点O,E、 F、G、H分别是边AB、BC、CD、AD的中点,求证: E、F、G、H在同一个圆上。

圆的有关概念及性质PPT课件

圆的有关概念及性质PPT课件
推论3:如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形.
在同圆或等圆中,同弧或等弧所对的所有的 圆周角相等.相等的圆周角所对的弧相等.
D
E
∵∠ADB与∠AEB 、∠ACB 是
C 同弧所对的圆周角
O
∴∠ADB=∠AEB =∠ACB
A B
性质 3:半圆或直径所对的圆周角都 相等,都等于900(直角).
解得 x=147.∴⊙O 的半径为147.
2.已知⊙O 的半径为 13 cm,弦 AB∥CD,AB=
24 cm,CD=10 cm,则 AB,CD 之间的距离为( D )
A.17 cm
B.7 cm
C.12 cm
D.7 cm 或 17 cm
12.(2014·凉山州)已知⊙O 的直径 CD=10 cm,
点 P(0,-7)的直线 l 与⊙B 相交于 C,D 两点,则弦 CD
长的所有可能的整数值有( )
A.1 个
B.2 个
C.3 个
D.4 个
【解析】∵点 A 的坐标为(0,1),圆的半径为 5, ∴点 B 的坐标为(0,- 4).又∵点 P 的坐标为 (0,- 7), ∴ BP= 3. ①当 CD 垂直圆的直径 AE 时,CD 的值最小, 如图,连结 BC,在 Rt△BCP 中,BC=5,BP=3, ∴CP= BC2-BP2=4,∴CD=2CP=8; ②当 CD 经过圆心时,CD 的值最大, 此时 CD=AE=10.综上可得弦 CD 长的所有可能的整数值有 8,9,10, 共 3 个.故选 C.
3.如图,⊙O的弦AB垂直平分半径OC,则四边 形OACB是( C )
A.正方形 B.长方形 C.菱形 D.以上答案都不对
5.(2014·嘉兴、舟山)如图,⊙O 的直径 CD 垂直弦 AB 于点 E,且 CE=2,DE=8,则 AB 的长为( D )

24-1 圆的有关性质 课件(共60张PPT)

24-1 圆的有关性质 课件(共60张PPT)
平分弦所对的两条弧。
知识梳理
知识点4:垂径定理的应用。
将垂径定理和勾股定理有机结合,化圆中问题为三角形问题。
“圆弧AB”或“弧AB”。圆的任意一条直径
的两个端点把圆分成两条弧,每一条弧都叫做
半圆(semi-circle)。

能够重合的两个圆叫做等圆,容易
看出:半径相等的两个圆是等圆;
反过来,同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的
弧叫做等弧。

概念辨析
直径是弦,弦是直径。这句话正确吗?
2
2
1
∠DOB。
2
圆周角
探究结论

分别测量图中所对的圆周角∠ACB和
圆心角∠AOB的度数,可以发现两角的
度数相同。
同弧所对的圆周角的度数等于这条弧所
对的圆心角的度数的一半。
圆周角
则有圆周角定理:一条弧所对的圆周角等
于它所对的圆心角的一半。
我们还可以得到推论:(1)同弧或等弧
进一步,我们还可以得到推论:平分弦(
不是直径)的直径垂直于弦,并且平分弦
所对的两条弧。
垂直于弦的直径
问题二
赵州桥(图右)是我国隋代建造的石拱桥,距
今约有1400年的历史,是我国古代人民勤劳
与智慧的结晶。它的主桥拱是圆弧形,它的跨
度(弧所对的弦的长)为37m,拱高(弧的
中点到弦的距离)为7.23m,求赵州桥主桥拱
8()。∵CD平分∠ACB,∴∠ACD=∠BCD,
∴∠AOD=∠BOD,∴AD=BD。又在Rt∆ABD中,
2
2
2
2
2
AD +BD =AB ,∴AD=BD= AB= ×10=5

5.1《圆的认识》课件(21张PPT)

