新人教版七年级数学2.2 整式的加减同步练习(2)

合集下载

2.2 整式的加减(2)

2.2 整式的加减(2)

是“+”号,不变号:是“-”号,全变号。
课 后 作 业
1.布置作业:从教材习题2.2中选取。 2.完成优化作业中课本时练习的“课后作业”部分。
一、情境导入,初步认识
在格尔木到拉萨路段,如果列车通过冻土地段要 uh,那么它通过非冻土地段的时间为(u-0.5)h, 于是,冻土地段的路程为100ukm,非冻土地段的 路程为120(u-0.5)km,因此,这段铁路全长 (单位:km)是 100u+120(u-0.5) ① 冻土地段与非冻土地段相差 100u-120(u-0.5) ② 上面式子① 、②都带有括号,它们应如何化简?
=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3
=2x3-x3-x3-3x2y+3x2y-2xy2+2xy2-2y3 =-2y3 因为化简结果与x的取值无关,所以看错x值,不影 响计算结果。
五、师生互动,课堂小结
大家应该熟记法则,并能根据法则进行去 括号运算,法则顺口溜:去括号,看符号:
1 (4) (9 y 3) 2( y 1) 3
解:化简得5y 1
2.飞机的无风航速为akm/h,风速为20km/h。飞机顺 风飞行4h的行程是多少?飞机逆风飞行3h的航程是 多少?两个行程相差多少?
解:顺风飞行4小时的行程为4(a+20)千米; 逆风飞行3小时的行程为3(a-20)千米; 两个行程相差4(a+20)-3(a-20) =4a+80-3a+60=(a+140)千米
利用分配律,可以去括号,合并同类项,得: 100u+120(u-0.5)=100u+120u+120×(-0.5) =220u-60; 100u-120(u-0.5)=100u-120u-120×(-0.5) =-20u+60

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

人教版七年级上册数学课后基础练习第2章:2.2 整式的加减(包含答案)

2.2 整式的加减一.填空题1.去括号:﹣2(m﹣3)=.2.若a3b y与﹣2a x b是同类项,则y x=.3.如果单项式3x a+2y b﹣2与5x3y a+2的和为8x3y a+2,那么2a﹣b=.4.计算(1﹣2a)﹣(2﹣2a)=.5.对于有理数a、b,定义a*b=3a+2b,化简x*(x﹣y)=.6.若﹣3x m y3与2x2y n是同类项,则|m﹣n|的值是7.若mn=m﹣3,则mn+4m+8﹣5mn=.8.已知(a+b)2=7,|ab|=3,则(a2+b2)﹣ab=.9.已知﹣a=5,则﹣[+(﹣a)]=.二.选择题10.与2ab2是同类项的是()A.4a2b B.2a2b C.5ab2D.﹣ab11.如果3ab2m﹣1与9ab m+1是同类项,那么m等于()A.2B.1C.﹣1D.012.下列去括号正确的是()A.﹣3(b﹣1)=﹣3b﹣3B.2(2﹣a)=4﹣aC.﹣3(b﹣1)=﹣3b+3D.2(2﹣a)=2a﹣413.已知:|a|=2,|b|=3,且|a﹣b|=b﹣a,则(8a2b﹣7b2)﹣(4a2b﹣5b2)=()A.30B.﹣66C.30或﹣66D.﹣30或6614.计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1C.a2 D.9 a215.下列各运算中,计算正确的是()A.4xy+xy=5xyB.x+2x=2x2C.5xy﹣3xy=2D.x+y=xy16.已知A=﹣4x2,B是多项式,在计算B+A时,李明同学把B+A看成了B•A,结果得32x5﹣16x4,则B+A为()A.﹣8x3+4x2B.﹣8x3+8x2C.﹣8x3D.8x317.若m+n=7,2n﹣p=4,则m+3n﹣p=()A.﹣11B.﹣3C.3D.1118.给出下列结论:①单项式﹣的系数为﹣;②x与y的差的平方可表示为x2﹣y2;③化简(x+)﹣2(x﹣)的结果是﹣x+;④若单项式ax2y n+1与﹣ax m y4的差是同类项,则m+n=5.其中正确的结论有()A.1个B.2个C.3个D.4个19.多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2B.4C.﹣2D.﹣420.若A=x2y﹣2xy,B=xy2﹣3xy,则计算3A﹣2B的结果是()A.2x2y B.3x2y﹣2xy2C.x2y D.xy221.化简m3+m3的结果等于()A.m6B.2m6C.2m3D.m922.去括号2﹣(x﹣y)=()A.2﹣x﹣y B.2+x+y C.2﹣x+y D.2+x﹣y23.下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+424.已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5三.解答题25.先化简,再求值:(1)2x3﹣(7x2﹣9x)﹣2(x3﹣3x2+4x),其中x=﹣1.(2)已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y的值.26.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.27.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.28.(1)设A=2a2﹣a,B=a2+a,若a=- ,求A﹣2B的值;(2)某公司有甲、乙两类经营收入,去年甲类收入是乙类收入的2倍,预计今年甲类年收入减少9%,乙类收入将增加19%.问今年该公司的年总收入比去年增加了吗?请说明理由.参考答案一.填空题1.﹣2m+6;2.1;3.﹣3;4.﹣1;5.5x﹣2y;6.1;7.20;8.﹣或;9.﹣5;二.选择题10-24:CACAA ACDCA BCCBC三.解答题25.解:(1)原式=2x3-7x2+9x-2x3+6x2-8x=-x2+x,当x=-1时,原式=-1-1=-2;(2)原式=3x2-6xy-x2+6xy-4y=2x2-4y=2(x2-2y),由x2-2y-5=0,得到x2-2y=5,则原式=10.26.解:原式=4x2y-(6xy-12xy+6-x2y-1)=4x2y-(-6xy-x2y+5)=4x2y+6xy+x2y-5=5x2y+6xy-5当x=2,y=−时,原式=5×4×(−)+6×2×(−=-10-6-5=-21;27.解:(1)2A-3B=2(3x2+3y2-2xy)-3(xy-2y2-2x2)=6x2+6y2-4xy-3xy+6y2+6x2=12x2+12y2-7xy;(2)由题意可知:2x-3=±1,y=±3,∴x=2或1,y=±3,由于|x-y|=y-x,∴y-x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)-7xy=12(x2+2xy+y2-2xy)-7xy=12(x+y)2-31xy=12×25-31×6=114,当y=3,x=1时,原式=12×16-31×3=99.28.解:(1)A-2B=(2a2-a)-2(a2+a)=2a2-a-2a2-2a=-3a,当a=−)=1;(2)今年该公司的年总收入是增加.理由如下:设去年乙类收入为a,则甲类收入是2a,去年甲类、乙类两种经营总收入为:a+2a=3a;预计今年甲类年收入为(1-9%)×2a,B种年收入为(1+19%)a,预计今年甲类、乙类两种经营总收入为:(1-9%)×2a+(1+19%)a=3.01a;因为3.01a>3a,所以今年该公司的年总收入是增加.。

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

最新人教版七年级上册数学第二章整式的加减同步强化训练(含答案)

