2013年普通高考数学科一轮复习精品学案 第19讲 用样本估计总体及线性相关关系
2013届高考理科数学一轮复习课件10.4用样本估计总体
【解析】 分组
[39.95,39.97) [39.97,39.99) [39.99,40.01) [40.01,40.03]
合计
频数 频率 频率/组距
10 0.10
5
20 0.20
10
50 0.50
25
20 0.20
10
100 1
频率分布直方图如下:
(2)误差不超过0.3mm,即直径落在[39.97,40.03]范围 内,其概率为0.2+0.5+0.2=0.9.
【解析】 (1)两学生成绩的茎叶图如图所示.
(2)将甲、乙两学生的成绩从小到大排列为: 甲:512 522 528 534 536 538 541 549 554 556 乙:515 521 527 531 532 536 543 548 558 559 从以上排列可知甲学生成绩的中位数为 536+2 538=537.
+62)]=57.25.
品种乙的每公顷产量的样本平均数和样本方差分别
为:
-x
乙=
1 8
×(419+403+412+418+408+423+400+
413)=412,
s2乙=18×[72+(-9)2+02+62+(-4)2+112+(-12)2+
12]=56.
由以上结果可看出,品种乙的样本平均数大于品种
3.标准差和方差 (1)标准差是样本数据到平均数的一种 平均距离 .
(2)s= 1n[x1- x 2+x2- x 2+…+xn- x 2] . (3)方差:s2= 1n[(x1- x )2+(x2- x )2+…+(xn- x )2] (xn是样本数据,n是样本404 388 400 412 406
品种乙 419 403 412 418 408 423 400 413
2013高考数学一轮同步训练10.2用样本估计总体文新人教A版
第二节 用样本估计总体强化训练当堂巩固1.某雷达测速区规定:凡车速大于或等于70 m/h 的汽车视为“超速”,并将受到处罚,如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以得出将被处罚的汽车约有( )A.30辆B.40辆C.60辆D.80辆 答案:B解析:由图可知,车速大于或等于70 km/h 的汽车的频率为0.02×10=0.2,所以将被处罚的汽车约有200×0.2=40辆.故选B.2.某校举办“校园十大歌手”比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是( )A.2B.3C.4D.5 答案:A解析:由平均数计算公式检验可得到x=2,选A.3.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为A s 和B s ,则( )A. A x >B x ,A s >B sB. A x <B x ,A s >B sC. A x >B x ,A s <B sD. A x <B x ,A s <B s答案:B解析:由图可知A 组的6个数为2.5,10,5,7.5,2.5,10;B 组的6个数为15,10,12.5,10,12.5,10.所以 2.51057.5 2.5106A x +++++==6.25,151012.51012.5106B x +++++=≈11.67,显然A x <B x ,又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组的数据比较稳定,方差较小,从而标准差较小,所以A s >B s .4.为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区5月份至7月份使用疫苗的所有养鸡场进行了调查,根据下列图表提供的信息,可以得出这三个月本地区平均每月注射疫苗的鸡的数量为 万只.答案:90解析:20×1+50×2+100×1.5=270,270÷3=90(万只).5.某乡镇供电所为了调查农村居民用电量情况,随机抽取了500户居民去年的月均用电量(单位:kW/h),将所得数据整理后,画出频率分布直方图如下,其中直方图从左到右前3个小矩形的面积之比为1∶2∶3,试估计:(1)该乡镇月均用电量在[39.5,43.5)内的居民所占百分比约是多少? (2)该乡镇居民月均用电量的中位数约是多少?(精确到0.01)解:(1)设直方图从左到右前3个小矩形的面积分别为P ,2P ,3P.由直方图可知,最后两个小矩形的面积之和为(0.087 5+0.037 5)×2=0.25.因为直方图中各小矩形的面积之和为1, 所以P +2P +3P =0.75,即P =0.125.所以3P +0.087 5×2=0.55.由此估计,该乡镇居民月均用电量在[39.5,43.5)内的居民所占百分比约是55%.(2)显然直方图的面积平分线位于正中间一个矩形内,且该矩形在面积平分线左侧部分的面积为0.5-P-2P =0.5-0.375=0.125,设样本数据的中位数为39.5+x.因为正中间一个矩形的面积为3P =0.375,所以x ∶2=0.125∶0.375,即x =23≈0.67.从而39.5+x ≈40.17,由此估计,该乡镇居民月均用电量的中位数约是40.17(kW/h).课后作业巩固提升 见课后作业A题组一 用样本的频率分布估计总体分布1.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n 的值为( )A.100B.1 000C.90D.900 答案:A解析:支出在[50,60)元的频率为1-0.1-0.24-0.36=0.3.n=300.3=100.2.某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有根棉花纤维的长度小于20 mm.答案:30解析:由频率分布直方图观察得棉花纤维长度小于20 mm的根数为100×(0.01+0.01+0.04)×5=30.3.为了了解某地区高三学生的身体发育情况,抽查该地区200名年龄为17.5岁到18岁的男生体重(kg),得到频率分布直方图如下,根据下图可得这200名学生中体重在[56.5,64.5)的学生人数是人.答案:80解析:由频率分布直方图可得体重在[56,5,64.5)的学生人数为200×(0.03+0.05+0.05+0.07)×2=80人.题组二 茎叶图在总体估计中的应用4.如图是2012年元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为…( )A.4.84B.0.8C.1.6D.3.2 答案:D解析:去掉一个最高分和一个最低分后,所剩数据的平均数为80+15(2+4+6+6+7)=85, 所以方差为222221828584858685868587855-+-+-+-+-[()()()()()]=3.2. 5.CBA 某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为…( )A.19、13B.13、19C.20、18D.18、20 答案:A解析:根据中位数的定义可知甲运动员得分的中位数是19,乙运动员得分的中位数是13.题组三 用样本的数字特征估计总体的数字特征6.一组数据中每个数据都减去80构成一组新数据,这组新数据的平均数是1.2,方差是4.4,则原来这组数的平均数和方差分别是( )A.81.2,84.4B.78.8,4.4C.81.2,4.4D.78.8,75.6 答案:C解析:设原数据为12n a ,a ,,a ,⋯则平均数12n a 80a 80a 801.2n-+-+⋯+-=()()()12n a a a 1.28081.2n++⋯+⇒=+=.∵数据都减去同一个数,没有改变数据的离散程度,∴方差不变.∴选C.7.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:则以上两组数据的方差中较小的一个为 . 答案:25解析:67787=7,5x ++++=甲2222222267377872s ,5567679x 7,5267277976s ,55-+⨯-+-==++++==⨯-+⨯-+-==甲乙乙()()()()()()方差较小的是甲,为25.8.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980 h ,1 020 h ,1 032 h ,则抽取的100件产品的使用寿命的平均值为 h.答案:1 013解析:9801 1 0202 1 0321x 1 013.4⨯+⨯+⨯==9.设矩形的长为a,宽为b,其中b ∶0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定 答案:A解析:甲批次的平均数为0.617,乙批次的平均数为0.613.10.某机床生产一种机器零件,10天中每天出的次品件数分别是:2,3,1,1,0,2,1,1,0,1,则它的平均数和方差即标准差的平方分别是( )A.1.2,0.76B.1.2,2.173C.1.2,0.472D.1.2,0.687 答案:A解析: 23421x 1.2,10++++==222221s 21.2211.2531.201.220.76.?10=-⨯+-⨯+-+-⨯=[()()()()] 11.在10支罐装饮料中,有2支是不合格产品,质检员从这10支饮料中抽取2支进行检验.(1)求质检员检验到不合格产品的概率; (2)若把这10支饮料分成甲、乙两组,对其容量进行测量,数据如下表所示(单位:mL ):请问哪组饮料的容量更稳定些?并说明理由.解:(1)把10支饮料分别编号为1,2,3,4,5,6,7,8,a,b.其中a,b 表示不合格产品,则从中抽取两支饮料的基本事件有45种,即:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,a ),(1,b );(2,3),(2,4),(2,5),(2,6),(2,7),(2,8);(3,4),(3,5),(3,6),(3,7),(3,8),(3,a ),(3,b ),(4,5),(4,6),(4,7),(4,8),(4,a ),(4,b );(5,6),(5,7),(5,8),(5,a ),(5,b );(6,7),(6,8),(6,a ),(6,b );(7,8),(7,a ),(7,b );(8,a ),(8,b );(2,a ),(2,b ),(a,b ).其中抽到不合格产品的事件有17种,∴质检员检验到不合格产品的概率为1745. (2)∵2572592602612632605x ++++==甲,258259259261263260,5x ++++==乙且222222222222257260259260260260261260263260s 4.5258260259260259260261260263260s 3.2.5-+-+-+-+-==-+-+-+-+-==甲乙()()()()()()()()()()∴x 甲= x 乙,且2s 甲> 2s 乙.∴乙组饮料的容量更稳定.12.某市2011年4月1日-4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)作出频率分布表; (2)作出频率分布直方图;(3)根据国家标准,污染指数在0-50之间时,空气质量为优;在51-100之间时,为良;在101~150之间时,为轻微污染;在151-200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价. 解:(1)频率分布表如下:(2)频率分布直方图如下:(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的115.有26天处于良的水平,占当月天数的1315.处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%.说明该市空气质量有待进一步.。
山东高考数学一轮总复习教学案设计参考-用样本估计总体含答案解析