5.1《圆的认识》课件(21张PPT)
有了轮子, 运输胡萝卜 真省力呀!
课堂总结
这节课我们学习了什么?通过这节课的学习,你有什么收获?
填一填。
(1)在一圆中,半径有(无数)条,直径有(无数 )条,直径的长度是
半径的( 2倍 ),半径的长度是直径的( 一半)。 (2)圆的位置由( 圆心)决定,圆的( 大小)由半径决定。 (3)填表。(单位:cm)
(1)小圆的直径是多少厘米? 15÷(2+1)=5(cm) 答:小圆的直径是5 cm。
(2)长方形的面积是多少平方厘米? 5×2=10(cm) 15×10=150(cm2) 答:长方形的面积是150 cm2。
布置作业
(1)教材58页“做一做”1、2题。 (2)教材60页1、2题。
5.1《圆的认识》
圆在生活中随处可见,让我们一起来欣赏一下吧!
定半径
定圆心
旋转一周
圆心 O
圆心到圆上任意一点的距离都相等。
连接圆心和圆上任意一点的线段叫做半径, 半径一般用字母r表示。
圆心 半径r O
在同一圆里有无数条半径,所有半径的长度相等。 `
圆心 O 直径d
通过圆心,两端点在圆上,长度相等。
r
6
2.8
5.6
12.5
d
12
0.39
0.78
25
判一判。(对的画“√”,错的画“×”)
(1) 圆 的 半 径 和 直 径 分 别 相 等 。
(2)两端都在圆上的线段就是直径。
× (× ) ()
看图填空。 (1)圆的直径是(3 cm ),圆的半径是1(.5 cm )。
(2)半圆的半径是(5 cm ),半圆的直径是(10 cm )。 (3)长方形的长是(8 cm ),长方形的宽是(4 cm )。

《圆的认识》圆PPT优秀教学课件

《圆的认识》圆PPT优秀教学课件

04
圆的综合应用举例
求解切线方程问题
切线定义及性质
典型例题解析
回顾切线定义,阐述切线与半径垂直 的性质。
选取具有代表性的切线方程问题,详 细解析求解过程。
切线方程求解方法
通过圆心坐标和切线斜率,利用点斜 式或斜截式求解切线方程。
求解切线长问题
切线长定义及性质
回顾切线长定义,阐述切线与半 径、切线长与弦长的关系。
圆心、半径和直径
01
02
03
圆心
圆的中心,用字母O表示。
半径
连接圆心和圆上任意一点 的线段,用字母r表示。
直径
通过圆心且两端点都在圆 上的线段,用字母d表示, 且d=2r。
圆的周长与面积
圆的周长
围绕圆形绘制的线的长度,计算公 式为C=2πr或C=πd。
圆的面积
圆形所占平面的大小,计算公式为 S=πr²。
半径
03
一般方程中,半径$r=frac{sqrt{D^{2}+E^{2}-4F}}{2}$。
圆的参数方程
01 02
定义
以点$O(a,b)$为圆心,$r$为半径的圆的参数方程为 $left{ begin{array}{l} x=a+rcostheta y=b+rsintheta end{array} right.$,其中$theta$为参数。
求解割线性质问题
割线性质概述
总结割线的性质,如割 线与半径的关系、割线 定理等。
割线性质应用
利用割线性质解决与圆 相关的角度、长度等问 题。
典型例题解析
选取具有代表性的割线 性质问题,详细解析求 解过程。
05
与圆相关的数学问题拓展
点到直线距离公式推导及应用

《圆的概念及性质》PPT教学课件

《圆的概念及性质》PPT教学课件
点O为圆心的同一个圆上.
证明:∵四边形ABCD为矩形,
∴AO=OC=
OB=OD =

AC,

A
O

BD,AC=BD.

∴OA=OC=OB=OD.
D
B
C
∴A、B、C、D四个点在以点O为圆心,OA为半径的圆上.
例2 如图.
(1)请写出以点B为端点的劣弧及优弧;
(
(
(
(
B
D
劣弧:BF,BD, BC, BE.
称为☉O的半径.
确定一个圆的要素
一是圆心,圆心确定其位置;二是半径,半径确定其大小.
同圆的半径相等.
二、圆的对称性
1.什么是轴对称图形、中心对称图形?
2.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?
3.圆是中心对称图形吗?如果是,它的对称中心是什么?
4.圆绕着它的圆心旋转任意角度后和自身重合吗?