第二章整式的加减第23课时2.1.1列代数式用字母表示数应注意:①在含有字母的式子中如果出现乘号,通常将乘号写作“·”或省略不写,例如100×t 可以写成__100t__.②当数字与字母相乘时,数字在前,字母在后,例如0.5×t或0.5t.③数字和字母相除时,或字母和字母相除时,可以写成分数形式,如x÷3应写成__x3__.④1乘字母时,1可以省略不写,如1×a可写成__a__;-1乘字母时,只要在那个字母前加上“-”号,如-1×a 可写成__-a__.⑤用含有字母的式子表示某种量时,若结果是加、减关系,有单位的必须把式子用括号括起来后再写单位名称,如(x+3)千米.(1)(2020·长春中考)我市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费__(30m +15n)__元.(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量是__mn件__.(1)某钢铁厂每天生产钢铁m吨,现在每天比原来增加20%,现在每天钢铁的产量是__1.2m__吨.(2)用式子表示数a 的相反数是__-a__.甲、乙两人的年龄和等于甲、乙两人年龄差的3倍,设甲为x 岁,乙为 y 岁,则他们的年龄和用年龄差表示为( C ) A .(x +y )岁 B .(x -y )岁 C .3(x -y )岁 D .3(x +y )岁用含字母的式子表示下面各题的数量关系:①一个数加上m 后得3,这个数是3-m ;②一个数减去x 后得15,这个数是15-x ;③一个数乘x 得36,这个数是36÷x ;④一个数除以5得k ,这个数是5k ,其中正确的有( C )A .1个B .2个C .3个D .4个下列式子符合代数式书写格式的是( B ) A .215 xy B .12 a C .2÷mD .mn ·7(2021·唐山期中)下列各式:ab ·2,m ÷2n ,53 xy ,113 a ,a -b4 其中符合代数式书写规范的有__2__个.1.式子x -y2 的意义为( B ) A .x 与y 的一半的差 B .x 与y 的差的一半C .x 减去y 除以2的差D .x 与y 的12 的差2.“比t 的13 大4的数”用式子表示是( B )A .t ⎝ ⎛⎭⎪⎫13+4 B .13 t +4 C .53 tD .t 13 +43.某商店举办促销活动,促销的方法是将原价为x 元的衣服以⎝ ⎛⎭⎪⎫45x -10 元出售,则下列说法中,能正确表达该商店促销方法的是( B ) A .原价减去10元后再打8折 B .原价打8折后再减去10元 C .原价减去10元后再打2折 D .原价打2折后再减去10元4.小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( A )A .10-xB .10-yC .10-x +yD .10-x -y5.用含字母的式子表示下面各题的数量关系. (1)a 与4的和的7倍__7(a +4)__;(2)比m 的8倍少n 的一半的数__8m -12 n __; (3)比x 的5倍少8的数__5x -8__;(4)一台电视机原价 t 元,现按原价的8.5折出售,这台电视机现在的售价是__0.85t __元;(5)一个两位数,十位数字是 a ,个位数字是b ,则这个两位数是__10a +b __; (6)电影院里座位的总排数是m ,若第一排的座位数是a ,并且后一排总比前一排的座位数多1个,则电影院里最后一排有__(a +m -1)__个座位.6.如图为园子一角,正方形边长为x ,里面有两个半圆形花池,阴影部分是草坪,则草坪的面积是__x 2-14 πx 2__.1.某企业今年2月份产值为a 万元,3月份比2月份增加了15%,4月份比3月份减少了5%,则4月份的产值为( C ) A .(a +15%)(a -15%)万元 B .a (1+85%)(1-95%)万元 C .a (1+15%)(1-5%)万元 D .a (1+15%-5%)万元2.(2020·聊城中考改编)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图○50 中的白色小正方形地砖的块数是__355__.3.(2020·抚宁期中)如图,是小明用火柴搭的1条、2条、3条“金鱼”……,分别用去火柴棒8根、14根、20根、…,则搭n条“金鱼”需要火柴棒__(6n+2)__根(含n的代数式表示).第24课时 2.1.2 单 项 式1.表示__数或字母__的积组成的式子叫做单项式.单独的一个__数__或一个__字母__也是单项式.注意:数与字母之间是乘积关系.2.单项式的系数是指单项式中的__数字因数__,如果一个单项式只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为-1.3.一个单项式中,所有字母的__指数的和__叫做这个单项式的次数.在式子1x ,2x +5y ,0.9,-2a ,-3x 2y ,x +13 中,单项式是__0.9,-2a ,-3x 2y__.下列各代数式:(1)x +12 ;(2)abc ;(3)b 2;(4)-5ab 2;(5)y +x ; (6)-xy 2;(7)-5,是单项式的有(填序号):__(2)(3)(4)(6)(7)__.(2020·日照中考)单项式-3ab 的系数是( B ) A .3 B .-3 C .3a D .-3a说出单项式13 a 2h ,2πr ,abc ,-m 的系数与次数. 【解析】单项式13 a 2h2πr abc -m系数 13 2π 1 -1 次数3131写出所有系数是-12 ,且都只含字母x ,y 的五次单项式. 【解析】-12 xy 4,-12 x 2y 3,-12 x 3y 2,-12 x 4y .下面各题的判断是否正确? ①-7xy 2的系数是7;( × ) ②-x 2y 3与x 3没有系数;( × ) ③-ab 3c 2的次数是5;( × ) ④-a 3的系数是-1;( √ ) ⑤-32x 2y 3的次数是7;( × ) ⑥13 πr 2h 2的系数是13 .( × )1.下列各式中,为四次单项式的是( C ) A .3 B .-2πxy C .xyz 2 D .x 3+1 2.(2021·酒泉期末)下列说法中错误的是( C ) A .-23 x 2y 的系数是-23 B .0是单项式 C .23 xy 的次数是1D .-x 是一次单项式3.下列各式:-n ,a +b ,-12 ,x -1,3ab ,1x ,其中单项式有__3__个.4.(1)系数为-3,只含有字母x ,y 的四次单项式有__3__个,它们是__-3xy 3,-3x 2y 2,-3x 3y __.(2)(2021·北京期末)一个单项式满足下列两个条件:①含有两个字母;②次数是3.请写出一个同时满足上述两个条件的单项式__-2ab 2(答案不唯一)__. 5.填表6.用单项式填空,并指出它们的系数和次数:(1)圆的半径为r ,则它的面积为__πr 2__,它的系数是__π__,次数是__2__; (2)每包书有12册,n 包书有12n 册,它的系数是__12__,次数是__1__; (3)a 的相反数是__-a __,它的系数是__-1__,次数是__1__;(4)底边长为a ,高为h 的三角形的面积为12 ah ,它的系数是__12 __,次数是__2__; (5)一台电视机原价a 元,现按原价的9折出售,这台电视机现在的售价为0.9a 元,它的系数是__0.9__,次数是__1__;(6)一个长方形的长是0.5,宽是a ,这个长方形的面积是0.5a ,它的系数是__0.5__,次数是__1__.7.观察下面的三行单项式: x 、2x 2、4x 3、8x 4、16x 5、32x 6……① -2x 、4x 2、-8x 3、16x 4、-32x 5、64x 6……②2x 2、-3x 3、5x 4、-9x 5、17x 6、-33x 7……③(1)根据你发现的规律,第①行第8个单项式为__128x 8__;(2)第②行第8个单项式为__256x 8__,第③行第8个单项式为__-129x 9__. 8.(1)写出系数是-1,含有字母a ,b 的所有四次单项式; (2)写出系数是-12 ,含有字母a ,b ,c 的所有五次单项式. 【解析】(1)-a 3b ,-a 2b 2,-ab 3.(2)-12 ab 2c 2,-12 ab 3c ,-12 a 2bc 2,-12 a 2b 2c ,-12 abc 3,-12 a 3bc .9.刘明家前年收入a 元,去年比前年收入增加x %,求去年收入多少元?今年又比去年收入增加x %,求今年收入多少元? 【解析】去年收入为a +a ×x %=a (1+x %)(元).今年收入为a (1+x %)+ a (1+x %)×x %=a (1+x %)(1+x %)=a ⎝⎛⎭⎫1+x % 2(元).若3x m y n 是含有字母x 和y 的5次单项式,求m n 的最大值.【解析】根据题意得,m =1,n =4 或m =2,n =3 或 m =3,n =2 或m =4,n =1,m n 的最大值是9.第25课时 2.1.3 多 项 式1.__几个单项式的和__叫做多项式.在多项式中,每个单项式叫做多项式的__项__,其中不含字母的项叫做__常数项__.一个多项式有几项就叫做几项式. 2.多项式里,__次数最高项__的次数,叫做这个多项式的次数. 3.__单项式__与__多项式__统称整式.下列各式:2+x 2,2x ,xy 2,3x 2+2x -1,abc ,1-2y ,x -y 3 中,多项式有__4__个.(2021·上海期末)下列说法正确的是( D ) A .a 2+2a +32是三次三项式 B .xy 24 的系数是4 C .x -32 的常数项是-3 D .0是单项式多项式x 2-2xy 3-12 y -1是( C ) A .三次四项式 B .三次三项式 C .四次四项式 D .四次三项式 ,如果多项式(a -2)x 5-23 x b+x -9是关于x 的四次三项式,那么ab 的值为__8__.多项式2-xy 2-4x 3y 的各项为__2,-xy 2,-4x 3y __,次数为__4__. a 2b -ab +1是__三__次__三__项式,写出所有的项:__a 2b ,-ab ,1__,其中三次项的系数是__1__,二次项的系数为__-1__,常数项为__1__.代数式3x 2y -4x 3y 2-5xy 3-1按x 的升幂排列,正确的是( D ) A .-4x 3y 2+3x 2y -5xy 3-1 B .-5xy 3+3x 2y -4x 3y 2-1 C .-1+3x 2y -4x 3y 2-5xy 3 D .-1-5xy 3+3x 2y -4x 3y 2(2021·上海期末)将多项式2-3xy 2+5x 3y -13 x 2y 3按字母y 降幂排列是__-13x 2y 3-3xy 2+5x 3y +2__.1.组成多项式2x 2-x -3的单项式是下列几组中的( B ) A. 2x 2,x ,3 B. 2x 2,-x ,-3 C. 2x 2,x ,-3 D. 2x 2,-x ,32.(2020·绵阳中考)若多项式xy |m -n |+(n -2)x 2y 2+1是关于x ,y 的三次多项式,则mn =__0或8__.3.若多项式(k +1)x 2-3x +1中不含 x 2项,则k 的值为__-1__.4.(2021·辽阳期末)多项式5a m b 4-2a 2b +3与单项式6a 4b 3c 的次数相同,则m 的值为__4__.5.已知多项式(m -1)x 4-x n +2x -5是三次三项式,则(m +1)n =__8__. 6.多项式2x 3-x 2y 2-3xy +x -1是__四__次__五__项式.7.将多项式5x 2y +y 3-3xy 2-x 3按x 的升幂排列为__y 3-3xy 2+5x 2y -x 3__. 8.写出一个只含有字母x ,y 的二次三项式__x 2+xy +y 2(答案不唯一)__. 9.如图,用式子表示圆环的面积.当R =15 cm ,r =10 cm 时,求圆环的面积(结果保留π).