电磁屏蔽材料用银包玻璃微珠核_壳粒子的制备及其性能_英文_

合集下载

Fe3O4CaP核壳磁性纳米复合粒子的制备及生物学性能的开题报告

Fe3O4CaP核壳磁性纳米复合粒子的制备及生物学性能的开题报告

Fe3O4CaP核壳磁性纳米复合粒子的制备及生物学性能的开题报告1、研究背景与意义磁性纳米材料在医药领域有着广泛的应用,主要是因为其具有超小粒径、高表面积、高稳定性和盛载能力强等特点。

同时,核壳结构的纳米复合粒子则是常用的载药体系,其可以同时兼顾纳米固体与包埋物质的优点,具有较好的药物负载和释放性能。

Fe3O4CaP核壳磁性纳米复合粒子,是由磁性纳米颗粒Fe3O4作为核心,磷酸钙作为壳层,具有良好的生物相容性和生物可降解性质,可以作为药物载体、生物传感器等领域的新型纳米材料。

2、研究内容本课题主要研究Fe3O4CaP核壳磁性纳米复合粒子的制备与表征,以及其在生物学方面的应用。

具体包括以下几个方面的内容:(1) 合成Fe3O4纳米颗粒Fe3O4纳米颗粒是Fe3O4CaP核壳磁性纳米复合粒子的核心材料,因此其制备过程是本课题的重要环节。

采用共沉淀法合成Fe3O4纳米颗粒,探究反应温度、转速、浓度等因素对其形貌和磁性能的影响。

(2) 制备Fe3O4CaP核壳磁性纳米复合粒子本课题采用改进的沉淀法制备Fe3O4CaP核壳磁性纳米复合粒子,探究反应温度、反应时间、Ca/P配比等因素对其形貌和结构的影响。

(3) 表征Fe3O4CaP核壳磁性纳米复合粒子的磁性能、形貌和结构,并评价其生物相容性。

(4) 研究Fe3O4CaP核壳磁性纳米复合粒子在生物体内的应用具体包括对其在干细胞标记、磁导定向分化、磁性靶向治疗等方面的应用研究。

3、研究方法(1) 合成Fe3O4纳米颗粒:采用共沉淀法制备Fe3O4纳米颗粒,探究不同反应条件对其形貌和磁性能的影响。

(2) 制备Fe3O4CaP核壳磁性纳米复合粒子:采用改进的沉淀法制备Fe3O4CaP核壳磁性纳米复合粒子,探究反应条件对其形貌和结构的影响。

(3) 表征复合粒子的磁性能、形貌和结构:采用XRD、TEM、VSM等手段对样品进行表征,评价其生物相容性。

(4) 研究复合粒子在生物体内的应用:研究复合粒子在干细胞标记、磁导定向分化、磁性靶向治疗等方面的应用研究。

玻璃包覆磁性微丝的制备及微波电磁性能

玻璃包覆磁性微丝的制备及微波电磁性能
维普资讯
邸永 江 等 : 璃 包 覆 磁 性 微 丝 的 制 备 及 微 波 电磁 性 能 玻
玻 璃 包 覆磁 性 微 丝 的 制 备及 微 波 电磁 性 能
邸永江 , 建军 , 江 吴挺 华 , 华辉 何
( 中科 技 大 学 电 子 科 学 与 技 术 系 , 北 武 汉 4 0 7 ) 华 湖 3 0 4 摘 要 : 采 用 T yo— i vk a lrUl o s y方 法 制 备 了 F 基 和 t e
工 艺性 和 使 用 性 能 。通 过 Ta lr i v k yo— t s y方 法 , Ulo 制
丝速 度分 别为 2 4和 6m/ n时 C 4 mi o基 玻 璃 包 覆微 丝
的形 貌 图 。 图 1中 ( ) ( ) 丝 合 金 直 径 分 别 为 a~ d 微 l . 、 . 、 8 3和 9 O m, 璃 包 覆 层 厚 度 分 别 为 18 1 7 1 . . 玻
备了 F 基和 C e o基 玻 璃包 覆 磁 性微 丝 , 并分 析 了 它们
的微 结构 、 静磁 性能 和微 波 电磁 性 能 。
2 实 验 方 法
采用 Ta lr i v k yo — t s y法 制 备 玻 璃 包 覆 磁 性 微 Ul o 丝 。合 金 为 F C Nb i F e u VSB( e基 ) C F Nii C 和 o e SB( o 基 ) 硼 硅酸 盐玻璃 包覆 。将 合 金放 入下 端 封 闭 的玻 璃 ,
计 算 的 自然 铁 磁 共 振 频 率 基 本 一 致 。 典 型 样 品 的 相 对
采用 XP r P O 型 X射 线衍 射仪 ( R et R X D)分析 玻 璃包覆 微 丝 的相 组 成 。使 用 Qu n a2 0型 扫 描 电 子 a t 0 显微 镜 观 ( E 观 察样 品形 貌 。采用 振 动样 品磁 强计 S M) ( b l 场 H 沿 着微 丝 轴 向 、 向方 向) 试样 品的典  ̄ t磁 径 测

非晶态电磁屏蔽材料的制备与性能

非晶态电磁屏蔽材料的制备与性能

1 引言电磁屏蔽是控制电磁干扰的有效手段[1,2],金属膜是最常用的屏蔽材料,由于皮层效应,薄的金属层即可达到有效的电磁屏蔽,传统的金属屏蔽材料多采用铁、硅钢片、不锈钢、坡莫合金等加工成薄片、薄带等单一材料,成本较高[3]。