能 够 互 相 重 合 的 两 段 弧
半 圆 是 特 殊 的 弧
首先,小惠把绳子的一端固定在操场上
的某一点O处,小亮在绳子的另一端拴
上一小段竹签,然后,小亮将绳子拉紧,
再绕点O转一圈,竹签划出的痕迹就是
圆.
一、圆的概念
平面上,到定点的距离等于定长的所有点组成
的图形,叫做圆,这个定点叫圆心,这条定长叫
做圆的半径.
如图所示,它是以点O为圆心,OA的长为半径
的圆,记作“☉O”,读作“圆O”.线段OA也
28.1 圆的概念及性质
学习目标
1.认识圆,理解圆的本质属性.(重点)
2.理解弦、弧、直径、半圆、优弧、劣弧、等圆、等弧等

《圆的基本概念》课件-最全资料PPT

《圆的基本概念》课件-最全资料PPT


A
C
11
等圆与等弧
能够重合的两个圆叫做等圆;
E
F
· O1
B A
· O2
C
D
在同圆或等圆中,能够互相重合的弧叫做等弧。
想一想 判断下列说法的正误:
(1)直径是弦,弦是直径; ( ) (2)半圆是弧,弧也是半圆; ( ) (3)同圆的直径是半径的两倍;( ) (4)长度相等的弧是等弧; ( ) (5)等弧的长度相等; ( ) (6)过圆心的直线是直径; ( ) (7)直径是圆中最长的弦. ( )

AC)叫做弦。
经过圆心的弦(如图中的AB)叫 做直径.
B
O· C A

圆上任意两点间的部分叫做圆弧,简称
弧.以A、B为端点的弧记作 A⌒B ,读作“圆 弧AB”或“弧AB”.
圆的任意一条直径的两个端点把圆分成两条 弧,每一条弧都叫做半圆.

A
B
B

A
劣弧与优弧
小于半圆的弧叫做劣弧. (如图中的A⌒C)
24.1 圆的有关性质(第1课时)
东方市感城中学 邓土忠 “一切立体图形中最美的是球,一切平面图形中最美 的是圆”。这是古希腊的数学家毕达哥拉斯一句话。圆也 是一种和谐、美丽的图形,无论从哪个角度看,它都具有 同一形状。
1
.创设情境 引入新知
2
观察画圆的过程,你能由此说出 圆的形成过程吗?
3
圆的概念 A
确定一个圆由2个要素决定:圆心和半径。 圆心确定圆的位置,半径确定圆的大小。
5
练习 1.如何在操场上画一个半径是5m的圆?说出你的理由。
首先确定圆心, 然后用5米长的绳子一端固定 为圆心端,另一端系在一根尖木棒上,木棒以5米 长尖端划动一周,所形成的图形就是所画的圆.

《圆的基本概念》课件

《圆的基本概念》课件

圆的应用
圆形轮廓的制作
圆形轮廓广泛应用于标志设计和 艺术创作中,具有简洁、优雅的 特点。
圆形几何体的制作
圆是球体的截面,制作圆形几何 体可以用于建筑、工程和设计领 域。
圆形物体的计算
通过对圆的直径、半径和周长进 行计算,可以解决与圆相关的实 际问题。
总结
圆在几何学和日常生活中都扮演着重要的角色。通过了解圆的重要性和基本 概念,我们能够更好地理解和应用它。
பைடு நூலகம்
圆的构造
1
夹角平分线构造圆
通过夹角的平分线可以构造出一个唯一确定的圆。
2
弦中垂线构造圆
通过弦的中垂线可以构造出一个唯一确定的圆。
圆的测量
1
用直尺、量角器测量弦长、弦高、
2
切线长
直尺和量角器可以用来测量弦的长度、 弦的高度和切线的长度。
用量角器测量圆周角、圆内角、 圆外角
量角器是测量角度的工具,可以用来测 量圆周角、圆内角和圆外角的大小。
圆的性质
直径、弧、圆周
直径是通过圆心的两个点,弧是连接圆上两点的曲线,圆周是弧和直径的总长度。
弦、圆心角、圆内角、圆外角
弦是圆上连接两点的线段,圆心角是以圆心为顶点的角,圆内角是圆上与圆心角夹角的角, 圆外角是与圆心角相对的角。
圆周角定理、相交弧定理、弦切角定理
圆周角是位于圆上的两条弧所对应的角相等,相交弧所对应的圆心角相等,弦所对应的弦切 角相等。
《圆的基本概念》PPT课 件
探索圆的奥秘,从基本概念开始。了解圆的定义、性质和构造,应用圆形几 何体和轮廓制作,让我们一起揭开圆的神秘面纱。
前言
圆在几何学和日常生活中都扮演着重要的角色。让我们一起探索圆形的各种应用和它的重要性。