【解析】圆环面积为πR 2-πr 2, 当R =15 cm ,r =10 cm , 圆环的面积=πR 2-πr 2=125π cm 2.10.(2021·北京质检)已知多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同. (1)求m ,n 的值;(2)把这个多项式按x 的降幂排列.【解析】(1)因为多项式-3x 2y m +1+x 3y -3x 4-1是五次四项式,且单项式3x 2n y 3-m 与多项式的次数相同,所以m +1=3,2n +3-m =5,解得:m =2,n =2;(2)按x 的降幂排列为-3x 4+x 3y -3x 2y 3-1.11.(2021·长春期末)已知下面5个式子:①x 2-x +1,②m 2n +mn -1,③x 4+1x+2,④5-x 2,⑤-x 2. 回答下列问题:(1)上面5个式子中有________个多项式,次数最高的多项式为________(填序号),整式有________个.(2)选择2个二次多项式,并进行加法运算.【解析】(1)上面5个式子中有3个多项式,分别是:①②④, 次数最高的多项式为②, 整式有4个,分别是①②④⑤. 答案:3 ② 4(2)选择2个二次多项式:①+④=-x +6.(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的多项式. (1)当m ,n 满足什么条件时,该多项式是关于x 的二次多项式; (2)当m ,n 满足什么条件时,该多项式是关于x 的三次二项式.【解析】(1)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的二次多项式, 所以3m -4=0,2n -3≠0,解得m =43 ,n ≠32 .(2)因为(3m -4)x 3-(2n -3)x 2+(2m +5n )x -6是关于x 的三次二项式, 所以3m -4≠0,2n -3=0,2m +5n =0, 解得n =1.5,m =-3.75.第26课时2.2 整式的加减(1)【合并同类项】1.所含字母相同,并且相同字母的__指数__也相同的项叫同类项.所有的常数项都是同类项.2.把多项式中的同类项合并成一项,叫做__合并同类项__.3.合并同类项后,所得项的系数是合并前各同类项的系数的__和__,且字母连同它的指数__不变__.下列各组中属于同类项的是( D ) A .2a 与2a 2 B .x 2y 3z 与2x 2y 3 C .2x 2与2y 2 D .-52 yx 2与5x 2y下列各组式子中,是同类项的是( B ) A .3x 2y 与-3xy 2 B .3xy 与-2yx C .2x 与2x 3 D .5xy 与5yz(2020·湘潭中考)已知2x n +1y 3与13 x 4y 3是同类项,则n 的值是( B ) A .2 B .3 C .4 D .5(1)若5a 2x -3b 与-3a 5b 4y +5是同类项,则x =__4__,y =__-1__. (2)写出-12 xy 3的一个同类项:xy 3(答案不唯一).下列各式合并同类项结果正确的是( B ) A .3x 3-x 3=3 B .3a 2-a 2=2a 2 C .3a 2-a 2=a D .3x 2+5x 3=8x 5化简:(1)3x 2+x 2-3x 2=__x 2__; (2)2a 2b -3a 2b =__-a 2b __.已知-3x m y 与-5y n x 3是同类项,则m =__3__,n =__1__.1.下面是小明同学做的四道题:①3m +2m =5m ;②5x -4x =1;③-p 2-2p 2=-3p 2;④3+x =3x . 他做正确了( B )A .1道B .2道C .3道D .4道2.(2020·黔西南州中考)若7a x b 2与-a 3b y 的和为单项式,则y x =__8__.1.在下列各组式子中,不是同类项的一组是( B ) A .2,-5B .-0.5xy 2, 3x 2yC .-3t ,200πtD .ab 2,-b 2 a2.把2x 2-5x +x 2+4x +3x 2合并同类项后,所得的多项式是( A ) A .二次二项式 B .二次三项式 C .一次二项式 D. 三次二项式3.把(x +y )看成整体,将(x +y )+2(x +y )-4(x +y )合并同类项得( B ) A. x +yB. -(x +y )C. -x +yD. x -y4.(2020·天津中考)计算x +7x -5x 的结果等于__3x __.5.(2020·广东中考)如果单项式3x m y 与-5x 3y n 是同类项,那么m +n =__4__. 6.求k 为多少时,代数式2x 2-kxy -3y 2+13 xy -8中不含xy 项.【解析】k =137.先化简,再求值:7x 2-3x 2-2x -2x 2+5+6x ,其中x =-2. 【解析】原式=2x 2+4x +5, 当x =-2时,原式=8-8+5=5.8.已知-2a m bc 2与4a 3b n c 2是同类项,求多项式3m 2n -2mn 2-m 2n +mn 2的值. 【解析】由同类项定义得m =3,n =1, 3m 2n -2mn 2-m 2n +mn 2=⎝⎛⎭⎫3-1 m 2n +⎝⎛⎭⎫-2+1 mn 2=2m 2n -mn 2,当m =3,n =1时,原式=2×32×1-3×12 =18-3=15.对于多项式2x2+7xy+3y2+x2-kxy+5y2,老师提出了两个问题,第一个问题是:当k为何值时,多项式中不含xy项,第二个问题是:在第一问的前提下,如果x=2,y=-1,多项式的值是多少?(1)王明同学很快就完成了第一个问题,也请你把你的解答写在下面吧.(2)在做第二个问题时,马小虎同学把y=-1错看成y=1,可是他得到的最后结果却是正确的,你知道这是为什么吗?【解析】(1)因为2x2+7xy+3y2+x2-kxy+5y2=(2x2+x2)+(3y2+5y2)+(7xy-kxy)=3x2+8y2+(7-k)xy.所以只要7-k=0,这个多项式就不含xy项.即k=7时,多项式中不含xy项.(2)因为在第一问的前提下原多项式为3x2+8y2.当x=2,y=-1时,原式=3x2+8y2=3×22+8×(-1)2=12+8=20.当x=2,y=1时,原式=3x2+8y2=3×22+8×12=12+8=20.所以马小虎的最后结果是正确的.第27课时2.2整式的加减(2)【去括号】如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号__相同__;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号__相反__.下列去括号正确的是(B)A.-(a+b-c)=-a+b-cB.-2(a+b-3c)=-2a-2b+6cC.-(-a-b-c)=-a+b+cD.-(a-b-c)=-a+b-c(2019·黄石中考)化简13(9x-3)-2(x+1)的结果是(D)A.2x-2 B.x+1 C.5x+3 D.x-3化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b). 【解析】(1)原式=13a+b;(2)原式=5a+3b-3a2.化简:(1)m -(5m -3n )+2(n -m ); (2)3a 2-[2a 2-(2ab -a 2)+4ab ].【解析】(1)原式=m -5m +3n +2n -2m =-6m +5n ; (2)原式=3a 2-[2a 2-2ab +a 2+4ab ] =3a 2-2a 2+2ab -a 2-4ab =-2ab .(1)a +b -c =a +(__b -c __); (2)a -b -c =a -(__b +c __); (3)-(x +y )=(__-x -y __).(1)-a +b +c =-(__a -b __)+c; (2)-a +b +c -d =-(__a -b __)+c -d ; (3)-(x -y )=(__-x +y __).先化简,再求值:2(3x 2-y )-(x 2+y ),其中x =-1,y =2. 【解析】原式=5x 2-3y ,当x =-1,y =2时,原式=5-6=-1.2a +[a 2-(3a 2+2a -1)],其中a =12 .【解析】原式=2a +[a 2-3a 2-2a +1]=-2a 2+1, 当a =12 时,原式=-12 +1=12 .1.下列计算中,正确的是(C)A.-2(a+b)=-2a+bB.-2(a+b)=-2a-b2C.-2(a+b)=-2a-2bD.-2(a+b)=-2a+2b2.把a-2(b-c)去括号正确的是(D)A.a-2b-c B.a-2b-2cC.a+2b-2c D.a-2b+2c3.不改变多项式3b3-2ab2+4a2b-a3的值,把后三项放在前面是“-”号的括号中,以下正确的是(D)A.3b3-(2ab2+4a2b-a3)B.3b3-(2ab2+4a2b+a3)C.3b3-(-2ab2+4a2b-a3)D.3b3-(2ab2-4a2b+a3)4.化简x-y-(x-y) 的最后结果是(B)A.2x B.0 C.-2y D.2x-2y5.-a+b-c的相反数是(B)A.a-b-c B.a-b+cC.a+b-c D.a+b+c6.化简下列各式:(1)3(2a+b);(2) -2(m+2n);(3)3(2xy-y)-2xy;(4)(-3a+5b)-(-5a+7b);(5)2(6a-10b)+(-4a+5b);(6)(3x+5y)-3(2x-3y).【解析】(1)原式=6a+3b;(2)原式=-2m-4n;(3)原式=4xy-3y;(4)原式=2a-2b;(5)原式=8a-15b;(6)原式=-3x+14y.7.当k为何值时,多项式2(2x2-3xy-2y2)-(2x2+2kxy+y2)中不含xy项?【解析】原式=4x2-6xy-4y2-2x2-2kxy-y2=2x2-5y2+(-6-2k)xy,因为不含xy项,所以-6-2k=0,k=-3.阅读下面材料:计算:1+2+3+4+…+99+100如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5 050 根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)【解析】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m +…100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m) =101a+101m×50=101a+5 050m.第28课时2.2整式的加减(3)【求代数式的值】1.整式加减的实质是合并同类项,若有括号,就要先用去括号法则去掉括号,然后再合并同类项.2.应用整式加减解决实际问题,就是把实际问题中的数量关系数学化,把题目中的量用整式表示出来,然后进行整式的加减运算.x-y的相反数是__y-x__,x+y的相反数是__-x-y__.如果a-b=12,那么-3(b-a)的值是(C)A.-35B.23C.32D.16一个整式减去a2-2b2等于a2+2b2,则这个整式是(C)A.2b2B.-2b2C.2a2D.-2a2一个多项式与x2-2x+1的和是3x-2,则这个多项式为(B)A.x2-5x+3 B.-x2+5x-3C.-x2+x-1 D.x2-5x-13某位同学做一道题:已知两个多项式A,B,求A-B的值,他误将A-B看成A+B,求得的结果是3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求A-B的正确答案.【解析】(1)由已知,A+B=3x2-3x+5,则A=3x2-3x+5-(x2-x-1)=3x2-3x+5-x2+x+1=2x2-2x+6;(2)A-B=2x2-2x+6-(x2-x-1)=2x2-2x+6-x2+x+1=x2-x+7.一种笔记本的单价是x(元),圆珠笔的单价是y(元),小红买这种笔记本3本,圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支,买这些笔记本和圆珠笔,小红和小明共花费多少钱?