非晶态合金的屏蔽性能优于传统材料,用电镀技术沉积非晶态合金层,不仅工艺简单,而且成本低,使用方便[4,5],所制得的非晶态电磁屏蔽材料可用于提高集成电子线路、无线电、雷达、通讯、仪器仪表等电子系统和电子设备的电磁兼容性能。

本文介绍采用电镀技术在高电导率的铝箔上沉积非晶态Fe-Ni合金的过程,并分析了非晶态Fe-Ni的电磁屏蔽性能。

2 非晶态Fe-Ni的制备2.1 试剂及原料硫酸镍(NiSO4·7H2O)、硫酸亚铁(FeSO4·7H2O)、氯化镍(NiCl2·6H2O )、次亚磷酸钠(NaH2PO2)等均为化学纯,天津市化学试剂三厂生产;铝箔,河北省涿州市桃园铝箔厂生产。

非晶态电磁屏蔽材料的制备与性能Preparation and Performance of Amorphous Electromagnetic Shielding Material北京工业大学材料学院 王群 高东海 郭红霞 李永卿 袁岩兴摘要利用电镀技术在高电导率的铝箔上沉积非晶态Fe-Ni合金,通过加入适当的添加剂,并控制镀液的pH值在2~4,电流密度为2.0~4.0A/dm2,扫描电镜观察得到表面平整、形态良好的镀层,X射线分析了镀层的晶相,屏蔽效能测试表明该样品在高频和低频范围显示了较好的屏蔽效能。

关键词非晶态 电镀 电磁屏蔽 屏蔽效能AbstractNi-Fe amorphous alloy coatings are electrodeposited on aluminum foil in order to improve electromagnetic shieldingperformance. The additives and pH of electrobath as well as current density of electroplate were investigated. SEM analysisshowed that a good quality deposit was obtained. The structure of deposits was investigated by XRD. The results showed thatthe electromagnetic shielding performance of the Ni-Fe amorphous alloy deposit was improved within both high and lowfrequency.Keywordsamorphous, electroplate, electromagnetic shielding, shielding efficiency2.2 非晶态铁镍合金的电镀沉积将铝箔经砂纸磨光、有机溶剂脱脂、化学除油等处理后,置于自制的电镀槽中。

非晶态合金_镀银玻璃微珠混合填充CPE的电磁屏蔽性能研究

非晶态合金_镀银玻璃微珠混合填充CPE的电磁屏蔽性能研究

非晶态合金/镀银玻璃微珠混合填充CPE 的电磁屏蔽性能研究冯 猛1,曾 敏1,伍江涛2,张羊换1,王新林1(1.钢铁研究总院功能材料研究所,北京 100081;2.北京橡胶工业研究设计院,北京 100143) 摘要:试验研究非晶态合金/镀银玻璃微珠(SG B )混合填料对CPE 电磁屏蔽性能和拉伸强度的影响。

结果表明,在非晶态合金/SG B 混合填料中随着SG B 质量分数的增大,CPE 的电磁屏蔽效能增幅很小,没有达到体系的阈值;非晶态合金的加入增大了CPE 的低频吸收损耗,对CPE 的拉伸强度有一定影响。

关键词:氯化聚乙烯;非晶态合金;镀银玻璃微珠;电磁屏蔽性能 中图分类号:TQ333192;TQ330138+3 文献标识码:B 文章编号:10002890X (2010)022******* 作者简介:冯猛(19772),男,内蒙古包头人,钢铁研究总院功能材料研究所高级工程师,博士,主要从事电磁屏蔽材料的研究。

信息技术的进步带来了电子电力设备的广泛应用。

随之而来的是电磁泄漏和干扰问题的频频发生,电磁密封材料由此应运而生。

电磁屏蔽橡胶是目前应用效果最好的一种电磁密封材料,具有环境屏蔽密封和电磁密封的双重作用,被广泛应用于无线通信基站和手机等行业,市场潜力巨大,因此成为电磁兼容(EMC )行业的研究热点之一。

具有较好导电性和导磁性的填充材料是屏蔽橡胶最终性能的决定因素。

目前使用较多的填料包括银粉、石墨镀镍、镀银玻璃微珠、镀银铜粉和镀银铝粉等,有颗粒状、片状和纤维状,其中导电炭黑和镀银材料分别因低成本和高导电性而成为研究者普遍使用的材料[1214]。

非晶态合金具有一定导电性,同时兼有高磁导率,在低频磁场屏蔽材料和镀层屏蔽材料、电磁屏蔽涂料等领域得到了广泛应用,取得了很好的屏蔽效果[15,16]。

目前国内外关于非晶态合金在电磁屏蔽橡胶中的应用报道还较少。

为了利用非晶态合金的性能优势,本工作采用非晶态合金粉末结合镀银玻璃微珠作为混合填料,以具有优异耐热老化性能和很高填充性能的氯化聚乙烯(CPE )作为基体材料,初步研究混合填料对CPE 电磁屏蔽性能和拉伸性能的影响。