第2讲用样本估计总体[考纲解读] 1.了解频率分布直方图的意义和作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,并体会它们各自的特点.(重点)2.理解样本数据标准差的意义和作用,会计算数据标准差;能从样本数据中提取基本的数字特征,并作出合理的解释.3.会用样本的频率分布估计总体分布,用样本的基本数字特征估计总体的基本数字特征.(难点)4.会用随机抽样的基本方法和样本估计总体的思想解决实际问题.[考向预测]从近三年高考情况来看,本讲是高考中的一个热点.预测2021年将会考查用样本估计总体,主要体现在利用频率分布直方图或茎叶图估计总体,利用样本数字特征估计总体.题型以客观题呈现,试题难度不大,属中、低档题型.频率分布直方图与茎叶图也可能出现于解答题中,与概率等知识综合命题.1.作频率分布直方图的步骤2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的□01中点,就得到频率分布折线图.(2)总体密度曲线:随着□02样本容量的增加,作图时所分的组数增加,□03组距减小,相应的频率折线图就会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图(1)茎叶图的概念:统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.(2)茎叶图的优点:一是所有的信息都可以从这个茎叶图中得到;二是茎叶图便于记录和表示,能够展示数据的分布情况.4.样本的数字特征 (1)众数、中位数、平均数 数字特征样本数据频率分布直方图优点与缺点众数出现次数□01最多的数据取最高的小长方形底边□02中点的横坐标 通常用于描述变量的值出现次数最多的数,但显然它对其他数据信息的忽视使得无法客观地反映总体特征中位数将数据按大小依次排列,处在最□03中间位置的一个数据(或最中间两个数据的平均数)把频率分布直方图划分左右两个面积□04相等的分界线与x 轴交点的横坐标是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也会成为缺点平均数样本数据的算术平均数每个小矩形的面积乘以小矩形底边中点的横坐标之□05和 平均数和每一个数据有关,可以反映样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时可靠性降低方差:s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],标准差: s =1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2]. (3)平均数反映了数据取值的平均水平,标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越波动;标准差、方差越小,数据的离散程度越小,越稳定.1.概念辨析(1)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.()(2)从频率分布直方图中得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.()(3)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越高.()(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.()答案(1)×(2)√(3)√(4)×2.小题热身(1)(2017·全国卷Ⅰ)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数答案 B解析因为可以用极差、方差或标准差来描述数据的离散程度,所以要评估亩产量稳定程度,应该用样本数据的极差、方差或标准差.故选B.(2)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()A.91.5和91.5 B.91.5和92C.91和91.5 D.92和92答案 A解析由茎叶图可知,这组数据的中位数是12×(91+92)=91.5,平均数是18×(87+89+90+91+92+93+94+96)=91.5.(3)港珠澳大桥于2018年10月2日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米.桥面为双向六车道高速公路,大桥通行限速100 km/h ,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查.画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间[85,90)的车辆数和行驶速度超过90 km/h 的频率分别为( )A.300 0.25 B .300 0.35 C.60 0.25 D .60 0.35答案 B解析 由频率分布直方图,得在此路段上汽车行驶速度在区间[85,90)的频率为0.06×5=0.3,∴在此路段上汽车行驶速度在区间[85,90)的车辆数为0.3×1000=300,行驶速度超过90 km/h 的频率为(0.05+0.02)×5=0.35.故选B.(4)(2019·江苏高考)已知一组数据6,7,8,8,9,10,则该组数据的方差是________. 答案 53解析 这组数据的平均数为8,故方差为s 2=16×[(6-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2+(10-8)2]=53.题型一 样本数字特征的计算及应用1.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数 B .平均数 C .方差D .极差答案 A解析 中位数是将9个数据从小到大或从大到小排列后,处于中间位置的数据,因而去掉1个最高分和1个最低分,不变的是中位数,平均数、方差、极差均受影响.故选A.2.(2019·长沙二模)高铁、扫码支付、共享单车、网购并称中国“新四大发明”,近日对全国100个城市的共享单车和扫码支付的使用人数进行大数据分析,其中共享单车使用的人数分别为x 1,x 2,x 3,…,x 100,它们的平均数为x -,方差为s 2;其中扫码支付使用的人数分别为3x 1+2,3x 2+2,3x 3+2,…,3x 100+2,它们的平均数为x -′,方差为s ′2,则x -′,s ′2分别为( )A.3x -+2,3s 2+2 B .3x -,3s 2 C.3x -+2,9s 2 D .3x -+2,9s 2+2答案 C解析 根据题意,数据x 1,x 2,…x 100的平均数为x -,方差为s 2;则x -=1100(x 1+x 2+x 3+…+x 100),s 2=1100[(x 1-x -)2+(x 2-x -)2+…+(x 100-x -)2],若3x 1+2,3x 2+2,3x 3+2,…,3x 100+2的平均数为x -′,则x -′=1100[(3x 1+2)+(3x 2+2)+…+(3x 100+2)]=3x -+2,方差s ′2=1100[(3x 1+2-3x --2)2+(3x 2+2-3x --2)2+…+(3x 100+2-3x --2)2]=9s 2.3.一组数据1,10,5,2,x,2,且2<x <5,若该数据的众数是中位数的23倍,则该数据的方差为________.答案 9解析 根据题意知,该组数据的众数是2, 则中位数是2÷23=3,把这组数据从小到大排列为1,2,2,x,5,10, 则2+x2=3,解得x =4,所以这组数据的平均数为x -=16×(1+2+2+4+5+10)=4, 方差为s 2=16×[(1-4)2+(2-4)2×2+(4-4)2+(5-4)2+(10-4)2]=9.众数、中位数、平均数、方差的意义及常用结论(1)平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)方差的简化计算公式:s 2=1n [(x 21+x 22+…+x 2n)-n x -2]或写成s 2=1n (x 21+x 22+…+x 2n )-x -2,即方差等于原数据平方的平均数减去平均数的平方.(3)平均数、方差的公式推广①若数据x 1,x 2,…,x n 的平均数为x -,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x -+a .见举例说明2.②数据x 1,x 2,…,x n 的方差为s 2.a.数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2;b.数据ax 1,ax 2,…,ax n 的方差为a 2s 2.见举例说明2.1.(2019·六安模拟)某样本中共有5个个体,其中4个值分别为0,1,2,3,第5个值丢失,但该样本的平均值为1,则样本方差为( )A.2B.65 C. 2 D.305答案 A解析 设第5个值为x ,则由题意,得15×(0+1+2+3+x )=1,解得x =-1,所以样本方差s 2=15×[(0-1)2+(1-1)2+(2-1)2+(3-1)2+(-1-1)2]=2.2.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.答案 0.98解析 x -=10×0.97+20×0.98+10×0.9910+20+10=0.98.则经停该站高铁列车所有车次的平均正点率的估计值为0.98.题型二 扇形图、折线图1.(2020·株洲市高三摸底)某市2019年12个月的PM2.5的平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是( )A.第一季度 B .第二季度 C.第三季度 D .第四季度答案 B解析 根据图中数据,知第一季度的数据是72.15,43.96,93.13;第二季度的数据是66.5,55.25,58.67;第三季度的数据是59.16,38.67,51.6;第四季度的数据是82.09,104.6,168.05;观察得出第二季度的数据波动性最小,所以第二季度的PM2.5的平均浓度指数方差最小.故选B.2.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案 A解析设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A不正确;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,增加了一倍,所以C正确;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D正确.故选A.(1)通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.(2)折线图可以显示随时间(根据常用比例放置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.(2019·东北三省四市教研联合体模拟)“科技引领,布局未来”,科技研发是企业发展的驱动力量.2007年至2018年,某企业连续12年累计研发投入达4100亿元.我们将研发投入与经营收入的比值记为研发投入占营收比.这12年间的研发投入(单位:十亿元)用如图中的条形图表示,研发投入占营收比用如图中的折线图表示.根据折线图和条形图,下列结论错误的是()A.2012年至2013年研发投入占营收比增量相比2017年至2018年增量大B.2013年至2014年研发投入数量相比2015年至2016年增量小C.该企业连续12年研发投入逐年增加D.该企业连续12年研发投入占营收比逐年增加答案 D解析由题图可知,该企业在2008年至2009年、2013年至2014年和2016年至2017年研发投入占营收比是下降的,所以D错误.故选D.题型三茎叶图及其应用1.(2019·郑州三模)某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12.若要使该总体的标准差最小,则4x+2y的值是()0223 41x y 9920 1C.16 D.18答案 A解析因为总体的中位数为12,所以10+x+10+y2=12,即x+y=4,所以总体的平均数为110×(2+2+3+4+10+x+10+y+19+19+20+21)=11.4.要使总体的标准差最小,只要(10+x-11.4)2+(10+y-11.4)2最小.因为(10+x-11.4)2+(10+y-11.4)2≥2×10+x-11.4+10+y-11.422=0.72,当且仅当x=y=2时等号成立,所以4x+2y=12.