【解析】根据题意列得:(3x+2y)+(4x+3y)=7x+5y,则小红与小明一共花费(7x+5y)元.1.(2020·无锡中考)若x+y=2,z-y=-3,则x+z的值等于(C)A.5 B.1 C.-1 D.-52.化简下列各式:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b);(3)8m2-[4m2-2m-(2m2-5m)];(4) (8xy-x2+y2)-3(-x2+y2+5xy).【解析】(1)原式=7x+y;(2)原式=4a-2b;(3)原式=6m 2-3m ;(4)原式=8xy -x 2+y 2+3x 2-3y 2-15xy =2x 2-2y 2-7xy . 3.先化简,再求值.3a 2+(4a 2-2a -1)-2(3a 2-a +1),其中a =-12 . 【解析】原式=a 2-3 当a =-12 时,原式=-114 .4.(2021·武汉期末)先化简,再求值: 3a 2b -2ab 2-2⎝ ⎛⎭⎪⎫ab -32a 2b +ab +3ab 2,其中a =-3,b =-2.【解析】原式=3a 2b -2ab 2-2ab +3a 2b +ab +3ab 2 =6a 2b +ab 2-ab ;当a =-3,b =-2时,原式=6×9×(-2)+(-3)×4-6=-108-12-6=-126. 5.若A =9a 3b 2-5b 3-1,B =-7a 3b 2+8b 3+2. 求(A +2B )-(B -A )的值. 【解析】(A +2B )-(B -A ) =A +2B -B +A =2A +B . 因为A =9a 3b 2-5b 3-1, B =-7a 3b 2+8b 3+2,所以原式=2(9a 3b 2-5b 3-1)+(-7a 3b 2+8b 3+2) =18a 3b 2-10b 3-2-7a 3b 2+8b 3+2 =11a 3b 2-2b 3.6.(2021·泉州期末)化简求值:(1)化简:(3a2-b2)-3(a2-2b2);(2)先化简,再求值:2(a2b+ab)-3(a2b-1)-2ab-4,其中a=2019,b=12 019. 【解析】(1)原式=3a2-b2-3a2+6b2=5b2;(2)原式=2a2b+2ab-3a2b+3-2ab-4=-a2b-1,当a=2019,b=12 019时,原式=-20192×12 019-1=-2 019-1=-2 020.7.做大小两个长方体纸盒,尺寸如下(单位:厘米).(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?长宽高小纸盒 a b c大纸盒 1.5a 2b 2c【解析】(1)2(1.5a×2b+2b×2c+1.5a×2c)+2(ab+bc+ac)=6ab+8bc+6ac+2ab +2bc+2ac=8ab+10bc+8ac(平方厘米).答:做这两个纸盒共用料(8ab+10bc+8ac)平方厘米.(2)2 (1.5a×2b+2b×2c+1.5a×2c)-2(ab+bc+ac)=6ab+8bc+6ac-(2ab+2bc+2ac)=4ab+6bc+4ac(平方厘米).答:做大纸盒比做小纸盒多用料(4ab+6bc+4ac)平方厘米.已知a+b=6,ab=3,求(5ab-4a-7b)-(6a+3ab)-(4ab+3b)的值.【解析】原式=5ab-4a-7b-6a-3ab-4ab-3b=-2ab-10a-10b=-2ab-10(a+b).当a+b=6,ab=3时,原式=-6-60=-66.第29课时2.2 整式的加减(4)【综合练习】1.计算:(1)(2x -2)-(3x +5); (2)-(2a 2-2a)+3(3a -a 2); (3)2(4x 2y -5xy 2)-3(x 2y -4xy 2); (4)3(2x 2-2x -1)-2(2x 2-x -7); (5)2a -[-3b -3(3a -b)];(6)⎝ ⎛⎭⎪⎫13a 3-2a -6 -12 ⎝ ⎛⎭⎪⎫12a 3-a -7 . 【解析】(1)原式=-x -7; (2)原式=-5a 2+11a ; (3)原式=5x 2y +2xy 2; (4)原式=2x 2-4x +11; (5)原式=11a ;(6)原式=112 a 3-32 a -52 .2.(2021·西安期末)先化简,再求值:2(x 2y +xy 2)-2(x 2y -x)-2xy 2-2y ,其中x =2,y =-2. 【解析】原式=2x 2y +2xy 2-2x 2y +2x -2xy 2-2y =2x -2y ,当x =2,y =-2时,原式=2×2-2×(-2)=4+4=8.3.三个队植树,第一队植树a棵,第二队植的树比第一队的2倍还多8棵,第三队植的树比第二队的一半少6棵,问三队共植树多少棵?并求当a=100时,三个队共植树的棵数.【解析】因为第一队植树a棵,第二队植的树比第一队的2倍还多8棵,所以第二队植的树的棵数为2a+8,第三队植的树的棵数为(2a+8)÷2-6=a-2.所以三个队共植树的棵数=a+(2a+8)+(a-2)=4a+6,当a=100时,4a+6=406(棵).答:三个队共植树(4a+6)棵,当a=100时,三个队共植树406棵.4.小船在静水中的速度是50千米/时,水流速度是a千米/时,顺水航行4小时的行程与逆水航行3小时的行程相差多少千米?【解析】顺水速度为(50+a)千米/时,逆水速度为(50-a)千米/时,故顺水航行4小时比逆水航行3小时多:4(50+a)-3(50-a)=(7a+50)千米.5.已知(2x2+ax-y+b)-(2bx2-3x+5y-1)的值与字母x的取值无关,求3(a2-ab-b2)-(4b2+ab+b2)的值.【解析】原式=2x2+ax-y+b-2bx2+3x-5y+1=(2-2b)x2+(a+3)x-6y+1+b,因为与字母x的取值无关,所以b=1,a=-3,3(a2-ab-b2)-(4b2+ab+b2)=3a2-3ab-3b2-4b2-ab-b2=3a2-4ab-8b2,将b=1,a=-3代入,得3a2-4ab-8b2=3×(-3)2-4×(-3)×1-8×12=31.6.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12 还多1岁,求这三名同学的年龄之和是多少. 【解析】因为小红的年龄比小明的年龄的2倍少4岁, 所以小红的年龄为(2m -4)岁.又因为小华的年龄比小红的年龄的12 还多1岁, 所以小华的年龄为12 (2m -4)+1(岁), 则这三名同学的年龄的和为m +(2m -4)+⎣⎢⎡⎦⎥⎤12(2m -4)+1 =m +2m -4+[m -2+1]=4m -5. 答:这三名同学的年龄的和是(4m -5)岁. 7.已知□,★,△分别代表1~9中的三个自然数.(1)若□+□+□=15,★+★+★=12,△+△+△=18,那么□+★+△=________;(2)如果用★△表示一个两位数,将它的个位和十位上的数字交换后得到一个新的两位数△★,若★△与△★的和恰好为某自然数的平方,则该自然数是________;和是________;(3)①如果在一个两位数★△前插入一个数□后得到一个三位数□★△,设★△代表的两位数为x ,□代表的数为y ,则三位数□★△用含x ,y 的式子可表示为________;②设a 表示一个两位数,b 表示一个三位数,把a 放在b 的左边组成一个五位数m ,再把b 放在a 的左边,组成一个新五位数n.试探索:m -n 能否被9整除?并说明你的理由.【解析】(1)若□+□+□=15,★+★+★=12,△+△+△=18,则□=5,★=4,△=6,则□+★+△=15.答案:15(2)根据题意,得★△+△★=(★+△)×10+(△+★)=(★+△)×11由于★△与△★之和恰为某自然数的平方,故★+△=11,★△+△★=121.答案:11121(3)①根据题意,得三位数□★△用含x,y的式子可表示为100y+x.答案:100y+x②m-n能被9整除.理由如下:根据题意,得m=1 000a+b,n=100b+a,所以m-n=9(111a-11b)所以m-n能被9整除.第30课时单元复习课——整式的加减①__次数__ ②__同类项__ ③__括号__ ④__合并__用字母表示数1.(2018·常州中考)已知苹果每千克m 元,则2千克苹果共需要的费用是( D ) A .(m -2)元 B .(m +2)元 C .m2 元D .2m 元2.(2018·大庆中考)某商品打七折后价格为a 元,则原价为( B ) A .a 元B .107 a 元 C .30%a 元D .710 a 元【特别提醒】用字母表示数的三个“注意事项”1.注意把握问题中的关键词,如,多、少、倍、分、折等. 2.注意问题中的字母所表示的含义.3.在同一个问题中,相同字母所表示的数是同一个数,不同的数应该用不同的字母来表示.求代数式的值1.(2017·海南中考)已知a =-2,则代数式a +1的值为( C ) A .-3 B .-2 C .-1 D .12.(2017·重庆中考A 卷)若x =-13 ,y =4,则代数式3x +y -3的值为( B ) A .-6 B .0 C .2D .63.(2018·徐州中考)若2m +n =4,则代数式6-2m -n 的值为__2__. 4.(2018·岳阳中考)已知a 2+2a =1,则3(a 2+2a )+2的值为__5__. 【特别提醒】代数式求值的三个“注意事项” 1.求代数式的值时,一定不要改变原来的运算. 2.在代入数值之前,必须把代数式进行化简. 3.在求代数式的值时,经常用到整体思想.整式的有关概念1.(2018·淄博中考)若单项式a m -1b 2与12 a 2b n 的和仍是单项式,则n m 的值 是( C )A .3B .6C .8D .92.(2017·西宁中考)13 x 2y 是__3__次单项式.3.(2017·玉林崇左中考)若4a 2b 2n +1与a m b 3是同类项,则m +n =__3__. 【特别提醒】理解同类项的两“相同”和两“无关”两相同:一是所含字母相同,二是相同字母的指数也相同. 两无关:与字母的顺序无关,与系数无关.整式的加减1.(2017·无锡中考)若a -b =2,b -c =-3,则a -c 等于( B ) A .1 B .-1 C .5 D .-52.如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块长方形,则这块长方形较长的边长为( A )A .3a +2bB .3a +4bC .6a +2bD .6a +4b3.代数式2a 2+b -2c 与-4b +c -a 2的和为a 2-3b -c . 4.下面是徐颖化简整式的过程,仔细阅读后解答所提出的问题. 解:x (x +2y )-(x +1)2+2x=x2+2xy-x2+2x+1+2x第一步=2xy+4x+1第二步(1)徐颖的化简过程从第________步开始出现错误;(2)对此整式进行化简.【解析】(1)括号前面是负号,去掉括号应变号,故第一步出错.答案:一(2)x(x+2y)-(x+1)2+2x=x2+2xy-x2-2x-1+2x=2xy-1.【特别提醒】整式的加减的两个注意事项1.准确熟练应用去括号法则和合并同类项法则.2.如果括号外面有数字,在去括号时,可以分为两个步骤:第一,利用乘法分配律把数字与括号内各项相乘,第二,用去括号法则去掉括号.规律探索1.(2018·烟台中考)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第○n个图形中有120朵玫瑰花,则n的值为(C)A.28 B.29 C.30 D.312.如图表示的是用火柴棒搭成的图形,第一个图形用了5根火柴,第二个图形用了8根火柴,…,则用281根火柴棒搭成了第________个图形.(C)A.93 B.94C.80 D.813.(2017·娄底中考)刘莎同学用火柴棒依图的规律摆成六边形图案,用10 086根火柴棒摆出的图案应该是第__2__017__个.【特别提醒】解决探索规律题的一般步骤1.利用已知条件猜测隐含的规律.2.对猜测的规律进行验证.3.依次进行猜测——验证……猜测——验证,直到验证成功为止.。