CaO-B2O3-SiO2_微晶玻璃的制备及介电性能 

CaO-B2O3-SiO2_微晶玻璃的制备及介电性能 

第43卷第4期2024年4月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.4April,2024CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能卫志洋,王晓东,苏㊀腾,陈欢乐,高㊀峰,苗㊀洋(太原理工大学材料科学与工程学院,太原㊀030024)摘要:低介电常数㊁低介电损耗的微晶玻璃是制造低温共烧陶瓷基板的重要材料㊂本文采用熔融水淬法制备了CaO-B 2O 3-SiO 2(CBS)微晶玻璃,重点研究了m (CaO)/m (SiO 2)质量比㊁B 2O 3含量对CBS 微晶玻璃介电性能的影响㊂结果表明:CBS 微晶玻璃的主要晶相有Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂随着m (CaO)/m (SiO 2)质量比的增加,介电常数增加,介电损耗先降低后增加;硅灰石相的增多使介电损耗从2.87ˑ10-3降到1.36ˑ10-3,介电损耗随着SiO 2㊁Ca 2B 2O 5和CaB 2O 4含量的增加而增大㊂随着B 2O 3含量的增加,介电常数先增加后减少,而介电损耗则相反㊂当m (CaO)/m (SiO 2)质量比为0.89㊁B 2O 3含量为15%(质量分数)时,在900ħ烧结3h,CBS 微晶玻璃的热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为5.85,介电损耗为1.37ˑ10-3(10GHz)㊂关键词:CaO-B 2O 3-SiO 2;微晶玻璃;介电常数;介电损耗;微观结构;低温共烧中图分类号:TQ174.1㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)04-1274-10Preparation and Dielectric Properties of CaO-B 2O 3-SiO 2Glass-CeramicsWEI Zhiyang ,WANG Xiaodong ,SU Teng ,CHEN Huanle ,GAO Feng ,MIAO Yang(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China)Abstract :Glass-ceramics with low dielectric constant and low dielectric loss is an important material for the manufacture of low temperature cofired ceramic substrates.CaO-B 2O 3-SiO 2(CBS)glass-ceramics was prepared by melt-water quenching method,and the effects of m (CaO)/m (SiO 2)mass ratio and B 2O 3content on the dielectric properties of CBS glass-ceramics were studied.The results show that the main crystalline phases of CBS glass-ceramics are Ca 3Si 3O 9,Ca 2B 2O 5,CaB 2O 4,SiO 2and Ca 2SiO 4.The dielectric constant increases,the dielectric loss decreases first and then increases with the increase of m (CaO)/m (SiO 2)mass ratio.The increase of wollastonite phase decreases the dielectric loss from 2.87ˑ10-3to 1.36ˑ10-3.The dielectric loss increases with the increase of SiO 2,Ca 2B 2O 5and CaB 2O 4content.With the increase of B 2O 3content,the dielectric constant increases first and then decreases,and the dielectric loss is reversed.When m (CaO)/m (SiO 2)mass ratio is 0.89and B 2O 3content is 15%(mass fraction),the coefficient of thermal expansion is 7.16ˑ10-6㊀ħ-1,the dielectric constant is 5.85,and the dielectric loss is 1.37ˑ10-3(10GHz)after sintering at 900ħfor 3h.Key words :CaO-B 2O 3-SiO 2;glass-ceramics;dielectric constant;dielectric loss;microstructure;low temperature co-firing 收稿日期:2023-10-18;修订日期:2024-01-09基金项目:国家留学基金委山西省研究项目(2022-042);山西省重点研发计划项目(202102030201006);山西省基础研究计划(202203021221059)作者简介:卫志洋(1997 ),男,硕士研究生㊂主要从事低温共烧陶瓷的研究㊂E-mail:weizhiyang27@通信作者:苗㊀洋,博士,副教授㊂E-mail:miaoyang198781@ 0㊀引㊀言当今时代信息技术和高频通信迅猛发展,对性能卓越的介电材料需求日益增加㊂低介电常数㊁低损耗的材料具有较小的延迟且适用于新一代通信的数据传输[1]㊂CaO-B 2O 3-SiO 2(CBS)微晶玻璃因优异的介电特性及广泛的应用前景受到关注㊂在CBS 体系中,硅灰石的介电常数εr 和介电损耗tan δ较低,常用于陶瓷基板材料领域[2]㊂微晶玻璃的性能在很大程度上依赖于其化学组成,尤其是钙硅比和氧化硼含量㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1275㊀适量的CaO能提高化学稳定性,对CBS的机械强度有一定的强化作用㊂Ca2+具有高极化率,因此钙含量较高的CBS的εr都较大,需要控制氧化钙的含量㊂CaO由CaCO3分解得到,B2O3和SiO2都是网络形成体,但是网络结构不同,主要起骨架的作用[3]㊂B2O3是二维层状结构,主要由[BO3]连接而成㊂当加入CaO时,系统中游离氧增加,并与[BO3]结合生成[BO4],[BO4]可以强化CBS的强度[4]㊂当加入过量的B2O3时,大量的B3+破坏陶瓷的结构,使陶瓷的性能恶化,削弱了CBS的介电性能[5]㊂SiO2是三维结构,由[SiO4]构成,其介质损耗小,但熔融温度高,制备微晶玻璃时有很大的困难㊂Ca2+可以与Si