故选A.2.某良种培育基地正在培育一小麦新品种A,将其与原有的一个优良品种B 进行对照试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:品种A:357,359,367,368,375,388,392,399,400,405,412,414,415,421,423,423,427,430,430 ,434,443,445,445,451,454.品种B:363,371,374,383,385,386,391,392,394,394,395,397,397,400,401,401,403,406,407 ,410,412,415,416,422,430.(1)作出数据的茎叶图;(2)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论.解(1)画出茎叶图如图所示:(2)通过观察茎叶图可以看出:①品种A的亩产平均数(或均值)比品种B高;②品种A的亩产标准差(或方差)比品种B大,故品种A的亩产稳定性较差.1.茎叶图的画法步骤第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列,写在左(右)侧;有两组数据时,写在中间;第三步:将各个数据的叶依次写在其茎的右(左)侧.茎叶图的绘制需注意:①“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;②重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据.2.茎叶图的应用茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.1.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为( )A.2 B .4 C .6 D .8答案 A解析 根据茎叶图中的数据知,甲、乙二人的平均成绩相同,即15×(87+89+90+91+93)=15×(88+89+90+91+90+x ),解得x =2,所以平均数为x -=90;根据茎叶图中的数据知甲的成绩波动性小,较为稳定(方差较小),所以甲成绩的方差为s 2=15×[(88-90)2+(89-90)2+(90-90)2+(91-90)2+(92-90)2]=2.故选A.2.如图茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数为甲组数据的中位数,则x ,y 的值分别为( )答案 A解析 由已知,甲组数据的众数是124,则x =4,即甲组数据的中位数为124.所以16×(116+116+125+120+y +128+134)=124,解得y =5.故选A.题型四频率分布直方图角度1求频率或频数1.党的十九大报告指出:“脱贫攻坚战取得决定性进展,六千多万贫困人口稳定脱贫,贫困发生率从百分之十点二下降到百分之四以下.”2019年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3000户家庭的2019年所得年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为[20,40),[40,60),[60,80),[80,100],则年收入不超过6万的家庭大约为()A.900户B.600户C.300户D.150户答案 A解析由频率分布直方图得:年收入不超过6万的家庭所占频率为:(0.005+0.010)×20=0.3,∴年收入不超过6万的家庭大约为0.3×3000=900.角度2求数字特征2.某市在对两千多名出租车司机的年龄进行的调查中,从两千多名出租车司机中随机抽选100名司机,已知这100名司机的年龄都在20岁至50岁之间,且根据调查结果得出的年龄情况频率分布直方图如图所示(部分图表污损).利用这个残缺的频率分布直方图,可估计该市出租车司机年龄的中位数大约是()A.31.4岁B.32.4岁C.33.4岁D.36.4岁答案 A解析由频率分布直方图可知[20,25)的频率为0.1,[25,30)的频率为0.3,[30,35)的频率为0.35,因为0.1+0.3<0.5<0.1+0.3+0.35,所以中位数x0∈[30,35),由0.1+0.3+(x0-30)×0.07=0.5,得x0≈31.4.故选A.3.(2019·全国卷Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.1.频率分布直方图的性质(1)小长方形的面积=组距×频率组距=频率.见举例说明1.(2)各小长方形的面积之和等于1.2.频率分布直方图中的众数、中位数与平均数(1)最高的小长方形底边中点的横坐标即是众数;(2)平分频率分布直方图的面积且垂直于横轴的直线与横轴交点的横坐标是中位数;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.见举例说明3.1.(2019·湘潭三模)统计某校n名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成如下6组:[90,100),[100,110),[110,120),[120,130),[130,140),[140,150],并绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n的值是()A.800 B.900C.1200 D.1000答案 D解析由频率分布直方图的性质,得10×(0.031+0.020+0.016×2+m+0.006)=1,解得m=0.011,∵不低于140分的频率为0.011×10=0.11,∴n=1100.11=1000.2.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数62638228(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解(1)频率分布直方图如图.(2)质量指标值的样本平均数为x-=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.组基础关1.一个频数分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.8,则估计样本在[40,60)内的数据个数为()A.14 B.15C.16 D.17答案 B解析由频数分布表可知,样本中数据在[20,40)上的频率为4+530=0.3,又因为样本数据在[20,60)上的频率为0.8,所以样本在[40,60)内的频率为0.8-0.3=0.5,数据个数为30×0.5=15.2.甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如表:甲乙丙丁平均成绩x-86898985 方差s2 2.1 3.5 2.1 5.6A.甲B.乙C.丙D.丁答案 C解析丙平均成绩高,方差s2小(稳定),故最佳人选是丙.3.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6C.0.7 D.0.8答案 C解析解法一:设调查的100位学生中阅读过《西游记》的学生人数为x,则x+80-60=90,解得x=70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.故选C.解法二:用Venn图表示调查的100位学生中阅读过《西游记》和《红楼梦》的人数之间的关系如图:易知调查的100位学生中阅读过《西游记》的学生人数为70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为70100=0.7.故选C.4.(2019·钦州模拟)某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在()A.第三组B.第四组C.第五组D.第六组答案 B解析由图可得,前四组的频率为(0.0375+0.0625+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第四组,所以B正确.5.如图所示,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为s A 和s B ,则( )A.x -A >x -B ,s A >s BB.x -A <x -B ,s A >s BC.x -A >x -B ,s A <s BD.x -A <x -B ,s A <s B答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10,B 组的6个数为15,10,12.5,10,12.5,10,所以x -A =2.5+10+5+7.5+2.5+106=6.25,x -B =15+10+12.5+10+12.5+106≈11.67.显然x -A <x -B .又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以s A >s B ,故选B.6.(2019·合肥一模)某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图和90后从事互联网行业岗位分布条形图,则下列结论中不一定正确的是( )注:90后指1990年及以后出生,80后指1980~1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.90后从事运营岗位的人数比80前从事互联网行业的人数多D.互联网行业中90后从事技术岗位的人数比80后从事技术岗位的人数多解析 对于A ,由饼状图可知互联网行业从业人员中90后占了56%,故A 正确.对于B ,由条形图可知互联网行业中从事技术岗位的人数占总人数的比例为39.6%,故B 正确.对于C ,由两图数据可计算出整个互联网行业从事运营岗位的90后占56%×17%=9.52%,大于互联网行业中的80前总人数,故C 正确.对于D ,因为80后从事技术岗位的人数所占比例不清楚,所以互联网行业中从事技术岗位的90后人数不一定比80后的人数多,故D 错误.故选D.7.(2020·重庆名校联盟调研)在样本频率分布直方图中共有9个小矩形,若其中1个小矩形的面积等于其他8个小矩形面积和的25,且样本容量为210,则该组的频数为( )A.28 B .40 C .56 D .60答案 D解析 设该小矩形的面积为x,9个小矩形的总面积为1,则其他8个小矩形的面积和为52x ,所以x +52x =1,所以x =27,所以该组的频数为27×210=60.8.(2020·贵阳模拟)某地的中小学办学条件在政府的教育督导下,迅速得到改善.教育督导一年后,分别随机抽查了初中(用A 表示)与小学(用B 表示)各10所学校,得到相关指标的综合评价得分(百分制)的茎叶图如图所示,则从茎叶图可得出正确的信息为(80分及以上为优秀)( )①初中得分与小学得分的优秀率相同 ②初中得分与小学得分的中位数相同 ③初中得分的方差比小学得分的方差大 ④初中得分与小学得分的平均值相同A.①② B .①③ C .②④D .③④解析从茎叶图可知抽查的初中得分的优秀率为310×100%=30%,小学得分的优秀率为310×100%=30%,故①正确;初中得分的中位数为75.5,小学得分的中位数为72.5,故②不正确;从茎叶图可知初中得分比小学得分分散,所以初中得分的方差比小学得分的方差大,故③正确;初中得分的平均值为75.7,小学得分的平均值为75,故④不正确.所以正确的信息为①③,故选B.9.已知一组数据x1,x2,…,x n的方差为2,若数据ax1+b,ax2+b,…,ax n +b(a>0)的方差为8,则a的值为________.答案 2解析根据方差的性质,知a2×2=8,解得a=2.10.某学校随机抽取了部分学生,对他们每周使用手机的时间进行统计,得到如下的频率分布直方图.若从每周使用时间在[15,20),[20,25),[25,30]三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中应选取的人数为________.