高考届高考数学热点创新题型排列、组合、概率部分新题原创3道

合集下载

高考数学科学复习创新方案:概率与随机变量及其分布列的热点题型

高考数学科学复习创新方案:概率与随机变量及其分布列的热点题型

命题动向:在高考的解答题中,对概率与随机变量及其分布相结合的综合问题的考查既是热点又是重点,是高考必考的内容,并且常与统计相结合,设计成包含概率计算、概率分布列、随机变量的数学期望与方差、统计图表的识别等知识的综合题.以考生比较熟悉的实际应用问题为载体,考查学生应用基础知识和基本方法分析问题和解决问题的能力.题型1求离散型随机变量的均值与方差例1(2021·新高考Ⅰ卷)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.解(1)随机变量X的所有可能取值为0,20,100.P(X=0)=1-0.8=0.2,P(X=20)=0.8×(1-0.6)=0.32,P(X=100)=0.8×0.6=0.48.故随机变量X的分布列如下:X020100P0.20.320.48(2)设小明先回答B类问题,记Y为小明的累计得分,则随机变量Y的所有可能取值为0,80,100,P(Y=0)=1-0.6=0.4,P(Y=80)=0.6×(1-0.8)=0.12,P(Y=100)=0.6×0.8=0.48.故E(Y)=0×0.4+80×0.12+100×0.48=57.6.由(1)知E(X)=0×0.2+20×0.32+100×0.48=54.4.因为E(Y)>E(X),故应先回答B类问题.离散型随机变量的均值和方差的求解,一般分两步:一是定型,即先判断随变式训练1(2024·保定开学考试)2015年5月,国务院印发《中国制造2025》,是我国由制造业大国转向制造业强国战略的行动纲领.经过多年的发展,我国制造业的水平有了很大的提高,出现了一批在国际上有影响的制造企业.我国的造船业、光伏产业、5G等已经在国际上处于领先地位,我国的精密制造也有了长足发展.已知某精密设备制造企业生产某种零件,根据长期检测结果,得知生产该零件的生产线的产品质量指标值X服从正态分布N(64,100),且质量指标值在[54,84]内的零件称为优等品.(1)求该企业生产的零件为优等品的概率(结果精确到0.01);(2)从该生产线生产的零件中随机抽取5件,随机变量Y表示抽取的5件中优等品的个数,求Y的分布列、数学期望和方差.附:若X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.解(1)由题意知,X~N(64,100),则μ=64,σ=10,54=μ-σ,84=μ+2σ,由P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,得P(54≤X≤84)=P(54≤X≤64)+P(64≤X≤84)=12×0.6827+12×0.9545≈0.82.故该企业生产的零件为优等品的概率为0.82.(2)Y的所有可能取值为0,1,2,3,4,5,P(Y=0)=(1-0.82)5,P(Y=1)=C15×0.82×(1-0.82)4,P(Y=2)=C25×0.822×(1-0.82)3,P(Y=3)=C35×0.823×(1-0.82)2,P(Y=4)=C45×0.824×(1-0.82),P(Y=5)=0.825,则Y的分布列为Y012P(1-0.82)5C15×0.82×(1-0.82)4C25×0.822×(1-0.82)3Y345P C35×0.823×(1-0.82)2C45×0.824×(1-0.82)0.825由Y~B(5,0.82),则E(Y)=5×0.82=4.1,D(Y)=5×0.82×(1-0.82)=0.738.题型2概率与统计的综合问题例2(2022·新高考Ⅱ卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001)解(1)平均年龄x-=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017+75×0.006+85×0.002)×10=47.9(岁).(2)由于患者的年龄位于区间[20,70)是由患者的年龄位于区间[20,30),[30,40),[40,50),[50,60),[60,70)组成的,所以所求概率P=(0.012+0.017×2+0.023+0.020)×10=0.89.(3)设从该地区任选一人,年龄位于区间[40,50)为事件A,患这种疾病为事件B,则P(A)=16%,由频率分布直方图知,这种疾病患者的年龄位于区间[40,50)的概率为0.023×10=0.23,结合该地区这种疾病的患病率为0.1%,可得P(AB)=0.1%×0.23=0.00023,所以从该地区任选一人,若年龄位于区间[40,50),则此人患这种疾病的概率为P(B|A)=P(AB)P(A)=0.0002316%≈0.0014.概率与统计作为考查考生应用意识的重要载体,已成为高考的一大亮点和热知识竞赛包含预赛和决赛.(1)下表为某10位同学的预赛成绩:得分939495969798人数223111求该10位同学预赛成绩的上四分位数(第75百分位数)和平均数;(2)决赛共有编号为A,B,C,D,E的5道题,学生甲按照A,B,C,D,E的顺序依次作答,答对的概率依次为23,12,12,13,13,各题作答互不影响,若累计答错两道题或五道题全部答完则比赛结束,记X为比赛结束时学生甲已作答的题数,求X的分布列和数学期望.解(1)因为10×0.75=7.5,所以上四分位数为第8个成绩,为96;平均数为93×2+94×2+95×3+96+97+9810=95.(2)由题意可知,X的所有可能取值为2,3,4,5,所以P(X=2)=13×12=16,P(X=3)=13×12×12+23×12×12=312=14,P(X=4)=13×12×12×23+23×12×12×23+23×12×12×23=1036=518,P(X=5)=23×12×12×13+13×12×12×13+23×12×12×13+23×12×12×13+23×12×12×23=1136,所以X的分布列为X2345P16145181136E(X)=2×16+3×14+4×518+5×1136=13436=6718.题型3概率与线性回归的综合问题例3某人经营淡水池塘养草鱼,根据过去40期的养殖档案,该池塘的养殖重量X(百斤)都在20百斤以上,其中不足40百斤的有8期,不低于40百斤且不超过60百斤的有24期,超过60百斤的有8期.根据统计,该池塘的草鱼重量的增加量y(百斤)与使用某种饵料的质量x(百斤)之间的关系如图所示.(1)根据数据可知y与x具有线性相关关系,请建立y关于x的经验回归方程y^=b^x+a^;如果此人设想使用某种饵料10百斤时,草鱼重量的增加量须多于5百斤,请根据回归方程计算,确定此方案是否可行?并说明理由;(2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过3台增氧冲水机,每期养殖使用的增氧冲水机运行台数与鱼塘的鱼重量X 有如下关系:鱼的重量(单位:百斤)20<X <4040≤X ≤60X >60增氧冲水机运行台数123若某台增氧冲水机运行,则商家每期可获利5千元;若某台增氧冲水机未运行,则商家每期亏损2千元.视频率为概率,商家欲使每期增氧冲水机总利润的均值达到最大,应提供几台增氧冲水机?附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其经验回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计公式分别为b ^=解(1)依题意,得所以y ^=313x +3713,当x =10时,y ^=6713>5,故此方案可行.(2)设盈利为Y ,提供1台,盈利Y =5000.提供2台,当20<X <40时,Y =3000,P =15,当X ≥40时,Y =10000,P =45.所以E (Y )=15×3000+45×10000=8600.提供3台,当20<X <40时,Y =1000,P =15,当40≤X ≤60时,Y =8000,P =35,当X >60时,Y =15000,P =15.所以E (Y )=1000×15+8000×35+15000×15=8000.因为8600>8000,故应提供2台增氧冲水机.本题主要考查概率与回归方程等知识,体药物的摄入量与体内抗体数量的关系成为研究抗体药物的一个重要方面.某研究团队收集了10组抗体药物的摄入量与体内抗体数量的数据,并对这些数据做了初步处理,得到了如图所示的散点图及一些统计量的值,抗体药物摄入量为x (单位:mg),体内抗体数量为y (单位:AU/mL).∑10i =1t i s i∑10i =1t i ∑10i =1s i ∑10i =1t 2i 29.2121634.4表中t i =ln x i ,s i =ln y i .(1)根据经验,我们选择y =cx d 作为体内抗体数量y 关于抗体药物摄入量x 的经验回归方程,将y =cx d 两边取对数,得ln y =ln c +d ln x ,可以看出ln x 与ln y 具有线性相关关系,试根据参考数据建立y 关于x 的经验回归方程,并预测抗体药物摄入量为25mg 时,体内抗体数量y 的值;(2)经技术改造后,该抗体药物的有效率z 大幅提高,经试验统计得z 服从正态分布N (0.48,0.032),那这种抗体药物的有效率z 超过0.54的概率约为多少?附:①对于一组数据(u i,v i)(i=1,2,…,n),其经验回归直线v^=β^u+α^的斜率和截距的最小二乘估计分别为β^=∑ni=1u i v i-n u-v-∑ni=1u2i-n u-2,α^=v--β^u-;②若随机变量Z~N(μ,σ2),则有P(μ-σ≤Z≤μ+σ)≈0.6827,P(μ-2σ≤Z≤μ+2σ)≈0.9545,P(μ-3σ≤Z≤μ+3σ)≈0.9974;③取e≈2.7.解(1)将y=cx d两边取对数,得ln y=ln c+d ln x,由题知,s=ln y,t=ln x,则经验回归方程变为s=ln c+dt,由表中数据可知,s-=110∑10i=1s i=1.6,t-=110∑10i=1t i=1.2,所以d^=∑10i=1t i s i-10t-s-∑10i=1t2i-10t-2=29.2-10×1.2×1.634.4-10×1.22=0.5,ln c^=s--d^t-=1.6-0.5×1.2=1,所以s^=1+0.5t,即ln y^=1+0.5ln x=ln e+ln x0.5=ln e x0.5,故y关于x的经验回归方程为y^=e x0.5,当x=25mg时,y^=e·250.5≈2.7×5=13.5AU/mL.(2)因为z服从正态分布N(0.48,0.032),其中μ=0.48,σ=0.03,所以P(μ-2σ≤z≤μ+2σ)=P(0.42≤z≤0.54)≈0.9545,所以P(z>0.54)=1-P(0.42≤z≤0.54)2≈1-0.95452=0.02275.故这种抗体药物的有效率z超过0.54的概率约为0.02275.题型4概率与独立性检验的综合问题例4(2022·新高考Ⅰ卷改编)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:组别生活习惯不够良好良好病例组4060对照组1090(1)依据小概率值α=0.010的独立性检验,能否认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.P(B|A)P(B-|A)与P(B|A-)P(B-|A-)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:R=P(A|B)P(A-|B)·P(A-|B-)P(A|B-);(ⅱ)利用该调查数据,给出P(A|B),P(A|B-)的估计值,并利用(ⅰ)的结果给出R的估计值.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),α0.0500.0100.001xα 3.841 6.63510.828解(1)零假设H0:患该疾病群体与未患该疾病群体的卫生习惯无差异.χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=200×(40×90-60×10)2100×100×50×150=24>6.635=x0.010,依据小概率值α=0.010的独立性检验,推断H0不成立,即认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(ⅰ)证明:因为R =P (B |A )P (B -|A )·P (B -|A -)P (B |A -)=P (AB )P (A )·P (A )P (A B -)·P (A -B -)P (A -)·P (A -)P (A -B )=P (AB )P (A B -)·P (A -B -)P (A -B ),而P (A |B )P (A -|B )·P (A -|B -)P (A |B -)=P (AB )P (B )·P (B )P (A -B )·P (A -B -)P (B -)·P (B -)P (A B -)=P (AB )P (A -B )·P (A -B -)P (A B -),所以R =P (A |B )P (A -|B )·P (A -|B -)P (A |B -).(ⅱ)由已知P (A |B )=40100=25,P (A |B -)=10100=110,又P (A -|B )=60100=35,P (A -|B -)=90100=910,所以R =P (A |B )P (A -|B )·P (A -|B -)P (A |B -)=6.此类题目虽然涉及的知识点较多,但每个知识点考查程度相对较浅,考查深小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设指定的两只小鼠中对照组小鼠数目为X ,求X 的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.318.420.120.421.523.224.624.825.025.426.126.326.426.526.827.027.427.527.628.3实验组:5.4 6.6 6.86.97.88.29.410.010.411.214.417.319.220.223.623.824.525.125.226.0(ⅰ)求40只小鼠体重的中位数m ,并完成下面2×2列联表:<m≥m对照组实验组(ⅱ)根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用?参考数据:P (K 2≥k 0)0.100.050.010k 02.7063.8416.635解(1)依题意,X 的可能取值为0,1,2,则P (X =0)=C 020C 220C 240=1978,P (X =1)=C 120C 120C 240=2039,P (X =2)=C 220C 020C 240=1978,所以X 的分布列为X 012P197820391978故E (X )=0×1978+1×2039+2×1978=1.(2)(ⅰ)依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排好后第20位与第21位数据的平均数,由于原数据已经按从小到大排好,所以我们只需要观察对照组第一排数据与实验组第二排数据即可,可得第11位数据为14.4,后续依次为17.3,17.3,18.4,19.2,20.1,20.2,20.4,21.5,23.2,23.6,…,故第20位数据为23.2,第21位数据为23.6,所以m=23.2+23.62=23.4,故列联表为<m≥m对照组614实验组146(ⅱ)由(ⅰ)可得,K2=40×(6×6-14×14)220×20×20×20=6.4>3.841,所以能有95%的把握认为药物对小鼠生长有抑制作用.。

高考数学概率的热点题型及其解法

高考数学概率的热点题型及其解法

高考数学概率的热点题型及其解法概率的解答题已成为近几年高考中的必考考内容,难度中挡,主要涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合,在以后的高考中,可能出现概率与数列、函数、不等式等有关内容的结合的综合题,下面就谈一谈概率与数列、函数、不等式等有关知识的交汇处命题的解题策略。

题型一:等可能事件概率、互斥事件概率、相互独立事件概率的综合。

例1:甲、乙两人各射击一次,击中目标的概率分别是32和43.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.(Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设某人连续2次未击中...目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?解:(1)设“甲射击4次,至少1次未击中目标”为事件A ,则其对立事件A 为“4次均击中目标”,则()()426511381P A P A ⎛⎫=-=-= ⎪⎝⎭ (2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件B,则 ()22323442131133448P B C C ⎛⎫⎛⎫⎛⎫=∙∙∙∙∙= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (3)设“乙恰好射击5次后,被中止射击”为事件C,由于乙恰好射击5次后被中止射击,故必然是最后两次未击中目标,第三次击中目标,第一次及第二次至多有一次未击中目标。

故()22123313145444441024P C C ⎡⎤⎛⎫⎛⎫=+∙∙∙∙=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦例2:某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.(Ⅰ)求3个景区都有部门选择的概率;(Ⅱ)求恰有2个景区有部门选择的概率.解:某单位的4个部门选择3个景区可能出现的结果数为34.由于是任意选择,这些结果出现的可能性都相等.(I )3个景区都有部门选择可能出现的结果数为!324⋅C (从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有624=C 种分法,每组选择不同的景区,共有3!种选法),记“3个景区都有部门选择”为事件A 1,那么事件A 1的概率为P (A 1)=.943!3424=⋅C (II )解法一:分别记“恰有2个景区有部门选择”和“4个部门都选择同一个景区”为事件A 2和A 3,则事件A 3的概率为P (A 3)=271334=,事件A 2的概率为 P (A 2)=1-P (A 1)-P (A 3)=.2714271941=-- 解法二:恰有2个景区有部门选择可能的结果为).!2(32414C C +⋅(先从3个景区任意选定2个,共有323=C 种选法,再让4个部门来选择这2个景区,分两种情况:第一种情况,从4个部门中任取1个作为1组,另外3个部门作为1组,共2组,每组选择2个不同的景区,共有!214⋅C 种不同选法.第二种情况,从4个部门中任选2个部门到1个景区,另外2个部门在另1个景区,共有24C 种不同选法).所以P (A 2)=.27143)!2(342424=+⋅C C 例3:某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(Ⅱ)求这三人该课程考核都合格的概率。

高考数学 专题43 排列与组合热点题型和提分秘籍 理

高考数学 专题43 排列与组合热点题型和提分秘籍 理

专题43 排列与组合1.理解排列、组合的概念2.理解排列数公式、组合数公式3.能利用公式解决一些简单的实际问题热点题型一排列问题例1、有5个同学排队照相,求:(1)甲、乙两个同学必须相邻的排法有多少种?(2)甲、乙、丙3个同学互不相邻的排法有多少种?(3)乙不能站在甲前面,丙不能站在乙前面的排法有多少种?(4)甲不站在中间位置,乙不站在两端两个位置的排法有多少种?解析:(1)这是典型的相邻问题,采用捆绑法。

先排甲、乙,有A22种方法,再与其他3名同学排列,共有A22·A44=48(种)不同排法。

(2)这是不相邻问题,采用插空法,先排其余的2名同学,有A22种排法,出现3个空,将甲、乙、丙插空,所以共有A22·A33=12(种)排法。

(3)这是顺序一定问题,由于乙不能站在甲前面,丙不能站在乙前面,故3人只能按甲、乙、丙这一种顺序排列。

(4)方法一:(直接法)若甲排在了两端的两个位置之一,甲有A12种,乙有A13种,其余3人有A33种,所以共有A12·A13·A33种;若甲排在了第2和第4两个位置中的一个,有A12种,这时乙有A12种,其余3人有A33种,所以一共有A12·A12·A33种,因此符合要求的一共有A12·A13·A33+A12·A12·A33=60(种)排法。

方法二:(间接法)5个人全排列有A55种,其中甲站在中间时有A44种,乙站在两端时有2A44种,且甲站中间同时乙在两端时有2A33种,所以一共有A55-A44-2A44+2A33=60(种)排法。

【提分秘籍】求解排列应用题的主要方法【举一反三】8名游泳运动员参加男子100米的决赛,已知游泳池有从内到外编号依次为1,2,3,4,5,6,7,8的8条泳道,若指定的3名运动员所在的泳道编号必须是3个连续数字(如:5,6,7),则参加游泳的这8名运动员被安排泳道的方式共有( )A.360种 B.4 320种 C.720种 D.2 160种热点题型二组合问题例2、从7名男生5名女生中选取5人当班干部,分别求符合下列条件的选法总数有多少种。