人教版七年级上册数学:2.2 整式的加减练习题及答案

人教版七年级上册数学:2.2 整式的加减练习题及答案

3)5a 2b 与5a 2bc (6)53与一33.4)23a 2与32a 2; (5)3p 2q 与一qp 2;2.2整式的加减(1)♦课前预习1.含有的字母,并字母的也相同的项,•叫做同类项.2.在合并同类项时,我们把同类项的相加,字母和字母的不变♦互动课堂(一) 基础热点例1】下列各题中的两项哪些是同类项?21(1)—2m 2n 与m 2n ;(2)X 2y 3与X 3y 2;32分析:判断同类项要抓住“两同”:即字母相同,相同字母的指数相同,与系数和字母的排列顺序无关,常数项都是同类项.解:(1),(4),(5),(6).点拨:先判断字母是否相同,再判断相同字母的指数是否相同【例2】合并同类项:4x 2y —8xy 2+7—4x 2y+10xy 2—4.分析:初学时可用不同记号标出各同类项,以防止错漏.解:4x 2y —8xy 2+7—4x 2y+10xy 2—4=(4一4)X 2y+(―8+10)xy 2+(+7—4)=2xy 2+3点拨:合并同类项切忌漏项和忘记带上项的符号,两个同类项的系数互为相反数,则合并后结果为0.(二) 易错疑难【例3】已知(a+1)2+|b —2|=0,求多项式a 2b 2+3ab —7a 2b 2—2ab+1+5a 2b 2的值. 分析:先合并同类项,再求a 、b 值代入.解:由非负数性质,得a=—1,b=2.原式=(a2b2—7a2b2+5a2b2)+(3ab—2ab)+1=—a2b2+ab+l把a=—1,b=2代入得:原式=—5.点拨:对于多项式求值,有同类项应先合并同类项,再代值计算,可使计算便捷.(三)中考链接【例4】(1)化简:5a—2a=;(2)若一4x a y+x2y b=—3x2y,则a+b=.答案:(1)3a;(2)3点拨:考查合并同类项及同类项的概念.名师点津1.判断同类项有两个标准,一是字母相同,二是相同字母的指数也相同,•几个常数项也是同类项.2.合并同类项的方法可简记为“一加减两不变”,即合并同类项时,•把系数相加减,其值作为结果的系数,字母和字母的指数不变,同时要特别注意各项系数的符号.♦跟进课堂1.下列各组中的两项,不是同类项的是().A.a2b与一6ab2B.—x3y与2yx3C.2兀R与兀2RD.35与532.下列计算正确的是().A.3a2—2a2=1B.5—2x3=3x3C.3x2+2x3=5x5D.a3+a3=2a33.减去一4x等于3x2—2x—1的多项式为().A.3x2—6x—1B.5x2—1C.3x2+2x—1D.3x2+6x—14.若A和B都是6次多项式,则A+B一定是().A.12次多项式B.6次多项式C.次数不高于6的整式D.次数不低于6的多项式5.多项式一3x2y—10x3+3x3+6x3y+3x2y—6x3y+7x3的值是().A.与x,y都无关B.只与x有关C.只与y有关D.与x,y都有关7.A.±2 B.—2 C.2 D.0 若2x2y m与一3x n y3是同类项,则m+n.8.9. 计算:(1)3x—5x=;(2)(2008,河北)计算a2+3a2的结果是121合并同类项:—r ab2+二ab2ab2=.23410.五个连续偶数中,中间一个是n,这五个数的和是.11.1若m为常数,多项式mxy+2x—3y—1—4xy为二项式,则—m2—m+2的值是.12.11若单项式一—a2x b m与a n b y—可合并为—a2b4,则xy—mn=♦漫步课外13.合并下列各式的同类项:1)—0.8a2b—6ab—3.2a2b+5ab+a2b;2)5(a—b)2—3(a—b)2—7(a—b)—(a—b)2+7(a—b).14.先化简,1)5a2—4a2+a—9a—3a2—4+4a,其中a=—2;6.如果多项式3x3—2x2+x+|k|x—5中不含X2项,则k的值为().9111其中a=1,b=-2;(2)5ab—a2b+a2b—ab—a2b—5,224(3)2a2—3ab+b2—a2+ab—2b2,其中a2—b2=2,ab=—3.15.关于x,y的多项式6mx2+4nxy+2x+2xy-x2+y+4不含二次项,求6m-2n+2的值.♦挑战极限16.商店出售茶壶每只定价20元,茶杯每只定价5元,该店制定了两种优惠办法:(1)买一只茶壶赠送一只茶杯;(2)按总价的92%付款.某顾客需购茶壶4只,茶杯x・只(x>4,付款数为y(元),试对两种优惠办法分别写出y与x之间的关系,并研究该顾客买同样多的茶杯时,两种方法哪一种更省钱?n=—•值为4答案:10.・5n ・11.612.-313.(1)—3a 2b —ab (2)(a —b )29114.(1)原式=—2a 2—5a ,值为2(2)・原式=^ab —5a 2b —5,值为=42(3)原式=a 2—b 2—2ab ,值为81 15.m=—, 6 16.y 1=20x4+5(x —4)=5x+60,y 2=(20x4+5x )x92%=4.6x+73.6,由y ]=y 2,即5x+60=4.6x+73.6,得x=34.故当4<x 〈34时,按优惠办法(1)更省钱; 当x=34时,・两种办法付款相同;当x>34时,按优惠办法(2)更省钱1.A2.D3.A4.C 5.A6.A7.58.(1)-2x 2)4a 29. 12 ab 2。

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习(附模拟试卷含答案)

人教版数学七年级上册第2章2.2整式的加减同步练习一、选择题1.下列式子正确的是()A.7m+8n=8m+7nB.7m+8n=15mnC.7m+8n=8n+7mD.7m+8n=56mn2.若a-b=2,b-c=-3,则a-c等于()A.1B.-1C.5D.-53.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2B.3C.4D.54.下列计算正确的是()A.4x-7x=3xB.5a-3a=2C.a2+a=aD.-2a-2a=-4a5.下列各组是同类项的一组是()A.a3与b3B.3x2y与-4x2yzC.x2y与-xy2D.-2a2b与ba26.若-63a3b4与81a x+1b x+y是同类项,则x、y的值为()A. B. C. D.7.去括号正确的是()A.-(3x+2)=-3x+2B.-(-2x-7)=-2x+7C.-(3x-2)=3x+2D.-(-2x+7)=2x-7二、填空题8.计算:2(x-y)+3y= ______ .9.若x+y=3,xy=2,则(5x+2)-(3xy-5y)= ______ .10.若单项式x3y n与-2x m y2是同类项,则(-m)n= ______ .11.若2x3y2n和-5x m y4是同类项,那么m-2n= ______ .三、计算题12.先化简再求值:(2a2b-ab)-2(a2b+2ab),其中a=-2,b=-.13.先化简,再求值:x-(2x-y2+3xy)+(x-x2+y2)+2xy,其中x=-2,y=.14.先化简再求值:4x-3(3x-)+2(x-y),其中x=,y=-.人教版数学七年级上册第2章2.2整式的加减同步练习答案和解析【答案】1.C2.B3.D4.D5.D6.D7.D8.2x+y9.1110.911.-112.解:原式=2a2b-ab-2a2b-4ab=-5ab,当a=-2,b=-时,原式=-5.13.解:原式=x-2x+y2-3xy+x-x2+y2+2xy=-x2+y2-xy,当x=-2,y=时,原式=-4++1=-.14.解:原式=4x-9x+2y2+5x-2y=2y2-2y,当y=-时,原式=2y2-2y=2×(-)2-2×(-)=0.5+1=1.5.【解析】1. 解:7m和8n不是同类项,不能合并,所以,7m+8n=8n+7m.故选C.根据合并同类项法则解答.本题考查了合并同类项,熟记同类项的概念是解题的关键.2. 解:∵a-b=2,b-c=-3,∴a-c=(a-b)+(b-c)=2-3=-1,故选B根据题中等式确定出所求即可.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.3. 解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.4. 解:A、合并同类项系数相加字母及指数不变,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、不是同类项不能合并,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.根据合并同类项系数相加字母及指数不变,可得答案.本题考查了合并同类项,合并同类项系数相加字母及指数不变.5. 解:如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项.且与字母的顺序无关.故选(D)根据同类项的概念即可求出答案.本题考查同类项的概念,注意同类项与字母的顺序无关.6. 解:∵-63a3b4与81a x+1b x+y是同类项,∴x+1=3,x+y=4,∴x=2,y=2,故选D.根据同类项的定义进行选择即可.本题考查了同类项,掌握同类项的定义是解题的关键.7. 解:A、-(3x+2)=-3x-2,故A错误;B、-(-2x-7)=2x+7,故B错误;C、-(3x-2)=-3x+2,故C错误;D、-(-2x+7)=2x-7,故D正确.故选:D.依据去括号法则判断即可.本题主要考查的是去括号,掌握去括号法则是解题的关键.8. 解:原式=2x-2y+3y=2x+y,故答案为:2x+y原式去括号合并即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.9. 解:∵x+y=3,xy=2,∴原式=5x+2-3xy+5y=5(x+y)-3xy+2=15-6+2=11.故答案为:11.原式去括号合并后,将已知等式代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10. 解:由单项式x3y n与-2x m y2是同类项,得m=3,n=2.(-m)n=(-3)2=9,故答案为:9.由同类项的定义可先求得m和n的值,再根据负数的偶数次幂是正数,可得答案.本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.11. 解:∵2x3y2n和-5x m y4是同类项,∴m=3,2n=4.∴n=2.∴m-2n=3-2×2=-1.故答案为:-1.由同类项的定义可知:m=3,2n=4,从而可求得m、n的值,然后计算即可.本题主要考查的是同类项的定义,根据同类项的定义求得m、n的值是解题的关键.12.原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.13.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.14.原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.A 看B 的方向是北偏东21°,那么B 看A 的方向( )A .南偏东69° B.南偏西69° C.南偏东21° D.南偏西21°3.如图,点C 、O 、B 在同一条直线上,∠AOB=90°,∠AOE=∠DOB ,则下列结论:①∠EOD=90°;②∠COE=∠AOD ;③∠COE=∠DOB ;④∠COE+∠BOD=90°.其中正确的个数是( )A.1B.2C.3D.44.下列所给条件,不能列出方程的是( )A.某数比它的平方小6B.某数加上3,再乘以2等于14C.某数与它的12的差 D.某数的3倍与7的和等于29 5.在矩形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE 。

