期末60分必做试题宝典 答案
(背诵版)60分必备--七年级生物主干知识
第一单元 第一章 认识生命现象(总分34分)1.探究原则:(1)设置 对照实验 ;(2)控制单一变量;(3)增加实验重复次数和实验材料达到一定数量,是为了 避免偶然性 ,提高实验结果可靠性。
2.显微镜的使用:(1)转动[ E ]粗准焦螺旋 ,使镜筒上升。
(2)转动[ B ]转换器 ,使 低倍 物镜对准通光孔。
(3)转动[ G ] 遮光器 ,使遮光器上 较大 的光圈对准通光孔。
(4)左眼注视目镜,转动[ D ] 反光镜 ,直到看到一个明亮的视野。
安放装片使目标正对 通光孔 的中央。
(1)从侧面注视[ C ] 物镜 ,双手同时转动粗准焦螺旋,使镜筒下降至接近装片2毫米处。
(2)左眼注视[ A ] 目镜 ,反方向转动粗准焦螺旋,使镜筒上升,找到物像。
必要时,可以调节[ F ] 细准焦螺旋 ,使物像更清晰。
整理和存放用 纱布 擦镜身,用 擦镜纸 擦目镜、物镜。
3.视野中需增加亮度时应选用 大光圈 和 凹面镜 ;反之用 小光圈 和 平面镜 。
4.由低倍镜换成高倍镜后:细胞变 大 ,数目变 少 ,视野变 暗 。
5.在显微镜视野中污点可能在: 目镜 、 物镜 、 玻片标本 。
6.显微镜成 倒 像,如p →d (试卷旋转180度即可找到答案)。
像在哪就往哪移,物像到中央。
例如:物像偏左上方,应向 左上 方移动装片。
7.区分目镜和物镜8.放大倍数= 目镜 放大倍数X 物镜 放大倍数(如:若目镜10x ,物镜40x ,则放大倍数是 400 倍)9.生物圈的范围: 大气圈的下层 、 整个水圈 、 岩石圈的上层 。
第一单元 第二章 观察生物结构(总分18分)1.制作洋葱表皮细胞临时装片:擦、滴(清水 )、撕、展、盖(让盖玻片的一侧先接触载玻片上的液滴,然后缓缓放平,避免产生气泡 )、染(用 碘液 染色)。
2.制作口腔上皮细胞临时装片:擦、滴(生理盐水 )、刮、涂、盖、染。
3.生物体结构和功能的基本单位是 细胞 。
部编数学七年级上册期末真题必刷基础60题(33个考点专练)(解析版)含答案
期末真题必刷基础60题(33个考点专练)一.正数和负数(共3小题)1.(2022秋•昌图县期末)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+12,﹣8,+9,﹣3,+7,﹣6,+10,﹣5.(1)B地位于A地的什么方向?距离A地多少千米?(2)若冲锋舟每千米耗油0.6升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)根据正数和负数的实际意义,将所有数据相加计算后根据所得结果进行判断即可;(2)由题意求得所有数据的绝对值,然后结合已知条件计算即可.【解答】解:(1)∵12﹣8+9﹣3+7﹣6+10﹣5=16(千米),∴B地在A地的东边16千米;(2)由题意可得这一天走的总路程为:|+12|+|﹣8|+|+9|+|﹣3|+|+7|+|﹣6|+|+10|+|﹣5|=60千米,那么应耗油60×0.6=36(升),故还需补充的油量为:36﹣30=6(升),即冲锋舟当天救灾过程中至少还需补充6升油.【点评】本题考查正数和负数的实际意义及绝对值,结合已知条件进行正确的计算是解题的关键.2.(2022秋•山亭区期末)某果农把自家果园的柑橘包装后放到了网上销售.原计划每天卖10箱,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某个星期的销售情况(超额记为正,不足记为负,单位:箱).星期一二三四五六日+4﹣3﹣5+7﹣8+21﹣6与计划量的差值(1)根据记录的数据可知前五天共卖出多少箱?(2)本周实际销售总量达到了计划数量没有?(3)若每箱柑橘售价为80元,同时需要支出运费7元/箱,那么该果农本周总共收入多少元?【分析】(1)将前五天的销售量相加即得结论;(2)将表格中记录的数据相加得出结果,结果的符号表示达到或不足,结果的绝对值表示达到或不足的数量;(3)利用本周的总收入减去总运费即得结论.【解答】解:(1)10×5+4﹣3﹣5+7﹣8=45 (箱),答:根据记录的数据可知前五天共卖出45箱;(2)4﹣3﹣5+7﹣8+21﹣6=10>0,答:本周实际销售总量达到了计划数量;(3)(10×7+10)×80﹣(10×7+10)×7=5840(元),答:该果农本周总共收入5840元.【点评】此题考查正数和负数的问题,此题的关键是读懂题意,列式计算.3.(2022秋•千山区期末)某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星期一二三四五六日产量+10﹣6﹣8+15﹣12+18﹣9(1)根据记录,求出前三天共生产多少个?(2)请问产量最多的一天比产量最少的一天多生产多少个?(3)该厂实行计件工资制,每生产一个玩具10元,若按周计算,超额完成任务,超出部分每个12元;若未完成任务,生产出的玩具每个只能按8元发工资,那么该厂员工这一周的工资总额是多少?【分析】(1)三天的计划总数加上三天多生产的个数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总个数,然后按照工资标准求解.【解答】解:(1)100×3+10﹣6﹣8=296(个),∴前三天共生产296个;(2)18﹣(﹣12)=18+12=30(个),∴产量最多的一天比产量最少的一天多生产30个;(3)这一周多生产的总个数是10﹣6﹣8+15﹣12+18﹣9=8(个),10×700+12×8=7096(元).答:该厂工人这一周的工资是7096元.【点评】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.二.相反数(共3小题)4.(2022秋•二七区校级期末)﹣3的相反数是( )A.﹣B.3C.﹣3D.【分析】根据相反数的概念解答求解.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:B.【点评】本题考查了相反数的意义,理解相反数的意义是解题的关键.5.(2022秋•宁阳县期末)2023的相反数是( )A.B.C.2023D.﹣2023【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:2023的相反数是﹣2023.故选:D.【点评】本题考查相反数,关键是掌握相反数的定义.6.(2022秋•德州期末)﹣2023的相反数是 2023 .【分析】由相反数的概念即可解答.【解答】解:﹣2023的相反数是﹣(﹣2023)=2023.故答案为:2023.【点评】本题考查相反数的概念,关键是掌握:只有符号不同的两个数叫做互为相反数,求一个数的相反数的方法就是在这个数的前边添加“﹣”.三.绝对值(共1小题)7.(2022秋•福田区校级期末)的相反数( )A.2022B.﹣2022C.D.【分析】根据绝对值、相反数的意义即可得出答案.【解答】解:∵,又∵的相反数是,∴的相反数是,故选:D.【点评】本题考查绝对值、相反数的意义,掌握绝对值、相反数的意义是解题的关键.四.倒数(共1小题)8.(2022秋•新兴县期末)的倒数是 ﹣2 .【分析】直接根据倒数的概念解答即可.【解答】解:的倒数是:,故答案为:﹣2.【点评】本题考查了倒数的概念,即当a≠0时,a与互为倒数.特别要注意的是:负数的倒数还是负数,此题难度较小.五.有理数大小比较(共2小题)9.(2022秋•海门市期末)比较大小:﹣ > ﹣.(用“>”“=”或“<”连接)【分析】先通分,再比较其绝对值的大小,进而可得出结论.【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.【点评】本题考查的是有理数的大小比较,熟知负数比较大小的法则是解题的关键.10.(2022秋•建邺区校级期末)有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b < 0,a+b < 0,a﹣c > 0.(2)化简:|c﹣b|+|a+b|﹣|a﹣c|.【分析】观察数轴可知:c<a<0<b<﹣a<﹣c.(1)由c<a<0<b<﹣a<﹣c,可得出c﹣b<0、a+b<0、a﹣c>0,此题得解;(2)由c﹣b<0、a+b<0、a﹣c>0,可得出|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c),去掉括号合并同类项即可得出结论.【解答】解:观察数轴可知:c<a<0<b<﹣a<﹣c.(1)∵c<a<0<b<﹣a<﹣c,∴c﹣b<0,a+b<0,a﹣c>0.故答案为:<;<;>.(2)∵c﹣b<0,a+b<0,a﹣c>0,∴|c﹣b|+|a+b|﹣|a﹣c|=b﹣c+(﹣a﹣b)﹣(a﹣c)=b﹣c﹣a﹣b﹣a+c=﹣2a.【点评】本题考查了有理数的大小比较、数轴以及绝对值,观察数轴找出c<a<0<b<﹣a<﹣c是解题的关键.六.有理数的除法(共1小题)11.(2022秋•垫江县期末)计算(﹣6)÷(﹣)×6的结果是( )A.6B.36C.﹣1D.1【分析】将除法变为乘法,再约分计算即可求解.【解答】解:(﹣6)÷(﹣)×6=(﹣6)×(﹣6)×6=36.故选:B.【点评】本题考查了有理数的乘除法,关键是熟练掌握计算法则正确进行计算.七.有理数的乘方(共1小题)12.(2022秋•秀山县期末)把下列各数填在相应的大括号里.0.245,+7,0,﹣1.07,﹣|﹣3|,,﹣(﹣6),,(﹣2)2正数集合:{ 0.245,+7,,﹣(﹣6),(﹣2)2 …}正分数集合:{ 0.245, …}负整数集合:{ ﹣|﹣3| …}负数集合:{ ﹣1.07,﹣|﹣3|, …}非正整数集合:{ 0,﹣|﹣3| …}【分析】根据有理数的分类进行解答即可.【解答】解:﹣|﹣3|=﹣3,﹣(﹣6)=6,(﹣2)2=4;正数集合:{0.245,+7,,﹣(﹣6),(﹣2)2…},正分数集合:{0.245,…},负整数集合:{﹣|﹣3|…},负数集合:{﹣1.07,﹣|﹣3|,…},非正整数集合:{ 0,﹣|﹣3|…},故答案为:0.245,+7,,﹣(﹣6),(﹣2)2;0.245,;﹣|﹣3|;﹣1.07,﹣|﹣3|,;0,﹣|﹣3|.【点评】本题主要考查了有理数的分类,绝对值的意义,解题的关键是熟练掌握有理数的定义.八.非负数的性质:偶次方(共1小题)13.(2022秋•泉港区期末)已知|m﹣3|+(n+2)2=0,则m+2n的值为( )A.﹣7B.7C.﹣1D.1【分析】直接利用非负数的性质得出m,n的值,进而代入得出答案.【解答】解:∵|m﹣3|+(n+2)2=0,∴m﹣3=0,n+2=0,解得:m=3,n=﹣2,∴m+2n=3﹣4=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确得出m,n的值是解题关键.九.有理数的混合运算(共1小题)14.(2022秋•市中区期末)对于有理数a、b,定义一种新运算,规定a☆b=a2﹣|b|,则3☆(﹣2)= 7 .【分析】根据新定义把新运算转化为常规运算进行解答便可.【解答】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点评】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.一十.近似数和有效数字(共2小题)15.(2022秋•平谷区期末)用四舍五入法把3.1415926精确到0.01,所得到的近似数为 3.14 .【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415926精确到0.01,所得到的近似数为3.14.故答案为:3.14.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.16.(2022秋•叙州区期末)用四舍五入法将0.05068精确到千分位的近似值为 0.051 .【分析】把万分位上的数字6进行四舍五入即可.【解答】解:0.05068≈0.051(精确到千分位).故答案为:0.051.【点评】本题考查了近似数:“精确度”是近似数的常用表现形式.一十一.科学记数法—表示较大的数(共2小题)17.(2022秋•西岗区校级期末)中国航母辽宁舰(如图)是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,数据67500用科学记数法表示为( )A.6.75×103B.6.75×104C.67.5×105D.67.5×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:67500=6.75×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(2022秋•罗湖区期末)从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主,开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问使用北斗卫星导航系统超70000000次.其中70000000用科学记数法表示为( )A.7×103B.7×105C.7×106D.7×107【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:70000000=7×107.故选:D.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.一十二.代数式(共1小题)19.(2022秋•罗湖区期末)下列结论中正确的是( )A.对乘坐高铁的乘客进行安检,适宜采用普查的方式B.单项式的系数是C.a2+b2的意义是表示a,b两数的和的平方D.将弯曲的道路改直的数学道理是“过两点有且只有一条直线”【分析】根据抽样调查,单项式的定义,代数式的意义,线段的性质判断即可.【解答】解:A、对乘坐高铁的乘客进行安检,适宜采用普查方式,故符合题意;B、单项式的系数是π,故不符合题意;C、a2+b2的意义是表示a,b两数平方的和,故不符合题意;D、将弯曲的道路改直的数学道理是“两点之间,线段最短”,故不符合题意;故选:A.【点评】本题考查了抽样调查,单项式的定义,代数式的意义,线段的性质,熟练掌握抽样调查,单项式的定义,代数式的意义,线段的性质是解题的关键.一十三.代数式求值(共3小题)20.(2022秋•伊川县期末)若a+2b=3,则7+4b+2a= 13 .【分析】根据a+2b=3,可知2a+4b的值,进一步求解即可.【解答】解:∵a+2b=3,∴2a+4b=2(a+2b)=2×3=6,∴7+4b+2a=7+6=13,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.21.(2022秋•平江县期末)如图是一个简单的数值运算程序框图,如果输入x的值为﹣1,那么输出的数值是 27 .【分析】根据程序框图计算即可求出答案.【解答】解:﹣1+(﹣2)=﹣3,(﹣3)3=﹣27,﹣27×(﹣1)=27,故答案为:27.【点评】本题考查有理数的运算,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.22.(2022秋•连云港期末)根据如图所示的计算程序,若输入的值x=﹣2,则输出的值y= 5 .【分析】根据程序图即可求出y的值.【解答】解:∵x=﹣2<0,∴把x=﹣2代入y=x2+1,得y=(﹣2)2+1=5.故答案为:5.【点评】本题考查代数式求值,解题的关键是正确理解程序图,本题属于基础题型.一十四.同类项(共2小题)23.(2022秋•紫金县期末)下列各组中两项属于同类项的是( )A.﹣x2y和xy2B.x2y和x2zC.﹣m2n3和﹣3n3m2D.﹣ab和abc【分析】根据同类项的定义逐个判断即可.【解答】解:A.﹣x2y和xy2,相同字母的指数分别不相等,不是同类项,故本选项不符合题意;B.x2y和x2z的字母不相同,不是同类项,故本选项不符合题意;C.