高三数学二轮复习 必考问题专项突破18 排列、组合、二项式定理与概率 理 试题

高三数学二轮复习 必考问题专项突破18 排列、组合、二项式定理与概率 理 试题

问题18 排列、组合、二项式定理与概率制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日1.(2021·)假设从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,那么不同的取法一共有( ).A .60种B .63种C .65种D .66种答案: D [对于4个数之和为偶数,可分三类,即4个数均为偶数,2个数为偶数2个数为奇数,4个数均为奇数,因此一共有C 44+C 24C 25+C 45=66种.]2.(2021·)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能全是同一种颜色,且红色卡片至多1张,不同取法的种数为( ).A .232B .252C .472D .484答案:C [假设没有红色卡片,那么需从黄、蓝、绿三色卡片中选3张,假设都不同色那么有C 14×C 14×C 14=64种,假设2张同色,那么有C 23×C 12×C 24×C 14=144种;假设红色卡片有1张,剩余2张不同色,那么有C 14×C 23×C 14×C 14=192种,剩余2张同色,那么有C 14×C 13×C 24=72种,所以一共有64+144+192+72=472种不同的取法.应选C.]3.(2021·)在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,那么该矩形面积小于32 cm 2的概率为( ).A.16B.13C.23D.45答案:C [设出AC 的长度,先利用矩形面积小于32 c m 2求出AC 长度的范围,再利用几何概型的概率公式求解.设AC =x c m ,CB =(12-x )c m ,0<x <12,所以矩形面积小于32 c m 2即为x (12-x )<32⇒0<x <4或者8<x <12,故所求概率为812=23.]4.(2021·)⎝⎛⎭⎪⎫x 2+1x 6的展开式中x 3的系数为________(用数字答题).解析 由⎝⎛⎭⎪⎫x 2+1x 6的展开式的通项为T r +1=C r 6(x 2)6-r·⎝ ⎛⎭⎪⎫1x r =C r 6x12-3r ,令12-3r =3,得r =3,所以展开式中x 3的系数为C 36=6×5×41×2×3=20.答案 20排列、组合与二项式定理每年交替考察,主要以选择、填空的形式出现,难度中等或者稍易.考察古典概型时,常以排列组合为工具,考察概率的计算.由于这部分内容概念性强,抽象性强,思维方法新颖,因此备考时:①要读懂题意,明确解题的打破口,选择合理简洁的HY 处理事件;②要牢记排列数、组合数、二项展开式公式;③排列组合是进展概率计算的工具,在复习概率时要抓住概率计算的核心和这个工具.必备知识排列、组合(1)排列数公式A m n =n (n -1)(n -2)…(n -m +1),A mn =n !n -m !,A nn =n !,0!=1(n∈N *,m ∈N *,m ≤n ).(2)组合数公式及性质 C m n=A mn A m m=n n -1n -2…n -m +1m !,C mn =n !m !n -m !,C 0m =1,C m n =C n -m n ,C m n +1=C m n +C m -1n .二项式定理(1)定理:(a +b )n=C 0n a n+C 1n an -1b +…+C r n a n -r b r +…+C n -1n abn -1+C n n b n (n ∈N *). 通项(展开式的第r +1项):T r +1=C r n a n -r b r,其中C r n (r =0,1,…,n )叫做二项式系数.(2)二项式系数的性质①在二项式展开式中,与首末两端“等间隔 〞的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -rn . ②二项式系数的和等于2n,即 C 0n +C 1n +C 2n +…+C n n =2n.③二项式展开式中,偶数项的二项式系数和等于奇数项的二项式系数和,即C 1n +C 3n +C 5n+…=C 0n +C 2n +C 4n +…=2n -1.(3)赋值法解二项式定理有关问题,如3n=(1+2)n=C 0n +C 1n ·21+C 2n ·22+…+C n n ·2n等. 古典概型 (1)P (A )=m n =A 中所含的根本领件数根本领件总数(2)求古典概型概率的方法和步骤①反复阅读题目,搜集题目中的各种信息,理解题意. ②判断试验是否为等可能性事件,并用字母表示所求事件.③利用列举法或者排列组合知识计算根本领件的个数n 及事件A 中包含的根本领件的个数m .④计算事件中A 的概率P (A )=mn.必备方法1.解排列、组合问题应遵循的原那么:先特殊后一般,先选后排,先分类后分步. 2.解排列、组合问题的常用策略:a .相邻问题捆绑法;b.不相邻问题插空法;c.多排问题单排法;d.定序问题倍缩法;e.多元问题分类法;f.有序分配问题分步法;g.穿插问题集合法;h.至少或者至多问题间接法;i.选排问题先取后排法;j.部分与整体问题排除法;k.复杂问题转化法.3.二项式中项的系数和差可以通过对二项式展开式两端字母的赋值进展解决,如(1+x )n 展开式中各项系数的绝对值的和就是展开式中各项系数的和,只要令x =1即得,而(1-x )n的展开式中各项系数的绝对值的和,直接令x =-1,这样就不难类比得到(1+ax )n展开式中各项系数绝对值的和为(1+|a |)n.排列与组合的应用以实际消费、生活为背景的排列、组合问题是近几年的常考内容,解题时要先将问题转化为排列组合问题后再求解.题目多为中低档题,为后面学习概率做根底.【例1】►某城举行奥运火炬接力传递活动,传递道路一共分6段,传递活动分别由6名火炬手完成.假如第一棒只能从甲、乙、丙三人中产生,最后一棒只能从甲、乙两人中产生,那么不同的传递方案一共有________种.(用数字答题)[审题视点][听课记录][审题视点] 按照第一棒是否为甲、乙分两类求解.解析按照第一棒是否为甲,乙,可分为两类:①第一棒是丙,那么第六棒的安排有C12种,中间4棒剩余4人全排列,故不同的安排方法有C11·C12·A44=48种;②第一棒是甲,乙中一人,那么第一棒的安排有C12种,最后一棒那么只能安排甲,乙中不跑第一棒的一人,中间4棒剩余4人全排列,矿不同的安排方法有C12·C11·A44=48种.根据分类计数原理,可得不同的方案一共有48+48=96种.答案96对于排列、组合的综合题目,一般是将符合要求的元素取出或者进展分组,再对取出的元素或者分好的组进展排列,即一般策略为先组合后排列.分组时,要注意“平均分组〞与“不平均分组〞的差异及分类的HY.【打破训练1】由1,2,3,4,5,6组成没有重复数字,且1,3都不与5相邻的六位偶数的个数是( ).A.72 B.96 C.108 D.144答案: C [从2,4,6三个偶数中选一个数放在个位,有C 13种方法,将其余两个偶数全排列,有A 22种排法,当1,3不相邻且不与5相邻时有A 33种方法,当1,3相邻且不与5相邻时有A 22·A 23种方法,故满足题意的偶数个数有C 13·A 22(A 33+A 22·A 23)=108.]二项式定理的应用求二项式定理展开式的通项、特定项、二项式或者项的系数,常以选择、填空题形式考察,二项式定理的应用有时也在数列压轴题中出现,主要是利用二项式定理及不等式放缩法证明不等式.【例2】► (2021·)设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,那么a 10+a 11=________. [审题视点] [听课记录][审题视点] 由T r +1=C r 21x 21-r(-1)r求解.解析 T r +1=C r 21x21-r(-1)r,∴a 10=C 1121(-1)11,a 11=C 1021(-1)10,∴a 10+a 11=-C 1121+C 1021=-C 1021+C 1021=0. 答案 01.利用二项展开式的通项分析求解时,注意二项式系数与项的系数的区别.2.二项式定理的应用不仅要注重它的“正用〞,而且重视它的“逆用〞;还要注意特殊值法的使用.【打破训练2】 假设⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第六项的二项式系数最大,那么展开式中的常数项是( ).A .360B .180C .90D .45 答案: B [依题意知:n =10, ∴T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =C r 102r ·x 5-52r ,令5-52r =0得:r =2,∴常数项为:C 21022=180.]古典概型对于古典概型的考察常将等可能事件、互斥事件、互相HY 事件等多种事件交汇在一起进展考察,是高考考察的重点.【例3】► (2021·六校三模)盒内有大小一样的9个球,其中2个红色球,3个白色球,4个黑色球,规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有一个红球的概率; (2)求取出的3个球得分之和恰为1分的概率. [审题视点] [听课记录][审题视点] (1)间接法求概率;(2)用组合知识求概率. 解 (1)P =1-C 37C 39=712.(2)记“取出1个红色球,2个白色球〞为事件B ,“取出2个红色球,1个黑色球〞为事件C ,那么P (B +C )=P (B )+P (C )=C 12C 23C 39+C 22C 14C 39=542.有关古典概型的概率问题,关键是正确求出根本领件总数和所求事件包含的根本领件数,这常用到计数原理与排列、组合的相关知识.对于较复杂的题目,要注意正确分类,分类时应不重不漏.【打破训练3】 有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),得到下面数据: 编号 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10直径(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率; (2)从一等品零件中随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果; (ⅱ)求这2个零件直径相等的概率.解 (1)由所给数据可知,一等品零件一共有6个.设“从10个零件中,随机抽取一个为一等品〞为事件A ,那么P (A )=610=35.(2)(ⅰ)一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},一共有15种.(ⅱ)“从一等品零件中,随机抽取的2个零件直径相等〞(记为事件B )的所有可能结果有:{A 1,A 4},{A 1,A 6},{A 4,A 6},{A 2,A 3},{A 2,A 5},{A 3,A 5},一共有6种.所以P (B )=615=25.防范二项式展开式中的两个易错点易错点1:二项式(a +b )n展开式的通项中,因a 与b 的顺序颠倒而容易出错【例如1】► (2021·苏北四调研)⎝⎛⎭⎪⎪⎫x -23x 2n 展开式中第三项的系数比第二项的系数大162,那么x 的一次项系数为________.解析 据题意有:C 2n 22-()-C 1n 2=162,即2n (n -1)+2n =162.∴n =9.那么T r +1=C r 9(x )9-r ⎝⎛⎭⎪⎪⎫-23x 2r =C r 9(-2)r x 9-r 2-2r 3.由9-r 2-2r3=1,∴r =3.∴T 4=(-1)3·23·C 39x =-672x . 答案 -672教师叮咛:假设x 与23x的顺序颠倒,项随之发生变化,导致出错.一般地,二项式(a+b )n与(b +a )n的通项公式不同,对应项也不一样,在遇到类似问题时,要注意区分.【试一试1】 (1+3x )n的展开式中,末三项的二项式系数的和等于120,那么展开式中二项式系数最大的项为________.解析 由得C n -2n +C n -1n +C n n =121,那么12n (n -1)+n +1=121,即n 2+n -240=0,解得n =15,所以,展开式中二项式系数最大的项是T 8=C 715(3x )7和T 9=C 815(3x )8.答案 T 8=C 715(3x )7和T 9=C 815(3x )8易错点2:二项式展开中项的系数与二项式系数的概念掌握不清,容易混淆,导致出错【例如2】► (2021·一模)假如⎝⎛⎭⎪⎪⎫3x -13x 2n 的展开式中各项系数之和为128,那么展开式中1x3的系数是( ).A .7B .-7C .21D .-21解析 当x =1时,⎝ ⎛⎭⎪⎪⎫3×1-1312n =2n =128,∴n =7, 即⎝⎛⎭⎪⎪⎫3x -13x 27,根据二项式通项公式得 T r +1=C r 7(3x )7-r (-1)r ⎝⎛⎭⎪⎫x -23r =C r 737-r (-1)rx 7-53r . ∴7-53r =-3,r =6时对应1x3,即T 6+1=C 6737-6(-1)61x 3=7×3×1x 3=21x 3.故1x3项系数为21. 答案 C教师叮咛:展开式中\f(1,x 3)项的二项式系数是C 67=7,1x3项的系数为21,因此在解此类问题时,须注意二项式系数与项的系数的区别和联络.【试一试2】 ⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x5的展开式中各项系数的和为2,那么该展开式中常数项为( ).A .-40B .-20C .20D .40答案: D [因为展开式各项系数和为2,所以取x =1得: (1+a )(2-1)5=2,∴a =1.二项式即为:⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5,它的展开式的常数项为:x C 35(2x )2⎝ ⎛⎭⎪⎫-1x 3+1x C 25(2x )3⎝ ⎛⎭⎪⎫-1x 2=4C 25=40.]制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

高考届高考数学热点创新题型概率与统计新题原创4道

高考届高考数学热点创新题型概率与统计新题原创4道

12)概率与统计新题原创4道1.设随机变量的分布列为下表所示且 1.6E ξ=,则a b -=( )A .0.2B .0.1C .-0.2D .-0.4讲解:选C.2.新入大学的甲刚进校时购买了一部新手机,他把手机号码抄给同学乙.第二天,同学乙给他打电话时,发现号码的最后一个数字被撕掉了,于是乙在拨号时随意地添上最后一个数字,且用过了的数字不再重复.(理)则拨号次数ξ不超过3次而拨对甲的手机号码的数学期望是 . (文)则拨号不超过3次而拨对甲的手机号码的概率是 .讲解:(理) 53 由于第i 次拨对甲的手机号码的概率均为101,∴拨号次数ξ不超过3次而拨对甲的手机号码的数学期望E (ξ≤3)=1×101+2×101+3×101=53. (文) 103 由于第i 次拨对甲的手机号码的概率均为101,∴拨号不超过3次而拨对甲的手机号码的概率是P =101+101+101=101. 3.设某公司拥有三支获利是独立的股票,且三种股票获利的概率分别为0.8、0.6、0.5,求(1)任两种股票至少有一种获利的概率;(2)三种股票至少有一种股票获利的概率.讲解:设A 、B 、C 分别表示三种股票获利,依题意A 、B 、C 相互独立,P (A )=0.8,P (B )=0.6,P (C )=0.5,则由乘法公式与加法公式(1) 任两种股票至少有一种获利等价于三种股票至少有两种获利的概率()()()()()0.20.60.50.80.40.50.80.60.50.80.60.50.7P ABC ABC ABC ABC P ABC P ABC P ABC P ABC +++=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯= (2) 三种股票至少有一种股票获利的概率()()110.20.40.50.96P A B C P A B C ++=-++=-⨯⨯= 计算的结果表明,投资于多支股票获利的概率大于每支股票的概率,这就是投资决策中分散风险的一种策略。

浙江新高考数学文科一轮复习创新方案热点题型10.2排列与组合(含答案详析)

浙江新高考数学文科一轮复习创新方案热点题型10.2排列与组合(含答案详析)