2023-2024学年七年级数学上册《第二章 整式的加减》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第二章 整式的加减》同步练习题有答案(人教版)

2023-2024学年七年级数学上册《第二章整式的加减》同步练习题有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题)1.下列式子为同类项的是( )A.abc与ab B.3x与3x2C.3xy2与4x2y D.x2y与−yx22.下列运算正确的是( )A.x+y=xy B.5x2y−4x2y=x2yC.x2+3x3=4x5D.5x3−2x3=33.下列单项式中,与−5x2y是同类项的是( )A.−5xy B.3x2y C.−5xy2D.−54.下列去(添)括号正确的是( )A.x−(y−z)=x−y−zB.−(x−y+z)=−x−y−zC.x+2y−2z=x−2(y−z)D.−a+c+d+b=−(a−b)+(c+d)5.已知一个多项式与3x2+9x的和等于5x2+4x−1,则这个多项式是( )A.2x2−5x−1B.−2x2+5x+1C.8x2−5x+1D.8x2+13x−16.若有理数a,b,c在数轴上的对应点A,B,C位置如图,化简∣c∣−∣c−b∣+∣a+b∣=( )A.a B.2b+a C.2c+a D.−a7.多项式4n−2n2+2+6n3减去3(n2+2n3−1+3n)(n为自然数)的差一定是( )A.奇数B.偶数C.5的倍数D.以上答案都不对8.如图,两个三角形的面积分别为16,9,若两阴影部分的面积分别为a,b(a>b)则(a−b)等于( )A.8B.7C.6D.5二、填空题(共5题)x a−2y3是同类项,那么(a−b)2015=.9.如果单项式−xy b+1与12x2y n与−2x m y3的和仍为单项式,则−m n的值为.10.若单项式2311.已知2a−3b2=5,则10−2a+3b2的值是.12.若代数式2x2+3x+7的值是5,则代数式4x2+6x+15的值是.13.已知多项式3x2+my−8与多项式−nx2+2y+7的差中,不含有x,y,则n m+mn=.三、解答题(共6题)14.先化简,后求值:3a2b+2(−ab2+2a2b)−(a2b−3ab2),其中a,b满足a=−1,b=2.15.已知代数式A=−6x2y+4xy2−2x−5,B=−3x2y+2xy2−x+2y−3.(1) 先化简A−B,再计算当x=1,y=−2时A−B的值;(2) 请问A−2B的值与x,y的取值是否有关系?试说明理由.16.已知∣x−3m+2n+1∣+(y−3mn)2=0.(1) 用含字母m,n的式子表示x,y;(2) 若2x+y的值与m取值无关,求出2x+y的值;(3) 若x+y=4,求5m+8mn+2与−m+2mn+4n的差的值.17.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3因为x=y,所以1423是“和平数”.(1) 直接写出最小的“和平数”是,最大的“和平数”是;(2) 如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是12,请求出所有的这种“和平数”.18.在计算代数式(2x3+ax−5y+b)−(2bx3−3x+5y−1)的值时,甲同学把“x=−23,y=35”误写为“x=23,y=35”,其计算结果也是正确的.请你通过计算写出一组满足题意的a,b的值.19.已知含字母x,y的多项式是:3[x2+2(y2+xy−2)]−3(x2+2y2)−4(xy−x−1).(1) 化简此多项式;(2) 小红取x,y互为倒数的一对数值代入化简的多项式中,恰好计算得多项式的值等于0,那么小红所取的字母y的值等于多少?(3) 聪明的小刚从化简的多项式中发现,只要字母y取一个固定的数,无论字母x取何数,代数式的值恒为一个不变的数,请你通过计算求出小刚所取的字母y的值.参考答案1. D2. B3. B4. D5. A6. D7. C8. B9. 110. −811. 512. 1113. 314. 原式=3a 2b −2ab 2+4a 2b −a 2b +3ab 2=6a 2b +ab 2.当 a =−1,b =2 时原式=6×1×2−1×4=8.15. (1) A −B=(−6x 2y +4xy 2−2x −5)−(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+3x 2y −2xy 2+x −2y +3=(−6+3)x 2y +(4−2)xy 2+(−2+1)x −2y −5+3=−3x 2y +2xy 2−x −2y −2.当 x =1,y =−2 时A −B=−3×12×(−2)+2×1×(−2)2−1−2×(−2)−2=6+8−1+4−2=15.(2) A −2B=(−6x 2y +4xy 2−2x −5)−2(−3x 2y +2xy 2−x +2y −3)=−6x 2y +4xy 2−2x −5+6x 2y −4xy 2+2x −4y +6=(−6+6)x 2y +(4−4)xy 2+(−2+2)x −4y −5+6=−4y +1.由化简结果可知,A −2B 的值与 x 的取值没有关系,与 y 的取值有关系.16. (1) 由题意得:x −3m +2n +1=0,y −3mn =0所以x=3m−2n−1,y=3mn.(2)2x+y=2(3m−2n−1)+3mn =6m−4n−2+3mn=(6+3n)m−4n−2,因为2x+y的值与m取值无关所以6+3n=0所以n=−2所以2x+y=−4×(−2)−2=8−2=6.(3) 因为x+y=3m−2n−1+3mn=4所以3mn+3m−2n=5所以5m+8mn+2−(−m+2mn+4n)=5m+8mn+2+m−2mn−4n=6mn+6m−4n+2=2(3mn+3m−2n)+2=2×5+2=12.17. (1) 1001;9999(2) 设这个“和平数”为abcd则d=2a,a+b=c+d,b+c=12k∴2c+a=12k即a=2,4,6,8,d=4,8,12(舍去),16(舍去)①当a=2,d=4时2(c+1)=12k可知c+1=6k且a+b=c+d∴c=5,则b=7②当a=4,d=8时2(c+2)=12k可知c+2=6k且a+b=c+d∴c=4,则b=8.综上所述,这个数为2754和4848.18. (2x 3+ax −5y +b )−(2bx 3−3x +5y −1)=2x 3+ax −5y +b −2bx 3+3x −5y +1=(2−2b )x 3+(a +3)x −10y +(1+b ).由题意知计算结果也是正确的∴ 计算结果与 x 无关∴2−2b =0,a +3=0.∴a =−3,b =1(不唯一).19. (1) 原式=3x 2+6y 2+6xy −12−3x 2−6y 2−4xy +4x +4=2xy +4x −8.(2) ∵x ,y 互为倒数∴xy =1∴2+4x −8=0解得:x =1.5,y =23.(3) 由(1)得:原式=2xy +4x −8=(2y +4)x −8,由结果与 x 的值无关,得到 2y +4=0解得:y =−2.。

人教版七年级数学上册《2.2整式的加减》练习题-带参考答案

人教版七年级数学上册《2.2整式的加减》练习题-带参考答案

人教版七年级数学上册《2.2整式的加减》练习题-带参考答案一、单选题1.下列各式中,与为同类项的是()A.B.C.D.2.下列计算正确的是()A.B.C.D.3.如果与是同类项,则()A.5 B.C.2 D.4.已知,则代数式的值是()A.100 B.98 C.-100 D.-985.如果多项式减去后得,则为()A.B.C.D.6.若x–y=–6,xy=–8,则代数式(4x+3y–2xy)–(2x+5y+xy)的值是()A.–12 B.12 C.–36 D.不能确定7.若代数式的值与x的取值无关,则的值为()A.6 B.-6 C.2 D.-28.M=x m y3,N=﹣x2y3+2xy3,Q=﹣x n y3都是关于x,y的整式,若M+N的结果为单项式,N+Q的结果为五次多项式,则常数m,n之间的关系是()A.m=n+1 B.m=nC.m=n+1或m=n D.m=n或m=n﹣1二、填空题9.计算的结果等于.10.把多项式按的降幂排列后第二项是.11.苹果每千克a元,香蕉每千克b元,则买3千克苹果和5千克香蕉共需元.12.如果单项式与的和仍是单项式,那么mn=.13.如图,把六张形状大小完全相同的小长方形卡片(如图D不重叠的放在一个底面为长方形(长为7cm宽为6cm的盒子底部(如图②,盒子底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分的周长和是cm.三、计算题14.计算(1)(2)15.先化简,再求值:已知,求的值.16.已知和 .(1)化简 .(2)当,时,求的值.17.某冰箱销售商今年四月份销售冰箱(a-1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?参考答案:1.A2.D3.D4.C5.A6.B7.D8.C9.10.11.(3a+5b)12.1213.2414.(1)解:原式==(2)解:原式===15.解:原式=2ab−6a−6b+3ab=5ab−6(a+b)当a+b=−180,ab=187时,原式=5×187−6×(−180)=935+1080=2015 16.(1)解:.(2)解:当,时.17.(1)解:由题意得:五月份:2(a-1)-1=(2a-3)台;六月份:(a-1)+(2a-3)+5=(3a+1)台;(2)解:由题意得:(3a+1)-(2a-3)=a+4(台);答:五月份销售冰箱为(2a-3)台,六月份销售冰箱为(3a+1)台,六月份比五月份多销售冰箱(a+4)台。