O反应,会改变网络的原有结构[6],粒子位移更容易,在较高的温度下,液相的黏度会降低,晶体生长更容易,促进微晶玻璃的析晶㊂He等[7]通过两步烧结工艺制备了三种配方的CBS,研究了硼对CBS微晶玻璃晶相和微观结构的影响㊂观察到硼含量较高的样品结构疏松,晶粒排列被破坏;当n(Ca)ʒn(Si)ʒn(B)摩尔比为1.0ʒ1.0ʒ0.6时,在700ħ保温1h,再升温至900ħ时介电性能良好,εr均为6(1㊁10MHz),tanδ为2.27ˑ10-3(1MHz)和3.37ˑ10-3(10MHz)㊂Chiang等[8]制备了6种CaO-B2O3-SiO2玻璃试样,探讨了三种组分对致密性㊁热性能和介电性能的影响㊂高CaO含量的样品烧结温度低,密度较大,高SiO2含量的样品烧结温度高,密度较小㊂Ca2+的极化率为3.16Å3,远高于B3+的0.05Å3和Si4+的0.87Å3,因此高CaO的试样εr较高㊂[SiO4]对玻璃的结构有强化作用,当SiO2含量较高时,玻璃的介电损耗较小㊂韦鹏飞等[9]通过熔融法制备了CBS,主要探究了B2O3对CBS性能的影响㊂结果发现,当B2O3为35%(文中均为质量分数)时,在850ħ下烧结15min,介电性能最好,εr为6.42,tanδ为0.0009(9.7Hz)㊂现有研究显示,钙硅比和氧化硼含量的调整可以显著影响微晶玻璃的结构与性能㊂本研究旨在深入探讨这两个关键因素如何协同作用,从而影响钙硼硅微晶玻璃的介电性能㊂通过实验研究和理论分析,着眼于通过精确控制化学成分来优化微晶玻璃的介电特性,以满足现代高频电子设备的严苛要求㊂本文采用熔融淬火法制备了CBS微晶玻璃,在低温共烧陶瓷(low temperatrue co-fired ceramic,LTCC)基板制作要求的烧结温度范围内,重点研究了m(CaO)/m(SiO2)质量比和B2O3对CBS材料介电性能的影响㊂1㊀实㊀验1.1㊀样品制备原料为CaCO3(99.99%)㊁SiO2(99.99%)㊁H3BO3(99.99%),购自麦克林试剂公司,表1和表2分别为不同m(CaO)/m(SiO2)质量比和不同B2O3含量的CRS玻璃配方㊂按照表中设计的原料配比,准确称量三种氧化物粉末总计30g,将原料研磨3h,置于氧化铝坩埚,在1500ħ下熔融2h㊂将高温下的熔融玻璃水淬得到碎玻璃,研磨成粉并过200目(74μm)筛,然后球磨干燥得到玻璃粉末㊂造粒压块,将生坯样品在500ħ下加热1h 除去黏合剂,然后在六个温度(800㊁825㊁850㊁875㊁900和925ħ)下烧结3h,空气中加热速率为5ħ/min㊂表1㊀不同m(CaO)/m(SiO2)质量比的CBS玻璃配方Table1㊀CBS glass formulations with different m(CaO)/m(SiO2)mass ratiosNumber Mass fraction/%CaO B2O3SiO2m(CaO)/m(SiO2) CBS132.5015.0052.500.62CBS240.0015.0045.000.89CBS342.9215.0042.10 1.02CBS448.0015.0037.00 1.30表2㊀不同B2O3含量的CBS玻璃配方Table2㊀CBS glass formulations with different B2O3contentNumber Mass fraction/%CaO SiO2B2O3m(CaO)/m(SiO2) CBS543.3048.608.100.89CBS642.4047.6010.000.891276㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷续表Number Mass fraction /%CaO SiO 2B 2O 3m (CaO)/m (SiO 2)CBS740.0045.0015.000.89CBS837.7042.3020.000.891.2㊀结构与性能表征烧结试样的体积密度通过阿基米德排水法测量㊂采用X 射线粉末衍射仪(XRD,TD-3500)测定相组成,测试电压为35kV,电流为25mA,扫描速率为5(ʎ)/min,扫描范围为10ʎ~80ʎ,Cu-K α辐射㊂利用扫描电子显微镜(SEM,ZEISS)观察微晶玻璃的微观结构㊂采用同步热分析仪(NETZSCH,STA449)进行DSC 测试,在空气气氛中以10ħ/min 的速率从10ħ升至1100ħ,氧化铝坩埚用作参考材料,测试样品是过筛后的玻璃粉㊂拉曼光谱(RENISHAW)测量的波数范围为100~1100cm -1㊂在TE011模式下,使用Rohde&Schwarz网络分析仪(ZNA43,10MHz ~43.5GHz)测量烧结样品的Q 值,以计算介电性能㊂2㊀结果与讨论2.1㊀m (CaO )/m (SiO 2)质量比对CBS 微晶玻璃介电性能的影响固定B 2O 3的含量,设定m (CaO)/m (SiO 2)质量比为0.62㊁0.89㊁1.02㊁1.30,制得CBS i (i =1㊁2㊁3㊁4,下同)系列,表征m (CaO)/m (SiO 2)质量比对CaO-B 2O 3-SiO 2的影响㊂表1为具体的配方组成㊂2.1.1㊀差热分析图1㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的DSC 曲线Fig.1㊀DSC curves of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 图1为四种不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2玻璃的DSC 曲线㊂四个DSC 曲线中有较大的析晶峰和吸热台阶,其中CBS1和CBS4的放热峰有较宽的温度范围,两个放热峰的峰值温度相差较小,导致第二个放热峰不明显[10]㊂所有玻璃的吸热台阶都在625~675ħ,此时液相开始出现,改变m (CaO)/m (SiO 2)质量比后,玻璃化转变温度相差不大㊂放热峰峰值温度分别为841.9㊁831.7㊁852.1㊁853.9ħ,此放热峰对应生成的CaSiO 3相㊂玻璃的第二个放热峰在图中不明显,此放热峰对应Ca 2B 2O 5晶体的析出[11]㊂2.1.2㊀密度及收缩率体积密度能够反映陶瓷材料的致密化程度㊂体积密度越大样品越致密,微晶玻璃中的气孔就越少[12]㊂图2为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率㊂当B 2O 3的质量分数为15%时,在烧结温度增加的情况下,CBS1和CBS4的密度减小,这是由于升温结晶过程中玻璃相在不断减小,而结晶生成新相的密度没有玻璃相的密度高㊂而CBS2和CBS3的密度先增加后减小,这是在升温过程中由于液相作用下微粒的流动和结晶以及在这个过程中气孔排除的结果㊂2.1.3㊀物相分析图3为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱㊂XRD 