﹣m2n3和﹣3n3m2的字母相同,相同字母的指数也分别相等,是同类项,故本选项符合题意;D.﹣ab和abc的字母不完全相同,不是同类项,故本选项不符合题意;故选:C.【点评】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项叫同类项,常数项是同类项.24.(2022秋•南海区校级期末)单项式x m﹣1y3与﹣4xy n是同类项,则m n的值是( )A.1B.3C.6D.8【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:根据题意得:m﹣1=1,n=3,解得:m=2,所以m n=23=8.故选:D.【点评】本题主要考查了同类项的定义,根据相同字母的指数相同列出方程是解题的关键.一十五.合并同类项(共1小题)25.(2022秋•建昌县期末)若多项式a3b m﹣2a n b4+3可以进一步合并同类项,则m,n的值分别是( )A.m=4,n=3B.m=3,n=4C.m=3,n=3D.m=4,n=4【分析】据同类项的定义(所含字母相同,相同字母的指数相同),即可求得m、n的值.【解答】解:∵多项式a3b m﹣2a n b4+3可以进一步合并同类项,∴a3b m和﹣2a n b4是同类项,∴m=4,n=3.故选:A.【点评】本题考查了同类项的定义,掌握同类项定义中相同字母的指数相同是关键.一十六.去括号与添括号(共1小题)26.(2022秋•海丰县期末)去括号:﹣(2a﹣3b)= ﹣2a+3b .【分析】根据去括号法则求解即可.【解答】解:﹣(2a﹣3b)=﹣2a+3b.故答案为:﹣2a+3b.【点评】本题主要考查了去括号,熟知去括号法则是解题的关键,如果括号前面是“+”号,去括号时不变号,如果括号前是“﹣”,去括号时要变号.一十七.单项式(共2小题)27.(2022秋•息县期末)已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.﹣2xy2B.3x2C.2xy3D.2x3【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,故本选项错误;B、3x2系数是3,故本选项错误;C、2xy3次数是4,故本选项错误;D、2x3符合系数是2,次数是3,故本选项正确;故选:D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.28.(2022秋•万柏林区期末)单项式的系数是 .【分析】直接利用单项式的系数的确定方法分析得出答案.【解答】解:单项式的系数是:.故答案为:.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.一十八.多项式(共1小题)29.(2022秋•铁锋区期末)多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.【解答】解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.一十九.整式的加减(共1小题)30.(2022秋•甘肃期末)教材中“整式的加减”一章的知识结构如图所示,则A和B分别代表的是( )A.整式,合并同类项B.单项式,合并同类项C.系数,次数D.多项式,合并同类项【分析】根据整式的定义,整式的加减,可得答案.【解答】解:单项式和多项式统称作整式,整式的加减就是去括号,合并同类项,故选:D.【点评】本题考查了整式的相关概念,解题的关键是掌握单项式和多项式统称作整式,整式的加减就是去括号,合并同类项.二十.整式的加减—化简求值(共3小题)31.(2022秋•罗湖区期末)先化简,再求值:2(a2﹣2a)﹣(2a2﹣3a)+1,其中a=﹣3.【分析】直接去括号,进而合并同类项,再把已知数据代入求出答案.【解答】解:原式=2a2﹣4a﹣2a2+3a+1=﹣a+1,当a=﹣3时,原式=﹣a+1=﹣(﹣3)+1=4.【点评】此题主要考查了整式的加减——化简求值,注意括号前是“﹣”时,去括号后括号内各项要变号是解题关键.32.(2022秋•东丽区期末)先化简,再求值:,其中a=﹣3,.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:==﹣3a+b2,当时,原式=.【点评】此题考查了整式的加减——化简求值,熟练掌握运算法则是解本题的关键.33.(2022秋•永定区期末)计算:已知A=b2﹣a2+5ab,B=3ab+2b2﹣a2.(1)化简:2A﹣B;(2)当a=1,b=2时,求2A﹣B的值.【分析】(1)根据整式的加减运算进行化简即可求出答案.(2)将a与b的值代入原式即可求出答案.【解答】解:(1)原式=2(b2﹣a2+5ab)﹣(3ab+2b2﹣a2)=2b2﹣2a2+10ab﹣3ab﹣2b2+a2=﹣a2+7ab,(2)当a=1,b=2时,原式=﹣1+7×1×2=﹣1+14=13.【点评】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,属于基础题型.二十一.方程的解(共2小题)34.(2022秋•罗湖区期末)定义一种新的运算“⊗”,它的运算法则为:当a、b为有理数时,a⊗,比如:6⊗4==1,则方程x⊗2=1⊗x的解为x= .【分析】根据定义直接求解即可.【解答】解:∵x⊗2=1⊗x,∴x﹣,解得x=,故答案为:.【点评】本题考查一元一次方程的解,理解定义,结合新定义,能将所求问题转化为一元一次方程的解是解题的关键.35.(2022秋•思明区校级期末)如果关于m的方程2m+b=m﹣1的解是﹣4,求b的值 3 .【分析】把m=﹣4代入方程,求出b的值即可.【解答】解:∵关于m的方程2m+b=m﹣1的解是﹣4,∴2×(﹣4)+b=﹣4﹣1,∴b=3.故答案为:3.【点评】本题考查方程的解,关键是掌握方程解的定义.二十二.等式的性质(共1小题)36.(2022秋•陵城区期末)下列运用等式的性质,变形不正确的是( )A.若x=y,则x+5=y+5B.若x=y,则=C.若x=y,则1﹣3x=1﹣3y D.若a=b,则ac=bc【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若x=y,则=,a≠0,故此选项错误,符合题意;C、若x=y,则1﹣3x=1﹣3y,正确,不合题意;D、若a=b,则ac=bc,正确,不合题意.故选:B.【点评】此题主要考查了等式的性质,正确把握相关性质是解题关键.二十三.一元一次方程的定义(共1小题)37.(2022秋•新泰市期末)如果(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,那么m 的值为( )A.±4B.4C.2D.﹣4【分析】依据一元一次方程的定义可知|m|﹣3=1且m﹣4≠0,从而可求得m的值.【解答】解:∵(4﹣m)x|m|﹣3﹣16=0是关于x的一元一次方程,∴|m|﹣3=1且m﹣4≠0,解得m=﹣4.故选:D.【点评】本题主要考查的是一元一次方程的定义,由一元一次方程的定义得到|m|﹣3=1且m﹣4≠0是解题的关键.二十四.一元一次方程的解(共6小题)38.(2022秋•黄埔区校级期末)若x=1是关于x的方程2x+a=0的解,则a的值为( )A.﹣1B.﹣2C.1D.2【分析】根据一元一次方程的解的定义解决此题.【解答】解:由题意得:当x=1时,2+a=0.∴a=﹣2.故选:B.【点评】本题主要考查一元一次方程的解,熟练掌握一元一次方程的解的定义是解决本题的关键.39.(2022秋•兴隆县期末)方程mx+2x﹣12=0是关于x的一元一次方程,若此方程的解为正整数,则正整数m的值有几个( )A.2个B.3个C.4个D.5个【分析】根据方程的解是正整数,可得(m+2)是12的约数,根据12的约数,可得关于m的方程,根据解方程,可得答案.【解答】解:由mx+2x﹣12=0,得,∵方程mx+2x﹣12=0是关于x的一元一次方程,此方程的解为正整数,m是正整数,∴m+2=3或4或6或12,解得m=1或2或4或10,∴正整数m的值有4个.故选:C.【点评】本题考查了一元一次方程的解,正确理解m+2=3或4或6或12是关键.40.(2022秋•沙依巴克区校级期末)如果x=3是关于x的方程3m﹣2x=6的解,则m的值是( )A.0B.C.﹣4D.4【分析】把x的值代入方程计算即可求出m的值.【解答】解:把x=3代入方程得:3m﹣6=6,解得:m=4,故选:D.【点评】本题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.41.(2022秋•孝南区期末)关于x的一元一次方程mx+1=2的解为x=﹣1,则m= ﹣1 .【分析】将x=﹣1代入方程mx+1=2,得到关于m的一元一次方程,解方程即可求出m 的值.【解答】解:∵关于x的一元一次方程mx+1=2的解为x=﹣1,∴﹣m+1=2,解得m=﹣1.故答案为:﹣1.【点评】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.42.(2022秋•兴化市校级期末)小王同学在解方程3x﹣2=☆x﹣5时,发现“☆”处的数字模糊不清,但察看答案可知该方程的解为x=3,则“☆”处的数字为 4 .【分析】根据方程的解满足方程,设☆=a,可得关于a的方程,根据解方程,可得a的值.【解答】解:设☆=a,由x=3是3x﹣2=ax﹣5的解,得3×3﹣2=3a﹣5,解得a=4.故答案为:4.【点评】本题考查解一元一次方程的解和解方程,解题的关键是掌握解一元一次方程.43.(2022秋•沅江市期末)若x=3是关于x的方程ax+4=1的解,则a= ﹣1 .【分析】根据方程解的定义,把x=3代入方程即可得出a的值.【解答】解:∵x=3是关于x的方程ax+4=1的解,∴3a+4=1,∴a=﹣1,故答案为:﹣1.【点评】本题考查了一元一次方程的解,掌握方程解的定义,以及一元一次方程的解法是解题的关键.二十五.解一元一次方程(共5小题)44.(2022秋•交口县期末)下列方程的变形中,正确的是( )A.由﹣2x=9,得x=﹣B.由x=0,得x=3C.由7=﹣2x﹣5,得2x=5﹣7D.由3=x﹣2,得x=3+2【分析】应用等式的性质进行计算即可得出答案.【解答】解:A.由﹣2x=9,得x=﹣,所以A变形不正确,故A选项不符合题意;B.由x=0,得x=0,所以A变形不正确,故A选项不符合题意;C.由7=﹣2x﹣5,得2x=﹣5﹣7,所以C变形不正确,故C选项不符合题意;D.由3=x﹣2,得x=3+2所以D变形正确,故D选项不符合题意.故选:D.【点评】本题主要考查了等式的性质,熟练掌握等式的性质是解决本题的关键.45.(2022秋•南开区校级期末)定义运算法则:a⊕b=a2+ab,例如3⊕2=32+3×2=15.若2⊕x=10,则x的值为 3 .【分析】根据题意列出关于x的一元一次方程,求出x的值即可.【解答】解:∵2⊕x=10,∴22+2x=10,即4+2x=10,解得x=3.故答案为:3.【点评】本题考查的是解一元一次方程,根据题意得出关于x的一元一次方程是解题的关键.46.(2022秋•平桥区期末)解方程:.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.【解答】解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6合并同类项得:﹣4x=﹣3系数化为1得:x=.【点评】注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.47.(2022秋•新泰市期末)解方程(1)4x﹣6=2(3x﹣1);(2)y﹣=3﹣【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣6=6x﹣2,移项合并得:﹣2x=4,解得:x=﹣2;(2)去分母得:10y﹣5(y﹣1)=30﹣2(y+2),去括号得:10y﹣5y+5=30﹣2y﹣4,移项合并得:7y=21,解得:y=3.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.48.(2022秋•望城区期末)解下列方程:(1)4x﹣3=2﹣5x;(2).【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号、移项、合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,4x+5x=2+3,合并同类项得,9x=5,x的系数化为1得,x=;(2)去分母得,2(2x﹣1)﹣(10x+1)=12,去括号得,4x﹣2﹣10x﹣1=12,移项得,4x﹣10x=12+2+1,合并同类项得,﹣6x=15,x的系数化为1得,x=﹣.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.二十六.由实际问题抽象出一元一次方程(共1小题)49.(2022秋•罗湖区期末)某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,设分配x名工人生产螺母,由题意可知下面所列的方程正确的是( )A.2×1200x=2000(22﹣x)B.2×1200(22﹣x)=2000xC.2×2000x=1200(22﹣x)D.2×2000(22﹣x)=1200x【分析】题目已经设出分配x名工人生产螺母,则(22﹣x)人生产螺钉,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设分配x名工人生产螺母,则(22﹣x)人生产螺钉,由题意得2000x=2×1200(22﹣x),故B答案正确,故选:B.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.二十七.认识立体图形(共1小题)50.(2022秋•泗阳县期末)在一个六棱柱中,共 18 有条棱.【分析】根据六棱柱的特点可得答案.【解答】解:在一个六棱柱中,共有3×6=18条棱,故答案为:18.【点评】此题主要考查了认识立体图形,关键是认识常见的立体图形,掌握棱柱、棱锥、圆柱、圆锥的特点.二十八.点、线、面、体(共1小题)51.(2022秋•市南区期末)下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选:D.【点评】本题考查了点、线、面、体的知识,主要是考查学生立体图形的空间想象能力及分析问题,解决问题的能力.二十九.专题:正方体相对两个面上的文字(共1小题)52.(2022秋•新都区期末)一个正方体的平面展开图如图所示,将它折成正方体后“时”字对面的字是 分 .【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【解答】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“时”字相对的面上的字是“分”.故答案为:分.。
八年级(下)数学期末复习宝典答案
上,点 A 恰好与 BD 上的点 F 重合,展开后,折痕 DE 分别交 AB、AC 于点 E、G,连接 FG,下列结论, 其中正确结论的个是( ) (1)∠AGD=112.5°; (2)E 为 AB 中点; (3)S△AGD=S△OCD; (4)四边形 AEFG 是菱形; (5)BE=2OG
A.2
(C)∵a>b,∴3﹣a<3﹣b,故 C 错误; 故选:D. 【点评】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型. 4.(3 分)某中学随机调查了 15 名学生,了解他们一周在校参加课外体育锻炼的时间,列表如下:
锻炼时间(小时)
5
6
7
8
人数
3
7
4
1
则这 15 名学生一周在校参加课外体育锻炼时的中位数和众数分别是( )
A.6.5,7
B.7,7
C.6.5,6
D.6,6
【分析】根据中位数和众数的定义分别进行解答即可.