人教版七年级上册数学2.2整式的加减同步练习及答案

人教版七年级上册数学2.2整式的加减同步练习及答案

人教版七年级上册数学2.2整式的加减同步练习一、选择题1.下列各组中的两项不是同类项的是()A. 1和0B. −4xx2x和−4x2xx2C. −x2x和2xx2D. −x3和4x32.下列去括号中,正确的是()A. −(x−x+x)=−x+x−xB. x+2(x−x)=x+2x−xC. x2−34(x+2)=x2−34x+32D. x−(x−x+x)=x−x+x+x3.若单项式23x2x x与−2x x x3是同类项,则x−x的值是()A. 2B. 1C. −1D. −24.若x2+xx−2x+7−(xx2−2x+9x−1)的值与x的无关,则−x−x的值为()A. 3B. 1C. −2D. 25.−(2x−x)+(−x+3)去括号后的结果为()A. −2x−x−x+3B. −2x+3C. 2x+3D.−2x−2x+36.已知x=3x2+5x2+6x2,x=2x2−2x2−8x2,x=2x2−5x2−3x2,则x+x+x的值为()A. 0B. x2C. x2D. x27.如果x2x3−2x x x x是同类项,则3x−2x等于()A. −1B. 0C. 2D. 38.一个多项式加上−2x−4等于3x2+x−2,则这个多项式是()A. 3x2−3x−2B. 3x2+3x+2C. 3x2−x−6D. −3x2−x−29.下列各组式子中说法正确的是()A. 3xy与−2xx是同类项B. 5xy与6yx是同类项第1页/共7页C. 2x与x2是同类项D. 2x2x与2xx2是同类项10.化简x−[−2x−(x−x)]等于()A. −2xB. 2aC. 4x−xD. 2x−2x11.设x=x2+1,x=−2x+x2,则2x−3x可化简为()A. 4x2+1B. −x2−4x−3C. x2−4x−3D. x2−312.下列计算正确的有()13.(1)5x3−3x3=2;14.(2)−10x3+x3=−9x3;15.(3)4x+(−4x)=0;16.(4)(−27xx)−(+57xx)=−37xx;17.(5)−3xx−2xx=−5xx.A. 1个B. 2个C. 3个D. 4个二、填空题18.三个连续偶数中,中间的一个为2n,这三个数的和为______ .19.一个多项式与−2x2−4x+5的和是2x2+x−1,那么这个多项式是______ .20.单项式14x x+1x4与9x2x−1x4是同类项,则x=______ .21.若2x3x−1x3与14x5x2x+1的和仍是单项式,则5x+6x的值为______ .22.写出−23x2x的一个同类项:______.23.当x=______ 时,3xx2x与25x x x是同类项,它们合并后的结果为______ .24.已知代数式2x3x x+1与−3x x−1x2的和是−x3x2,则x−5x=______ .25.−x+2xx的相反数是______,|3−x|=______,最大的负整数是______.26.如果m、n是两个不相等的实数,且满足x2−2x=1,x2−2x=1,那么代数式2x2+4x2−4x+1994=______ .27.若x2+xx=−3,x2−3xx=18,则x2+4xx−x2的值为______.三、计算题28.先化简,再求值:2x2−4x+1−2x2+2x−5,其中x=−1.29.30.31.32.33.34.35.36.先化简,再求值:4x2x−2xx2+3−(−2xx2+4x2x−2),其中:x=2,x=3.37.38.39.40.41.42.43.44.化简:(−x2+3xx−x2)−(−3x2+5xx−2x2),并求当x=12,x=−12时的值.45.46.47.48.49.50.51.52.若x2+3xx=10,求5x2−[5x2−(2x2−xx)−7xx+5]的值.第3页/共7页54.55.56.57.58.59.60.先化简,再求值:4(x−13x2)−(x−13x2),其中x=−13,x=−1.61.62.63.64.化简:(3x2−xx−2x2)−2(x2+xx−2x2)65.66.67.68.69.70.71.72.有一道题目,是一个多项式减去x2+14x−6,小强误当成了加法计算,结果得到2x2−x+3,正确的结果应该是多少?73.74.75.76.77.78.四、解答题x)]的80.已知x=x3−5xx2+3x2,x=2x3+4x2−7xx2,求x−[2x−3(x−13值,其中x=2,x=−1.81.82.83.84.85.86.第5页/共7页答案和解析【答案】1. B2. A3. C4. B5. B6. A7. B8. B9. B10. C11. B12. C13. 6n14. 4x2+5x−615. 216. 1617. x2x(答案不唯一)18. 2;325x2x19. −120. x−2xx;x−3;−121. 201922. −2123. 解:原式=−2x−4,当x=−1时,原式=2−4=−2.24. 解:原式=4x2x−2xx2+3+2xx2−4x2x+2=5,当x=2,x=3时,原式=5.25. 解:原式=−x2+3xx−x2+3x2−5xx+2x2=2x2−2xx+x2,当x=12,x=−12时,原式=12+12+14=54.26. 解:原式=5x2−5x2+2x2−xx+7xx−5=2(x2+3xx)−5,把x2+3xx=10代入得:原式=20−5=15.27. 解:原式=4x−43x2−x+13x2=3x−x2,当x=−13,x=−1时,原式=−1−1=−2.28. 解:原式=3x2−xx−2x2−2x2−2xx+4x2=3x2−2x2−xx−2xx−2x2+4x2=x2−3xx+2x229. 解:这个多项式为:(2x2−x+3)−(x2+14x−6)=x2−15x+9所以(x2−15x+9)−(x2+14x−6)=−29x+15正确的结果为:−29x+15.30. 解:∵x−[2x−3(x−1x)]3=x−[−x+x],=2x−x,∵x=x3−5xx2+3x2,x=2x3+4x2−7xx2,∴原式=2x3−10xx2+6x2−(2x3+4x2−7xx2),=−3xx2+2x2,把x=2,x=−1代入得:−3×2×1+2×1=−4.第7页/共7页。

2.2整式的加减(2)--去括号

2.2整式的加减(2)--去括号

解:原式=4 ×2x+4×(-3y)+4×3c
=8x-12y+12c
(1) : 3( x 8) 3 x 8 (2) : 3( x 8) 3 x 24 (3) : 2(6 x) 12 2 x
不正确 不正确 正确 不正确
(4) : 4( 3 2 x) 12 8 x
• 如果括号外的因数是负数,去括号后原括号 内的各项的符号与原来的符号( )。
去括号法则:
括号前是“+”号,把括号和它前面的“+”号去掉, 括号里各项符号不变;
括号前是“ - ”号,把括号和它前面的“ - ”号去掉, 括号里各项符号都改变。
简记为:“-”变, “+”不变 要变全都变
顺口溜: 去括号,看符号; 是“+”号,不变号; 是“-”号,全变号。
a-b-c
a-b+c 2b-3a+1
2b+(-3a+1)=2b-3a-1
3a-(3b-c)=3a-3b+c
(× )
(√ )
3.口答:去括号
(1)a + (– b + c ) = (2)(a–b)–
a-b+c ( c + d ) = a-b-c-d
a-b-c -2x+y+x2-y2
( 3 ) – (– a + b ) – c =
利用去括号的规律进行整式的化简: 化简下列各式: (1)8a 2b (5a b)
解:原式=8a+2b+5a-b
=13a+b
(2)(5a-3b)-3(a -2b)
解:原式 5a 3b 3a 6b

2.2 整式的加减(2)

2.2 整式的加减(2)

变式:
2.若a2+ab=20,ab-b2= -13,求a2+b2的值.
3.已知m是绝对值最小的有理数,且 -am+1by+1与3axb3是同类项, 求2x2-3xy+6x2-3mx2+mxy-9my2的值.

例题精析:
例2.(1)水库中水位第一天连续下降了a小时,每小 时平均下降2cm,• 第二天连续上升了a小时,每小时平 均上升0.5cm,这两天水位总的变化情况如何? 解:(1) 把下降的水位变化量记为负,上升的水位变化量 记为正,那么,第一天水位的变化量为-2acm,第二天 水位的变化量0.5acm, 两天水位的总变化量为 -2a+0.5a=(-2+0.5)a=-1.5a(cm), 这两天水位的总变化情况是下降了1.5acm;
火眼金睛
例1.下列各题计算的结果对不对?如果不对请指出错 在哪里? (1) 3a+2b=5ab; ×
(2) 5y2-2y2=3; × (3) 2ab-2ba=0; √
(4) 3x2y-5xy2=-2x2y; × 2.若单项式 4 x m y3 与 x2 y n1 的和是单项式,
求m 的值
n
1 例1.(1)求多项式2x2-5x+x2+4x-3x2-2的值,其中x= . 2 1 2 1 2 (2)求多项式3a+abc- c -3a+ c 的值, 3 3 1 6 注意: (1)在求多项式的值时,一般先对多项式进行化简, 然后再代入指定的数值进行计算,这样做比较简便,同 练习:求下列各式的值: 先化简,再求值 时也减少计算失误; 1 (2)合并时,特殊注意系数是负数的情况,规范书写 2 3 2 3 (1)3x -8x+2x -13x +2x-2x +3,其中x= 1 格式; 写完一类同类项,添括号,加上“+” 2 2b-6ab-3a2b+5ab+2a2b,其中a=0.1,b=0.01 ( 3)代入字母给定的值时,必要时要正确使用括号, (2)a 否则易发生错误.