晶相组成上略有差异,主要晶相包括Ca 3Si 3O 9㊁Ca 2B 2O 5㊁CaB 2O 4㊁SiO 2和Ca 2SiO 4㊂对比CBS i 的XRD 谱,当Ca 2+的含量较少时,[SiO 4]会与[SiO 4]结合生成SiO 2[13]㊂当Ca 2+的含量增加时,CBS2中硅灰石衍射峰强度大于SiO 2的衍射峰强度,故CBS2中硅灰石相的数量相对其他微晶玻璃较多,这有益于材料的介电性能㊂随着m (CaO)/m (SiO 2)质量比的增加,微晶玻璃中SiO 2逐渐较少,CaO 与[BO 3]结合增多,开始出现Ca 2B 2O 5晶相衍射峰并增强㊂第4期卫志洋等:CaO-B 2O 3-SiO 2微晶玻璃的制备及介电性能1277㊀图2㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的体积密度㊁密度和横向收缩率Fig.2㊀Volume density,density and transverse shrinkage of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios图3㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.3㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)massratios 图4㊀不同m(CaO)/m(SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱Fig.4㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.4㊀拉曼图谱分析图4为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的拉曼光谱㊂CBS1微晶玻璃的拉曼光谱在大约114㊁143㊁400和558cm -1处为SiO 2振动峰㊂其中114㊁143和400cm -1处的振动峰归因于六层结构内的Si O Si 对称拉伸-弯曲㊂184cm -1处的弱峰归因于O 在Si O Si 中的对称拉伸-弯曲,该模式与四方α-方英石结构框架内的六元SiO 4四面体环相关[14-15]㊂大约503cm -1处的弱峰归属于CaSiO 3中的Ca O 拉伸/弯曲[15-16]㊂而558cm -1属于CaSiO 3中的振动[16-17]㊂CBS2和CBS3㊁CBS4微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁282㊁313㊁400㊁439㊁486㊁503㊁558㊁681和761cm -1处出现峰值㊂282㊁313㊁439和558cm -1处的峰被指定为CaSiO 3中的振动㊂以486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸/弯曲㊂681和761cm -1处的峰与桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲有关[16-18]㊂而114㊁143和400cm -1处的峰与方英石的Si O Si 对称拉伸/弯曲有关[14,18-19]㊂196cm -1处的峰对应于石英四元环内的Si O Si 对称拉伸/弯曲[20-21]㊂增加钙硅比会导致玻璃网络中的硅氧四面体结构减少,钙离子则与更多的氧离子形成配位键,这种结构变化导致玻璃网络的刚性增加㊂钙离子具有较高的极化率,其极化作用会增强玻璃网络的极性;钙离子的极化作用增强,导致玻璃网络的极性增加,这使得玻璃中的电子云重叠增加;钙离子与氧离子的配位键逐渐增强,而硅氧四面体之间的共价键则逐渐减弱,这使得玻璃网络更加紧密,热膨胀系数降低,玻璃网络的内部应力和应变增加,导致拉曼峰向短波方向移动㊂极性的增加又使得介电常数增加,此外,钙离子与氧离子配位键的增强还会导致玻璃网络的电子云重叠增加,从而增强电子的流动性,1278㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷增加电导率,这对介电性能产生负面影响㊂2.1.5㊀SEM 显微形貌分析图5为不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片㊂试样温度为最高密度所对应的烧结温度,部分微裂纹为氢氟酸腐蚀的结果㊂图中纤维状㊁角砾㊁条带状等交错的晶体为硅灰石相,而球状晶体主要是SiO 2[21]㊂其中玻璃相大多被腐蚀完全,露出各种大小晶粒,含部分间隙㊂随着Ca 2+的增加,Si O 键的结构被破坏,造成玻璃结构的疏松,这促进了晶体的形成和长大,增加了试样中晶相的数量[22]㊂在图5(b)中,大部分晶相为硅灰石,其余图5(a)㊁(c)㊁(d)中SiO 2以球状晶相包裹住其他晶相,不易看出㊂致密程度只是影响微晶玻璃介电性能的一个因素,晶相的组成和数量也有很大的影响[23]㊂图5㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的SEM 照片Fig.5㊀SEM images of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 2.1.6㊀介电性能分析图6㊀不同m (CaO)/m (SiO 2)质量比的CaO-B 2O 3-SiO 2微晶玻璃的介电常数和介电损耗Fig.6㊀Dielectric constant and dielectric loss of CaO-B 2O 3-SiO 2glass-ceramics with different m (CaO)/m (SiO 2)mass ratios 微晶玻璃材料是多相系统,包括晶相㊁玻璃相和气相㊂影响材料介电常数的因素包括晶相的组成㊁数量和相的介电常数[24]㊂图6为四种不同m (CaO)/m (SiO 2)质量比的微晶玻璃的介电性能㊂增加Ca 2+会降低试样的致密化程度,同时结构被破坏,材料的极化强度增强[25],介电常数也增加㊂介电损耗随着m (CaO)/m (SiO 2)质量比明显降低,这是由于硅灰石相的介电损耗较低,随着硅灰石相的增多,介电损耗从2.26ˑ10-3降到1.36ˑ10-3;继续增大m (CaO)/m (SiO 2),SiO 2㊁Ca 2B 2O 5和Ca 3B 2O 6开始出现并增加,试样的介电损耗又开始增大㊂可以得出,当m (CaO)/m (SiO 2)质量比为0.89时,介电性能最佳㊂2.2㊀B 2O 3对CBS 微晶玻璃介电性能的影响当m (CaO)/m (SiO 2)质量比为0.89时,设定B 2O 3的含量为8.1%(文中均为质量分数)㊁10.0%㊁15.0%㊁20.0%㊁26.0%,制得CBS i (i =5㊁6㊁7㊁8,下同)第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1279㊀系列,表征了B2O3含量对CaO-B2O3-SiO2的影响㊂2.2.1㊀差热分析图7为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线㊂不同DSC曲线中都有较大的析晶峰及吸热台阶[26]㊂放热峰峰值温度分别为835.3㊁833.9㊁831.7㊁845.1ħ,整体趋势是先降低后升高,此时生成CaSiO3相,说明B2O3含量的适当增加会使CaSiO3的析出温度降低,更易在较低温度下析出㊂硅灰石的介电性能较好,所以需要更多的硅灰石以提升CBS的介电性能[27]㊂当B2O3含量为20%时,CBS8的CaSiO3析晶峰峰值温度比CBS7增加了15ħ左右,所需的温度升高,从而增大了烧结难度㊂而且当系统中出现大量的B3+时,会抢夺与Si4+反应的Ca2+,进而影响CaSiO3的析出[28]㊂两个析晶峰之间的温度差距较小不易看出,使得第二个放热峰不太明显,此放热峰相应生成Ca2B2O5晶相,每种玻璃均出现了反映玻璃化转变的吸热台阶,玻璃网络中出现液相㊂玻璃化转变温度也是先降低后略微升高,说明硼的存在可以加速玻璃化,同时降低玻璃的熔点,有利于结晶相的析出[29]㊂图7㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的DSC曲线Fig.7㊀DSC curves of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.2㊀密度及收缩率图8为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率㊂样品的密度随着温度的增加先增加后减小[30]㊂B2O3能够与游离氧结合生成[BO4],促进CBS结构的致密,当B2O3含量过量时,以独立的层状结构存在,使CBS结构中的气孔增多㊂当B2O3含量为13%时,试样的体积密度整体高于其他对比量,此时试样的烧结致密化程度最高㊂随着B2O3含量的增加,收缩率随着试样中颗粒间缝隙以及气孔的变化而略微下降,下降至接近14%㊂图8㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的体积密度㊁密度和横向收缩率Fig.8㊀Volume density,density and transverse shrinkage of CaO-B2O3-SiO2glass-ceramics with different B2O3content2.2.3㊀物相分析图9为不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的XRD谱㊂前两种玻璃的XRD曲线峰型相似,主要1280㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷的晶相均为Ca 3Si 3O 9㊁Ca 2B 2O 4㊁Ca 2B 2O 5和SiO 2,随着B 2O 3含量的增加及Ca 2SiO 4析出,SiO 2的晶相峰强度逐渐降低,硅灰石衍射峰的强度逐渐增强㊂B 2O 3的增加会开放系统的网络结构,离子在网络外的运动变得容易,液相的黏度降低,促进晶体的形成和长大,这对晶体的结晶是有利的[31]㊂此外,随着B 2O 3含量的增加,Ca 2B 2O 5开始析出,SiO 2减小,这对介电性能也有所影响㊂2.2.4㊀拉曼图谱分析图10为不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱,CBS5㊁CBS6和CBS7㊁CBS8微晶玻璃的拉曼光谱大致相似,在大约114㊁143㊁196㊁253㊁282㊁313㊁373㊁400㊁426㊁458㊁486㊁503㊁558㊁623㊁681㊁761㊁797㊁910㊁954和981cm -1处出现峰值㊂253㊁282㊁313㊁373和558cm -1处的峰为CaSiO 3中的振动[14,17-18,20]㊂以253㊁486和503cm -1为中心的峰归因于CaSiO 3中的Ca O 拉伸-弯曲振动[32-33]㊂此外,623㊁681㊁761和797cm -1处的峰归因于桥接氧的对称拉伸和CaSiO 3中Si O Si 键的弯曲㊂910㊁954和981cm -1处的峰归因于CaSiO 3中分别具有3㊁2和1个非桥氧单元的四面体硅酸盐单元的对称拉伸[17,19-20]㊂114㊁143㊁400㊁426和458cm -1处的峰归属于方英石六元环内Si O Si 键的对称拉伸-弯曲振动㊂196cm -1处的峰对应于柯石英四元环内Si O Si 键的对称拉伸-弯曲[17-18,20]㊂当增加氧化硼的质量分数时,玻璃中的[BO 3]八面体结构增加,这使得玻璃网络更加开放,热膨胀系数增加㊂玻璃网络的内部应力和应变降低,导致拉曼峰向长波方向移动㊂图9㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的XRD 谱Fig.9㊀XRD patterns of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 图10㊀不同B 2O 3含量的CaO-B 2O 3-SiO 2微晶玻璃的Raman 谱Fig.10㊀Raman spectra of CaO-B 2O 3-SiO 2glass-ceramics with different B 2O 3content 2.2.5㊀SEM 微观形貌分析图11为不同B 2O 3含量的CBS 微晶玻璃的SEM 照片㊂由于氢氟酸的腐蚀完全,试样的晶相已完全显露㊂图11(a)中大都是球状,只有中间部分可以看到板状晶体,此时试样中除玻璃相外,以SiO 2居多,还有部分的硅灰石相生成㊂随着B 2O 3含量的增加,图11(b)㊁(c)中呈纤维状㊁角砾㊁条带状的硅灰石相开始增多,且晶体的间隙相对较小,晶粒增大,表明B 2O 3含量的升高使结晶过程明显增强[34]㊂图11(d)中出现细小粒状㊁柱状的SiO 2,晶粒细小而且数量较多,但还没有长大,腐蚀所暴露的间隙说明了玻璃相的位置,所以介电损耗会比其他试样增加[35]㊂2.2.6㊀介电性能分析图12为不同B 2O 3含量的CBS 试样的介电常数和介电损耗㊂随着B 2O 3含量的升高,介电常数先增加后减少,介电损耗则相反㊂当B 2O 3含量为8.1%时,晶相以SiO 2居多,硅灰石被SiO 2包裹,由于SiO 2的介电常数较低,为3.8,所以此阶段试样的介电常数也比较低,为6.22;当B 2O 3含量开始增加,由于硅灰石相的介电常数比SiO 2高,但介电损耗比较低,此时试样主要是硅灰石相㊁少量的SiO 2以及玻璃相,所以介电常数增加,介电损耗下降㊂结合图11(d)和图9的XRD 谱,大的孔隙以及Ca 2B 2O 