第二节排列与组合[例1]3(1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起;(5)全体站成一排,甲不站排头也不站排尾.[自主解答](1)问题即为从7个元素中选出5个全排列,有A57=2 520种排法.(2)前排3人,后排4人,相当于排成一排,共有A77=5 040种排法.(3)相邻问题(捆绑法):男生必须站在一起,是男生的全排列,有A33种排法;女生必须站在一起,是女生的全排列,有A44种排法;全体男生、女生各视为一个元素,有A22种排法,根据分步乘法计数原理,共有A33·A44·A22=288种排法.(4)不相邻问题(插空法):先安排女生共有A44种排法,男生在4个女生隔成的5个空中安排共有A35种排法,故共有A44·A35=1 440种排法.(5)先安排甲,从除去排头和排尾的5个位中安排甲,有A15=5种排法;再安排其他人,有A66=720种排法.所以共有A15·A66=3 600种排法.【互动探究】本例中若全体站成一排,男生必须站在一起,有多少种排法?解:(捆绑法)即把所有男生视为一个元素,与4名女生组成5个元素全排列,故有A33·A55=720种排法.【方法规律】1.解决排列问题的主要方法(1)特殊元素(或位置)优先安排的方法,即先排特殊元素或特殊位置.(2)分排问题直排法处理.(3)“小集团”排列问题中先集中后局部的处理方法.1.(2012·辽宁高考)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!解析:选C 把一家三口看成一个排列,然后再排列这3家,所以满足题意的坐法种数为A 33(A 33)3=(3!)4.2.(2014·南充模拟)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )A .30种B .90种C .180种D .270种解析:选B 选分组,再排列.分组方法共有C 25C 23A 22,因此共有C 25C 23A 22·A 33=90.[例2] (1)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法的种数是( )A .60B .63C .65D .66(2)(2013·重庆高考)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).[自主解答] (1)因为从1,2,3,…,9中共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故有C 45+C 44+C 25C 24=66种不同的取法.(2)按每科选派人数分为3,1,1和2,2,1两类.当选派人数为3,1,1时,有3类,共有C 33C 14C 15+C 13C 34C 15+C 13C 14C 35=200种选派方法.当选派人数为2,2,1时,有3类,共有C 23C 24C 15+C 23C 14C 25+C 13C 24C 25=390种选派方法.故共有590种选派方法.[答案] (1)D (2)590【方法规律】1.解决组合应用题的一般思路首先整体分类,要注意分类时,不重复不遗漏,用到分类加法计数原理;然后局部分步,用到分步乘法计数原理.2.组合问题的常见题型及解题思路常见题型有选派问题,抽样问题,图形问题,集合问题,分组问题.解答组合应用题时,要在仔细审题的基础上,分清问题是否为组合问题,对较复杂的组合问题,要搞清是“分类”还是“分步”解决,将复杂问题通过两个原理化归为简单问题.3.含有附加条件的组合问题的常用方法通常用直接法或间接法,应注意“至少”“最多”“恰好”等词的含义的理解,对于涉及“至少”“至多”等词的组合问题,既可考虑反面情形即间接求解,也可以分类研究进行直接求解.1.某校开设A类选修课3门,B类选修课4门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法的种数为()A.30 B.35 C.42 D.48解析:选A法一:分两种情况:(1)2门A,1门B,有C23C14=12种选法;(2)1门A,2门B,有C13C24=3×6=18种选法.所以共有12+18=30种选法.法二:排除法:A类3门,B类4门,共7门,选3门,A,B各至少选1门,有C37-C33-C34=35-1-4=30种选法.2.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)种数为()A.10 B.15 C.20 D.30解析:选C分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C23=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C24=12种情形.所有可能出现的情形种数为2+6+12=20.1.排列与组合是高中数学中的重要内容,也是高考命题的一个热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题.2.高考对排列与组合综合应用题的考查主要有以下几个命题角度:(1)相邻问题;(2)相间问题;(3)特殊元素(位置)问题;(4)多元问题等.[例3](1)(2013·烟台模拟)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行,如果取出的4张卡片所标的数字之和等于10,则不同的排法共有______种(用数字作答).(2)(2014·西安模拟)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种(用数字作答).[自主解答](1)取出的4张卡片所标数字之和等于10,共有三种情况:1144,2233,1234.所取卡片是1144的共有A44种排法.所取卡片是2233的共有A44种排法.所取卡片是1234,则其中卡片颜色可为无红色,1张红色,2张红色,3张红色,全是红色,共有A44+C14A44+C24A44+C34A44+A44=16A44种排法,所以共有18A44=18×4×3×2×1=432种排法.(2)甲传第一棒,乙传最后一棒,共有A44种方法.乙传第一棒,甲传最后一棒,共有A44种方法.丙传第一棒,共有C12·A44种方法.由分类加法计数原理得,共有A44+A44+C12·A44=96种方法.[答案](1)432(2)96排列与组合综合问题的常见类型及解题策略(1)相邻问题捆绑法.在特定条件下,将几个相关元素视为一个元素来考虑,待整个问题排好之后,再考虑它们“内部”的排列.(2)相间问题插空法.先把一般元素排好,然后把特定元素插在它们之间或两端的空当中,它与捆绑法有同等作用.(3)特殊元素(位置)优先安排法.优先考虑问题中的特殊元素或位置,然后再排列其他一般元素或位置.(4)多元问题分类法.将符合条件的排列分为几类,而每一类的排列数较易求出,然后根据分类计数原理求出排列总数.1.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88C29C.A88A27D.A88C27解析:选A相间问题用插空法,8名学生先排,有A88种排法,产生9个空,2位老师插空,有A29种排法,所以最终有A88A29种排法.2.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为()A.360 B.288 C.216 D.96解析:选B先保证3位女生中有且只有两位女生相邻,则有C23·A22·A33·A24种排法,再从中排除甲站两端的排法,所以所求排法种数为C23·A22·A33·A24-2C23·A22·A22·A23=6×(6×12-24)=288.3.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有________种(用数字作答).解析:选出两人看成一个整体,再全排列.共有C24·A33=36种分配方案.答案:36———————————[课堂归纳——通法领悟]——————————— 1个识别——排列问题与组合问题的识别方法(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理作最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.易误警示(十二)排列与组合中的易错问题[典例]将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解题指导]将6名教师分到3所中学,相当于将6名教师分成3组,相当于3个不同元素.[解析]将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C16种取法;第2步,在余下的5名教师中任取2名作为一组,有C25种取法;第3步,余下的3名教师作为一组,有C33种取法.根据分步乘法计数原理,共有C16C25C33=60种取法.再将这3组教师分配到3所中学,有A33=6种分法,故共有60×6=360种不同的分法.[答案]360[名师点评] 1.如果审题不仔细,极易认为有C16C25C33=60种分法.因为本题中并没有明确指出哪一所学校1名、2名、3名.2.解决排列与组合应用题应重点注意以下几点:(1)首先要分清楚是排列问题还是组合问题,不能将两者混淆.(2)在解决问题时,一定要注意方法的明确性,不能造成重复计数.(3)分类讨论时,要注意分类标准的确定,应做到不重不漏.在小语种提前招生考试中,某学校获得5个推荐名额,其中俄语2名,日语2名,西班牙语1名,并且日语和俄语都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法的种数为()A.20 B.22 C.24 D.36解析:选C3个男生每个语种各推荐1个,共有A33A22种推荐方法;将3个男生分为两组,其中一组2个人,则共有C23A22A22种推荐方法.所以共有A33A22+C23A22A22=24种不同的推荐方法.。

2023届新高考卷概率与统计热门考题汇编排列组合与概率统计(学生版)

2023届新高考卷概率与统计热门考题汇编排列组合与概率统计(学生版)

2023届新高考卷概率与统计热门考题汇编第一部分:基本原理和重要概念一、分类加法计数原理和分步乘法计数原理分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整二、常见的一些排列问题及其解决方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法三、分组分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.四、二项式定理(1)一般地,对于任意正整数,都有:(a+b)n=C0n a n+C1n a n-1b+⋯+C r n a n-r b r+⋯+C n n b n(n∈N∗),这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的C r n a n-r b r做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:T r+1=C r n a n-r b r,其中的系数C rn (r =0,1,2,⋯,n )叫做二项式系数,2.(2)两个常用的二项展开式:①(a -b )n =C 0n a n +C 1n a n -1b +L +-1 r C r n a n -r b r +L +-1 n C n n b n (n ∈N ∗),②1+x n =1+C 1n x +C 2n x 2+L +C r n x r +L +x n(3)二项式系数的性质(杨辉三角形)①每一行两端都是1,即C 0n =C n n ;其余每个数都等于它“肩上”两个数的和,即C m n +1=C m -1n +C m n .②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n .③二项式系数和令a =b =1,则二项式系数的和为C 0n +C 1n +C 2n +⋯+C r n +⋯+C n n =2n ,变形式C 1n +C 2n +⋯+C r n +⋯+C n n =2n -1.④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令a =1,b =-1,则C 0n -C 1n +C 2n -C 3n +⋯+(-1)n C n n =(1-1)n =0,从而得到:C 0n +C 2n +C 4n ⋅⋅⋅+C 2r n +⋅⋅⋅=C 1n +C 3n +⋯+C 2r +1n +⋅⋅⋅=12⋅2n =2n -1.⑤最大值:如果二项式的幂指数n 是偶数,则中间一项T n 2+1的二项式系数C n 2n 最大;如果二项式的幂指数n 是奇数,则中间两项T n +12,T n +12+1的二项式系数C n -12n ,C n +12n相等且最大.⑥求(a +bx )n 展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为A 1,A 2,⋅⋅⋅,A n +1,设第r +1项系数最大,应有A r +1≥A rA r +1≥A r +2 ,从而解出r 来.(4)二项式系数和的计算与赋值五、二项分布1.n 重伯努利试验的概念只包含两个可能结果的试验叫做伯努利试验,将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验.2.n 重伯努利试验具有如下共同特征(1)同一个伯努利试验重复做n 次;(2)各次试验的结果相互独立.3.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )4.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).六、超几何分布1.超几何分布模型是一种不放回抽样,一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC nN,k =m ,m +1,m +2,⋯,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max {0,n -N +M },r =min {n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.2.超几何分布的期望E (X )==np (p 为N 件产品的次品率).七、二项分布与超几何分布的区别1.看总体数是否给出,未给出或给出总体数较大一般考查二项分布,此时往往会出现重要的题眼“将频率视为概率”.2.看一次抽取抽中“次品”概率是否给出,若给出或可求出一般考查二项分布.3.看一次抽取的结果是否只有两个结果,若只有两个对立的结果A 或A ,一般考查二项分布.4.看抽样方法,如果是有放回抽样,一定是二项分布;若是无放回抽样,需要考虑总体数再确定.5.看每一次抽样试验中,事件是否独立,事件发生概率是否不变,若事件独立且概率不变,一定考查二项分布,这也是判断二项分布的最根本依据.6.把握住超几何分布与二项分布在定义叙述中的区别,超几何分布多与分层抽样结合,出现“先抽,再抽”的题干信息.7.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )8.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).八、二项分布的两类最值(1)当p 给定时,可得到函数f (k )=C k n p k (1−p )n −k ,k =0,1,2,⋅⋅⋅n ,这个是数列的最值问题.p kp k −1=C n k p k (1−p )n −k C k −1n p k −1(1−p )n −k +1=(n −k +1)p k (1−p )=k (1−p )+(n +1)p −k k (1−p )=1+(n +1)p −k k (1−p ).分析:当k <(n +1)p 时,p k >p k −1,p k 随k 值的增加而增加;当k >(n +1)p 时,p k <p k −1,p k 随k 值的增加而减少.如果(n +1)p 为正整数,当k =(n +1)p 时,p k =p k −1,此时这两项概率均为最大值.如果(n +1)p 为非整数,而k 取(n +1)p 的整数部分,则p k 是唯一的最大值.注:在二项分布中,若数学期望为整数,则当随机变量k 等于期望时,概率最大.(2)当k 给定时,可得到函数f (p )=C k n p k(1−p )n −k ,p ∈(0,1),这个是函数的最值问题,这可以用导数求函数最值与最值点.分析:f '(p )=C k n kp k −1(1−p )n −k −p k (n −k )(1−p )n −k −1=C k n p k −1(1−p )n −k −1k (1−p )−(n −k )p =C k n p k −1(1−p )n −k −1(k −np ).当k =1,2,⋯,n −1时,由于当p <k n 时,f '(p )>0,f (p )单调递增,当p >kn时,f '(p )<0,f (p )单调递减,故当p =k n 时,f (p )取得最大值,f (p )max =f kn.又当p →0,f (p )→1,当p →0时,f (p )→0,从而f (p )无最小值.九、复杂概率计算(1)善于引入变量表示事件:可用“字母+变量角标”的形式表示事件“第几局胜利”,例如:A i 表示“第i 局比赛胜利”,则A i表示“第i 局比赛失败”.(2)理解事件中常见词语的含义:A ,B 中至少有一个发生的事件为A ∪B ;A ,B 都发生的事件为AB ;A ,B 都不发生的事件为;A ,B 恰有一个发生的事件为A ∪B ;A ,B 至多一个发生的事件为A ∪B ∪.(3)善于“正难则反”求概率:若所求事件含情况较多,可以考虑求对立事件的概率,再用P A =1-P A解出所求事件概率.十、条件概率1.条件概率定义一般地,设A ,B 为两个随机事件,且P (A )>0,我们称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.可以看到,P (B |A )的计算,亦可理解为在样本空间A 中,计算AB 的概率. 于是就得到计算条件概率的第二种途,即P (B |A )=n (AB )n (A )=n AB n Ω n A n Ω=P ABP A.特别地,当P (B |A )=P (B )时,即A ,B 相互独立,则P (AB )=P (A )P (B ).2.条件概率的性质设P (A )>0,全样本空间定义为Ω,则(1)P Ω|A =1;(2)如果B 与C 是两个互斥事件,则P ((B ∪C )|A )=P B |A +P C |A ;(3)设事件A 和B 互为对立事件,则P (B∣A )=1-P (B ∣A ).十一、全概率公式与贝叶斯公式1.在全概率的实际问题中我们经常会碰到一些较为复杂的概率计算,这时,我们可以用“化整为零”的思想将它们分解为一些较为容易的情况分别进行考虑一般地,设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,有P (B )=ni =1P A i P B ∣A i .我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一.2.贝叶斯公式设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意事件B ⊆Ω,P B >0,有P A i ∣B =P A i P B ∣A iP (B )=P A i P B ∣A ink =1P A k P B ∣A k,i =1,2,⋯,n .在贝叶斯公式中,P A i 和P A i |B 分别称为先验概率和后验概率.十二、一维随机游走与马尔科夫链1.转移概率:对于有限状态集合S ,定义:P i ⋅j =P X n +1=j X n =i 为从状态i 到状态j 的转移概率.2.马尔可夫链:若P X n +1=i X n =i ,X n -1=i n -1,⋅⋅⋅,X 0=i 0=P X n +1=j X n =i =P ij ,即未来状态X n +1只受当前状态X n 的影响,与之前的X n -1,X n -2,⋅⋅⋅,X 0无关.3.一维随机游走模型.设数轴上一个点,它的位置只能位于整点处,在时刻t =0时,位于点x =i i ∈N + ,下一个时刻,它将以概率α或者βα∈0,1 ,α+β=1 向左或者向右平移一个单位. 若记状态X t =i 表示:在时刻t 该点位于位置x =i i ∈N + ,那么由全概率公式可得:P X t +1=i =P X t =i -1 ⋅P X t +1=i X t =i -1 +P X t =i +1 ⋅P X t +1=i X t =i +1 另一方面,由于P X t +1=i X t =i -1 =β,P X t +1=i X t =i +1 =α,代入上式可得:P i =α⋅P i +1+β⋅P i -1进一步,我们假设在x =0与x =m m >0,m ∈N + 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,P 0=0,P m =1随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:P i =a ⋅P i +1+b ⋅P i +c ⋅P i -1有了这样的理论分析,下面我们看全概率公式及以为随机游走模型在2019年全国1卷中的应用.十三、统计1.线性回归方程与最小二乘法(1)回归直线方程过样本点的中心(x ,y ),是回归直线方程最常用的一个特征(2)我们将y =b x +a称为Y 关于x 的线性回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的b ,a叫做b ,a 的最小二乘估计(leastsquaresestimate ),其中b =ni =1x i -xy i -y n i =1x i -x 2 =ni =1x i y i -nx ⋅y ni =1x 2i -nx2a =y -b x .(3)残差的概念对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.(4)刻画回归效果的方式(i )残差图法:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合效果越好.(ii )残差平方和法:残差平方和ni =1y i -y i 2 ,残差平方和越小,模型拟合效果越好,残差平方和越大,模型拟合效果越差.(iii )利用R 2刻画回归效果:决定系数R 2是度量模型拟合效果的一种指标,在线性模型中,它代表解释变量客立预报变量的能力.R 2=1ni =1y i -yi 2ni =1y i -y2,R 2越大,即拟合效果越好,R 2越小,模型拟合效果越差.第二部分.试题汇编一、单选题2.(福建省福州市普通高中2023届高三毕业班质量检测(二检))若二项式3x 2+1x2n展开式中存在常数项,则正整数n 可以是()A.3B.5C.6D.73.(福建省福州市普通高中2023届高三毕业班质量检测(二检))为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙两位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则这两位同学恰好参加同一个社团的概率为()A.13B.12C.23D.344.(福建省厦门市2023届高三下学期第二次质量检测)ax +y 5的展开式中x 2y 3项的系数等于80,则实数a =()A.2B.±2C.22D.±225.(福建省厦门市2023届高三下学期第二次质量检测)厦门山海健康步道云海线全长约23公里,起于东渡邮轮广场,终于观音山沙滩,沿线申联贸鸟湖、狐尾山、仙岳山、园山、薛岭山、虎头山、金山、湖边水库、五缘湾、虎仔山、观音山等“八山三水”.市民甲计划从“八山三水”这11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率为()A.13B.49C.59D.1091656.(广东省2023届高考一模)如图,在两行三列的网格中放入标有数字1,2,3,4,5,6的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有()A.96种B.64种C.32种D.16种7.(广东省佛山市2023届高三教学质量检测(一))已知事件A ,B ,C 的概率均不为0,则P A =P B的充要条件是()A.P A ∪B =P A +P BB.P A ∪C =P B ∪CC.P AB =P ABD.P AC =P BC8.(广东省广州市2023届高三综合测试(一))“回文”是古今中外都有的一种修辞手法,如“我为人人,人人为我”等,数学上具有这样特征的一类数称为“回文数”、“回文数”是指从左到右与从右到左读都一样的正整数,如121,241142等,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有()A.100个B.125个C.225个D.250个9.(广东省深圳市2023届高三第一次调研)安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A.15B.310C.325D.62510.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式2x-1xn展开式的常数项为()A.-160B.60C.120D.24011.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知x3+2x2n的展开式中各项系数和为243,则展开式中常数项为()A.60B.80C.100D.12012.(江苏省南京市、盐城市2023届高三下学期一模)某种品牌手机的电池使用寿命X(单位:年)服从正态分布N4,σ2σ>0,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A.0.9B.0.7C.0.3D.0.113.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A为“两位游客中至少有一人选择太湖鼋头渚”,事件B为“两位游客选择的景点不同”,则P B A=()A.79B.89C.911D.101114.(2023年湖北省八市高三(3月)联考)甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有A,B,C三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A小区的概率为()A.193243B.100243C.23D.5915.(山东省济南市2023届高三下学期3月一模)从正六边形的6个顶点中任取3个构成三角形,则所得三角形是直角三角形的概率为()A.310B.12C.35D.91016.(山东省青岛市2023届高三下学期第一次适应性检测)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为()A.0.34B.0.37C.0.42D.0.4317.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知随机变量X 服从正态分布N 2,σ2 ,且P (X >3)=16,则P (X <1)=()A.13B.23C.16D.5618.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)(1+x )n 展开式中二项式系数最大的是C 5n ,则n 不可能是()A.8B.9C.10D.1119.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)一枚质地均匀的骰子,其六个面的点数分别为1,2,3,4,5,6.现将此骰子任意抛掷2次,正面向上的点数分别为X 1,X 2.设Y 1=X 1,X 1≥X 2X 2,X 1<X 2 ,设Y 2=X 1,X 1≤X 2X 2,X 1>X 2 ,记事件A =“Y 1=5”,B =“Y 2=3”,则P B ∣A =()A.19B.29C.15D.211二、多选题20.(福建省厦门市2023届高三下学期第二次质量检测)李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则()A.P (X >32)>P (Y >32)B.P (X ≤36)=P (Y ≤36)C.李明计划7:34前到校,应选择坐公交车D.李明计划7:40前到校,应选择骑自行车21.(广东省佛山市2023届高三教学质量检测(一))中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数=食物支出金额总支出金额×100%”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知()A.城镇居民2015年开始进入“最富裕”水平B.农村居民恩格尔系数的平均数低于32%C.城镇居民恩格尔系数的第45百分位数高于29%D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数22.(广东省广州市2023届高三综合测试(一))某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:kg)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则()A.频率分布直方图中a的值为0.07B.这100名学生中体重低于60kg的人数为60C.据此可以估计该校学生体重的第78百分位数约为62D.据此可以估计该校学生体重的平均数约为62.523.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)下列命题中正确的是()A.若样本数据x1,x2,⋯,x20的样本方差为3,则数据2x1+1,2x2+1,⋯,2x20+1的方差为7B.经验回归方程为y =0.3-0.7x 时,变量x 和y 负相关C.对于随机事件A 与B ,P A >0,P B >0,若P A B =P A ,则事件A 与B 相互独立D.若X ∼B 7,12,则P X =k 取最大值时k =424.(湖北省武汉市2023届高三下学期二月调研)在一次全市视力达标测试后,该市甲乙两所学校统计本校理科和文科学生视力达标率结果得到下表:甲校理科生甲校文科生乙校理科生乙校文科生达标率60%70%65%75%定义总达标率为理科与文科学生达标人数之和与文理科学生总人数的比,则下列说法中正确的有()A.乙校的理科生达标率和文科生达标率都分别高于甲校B.两校的文科生达标率都分别高于其理科生达标率C.若甲校理科生和文科生达标人数相同,则甲校总达标率为65%D.甲校的总达标率可能高于乙校的总达标率25.(湖北省武汉市2023届高三下学期二月调研)已知离散型随机变量X 服从二项分布B n ,p ,其中n ∈N ∗,0<p <1,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A.a +b =1B.p =12时,a =bC.0<p <12时,a 随着n 的增大而增大D.12<p <1时,a 随着n 的增大而减小26.(2023年湖北省八市高三(3月)联考)连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件A =“第一次出现2点”,B =“第二次的点数小于5点”,C =“两次点数之和为奇数”,D =“两次点数之和为9”,则下列说法正确的有()A.A 与B 不互斥且相互独立B.A 与D 互斥且不相互独立C.B 与D 互斥且不相互独立D.A 与C 不互斥且相互独立27.(山东省青岛市2023届高三下学期第一次适应性检测)在2x -1x 8的展开式中,下列说法正确的是()A.常数项是1120B.第四项和第六项的系数相等C.各项的二项式系数之和为256D.各项的系数之和为256三、填空28.(福建省福州市普通高中2023届高三毕业班质量检测(二检))利率变化是影响某金融产品价格的重要因素经分析师分析,最近利率下调的概率为60%,利率不变的概率为40%.根据经验,在利率下调的情况下该金融产品价格上涨的概率为80%,在利率不变的情况下该金融产品价格上涨的概率为40%.则该金融产品价格上涨的概率为__________.29.(广东省佛山市2023届高三教学质量检测(一))在x -1x 6的展开式中,常数项为___________.(用数字作答)30.(广东省深圳市2023届高三第一次调研)1-x 5的展开式中x 3的系数为______(用数字做答).31.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)现有甲、乙两个口袋,其中甲口袋内装有三个1号球,两个2号球和一个3号球;乙口袋内装有两个1号球,一个2号球,一个3号球.第一次从甲口袋中任取1个球,将取出的球放入乙口袋中,第二次从乙口袋中任取一个球,则第二次取到2号球的概率为__________.32.(江苏省南京市、盐城市2023届高三下学期一模)编号为1,2,3,4的四位同学,分别就座于编号为1,2,3,4的四个座位上,每位座位恰好坐一位同学,则恰有两位同学编号和座位编号一致的坐法种数为___________.33.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))2-1x x -2 5的展开式中x 2的系数为________.34.(2023年湖北省八市高三(3月)联考)已知二项式(2x -a )n 的展开式中只有第4项的二项式系数最大,且展开式中x 3项的系数为20,则实数a 的值为__________.35.x +2x4展开式中的常数项为__________.四、解答36.(福建省福州市普通高中2023届高三毕业班质量检测(二检))脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X ,且X ~N (17,σ2),其中σ2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率.附:若随机变量×服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ≈0.6827,P (μ-2σ≤X ≤μ+2σ)≈0.9545,22≈4.7,23≈4.8,0.158653≈0.004.37.(福建省厦门市2023届高三下学期第二次质量检测)移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.右图是2018-2022年移动物联网连接数W 与年份代码t 的散点图,其中年份2018-2022对应的t 分别为1~5.(1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;(2)(i )假设变量x 与变量Y 的n 对观测数据为(x 1,y 1),(x 2,y 2),⋯,(xn ,yn ),两个变量满足一元线性回归模型Y =bx +e E (e )=0,D (e )=σ2 (随机误差e i =y i -bx i ).请推导:当随机误差平方和Q =n i =1e 2i 取得最小值时,参数b 的最小二乘估计.(ii )令变量x =t -t ,y =w -w ,则变量x 与变量Y 满足一元线性回归模型Y =bx +e E (e )=0,D (e )=σ2 利用(i )中结论求y 关于x 的经验回归方程,并预测2024年移动物联网连接数.附:样本相关系数r =ni =1t i -t (w i -w)ni =1t i -t 2n i =1w i -w 2,5i =1w i -w 2=76.9,5i =1t i -t w i -w =27.2,5i =1w i =60.8,769≈27.738.(广东省2023届高考一模)某商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放10个大小相同的小球,其中5个为红色,5个为白色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.(1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数X的分布列和数学期望.(2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数Y的分布列和数学期望.(3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.39.(广东省佛山市2023届高三教学质量检测(一))近几年,随着生活水平的提高,人们对水果的需求量也随之增加,我市精品水果店大街小巷遍地开花,其中中华猕猴桃的口感甜酸、可口,风味较好,广受消费者的喜爱.在某水果店,某种猕猴桃整盒出售,每盒20个.已知各盒含0,1个烂果的概率分别为0.8,0.2.(1)顾客甲任取一盒,随机检查其中4个猕猴桃,若当中没有烂果,则买下这盒猕猴桃,否则不会购买此种猕猴桃.求甲购买一盒猕猴桃的概率;(2)顾客乙第1周网购了一盒这种猕猴桃,若当中没有烂果,则下一周继续网购一盒;若当中有烂果,则隔一周再网购一盒;以此类推,求乙第5周网购一盒猕猴桃的概率40.(广东省广州市2023届高三综合测试(一))为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为34,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i次答题所得分数X i(i∈N∗)的数学期望为E x i .①写出E X i-1与E x i 满足的等量关系式(直接写出结果,不必证明):②若E x i>100,求i的最小值.41.(广东省深圳市2023届高三第一次调研)某企业因技术升级,决定从2023年起实现新的绩效方案.方案起草后,为了解员工对新绩效方案是否满意,决定采取如下“随机化回答技术”进行问卷调查:一个袋子中装有三个大小相同的小球,其中1个黑球,2个白球.企业所有员工从袋子中有放回的随机摸两次球,每次摸出一球.约定“若两次摸到的球的颜色不同,则按方式Ⅰ回答问卷,否则按方式Ⅱ回答问卷”.方式Ⅰ:若第一次摸到的是白球,则在问卷中画“○”,否则画“×”;方式Ⅱ:若你对新绩效方案满意,则在问卷中画“○”,否则画“×”.当所有员工完成问卷调查后,统计画○,画×的比例.用频率估计概率,由所学概率知识即可求得该企业员工对新绩效方案的满意度的估计值.其中满意度=企业所有对新绩效方案满意的员工人数企业所有员工人数×100%.(1)若该企业某部门有9名员工,用X表示其中按方式Ⅰ回答问卷的人数,求X的数学期望;(2)若该企业的所有调查问卷中,画“○”与画“×”的比例为4:5,试估计该企业员工对新绩效方案的满意度.。