2.2整式的加减(2)

2.2整式的加减(2)

2.2整式的加减(2):1.去括号:“+”不变,“—”全变。

2.整式的加减运算顺序并不都是先去括号,再合并同类项,有时候也可以先合并同类项,再去括号,之后再合并同类项。

例1.计算:(1)求2x+3y—6xy与—2y+3x+xy的和;(2)求3x3y2—y3x+4x2+4与3x2+x3y2—2xy3—1的差。

练一练:1.化简下列各式:(1)8a+2b+(5a—b)(2)(5a—3b)—3(a2—2b)(3)12(x—0.5)(4)—5(1—0.2x)(5)—5a+(3a—2)—(3a—7)(6)6(9x—3)+2(y+1)2.计算:(1)2x—3y与5x+4y的和(2)8a—7b与4a—5b的差3.求221131x x y +x+y 2323—2(—)(—)的值,其中x=2,y=—2.自主探究:1.如果a 2+ab=4,ab+b 2=—1,那么a 2—b 2等于多少?a 2+2ab+b 2等于多少?2.已知xy=—2,x+y=3,求整式(3xy+10y )+[5x —(2xy+2y —3x )]3.如果关于x 的多项式(3x 2+2mx —x+1)+(2x 2—mx+5)—(5x 2—4mx —6x )的值与x 的取值无关,你知道m 应该取什么值吗?试试看。

1.计算—2a 2+a 2的结果为2.化简5(2x —3)+4(3—2x )的结果为3.如果2x 2y 3与x 2y n+1是同类项,那么n 的值为4.3ab —( )=3ab —4bc+1,括号里填入的代数式是5.如果3x2n—1y m与—5x m y3是同类项,那么m和n的值分别是6.合并同类项:—5ab—2ab+6ab=7.若2a—b=5,则多项式6a—3b的值是8.当k= 时,多项式中221x kxy y xy3338不含有xy项。

9..两个单项式—2a m与3a n的和是一个单项式,那么m与n的关系是10.计算:(1)2(a2—2a—1)—3(4—a2—3a)(2)3(x2—5xy)—4(x2+2xy—y2)—5(y2—3xy)11.已知|x+3|+|2x—y|=0,求2(3x—y)—4[3(x—y)—2(x—2y)]的值。

人教版数学七年级上册 2.2 整式的加减 同步练习2(含答案)

人教版数学七年级上册 2.2 整式的加减 同步练习2(含答案)

2.2整式的加减同 步 练 习一、填空题 1.3xy 与-3xy 的差是_____.2.一个多项式减去5ab -3b 2等于2a 2-2ab +b 2,这个多项式是_____.3.[( )+2a -3]+[-3a 2-2a +( )]=a 2-1.4.被减式为32x 2-43+21x ,差式为-10-x 2+3x ,则减式为_____. 5.2x 2y m 与-3x n y 是同类项,则m =_____,n =_____.6.三个连续自然数,设中间一个为x ,则这三个连续自然数的和为_____.7.某同学计算“15+2ab ”的值时,把中间的运算符号“+”看成“-”,从而得出其值为7,那么,它的正确值应为_____.8.实数a 、b 、c 在数轴上的对应点如图1,化简a +|a +b |-|b -c |-|b +c -a |=_____.图19.如图2,一块长a 米,宽b 米的矩形土地开出两条宽都是2米的小路,则S 1_____S 2(填>、<或=),两条小路浪费的土地面积是_____.图2二、选择题10.计算(3a 2-2a +1)-(2a 2+3a -5)的结果是( )A.a 2-5a +6B.a 2-5a -4C.a 2+a -4D.a 2+a +6 11.长方形的一边长为2a +b ,另一边比它大a -21b ,则周长为( ) A.10a +3bB.5a +bC.7a +bD.10a -b12.若a <0,b >0,且|a |<|b |,则下列整式的值中为负数的是( )A.a +bB.a -bC.b -aD.|a -b | 13.一个多项式加上ab -3b 2等于b 2-2ab +a 2,则这个多项式为( )A.4b 2-3ab +a 2B.-4b 2+3ab -a 2C.4b 2+3ab -a 2D.a 2-4b 2-3ab 三、解答题14.计算(1)-35ab 3+2a 3b -29a 2b -ab 3-21a 2b -a 3b(2)(7m 2-4mn -n 2)-(2m 2-mn +2n 2)(3)-3(3x +2y )-0.3(6y -5x ) (4)(31a 3-2a -6)-21(21a 3-4a -7)15.求下列整式的值(1)2a -3(a -2b )-[1-5(2a -b )],其中a =1,b =-5.(2)5x 2-[(x 2+5x 2-2x )-2(x 2-3x )],其中x =-0.5.16.已知A =a 3-2a 2b +ab 2,B =3a 2b +2ab 2-a 2,且A =2B +C ,求C .参考答案一、1.6xy 2.2a 2+3ab -2b 2 3.4a 2 2 4.43725352+-x x 5.1 2 6.3x 7.23 8.b -a 9.=4b 米2二、10.A 11.A 12.B 13.A三、14. (1)-38ab 3+a 3b -5a 2b (2)5m 2-3mn -3n 2(3)-7.5x -7.8y (4)251213-a15.(1)9a +b -1 当a =1,b =-5时 原式=3(2)x 2-4x 当x =-0.5时 原式=-4716.a 3-8a 2b -3ab 2+2a 2。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学2.2 整式的加减同步练习(2)
一、选择题(每小题3分,共24分)
1、下列各组中,不是同类项的是( )
A 、2235.0ab b a 与
B 、y x y x 2222-与
C 、315与
D 、m m x x 32--与
2、若七个连续整数中间的一个数为n ,则这七个数的和为( )
A 、0
B 、7n
C 、-7n
D 、无法确定
3、若a 3与52+a 互为相反数,则a 等于( )
A 、5
B 、-1
C 、1
D 、-5
4、下列去括号错误的共有( )
①c ab c b a +=++)(;②d c b a d c b a +--=-+-)(;③c b a c b a -+=-+2)(2;④b a a b a a b a a +-=+--+---222)]([
A 、1个
B 、2个
C 、3个
D 、4个
5、计算:)](2[n m m n m ----等于( )
A 、n 2-
B 、m 2
C 、n m 24-
D 、m n 22-
6、式子223b a -与22b a +的差是( )
A 、22a
B 、2222b a -
C 、24a
D 、2
224b a -
7、c b a -+-的相反数是( )
A 、c b a +--
B 、c b a +-
C 、c b a +--
D 、c b a ---
8、减去m 3-等于5352--m m 的式子是( )
A 、)1(52-m
B 、5652--m m
C 、)1(52+m
D 、)565(2-+-m m 二、填空题(每小题3分,共24分)
1、若4243b a b a m n 与是同类项,则m =____,n =____。

2、在x x x x 6214722+--+-中,27x 与___同类项,x 6与___是同类项,-2与__是同类项。

3、单项式ab b a ab ab b a 3,4,3,2,3222--的和为____。

4、把多项式3223535y x y x xy +--按字母x 的指数从大到小排列是:____
5、若4)13(22+-=+--a a A a a ,则A =_____。

6、化简:_______77_______,6
53121_________,5722=+-=+-=-ba b a a a a x x 7、去括号:__________)(32________;)2(2=-+-=-+-d c b a y x
8、已知:_______2,3,2=-+=-=-c b a c b c a 则
三、解答题(52分)
1、去括号并合并同类项
①)22(--a a ; ②)32(3)5(y x y x --+-;
③)(2)(2b a b a a +-++; ④)32(2[)3(1yz x x xy +-+--
2、计算
①22222323xy xy y x y x -++-;
②)32(3)23(4)(5b a b a b a -+--+;
③)377()5(322222a b ab b ab a a ---+--
3、化简求值
①2),45()54(3223-=--++-x x x x x 其中
②4
3,32),12121()3232(==+----y x xy x y xy 其中
4、试用含x 的多项式表示如图所示中阴影部分的面积。

新课 标第 一 网
5、已知222222324,c b a B c b a A ++-=-+=,且A +B +C =0。

求(1)多项式C 。

(2)若3,1,1=-==c b a ,求A +B 的值。

6、三个队植树,第一队种a 棵,第二队种的比第一队种的树的2倍还多8棵,第三队种的比第二队种的树的一半少6棵,问三个队共种多少棵树?并求当100=a 棵时,三个队种树的总棵数。

参考答案:
一、1、A 2、B 3、B 4、C 5、C 6、B 7、B 8、B
二、1、2,4 2、1,4,2x x -- 3、2235ab ab b a -+- 4、5533223-++-xy y x y x
5、12+-x
6、2x,a,0
7、d c b a y x 3332,42+---+-
8、-1
三、1、解:①原式=a a a -=+-222
②原式=y x y x y x 811965+-=+---
③原式=b a b a b a a -=--++222
④原式=yz x xy yz x x xy 63316431---=--+-
2、解:①原式=222222)23()23(xy y x xy xy y x y x +-=-++-
②原式=b a b b b a a a b a b a b a 4)985()6125(9681255+-=-+++-=-++-+ ③原式=22222226637753b ab a a b ab b ab a a +-=++--+-
3、(1)721434554233223--=++=--++-=时,原式=当解:原式x x x x x x x
(2)4
743,32121213232时,原式=-,解:原式==-+---=y x xy x y xy 4、x x x x x x x x x 2432.3)2(S 222+=++=++=解:阴影
5、解:(1)因为A +B +C =0,所以
222222222222233)233()324()(c b a c b a c b a c b a B A C --=++--=++--+-=+-=(2)3,1,1=-==c b a ,A +B =18
6、解:第二队种树的棵数为82+a ,第三队种树的棵数为2646)82(2
1-=-+=-+a a a ,三个队共种的棵数为64)2()82(+=-+++a a a a ,当100=a 时,三队种树的总棵数为40661004=+⨯(棵)。

相关文档
最新文档