【解答】解:∵共有 15 个数,最中间的数是第 8 个数,
∴这 15 名同学一周在校参加体育锻炼时间的中位数是 6;
6 出现的次数最多,出现了 6 次,则众数是 6;
故选:D.
【点评】此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间
2018-2019 学年深圳高级初中部八年级(下)期末数学试卷
参考答案与试题解析
一、选择题(每小题 3 分,共 36 分) 1.(3 分)如图案中,既是中心对称图形又是轴对称图形的是( )A.ຫໍສະໝຸດ B.C.D.
【分析】根据把一个图形绕某一点旋转 180°,如果旋转后的图形能够与原来的图形重合,那么这个图
形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互
期末备考宝典:北师大版数学三年级上册期末复习试题(二)(解析版)
北师大版数学三年级上册期末学霸测试题(二)一、认真细致,我会选。
(共10题;共30分)1. ( 3分 ) 250+300+350+400+450+500+550=()A. 250×7B. 400×7C. 550×7【答案】 B【解析】方法一;550﹣400=150,250+150=400,500﹣400=100,300+100=400,450﹣400=50,350+50=400,所以:250+300+350+400+450+500+550=400×7;方法二:250+300+350+400+450+500+550=2800,2800÷7=400,所以250+300+350+400+450+500+550=400×7;2. ( 3分 ) 435×()时,积一定是四位数.A. 0B. 1C. 3【答案】 C【解析】解:435×3时,积是四位数。
3. ( 3分 ) 小英10:10赶到电影院,电影已经开始15分钟了,电影是()开始的。
A. 10:25B. 9:55C. 9:45【答案】 B【解析】解:10时10分-15分=9时55分,所以电影是9:55开始的。
4. ( 3分 ) 面积相等的两个长方形,它们的周长是()A. 不相等B. 相等C. 不一定相等【答案】 C【解析】如果是两个一样大的长方形,那么周长相等,也可以举出例子说明不相等,如宽4长8和宽2长16的两个长方形,面积相同,但是周长不同,所以选C5. ( 3分 ) 200×()<1610,括号里最大能填()A. 4B. 5C. 8D. 6【答案】 C【解析】200×8=1600,200×9=1800,所以括号里可以填0、1、2、3、4、5、6、7、8,括号里最大能填8.6. ( 3分 ) 把4元5角改写成元作单位的小数是()A. 45元B. 4.05元C. 4.50元D. 5.40元【答案】 C【解析】5÷10=0.50(元),4+0.5=4.50(元),所以4元5角=4.50元.7. ( 3分 ) 下面各数,只读一个零的是()A. 0.305B. 10.305C. 101.305【答案】 B【解析】解A、0.305读作:零点三零五,读2个零;B、10.30五读作:十点三零五,读了1个零;C、101.305读作:一百零一点三零五,读2个零。
期末真题必刷(常考60题)—2023-2024学年七年级数学下学期期末考点(人教版)解析版
期末真题必刷(常考60题36个考点专练)一.算术平方根(共2小题)1.(2023春•通榆县期末)一个正数x 的两个不同的平方根分别是21a −和2a −+.(1)求a 和x 的值;(2)化简:2|||3|a x a x +−−+.【分析】(1)根据一个正数的两个平方根互为相反数可得关于a 的方程,解出即可得到a 的值,代入求得x 的值.(2)根据(1)中求得的a 的值去绝对值即可.【解答】解:(1)由题意,得(21)(2)0a a −+−+=,解得1a =−.22(21)(3)9x a ∴=−=−=;(2)原式2|1|93(1)9|=−+−−⨯−+296=+−1=.【点评】本题考查平方根的知识,难度不大,关键是掌握一个正数的两个平方根互为相反数.2.(2023春•焦作期末)小梅用两张同样大小的长方形硬纸片拼接成一个面积为2900cm 的正方形,如图所示,按要求完成下列各小题.(1)求长方形硬纸片的宽;(2)小梅想用该正方形硬纸片制作一个体积3512cm 的正方体的无盖笔筒,请你判断该硬纸片是否够用?若够用,求剩余的硬纸片的面积;若不够用,求缺少的硬纸片的面积.【分析】(1)设长方形的长为xcm ,宽为ycm ,列出方程即可求出x 与y 的值.(2)求出该立方体的边长为8cm ,然后求出5个边长为8cm 的正方形的面积.【解答】解:(1)设长方形的长为xcm ,宽为ycm ,2x y ∴=,且2900x =30x ∴=,15y ∴=,(2)该正方体的棱长为:8cm =,共需要5个边长为8cm 的面,总面积为:258320⨯=,∴剩余的纸片面积为:2900320580cm −=,【点评】本题考查算术平方根与立方根的应用,解题的关键是根据面积为2900cm 的长方形该纸片的边长为30cm ,本题属于基础题型.二.立方根(共3小题)3.(2023春•浏阳市期末)一个正方体的体积扩大为原来的8倍,则它的棱长为原来的( )A .2倍B .4倍C .3倍D .8倍【分析】根据正方体的体积公式计算并判断即可.【解答】解:设原正方体的棱长为a ,则体积为3a ,∴将体积扩大为原来的8倍,为38a ,∴2a =,∴它的棱长为原来的2倍,故选:A .【点评】本题考查了正方体的体积和立方根的应用,熟练应用立方根和正方体的体积计算方法是解答本题的关键.4.(2023春•怀安县期末)已知正数x 的两个平方根分别是31a −和5a +,负数y 的立方根与它本身相同.(1)求a ,x ,y 的值;(2)求9x y −的算术平方根.【分析】(1)根据平方根和立方根的定义进行求解即可;(2)先求出代数式的值,然后怎根据算术平方根的定义进行求解即可.【解答】解:(1)依题意,得3150a a −++=,解得1a =−,314a ∴−=−,54a +=,2416x ∴==.负数y 的立方根与它本身相同,1y ∴=−;(2)当16x =,1y =−时,9169(1)25x y −=−⨯−=,9x y ∴−的算术平方根为5.【点评】本题考查平方根和立方根.熟练掌握一个正数的两个平方根互为相反数,是解题的关键.5.(2023春•射阳县期末)已知31x +的平方根为2±,21y −的立方根为3的值.【分析】首先依据平方根和立方根的定义求得x 、y 的值.【解答】解:31x +的平方根为2±,21y −的立方根为3,314x ∴+=,2127y −=,1x ∴=,14y =,∴4=.【点评】本题主要考查的是平方根和立方根的定义,熟练掌握相关定义是解题的关键.三.无理数(共1小题)6.(2023春•长沙期末)下列各数为无理数的是( )A .0.618B .227C D【分析】明确无理数是无限不循环小数;有理数分为整数和分数.【解答】解:3−,0.618∴;227 故选:C .【点评】本题考查实数的分类,明确无理数是无限不循环小数;有理数分为整数和分数.题目难度较小,多为考卷中第一题.四.实数(共1小题)7.(2023春•安顺期末)实数2023.2023−0π−,411,0.15中,有理数的个数为a ,无理数的个数为b ,则a b −的值是( )A .1B .3C .5D .7 【分析】根据实数的分类可得5a =,2b =,即可求解.4=,有理数有2023.2023−,0411,0.15,有5个,无理数有π−,有2个,即5a =,2b =,3a b ∴−=.故选:B .【点评】本题主要考查了实数的分类,熟练掌握实数的分类方法是解题的关键.五.实数与数轴(共1小题)8.(2023春•讷河市期末)为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点0)到达点A ,点A 对应的数是( )A .πB .3.14C .π−D . 3.14−【分析】由圆的周长等于线段OA 的长度,从而可得答案. 【解答】解:直径为1个单位长度的圆的周长为1222r πππ=⨯=, ∴点A 对应的数是π, 故选:A .【点评】本题考查的是实数与数轴,无理数在数轴上的表示,理解实数与数轴上的点一一对应是解本题的关键.六.估算无理数的大小(共1小题)9.(2023春•芜湖期末)实数a 在数轴上的对应点A 的位置如图所示,||3|b a a =+−.(1)求b 的值;(2)已知2b +的小数部分是m ,8b −的小数部分是n ,求221m n ++的平方根.【分析】(1)根据A 点在数轴上的位置,可以知道23a <<,根据a 的范围去绝对值化简即可;(2)先求出2b +,得到它的整数部分,用2b +减去整数部分就是小数部分,从而求出m ;同理可求出n .然后求出221m n ++,再求平方根.【解答】解:(1)由图可知:23a <<,0a ∴>,30a −>,3b a a ∴=−3=;(2)2325b +==−2b ∴+的整数部分是3,532m ∴==.88(3835b −=−=−=+8b ∴−的整数部分是6,561n ∴==.2212()12(21)13m n m n ∴++=++=⨯+=,221m n ∴++的平方根为.【点评】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.七.实数的运算(共2小题)10.(2023春•清丰县校级期末)对于实数a 、b ,定义{min a ,}b 的含义为:当a b <时,{min a ,}b a =;当a b >时,{min a ,}b b =,例如:{1min ,2}2−=−.已知min ,}a a =,min ,}b =a 和b 为两个连续正整数,则2a b −的值为( )A .1B .2C .3D .4【分析】根据a ,b 的范围,然后再代入求出2a b −的值即可.【解答】解:{30min }a a =,min }b =a ∴<b >a ,b 是两个连续的正整数.5a ∴=,6b =.22564a b ∴−=⨯−=.故选:D .【点评】本题主要考查用新定义解决数学问题及实数的运算,正确理解新定义是求解本题的关键.11.(20232|【分析】本题涉及立方根、绝对值、二次根式3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.2|9322=−+10=【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、绝对值、二次根式等考点的运算.八.解二元一次方程(共1小题)12.(2023春•门头沟区期末)将321x y +=写成用含x 的代数式表示y 的形式,y = .【分析】把x 看作已知数求出y 即可.【解答】解:方程321x y +=, 解得:132x y −=, 故答案为:132x − 【点评】此题考查了解二元一次方程,解题的关键是将x 看作已知数求出y .九.二元一次方程的应用(共1小题)13.(2023春•武汉期末)蔬菜大王小明牛年春节前欲将一批蔬菜运往外地销售,若用2辆A 型车和1辆B 型车载满蔬菜一次可运走10吨,用1辆A 型车和2辆B 型车载满蔬菜一次可运走11吨.现有蔬菜31吨,计划同时租用A 型车x 辆,B 型车y 辆,一次运完,且恰好每辆车都载满蔬菜.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满蔬菜一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A 型车需租金100元/次,1辆B 型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.【分析】(1)设1辆A 型车载满蔬菜一次可运送a 吨,1辆B 型车载满蔬菜一次可运送b 吨,根据“用2辆A 型车和1辆B 型车载满蔬菜一次可运走10吨,用1辆A 型车和2辆B 型车载满蔬菜一次可运走11吨”,即可得出关于a ,b 的二元一次方程组,解之即可得出结论;(2)根据一次运送31吨蔬菜,即可得出关于x ,y 的二元一次方程,根据x ,y 均为正整数,即可得出各租车方案;(3)利用总租金=每辆车的租金⨯租车数量,可分别求出三种租车方案的租车费,比较后即可得出结论.【解答】解:(1)设1辆A 型车载满蔬菜一次可运送a 吨,1辆B 型车载满蔬菜一次可运送b 吨,依题意得:210211a b a b +=⎧⎨+=⎩,解得:34a b =⎧⎨=⎩. 答:1辆A 型车载满蔬菜一次可运送3吨,1辆B 型车载满蔬菜一次可运送4吨.(2)依题意得:3431x y +=,3143y x −∴=. 又x ,y 均为正整数,∴91x y =⎧⎨=⎩或54x y =⎧⎨=⎩或17x y =⎧⎨=⎩, ∴该物流公司共有3种租车方案,方案1:租用9辆A 型车,1辆B 型车;方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.(3)方案1所需租车费为100912011020⨯+⨯=(元);方案2所需租车费为10051204980⨯+⨯=(元);方案3所需租车费为10011207940⨯+⨯=(元).1020980940>>,∴费用最少的租车方案为:租用1辆A 型车,7辆B 型车,最少租车费为940元.【点评】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程;(3)利用总租金=每辆车的租金⨯租车数量,分别求出三种租车方案的租车费.十.二元一次方程组的解(共2小题)14.(2023春•西华县期末)若关于x ,y 的二元一次方程组21,21x y k x y k +=−⎧⎪⎨⎪+=+⎩的解互为相反数,则k 的值为 .【分析】根据互为相反数的两个数和为0可得0x y +=,再将已知方程组相减可得2x y −=,进而解方程组求出x 和y 的值,再将x 和y 的值代入方程组中的其中一个方程即可求出k 的值.【解答】解:因为关于x ,y 的二元一次方程组21,21x y k x y k +=−⎧⎪⎨⎪+=+⎩的解互为相反数,所以0x y +=,方程组2121x y k x y k +=−⎧⎨+=+⎩①②, ②−①,得2x y −=,解方程组02x y x y +=⎧⎨−=⎩,得:11x y =⎧⎨=−⎩, 将1x =,1y =−代入①得,121k −=−,解得0k =.故答案为:0.【点评】本题考查了二元一次方程组的解,解决本题的关键是掌握二元一次方程组的解法.15.