高考数学科学复习创新方案:数列问题的热点题型

高考数学科学复习创新方案:数列问题的热点题型

命题动向:等差、等比数列是重要的数列类型,高考考查的主要知识点有:等差、等比数列的概念、性质、前n项和公式.由于数列的渗透力很强,它和函数、方程、向量、三角形、不等式等知识相互联系,优化组合,无形中加大了综合的力度.解决此类题目,必须对蕴藏在数列概念和方法中的数学思想有较深的理解.题型1等差、等比数列的综合运算例1(2022·新高考Ⅱ卷)已知{a n}为等差数列,{b n}是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中的元素个数.解(1)证明:设数列{a n}的公差为d,1+d-2b1=a1+2d-4b1,1+d-2b1=8b1-(a1+3d),,所以命题得证.解得b1=a1=d2,所以b k=a m+a1⇔b1×2k-1=a1+(m-1)d+a1,即2k(2)由(1)知,b1=a1=d2-1=2m,亦即m=2k-2∈[1,500],解得2≤k≤10,所以k=2,3,4, (10)故集合{k|b k=a m+a1,1≤m≤500}中的元素个数为10-2+1=9.解决由等差数列、等比数列组成的综合问题,首先要根据两数列的概念,设n na1=b1=1,1+a3=b2+b4,a2+2=b3.(1)求{a n}和{b n}的通项公式;(2)从下面条件①,②中选择一个作为已知条件,求数列{c n}的前n项和S n.条件①:c n=a n b n;条件②:c n=b na n.注:若选择条件①和条件②分别解答,按第一个解答计分.解(1)设{a n}的公比为q(q>0),{b n}的公差为d,+q2=2+4d,+2=1+2d,解得q=3或q=-1(舍去),d=2,∴a n=3n-1(n∈N*),b n=2n-1(n∈N*).(2)选择条件①:c n=a n b n,则c n=(2n-1)·3n-1,∴S n=c1+c2+c3+…+c n-1+c n=1×1+3×3+5×32+…+(2n-3)×3n-2+(2n -1)×3n-1,(ⅰ)∴3S n=1×3+3×32+5×33+…+(2n-3)×3n-1+(2n-1)×3n,(ⅱ)(ⅰ)-(ⅱ)得-2S n=1+2×(3+32+33+…+3n-1)-(2n-1)×3n=1+2×3-3n1-3-(2n-1)×3n=-2-(2n-2)×3n,∴S n=(n-1)×3n+1.选择条件②:c n=b na n,则c n=2n-13n-1,∴S n=c1+c2+c3+…+c n-1+c n=1+33+532+…+2n-33n-2+2n-13n-1,(ⅰ)∴13S n=13+332+533+…+2n-33n-1+2n-13n,(ⅱ)(ⅰ)-(ⅱ)得23S n=1++132+133+…+-2n-13n=1+2×13-13n1-13-2n-13n=2-2n +23n ,∴S n =3-n +13n -1(n ∈N *).题型2数列的通项与求和例2(2021·新高考Ⅰ卷)已知数列{a n }满足a 1=1,a n +1n +1,n 为奇数,n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.解(1)由已知,a 1=1,a 2=a 1+1=2,a 3=a 2+2=4,a 4=a 3+1=5,所以b 1=a 2=2,b 2=a 4=5,因为a 2n +1=a 2n +2=a 2n -1+1+2=a 2n -1+3,即a 2n +1-a 2n -1=3,所以数列{a n }的奇数项构成以1为首项,3为公差的等差数列,所以当n 为奇数时,a n =1=3n -12,因为a 2n +2=a 2n +1+1=a 2n +2+1=a 2n +3,即a 2n +2-a 2n =3,所以数列{a n }的偶数项构成以2为首项,3为公差的等差数列,所以当n 为偶数时,a n =2=3n -22,而b n =a 2n =3×2n -22=3n -1,所以b n =3n -1.(2)由(1),知{a n }的前20项和S 20=a 1+a 2+…+a 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=10×1+10×92×3+10×2+10×92×3=300.所以{a n }的前20项和为300.n n+1n (1)求{a n}的首项和公差;(2)数列{b n}满足b nn=3k-2,·a n,3k-1≤n≤3k,其中k,n∈N*,求错误!i.解(1)设等差数列{a n}的公差为d,则a n=a1+(n-1)d,由a n+1=2a n-2n+3可得a1+nd=2[a1+(n-1)d]-2n+3,即(d-2)n+a1+3-2d=0,-2=0,1+3-2d=0,1=1,=2.(2)a n=a1+(n-1)d=1+2(n-1)=2n-1.因为b nn=3k-2,·a n,3k-1≤n≤3k,则b nn=3k-2,3k-1≤n≤3k,所以b1+b4+b7+…+b58=11×3+13×5+15×7+…+139×41=12×…=2041.b2+b5+b8+b11+…+b56+b59=(a2-a5)+(a8-a11)+…+(a56-a59)=-3×2×20=-120;b3+b6+b9+b12+…+b57+b60=(-a3+a6)+(-a9+a12)+…+(-a57+a60)=3×2×20=120.因此错误!i =(b 1+b 4+b 7+…+b 58)+(b 2+b 5+b 8+…+b 59)+(b 3+b 6+b 9+…+b 60)=2041-120+120=2041.题型3数列与其他知识的交汇角度数列与函数的交汇例3(2023·成都石室中学模拟)已知函数f (x )=e x -12ax 2-x .(1)若f (x )在x ∈R 上单调递增,求a 的值;(2)证明:(1+2(n ∈N *且n ≥2).解(1)函数f (x )=e x -12ax 2-x ,求导得f ′(x )=e x -ax -1,由于函数f (x )在R 上单调递增,则f ′(x )=e x -ax -1≥0恒成立,令h (x )=e x -ax -1,则h ′(x )=e x -a ,当a =0时,f ′(x )=e x -1,当x <0时,f ′(x )<0,不满足条件;当a <0时,h ′(x )>0,h (x )在R 上单调递增,又e 1a -a ·1a -1=e 1a -2<0,即f ,不满足条件;当a >0时,令h ′(x )=0,得x =ln a ,则当x <ln a 时,h ′(x )<0,h (x )单调递减,当x >ln a 时,h ′(x )>0,h (x )单调递增,于是当x =ln a 时,h (x )取得最小值h (ln a )=e ln a -a ln a -1=a -a ln a -1,于是h (ln a )≥0,即a -a ln a -1≥0,令u (a )=a -a ln a -1,则u ′(a )=-ln a ,当0<a <1时,u ′(a )>0,u (a )单调递增;当a >1时,u ′(a )<0,u (a )单调递减,则u (a )max =u (1)=0,由于a -a ln a -1≥0恒成立,因此a -a ln a -1=0,则a =1.(2)证明:由(1)知,当a =1时,e x -x -1≥0,即e x ≥x +1,当且仅当x =0时取等号,即当x >0时,ln (x +1)<x ,因此当n ∈N *且n ≥2时,ln (1+1ln (1+1)+ln …+ln +14+…+1n2,而当n ≥2时,1n 2<1n (n -1)=1n -1-1n,所以1+14+…+1n 2<1…1+1-1n <2,则ln (1+1,所以(1+2(n ∈N *且n ≥2).(1)数列与函数的综合问题一般是以函数为背景,n 123的数,且a 1,a 2,a 3中的任何两个数都不在下表的同一列,{b n }为等差数列,其前n 项和为S n ,且a 1=b 3-2b 1,S 7=7a 3.第一列第二列第三列第一行152第二行4310第三行9820(1)求数列{a n},{b n}的通项公式;(2)若c n=[lg b n],其中[x]是高斯函数,表示不超过x的最大整数,如[lg2]=0,[lg98]=1,求数列{c n}的前100项和T100.解(1)由题意知a1=2,a2=4,a3=8,所以等比数列{a n}的公比q=2,a n=a1q n-1=2n.设等差数列{b n}的公差为d,则2=b3-2b1=2d-b1,S7=7(b1+b7)2=7b4=7a3,所以b4=8=b1+3d,所以b1=2,d=2,b n=2n.(2)c n=[lg(2n)],T100=c1+c2+…+c100=[lg2]+[lg4]+…+[lg8]+[lg10]+…+[lg98]+[lg 100]+…+[lg200]=4×0+45×1+51×2=147.角度数列与不等式的交汇例4(2021·浙江高考)已知数列{a n}的前n项和为S n,a1=-94,且4S n+1=3S n -9(n∈N*).(1)求数列{a n}的通项公式;(2)设数列{b n}满足3b n+(n-4)a n=0(n∈N*),记{b n}的前n项和为T n.若T n≤λb n对任意n∈N*恒成立,求实数λ的取值范围.解(1)因为4S n+1=3S n-9,所以当n≥2时,4S n=3S n-1-9,两式相减可得4a n+1=3a n,即a n+1a n =3 4.当n=1时,4S2=-94+a=-274-9,解得a 2=-2716,所以a 2a 1=34.所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×-1=-3n +14n .(2)因为3b n +(n -4)a n =0,所以b n =(n -.所以T n =-3×34--++…+(n --1+(n -,①且34T n =---++…+(n -+(n -+1,②①-②,得14T n =-3×34++…-(n -+1=-94+9161-11-34-(n -+1=-n+1,所以T n =-4n+1.因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n+1≤λ(n -恒成立,即-3n ≤λ(n -4)恒成立,当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1;当n =4时,-12≤0恒成立;当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3.综上,实数λ的取值范围为[-3,1].S n ,T n 分别为数列{a n },{b n }的前n 项和,S 4=32,T 3=16.(1)求{a n }的通项公式;(2)证明:当n >5时,T n >S n .解(1)设等差数列{a n }的公差为d ,而b n n -6,n 为奇数,a n ,n 为偶数,则b 1=a 1-6,b 2=2a 2=2a 1+2d ,b 3=a 3-6=a 1+2d -6,4=4a 1+6d =32,3=4a 1+4d -12=16,1=5,=2,所以a n =a 1+(n -1)d =2n +3,所以{a n }的通项公式是a n =2n +3.(2)证法一:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,b n -1+b n =2(n -1)-3+4n +6=6n +1,T n =13+(6n +1)2·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,T n =T n +1-b n +1=32(n +1)2+72(n +1)-[4(n +1)+6]=32n 2+52n-5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .证法二:由(1)知,S n =n (5+2n +3)2=n 2+4n ,b n n -3,n 为奇数,n +6,n 为偶数,当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n )=-1+2(n -1)-32·n 2+14+4n +62·n 2=32n 2+72n ,当n >5时,T n -S n 2+72n (n 2+4n )=12n (n -1)>0,因此T n >S n ;当n 为奇数时,若n ≥3,则T n =(b 1+b 3+…+b n )+(b 2+b 4+…+b n -1)=-1+2n -32·n +12+14+4(n -1)+62·n -12=32n 2+52n -5,显然T 1=b 1=-1满足上式,因此当n 为奇数时,T n =32n 2+52n -5,当n >5时,T n -S n 2+52n -(n 2+4n )=12(n +2)(n -5)>0,因此T n >S n .所以当n >5时,T n >S n .。