答案 3解析由频率分布直方图,知5×(0.01+0.02+a+0.04+0.04+0.06)=1,解得a=0.03,即使用时间在[15,20),[20,25),[25,30]三组内的学生人数之比为4∶3∶1,则从每周使用时间在[15,20),[20,25),[25,30]三组内的学生中用分层抽样的方法选取8人进行访谈,则应从使用时间在[20,25)内的学生中应选取的人数为38×8=3.组能力关1.某校高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在[90,100]内的人数分别为( )A.20,2 B .24,4 C .25,2 D .25,4答案 C解析 由频率分布直方图可知,组距为10,所以[50,60)的频率为0.008×10=0.08,由茎叶图可知[50,60)的人数为2,设参加本次考试的总人数为N ,则N =20.08=25,根据频率分布直方图可知[90,100]内的人数与[50,60)的人数一样,都是2.故选C.2.(2019·葫芦岛一模)一个样本容量为10的样本数据,它们组成一个公差为2的等差数列{a n },若a 1,a 3,a 7成等比数列,则此样本的平均数和中位数分别是( )A.12,13 B .13,13 C .13,12 D .12,14答案 B解析 依题意a 23=a 1a 7,∴(a 1+4)2=a 1(a 1+6×2),解得a 1=4,所以此样本的平均数为S 1010=13,中位数为a 5+a 62=13.3.(2019·马鞍山模拟)某养猪场定购了一批仔猪,从中随机抽查了100头仔猪的体重(单位:斤),经数据处理得到如图1的频率分布直方图,其中体重最轻的14头仔猪的体重的茎叶图如图2,为了将这批仔猪分栏喂养,需计算频率分布直方图中的一些数据,其中a +b 的值为( )A.0.144B .0.152C .0.76D .0.076答案 B解析 由题意得2(c +d )×5=2×12100=0.24,∴a +b =1-0.245=0.152. 4.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示,已知两组技工在单位时间内加工的合格零件的平均数都为10.(1)求出m ,n 的值;(2)求出甲、乙两组技工在单位时间内加工的合格零件的方差s 2甲和s 2乙,并由此分析两组技工的加工水平.解 (1)根据题意可知:x -甲=15×(7+8+10+12+10+m )=10,x -乙=15×(9+n +10+11+12)=10,所以m =3,n =8.(2)s 2甲=15×[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2, s 2乙=15×[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,因为x -甲=x -乙,s 2甲>s 2乙,所以甲、乙两组的整体水平相当,乙组更稳定一些.组 素养关(2019·全国卷Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.y 的分组 企业数 [-0.20,0) 2 [0,0.20) 24 [0.20,0.40) 53 [0.40,0.60) 14 [0.60,0.80)7(1)。
(人教A版)高考数学一轮复习精品学案:用样本估计总体及线性相关关系
2019年高考数学一轮复习精品学案(人教版A 版)用样本估计总体及线性相关关系一.【课标要求】1.用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会他们各自的特点;②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差; ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性;⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异;⑥形成对数据处理过程进行初步评价的意识. 2.变量的相关性①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;②经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 二.【命题走向】“统计”是在初中“统计初步”基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布.预测2019年高考对本讲的考察是:1.以基本题目(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础知识、应用基础知识、解决实际问题的能力;2.热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
三.【要点精讲】1.用样本的数字特征估计总体的数字特征 (1)众数、中位数在一组数据中出现次数最多的数据叫做这组数据的众数;将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数;(2)平均数与方差如果这n 个数据是n x x x ,,.........,21,那么∑==ni i x n x 11叫做这n 个数据平均数;如果这n 个数据是n x x x ,,.........,21,那么)(112∑=-=n i i x x n S 叫做这n 个数据方差;同时=s )(11∑=-ni i x x n 叫做这n 个数据的标准差。
2013届高考理科数学总复习(第1轮)广西专版课件:11.3抽样方法与总体分布的估计(第1课时)培训教材
• 关于上述样本的下列结论中,正确的是( )D • A. ②③都不能为系统抽样 • B. ②④都不能为分层抽样 • C. ①④都可能为系统抽样 • D. ①③都可能为分层抽样 • 解:①③可能为分层抽样或系统抽样, • ②可能为分层抽样,④不能为系统抽 • 样,故选D.
• 点评:三种抽样各有其特点:随机抽样 的号码一般没有什么规律;分层抽样是 各层抽取的个数与样本容量数成比例; 系统抽样的编号数有一定的规律,如等 距离.
8 ,为4 ,2 , ,
1
48
6•4 32 16 即都是 .8
• 综上可知,无论采取哪种抽样1 ,总体中的 每个个体被取到的概率都是 8 .
• 点评:三种抽样方法的共同点就是每个个 体被抽到的概率相同,这样样本的抽取体 现了公平性和客观性.
• (1)一批产品中有一级品100个,二级品60 个,三级品40个,用分层抽样法从这批产 品中抽取一个容量为20的样本,应如何抽 取?
层抽样问题中一个主要计算依据.
• 在120个零件中,一级品24个,二级品36个, 三级品60个.用系统抽样法从中抽取容量为20 的样本.则每个个体被抽取到的概率是( D)
A . 1 B . 1 C . 1 D . 1 2 4 3 6 6 0 6
• 解:因总体数是120,样本容量是20,所以每 个个体被抽到的概率是 2 0 1 .故选D.
小时,频率分布直方图就会无限接近于一
条光滑曲线,称这条曲线为
.
总体密度曲线
• 1.一个总体中共有10个个体,用简单随机 抽样的方法从中抽取一容量为3的样本, 则某特定个体入样的概率是( )
C
• A 解.:C 3 1 3 0 简 单 随B .机1 0 抽 3 样9 中8 每 个C 个.1 3 体0 的 入D 样.1 概1 0 率 为 ,故选C.
高考数学一轮复习 12.2 用样本估计总体精品教学案(教师版)新人教版 学案
2013年高考数学一轮复习精品教学案12.2 用样本估计总体(新课标人教版,教师版)【考纲解读】1.了解分布的意义和作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.统计与统计案例是历年来高考重点内容之一,选择题、填空题与解答题三种题型都会考查,难度一般不大,在考查统计与统计案例的同时,又考查转化与化归思想和分类讨论等数学思想,以及分析问题与解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查统计与统计案例,命题形式会更加灵活,特别要注意新课标中新增的内容.【要点梳理】1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种:一种是用样本的频率分布估计总体的分布;另一种是用样本的数字特征估计总体的数字特征.(2)作频率分布直方图的步骤①求极差(即一组数据中最大值与最小值的差).②决定组距与组数.③将数据分组.④列频率分布表.⑤画频率分布直方图.(3)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示.各小长方形的面积总和等于1.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图的优点用茎叶图表示数据有两个突出的优点:一是统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.4.样本方差与标准差设样本的元素为x1,x2,…,x n,样本的平均数为x,(1)样本方差:s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].(2)样本标准差:s=1n[x1-x2+x2-x2+…+x n-x2].【例题精析】考点一频率分布表、频率分布直方图与茎叶图例1.(2011年高考湖北卷文科5)有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12]内的频数为( )A.18B.36C.54D.72【答案】B【解析】根据频率分布直方图,可知样本点落在[10,12)内频率为12(0.020.050.190.15)0.18-⨯+++=,故其频数为2000.1836⨯=,所以选B.【名师点睛】本小题主要考查频率分布直方图的应用,考查学生的识图能力,掌握这部分的基础知识(特别是频率=频数样本容量等公式)是解决本类问题的关键.【变式训练】1.(2012年高考山东卷文科14)右图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为____.考点二 用样本的数字特征估计总体的数字特征例2. (2011年高考江苏卷6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s . 【答案】3.2【解析】可以先把这组数都减去6,再求方差,容易计算出结果为165.【名师点睛】本小题主要考查方差的计算, 考查了学生分析问题、解决问题的能力. 【变式训练】2. (2012年高考广东卷文科13)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________。
课标高考复习课教学设计——用样本估计总体及线性相关关系
2 热 点 问题 是 频 率 分 布 直 方 图 、 叶 图 和 用 样 本 . 茎 的 数 字特 征估 计 总 体 的数 字 特 征 . 三 、 点 精 讲 要 1用 样 本 的 数 字 特 征 估 计 总体 的 数字 特 征 . ( )众数 、 位 数 1 中
本估计总体 的思想 , 会用样本 的频率 分布估计 总体分 征; 初步体会样本频率分布和数字特征的随机性 ;
准 差.
关 的 过 程. 道 最 小 二 乘 法 的 思 想 , 根 据 给 出 的 线 知 能 性 回归 方程 系数 公 式 建 立 线 性 回归 方 程. 二、 题走 向 命 “ 计 ”是 在初 中 “ 汁 仞 步 ”基 础上 的深 化和 扩 统 统 展 , 讲主要会用样 本的频 率分 布估 汁总 体的 分布 , 本
出散 点 图 , 并利 用 散 点 图 直 观认 识 变 量 间 的 相 关
大 尔 ;
~‘… 的 做 数 。 n 据 这个…方
羞
; 时 : . 同
r f
( 一 :叫 做这 个 数据 的 标 )
( ) 历 用 不 同 估 算 方 法 描 述 两 个 变 量 线 性 桐 2 经
i中 I小学越学砷学 版
高 研 考 究
高 中
课标 高考 复 习课 教 学设 计
用样 本估计 总体 及
安 徽 省 五 河 县 刘集 中学 (3 3 3 刘 瑞 美 233 )
关系
一
、
课标要求 :
考 查 基 础 知 识 为主 线 .