4的逐渐增多是介电损耗增加的主要原因㊂第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1281㊀图11㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的SEM照片Fig.11㊀SEM images of CaO-B2O3-SiO2glass-ceramics with different B2O3content图12㊀不同B2O3含量的CaO-B2O3-SiO2微晶玻璃的介电常数和介电损耗Fig.12㊀Dielectric constant and dielectric loss of CaO-B2O3-SiO2glass-ceramics with different B2O3content㊀㊀表3为本文与几种当前商用LTCC基板材料在性能上的对比,可知本文材料基本可以达到当前材料应用的要求㊂表3㊀本文与几种典型商用LTCC基板材料对比Table3㊀This thesis compares with several typical commercial LTCC substrate materialsLTCCs(main composition)Supplierεr tanδ/10-3CTE/(10-6㊀ħ-1) A6M(CaO-B2O3-SiO2)Ferro 5.90<2@10.0GHz7.00C0-d720(MgO-Al2O3-SiO2)Kyocera 4.900.85@1MHz 2.10951(Al2O3+CaZrO3+glass)Dupont7.806@3.0GHz 5.80 This thesis 5.85 1.37@10.0GHz7.163㊀结㊀论1)通过熔融水淬法制备出的CBS微晶玻璃密度为2.54g/cm3,试样的烧结温度为900ħ,满足温度方1282㊀ 玻璃材料与玻璃技术 专题(II)硅酸盐通报㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第43卷面基板材料的要求㊂2)增加Ca2+能够破坏Si O键的结构,使硅灰石晶相的质量分数上升;当缺乏Ca2+时,[SiO4]会与[SiO4]结合,生成SiO2相㊂钙离子的极化作用导致玻璃网络的极性增加,最终导致介电常数的增加㊂硼的存在加速了玻璃化,降低了玻璃的熔点,晶相的析出更加容易,硅灰石晶相数量的增加,会影响材料的介电性能㊂介电常数先增加后减少,介电损耗则相反㊂3)通过调节m(CaO)/m(SiO2)质量比以及B2O3含量得到了性能良好的微晶玻璃㊂当m(CaO)/m(SiO2)质量比为0.89,B2O3质量分数为15%时,热膨胀系数为7.16ˑ10-6㊀ħ-1,介电常数为εr为5.85,介电损耗tanδ为1.37ˑ10-3(10GHz)㊂参考文献[1]㊀LIN Z H,LI M H,HE J Q,et al.Effect of Ta2O5addition on the structure,crystallization mechanism,and properties of CaO-B2O3-SiO2glassesfor LTCC applications[J].Ceramics International,2023,49(3):4872-4880.[2]㊀曹㊀禹,海㊀韵,朱宝京,等.低温共烧陶瓷用玻璃材料研究进展[J].硅酸盐学报,2022,50(4):1182-1192.CAO Y,HAI Y,ZHU B J,et al.Research progress on glass materials for low-temperature co-fired ceramics[J].Journal of the Chinese Ceramic Society,2022,50(4):1182-1192(in Chinese).[3]㊀WANG M,ZUO R Z,JIN J,et al.Investigation of the structure evolution process in sol-gel derived CaO-B2O3-SiO2glass ceramics[J].Journalof Non-Crystalline Solids,2011,357(3):1160-1163.[4]㊀周丹丹.低温共烧陶瓷CaO-B2O3-SiO2的组成㊁结构与性能的研究[D].上海:华东理工大学,2018.ZHOU D D.Study on the component,structure and properties of low temperature sintered CaO-B2O3-SiO2ceramics[D].Shanghai:East China University of Science and Technology,2018(in Chinese).[5]㊀JIA A Q,ZHANG W J,CHENG X Y,et al.Effects of B2O3contents on crystallization behaviors and dielectric properties of CaO-B2O3-SiO2glass ceramics[J].Key Engineering Materials,2016,680:301-305.[6]㊀DAI B,ZHU H K,ZHOU H Q,et al.Sintering,crystallization and dielectric properties of CaO-B2O3-SiO2system glass ceramics[J].Journal ofCentral South University,2012,19(8):2101-2106.[7]㊀HE D F,GAO C.Effect of boron on crystallization,microstructure and dielectric properties of CBS glass-ceramics[J].Ceramics International,2018,44(14):16246-16255.[8]㊀CHIANG C C,WANG S F,WANG Y R,et al.Characterizations of CaO-B2O3-SiO2glass-ceramics:thermal and electrical properties[J].Journal of Alloys and Compounds,2008,461(1/2):612-616.[9]㊀韦鹏飞,郝凌云,杨晓莉,等.Ca/Si摩尔比对CBS系微晶玻璃结构与性能的影响[J].电子元件与材料,2014,33(2):65-67.WEI P F,HAO L Y,YANG X L,et al.Effect of Ca/Si mol ratio on microstructure and properties of CaO-B2O3-SiO2glass ceramics[J].Electronic Components and Materials,2014,33(2):65-67(in Chinese).