2022年高考数学复习新题速递之排列组合与概率统计

2022年高考数学复习新题速递之排列组合与概率统计

2022年高考数学复习新题速递之排列组合与概率统计(2022年5月)一.选择题(共8小题)1.(2022春•武汉期中)由0,1,2,3,4组成无重复数字的五位数,其中偶数的个数是()A.60B.72C.96D.1202.(2022春•焦作期中)由样本数据(x1,y1),(x2,y2),…,(x n,y n)得到y关于x的线性回归方程为y=−0.2x+3,若x=1,则y=()A.2.5B.2.8C.3.2D.3.43.(2022春•鼓楼区校级期中)(2√x−1x)6展开式中的常数项为()A.120B.﹣120C.240D.﹣240 4.(2022春•高邮市期中)如图,在某城市中,M、N两地之间有整齐的方格形道路网,其中A1、A2、A3、A4、A5是道路网中的5个指定交汇处.今在道路网M、N处的甲、乙两人分别要到N、M处,他们分别随机地选择一条沿街的最短路径,以相同的速度同时出发直到到达N、M处为止.则下列说法正确的是()A.甲从M到达N处的方法有30种B.甲从M必须经过A3到达N处的方法有6种C.甲、乙两人在A3处相遇的概率为6225D.甲、乙两人在道路网中5个指定交汇处相遇的概率为312255.(2022春•常州期中)盒中有4个红球、5个黑球,随机地从中抽取一个球,观察颜色后放回,并加上3个与取出的球同色的球,再第二次从盒中随机地取出一个球,则第二次取出黑球的概率()A .49B .23C .59D .5126.(2022春•宝山区校级期中)已知样本空间为Ω,x 为一个基本事件.对于任意事件A ,定义f (A )={0,x ∉A1,x ∈A ,给出下列结论:①f (Ω)=1,f (∅)=0;②对任意事件A ,0≤f (A )≤1;③如果A ∩B =∅,那么f (A ∪B )=f (A )+f (B );④f (A )+f (A )=1.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个7.(2022•徐汇区二模)某高校举行科普知识竞赛,所有参赛的500名选手成绩的平均数为82,方差为0.82,则下列四个数据中不可能是参赛选手成绩的是( )A .60B .70C .80D .1008.(2022春•黄埔区校级期中)将6名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训.每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,且志愿者甲不分配到冰球项目,则不同的分配方案共有( )A .360种B .810种C .1170种D .1980种二.多选题(共4小题)(多选)9.(2022春•顺德区校级期中)下列说法正确的是( )A .4个班分别从3个景点选择一处游览,不同的选法的种数是34B .从1,2,3,4,5选择2个数(可重复)组成两位偶数一共有10个C .两个口袋分别装有2个和3个小球,从两个口袋分别各取1个球,一共有5种取法D .从1,3,5,7,10选择2个不相同的数作为分子分母组成分数,一共可以组成10个分数(多选)10.(2022春•莲都区校级月考)已知离散型随机变量X 的分布列如表,则( )X﹣1 0 1 P 12 13 16A.P(X=0)=13B.E(X)=13C.D(X)=59D.D(2X+1)=199(多选)11.(2022春•莲都区校级月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则()A.P(B)=9 22B.P(B|A1)=5 11C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件(多选)12.(2022春•秦淮区校级期中)为了提升小学生的运算能力,某市举办了“小学生计算大赛”,并从中选出“计算小达人”.现从全市参加比赛的学生中随机抽取1000人的成绩进行统计,得到如图所示的频率分布直方图,其中成绩的分组区间为[60,70),[70,80),[80,90),[90,100],规定得分在90分及以上的被评为“计算小达人”.下列说法正确的是()A.m的值为0.015B.该市每个小学生被评为“计算小达人”的概率为0.01C.被抽取的1000名小学生的均分大约是85分D.学生成绩的中位数大约为75分三.填空题(共5小题)13.(2022春•合肥期中)已知随机变量X的分布列如下:X12345P0.10.20.4m0.1若Y=2X﹣3,则P(Y=5)的值为.14.(2022春•高邮市期中)已知(1+x)(a−x)6=a0+a1x+a2x2+⋯+a7x7,a∈R,若a0+a1+a2+⋯+a6+a7=0,则a4=.15.(2022春•高邮市期中)某病毒会造成“持续的人传人”,即存在A传B,B又传C,C 又传D的传染现象,那么A,B,C就被称为第一代、第二代、第三代传播者.假设一个身体健康的人被第一代、第二代、第三代传播者感染的概率分别为0.9,0.8,0.6.已知健康的小明参加了一次多人宴会,参加宴会的人中有5名第一代传播者,3名第二代传播者,2名第三代传播者,若小明参加宴会仅和感染的10个人中的一个有所接触,则被感染的概率为.16.(2022春•宁河区校级月考)用5种不同的颜色给图中4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且最多用3色,涂色方法有种.17.(2022春•莲都区校级月考)若随机变量ξ~N(1,σ2),且P(1<ξ<2)=0.4,则P (ξ<0)=.四.解答题(共5小题)18.(2022春•高邮市期中)有四名男生,三名女生排队照相.(1)若七个人排成一排,且三名女生必须连排在一起,那么有多少种不同排法数?(2)若七个人排成一排,且女生不能站在两端,那么有多少种不同排法数?(3)若七个人排成两排,前排站女生,后排站男生.那么有多少种不同的排法数?(上述排法数结果,用数字表达)19.(2022春•江苏期中)科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如表:26273941495356586061年龄x/岁脂肪含14.517.821.225.926.329.631.433.535.234.6量y/%根据上表中的样本数据:(1)求x和y;(2)计算样本相关系数(精确到0.01),并推断它们的相关关系及相关程度.参考数据及公式:∑10i=1x i y i=13527.8,∑10i=1x i2=23638,∑10i=1y i2=7759.6,√43≈6.56,√2935≈54.18,相关系数r=∑ni=1i i−nxy√∑i=1x i−nx2⋅√∑i=1y i−ny2.20.(2022春•焦作期中)为调研2022届高三毕业生的一轮复习成果,某中学进行了一次测试,并从全校高三理科生中随机抽取了100名学生的物理学科成绩(满分100分),统计分数情况如图所示.抽取的100名学生中男生分数情况如下表:分数[70,75)[75,80)[80,85)[85,90)[90,95)[95,100]男生人数711181288(Ⅰ)从这100名学生中任取一名,求其物理学科分数不低于80分且低于90分的概率;(Ⅱ)若分数不低于80分的为成绩优秀,其余为成绩不优秀,请完善下面的2×2列联表,并分析有没有95%的把握认为物理成绩是否优秀与性别有关系.男生女生合计成绩优秀成绩不优秀合计100参考公式:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据:P(K2>k0)0.100.050.010 k0 2.706 3.841 6.63521.(2022•密云区一模)从2008年的夏季奥运会到2022年的冬季奥运会,志愿者身影成为“双奥”之城的“最美名片”.十几年间志愿精神不断深入人心,志愿服务也融入社会生活各个领域.2022年的北京冬奥会共录用赛会志愿者18000多人.中学生志愿服务已经纳入学生综合素质评价体系,为了解中学生参加志愿服务所用时间,某市教委从全市抽取部分高二学生调查2020﹣2021学年度上学期参加志愿服务所用时间,把时间段按照[1.5,2.5),[2.5,3.5),[3.5,4.5),[4.5,5.5),[5.5,6.5]分成5组,把抽取的600名学生参加志愿服务时间的样本数据绘制成如图所示的频率分布直方图.(Ⅰ)根据频率分布直方图,用每一个小矩形的中点值代替每一组时间区间的平均值,估计这600名高二学生上学期参加志愿服务时间的平均数.并写出这600个样本数据的第75百分位数的一个估计值.(Ⅱ)若一个学期参加志愿服务的时间不少于3.5小时视为“预期合格”,把频率分布直方图中的频率视为该市高二学生上学期参加志愿服务时间的概率,从全市所有高二学生中随机抽取3名学生,设本学期这3名学生中达到“预期合格”的人数为X,求X的分布列并求数学期望E(X).(Ⅲ)用每一个小矩形的中点值代替每一组时间区间的平均值,把时间段在[1.5,4.5)的数据组成新样本组A,其方差记为s12,把时间段在[3.5,6.5]的数据组成新样本组B,其方差记为s22,原来600个样本数据的方差记为s32,试比较s12,s22,s32的大小(结论不要求证明).22.(2022春•淮安期中)设(3x−1)8=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+ a7x7+a8x8(1)求a0+a2+a4+a6+a8的值;(2)求S=C271+C272+C273+⋯+C2726+C2727除以9的余数;(3)求a1+2a2+3a3+4a4+⋯+8a8的值.。

高中数学排列组合高频经典题目练习及答案解析

高中数学排列组合高频经典题目练习及答案解析
A.120B.150C.240D.300
5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着舰〔不一定相邻〕,那么不同的着舰方法种数为〔 〕
A.24B.36C.48D.96
6.某学校需要把6名实习老师安排到A,B,C三个班级去听课,每个班级安排2名老师,已知甲不能安排到A班,乙和丙不能安排到同一班级,则安排方案的种数有〔 〕
故选:D.
8.从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队种数是〔 〕
A. B. C. D.
【解答】解:根据题意,分2步分析:
首先从7名男队员中选出2名男队员,5名女队员中2名女队员,有C72•C52种;
再对选出的4人进行分组,进行混双比赛,有2种方法;
则不同的组队种数有2C72•C52种;
假设分成1、1、3的三组,有 =10种分组方法;
假设分成1、2、2的三组,有 =15种分组方法;
则有15+10=25种分组方法;
②,将分好的三组全排列,对应三人,有A33=6种情况,
则有25×6=150种不同的分法;
故选:B.
5.我国的第一艘航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果乙机不能最先着舰,而丙机必须在甲机之前着舰〔不一定相邻〕,那么不同的着舰方法种数为〔 〕
则此时有 ×C21A44=24种情况,
则此时有24种不同的着舰方法;
则一共有24+24=48种不同的着舰方法;
故选:C.
6.某学校需要把6名实习老师安排到A,B,C三个班级去听课,每个班级安排2名老师,已知甲不能安排到A班,乙和丙不能安排到同一班级,则安排方案的种数有〔 〕