预 测 2 1 年 新 课 标 高考 对 本部 分 的考 察 是 : 0 1
( )通 过 实 例 理 解 样 本 数 据 标 准 差 的 意 义和 作 2 用 , 会计算数据标准差 ; 学 ( )能 根据 实 际 问题 的需 求 合理 地 选 取 样 本 , 3 从 样 本 数 据 中 提 取 基 本 的 数 字 特 征 ( 平 均 数 、 ; 。 如 标隹 差 ) 并 作 出合 理 的 解 释 ; , ( ) 解 决 统 计 问题 的过 程 中 , 一 步 体 会 用 样 4 在 进 f
高三数学一轮复习讲义(用样本估计总体)学生
课题:用样本估计总体知识点一、频率分布直方图1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的特征数估计总体的特征数.(2)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.2.频率分布折线图和总体密度曲线 (1)频率分布折线图连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图. (2)总体密度曲线随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.统计中称之为总体分布的密度曲线,它能够更加精细的反映出总体在各个范围内取值的百分比.3.作频率分布直方图的步骤:(1)作出频率分布表:①求极差(即一组数据中最大值与最小值得差)②决定组距和组数:绘制频数分布表和频数分布直方图时要将一批数据分组,•组距和组数的确定没有固定的标准,通常数据越多,所分的组数也越多,当数据在100个以内时,•根据数据的多少常分成5─12组.一般地,所分的小组里含最小值,不含最大值,•即数据x 满足a ≤x<b(2)建立直角坐标系:X 轴为组距;Y 轴为频率/组距4.在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;中位数是所有小长方形的面积相等的分界线;平均数是各小长方形底边中点的横坐标与对应频率的积的和.【典型例题】【例1】(2023·全国·高三专题练习)某校1000名学生参加数学竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是( ) A .频率分布直方图中aB .估计这20名学生数学考试成绩的第60百分位数为80C .估计这20名学生数学考试成绩的众数为80D .估计总体中成绩落在[50,60)内的学生人数为110【例2】(2022·天津滨海新·模拟预测)某品牌家电公司从其全部200名销售员工中随机抽出50名调查销售情况,销售额都在区间[5,25](单位:百万元)内,将其分成5组:[5,9),[9,13,[13,17),[17,21),[21,25],并整理得到如下的频率分布直方图,下列说法正确的是( ) A .频率分布直方图中aB .估计全部销售员工销售额的中位数为15C .估计全部销售员工中销售额在区间[9,13内有64人D .估计全部销售员工销售额的第75百分位数为17【例3】(2022·全国·模拟预测)(多选)某城市地铁交通建设项目已经基本完成,为了解市民对该项目的满意度,分别从不同地铁站点随机抽取1000名市民对该项目进行评分,统计发现评分均在[]40,100内,把评分分成[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100六组,并绘制成频率分布直方图(如图所示).则下列判断正确的是( ) A .图中aB .该次满意度评分的平均分为85C .该次满意度评分的众数为85D .大约有34%的市民满意度评分在[)60,80内【例4】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a ,b 的值;【举一反三】1.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (1)直方图中的a =_________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.2.(2022·全国·高三专题练习)某区政府组织了以“不忘初心,牢记使命”为主题的教育活动,为统计全区党员干部一周参与主题教育活动的时间,从全区的党员干部中随机抽取n 名,获得了他们一周参与主题教育活动时间(单位:h )的频率分布直方图如图所示,已知参与主题教育活动时间在(]12,16内的人数为92. (1)求n 的值;(2)以每组数据所在区间的中点值作为本组的代表,估算这些党员干部参与主题教育活动时间的中位数(中位数精确到0.01).(3)如果计划对参与主题教育活动时间在(]16,24内的党员干部给予奖励,且在(]16,20,(]20,24内的分别评为二等奖和一等奖,那么按照分层抽样的方法从获得一、二等奖的党员干部中选取5人参加社区义务宣讲活动,再从这5人中随机抽取2人作为主宣讲人,求这2人均是二等奖的概率.知识点二、茎叶图茎叶图:定义是统计中用来表示数据的一种图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数画法对于样本数据较少,且分布较为集中的一组数据:若数据是两位整数,则将十位数字作茎,个位数字作叶;若数据是三位整数,则将百位、十位数字作茎,个位数字作叶.样本数据为小数时做类似处理.对于样本数据较少,且分布较为集中的两组数据,关键是找到两组数据共有的茎优缺点用茎叶图表示数据的优点是:(1)所有的信息都可以从茎叶图中得到;(2)便于记录和读取,能够展示数据的分布情况.缺点是:当样本数据较多或数据位数较多时,茎叶图就显得不太方便【典型例题】【例1】为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 服用B 药的20位患者日平均增加的睡眠时间: (1)作出茎叶图;(2)从茎叶图看,哪种药的疗效更好?A 药B 药 0. 1. 2.3.【例2】某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则x y +的值为( ) A .9 B .10 C .11 D .13【举一反三】1.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图I 所示;若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数为( )A 、3B 、4C 、5D 、6 2.某车间20名工人年龄数据如下表:年龄(岁) 工人数(人)19 1 28 3 29 3 30 5 31 4 32 3 40 1 合计20知识三、用样本的数字特征估计总体的数字特征1.用样本的特征数估计总体的特征数 (1)众数、中位数、平均数众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.平均数:样本数据的算术平均数,即12n 1(x +x +...+x )x n=. 在频率分布直方图中,中位数左边和右边的直方图的面积应该相等. (2)样本方差、标准差 样本方差2222121[()()...()]n s x x x x x x n=-+-++- 标准差222121[()()...()]n s x x x x x x n=-+-++-其中x n 是样本数据的第n 项,n 是样本容量,x 是平均数.2.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.3.在频率直方图中,众数是最高的小长方形的底边的中点横坐标的值;中位数是所有小长方形的面积相等的分界线;平均数是各小长方形底边中点的横坐标与对应频率的积的和.4.平均数与方差都是重要的特征数,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,掌握公式不难求出,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.【典型例题】【例1】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ) A .46,45,56 B .46,45,53 C .47,45,56 D .45,47,53【例2】我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[)[)00.50.5,1⋅⋅⋅,,,[]4,4.5分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的a 值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.请说明理由;(3)估计居民月均用水量的中位数.【举一反三】1.某市高三学生数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为_____.2.(2022·新疆克拉玛依·三模(文))第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中a 的值,并根据直方图估计该市全体中学生的测试分数的平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)现要对测试成绩在前26%的中学生颁发“滑雪达人”证书,并制定出能够获得证书的测试分数线,请你用样本来估计总体,给出这个分数线的估计值.【课堂巩固】1.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差2.某班学生一次数学考试成绩频率分布直方图如图所示,数据分组依次为]150,130[),130,110[),110,90[),90,70[,若成绩大于等于90分的人数为36,则成绩在)130,110[的人数为()A.12B.9C.15D.183.为了研究某药物的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.184.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为.【课后练习】正确率:__________1.某学校高一、高二、高三年级的学生人数之比为4:3:3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则从高二年级抽取的学生人数为()A.15 B.20 C.25 D.302.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
河北省正定中学2013届高考数学一轮复习 统计学案 理
河北省正定中学2013届高考数学一轮复习统计学案理(无答案)一、基础知识整理统计的基本思想是用样本去估计总体。
为使样本能更好的反映总体,抽取样本要具有代表性和公平性。
1.抽样方法:(1)简单的随机抽样:一般地,设一个总体有有限个个体,并记其个数为N,如果通过逐个抽取的方法,从中抽取一个样本,且每次抽取时,各个个体被抽取的概率相等,就称这样的抽样为简单随机抽样。
两种常用的方法:①抽签法;②随机数表法。
它适用于总体所含个体数较少的情况。
(2)系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
当均分时,总体个数不能被整除,则可随机的剔除几个个体。
(3)分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更能充分地反映总体情况,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。
显然,简单的随机抽样是系统抽样和分层抽样的基础。
2.总体分布的估计(1)总体分布:总体取值的概率分布规律通常称为总体分布。
总体分布往往是不易知道的,所以要用样本的频率分布支估计总体分布。
一般地,样本容量越大,估计就越精确。
(2)样本频率分布:样本所有数据(或数据组)的频率的分布变化规律,称为样本频率分布。
(3)样本频率分布的表示方法有频率分布表、频率分布条形图、频率分布直方图。
要特别注意:频率分布条形图的高度是频率,而频率分布直方图的高度是频率与组距的比,这为后边用面积表示频率或概率提供了方便。
(4)总体密度曲线:设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线——总体密度曲线。
总体地某一区间内的概率等于总体密度曲线与横轴及过区间两端点且与横轴垂直的两条平行线围成的图形的面积(如图)。
总体密度曲线与x 轴之间的区域的面积为1,它表示总体在区间(),-∞+∞内的分布的概率为1。
高考数学一轮复习 第19讲 用样本估计总体及线性相关关系精品学案
2013年普通高考数学科一轮复习精品学案 第19讲 用样本估计总体及线性相关关系一.课标要求:1.用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会他们各自的特点;②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差; ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性;⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异;⑥形成对数据处理过程进行初步评价的意识。
2.变量的相关性①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;②经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
二.命题走向“统计”是在初中“统计初步”基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布。
预测2013年高考对本讲的考察是:1.以基本题目(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础知识、应用基础知识、解决实际问题的能力;2.热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
三.要点精讲1.用样本的数字特征估计总体的数字特征 (1)众数、中位数在一组数据中出现次数最多的数据叫做这组数据的众数;将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数;(2)平均数与方差如果这n 个数据是n x x x ,,.........,21,那么∑==ni i x n x 11叫做这n 个数据平均数;如果这n 个数据是n x x x ,,.........,21,那么)(112∑=-=ni i x x n S 叫做这n 个数据方差;同时=s )(11∑=-ni i x x n 叫做这n 个数据的标准差。
高三数学第一轮复习 用样本估计总体与向量间的相关性图课件 新人教B版
∑ (x - x)(y
i
n
i
- y)
2
∑x
- nx
2
=
i =1
∑ (x - x)
i i =1
n
,
7.使离差平方和Q= 法叫做最小二乘法.