(2023春•铁岭期末)已知关于x ,y 的方程组2735418x y k x y k +=+⎧⎨+=+⎩的解也是方程2311x y +=的解,求k 的值.【分析】把方程组中的两个方程相减,得到23311x y k +=+,然后根据同解方程的定义,列出关于k 的方程,解答即可.【解答】解:2735418x y k x y k +=+⎧⎨+=+⎩①②, ②−①得:23311x y k +=+,关于x ,y 的方程组2735418x y k x y k +=+⎧⎨+=+⎩的解也是方程2311x y +=的解, 31111k ∴+=,0k ∴=.【点评】本题主要考查了求二元一次方程组中的参数,解题关键是理解同解方程的定义.十一.解二元一次方程组(共1小题)16.(2023春•新化县期末)定义一种新运算“※”,规定x ※2y ax by =+,其中a 、b 为常数,且1※25=,2※13=,则2※3= .【分析】由已知条件,根据所给定义可得到关于a 、b 的方程组,则可求得a 、b 的值,再代入计算即可.【解答】解:根据题意,得:4523a b a b +=⎧⎨+=⎩,解得:11a b =⎧⎨=⎩, 则x ※2y x y =+,2∴※232311=+=,故答案为:11.【点评】此题考查了解二元一次方程组,以及有理数的混合运算,熟练掌握运算法则是解本题的关键. 十二.由实际问题抽象出二元一次方程组(共3小题)17.(2023春•丹江口市期末)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”意思是:用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?设绳子长x 尺,长木长y 尺,则所列方程组正确的是( )A . 4.5112x y x y −=⎧⎪⎨−=⎪⎩ B . 4.521y x y x −=⎧⎨−=⎩ C . 4.5112x y y x −=⎧⎪⎨−=⎪⎩ D . 4.521x y y x −=⎧⎨−=⎩【分析】根据“用绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,”,即可得出关于x ,y 【解答】解:用绳子去量长木,绳子还剩余4.5尺,4.5x y ∴−=;将绳子对折再量长木,长木还剩余1尺, ∴112x y +=. ∴所列方程组为 4.5112x y x y −=⎧⎪⎨+=⎪⎩, 即 4.512x y x y −=⎧⎪⎨−=⎪⎩, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.18.(2023春•前郭县期末)我国古典数学文献《增删算法统宗⋅六均输》中有一个“隔沟计算”的问题:“甲乙隔沟牧放,二人暗里参详,甲云得乙九只羊,多乙一倍之上,乙说得甲九只,两家之数相当,二人闲坐恼心肠,画地算了半晌”其大意为:甲、乙两人一起放牧,两人心里暗中数羊.如果乙给甲9只羊,那么甲的羊数为乙的2倍;如果甲给乙9只羊,那么两人的羊数相同,请问甲,乙各有多少只羊?设甲有羊x只,乙有羊y只,根据题意,可列方程组为.【分析】设甲有羊x只,乙有羊y只,根据“如果乙给甲9只羊,那么甲的羊数为乙的2倍;如果甲给乙9只羊,那么两人的羊数相同”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设甲有羊x只,乙有羊y只.“如果乙给甲9只羊,那么甲的羊数为乙的2倍”,92(9)x y∴+=−;“如果甲给乙9只羊,那么两人的羊数相同”,99x y∴−=+.联立两方程组成方程组92(9)99x yx y+=−⎧⎨−=+⎩.故答案为:92(9)99x yx y+=−⎧⎨−=+⎩.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.19.(2023春•杜尔伯特县期末)某中学七年级(1)班去体育用品商店买一些篮球和排球,供班上同学进行体育锻炼时使用,共买了2个篮球和6个排球,花570元,并且每个排球比篮球便宜25元.(1)求篮球和排球的单价各是多少;(2)商店里搞活动,有两种套餐,①套餐打折:五个篮球和五个排球为一套餐,套餐打八折;②满减活动:满999减100,满1999减200;两种活动不重复参与,学校打算购买14个篮球,12个排球,请问如何安排更划算?【分析】(1)设篮球单价为每个x元,排球单价为每个y元,根据买了2个篮球和6个排球,花570元,并且每个排球比篮球便宜25元,列方程组求解即可得到答案;(2)分别计算两种活动方案费用比较即可得到答案.【解答】解:(1)设篮球单价为每个x元,排球单价为每个y元,由题意可得2526570y xx y=−⎧⎨+=⎩,解方程组得9065xy=⎧⎨=⎩,答:篮球每个90元,排球每个65元;(2)若按照①套餐打折购买费用为:2(590565)0.84902651730⨯+⨯⨯+⨯+⨯=(元),若参加②满减活动购买费用为:149012652040⨯+⨯=(元),又20401999>,所以20402001840−=(元).而18401730>,所以选择套餐①所花费用比选择套餐②所花费用低.答:选用套餐①购买更划算.【点评】本题考查二元一次方程组解决实际应用问题及择优方案问题,解题的关键是根据题意找到等量关系式.十三.二元一次方程组的应用(共1小题)20.(2023春•仓山区校级期末)“冰墩墩”和“雪容融”分别是北京2022年冬奥会和冬残奥会的吉祥物.自2019年正式亮相后,相关特许商品投放市场,持续热销.某冬奥官方特许商品零售店购进了一批同一型号的“冰墩墩”和“雪容融”玩具,连续两个月的销售情况如表:(1)求此款“冰墩墩”和“雪容融”玩具的零售价格;(2)某单位欲购买这两款玩具作为冬奥知识竞赛活动的奖品,要求“雪容融”的数量恰好等于“冰墩墩”的数量的2倍,且购买总资金不得超过9000元,请根据要求确定该单位购买“冰墩墩”玩具的最大数量.【分析】(1)分别设出冰墩墩和雪容融的单价,根据题中的等量关系列出方程组,解方程组,最后作答.(2)设出冰墩墩玩具为m个,列出不等式,取最大整数解即可.【解答】解:(1)设“冰墩墩”和“雪容融”玩具的单价分别为x、y元,则1004014800 1606023380x yx y+=⎧⎨+=⎩,解方程组得:11875xy=⎧⎨=⎩,答:“冰墩墩”和“雪容融”玩具的单价分别为118、75元.(2)设“冰墩墩”玩具的数量为m个,则“雪容融”玩具为2m个.则1187529000m m+⋅…,解得:225033.5867m≈…,正整数m最大为33,答:该单位购买“冰墩墩”玩具的最大数量为33.【点评】本题主要考查了二元一次方程组和一元一次不等式的应用,读懂题意,列出对应的方程组或不等式是解题的关键.十四.解一元一次不等式(共1小题)21.(2023春•惠安县期末)如果关于x的方程328x a x+=+的解是正数,那么a的取值范围是.【分析】把a看作常数,表示出方程的解,由方程的解为正数求出a的范围即可.【解答】解:方程移项合并得:228x a=−+,解得:4x a=−+,由方程的解为正数,得到40a−+>,解得:4a<.故答案为:4a<.【点评】此题考查了一元一次方程的解,以及解一元一次不等式,方程的解即为能使方程左右两边相等的未知数的值.十五.一元一次不等式的整数解(共1小题)22.(2023春•琼海期末)不等式353x x−<+的非负整数解有个.【分析】先移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.【解答】解:移项,得:335x x−<+,合并同类项,得:28x <, 系数化为1,得:4x <,则此不等式的非负整数解有0、1、2、3,共4个, 故答案为:4.【点评】本题主要考查一元一次不等式的整数解,解题的关键是熟练掌握解一元一次不等式的步骤和依据. 十六.由实际问题抽象出一元一次不等式(共1小题)23.(2023春•铁西区期末)如图1,一个容量为3500cm 的杯子中装有3200cm 的水,将四颗相同的玻璃球放入这个杯中,结果水没有满,如图2.设每颗玻璃球的体积为x 3cm ,根据题意可列不等式为( )A .2004500x +<B .2004500x +…C .2004500x +>D .2004500x +…【分析】水的体积4+个玻璃球的体积3500cm <.【解答】解:水的体积为3200cm ,四颗相同的玻璃球的体积为4x 3cm , 根据题意得到:2004500x +<. 故选:A .【点评】本题考查的是由实际问题抽象出一元一次不等式,解此类题目的关键是读懂图意. 十七.一元一次不等式的应用(共1小题)24.(2023春•高安市期末)“一盔一带”安全守护行动是公安部在全国开展的一项安全守护行动,也是营造文明城市,做文明市民的重要标准,“一盔”是指安全头盔,电动自行车驾驶人和乘坐人员应当戴安全头盔,某商场欲购进一批头盔,已知购进8个甲型头盔和6个乙型头盔需要630元,购进6个甲型头盔和8个乙型头盔需要700元.(1)购进1个甲型头盔和1个乙型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,则最多可购进乙型头盔多少个? (3)在(2)的条件下,若该商场分别以58元/个、98元/个的价格销售完甲,乙两种型号的头盔200个,能否实现利润不少于6190元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 【分析】(1)根据题意列二元一次方程组并求解即可;(2)设乙型头盔m 个,根据所需费用=数量⨯单价,计算甲、乙头盔总费用列不等式,求得乙型头盔m 的最大值;(3)根据利润=单件利润⨯数量,列不等式,求出乙型头盔m 的取值范围,结合(2)中答案确定m 的取值范围,即可得出可选方案.【解答】解:(1)设购进1个甲型头盔需要x 元,购进1个乙型头盔需要y 元.根据题意,得8663068700x y x y +=⎧⎨+=⎩,解得,3065x y =⎧⎨=⎩;答:购进1个甲型头盔需要30元,购进1个乙型头盔需要65元; (2)设购进乙型头盔m 个,则购进甲型头盔(200)m −个, 根据题意,得:6530(200)10200m m +−…, 解得:120m …,m ∴的最大值为120;答:最多可购进乙型头盔120个; (3)能,根据题意,得:(5830)(200)(9865)6190m m −−+−…; 解得:118m …;118120m ∴……;m 为整数,m ∴可取118,119或120m −的值分别为82,81或80;因此能实现利润不少于6190元的目标,该商场有三种采购方案: ①采购甲型头盔82个,采购乙型头盔118个; ②采购甲型头盔81个,采购乙型头盔119个; ③采购甲型头盔80个,采购乙型头盔120个.【点评】本题考查二元一次方程组和不等式的综合应用题,解题的关键是根据题意列方程组并求解,同时注意在确定方案时所设未知数应取整数. 十八.解一元一次不等式组(共3小题)25.(2023春•东洲区期末)已知关于x 的不等式组314(1)x x x m −<−⎧⎨<⎩无解,则m 的取值范围是( )A .3m …B .3m >C .3m <D .3m …【分析】先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x 的解集,将得到一个新的关于m 不等式,解答即可.【解答】解:解不等式314(1)x x −<−,得:3x >, 不等式组无解,3m ∴…,故选:A .【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x a >,)x a <,没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).26.(2023春•安顺期末)已知不等式组1215x x <⎧⎨−−⎩…,其解集在数轴上表示正确的是( )A .B .C .D .【分析】分别求出每一个不等式的解集,根据口诀:同大取大,同小取小,大小小大中间找,大大小小找不到确定不等式组的解集,即可得出答案. 【解答】解:解不等式215x −−…得,2x −…, ∴原不等式组的解集为21x −<….故选:C .【点评】本题考查解一元一次不等式组,正确求出每一个不等式的解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解答本题的关键.27.(2022秋•芦淞区期末)解不等式组1212324x x x x −−⎧⎪⎨⎪+<−+⎩…,并把它的解集表示在数轴上.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:1212324x x x x −−⎧⎪⎨⎪+<−+⎩①②…, 解不等式①,得:1x −…, 解不等式②,得:1x <, ∴该不等式组的解集为11x −<…,其解集在数轴上表示如下所示:.【点评】本题解一元一次不等式组、在数轴上表示不等式的解集,熟练掌握解一元一次不等式的方法是解题的关键.十九.一元一次不等式组的整数解(共2小题) 28.(2023春•吕梁期末)若关于x 的方程321123ax x +−−=的解为正数,且a 使得关于y 的不等式组3131y y a +>⎧⎨−<⎩恰有两个整数解,则所有满足条件的整数a 的值的和是( ) A .0B .1C .2D .3【分析】根据方程321123ax x +−−=的解为正数,且a 使得关于y 的不等式组3131y y a +>⎧⎨−<⎩恰有两个整数解,可以求得a 的取值范围,然后即可写出满足条件的整数a 的值,再将它们相加即可. 【解答】解:由方程321123ax x +−−=可得,543x a =−, 方程321123ax x +−−=的解为正数, ∴5043a >−, 43a ∴<, 由31y +>得2y >−, 由31y a −<得13a y +<, a 使得关于y 的不等式组3131y y a +>⎧⎨−<⎩恰有两个整数解,∴这两个整数解为1−,0,1013a +∴<…, 解得12a −<…, 由上可得413a −<<, ∴所有满足条件的整数a 的值为0,1, 011+=,∴所有满足条件的整数a 的值和为1,故选:B .【点评】本题考查一元一次不等式组的整数解、解一元一次方程,解答本题的关键是求出a 的取值范围. 29.(2023春•海州区期末)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“关联方程”,例如:方程13x −=的解为4x =,而不等式组1123x x −>⎧⎨−<⎩的解集为25x <<,不难发现4x =在25x <<的范围内,所以方程13x −=是不等式组1123x x −>⎧⎨−<⎩的“关联方程”.