2024届新高考数学大题精选30题--概率统计(1)含答案

2024届新高考数学大题精选30题--概率统计(1)含答案

大题概率统计(精选30题)1(2024·浙江绍兴·二模)盒中有标记数字1,2的小球各2个.(1)若有放回地随机取出2个小球,求取出的2个小球上的数字不同的概率;(2)若不放回地依次随机取出4个小球,记相邻小球上的数字相同的对数为X(如1122,则X=2),求X的分布列及数学期望E X.2(2024·江苏扬州·模拟预测)甲、乙两人进行某棋类比赛,每局比赛时,若决出输赢则获胜方得2分,负方得0分;若平局则各得1分.已知甲在每局中获胜、平局、负的概率均为13,且各局比赛结果相互独立.(1)若比赛共进行了三局,求甲共得3分的概率;(2)规定比赛最多进行五局,若一方比另一方多得4分,则停止比赛,求比赛局数X的分布列与数学期望.2024届新高考数学大题精选30题--概率统计(1)3(2024·江苏南通·二模)某班组建了一支8人的篮球队,其中甲、乙、丙、丁四位同学入选,该班体育老师担任教练.(1)从甲、乙、丙、丁中任选两人担任队长和副队长,甲不担任队长,共有多少种选法?(2)某次传球基本功训练,体育老师与甲、乙、丙、丁进行传球训练,老师传给每位学生的概率都相等,每位学生传球给同学的概率也相等,学生传给老师的概率为17.传球从老师开始,记为第一次传球,前三次传球中,甲同学恰好有一次接到球且第三次传球后球回到老师手中的概率是多少?4(2024·重庆·模拟预测)中国在第75届联合国大会上承诺,努力争取2060年之前实现碳中和(简称“双碳目标”).新能源电动汽车作为战略新兴产业,对于实现“双碳目标”具有重要的作用.赛力斯汽车有限公司为了调查客户对旗下AITO问界M7的满意程度,对所有的意向客户发起了满意度问卷调查,将打分在80分以上的客户称为“问界粉”.现将参与调查的客户打分(满分100分)进行了统计,得到如下的频率分布直方图:(1)估计本次调查客户打分的中位数(结果保留一位小数);(2)按是否为“问界粉”比例采用分层抽样的方法抽取10名客户前往重庆赛力斯两江智慧工厂参观,在10名参观的客户中随机抽取2名客户赠送价值2万元的购车抵用券.记获赠购车券的“问界粉”人数为ξ,求ξ的分布列和数学期望Eξ .5(2024·福建三明·三模)某校开设劳动教育课程,为了有效推动课程实施,学校开展劳动课程知识问答竞赛,现有家政、园艺、民族工艺三类问题海量题库,其中家政类占14,园艺类占14,民族工艺类占12.根据以往答题经验,选手甲答对家政类、园艺类、民族工艺类题目的概率分别为25,25,45,选手乙答对这三类题目的概率均为12.(1)求随机任选1题,甲答对的概率;(2)现进行甲、乙双人对抗赛,规则如下:两位选手进行三轮答题比赛,每轮只出1道题目,比赛时两位选手同时回答这道题,若一人答对且另一人答错,则答对者得1分,答错者得-1分,若两人都答对或都答错,则两人均得0分,累计得分为正者将获得奖品,且两位选手答对与否互不影响,每次答题的结果也互不影响,求甲获得奖品的概率.6(2024·江苏南京·二模)某地5家超市春节期间的广告支出x (万元)与销售额y (万元)的数据如下:超市A B C D E 广告支出x 24568销售额y3040606070(1)从A ,B ,C ,D ,E 这5家超市中随机抽取3家,记销售额不少于60万元的超市个数为X ,求随机变量X 的分布列及期望E (X );(2)利用最小二乘法求y 关于x 的线性回归方程,并预测广告支出为10万元时的销售额.附:线性回归方程y =b x +a 中斜率和截距的最小二乘估计公式分别为:b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .7(2024·重庆·三模)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为12,各局比赛的结果都相互独立,第1局甲当裁判.记随机变量X i=1,第i局乙当裁判0,第i局甲或丙当裁判,i=1,2,⋅⋅⋅,n,p i=P X i=1,X表示前n局中乙当裁判的次数.(1)求事件“n=3且X=1”的概率;(2)求p i;(3)求E X ,并根据你的理解,说明当n充分大时E X 的实际含义.附:设X,Y都是离散型随机变量,则E X+Y=E X+E Y.8(2024·安徽池州·二模)学校组织某项劳动技能测试,每位学生最多有3次测试机会.一旦某次测试通过,便可获得证书,不再参加以后的测试,否则就继续参加测试,直到用完3次机会.如果每位学生在3次测试中通过的概率依次为0.5,0.6,0.8,且每次测试是否通过相互独立.现某小组有3位学生参加测试,回答下列问题:(1)求该小组学生甲参加考试次数X的分布列及数学期望E X ;(2)规定:在2次以内测试通过(包含2次)获得优秀证书,超过2次测试通过获得合格证书,记该小组3位学生中获得优秀证书的人数为Y,求使得P Y=k取最大值时的整数k.9(2024·辽宁·二模)一枚棋子在数轴上可以左右移动,移动的方式以投掷一个均匀的骰子来决定,规则如下:当所掷点数为1点时,棋子不动;当所掷点数为3或5时,棋子在数轴上向左(数轴的负方向)移动“该点数减1”个单位;当所掷的点数为偶数时,棋子在数轴上向右(数轴的正方向)移动“该点数的一半”个单位;第一次投骰子时,棋子以坐标原点为起点,第二次开始,棋子以前一次棋子所在位置为该次的起点.(1)投掷骰子一次,求棋子的坐标的分布列和数学期望;(2)投掷骰子两次,求棋子的坐标为-2的概率;(3)投掷股子两次,在所掷两次点数和为奇数的条件下,求棋子的坐标为正的概率.10(2024·广东湛江·一模)甲进行摸球跳格游戏.图上标有第1格,第2格,⋯,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第n格的概率为P n n=1,2,3,⋅⋅⋅,25.(1)甲在一次摸球中摸出红球的个数记为X,求X的分布列和期望;(2)证明:数列P n-P n-1n=2,3,⋅⋅⋅,24为等比数列.11(2024·广东韶关·二模)小明参加社区组织的射击比赛活动,已知小明射击一次、击中区域甲的概率是13,击中区域乙的概率是14,击中区域丙的概率是18,区域甲,乙、丙均没有重复的部分.这次射击比赛获奖规则是:若击中区域甲则获一等奖;若击中区域乙则有一半的机会获得二等奖,有一半的机会获得三等奖;若击中区域丙则获得三等奖;若击中上述三个区域以外的区域则不获奖.获得一等奖和二等奖的选手被评为“优秀射击手”称号.(1)求小明射击1次获得“优秀射击手”称号的概率;(2)小明在比赛中射击4次,每次射击的结果相互独立,设获三等奖的次数为X,求X分布列和数学期望.12(2024·河北邢台·一模)小张参加某知识竞赛,题目按照难度不同分为A类题和B类题,小张回答A类题正确的概率为0.9,小张回答B类题正确的概率为0.45.已知题库中B类题的数量是A类题的两倍.(1)求小张在题库中任选一题,回答正确的概率;(2)已知题库中的题目数量足够多,该知识竞赛需要小张从题库中连续回答10个题目,若小张在这10个题目中恰好回答正确k个(k=0,1,2,⋯,10)的概率为P k,则当k为何值时,P k最大?13(2024·湖南衡阳·模拟预测)某电竞平台开发了A、B两款训练手脑协同能力的游戏,A款游戏规则是:五关竞击有奖闯关,每位玩家上一关通过才能进入下一关,上一关没有通过则不能进入下一关,且每关第一次没有通过都有再挑战一次的机会,两次均未通过,则闯关失败,各关和同一关的两次挑战能否通过相互独立,竞击的五关分别依据其难度赋分.B款游戏规则是:共设计了n(n∈N*且n≥2)关,每位玩家都有n次闯关机会,每关闯关成功的概率为13,不成功的概率为23,每关闯关成功与否相互独立;第1次闯关时,若闯关成功则得10分,否则得5分.从第2次闯关开始,若闯关成功则获得上一次闯关得分的两倍,否则得5分.电竞游戏玩家甲先后玩A、B两款游戏.(1)电竞游戏玩家甲玩A款游戏,若第一关通过的概率为34,第二关通过的概率为23,求甲可以进入第三关的概率;(2)电竞游戏玩家甲玩B款游戏,记玩家甲第i次闯关获得的分数为X i i=1,2,⋯,n,求E X i关于i的解析式,并求E X8的值.(精确到0.1,参考数据:2 37≈0.059.)14(2024·湖南邵阳·模拟预测)2023年8月3日,公安部召开的新闻发布会公布了“提高道路资源利用率”和“便利交通物流货运车辆通行”优化措施,其中第二条提出推动缓解停车难问题.在持续推进缓解城镇老旧小区居民停车难改革措施的基础上,因地制宜在学校、医院门口设置限时停车位,支持鼓励住宅小区和机构停车位错时共享.某医院门口设置了限时停车场(停车时间不超过60分钟),制定收费标准如下:停车时间不超过15分钟的免费,超过15分钟但不超过30分钟收费3元,超过30分钟但不超过45分钟收费9元,超过45分钟但不超过60分钟收费18元,超过60分钟必须立刻离开停车场.甲、乙两人相互独立地来该停车场停车,且甲、乙的停车时间的概率如下表所示:停车时间/分钟0,1515,30 30,45 45,60甲143a14a 乙162b13b设此次停车中,甲所付停车费用为X ,乙所付停车费用为Y .(1)在X +Y =18的条件下,求X ≥Y 的概率;(2)若ξ=X -Y ,求随机变量ξ的分布列与数学期望.15(2024·湖北·一模)2023年12月30号,长征二号丙/远征一号S运载火箭在酒泉卫星发射中心点火起飞,随后成功将卫星互联网技术实验卫星送入预定轨道,发射任务获得圆满完成,此次任务是长征系列运载火箭的第505次飞行,也代表着中国航天2023年完美收官.某市一调研机构为了了解当地学生对我国航天事业发展的关注度,随机的从本市大学生和高中生中抽取一个容量为n的样本进行调查,调查结果如下表:学生群体关注度合计关注不关注大学生12n710n高中生合计3 5 n附:α0.10.050.00250.010.001χα 2.706 3.841 5.024 6.63510.828χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.(1)完成上述列联表,依据小概率值α=0.05的独立性检验,认为关注航天事业发展与学生群体有关,求样本容量n的最小值;(2)该市为了提高本市学生对航天事业的关注,举办了一次航天知识闯关比赛,包含三个问题,有两种答题方案选择:方案一:回答三个问题,至少答出两个可以晋级;方案二:在三个问题中,随机选择两个问题,都答对可以晋级.已知小华同学答出三个问题的概率分别是34,23,12,小华回答三个问题正确与否相互独立,则小华应该选择哪种方案晋级的可能性更大?(说明理由)16(2024·湖北·二模)吸烟有害健康,现统计4名吸烟者的吸烟量x 与损伤度y ,数据如下表:吸烟量x 1456损伤度y3867(1)从这4名吸烟者中任取2名,其中有1名吸烟者的损伤度为8,求另1吸烟者的吸烟量为6的概率;(2)在实际应用中,通常用各散点(r ,y )到直线y =bx +a 的距离的平方和S =ni =1(bx i +a -y i )2 来刻画“整体接近程度”.S 越小,表示拟合效果越好.试根据统计数据,求出经验回归直线方程y =b x +a.并根据所求经验回归直线估计损伤度为10时的吸烟量.附:b =ni =1(x i -x )(y i -y)ni =1(x i -x)2,a =y -b x.17(2024·山东枣庄·一模)有甲、乙两个不透明的罐子,甲罐有3个红球,2个黑球,球除颜色外大小完全相同.某人做摸球答题游戏.规则如下:每次答题前先从甲罐内随机摸出一球,然后答题.若答题正确,则将该球放入乙罐;若答题错误,则将该球放回甲罐.此人答对每一道题目的概率均为12.当甲罐内无球时,游戏停止.假设开始时乙罐无球.(1)求此人三次答题后,乙罐内恰有红球、黑球各1个的概率;(2)设第n n ∈N *,n ≥5 次答题后游戏停止的概率为a n .①求a n ;②a n 是否存在最大值?若存在,求出最大值;若不存在,试说明理由.18(2024·安徽合肥·二模)树人中学高三(1)班某次数学质量检测(满分150分)的统计数据如下表:性别参加考试人数平均成绩标准差男3010016女209019在按比例分配分层随机抽样中,已知总体划分为2层,把第一层样本记为x 1,x 2,x 3,⋯,x n ,其平均数记为x,方差记为s 21;把第二层样本记为y 1,y 2,y 3,⋯,y m ,其平均数记为y,方差记为s 22;把总样本数据的平均数记为z ,方差记为s 2.(1)证明:s 2=1m +nn s 21+x -z 2 +m s 22+y -z 2 ;(2)求该班参加考试学生成绩的平均数和标准差(精确到1);(3)假设全年级学生的考试成绩服从正态分布N μ,σ2 ,以该班参加考试学生成绩的平均数和标准差分别作为μ和σ的估计值.如果按照16%,34%,34%,16%的比例将考试成绩从高分到低分依次划分为A ,B ,C ,D 四个等级,试确定各等级的分数线(精确到1).附:P μ-σ≤X ≤μ+σ ≈0.68,302≈17,322≈18,352≈19.19(2024·福建福州·模拟预测)甲企业生产线上生产的零件尺寸的误差X服从正态分布N0,0.22,规定X∈-0.2,0.2的零件为合格品.的零件为优等品,X∈-0.6,0.6(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数);(2)乙企业拟向甲企业购买这批零件,先对该批零件进行质量抽检,检测的方案是:从这批零件中任取2个作检测,若这2个零件都是优等品,则通过检测;若这2个零件中恰有1个为优等品,1个为合格品但非优等品,则再从这批零件中任取1个作检测,若为优等品,则通过检测;其余情况都不通过检测.求这批零件通过检测时,检测了2个零件的概率(精确到0.01).(附:若随机变量ξ∼Nμ,σ2,则Pμ-σ<ξ<μ+σ=0.9545,=0.6827,Pμ-2σ<ξ<μ+2σPμ-3σ<ξ<μ+3σ=0.9973)20(2024·河北保定·二模)某兴趣小组调查并统计了某班级学生期末统考中的数学成绩和建立个性化错题本的情况,用来研究这两者是否有关.若从该班级中随机抽取1名学生,设A =“抽取的学生期末统考中的数学成绩不及格”,B =“抽取的学生建立了个性化错题本”,且P (A |B )=23,P (B |A )=56,P B =23.(1)求P A 和P A B .(2)若该班级共有36名学生,请完成列联表,并依据小概率值α=0.005的独立性检验,分析学生期末统考中的数学成绩与建立个性化错题本是否有关,个性化错题本期末统考中的数学成绩合计及格不及格建立未建立合计(3)为进一步验证(2)中的判断,该兴趣小组准备在其他班级中抽取一个容量为36k 的样本(假设根据新样本数据建立的列联表中,所有的数据都扩大为(2)中列联表中数据的k 倍,且新列联表中的数据都为整数).若要使得依据α=0.001的独立性检验可以肯定(2)中的判断,试确定k 的最小值参考公式及数据:χ2=n ad -bc 2a +b c +d a +c b +d,n =a +b +c +d .α0.010.0050.001x a6.6357.87910.82821(2024·浙江绍兴·模拟预测)书接上回.麻将学习小组中的炎俊同学在探究完问题后返回家中观看了《天才麻将少女》,发现超能力麻将和现实麻将存在着诸多不同.为了研究超能力麻将,他使用了一些”雀力值”和”能力值”来确定每位角色的超能力麻将水平,发现每位角色在一局麻将中的得分与个人值和该桌平均值之差存在着较大的关系.(注:平均值指的是该桌内四个人各自的“雀力值”和“能力值”之和的平均值,个人值类似.)为深入研究这两者的关系,他列出了以下表格:个人值与平均值之差x-9-6-30369得分y-38600-23100-10900+11800+24100+36700(1)①计算x ,y 的相关系数r ,并判断x ,y 之间是否基本上满足线性关系,注意:保留至第一位非9的数.②求出y 与x 的经验回归方程.③以下为《天才麻将少女》中几位角色的”雀力值”和”能力值”:角色宫永照园城寺怜花田煌松实玄雀力值249104能力值241636试估计此四位角色坐在一桌打麻将每一位的得分(近似至百位)(2)在分析了更多的数据后,炎俊发现麻将中存在着很多运气的成分.为衡量运气对于麻将对局的影响,炎俊建立了以下模型,其中他指出:实际上的得分并不是一个固定值,而是具有一定分布的,存在着一个标准差.运气实际上体现在这一分布当中取值的细微差别.接下去他便需要得出得分的标准差.他发现这一标准差来源自两个方面:一方面是在(1)②问当中方程斜率b 存在的标准差Δb ;另一方面则是在不影响平均值的情况下,实际表现“个人值”X 符合正态分布规律X ~N μ,σ2 .(μ为评估得出的个人值.)已知松实玄实际表现个人值满足P X >10.5 =0.02275,求(1)③中其得分的标准差.(四舍五入到百位)(3)现在新提出了一种赛制:参赛者从平均值为10开始进行第一轮挑战,之后每一轮对手的”雀力值”和”能力值”均会提升至原来的43.我们设进行了i 轮之后,在前i 轮内该参赛者的总得分为E X i ;若园城寺怜参加了此比赛,求ni =1E X i2i参考数据和公式:①7i =1x i y i =1029000;7i =1y 2i =4209320000.②相关系数r =ni =1x i -x y i -yni =1x i -x2ni =1y i -y2;经验回归方程y =b x +a ,b =ni =1x i -x y i -yni =1x i -x2,a =y -b ⋅x;Δbb=1r 2-1n -2,其中n 为回归数据组数.③对于随机变量X~Nμ,σ2,Pμ-σ≤X≤μ+σ≈0.6827,Pμ-2σ≤X≤μ+2σ≈0.9545,Pμ-3σ≤X≤μ+3σ≈0.9973.④x <<1时,1+xα≈1+αx,α∈R;⑤对间接计算得出的值f=xy有标准差Δf满足Δff=Δx x 2+Δy y 2.⑥13136≈3.2×10-4;6.8≈2.6;2946524≈1715×1+9×10-422(2024·江苏南通·模拟预测)“踩高跷,猜灯谜”是我国元宵节传统的文化活动. 某地为了弘扬文化传统,发展“地摊经济”,在元宵节举办形式多样的猜灯谜活动.(1)某商户借“灯谜”活动促销,将灯谜按难易度分为B、C两类,抽到较易的B类并答对购物打八折优惠,抽到稍难的C类并答对购物打七折优惠,抽取灯谜规则如下:在一不透明的纸箱中有8张完全相同的卡片,其中3张写有A字母,3张写有B字母,2张写有C字母,顾客每次不放回从箱中随机取出1张卡片,若抽到写有A的卡片,则再抽1次,直至取到写有B或C卡片为止,求该顾客取到写有B卡片的概率.(2)小明尝试去找全街最适合他的灯谜,规定只能取一次,并且只可以向前走,不能回头,他在街道上一共会遇到n条灯谜(不妨设每条灯谜的适合度各不相同),最适合的灯谜出现在各个位置上的概率相等,小明准备采用如下策略:不摘前k1≤k<n条灯谜,自第k+1条开始,只要发现比他前面见过的灯谜适合的,就摘这条灯谜,否则就摘最后一条,设k=tn,记小明摘到那条最适合的灯谜的概率为P.①若n=4,k=2,求P;②当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k+1k+1+⋯+1n-1=ln nk)23(2024·安徽·模拟预测)某校在90周年校庆到来之际,为了丰富教师的学习和生活,特举行了答题竞赛.在竞赛中,每位参赛教师答题若干次,每一次答题的赋分方法如下:第1次答题,答对得20分,答错得10分,从第2次答题开始,答对则获得上一次答题所得分数两倍的得分,答错得10分,教师甲参加答题竞赛,每次答对的概率均为12,每次答题是否答对互不影响.(1)求甲前3次答题的得分之和为70分的概率.(2)记甲第i次答题所得分数X i i∈N*的数学期望为E X i.(ⅰ)求E X1,E X2,E X3,并猜想当i≥2时,E X i与E X i-1之间的关系式;(ⅱ)若ni=1E X i>320,求n的最小值.24(2024·辽宁·模拟预测)某自然保护区经过几十年的发展,某种濒临灭绝动物数量有大幅度的增加.已知这种动物P 拥有两个亚种(分别记为A 种和B 种).为了调查该区域中这两个亚种的数目,某动物研究小组计划在该区域中捕捉100个动物P ,统计其中A 种的数目后,将捕获的动物全部放回,作为一次试验结果.重复进行这个试验共20次,记第i 次试验中A 种的数目为随机变量X i i =1,2,⋯,20 .设该区域中A 种的数目为M ,B 种的数目为N (M ,N 均大于100),每一次试验均相互独立.(1)求X 1的分布列;(2)记随机变量X =12020i =1X i.已知E X i +X j =E X i +E X j ,D X i +X j =D X i +D X j (i )证明:E X =E X 1 ,D X =120D X 1 ;(ii )该小组完成所有试验后,得到X i 的实际取值分别为x i i =1,2,⋯,20 .数据x i i =1,2,⋯,20 的平均值x =30,方差s 2=1.采用x和s 2分别代替E X 和D X ,给出M ,N 的估计值.(已知随机变量x 服从超几何分布记为:x ∼H P ,n ,Q (其中P 为总数,Q 为某类元素的个数,n 为抽取的个数),则D x =nQ P 1-QPP -nP -1 )25(2024·广东广州·一模)某校开展科普知识团队接力闯关活动,该活动共有两关,每个团队由n (n ≥3,n ∈N *)位成员组成,成员按预先安排的顺序依次上场,具体规则如下:若某成员第一关闯关成功,则该成员继续闯第二关,否则该成员结束闯关并由下一位成员接力去闯第一关;若某成员第二关闯关成功,则该团队接力闯关活动结束,否则该成员结束闯关并由下一位成员接力去闯第二关;当第二关闯关成功或所有成员全部上场参加了闯关,该团队接力闯关活动结束.已知A 团队每位成员闯过第一关和第二关的概率分别为34和12,且每位成员闯关是否成功互不影响,每关结果也互不影响.(1)若n =3,用X 表示A 团队闯关活动结束时上场闯关的成员人数,求X 的均值;(2)记A 团队第k (1≤k ≤n -1,k ∈N *)位成员上场且闯过第二关的概率为p k ,集合k ∈N *p k <3128中元素的最小值为k 0,规定团队人数n =k 0+1,求n .26(2024·广东深圳·二模)某大型企业准备把某一型号的零件交给甲工厂或乙工厂生产.经过调研和试生产,质检人员抽样发现:甲工厂试生产的一批零件的合格品率为94%;乙工厂试生产的另一批零件的合格品率为98%;若将这两批零件混合放在一起,则合格品率为97%.(1)从混合放在一起的零件中随机抽取3个,用频率估计概率,记这3个零件中来自甲工厂的个数为X ,求X 的分布列和数学期望;(2)为了争取获得该零件的生产订单,甲工厂提高了生产该零件的质量指标.已知在甲工厂提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率,大于在甲工厂不提高质量指标的条件下,该大型企业把零件交给甲工厂生产的概率.设事件A =“甲工厂提高了生产该零件的质量指标”,事件B =“该大型企业把零件交给甲工厂生产”、已知0<P B <1,证明:P A B >P A B.27(2024·湖南·二模)某大学有甲、乙两个运动场.假设同学们可以任意选择其中一个运动场锻炼,也可选择不锻炼,一天最多锻炼一次,一次只能选择一个运动场.若同学们每次锻炼选择去甲或乙运动场的概率均为12,每次选择相互独立.设王同学在某个假期的三天内去运动场锻炼的次数为X ,已知X 的分布列如下:(其中a >0,0<p <1)X0123Pa (1-p )2apa a 1-p(1)记事件A i 表示王同学假期三天内去运动场锻炼i 次i =0,1,2,3 ,事件B 表示王同学在这三天内去甲运动场锻炼的次数大于去乙运动场锻炼的次数.当p =12时,试根据全概率公式求P B 的值;(2)是否存在实数p ,使得E X =53若存在,求p 的值:若不存在,请说明理由;(3)记M 表示事件“甲运动场举办锻炼有奖的抽奖活动”,N 表示事件“王同学去甲运动场锻炼”,0<P M <1.已知王同学在甲运动场举办锻炼有奖的抽奖活动的情况下去甲运动场锻炼的概率,比不举办抽奖活动的情况下去甲运动场锻炼的概率大,证明:P M ∣N >P M ∣N.28(2024·山东济南·二模)随机游走在空气中的烟雾扩散、股票市场的价格波动等动态随机现象中有重要应用.在平面直角坐标系中,粒子从原点出发,每秒向左、向右、向上或向下移动一个单位,且向四个方向移动的概率均为14.例如在1秒末,粒子会等可能地出现在1,0,-1,0,0,1,0,-1四点处.(1)设粒子在第2秒末移动到点x,y,记x+y的取值为随机变量X,求X的分布列和数学期望E X ;(2)记第n秒末粒子回到原点的概率为p n.(i)已知nk=0(C k n)2=C n2n求p3,p4以及p2n;(ii)令b n=p2n,记S n为数列b n的前n项和,若对任意实数M>0,存在n∈N*,使得S n>M,则称粒子是常返的.已知2πnnen<n!<6π 142πn n e n,证明:该粒子是常返的.29(2024·山东潍坊·二模)数列a n 中,从第二项起,每一项与其前一项的差组成的数列a n +1-a n 称为a n 的一阶差数列,记为a 1 n ,依此类推,a 1 n 的一阶差数列称为a n 的二阶差数列,记为a 2n ,⋯.如果一个数列a n 的p 阶差数列a pn 是等比数列,则称数列a n 为p 阶等比数列p ∈N * .(1)已知数列a n 满足a 1=1,a n +1=2a n +1.(ⅰ)求a 1 1,a 1 2,a 13;(ⅱ)证明:a n 是一阶等比数列;(2)已知数列b n 为二阶等比数列,其前5项分别为1,209,379,789,2159,求b n 及满足b n 为整数的所有n 值.。