∑ (y
i =1
2 为 a bx ) i i
最小
的方
返回目录
考点1
绘制频率分布直方图
[2010年高考安徽卷]某市2010年4月1日—4月30 日对空气污染指数的监测数据如下(主要污染物为可 吸入颗粒物): 61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,9 1,77,86,81,83,82,82,64,79,86,85,75,71,49,45. 返回目录
频率
2 30 1 30 4 30 6 30 10 30 5 30 2 30
[41,51)
[51,61)
2
1
[61,71)
[71,81) [81,91) [91,101) [101,111)
4
6 10 5 2
返回目录
(2)频率分布直方图如图所示.
返回目录
(3)答对下述两条中的一条即可:
①该市一个月中空气污染指数有2天处于优的水平,占当 1 月天数的 15 ; 有26天处于良的水平,占当月天数 3 4 的 15 ;处于优或良的天数为28,占当月天数的 .说明 15 该市空气质量基本良好.
1 ②轻微污染有2天,占当月天数的 ;污染指数在80以上 15
的接近轻微污染的天数15,加上处于轻微污染的天数17, 17 占当月天数的 ,超过50%;说明该市空气质量有待 30 进一步改善.
2013届高考数学总复习教学案:用样本估计总体
用样本估计总体[知识能否忆起]一、作频率分布直方图的步骤1.求极差(即一组数据中最大值与最小值的差).2.确定组距与组数.3.将数据分组.4.列频率分布表.5.画频率分布直方图.二、频率分布折线图和总体密度曲线1.频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.2.总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.三、样本的数字特征数字特征定义众数在一组数据中,出现次数最多的数据叫做这组数据的众数中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,在频率分布直方图中,中位数左边和右边的直方图的面积相等平均数样本数据的算术平均数.即x=1n(x1+x2+…+x n)方差s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中s为标准差四、茎叶图茎叶图的优点是可以保留原始数据,而且可以随时记录,方便记录与表示.[小题能否全取]12 42035 6301 14 1 21.(教材习题改编)( ) A .23与26 B .31与26 C .24与30D .26与30解析:选B 观察茎叶图可知,这组数据的众数是31,中位数是26.2.(教材习题改编)把样本容量为20的数据分组,分组区间与频数如下:[10,20),2;[20,30),3;[30,40),4;[40,50),5;[50,60),4;[60,70],2,则在区间[10,50)上的数据的频率是( )A .0.05B .0.25C .0.5D .0.7解析:选D 由题知,在区间[10,50)上的数据的频数是2+3+4+5=14,故其频率为1420=0.7.3.(2012·长春模拟)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为( )A .20B .25C .30D .35解析:选C 由题意知a ×10+0.35+0.2+0.1+0.05=1, 则a =0.03,故学生人数为0.3×100=30.4.(教材习题改编)甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方差为5,乙所得环数如下:5、6、9、10、5,那么这两人中成绩较稳定的是________.解析:x =7,s 2乙=4.4,则s 2甲>s 2乙,故乙的成绩较稳定. 答案:乙5.(2012·山西大同)将容量为n 的样本中的数据分为6组,绘制频率分布直方图,若第一组至第六组的数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和为27,则n =________.解析:依题意得,前三组的频率总和为2+3+42+3+4+6+4+1=920,因此有27n =920,即n =60.答案:601.在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值,而平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和,众数是最高的矩形的中点的横坐标.2.注意区分直方图与条形图,条形图中的纵坐标刻度为频数或频率,直方图中的纵坐标刻度为频率/组距.3.方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.用样本的频率分布估计总体分布典题导入[例1] (2012·广东高考)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a 的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如下表所示,求数学成绩在[50,90)之外的人数.分数段 [50,60) [60,70) [70,80) [80,90) x ∶y1∶12∶13∶44∶5[自主解答] (1)由频率分布直方图知(2a +0.02+0.03+0.04)×10=1,解得a =0.005. (2)由频率分布直方图知这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图知语文成绩在[50,60),[60,70),[70,80),[80,90)各分数段的人数依次为0.005×10×100=5,0.04×10×100=40,0.03×10×100=30,0.02×10×100=20.由题中给出的比例关系知数学成绩在上述各分数段的人数依次为5,40×12=20,30×43=40,20×54=25.故数学成绩在[50,90)之外的人数为100-(5+20+40+25)=10.在本例条件下估计样本数据的众数.解:众数应为最高矩形的中点对应的横坐标,故约为65.由题悟法解决频率分布直方图问题时要抓住 (1)直方图中各小长方形的面积之和为1.(2)直方图中纵轴表示频率组距,故每组样本的频率为组距×频率组距,即矩形的面积.(3)直方图中每组样本的频数为频率×总体数.以题试法1.(2012·深圳调研)某中学组织了“迎新杯”知识竞赛,从参加考试的学生中抽出若干名学生,并将其成绩绘制成频率分布直方图(如图),其中成绩的范围是[50,100],样本数据分组为[50,60),[60,70),[70,80),[80,90),[90,100],已知样本中成绩小于70分的个数是36,则样本中成绩在[60,90)内的学生人数为________.解析:依题意得,样本中成绩小于70分的频率是(0.010+0.020)×10=0.3;样本中成绩在[60,90)内的频率是(0.020+0.030+0.025)×10=0.75,因此样本中成绩在[60,90)内的学生人数为36×0.750.3=90.答案:90茎叶图的应用典题导入[例2] (2012·陕西高考)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x 甲、x 乙,中位数分别为m甲、m 乙,则( )A.x 甲<x 乙,m 甲>m 乙B.x 甲<x 乙,m 甲<m 乙C.x 甲>x 乙,m 甲>m 乙D.x 甲>x 乙,m 甲<m 乙[自主解答] x甲=116(41+43+30+30+38+22+25+27+10+10+14+18+18+5+6+8)=34516,x 乙=116(42+43+48+31+32+34+34+38+20+22+23+23+27+10+12+18)=45716. ∴x甲<x 乙.又∵m 甲=20,m 乙=29,∴m 甲<m 乙. [答案] B由题悟法由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁.以题试法2.(2012·淮北模考)如图所示的茎叶图记录了一组数据,关于这组数据,其中说法正确的序号是________.0 7 8 9 9 9 11223①众数是9;②平均数是10;③中位数是9或10;④标准差是3.4.解析:由茎叶图知,该组数据为7,8,9,9,9,10,11,12,12,13,∴众数为9,①正确;中位数是9+102=9.5,③错;平均数是x =110(7+8+9+9+9+10+11+12+12+13)=10,②正确;方差是s 2=110[(7-10)2+(8-10)2+(9-10)2+(9-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2+(12-10)2+(13-10)2]=3.4,标准差s = 3.4,④错.答案:①②样本的数字特征典题导入[例3] (1)(2012·江西高考)样本(x 1,x 2,…,x n )的平均数为x -,样本(y 1,y 2,…,y m )的平均数为y -(x -≠y -).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z -=αx -+(1-α)y -,其中0<α<12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定(2)(2012·山东高考)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差[自主解答] (1)x =x 1+x 2+…+x n n ,y =y 1+y 2+…+y m m ,z =x 1+x 2+…+x n +y 1+y 2+…+y mm +n ,则z =n x +m y m +n =n m +n x +mm +n y .由题意知0<n m +n <12,∴n <m .(2)对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.[答案] (1)A (2)D由题悟法(1)众数体现了样本数据的最大集中点,但无法客观地反映总体特征. (2)中位数是样本数据居中的数.(3)标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据越分散,标准差、方差越小,数据越集中.以题试法3.(2012·淄博一检)一农场在同一块稻田中种植一种水稻,其连续8年的产量(单位:kg)如下:450,430,460,440,450,440,470,460,则该组数据的方差为( )A .120B .80C .15D .150解析:选D根据题意知,该组数据的平均数为450+430+460+440+450+440+470+4608=450,所以该组数据的方差为18×(02+202+102+102+02+102+202+102)=150.1.(2013·豫西五校联考)某人5次上班途中所花的时间(单位:分钟)分别为8,12,10,11,9,估计此人每次上班途中平均花费的时间为( )A .8分钟B .9分钟C .11分钟D .10分钟解析:选D 依题意,估计此人每次上班途中平均花费的时间为8+12+10+11+95=10分钟.2.(2012·湖北高考)容量为20的样本数据,分组后的频数如下表: 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70) 频数234542则样本数据落在区间[10,40)的频率为( ) A .0.35 B .0.45 C .0.55D .0.65解析:选B 求得该频数为2+3+4=9,样本容量是20,所以频率为920=0.45.3.