(1)在方程①3(1)9x x +−=;②470x −=;③112x x −+=中,不等式组2213(2)4x x x x −>−⎧⎨−−⎩…的“关联方程”是 ;(填序号)(2)若关于x 的方程26x k −=是不等式组312121223x x x x +⎧⎪⎪⎨−+⎪−⎪⎩……的“关联方程”,求k 的取值范围;(3)若关于x 的方程7302x m +−=是关于x 的不等式组2221x mm x m m +⎧>⎪⎨⎪−+⎩…的“关联方程”,且此时不等式组有4个整数解,试求m 的取值范围.【分析】(1)先求出方程的解和不等式组的解集,再判断即可; (2)先求出不等式组的解集,然后再解方程求出62k x +=,最后根据“关联方程”的定义列出关于k 的不等式组,进行计算即可;(3)先求出不等式组的解集,不等式组有4个整数解,即可得出413m <…,然后求出方程的解为67x m =−,根据“关联方程”的定义得出7863m <…,即可得出7463m <<.【解答】解:(1)①3(1)9x x +−=, 解得:3x =, ②470x −=, 解得:74x =, ③112x x −+=, 解得:1x =,()221324x x x x −>−⎧⎪⎨−−⎪⎩①②…, 解不等式①得:1x >, 解不等式②得:5x …,∴原不等式组的解集为:15x <…,∴不等式组2213(2)4x x x x −>−⎧⎨−−⎩…的“关联方程”是:①②,故答案为:①②;(2)312121223x x x x +⎧⎪⎪⎨−+⎪−⎪⎩①②……,解不等式①得:1x −…, 解不等式②得:7x …,∴原不等式组的解集为:17x −……, 26x k −=,解得:62k x +=, 关于x 的方程26x k −=是不等式组312121223x x x x +⎧⎪⎪⎨−+⎪−⎪⎩……的“关联方程”,6172k +∴−……, 解得:88k −……;(3)关于x 的方程7302x m +−=, 解得:67x m =−,2221x mm x m m +⎧>⎪⎨⎪−+⎩①②…, 解不等式①得:0x >, 解不等式②得:31x m +…,∴原不等式组的解集为:031x m <+…,不等式组有4个整数解, ∴整数的值为1,2,3,4,4315m ∴+<…,413m ∴<…, 关于x 的方程7302x m +−=是关于x 的不等式组2221x mm x m m +⎧>⎪⎨⎪−+⎩…的“关联方程”, ∴6706731m m m −>⎧⎨−+⎩…,解得:7863m <…. m ∴的取值范围是7463m <<. 【点评】本题考查了解一元一次不等式组,一元一次方程的解,理解材料中的不等式组的“关联方程”是解题的关键.二十.规律型:点的坐标(共2小题)30.(2023春•殷都区期末)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到点3(3,2)P −,⋯,按这样的运动规律,第2023次运动后,动点2023P 的坐标是( )A .(2023,0)B .(2023,1)C .(2023,2)D .(2023,2)−【分析】观察图象,得出点P 运动的规律,再根据循环规律可得答案.【解答】解:动点P 第一次从原点O 运动到点1(1,1)P ,第二次运动到点2(2,0)P ,第三次运动到3(3,2)P −,第四次运动到4(4,0)P ,第五次运动到5(5,2)P ,第六次运动到6(6,0)P ,⋯, ∴横坐标与下标相同,纵坐标每6次运动组成一个循环:1,0,2−,0,2,0; 20236337......1÷=,∴经过第2023次运动后,动点P 的横坐标为2023,纵坐标是1,即:2023(2023,1)P .故选:B .【点评】本题考查了规律型点的坐标,数形结合并从图象中发现循环规律:纵坐标每6次运动组成一个循环是解题的关键.31.(2023春•从化区期末)如图,在平面直角坐标系中有一个点(1,0)A ,点A 第一次向左跳动至1(1,1)A −,第二次向右跳动至2(2,1)A ,第三次向左跳动至3(2,2)A −,第四次向右跳动至4(3,2)A ,⋯,依照此规律跳动下去,点A 第2023次跳动到点2023A 的坐标为 .【分析】写出2A 、4A 、6A 、8A 的坐标,探究规律即可解决问题. 【解答】解:由题意: 2(2,1)A , 3(2,2)A −, 4(3,2)A ,5(3,3)A −,6(4,3)A ,7(4,4)A −,8(5,4)A ,⋯⋯2(1,)n A n n +,21(1,1)n A n n +−−+,2023210111÷=⋯⋯,2023A ∴的坐标为(1012,1012)−,故答案为:(1012,1012)−.【点评】本题考查规律型:点的坐标,解题的关键是从一般到特殊探究规律,利用规律解决问题,学会这种解题的思想方法,属于中考常考题型.二十一.坐标确定位置(共2小题)32.(2023春•曹县期末)中国象棋具有悠久的历史,战国时期,就有了关于象棋的正式记载,如图是中国象棋棋局的一部分,如果用有序数对(2,1)表示“炮”的位置,(2,2)−表示“士”的位置,那么“将”的位置应表示为( )A .(3,3)−B .(3,1)−C .(3,3)−−D .(4,4)−−【分析】以有序数对(2,1)表示“炮”的位置,(2,2)−表示“土”的位置,建立平面直角坐标系,然后写出将的坐标即可.【解答】解:建立平面直角坐标系如图所示,将(3,3)−.故选:A .。
期末备考宝典:苏教版数学四年级上册期末复习试题(二)(解析版)
苏教版数学四年级上册期末学霸测试题(二)一、认真细致,我会选。
(共10题;共30分)1. ( 3分 ) 从上面观察物体,看到的形状是( )A. B. C.【答案】 C【解析】从不同方向观察物体时,因角度不同观察到物体的形状也不同。
从上面看时,看到的是两行行,一行三个正方形,一行1个。
2. ( 3分 ) 下列算式中,商是两位数的是()A.632÷68B.254÷58C.785÷24【答案】 C【解析】解:C项中算式的商是两位数。
3. ( 3分 ) 如图的四袋球除颜色外,形状、大小完全相同.每袋里任意摸一个球,从第()袋里摸到白球的可能性最大.A. B.C. D.【答案】 B【解析】A袋里摸到白球的可能性:3÷(3+3+1+2)=13;B袋里摸到白球的可能性:3÷(3+2)=35;C袋里摸到白球的可能性:0÷3=0;D袋里摸到白球的可能性:2÷(2+2+1)=25;因为35>25>13>0,所以从从选项B袋里摸到白球的可能性最大。
4. ( 3分 ) 估一估,下面算式中的商最接近9的是()。
A.414÷51B.632÷71C.500÷60【答案】 B【解析】解:选项A,414÷51≈400÷50=8;选项B,632÷71≈630÷70=9;选项C,500÷60≈480÷60=8;所以选项B中的商最接近9。
5. ( 3分 ) 姐姐买来一束康乃馨,有101枝,每4枝插入花瓶里,可插()瓶,还剩()枝。
A.23 3B.24 2C.25 1【答案】 C【解析】101÷4=25······1,最后每只花瓶插了25枝,剩1枝花没有插,故选C。
6. ( 3分 ) 7时,钟面上的时针和分针所成的较小夹角是()A.直角B.钝角C.锐角【答案】 B【解析】解:5×30°=150°,是钝角。
道德与法治小学六年级下册《期末测试卷》及参考答案(满分必刷)
道德与法治小学六年级下册《期末测试卷》一.选择题(共10题,共20分)1.下列对金字塔的理解错误的一项是()。
A.金字塔是古埃及文明的象征B.在尼罗河沿岸有大大小小的金字塔遗存近百处C.金字塔的建筑充分证明了古埃及人在建筑学、数学、物理学等方面所达到的高度D.金字塔是中国的文明象征2.自尊的人懂得尊重他人,因为他知道要想赢得他人尊重,首先要尊重他人。
下列四个选项中的做法不符合这一要求的是()。
①在大街上,你骑自行车撞了人,当你看到周围没有人的时候,便迅速离开②在教室里,你的同桌冲你皱眉头,因为你经常不刷牙,嘴里有异味③在烧烤店里,当你光着膀子,津津有味地吃着羊肉串的时候,旁边的顾客赶紧躲避④走在拥挤的人群中,你没用纸巾捂住嘴就打喷嚏A.①②③B.①②④C.②③④D.①②③④3.陈刚听不得批评,每次别人提点意见,他都要找很多理由为自己辩护。
这是()的行为表现。
A.尊重自己B.过度维护自己C.骄傲自满4.早期文明都出现于()。
A.群山山脉B.大河流域C.高原地区5.中东是战争和冲突频发的地区,我国采取的做法是()。
A.不管不问B.派兵进入该地区C.设立中东问题特使劝和促谈D.剿灭各方军队6.小琴和王华是很要好的朋友,最近王华成绩退步很大,小琴觉得没有面子,觉得有王华这样的朋友很丢脸,逐渐疏远了王华。
则下面认识不正确的是()。
A.小琴不应该这样梳理她们之间的友谊B.交友要讲究原则,王华成绩退步,就不能再和小琴交朋友C.小琴的疏远表示她看不起王华D.小琴的疏远表明她不是王华真正的朋友7.1903年,莱特兄弟研制的飞机试飞成功。
他们是()。
A.中国人B.英国人C.美国人8.下列不属于新能源的是()。
A.太阳能B.潮汐能C.风能D.煤炭9.地球上,有很多著名的山脉,其中海拔最高的山脉是()。
A.喜马拉雅山脉B.安第斯山脉C.阿尔卑斯山脉D.昆仑山脉10.下列说法错误的是()。
A.相信自己的价值,不自我贬低,不自卑是尊重自己的重要表现B.我国宪法明确规定,公民的人格尊严不受侵犯C.通过反思,我们可以总结经验,进一步提升自己D.宽容是无限度地纵容和姑息迁就二.填空题(共10题,共46分)1.保护环境是我国的一项()。
部编版-六年级下册道德与法治期末测试卷含答案【满分必刷】
部编版六年级下册道德与法治期末测试卷一.选择题(共10题, 共20分)1.以下哪项重大发明推动了人类社会进入机器大工业时代()。
A.蒸汽机B.发电机C.打印机2.“大肚能容, 容天下难容之事;开口便笑, 笑世间可笑之人。
”这副对联体现的一种美德是()。
A.尊重B.幽默C.诚信D.宽容3.古代埃及人利用()河水灌溉沿岸和三角洲平原的农田。
A.尼罗河B.恒河C.幼发拉底河4.周五下午放学, 小强上公交车的时候非常拥挤, 后边的一高个青年把小强的鞋子踩下来了, 如果你是小强你会怎么想()。
A.他肯定是故意踩我脚的B.我有时也会踩到别人的脚C.我一定要踩他一脚5.汶川地震时, 唐山13名志愿者来到灾区, 用了()方法不断寻找幸存者。
A.双手刨B.搜犬嗅C.机器探D.废墟喊6.()气象卫星成功发射, 有助于提升国家对灾害天气的监控和预警能力。
A.“风云四号”B.“嫦娥五号C.”东方红一号D.“天间一号”7.下列做法正确的是()。
A.雷雨交加时在大树下避雨B.山区发生山洪时, 去野外露营C.地震时, 暂时躲在小房间的墙角, 护住头部D.泥石流发生时, 站在原地不动8.下列说法你不赞同的是()。
A.战争能够让人们认识到和平的珍贵B.第二次世界大战波及世界极少数国家和地区C.此起彼伏的局部战争让人们追求和平的愿望不断面临挑战9.全国统一的环境问题举报免费热线电话是()。
A.12315B.148C.12369D.11410.每年的()为“国际和平日”。
A.5月19日B.7月21日C.9月21日二.填空题(共10题, 共52分)1.尊重自己, 并不意味着拒绝()。
尊重自己与接受别人的批评是()。
如果过于爱面子, 输不起、说不得, 就是()。
2.地球孕育了人类, 提供了人类生存的()。
3.()是最具普遍性、代表性和权威性的政府间国际组织。
()是当代最重要的世界性国际经济组织之一。
4.尊重自己, 并不意味着拒绝()。
尊重自己与接受别人的()是不矛盾的。
小学六年级下册数学期末必刷题含完整答案【夺冠系列】
小学六年级下册数学期末必刷题一.选择题(共6题,共12分)1.比例3∶8=15∶40的内项8增加2,要使比例成立,外项40应该增加()。
A.3B.5C.10D.502.下面的数与0最接近的一个数是()。
A.-5B.-2C.+3D.+13.求做一个圆柱形茶叶罐需要多少硬纸板是求()。
A.圆柱的侧面积B.圆柱的体积C.圆柱的表面积4.在比例尺是1∶8的图纸上,甲、乙两个圆的直径比是2∶3,那么甲、乙两个圆的实际直径比是()。
A.1∶8B.4∶9C.2∶35.收入一定,支出与结余()。
A.成正比例B.成反比例C.不成比例6.下面说法正确的是()。
A.一条直线长10m。
B.圆锥的体积比与它等底等高的圆柱的体积小。
C.一年中有6个大月、6个小月。
D.把一根木头锯成7段,若锯每一段所用的时间都相等,那么锯每一段的时间是锯完这根木头所用时间的。
二.判断题(共6题,共12分)1.底面积相等的两个圆锥,体积也相等。
()2.有一对相互咬合的齿轮,小齿轮与大齿轮数的比是3:7,若大齿轮每分钟转63圈,则小齿轮每分钟转21圈。
()3.营业税大于营业额。
()4.由两个比组成的式子叫做比例。
()5.正方体的体积与棱长不成比例。
()6.甲数比乙数多20%,则乙数比甲数少20%。
()三.填空题(共8题,共22分)1.把8∶9的前项加上16,要使比值不变,后项应加上()。
2.用一根长120厘米的铁丝焊接成一个长方体框架.它的长、宽、高的比是5:3:2.这个长方体的长是()厘米,宽是()厘米,高是()厘米。
3.东、西为两个相反方向,如果+7m表示一个物体向东运动7m;那么-66m表示这个物体向________运动________ m,物体向西走了8m记作________ m。
4.某地某日最高气温是零上6℃,记作+6℃,最低气温是零下3℃,记作________,温差________℃。
5.在2,-5,+9,0,-12这几个数中,()是正数,()是负数,()既不是正数也不是负数。
部编数学八年级上册期末真题必刷基础60题(60个考点专练)(解析版)含答案