((新人教版))高考排列组合概率题汇总

((新人教版))高考排列组合概率题汇总

高考排列组合概率题汇总1. 从六个数字1、2、3、4、5、6中任取四个不同的数字,有多少种取法?由这六个数字可以组成多少个没有重复数字的四位偶数?[15;180]2. 从六个数字1、2、3、5、7、9中任取四个不同的数字,有多少种取法?由这六个数字可以组成多少个没有重复数字的四位偶数?[15;60]3. 用1、2、3、4四个数字组成没有重复数字的四位奇数的个数是________。

[12]_______________。

[3325] 15. 有8本互不相同的书,其中数学书3本,外文书2本,其它书3本,若将这些书随机地排成一排放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的概率为_______________。

[281] 16. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程0c By Ax =++的A 、B 、C ,所得恰好经过坐标原点的直线的概率是_________________。

[71] 17. 袋内装有大小相同的4个白球和3个黑球,从中任意摸出3个球,其中只有一个黑球的概率是___________________。

[3518] 18. 若以连续掷两次骰子分别得到的点数m 、n 作为点P[190] 27. 一次二期课改经验交流会打算交流试点学校的论文5篇和非试点学校的论文3篇,若任意排列交流次序,则最先和最后交流的论文都为试点学校的概率是__________。

[145] 28. 若在二项式10)1x (+的展开式中任取一项,则该项的系数为奇数的概率是_____________。

[114] 29. 某班共有40名学生,其中只有一对双胞胎,若从中一次随机抽查三位学生的作业,则这对双胞胎的作业同时被抽中的概率是____________。

[2601] 30. 某班有50名学生,其中15人选修A 课程,另外35人选修B 课程。

从班级中任选两名学生,他们是选修不同课程的学生的概率是__________。

高中数学总结归纳 概率中的创新题

高中数学总结归纳 概率中的创新题

概率中的创新题概率的应用成为近年高考的重要内容,它替代了传统意义上的应用题成为高考亮点,而在高考中,也相继出现了情境新颖、构思巧妙,解法灵活的创新题,显示出概率知识的活力和魅力。

一、新概念创新题新信息题成为高考试题改革的一个新的亮点,通过给出一个新概念,或约定一种新运算,或给出几个新的模型等,创设一种全新的问题情境,主要考查学生独立攻取信息、加工信息的学习能力,要求考生在阅读理解的基础上,紧扣条件,抓住关键的信息,实现信息的转化,达到灵活解题的目的。

例1、“渐升数”是指每个数字比其左边的数字大的自然数(如2578),在二位的“渐升数”中任取一数比37大的概率是_________.解:十位是1的“渐升数”有8个,十位是2的“渐升数”有7个,…,十位是8的“渐升数”有1个;所以二位的“渐升数”有8+7+6+5+4+3+2+1=36个,以3为十位比37大的“渐升数”为2个,分别以4、5、6、7、8为十位的“渐升数”均比37大,且共有5+4+3+2+1=15个,所以比37大的“渐升数”共有2+15=17个,故在二位的“渐17升数”中任取一数比37大的概率是.36二、图表类创新题这类题给出图表,要求同学们通过对图表的观察、分析、提炼、挖掘出图表所给予的有用信息,排除有关数据或线条的干扰,进而抓住问题的实质,一举达到求解的目的。

例2、下表为某班英语及数学的成绩分布,全班共有学生50人,成绩分为1~5个档次,例如表中所示英语成绩为4分,数学成绩为2分的学生共5人,设x、y分别表示英语成绩和数学成绩。

(1)x =4的概率是多少?x =4且y =3的概率是多少?3≥x 的概率是多少?在3≥x 的基础上,y =3同时成立的概率是多少?(2)x =2的概率是多少?a +b 的值是多少?解:(1)257501751)4(=+++==x P ;507)3,4(===y x P ; 107)5()4()3()3(==+=+==≥x P x P x P x P ;当3≥x ,有3550107=⨯人,在此基础上,y =3有1+7+0=8人,所以在3≥x 的基础上,358)3(==y P .(2)511075051)3()1(1)2(=--=≥-=-==x P x P x P ,又5150061)2(=++++==a b x P ,所以a +b =3.三、实际应用创新题概率最早起源于对赌博问题的研究,与现实生活有着千丝万缕的联系,对于生活中的 一些现象,可以用概率的眼光来分析、透视。

概率与数列、导数、函数和方程等知识交汇的创新题型

概率与数列、导数、函数和方程等知识交汇的创新题型

概率与数列、导数、函数和方程等知识交汇的创新题型ʏ河南省固始县信合外国语高级中学 胡云兵2019年高考全国Ⅰ卷首次把概率题作为压轴题出现,当时引起一片哗然,这是在传递什么信号?概率统计题何去何从?我们要如何备考带着这些问题,我们从近几年全国卷和部分省份的概率高考题,发现概率题增加难度,不是概率知识本身增加难度,而是难在概率与其他数学知识交汇处命题㊂下面通过几道高考题来说明概率与其他数学知识交汇的创新题型㊂一㊁概率与数列的交汇例1 (2019全国Ⅰ卷理数第21题)为治疗某种疾病,研制了甲㊁乙两种新药,希望知道哪种新药更有效,为此进行动物试验㊂试验方案如下:每一轮选取两只白鼠对药效进行对比试验㊂对于两只白鼠,随机选一只施以甲药,另一只施以乙药㊂一轮的治疗结果得出后,再安排下一轮试验㊂当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效㊂为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分㊂甲㊁乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X ㊂(1)求X 的分布列㊂(2)若甲药㊁乙药在试验开始时都赋予4分,p i (i =0,1, ,8)表示 甲药的累计得分为i 时,最终认为甲药比乙药更有效 的概率,则p 0=0,p 8=1,p i =a p i -1+b p i +c p i +1(i =1,2, ,7),其中a =P (X =-1),b =P (X =0),c =P (X =1)㊂假设α=0.5,β=0.8㊂(i )证明:{p i +1-p i }(i =0,1,2, ,7)为等比数列;(i i)求p 4,并根据p 4的值解释这种试验方案的合理性㊂解析:(1)X 的所有可能取值为-1,0,1㊂P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β)㊂故X 的分布列如表1㊂表1X -101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i )已知α=0.5,β=0.8,故由(1)得,a =0.4,b =0.5,c =0.1㊂因此,p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2, ,7)㊂整理得0.1(p i +1-p i )=0.4(p i -p i -1),即p i +1-p i =4(p i -p i -1)㊂又p 1-p 0=p 1ʂ0,故{p i +1-p i }(i =0,1,2, ,7)为公比为4,首项为p 1的等比数列㊂(i i )由(i)可得:p 8=(p 8-p 7)+(p 7-p 6)+ +(p 1-p 0)+p 0=p 1(1-48)1-4=48-13p 1㊂因p 8=1,故p 1=348-1㊂因此,p 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44-13p 1=1257㊂p 4表示最终认为甲药更有效的概率㊂由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257ʈ0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理㊂点评:本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列㊂根据条件推出数列的递推关系是解决本题的关键㊂其本质仍然是常规的概率与统计问题,只是其中涉及了数列问题的应用,一般转化为等差㊁等比数列的定义㊁通项公式或者数列求和问题㊂二㊁概率与函数㊁方程和导数的交汇例2 (2021新高考Ⅱ卷第21题)一种微生物群体可以经过自身繁殖不断生存下63 解题篇 创新题追根溯源 高二数学 2023年4月Copyright ©博看网. All Rights Reserved.来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代, ,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i =0,1,2,3)㊂(1)已知p0=0.4,p1=0.3,p2=0.2,p3 =0.1,求E(X)㊂(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+ p1x+p2x2+p3x3=x的一个最小正实根㊂求证:当E(X)ɤ1时,p=1;当E(X)>1时,p<1㊂(3)根据你的理解,请说明(2)问结论的实际含义㊂解析:(1)E(X)=0ˑ0.4+1ˑ0.3+2ˑ0.2+3ˑ0.1=1㊂(2)设f(x)=p3x3+p2x2+(p1-1)x+p0㊂因为p3+p2+p1+p0=1,所以f(x)= p3x3+p2x2-(p2+p0+p3)x+p0㊂①若E(X)ɤ1,则p1+2p2+3p3ɤ1,故p2+2p3ɤp0㊂f'(x)=3p3x2+2p2x-(p2+p0+p3)㊂因为f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0ɤ0,所以f'(x)有两个不同零点x1,x2,且x1<0<1ɤx2㊂当xɪ(-ɕ,x1)ɣ(x2,+ɕ)时, f'(x)>0;当xɪ(x1,x2)时,f'(x)<0㊂故f(x)在(-ɕ,x1)上为增函数,在(x1,x2)上为减函数,在(x2,+ɕ)上为增函数㊂若x2=1,f(x)在(x2,+ɕ)为增函数且f(1)=0㊂而当xɪ(0,x2)时,因为f(x)在(x1,x2)上为减函数,所以f(x)>f(x2)= f(1)=0,故1为p0+p1x+p2x2+p3x3=x 的一个最小正实根㊂若x2>1,因为f(1)=0且在(0,x2)上为减函数,所以1为p0+p1x+p2x2+p3x3 =x的一个最小正实根㊂综上,若E(X)ɤ1,则p=1㊂②若E(X)>1,则p1+2p2+3p3>1,故p2+2p3>p0㊂此时f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0>0,故f'(x)有两个不同零点x3,x4,且x3<0<x4<1㊂当xɪ(-ɕ,x3)ɣ(x4,+ɕ)时, f'(x)>0;当xɪ(x3,x4)时,f'(x)<0㊂故f(x)在(-ɕ,x3)上为增函数,在(x3,x4)上为减函数,在(x4,+ɕ)上为增函数㊂而f(1)=0,故f(x4)<0㊂又f(0)=p0>0,故f(x)在(0,x4)存在一个零点p,且p<1㊂所以p为p0+p1x+p2x2+p3x3=x的一个最小正实根,此时p<1㊂故当E(X)>1时,p<1㊂(3)结论的实际含义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝;若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1㊂点评:在概率与统计的问题中,决策的工具是样本的数字特征或有关概率㊂决策方案的最佳选择是将概率最大(最小)或均值最大(最小)的方案作为最佳方案,这往往借助于函数㊁不等式或数列的有关性质去实现㊂例3(2018年全国Ⅰ卷理数第20题)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品进行检验,如检验出不合格品,则更换为合格品㊂检验时,先从这箱产品中任取20件进行检验,再根据检验结果决定是否对余下的所有产品检验㊂设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立㊂(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0㊂(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值㊂已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用㊂①若不对该箱余下的产品进行检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);73解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验解析:(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2㊃(1-p)18(0< p<1)㊂因此,f'(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p),0<p<1㊂令f'(p)=0,得p=0.1㊂当pɪ(0,0.1)时,f'(p)>0;当pɪ(0.1,1)时,f'(p)<0㊂所以f(p)的最大值点为p0=0.1㊂(2)由(1)知,p=0.1㊂①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X= 20ˑ2+25Y,即X=40+25Y㊂所以E(X)=E(40+25Y)=40+ 25E(Y)=40+25ˑ180ˑ0.1=490㊂②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元㊂由于E(X)>400,故应该对余下的产品作检验㊂点评:解决概率和函数㊁导数的综合问题,关键是读懂题意,将与概率有关的问题(尤其是最值问题)转化为函数问题,再利用函数或导数知识解决,在转化过程中,对已知条件进行适当变形㊁整理,使之与求解的结论建立联系,从而解决问题㊂三、概率与不等式的交汇例4(2017年江苏卷第23题)已知一个口袋有m个白球,n个黑球(m,nɪN*, nȡ2),这些球除颜色外完全相同㊂现将口袋中的球随机地逐个取出,并放入如表2所示的编号为1,2,3, ,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2, 3, ,m+n)㊂表2123 m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)<n(m+n)(n-1)㊂解析:(1)编号为2的抽屉内放的是黑球的概率p=C n-1m+n-1C n m+n=nm+n㊂(2)随机变量X的概率分布如表3㊂表3X1n1n+11n+2 1k 1n+m PC n-1n-1C n m+nC n-1nC n m+nC n-1n+1C n m+nC n-1k-1C n m+nC n-1n+m-1C n m+n随机变量X的期望为:E(X)=ðm+n k=n1k㊃C n-1k-1C n m+n=1C n m+nðm+n k=n1k㊃(k-1)!(n-1)!(k-n)!㊂所以E(X)<1C n m+nðm+n k=n(k-2)!(n-1)!(k-n)!=1(n-1)C n m+nðm+n k=n(k-2)!(n-2)!(k-n)!=1(n-1)C n m+n(1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n-1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1m+n-2+C n-2m+n-2)=C n-1m+n-1(n-1)C n m+n=n(m+n)(n-1)㊂故E(X)<n(m+n)(n-1)㊂点评:本题表面看起来是概率问题,但是它重点恰在不等式,所以对于概率统计问题,我们要有意关注与其他数学知识的整合㊂同时也提醒我们要跳出固定思维模式,学会灵活处理问题的能力㊂(责任编辑徐利杰)8 3解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.。

2022届高考数学热点创新题型:排列、组合、概率部分新题

2022届高考数学热点创新题型:排列、组合、概率部分新题

- 1 - 排列、组合、概率部分新题原创3道 1.一圆形餐桌依次有A 、B 、C 、D 、E 、F 共有6个座位.现让3个大人和3个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总数为 ( )A.6B.12C.72D.144讲解:C.大人的座位可能是A 、C 、E 或B 、D 、F ,故大人入座的方法数为2A 33;而小孩入座剩下座位的方法有A 33种,由分步计数法原理知方法总数为2A 33·A 33=72.2.设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a≡b (modm).已知a =1+C 120+C 220·2+C 320·22+…+C 2020·219,b ≡a (mon10),则b 的值可以是 ( )A.2 015 B.2 011 C.2 008 D.2 006讲解:B.1+21(C 020+C 120·2+C 220·22+C 320·23+…+C 2020·220-1)=1+21(320-1)=1+21[(10-1)10-1]=1+21∑=101i C i 1010(10-i)(-1)i ,∵21∑=101i C i 1010(10-i)(-1)i 中的每一项都能被10整除,∴a 被10除的余数是1.点评:b ≡a (mon10)的含义是a 、b 被10除的余数相同,理解这一点才能明确代数式a 的变形方向.3.某游戏中,一个珠子从如图所示的通道由上至下滑下,从最大面的六个出口出来,规定猜中出口者为胜.如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为( )A.165B.325 C .61 D .以上都不对讲解:A.珠子从出口1出来有C 05种方法,从出口2出来有C 15种方法,依次从出口i(1≤i ≤6)有C 15-i 种方法,故取胜的概率为16555453525150525=+++++C C C C C C C .。

2021高考数学 必考热点大调查5 排列组合和概率(1)

2021高考数学 必考热点大调查5 排列组合和概率(1)

2021高考数学必考热点大调查:热点5排列组合和概率【最新考纲解读】1.分类加法计数原理、分步乘法计数原理(1)明白得分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.2.排列与组合(1)明白得排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.3.事件与概率(1)了解随机事件发生的不确信性和频率的稳固性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.4.古典概型(1)明白得古典概型及其概率计算公式.(2)会计算一些随机事件所含的大体事件数及事件发生的概率.5.随机数与几何概型(1)了解随机数的意义,能运用模拟方式估量概率.(2)了解几何概型的意义.【回归讲义整合】1.排列数m n A 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N .(1)排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21n n A n n n n ==--⋅。