某厂10名工人在一个小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a ,中位数为b ,众数为c ,则有( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a解析:选D 把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a =110×(10+12+14+14+15+15+16+17+17+17)=14.7,中位数b =15+152=15,众数c =17,则a <b <c .4.(2013·济宁模拟)为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm 的株数大约是( )A .3 000B .6 000C .7 000D .8 000解析:选C 底部周长小于110 cm 的频率为:(0.01+0.02+0.04)×10=0.7,所以底部周长小于110 cm 的株数大约是10 000×0.7=7 000.5.(2012·江西高考)小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A .30%B .10%C .3%D .不能确定解析:选C 由图1得到小波一星期的总开支,由图2得到小波一星期的食品开支,从而再借助图2计算出鸡蛋开支占总开支的百分比.由图2知,小波一星期的食品开支为30+40+100+80+50=300元,由图1知,小波一星期的总开支为30030%=1 000元,则小波一星期的鸡蛋开支占总开支的百分比为301 000×100%=3%.6.(2012·江西盟校二联)若一个样本容量为8的样本的平均数为5,方差为2.现样本中又加入一个新数据5,此时样本容量为9,平均数为x ,方差为s 2,则( )A.x =5,s 2<2B.x =5,s 2>2C.x >5,s 2<2D.x >5,s 2>2解析:选A 设18(x 1+x 2+…+x 8)=5,∴19(x 1+x 2+…+x 8+5)=5, ∴x =5,由方差定义及意义可知加新数据5后,样本数据取值的稳定性比原来强,∴s 2<2.7.(2012·湖北模拟)下图为150辆汽车通过某路段时速度的频率分布直方图,则速度在[60,70)内的汽车大约有________辆.解析:由频率分布直方图可知,汽车速度在[60,70)内的频率为0.04×10=0.4,故速度在[60,70)内的汽车为150×0.4=60辆.答案:608.(2012·湖南高考)如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解析:该运动员五场比赛中的得分为8,9,10,13,15,平均得分x =8+9+10+13+155=11,方差s2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.答案:6.89.(2012·北京海淀)甲和乙两个城市去年上半年每月的平均气温(单位:℃)用茎叶图记录如下,根据茎叶图可知,两城市中平均温度较高的城市是________,气温波动较大的城市是________.解析:根据茎叶图可知,甲城市上半年的平均温度为9+13+17×2+18+226=16,乙城市上半年的平均温度为12+14+17+20+24+276=19,故两城市中平均温度较高的是乙城市,观察茎叶图可知,甲城市的温度更加集中在峰值附近,故乙城市的温度波动较大.答案:乙乙10.(2012·郑州模拟)某中学共有1 000名学生参加了该地区高三第一次质量检测的数学考试,数学成绩如下表所示:数学成绩分组[0,30)[30,60)[60,90)[90,120)[120,150] 人数6090300x 160样的方法抽取100名同学进行问卷调查,甲同学在本次测试中数学成绩为95分,求他被抽中的概率;(2)已知本次数学成绩的优秀线为110分,试根据所提供数据估计该中学达到优秀线的人数;(3)作出频率分布直方图,并估计该学校本次考试的数学平均分(同一组中的数据用该组区间的中点值作代表).解:(1)分层抽样中,每个个体被抽到的概率均为样本容量总体中个体总数,故甲同学被抽到的概率P=110.(2)由题意得x=1 000-(60+90+300+160)=390.故估计该中学达到优秀线的人数m =160+390×120-110120-90=290.(3)频率分布直方图如图所示.该学校本次考试的数学平均分. x =60×15+90×45+300×75+390×105+160×1351 000=90.估计该学校本次考试的数学平均分为90分.11. (2012·江西重点中学联考)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X 1 2 3 4 5 频率a0.20.45bc(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.解:(1)由频率分布表得a +0.2+0.45+b +c =1, 即a +b +c =0.35.因为抽取的20件日用品中,等级系数为4的恰有3件,所以b =320=0.15.等级系数为5的恰有2件,所以c =220=0.1.从而a =0.35-b -c =0.1. 所以a =0.1,b =0.15,c =0.1.(2)从日用品x 1,x 2,x 3,y 1,y 2中任取2件,所有可能的结果为:{x 1,x 2},{x 1,x 3},{x 1,y 1},{x 1,y 2},{x 2,x 3},{x 2,y 1},{x 2,y 2},{x 3,y 1},{x 3,y 2},{y 1,y 2},共10个.设事件A 表示“从日用品x 1,x 2,x 3,y 1,y 2中任取2件,其等级系数相等”,则A 包含的基本事件为:{x 1,x 2},{x 1,x 3},{x 2,x 3},{y 1,y 2},共4个.故所求的概率P (A )=410=0.4.12.(2012·北京高考)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a ,b ,c ,其中a >0,a +b +c =600.当数据a ,b ,c 的方差s 2最大时,写出a ,b ,c 的值(结论不要求证明),并求此时s 2的值.( 注:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为数据x 1,x 2,…,x n 的平均数 )解:(1)厨余垃圾投放正确的概率约为“厨余垃圾”箱里厨余垃圾量厨余垃圾总量=400400+100+100=23.(2)设“生活垃圾投放错误”为事件A ,则事件A 表示“生活垃圾投放正确”. 事件A 的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P (A )约为400+240+601 000=0.7,所以P (A )约为1-0.7=0.3.(3)当a =600,b =c =0时,s 2取得最大值.因为x =13(a +b +c )=200,所以s 2=13×[(600-200)2+(0-200)2+(0-200)2]=80 000.1.(2013·西宁模拟)已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( )A .±14B .±12C .±128D .无法求解解析:选B 这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4,又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=(3d )2+(2d )2+(d )2+0+(d )2+(2d )2+(3d )27=1,即4d 2=1,解得d =±12.2.(2012·安徽高考)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差解析:选C 由题意可知,甲的成绩为4,5,6,7,8,乙的成绩为5,5,5,6,9.所以甲、乙的成绩的平均数均为6,A 错;甲、乙的成绩的中位数分别为6,5,B 错;甲、乙的成绩的方差分别为15×[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=2,15×[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=125,C 对;甲、乙的成绩的极差均为4,D 错.3.(2012·山西山大附中月考)如图是某市有关部门根据该市干部的月收入情况,画出的样本频率分布直方图,已知图中第一组的频数为4 000,请根据该图提供的信息解答下列问题.(1)求样本中月收入在[2 500,3 500)的人数;(2)为了分析干部的收入与年龄、职业等方面的关系,必须从样本中按月收入用分层抽样方法抽出100人作进一步分析,则月收入在[1 500,2 000)的这组中应抽多少人?(3)试估计样本数据的中位数.解:(1)由题知,月收入在[1 000,1 500)的频率为0.000 8×500=0.4,又月收入在[1 000,1 500)的有4 000人,故样本容量n =4 0000.4=10 000.又月收入在[1 500,2 000)的频率为0.000 4×500=0.2, 月收入在[2 000,2 500)的频率为0.000 3×500=0.15, 月收入在[3 500,4 000]的频率为0.000 1×500=0.05,所以月收入在[2 500,3 500)的频率为1-0.4-0.2-0.15-0.05=0.2. 故样本中月收入在[2 500,3 500]的人数为0.2×10 000=2 000.(2)由(1)知,月收入在[1 500,2 000)的人数为0.2×10 000=2 000,再从10 000人中用分层抽样的方法抽出100人,则月收入在[1 500,2 000)的这组中应抽取100×2 00010 000=20(人).(3)由(1)知,月收入在[1 000,2 000)的频率为0.4+0.2=0.6>0.5,故样本数据的中位数为1 500+0.5-0.40.000 4=1 500+250=1 750.1.(2012·陕西高考)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A .46,45,56B .46,45,53C .47,45,56D .45,47,53解析:选A 从茎叶图中可以看出样本数据的中位数为中间两个数的平均数,即45+472=46,众数为45,极差为68-12=56.2.(2012·济南调研)如图是2012年在某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4解析:选C 依题意得,去掉一个最高分和一个最低分后,所剩数据的平均数为80+15×(4×3+6+7)=85,方差为15×[3×(84-85)2+(86-85)2+(87-85)2]=1.6.。
2013届高考数学一轮复习讲义第十一章11.2用样本估计总体
-
13)2]=0.8.
(2)由 s2甲>s2乙可知乙的成绩较稳定.
从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,
可知甲的成绩在不断提高,而乙的成绩则无明显提高.
探究提高
(1)平均数与方差都是重要的数字特征,是对总体的一种简明的 描述,它们所反映的情况有着重要的实际意义,平均数、中位 数、众数描述其集中趋势,方差和标准差描述其波动大小. (2)平均数、方差的公式推广 ①若数据 x1,x2,…,xn 的平均数为 x ,那么 mx1+a,mx2+a, mx3+a,…,mxn+a 的平均数是 m x +a. ②数据 x1,x2,…,xn 的方差为 s2. a.s2=n1[(x21+x22+…+xn2)-n x 2]; b.数据 x1+a,x2+a,…,xn+a 的方差也为 s2; c.数据 ax1,ax2,…,axn 的方差为 a2s2.
在频率分布直方图中,中位数左边和右边的直方图的面积
应该 相等.
要点梳理
忆一忆知识要点
(2)样本方差、标准差
标准差 s=
n1[x1- x 2+x2- x 2+…+xn- x 2],
其中 xn 是样本数据的第 n 项,n 是 样本容量 ,x 是 平均数 .