期末真题必刷基础60题(60个考点专练)一.科学记数法—表示较小的数(共1小题)1.(2022秋•朔城区期末)银农科技董事长钱炫舟公开宣布:银农科技的终极目标——做真正的纳米农药,发挥更好的药效,创造更多的价值!银农的粒径新标准达到600﹣900纳米(1纳米=10﹣9米),也标志着银农产品正式步入纳米时代.将600纳米用科学记数法表示为( )A.0.6×10﹣11米B.0.6×10﹣9米C.6×10﹣9米D.6×10﹣7米【分析】首先把600纳米化成以米为单位的量;然后根据:绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定,将600纳米用科学记数法表示即可.【解答】解:∵1纳米=10﹣9米,∴600纳米=600×10﹣9=6×10﹣7米.故选:D.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.二.同底数幂的乘法(共1小题)2.(2022秋•南关区校级期末)若a•2•23=26,则a等于( )A.4B.8C.16D.32【分析】根据同底数幂的乘除法则求解.【解答】解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.【点评】本题考查了同底数幂的乘法,掌握同底数幂的运算法则是解答本题的关键.三.幂的乘方与积的乘方(共1小题)3.(2022秋•东丽区期末)计算(﹣2a2b3)3的结果是( )A.﹣2a6b9B.﹣8a6b9C.8a6b9D.﹣6a6b9【分析】根据幂的乘方法则:底数不变,指数相乘,求解即可.【解答】解:原式=﹣8a6b9,故选:B.【点评】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则:底数不变,指数相乘.四.同底数幂的除法(共1小题)4.(2022秋•嘉陵区校级期末)已知(a x)y=a6,(a x)2÷a y=a3.(1)求xy和2x﹣y的值;(2)求4x2+y2的值.【分析】(1)根据幂的乘方的法则计算,即可求出xy的值,根据同底数幂除法的法则计算,即可求出2x ﹣y;(2)利用2x﹣y的值,结合完全平方公式即可计算.【解答】解:(1)∵(a x)y=a6,∴a xy=a6,∴xy=6;∵(a x)2÷a y=a3,∴a2x﹣y=a3,∴2x﹣y=3,∴xy和2x﹣y的值分别为6和3;(2)∵2x﹣y=3,∴(2x﹣y)2=9,∴4x2﹣4xy+y2=9,∵xy=6,∴4x2﹣4×6+y2=9,∴4x2+y2=33.∴4x2+y2的值为33.【点评】本题考查了幂的乘方、同底数幂除法的法则以及完全平方公式,解题的关键是熟练掌握相关运算法则并灵活运用.五.单项式乘单项式(共1小题)5.(2022秋•原州区校级期末)计算:﹣3x2y2•2xy+(xy)3【分析】根据积的乘方等于乘方的积,可得单项式的乘法,根据单项式的乘法,可得同类项,根据合并同类项,可得答案.【解答】解:原式=﹣6x3y3+x3y3=﹣5x3y3.【点评】本题考查了积的乘方、单项式的乘法、合并同类项,熟记法则并根据法则计算是解题关键.六.单项式乘多项式(共1小题)6.(2022秋•西青区期末)计算的结果是( )A.﹣24a3+8a2B.﹣24a3﹣8a2﹣10aC.﹣24a3+8a2﹣10a D.﹣24a2+8a+10【分析】直接利用单项式乘多项式,进而计算得出答案.【解答】解:原式=﹣12a•2a2﹣(﹣12a)•a+(﹣12a)•=﹣24a3+8a2﹣10a.故选:C.【点评】此题主要考查了单项式乘多项式,正确掌握相关运算法则是解题关键.七.多项式乘多项式(共1小题)7.(2022秋•澄迈县期末)如果代数式(x﹣2)(x2+mx+1)的展开式不含x2项,那么m的值为( )A.2B.C.﹣2D.﹣【分析】根据题意先将原式展开,然后将含x2的项进行合并,最后令其系数为0即可求出m的值.【解答】解:(x﹣2)(x2+mx+1)=x3+mx2+x﹣2x2﹣2mx﹣2=x3+(m﹣2)x2+(1﹣2m)x﹣2,因为不含x2项,所以m﹣2=0,解得:m=2,故选:A.【点评】本题考查多项式乘以多项式,关键是根据题意先将原式展开.八.完全平方公式的几何背景(共1小题)8.(2022秋•广州期末)如图,某小区规划在边长为x m的正方形场地上,修建两条宽为2m的甬道,其余部分种草,以下各选项所列式子是计算通道所占面积的为( )A.4x+4B.x2﹣(x﹣2)2C.(x﹣2)2D.x2﹣2x﹣2x+22【分析】用正方形场地的面积减去正方形场地除去甬道部分的面积即可.【解答】解:由图可知边长为x m的正方形场地的面积为:x2,除去甬道剩余部分的面积为:(x﹣2)2,∴甬道所占面积为:x2﹣(x﹣2)2.故选:B.【点评】本题考查了完全平方公式及正方形的面积等知识点,属于基础知识的考查,比较简单.九.完全平方式(共1小题)9.(2022秋•新兴县期末)已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为( )A.4B.4或﹣2C.±4D.﹣2【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.一十.平方差公式的几何背景(共1小题)10.(2022秋•邯山区校级期末)如图,实线内图形的面积可以用来验证下列的某个等式成立,该等式是( )A.a2+2ab+b2=(a+b)2B.a2﹣2ab+b2=(a﹣b)2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)【分析】分别用代数式表示两个图中阴影部分的面积即可.【解答】解:左图阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,右图,拼成长为(a+b),宽为(a﹣b)的长方形,因此面积为(a+b)(a﹣b),由两个图形中阴影部分的面积相等可得,a2﹣b2=(a+b)(a﹣b),故选:C.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.一十一.整式的除法(共1小题)11.(2022秋•双阳区期末)计算(﹣4a2+12a3b)÷(﹣4a2)的结果是( )A.1﹣3ab B.﹣3ab C.1+3ab D.﹣1﹣3ab【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:(﹣4a2+12a3b)÷(﹣4a2)=1﹣3ab.故选:A.【点评】此题主要考查了整式的除法,正确掌握运算法则是解题关键.一十二.因式分解的意义(共1小题)12.(2022秋•荔湾区期末)下列等式中,从左到右的变形是因式分解的是( )A.x(x﹣2)=x2﹣2x B.(x+1)2=x2+2x+1C.x+2=x(1+)D.x2﹣4=(x+2)(x﹣2)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,依据分解因式的定义进行判断即可.【解答】解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.从左到右的变形属于因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,解题时注意因式分解与整式乘法是相反的过程,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.一十三.因式分解-提公因式法(共1小题)13.(2022秋•朝阳区校级期末)将多项式a2x+ay﹣a2xy因式分解时,应提取的公因式是( )A.a B.a2C.a x D.a y【分析】直接利用公因式的定义得出答案.【解答】解:a2x+ay﹣a2xy=a(ax+y﹣axy),则应提取的公因式是a.故选:A.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.一十四.因式分解-运用公式法(共1小题)14.(2022秋•肇源县期末)若4x2﹣(k﹣1)x+9能用完全平方公式因式分解,则k的值是( )A.13B.13或﹣11C.﹣11D.无法确定【分析】根据完全平方公式的结构特点即可得出答案.【解答】解:∵4x2﹣(k﹣1)x+9能用完全平方公式因式分解,4x2﹣(k﹣1)x+9=(2x)2﹣(k﹣1)x+32,∴k﹣1=±2×2×3,解得:k=13或﹣11,故选:B.【点评】本题考查了完全平方公式,熟知完全平方公式的结构特点是解本题的关键,即(a±b)2=a2±2ab+b2.一十五.因式分解-分组分解法(共1小题)15.(2022秋•武昌区校级期末)分解因式(1)a2﹣b2﹣2a+1;(2)a3b﹣ab.【分析】(1)先分组,再根据平方差公式和完全平方公式分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【解答】解:(1)a2﹣b2﹣2a+1=a2﹣2a+1﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1).【点评】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式.一十六.因式分解-十字相乘法等(共1小题)16.(2022秋•新都区期末)若x2+ax+b=(x+1)(x﹣4),则a+b的值为 ﹣7 .【分析】将(x+1)(x﹣4)利用多项式乘多项式的计算法则展开即可求解.【解答】解:∵(x+1)(x﹣4)=x2﹣3x﹣4,∴a=﹣3,b=﹣4,则a+b=﹣7.故答案为:﹣7.【点评】本题考查多项式乘多项式,掌握相应计算法则即可.一十七.因式分解的应用(共1小题)17.(2022秋•罗湖区期末)如果一个自然数能表示成两个自然数的平方差,就称这个数为“智慧数”.如3=22﹣12,所以3是“智慧数”,又如:1=12﹣02,5=32﹣22,8=32﹣12,所以1,5,8都是“智慧数”.下列不是“智慧数”的是( )A.44B.45C.46D.49【分析】根据智慧数的定义求解即可.【解答】解:∵44=122﹣102,∴44是“智慧数”A正确;∵45=92﹣62,∴45是“智慧数”B正确;∵49=72﹣02,∴49是“智慧数”D正确;故选:C.【点评】本题考查了因式分解的应用,读懂题意,理解”智慧数“定义是解决问题的关键.一十八.分式的定义(共1小题)18.(2022秋•双辽市期末)下列各式中:﹣3x,,,,,分式的个数是( )A.2B.3C.4D.5【分析】根据分式的定义(A与B为整式,B≠0,且B中含有字母,形如的式子称为分式),即可得出答案.【解答】解:分式的个数是,,共2个.故选:A.【点评】本题主要考查分式的定义,熟练掌握分式的定义是解决本题的关键.一十九.分式有意义的条件(共1小题)19.(2022秋•海丰县期末)要使分式有意义,x应满足的条件是( )A.x>﹣3B.x<﹣3C.x≠﹣3D.x=﹣3【分析】根据分式有意义的条件是分母不等于零可得答案.【解答】解:由题意得:x+3≠0,解得:x≠﹣3,故选:C.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.二十.分式的值为零的条件(共1小题)20.(2023春•巴中期末)若分式的值为0,则x的值为( )A.±2B.﹣2C.0D.2【分析】根据分式值为零条件可得x2﹣4=0,且x﹣2≠0,再解即可.【解答】解:根据分式值为零条件:x2﹣4=0,且x﹣2≠0,解得:x=﹣2,故选:B.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.二十一.分式的基本性质(共1小题)21.(2022秋•东港区校级期末)若分式中a、b的值同时扩大到原来的2倍,则分式的值( )A.不变B.扩大2倍C.扩大4倍D.扩大6倍【分析】把分式中的a、b换成2a、2b得到新的分式,再比较原分式与新分式即可得到答案.【解答】解:把分式中a、b的值同时扩大到原来的2倍,得到的新分式为,∴分式的值扩大了4倍,故选:C.【点评】本题主要考查了分式的基本性质,熟知分式的基本性质是解题的关键.二十二.最简分式(共1小题)22.(2022秋•平谷区期末)下列分式中是最简分式的是( )A.B.C.D.【分析】直接利用分式的性质结合最简分式的定义分析得出答案.【解答】解:A.=,故此选项不合题意;B.是最简分式,故此选项符合题意;C.=x+1,故此选项不合题意;D.=x﹣2,故此选项不合题意.故选:B.【点评】此题主要考查了最简分式,正确化简分式是解题关键.二十三.分式的乘除法(共1小题)23.(2022秋•双峰县期末)计算的结果是( )A.B.C.D.【分析】首先进行乘方计算,然后把除法转化为乘法计算,最后进行乘法运算即可.【解答】解:原式=﹣•÷=﹣••=﹣,故选:B.【点评】解决乘法、除法、乘方的混合运算,容易出现的是符号的错误,在计算过程中要首先确定符号.二十四.分式的加减法(共1小题)24.(2022秋•增城区期末)化简的结果是( )A.a﹣b B.a+b C.D.【分析】先通分,再计算,然后化简,即可求解.【解答】解:====.故选:D.【点评】本题主要考查了异分母分式相加减,熟练掌握异分母分式相加减法则是解题的关键.二十五.分式的混合运算(共1小题)25.(2022秋•九龙坡区期末)计算题.(1)(x﹣2)2+x(x+4);(2).【分析】(1)直接利用完全平方公式、单项式乘多项式运算法则化简,进而合并同类项得出答案;(2)直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=x2﹣4x+4+x2+4x=2x2+4;(2)原式=•=•=•=.【点评】此题主要考查了分式的混合运算、整式的混合运算,正确掌握相关运算法则是解题关键.二十六.分式的化简求值(共1小题)26.(2022秋•长沙县期末)先化简,再求值:,其中a=3.【分析】原式先根据除法法则变形,再利用同分母分式的减法法则计算,同时利用约分得到最简结果,把a的值代入计算即可求出值.【解答】解:===,当a=3时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.二十七.零指数幂(共1小题)27.(2022秋•磁县期末)若(2x﹣1)0有意义,则x的取值范围是( )A.x=﹣2B.x≠0C.x≠D.x=【分析】直接利用零指数幂:a0=1(a≠0),进而得出答案.【解答】解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.【点评】此题主要考查了零指数幂,正确掌握零指数幂的定义是解题关键.二十八.列代数式(分式)(共1小题)28.(2022秋•西青区校级期末)已知A、B两地相距100米,甲、乙两人分别从A、B两地同时出发,相向而行,速度分别为x米/秒、y米/秒,甲、乙两人第一次相距a(a<100)米时,行驶时间为( )A.秒B.秒C.秒D.秒【分析】根据第一次相距a千米,可知他们一共行驶了(100﹣a),然后根据路程除以速度即可求出时间.【解答】解:由题意可得,两人第一次相距a米的运动时间为秒.故选:D.