(2)组合数公式 ()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =. (3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. 2.解排列组合问题的依据是:分类相加(每类方式都能独立地完成这件事,它是彼此独立的,一次的且每次得出的是最后的结果,只需一种方式就能够完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.3.解排列组合问题的方式有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。

近年排列组合概率高考题

近年排列组合概率高考题

近年排列组合、概率高考题(选择填空题)? 排列组合2021年全国Ⅰ卷理(12)设集合I={1,2,3,4,5},选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有(B) (A)50种 (B)49种 (C)48种 (D)47种2021年全国Ⅱ卷文(12)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A )(A)150种 (B)180种 (C)200种 (D)280种 2021年北京卷理(3)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有B(A)36个 (B)24个 (C)18个(D)6个2021年北京卷文(4)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有A (A)36个 2021年天津卷理5、将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有(A ) A.10种 2021年湖南卷理6. 某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有DA. 16种 B.36种 C.42种 D.60种 2021年湖南卷文6.在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是 B(A)6 (B)12 (C)18 (D)24 2021年山东卷理9.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直1(B)24个 (C)18个 (D)6个B.20种 C.36种 D.52种角坐标系中点的坐标,则确定的不同点的个数为A (A) 33(B) 34(C) 35(D) 362021年重庆卷文(9)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是B (A)1800 (B)3600 (C)4320 (D)5040 2021年全国Ⅰ卷理(15)安排7位工作人员5月1日至5月7日值班,每人值班一天,其中甲、乙两人不安排在5月1日和5月2日,不同的安排方法数共有____.2400 2021年湖北卷理14.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是_____________.(用数字作答) 20 2021年湖北卷文14.安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的种数是.(用数字作答) 78 2021年江苏卷13.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有1260种不同的方法(用数字作答). 2021年辽宁卷理15.5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1,2号中至少有1名新队员的排法有________种. 48 2021年辽宁卷文(16)5名乒乓球队员中,有2名老队员和3名新队员,现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员至少有1名老队员,且1、2号中至少有1名新队员的排法有__________种.(以数作答) 48 2021年山东卷文(13)某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是 . 150 2021年陕西卷理16.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有__600_种(用数字作答).22021年北京理(7)北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A124C14C12C8412443(A)CCC (B)CAA (C) (D)C14C12C8A3 3A3121441248 1214412482021年北京文(8)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有B141444(A)C4种 (D)A4种 C4种 (B)C4A4种 (C)C42021年福建理9.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 ( B ) A.300种 2021年江苏(12)四棱锥的8条棱代表8种不同的化工产品,有公共顶点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为B(A) 96 (B) 48 (C) 24 (D) 0 2021年湖南理9.4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲.乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是 ( B ) A.48 2021年湖南文7.设直线的方程是Ax?By?0,从1,2,3,4,5这五个数中每次取两个不同的数作为A、B的值,则所得不同直线的条数是 ( C ) A.20B.240种 C.144种 D.96种B.36 C.24 D.18B.19 C.18 D.1632021年湖北文9.把同一排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少1张,至多2张,且这两张票具有连续的编号,那么不同的分法种数是D A.168 B.96 C.72 D.144 2021年江西文7.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为(A )A.70 2021年全国乙理(15) 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有___192__个. 2021年全国丙文(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 100 种. 2021年广东(14)设平面内有n条直线(n?3),其中有且仅有两条直线互相平行,任意三角形不过同一点.若用f(n)表示这n条直线交点的个数,则f(4) _____________;当n>4时,f(n)=_____________.5, 2021年浙江理(14) 从集合{O,P,Q,R,S}与{0,1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O、Q和数字0至多只出现一个的不同排法种数是 8424 (用数字作答). 2021年辽宁15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 576 个.(用数字作答) .2021年北京春季理(13)从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,可组成不同的二次函数共有____ 18 ____个,其中不同的偶函数共有___6____个.(用数字作答) 2021年全国西理文(12)在由数字1、2、3、4、5组成的所有没有重复数字的五位数中,大于23145且小于435214B.140 C.280 D.8401(n?2)(n?1) 2的数共有 C(A)56个 (B)57个 (C)58个 (D)60个 2021年新甘宁理9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 B(A)210种(B)420种(C)630种(D)840种2021年现行理(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( C )(A) 12 种 2021年现行文(12) 将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有(C )(A) 12 种 (B) 24 种 2021年北京理(7)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则(A)11 (B) 105m等于 B n(B) 24 种 (C) 36 种 (D) 48 种(C) 36 种 (D) 48 种(C)3 10(D)2 52021年北京文(5)从长度分别为1,2,3,4的四条线段中,任取三条的不同取法共有n种.在这些取法中,以取出的三条线段为边可组成的三角形的个数为m,则(A)0 (B)113 (C) (D) 424m等于 B n2021年北京春季理文(9)在100件产品中有6件次品.现从中任取3件产品,至少有1件次品的不同取法的种数是 A12C94 (A)C612C99 (B)C62(C)P61P94 33?C94(D)C1002021年福建理(6)某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 B5感谢您的阅读,祝您生活愉快。

高考数学一轮复习点点练36排列与组合(含解析)理

高考数学一轮复习点点练36排列与组合(含解析)理

第十一单元概率与统计考情分析本单元在全国卷中占据重要地位,注意“一表、三图、五数”的理解与应用,其中概率、离散型随机变量的分布列、期望等知识的综合运用是高考命题的热点.其中抽样方法与样本估计总体数字特征的求解,多以选择题或填空题的形式出现,统计图表与概率的综合多以解答题的形式出现,线性回归分析及独立性检验有时也以解答题的形式出现.主要考查学生的数据分析、数学运算及逻辑推理的核心素养.点点练36排列与组合一基础小题练透篇1.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.60种B.70种C.75种D.150种2.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )A.48B.18C.24D.363.若原来站成一排的4个人重新站成一排,恰有一个人站在自己原来的位置,则不同的站法种数为( )A.4B.8C.12D.244.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种5.旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小明可选的旅游路线数为( )A.24B.18C.16D.106.第十四届全国运动会将于2021年在陕西举办,为宣传地方特色,某电视台派出3名男记者和2名女记者到民间进行采访报导.工作过程中的任务划分为“负重扛机”“对象采访”“文稿编写”“编制剪辑”四项工作,每项工作至少一人参加,但2名女记者不参加“负重扛机”工作,则不同的安排方案数为( )A.150B.126C.90D.547.从3名骨科,4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).8.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有________种.(用数字作答)二能力小题提升篇1.[2022·河北省唐县月考]7个人站成一排准备照一张合影,其中甲、乙要求相邻,丙、丁要求分开,则不同的排法有( )A.400种B.720种C.960种D.1200种2.[2022·广东省深圳市月考]某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( )A.120种B.80种C.20种D.48种3.[2022·福建省福州质检]某市近几年大力改善城市环境,全面实现创建生态园林城市计划,现省专家组评审该市是否达到“生态园林城市”的标准,从包含甲、乙两位专家在内的8人中选出4人组成评审委员会,若甲、乙两位专家至少一人被邀请,则组成该评审委员会的不同方式共有( )A.70种B.55种C.40种D.25种4.[2022·贵州省贵阳月考]2021年暑假,贵阳一中继续组织学生开展“百行体验”社会实践活动.现高三年级某班有6名学生需要去敬老院、社区医院、儿童福利院三个机构开展活动,要求每个机构去2名学生,且学生甲不去敬老院,则不同的安排共有( ) A.60种B.360种C.15种D.100种5.[2022·江苏省常州市检测]为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有________.6.[2022·四川省成都月考]一条路上有10盏路灯,为节约资源,准备关闭其中的3盏.为安全起见,不能关闭两端的路灯,也不能关闭任意相邻的两盏路灯.则不同的关闭路灯的方法有________种.三高考小题重现篇1.[2021·全国乙卷]将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )A.60种B.120种C.240种D.480种2.[全国卷Ⅱ]如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.93.[2020·山东卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A.120种B.90种C.60种D.30种4.[四川卷]用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( ) A.24B.48C.60D.725.[2020·全国卷Ⅱ]4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种.6.[全国卷Ⅰ]从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)四经典大题强化篇1.3名女生和5名男生排成一排.(1)若女生全排在一起,有多少种排法?(2)若女生都不相邻,有多少种排法?(3)若女生不站两端,有多少种排法?(4)其中甲必须排在乙左边(可不邻),有多少种排法?(5)其中甲不站最左边,乙不站最右边,有多少种排法?2.某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.点点练36 排列与组合一基础小题练透篇1.答案:C解析:共有C26·C15=75(种)不同的选法.2.答案:D解析:第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).3.答案:B解析:根据题意,分两步考虑:第一步,先从4个人里选1人,其位置不变,站法有C14=4(种);第二步,其他3人都不站在自己原来的位置上,有2种站法.故不同的站法共有4×2=8(种).4.答案:A解析:安排人员去甲地可分为两步:第一步安排教师,有C12种方案;第二步安排学生,有C24种方案.其余的教师和学生去乙地,所以不同的安排方案共有C12C24=12(种).5.答案:D解析:分两种情况,第一种,最后体验甲景区,则有A 33 种可选的路线;第二种,不在最后体验甲景区,则有C 12 ·A 22 种可选的路线.所以小明可选的旅游路线数为A 33 +C 12 ·A 22 =10.6.答案:B解析:根据题意,“负重扛机”可由1名男记者或2名男记者参加,当由1名男记者参加“负重扛机”工作时,有C 13 种方案,剩余2男2女记者可分为3组参加其余三项工作,共有C 24 C 12 A 22 ·A 33 种方案,故由1名男记者参加“负重扛机”工作时,有C 13 ·C 24 C 12 A 22 ·A 33 种方案;当由2名男记者参加“负重扛机”工作时,剩余1男2女3名记者各参加一项工作,有C 23·A 33种方案.故满足题意的不同安排方案数为C 13·C 24 C 12 A 22·A 33 +C 23 ·A 33 =108+18=126.7.答案:590解析:方法一 5=1+1+3=1+2+2,故共有选派方法:C 33 C 14 C 15 +C 13 C 34 C 15 +C 13 C 14 C 35 +C 23 C 24 C 15 +C 23 C 14 C 25 +C 13 C 24 C 25 =590种.方法二 利用间接法,用C 512 减去这5人从某一科或某两科选出的情形:C 512 -[C 55 +C 57 +(C 58 -C 55 )+(C 59 -C 55 )]=590.8.答案:45解析:设5名同学也用A ,B ,C ,D ,E 来表示,若恰有一人坐对与自己车票相符的坐法,设E 同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC ,BDAC ,BCDA ,CADB ,CDAB ,CDBA ,DABC ,DCAB ,DCBA ,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).二 能力小题提升篇1.答案:C解析:根据题意,可知甲、乙要求相邻的排法有A 66 ×2=1440种,而甲、乙要求相邻且丙、丁也相邻的排法有A 55 ×2×2=480种,故甲、乙要求相邻,丙、丁分开的排法有1440-480=960种.2.答案:C解析:方法一 在5个位置中选两个安排其它两个节目,还有三个位置按顺序放入甲、乙、丙,方法数为A 25 =20.方法二 不同的排法有A 55A 33=20.3.答案:B解析:8人中选4人有C 48 =70种,甲、乙均不选有C 46 =15种,共有C 48 -C 46 =55种. 4.答案:A解析:先将6名学生分为3组,有C 26 C 24 C 22A 33 =15种,因为甲所在小组不能去敬老院,所以安排的方法有C 12 A 22 =4种,故不同的安排共有15×4=60种.5.答案:54解析:①若甲乙两人恰有一人入选,志愿者有C 12 C 23 =6种选法,再分配到3个社区,有A 33 =6种方案,故由分步乘法计数原理知,共有6×6=36种选派方法;②若甲乙两人都入选,志愿者有C 22 C 13 =3种选法,再分配到3个社区,有A 33 =6种方案,故由分步乘法计数原理知,共有3×6=18种选派方法,综上,由分类加法计数原理知,共有36+18=54种选派方法. 6.答案:20解析:将关闭后的路灯看作是由7盏亮着的路灯和3盏熄灭的路灯的排列,其中熄灭的路灯不能在两端,也不能相邻.因此,先将7盏亮着的路灯排好,再用3盏熄灭的路灯去插除去两端的6个空,一共有C 36 =20种方法.三 高考小题重现篇1.答案:C解析:根据题设中的要求,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,可分两步进行安排:第一步,将5名志愿者分成4组,其中1组2人,其余每组1人,共有C 25 种分法;第二步,将分好的4组安排到4个项目中,有A 44 种安排方法.故满足题意的分配方案共有C 25 ·A 44 =240(种).2.答案:B解析:由E 处到F 处向上和向右各走2段,故有C 24 =6种走法,同理从F 处到G 处有C 13 =3种走法.由分步乘法计数原理可知,共有6×3=18条最短路径.3.答案:C解析:C 16 C 25 C 33 =60. 4.答案:D解析:由1,2,3,4,5组成没有重复数字的五位数,个位数为奇数的有C 13 种,其余4个数字全排列,所以奇数的个数为C 13 ·A 44 =3×4×3×2×1=72.5.答案:36解析:因为每个小区至少安排1名同学,所以4名同学的分组方案只能为1,1,2,所以不同的安排方法共有C 14 ·C 13 ·C 22 A 22·A 33 =36种. 6.答案:16解析:方法一(直接法) ①选1女2男有C 12 C 24 =12种选法,②选2女1男有C 22 ·C 14 =4种选法.根据分类加法原理,共12+4=16种不同选法.方法二(间接法) 6人中选3人有C 36 种选法,3人全是男生有C 34 种选法,∴符合题意的不同选法有C 36 -C 34 =20-4=16种.四 经典大题强化篇1.解析:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个元素,排成一排有A 66 种排法,而其中每一种排法中,3名女生之间又有A 33 种排法,因此共有A 66 ·A 33 =4320种不同排法.(2)(插空法)先排5名男生,有A 55 种排法,这5名男生之间和两端有6个位置,从中选取3个位置排女生,有A 36 种排法,因此共有A 55 ·A 36 =14400种不同排法.(3)方法一(位置分析法) 因为两端不排女生,只能从5名男生中选2人排,有A 25 种排法,剩余的位置没有特殊要求,有A 66 种排法,因此共有A 25 ·A 66 =14400种不同排法.方法二(元素分析法) 从中间6个位置选3个安排女生,有A 36 种排法,其余位置无限制,有A 55 种排法,因此共有A 36 ·A 55 =14400种不同排法.(4)8名学生的所有排列共A 88 种,其中甲在乙左边与乙在甲左边的各占12,因此符合要求的排法种数为12A 88 =20160.(5)甲、乙为特殊元素,左、右两边为特殊位置.方法一(特殊元素法) 甲在最右边时,其他的可全排,有A 77 种不同排法;甲不在最右边时,可从余下6个位置中任选一个,有A 16 种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有A 16 种,其余人全排列,共有A 16 ·A 16 ·A 66 种不同排法.由分类加法计数原理知,共有A 77+A 16 ·A 16 ·A 66 =30960种不同排法.方法二(特殊位置法) 先排最左边,除去甲外,有A 17 种排法,余下7个位置全排,有A 77 种排法,但应剔除乙在最右边时的排法A 16 ·A 66 种,因此共有A 17 ·A 77 -A 16 ·A 66 =30960种排法.方法三(间接法) 8名学生全排列,共A 88 种,其中,不符合条件的有甲在最左边时,有A77种排法,乙在最右边时,有A77种排法,其中都包含了甲在最左边,同时乙在最右边的情形,有A66种排法.因此共有A88-2A77+A66=30960种排法.2.解析:(1)只有一名女生当选等价于有一名女生和四名男生当选.故共有C15·C48=350种.(2)两队长当选,共有C22·C311=165种.(3)至少有一名队长当选含有两类:只有一名队长当选,有两名队长当选.故共有C1 2·C411+C22·C311=825种.(或采用排除法:C513-C511=825(种)).(4)至多有两名女生当选含有三类:有两名女生当选,只有一名女生当选,没有女生当选.故选法共有C25·C38+C15·C48+C58=966种.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列、组合、概率部分新题原创3道
1.一圆形餐桌依次有A 、B 、C 、D 、E 、F 共有6个座位.现让3个大人和3个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总数为 ( ) A.6 B.12 C.72 D.144
讲解:C. 大人的座位可能是A 、C 、E 或B 、D 、F ,故大人入座的方法数为2A 33
;而小孩入座剩下座位的方法有A 33种,由分步计数法原理知方法总数为2A 33·A 33
=72.
2.设a 、b 、m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余.记为a
≡b (modm).已知a =1+C 120+C 220·2+C 320·22+…+C 2020·
219,b ≡a (mon10),则b 的值可以是 ( ) A.2 015 B.2 011 C.2 008 D.2 006
讲解:B. 1+21(C 020+C 120·2+C 220·22+C 320·23+…+C 2020·220-1)=1+21(320-1)=1+2
1[(10-1)10-1]=1+21∑=101i C i 1010(10-i)(-1)i ,∵21∑=101
i C i 1010(10-i)(-1)i 中的每一项都能被10整除,∴a 被10除的余数是1.
点评:b ≡a (mon10)的含义是a 、b 被10除的余数相同,理解这一点才能明确代数式a 的变形方向.
3.某游戏中,一个珠子从如图所示的通道由上至下滑下,
从最大面的六个出口出来,规定猜中出口者为胜.如果你
在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为
( )
A.165
B.325 C .6
1 D .以上都不对 讲解:A. 珠子从出口1出来有C 05种方法,从出口2出来有C 15种方法,依次从出口i(1≤i ≤6)

C 15-i 种方法,故取胜的概率为16555453525150525
=+++++C C C C C C C .。

相关文档
最新文档