圆的有关概念(ppt)

圆的有关概念(ppt)
弦 连接圆上任意两点的线段叫做弦,如图中的 AC. 经过圆心的弦叫做直径,如图中的 AB.
B
O
A
C
A B
O●
C 1.如图,半径有:______________
若∠AOB=60°, 则△AOB是_____三角形.
2.如图,弦有:______________
3.与圆有关的概念
弧 圆上任意两点间的部分叫做圆弧,简称弧.以 A、B 为端点的弧记作 AB,读作“圆弧 AB”或“弧 AB”.
圆的有关概念(ppt)
优选圆的有关概念
课件说明
• 圆是继三角形、四边形等基本图形后的又一个重要内 容,圆的有关概念为今后学习圆的知识奠定了基础.
课件说明
• 学习目标: 1.通过观察实验操作,感受圆的定义,结合图形认 识弧,半圆,弦,直径,等圆,等弧,优弧,劣 弧等有关概念; 2.在具体情景中,通过探究、交流、反思等活动获 得圆的有关定义,体验探求规律的思想方法.
O A
C
B
E
D
2.合作交流,学习新知
2.合作交流,学习新知
圆的概念 如图,在一个平面内,线段 OA 绕它固定的一个端 点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
固定的端点 O 叫做圆心;
A
线段 OA 叫做半径;
r
以点 O 为圆心的圆,记作 ⊙O,读作“圆O”.
· O
2.合作交流,学习新知
确定一个圆的两个要素: 一是圆心, 二是半径.
O
同心圆 圆心相同,半径不同
等圆 半径相同,圆心不同
2.合作交流,学习新知
动态:在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 所形成的图形叫做圆.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成功的基础在于好的学习习惯
The foundation of success lies in good habits
13
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
Learning Is To Achieve A Certain Goal And Work Hard, Is A Process To Overcome Various Difficulties For A Goal
A
B
经过圆心的弦叫做直径(如直径AC).
●O
直做小径半于将圆半圆(圆如分的弧成弧A⌒两B叫C部做).分劣,弧每,一如部记分作都A⌒叫B(用
C D
两个字母). 大于半圆的弧叫做优弧,如记作
A⌒CB
(用三个字母).
1、请写出图中所有的弦; 2、请任选一条弦,写出这条弦所对的弧;
A
BOCDFra bibliotek写在最后

“一切立体图形中最美的是球,一切平 面图形中最美的是圆”。这是古希腊的数 学家毕达哥拉斯一句话。
圆也是一种和谐、美丽的图形,无论 从哪个角度看,它都具有同一形状。
圆有哪些性质?为什么车轮做成圆形?怎 样设计一个运动场的跑道?怎样计算蒙古 包的用料?在这一章,我们将进一步认识 圆,用图形变换等方法研究它,并用圆的 知识解决一些实际问题。
圆是一种基本的几何图形,圆形物体在生活中随处可见, 例如:
一石激起千层浪 奥运五环 祥子
乐在其中 福建土楼 小憩片刻



人民币
美圆
英镑

请在白纸上画一个半径为2cm的圆.
若要在平坦的操场上画一个半 径为3m的圆,你有什么办法?
在一个平面内,线 段OP绕它固定的一个 端点O旋转一周,另一 端点P所形成的图形叫 做圆。
车轮上各点到车轮中心的距离都等于 车轮的半径,当车轮在平面上滚动时车轮 中心与平面的距离保持不变.
因此,当车辆在平坦的路上行驶时,坐车的人 会感觉到非常平稳。
这就是车轮都做成圆形的数学道理
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧.
以A,B两点为端点的弧.记作 A⌒B,读作“弧
AB”.
连接圆上任意两点间的线段叫做弦(如弦AB).
定点O叫做圆心。
线段OP叫做圆的半径。
表示:以O为圆心的圆,记做“⊙O”,读做“圆O”。
从上面画圆的过程可以看出:
(1)圆上各点到定点(圆心O)的距离 都等于定长(半径)。 (2)到定点的距离等于定长的点都在 同一个圆上。
归纳: 圆可以看成在同一平面内是所有到定
点的距离等于定长的点的集合。
圆形车轮为什么平稳?
相关文档
最新文档