标准差是 反 映 总 体 波 动 大 小 的 特 征 数 , 样 本 方 差 是 标 准 差
批阅笔记
解解本本题题容容易易出出现现的的错错误误是是审审题题不不细细,,对对所所给给图图形形观观察察不不细细心心,,
认为员工中年薪在 认为员工中年薪在
1.4 1.4
万万元元~~11..66
万元之间的频率为 万元之间的频率为
11--((00..0022
++00..0088++00..1100))××22==00..6600,,从从而而得得到到员员工工中中年年薪薪在在11..44万万元元~~11..66
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高考数学科一轮复习精品学案第19讲 用样本估计总体及线性相关关系一.课标要求:1.用样本估计总体 ①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图,体会他们各自的特点;②通过实例理解样本数据标准差的意义和作用,学会计算数据标准差; ③能根据实际问题的需求合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释;④在解决统计问题的过程中,进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;初步体会样本频率分布和数字特征的随机性;⑤会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题;能通过对数据的分析为合理的决策提供一些依据,认识统计的作用,体会统计思维与确定性思维的差异;⑥形成对数据处理过程进行初步评价的意识。
2.变量的相关性 ①通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;②经历用不同估算方法描述两个变量线性相关的过程。
知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
二.命题走向―统计‖是在初中―统计初步‖基础上的深化和扩展,本讲主要会用样本的频率分布估计总体的分布,并会用样本的特征来估计总体的分布。
预测2013年高考对本讲的考察是:1.以基本题目(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础知识、应用基础知识、解决实际问题的能力;2.热点问题是频率分布直方图和用样本的数字特征估计总体的数字特征。
三.要点精讲1.用样本的数字特征估计总体的数字特征 (1)众数、中位数在一组数据中出现次数最多的数据叫做这组数据的众数;将一组数据按照从大到小(或从小到大)排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数;(2)平均数与方差如果这n 个数据是n x x x ,,.........,21,那么∑==ni i x n x 11叫做这n 个数据平均数;如果这n 个数据是n x x x ,,.........,21,那么)(112∑=-=ni i x x n S 叫做这n 个数据方差;同时=s)(11∑=-ni i x x n 叫做这n 个数据的标准差。
2.频率分布直方图、折线图与茎叶图样本中所有数据(或数据组)的频率和样本容量的比,就是该数据的频率。
所有数据(或数据组)的频率的分布变化规律叫做频率分布,可以用频率分布直方图、折线图、茎叶图来表示。
频率分布直方图: 具体做法如下:(1)求极差(即一组数据中最大值与最小值的差); (2)决定组距与组数; (3)将数据分组; (4)列频率分布表; (5)画频率分布直方图。
注:频率分布直方图中小正方形的面积=组距×组距频率=频率。
折线图:连接频率分布直方图中小长方形上端中点,就得到频率分布折线图。
总体密度曲线:当样本容量足够大,分组越多,折线越接近于一条光滑的曲线,此光滑曲线为总体密度曲线。
3.线性回归回归分析:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系或回归关系。
回归直线方程:设x 与y 是具有相关关系的两个变量,且相应于n 个观测值的n 个点大致分布在某一条直线的附近,就可以认为y 对x 的回归函数的类型为直线型:bx a y+=ˆ。
其中2121121)())((xn xy x n yx x xy y x xb ni ini ii ni ini i i--=---=∑∑∑∑====,x b y a -=。
我们称这个方程为y 对x 的回归直线方程。
四.典例解析 题型1:数字特征例1.为了检查一批手榴弹的杀伤半径,抽取了其中20颗做试验,得到这20颗手榴弹的杀伤半径,并列表如下:(1)在这个问题中,总体、个体、样本和样本容量各是什么?(2)求出这20颗手榴弹的杀伤半径的众数、中位数和平均数,并估计这批手榴弹的平均杀伤半径.解析: (1)总体是要检查的这批手榴弹的杀伤半径的全体;个体是每一颗手榴弹的杀伤半径;样本是所抽取的20颗手榴弹的杀伤半径;样本容量是20。
(2)在20个数据中,10出现了6次,次数最多,所以众数是10(米)。
20个数据从小到大排列,第10个和第11个数据是最中间的两个数,分别为9(米)和10(米),所以中位数是21(9+10)=9.5(米)。
样本平均数4.9)112311610495817(201=⨯+⨯+⨯+⨯+⨯+⨯=x (米)所以,估计这批手榴弹的平均杀伤半径约为9.4米。
点评:(1)根据总体、个体、样本、样本容量的概念答题.要注意:总体、个体和样本所说的考察对象是一种数量指标,不能说成考察的对象是手榴弹,而应说是手榴弹的杀伤半径。
(2)读懂表格的意义,利用概念求众数、中位数,用样本平均数估计这批手榴弹的平均杀伤半径.另外在这里要会简便计算有多个重复数据的样本的平均数。
例2.为估计一次性木质筷子的用量,1999年从某县共600家高、中、低档饭店抽取10家作样本,这些饭店每天消耗的一次性筷子盒数分别为:0.6 3.7 2.2 1.5 2.8 1.7 1.2 2.1 3.2 1.0(1)通过对样本的计算,估计该县1999年消耗了多少盒一次性筷子(每年按350个营业日计算);(2)2001年又对该县一次性木质筷子的用量以同样的方式作了抽样调查,调查的结果是10个样本饭店,每个饭店平均每天使用一次性筷子2.42盒.求该县2000年、2001年这两年一次性木质筷子用量平均每年增长的百分率(2001年该县饭店数、全年营业天数均与1999年相同);(3)在(2)的条件下,若生产一套学生桌椅需木材0.07m 3,求该县2001年使用一次性筷子的木材可以生产多少套学生桌椅。
计算中需用的有关数据为:每盒筷子100双,每双筷子的质量为5g ,所用木材的密度为0.5×103kg/m 3;(4)假如让你统计你所在省一年使用一次性筷子所消耗的木材量,如何利用统计知识去做,简要地用文字表述出来。
解析:(1)0.2)0.12.31.22.17.18.25.12.27.36.0(101=+++++++++=x 所以,该县1999年消耗一次性筷子为2×600×350=420000(盒)。
(2)设平均每年增长的百分率为X ,则2(1+X )2=2.42, 解得X 1=0.1=10%,X 2=-2.1(不合题意,舍去)。
所以,平均每年增长的百分率为10%; (3)可以生产学生桌椅套数为726007.0105.035060010042.2005.03=⨯⨯⨯⨯⨯⨯(套)。
(4)先抽取若干个县(或市、州)作样本,再分别从这些县(或市、州)中抽取若干家饭店作样本,统计一次性筷子的用量.点评:本题是一道统计综合题,涉及的知识点很多,需要灵活运用各种知识分析解决问题.对于第(1)小题,可先求得样本平均数,再利用样本估计总体的思想来求得问题的解.对于第(2)小题,实际是一个增长率问题的应用题,可通过设未知数列方程的方法来解.对于第(3)小题,用到了物理公式m =ρv , 体现了各学科知识之间的联系,让学生触类旁通,在解决实际问题时能综合运用多种知识灵活地解决问题.第(4)小题只要能够运用随机抽样方法,能体会到用样本估计总体的统计思想就可解决,在文字表述上要注意简洁、明了、正确。
题型2:数字特征的应用例3.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t / hm 2)其中产量比较稳定的小麦品种是 甲 。
解析:x ¯甲 = 1 5( 9.8 + 9.9 + 10.1 + 10 + 10.2) = 10.0,x ¯乙 = 15( 9.4 + 10.3 + 10.8 + 9.7 + 9.8)= 10.0;s 2甲 = 1 5( 9.82 + … + 10.22) – 102 = 0.02,s 2甲 = 1 5( 9.42 + … + 9.82) – 102 = 0.244 > 0.02 。
点评:方差与平均数在反映样本的特征上一定要区分开。
例4.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7 去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 答案:D ;解析:7个数据中去掉一个最高分和一个最低分后,余下的5个数为:9.4, 9.4, 9.6, 9.4, 9.5。
则平均数为:5.946.955.94.96.94.94.9≈=++++=x ,即5.9=x 。
方差为:016.0])5.95.9()5.94.9()5.94.9[(512222=-+⋅⋅⋅+-+-=s 即 016.02=s ,故选D 。
点评:一定要根据实际的题意解决问题,并还原实际情景。
题型3:频率分布直方图与条形图例5.为检测,某种产品的质量,抽取了一个容量为30的样本,检测结果为一级品5件,而极品8件,三级品13件,次品14件.(1)列出样本频率分布表;(2)画出表示样本频率分布的条形图;(3)根据上述结果,估计辞呈商品为二极品或三极品的概率约是多少 解析:(1)样本的频率分布表为(2)样本频率分布的条形图为:(3)此种产品为二极品或三极品的概率约为0.27+0.43=0.7。
点评:条形图中纵坐标一般是频数或频率。
例6.(2006重庆理,6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是(A)20 (B)30(C)40 (D)50答案:C;解析:根据运算的算式:体重在〔56.5,64.5〕学生的累积频率为2×0.03+2×0.05+2×0.05+2×0.07=0.4,则体重在〔56.5,64.5〕学生的人数为0.4×100=40。
点评:熟悉频率、频数、组距间的关系式。
例7.某中学对高三年级进行身高统计,测量随机抽取的40名学生的身高,其结果如下(单位:cm)(1)列出频率分布表;(2)画出频率分布直方图;(3)估计数据落在[150,170]范围内的概率。
解析:(1)根据题意可列出频率分布表:(2)频率分布直方图如下:(3)数据落在[150,170]范围内的概率约为0.825。