【点评】此题考查列代数式,理解题意掌握路程、速度与时间之间的关系是解题的关键.二十九.解分式方程(共1小题)29.(2022秋•汉阳区校级期末)解分式方程:(1);(2)+1.【分析】利用解分式方程的步骤解各方程即可.【解答】解:(1)原方程去分母得:(x+1)2=x2﹣1+5,整理得:x2+2x+1=x2﹣1+5,移项,合并同类项得:2x=3,系数化为1得:x=,经检验,x=是分式方程的解,故原方程的解为x=;(2)原方程去分母得:3x=2x﹣1+3x+3,移项,合并同类项得:﹣2x=2,系数化为1得:x=﹣1,经检验,x=﹣1是分式方程的增根,故原方程无解.【点评】本题考查解分式方程,熟练掌握解方程的方法是解题的关键.三十.分式方程的增根(共1小题)30.(2022秋•兴隆县期末)若方程+=3有增根,则a的值为( )A.1B.2C.3D.0【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.【解答】解:方程两边都乘(x﹣2),得x﹣1﹣a=3(x﹣2)∵原方程增根为x=2,∴把x=2代入整式方程,得a=1,故选:A.【点评】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三十一.由实际问题抽象出分式方程(共1小题)31.(2022秋•同江市期末)A,B两地航程为48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程( )A.B.C.D.【分析】直接根据题意得出顺水速以及逆水速,进而表示出所用时间即可得出答案.【解答】解:设该轮船在静水中的速度为x千米/时,则可列方程为:+=9,故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间是解题关键.三十二.分式方程的应用(共1小题)32.(2022秋•韩城市期末)某公司生产A、B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台,请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)A、B两种设备每台的售价分别是6万元、10万元,且该公司生产台,现公司决定对两种设备优惠出售,A种设备按原来售价8折出售,B种设备在原来售价的基础上优惠10%,若设备全部售出,该公司一共获利多少万元?【分析】(1)设A种设备每台成本为x元,则B种设备每台设备成本为1.5x元,根据题意列出方程即可求出答案.(2)根据题意列出算式即可求出答案.【解答】解:(1)设A种设备每台成本为x元,则B种设备每台设备成本为1.5x元,,解得:x=4,经检验,x=4是原方程的解,∴1.5x=6,答:A、B两种设备每台的成本分别是4和6万元.(2)由(1)可知:A种设备共有4台,B种设备6台,A种设备获利为:4×(6×0.8﹣4)=3.2万元,B种设备获利为:6×(10×0.9﹣6)=18万元,∴该公司共获利为3.2+18=21.2万元,答:该公司共获利为21.2万元.【点评】本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.三十三.三角形的角平分线、中线和高(共1小题)33.(2022秋•葫芦岛期末)如图,BD是△ABC的中线,AB=8,BC=5,△ABD和△BCD的周长的差是 3 .【分析】根据三角形中线的定义可得AD=CD,然后求出△ABD和△BCD的周长差=AB﹣BC,代入数据进行计算即可得解.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长差=(AB+AD+BD)﹣(BC+CD+BD),=AB+AD+BD﹣BC﹣CD﹣BD,=AB﹣BC,∵AB=8,BC=5,∴△ABD和△BCD的周长差=8﹣5=3.答:△ABD和△BCD的周长差为3.故答案为:3.【点评】本题考查了三角形的中线的定义,是基础题,数据概念并求出△ABD和△BCD的周长差=AB﹣BC是解题的关键.三十四.三角形的稳定性(共1小题)34.(2023春•香坊区期末)如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的( )A.全等形B.稳定性C.灵活性D.对称性【分析】根据三角形具有稳定性解答.【解答】解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.三十五.三角形三边关系(共1小题)35.(2022秋•广宗县期末)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.三十六.三角形内角和定理(共1小题)36.(2022秋•祁阳县期末)若一个三角形三个内角度数的比为1:2:3,那么这个三角形是( )A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【分析】已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.【解答】解:设一份为k°,则三个内角的度数分别为k°,2k°,3k°.则k°+2k°+3k°=180°,解得k°=30°,∴k°=30°,2k°=60°,3k°=90°,所以这个三角形是直角三角形.故选:D.【点评】本题主要考查了内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.三十七.三角形的外角性质(共1小题)37.(2022秋•息县期末)将一副三角板按如图所示的方式放置,图中∠CAF的大小等于( )A.50°B.60°C.75°D.85°【分析】利用三角形内角和定理和三角形的外角的性质计算即可.【解答】解:∵∠DAC=∠DFE+∠C=60°+45°=105°,∴∠CAF=180°﹣∠DAC=75°,故选:C.【点评】本题考查了三角形外角的性质,三角形的内角和,熟练掌握三角形的外角的性质是解题的关键.三十八.全等图形(共1小题)38.(2022秋•通许县期末)下列说法中,正确的有( )①形状相同的两个图形是全等形;②面积相等的两个图形是全等形;③全等三角形的周长相等,面积相等;④若△ABC≌△DEF,则∠A=∠D,AB=EF.A.1个B.2个C.3个D.4个【分析】根据全等形的定义,全等三角形的判定与性质判断即可.【解答】解:能够完全重合的两个图形叫做全等形,即形状和大小相同的两个图形是全等形,故①②说法错误;全等三角形能够完全重合,所以全等三角形的周长相等,面积相等,故③说法正确;若△ABC≌△DEF,∠A的对应角为∠D,所以∠A=∠D,AB的对应边为DE,所以AB=DE,故④说法错误;说法正确的有③,共1个.故选:A.【点评】本题主要考查全等形,理解能够完全重合的两个图形叫做全等形是解题关键.三十九.全等三角形的性质(共1小题)39.(2022秋•汶上县校级期末)如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为( )A.2B.3C.4D.5【分析】根据全等三角形的对应边相等推知BD=AC=7,然后根据线段的和差即可得到结论.【解答】解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选:A.【点评】本题考查了全等三角形的性质,仔细观察图形,根据已知条件找准对应边是解决本题的关键.四十.全等三角形的判定(共1小题)40.(2023春•泉州期末)如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是( )A.∠B=∠C B.BE=CD C.BD=CE D.∠ADC=∠AEB【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.四十一.直角三角形全等的判定(共1小题)41.(2022秋•安化县期末)如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是( )A.1B.2C.3D.4【分析】本题可先根据AAS判定△AEH≌△CEB,可得出AE=CE,从而得出CH=CE﹣EH=4﹣3=1.【解答】解:在△ABC中,AD⊥BC,CE⊥AB,∴∠AEH=∠ADB=90°;∵∠EAH+∠AHE=90°,∠DHC+∠BCH=90°,∠EHA=∠DHC(对顶角相等),∴∠EAH=∠DCH(等量代换);∵在△BCE和△HAE中,∴△AEH≌△CEB(AAS);∴AE=CE;∵EH=EB=3,AE=4,∴CH=CE﹣EH=AE﹣EH=4﹣3=1.故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA,AAS、HL,要熟练掌握并灵活应用这些方法.四十二.全等三角形的判定与性质(共1小题)42.(2022秋•盱眙县期末)如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据计算图中实线所围成的图形的面积S是( )A.30B.50C.60D.80【分析】易证△AEF≌△BAG,△BCG≌△CDH即可求得AF=BG,AG=EF,GC=DH,BG=CH,即可求得梯形DEFH的面积和△AEF,△ABG,△CGB,△CDH的面积,即可解题.【解答】解:∵∠EAF+∠BAG=90°,∠EAF+∠AEF=90°,∴∠BAG=∠AEF,∵在△AEF和△BAG中,,∴△AEF ≌△BAG ,(AAS )同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=(EF +DH )•FH =80,S △AEF =S △ABG =AF •FE =9,S △BCG =S △CDH =CH •DH =6,∴图中实线所围成的图形的面积S =80﹣2×9﹣2×6=50,故选:B .【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF ≌△BAG ,△BCG ≌△CDH 是解题的关键.四十三.全等三角形的应用(共1小题)43.(2022秋•东昌府区校级期末)如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去( )A .①B .②C .③D .①和②【分析】根据全等三角形的判定方法结合图形判断出带③去.【解答】解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C .【点评】本题考查了全等三角形的应用,熟练掌握全等三角形的判定方法是解题的关键.四十四.角平分线的性质(共1小题)44.(2022秋•渌口区期末)如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为15,AB =6,DE =3,则AC 的长是( )A.8B.6C.5D.4【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=3,∴S=×6×3+AC×3=15,△ABC解得AC=4.故选:D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.四十五.线段垂直平分线的性质(共1小题)45.(2022秋•东宝区期末)和三角形三个顶点的距离相等的点是( )A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点【分析】三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.【解答】解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选:D.【点评】本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.),难度一般.四十六.等腰三角形的性质(共1小题)46.(2022秋•利通区期末)若等腰三角形的两边长分别是2和10,则它的周长是( )A.14B.22C.14或22D.12【分析】本题没有明确已知的两边的具体名称,要分为两种情况即:①2为底,10为腰;②10为底,2为腰,可求出周长.注意:必须考虑三角形的三边关系进行验证能否组成三角形.【解答】解:∵等腰三角形的两边分别是2和10,∴应分为两种情况:①2为底,10为腰,则2+10+10=22;②10为底,2腰,而2+2<10,应舍去,∴三角形的周长是22.故选:B.【点评】本题考查了等腰三角形的性质及三角形三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.四十七.等腰三角形的判定(共1小题)47.(2022秋•保康县期末)如图所示,共有等腰三角形( )A.4个B.5个C.3个D.2个【分析】由已知条件,根据三角形内角和定理,求出图形中未知度数的角,即可根据等角对等边求得等腰三角形的个数.【解答】解:根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选:B.【点评】此题考查了三角形的内角和定理、三角形的外角的性质以及等腰三角形的判定方法.得到各角。
3年级数学期末复习宝典 答案
让进步看得见
51
2 千克和克
1. 解:由分析可知:质量最接近 1 吨的是 25 名六年级学生的体重; 故选:B. 2. 解:一辆汽车可载货 10 吨; 故选:B. 3. 解:2 千克=2000 克 铁和棉花都是 2 千克或 2000 克,一样重. 故选:C. 4. 解:一亿写作 1 0000 0000 1 0000 0000÷100×400 =4 0000 0000(克) =400000(千克). 故选:B. 5. 解:由分析可知:一只鸡蛋约重 50 克; 故选:A. 6. 3 吨= 3000 千克 4 吨 700 千克= 4700 千克. 5000 千克= 5 吨 7000 千克= 7 吨 6800 千克= 6 吨 800 千克 8000 克= 8 千克 故答案为:3000,8,5,7,6,800,4700. 7. 解:图 1 可知 C>A+B 根据图 2 可知:A>B
180
让进步看得见
61
183÷3﹣180÷4 =61﹣45 =16(元) 答:一件上衣比一条裤子贵 16 元. 9.【解答】解:方法一:(6930﹣4774)÷(4774÷31) =2156÷154 =14(天) 答:剩下的煤还够烧 14 天.
方法二: 6930÷(4774÷31)﹣31 =6930÷154﹣31 =45﹣31 =14(天) 答:剩下的煤还够烧 14 天. 10.【解答】解:28×3=84(元) 200÷84=2(个)…32(元) 2×(3+1)=8(本) 8+1=9(本) 答:李老师用了 200 元最多能买 9 本日记本. 11.【解答】解:10000÷100×1 =100×1 =100(厘米)
让进步看得见
57
(2)(36+25)×2+6×2 =122+12 =134(米) 答:这个图形的周长是 134 米. 20. 解:35×4=140(厘米) (48﹣35+35)×2 =48×2 =96(厘米) 答:正方形的周长是 140 厘米,剩下的图形的周长至少是 96 厘米.
小学六年级下册数学期末必刷题【含答案】
小学六年级下册数学期末必刷题一.选择题(共6题,共12分)1.考试人数、及格人数、及格率三个量中,当()一定时,其他两种量成反比例。
A.考试人数B.及格人数C.及格率2.分母一定,分子和分数值()。
A.成正比例B.成反比例C.不成比例D.不成正比例3.小明写字的个数一定,他写每个字的时间与写字的总时间()。
A.成正比例B.成反比例C.不成比例4.工作总量一定,工作效率和工作时间()。
A.成正比例B.成反比例C.不成比例D.不成反比例5.将一个圆柱体削制成一个圆锥体,削去部分的体积是圆柱体积的()。
A. B. C.2倍 D.不能确定6.工作时间一定,工作效率和工作总量()。
A.成正比例B.成反比例C.不成比例D.不成正比例二.判断题(共6题,共12分)1.正方形的边长和周长成正比例。
()2.0既不是正数,也不是负数;1既不是质数也不是合数。
()3.若将高90厘米定为0cm,则高110厘米就可记作+20厘米,-6cm就表示高84厘米。
()4.0.5既不是正数,也不是负数,而是小数。
()5.一件商品打八折出售,就是便宜80%。
()6.叔叔五年前买国家建设债券12000元,按年利率9.72%计算,今年到期后用利息购买一台4800元的电脑,钱不够。
()三.填空题(共8题,共21分)1.如果把红星粮库运进100吨大米记作+100吨,卖出80吨记作________吨;如果把向北走600米记作-600米,那么向南走200米可以记作________米。
2.小明2小时行5km,小华3小时行7km,小明和小华所行时间的比是():(),小明和小华所行路程的比是():()。
3.在22%、、0.25和中,最大的数是(),最小的数是()。
4.如果减少2千克记作-2千克,那么增加2千克应记作________千克;如果有20吨粮食运进仓库记作+20吨,那么有15吨粮食运出仓库应记作________吨。
5.如果向东走了200米,记作+200米,那么走了-340米,表示向________走了________米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1 分) (1 分) (1 分)
4.(2008 年)
15.(1)金属棒产生的电动势大小为 E=B 2 Lv=0.4 2 V=0.56V…………2 分 (2)金属棒运动到 AC 位置时,导线框左、右两侧电阻并联,其并联电阻大小为 R 并=1.0,根据闭合电路欧姆定律 I=
E =0.47A…………2 分 R并 r
2 Em=100 2 V…………1 分 2
E = 2 A…………1 分 Rr
由闭合电路的欧姆定律,电路中电流的有效值为 I=
交流电压表的示数为 U= I R=90 2 V=127 V…………2 分
15(2007 年)19. (9 分)
Bm a 2 (1)0—t1 时间内的感应电动势 E n 60V …………………………(1 分) t1
通过电阻 R 的电流 I1 E /( R r ) 3.0 A 所以在 0—t1 时间内通过 R 的电荷量 q=I1t1=1.0×10-2C…………………………(2 分) (2)在一个周期内,电流通过电阻 R 产生热量
T 0.48 J …………………………(2 分) 3 t 1 0.48 J 48 J ……(1 分) 在 1.0s 内电阻 R 产生的热量为 Q= Q1 T 0.01 Q1 I 12 R
14.(2008)17. (1)交流发电机产生电动势的最大值 Em=nBSω…………1 分 2 而m=BS、 = ,所以,Em=2nm/T …………1 分 T
由-t 图线可知:m=2.010 -2Wb,T=6.2810 -2s…………1 分 所以 Em =200 V…………1 分 (2)电动势的有效值 E=
根据右手定则,电流方向从 N 到 M…………1 分 (3)导线框消耗的功率为:P 框=I2R 并=0.22W…………2 分
5.(2008 年)
16. (1)设导线框 cd 边刚进入磁场时的速度为 v,则在 cd 边进入磁场过程时产生的感应电动势为 E=Blv, 根据闭合电路欧姆定律,导线框的感应电流为 I=
北师大三附中 2012 届
高三物理期末复习
期末 60 分必做试题宝典
1.(无) 2.(2009 年第 14 题)14. (7 分)
解: (1)金属杆进入磁场切割磁感线产生的电动势 E=Blv, 根据闭合电路欧姆定律,通过电阻 R 的电流大小 I= (2)M、N 两端电压为路端电压,则 UMN=IR=0.4V (3)每秒钟重力势能转化为电能 E= I2(R+r)t=0.25J
E =2.0 m/s, BL
………………………(1 分)
1 2 mv ,解得 Ek 0.20 J 2
……………………………(1 分)
金属棒停止运动时,该动能全部转化为电阻 R、r 的内能 根据 Q I 2 ( R r ) t 可知 解得 Q…………………(1 分)
答案
(1 分) (2 分) (2 分) (2 分)
E =0.5A Rr
3.(2009 年)17. (8 分)
解: (1)在 0~0.3 s 时间内感应电动势 E1=
B1 2 πr =6.28×10-3V t1
(1 分)
在 0.3s~0.5 s 时间内感应电动势 E2=
B2 2 πr =9.42×10-3V t2
BS ……………………………………………………1 分 t
第 3 页 共 17 页
北师大三附中 2012 届
高三物理期末复习
通过电阻 R 的平均电流 I
E nBS …………………………………………………1 分 R Rt
nSB =1.0×10-2C …………1 分 R
在Δ t 时间内通过电阻横截面的电荷量 Q= I t Q
v E / BL 5.0m / s ……(1 分) 因 E Blv, 所以0.50s时金属杆的速度大小
(3)金属杆速度为 v 时,电压表的示数应为 U
R Blv Rr
由图象可知,U 与 t 成正比,由于 R、r、B 及 L 均与不变量,所以 v 与 t 成正比,即金属杆应沿 水平方向向右做初速度为零的匀加速直线运动…………………(1 分) 金属杆运动的加速度 a v / t 1.0m / s
第 1 页 共 17 页
Blv R
北师大三附中 2012 届
高三物理期末复习
B 2l 2 v 导线框受到的安培力为 F 安= BIl= ,…………1 分 R
因 cd 刚进入磁场时导线框做匀速运动,所以有 F 安=mg,…………1 分 以上各式联立,得: v
mgR 。…………1 分 B 2l 2
16.(无) 17.(2010)16. (共 9 分) (1)电子在电场和磁场重叠的空间不发生偏转,必是电场力与洛仑兹力
大小相等,方向相反 …………………………………………………………………………1 分 而电场力方向竖直向下,洛伦兹力方向一定竖直向上,由左手定则可判定磁场方向垂直纸面向 外。………………………………………………………………………………………2 分 (说明:没有分析过程,直接回答结果,且正确的得 3 分) (2)电子穿过电场和磁场区域沿直线运动,必受力平衡 eE eBv 0,①…………1 分 1 2 电子经电压为 U 的电场加速 e U ②……………………………………………1 分 m0v 2 联立①②解得电子的比荷
(3)设咸应电流的有效值为 I,则一个周期内电流产生的热量 I1 Rt1 I RT …(2 分)
2 2
解得 I
t1 I 2 3 A (或 1.7A)…………………………(1 分) T
16.(2006 年)本题缺图
第 4 页 共 17 页
北师大三附中 2012 届
高三物理期末复习
15.(2005)17. (1)线圈平面与磁场方向平行时产生感应电动势最大,设 ab 边的线速度为 v,该边产生
2E , Em nBS
Em 1.8 2 rad/s=2.5 rad/s nBS
…………………………………………(1 分)
(3)发电机产生的电能为 Q=IEt,t=100T=100 解得 Q=5.3× 10 J
2
2π
…………………………(1 分)
…………………………………………………………………(1 分)
(1 分)
(2)在 0~0.3 s 时间内 I1
E1 =1.0 A (1 分) 2πrR0 E2 =1.5 A (1 分) 2πrR0
i/A
1.5 0 -1.0 0.2 0.4 0.6 0.8 1.0
在 0.3s~0.5 s 时间内 I 2
t/ s
i-t 图象如答图 2 所示。
(1 分)
2
答图 2
第 2 页 共 17 页
2
北师大三附中 2012 届
高三物理期末复习
根据牛顿第二定律,在 5.0s 末时对金属杆有 F—BIL=ma,解得 F=0.20N……(1 分) 此时 F 的瞬时功率 P=Fv=1.0W…………………………(1 分)
8.
(
2006
年
)
9(无) 10(2005 年) 18. (1)设电流表满量程,则 R 两端电压为 U=IR=1.5 V, 超过电压表的量程,所以,满量程的表不是电流表,而应是电压表 …………(2 分) 说明:若说出设电压表满量程,则 R 上的电流等于 I1 程的表应该是电压表也得 2 分. (2)电压表满量程时电路的电流为 I1 根据安培力公式得 F=BIL,解得 B
的感应电动势为 E1 BLab v 与此同时,线圈的 cd 边也在切割磁感线,产生的感应电动势为 E2 BLcd v 线圈产生的总感应电动势为: Em n( E1 E2 ) 所以, Em n2BLab v 线速度 v 因为 Lab Lcd ,
………………………………………………………………(1 分)
(1)由图象可知, t 5.0s时U 0.40V …………………………(1 分) 此时电路中的电流(即通过金属杆的电流) I U / R 1.0 A ………………(1 分) 用右手则定判断出,此时电流的方向由 b 指向 a…………………………(1 分) (2)金属杆产生的感应电动势 E I ( R r ) 0.50V …………………………(1 分)
(3)在 0~0.3s 内,圆环中产生的热量 Q1= I1 ·2πrR0t1=1.88×10-3J 在 0.3s~0.5s 内,圆环中产生的热量 Q2= I 2 ·2πrR0 t2=2.83×10-3J 在 0~10s 内圆环中产生的热量 Q=20(Q1 +Q2)=9.42×10-2J 说明:其他解法正确也得分,数值计算问题不重复扣分。
所以 U ab 3BLv / 4 …………………………(1 分) (3)线框被拉入磁场的整个过程所用时间 t L / v …………………………(1 分) 线框中电流产生的热量 Q I 4 R t
2
B 2 L3 v …………………………(2 分) 4R
7.(2007 年)17. (8 分)
UV 2.0 A,没达到电流表满量程,所以满量 R
……………………………(1 分)
UV 2.0 A R
F =1.0 T IL
………………………………(1 分)
(3)当安培力等于外力时金属棒 ab 达到最大速度,其感应电动势为 E E=I(R+r)=1.6 V ………………………………………………………………(1 分) 设金属棒的速度为 v,则 E=BLv, v 此金属棒的动能为 Ek
(2)导线框 cd 边在磁场中运动时,克服安培力做功的功率为:P 安=F 安 v 代入(1)中的结果,整理得: P 安= 导线框消耗的电功率为:
B 2l 2 v 2 …………1 分 R