[10]㊀SHAO H B,WANG T W,ZHANG Q T.Preparation and properties of CaO-SiO2-B2O3glass-ceramic at low temperature[J].Journal of Alloysand Compounds,2009,484(1/2):2-5.[11]㊀FU Y,LI P Z,TAO H J,et al.The effects of Ca/Si ratio and B2O3content on the dielectric properties of the CaO-B2O3-SiO2glass-ceramics[J].Journal of Materials Science:Materials in Electronics,2019,30(15):14053-14060.[12]㊀ZHU H K,ZHOU H Q,LIU M,et al.Microstructure and microwave dielectric characteristics of CaO-B2O3-SiO2glass ceramics[J].Journal ofMaterials Science:Materials in Electronics,2009,20(11):1135-1139.[13]㊀MAO H J,WANG F L,CHEN X Y,et al.Preparation of BaO-MgO-Al2O3-SiO2/Al2O3glass-ceramic/ceramic LTCC substrate material formicrowave application[J].Journal of Materials Science:Materials in Electronics,2023,34(4):247.[14]㊀KINGMA K J,HEMLEY R.Raman spectroscopic study of microcrystalline silica[J].American Mineralogist,1994,98(7):975-978.[15]㊀BATES J B.Raman spectra ofαandβcristobalite[J].The Journal of Chemical Physics,1972,57(9):4042-4047.[16]㊀KUNRCXR J D.Raman and infrared study of pressure-induced structural changes in CaMgSirO6,and CaSiO,glasses[J].AmericanMineralogist,1992,77,258-269.[17]㊀WANG S F,LAI B C,HSU Y F,et al.Dielectric properties of CaO-B2O3-SiO2glass-ceramic systems in the millimeter-wave frequency range of20-60GHz[J].Ceramics International,2021,47(16):22627-22635.[18]㊀LI J F,SUN Y Q,LI Z M,et al.Short-range and medium-range structural order in CaO-SiO2-TiO2-B2O3glasses[J].ISIJ International,2016,56(5):752-758.[19]㊀PARTYKA J,LES'NIAK M.Raman and infrared spectroscopy study on structure and microstructure of glass-ceramic materials fromSiO2-Al2O3-Na2O-K2O-CaO system modified by variable molar ratio of SiO2/Al2O3[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2016,152:82-91.第4期卫志洋等:CaO-B2O3-SiO2微晶玻璃的制备及介电性能1283㊀[20]㊀TSAI Y L,HUANG E,LI Y H,et al.Raman spectroscopic characteristics of zeolite group minerals[J].Minerals,2021,11(2):167.[21]㊀HUANG B H,XIA T,SHANG F,et al.A new BaB2O4microwave dielectric ceramic for LTCC application[J].Journal of the European CeramicSociety,2023,43(14):6107-6111.[22]㊀ZHANG P,HAO M M,XIAO M,et al.Crystal structure and microwave dielectric properties of novel BiMg2MO6(M=P,V)ceramics with lowsintering temperature[J].Journal of Materiomics,2021,7(6):1344-1351.[23]㊀LIU J Z,WU X F,XU N X,et al.Crystallization,sinterability and dielectric properties of CaO-B2O3-SiO2glass ceramics with Al2O3additives[J].Journal of Materials Science:Materials in Electronics,2015,26(11):8899-8903.[24]㊀关振铎,张中太,焦金生.无机材料物理性能[M].2版.北京:清华大学出版社,2011.GUAN Z D,ZHANG Z T,JIAO J S.Physical properties of inorganic materials[M].2nd ed.Beijing:Tsinghua University Press,2011(in Chinese).[25]㊀YAN T N,ZHANG W J,MAO H,et al.The effect of CaO/SiO2and B2O3on the sintering contraction behaviors of CaO-B2O3-SiO2glass-ceramics[J].International Journal of Modern Physics B,2019,33(9):1950070.[26]㊀ZHU H Y,FU R L,AGATHOPOULOS S,et al.Crystallization behaviour and properties of BaO-CaO-B2O3-SiO2glasses and glass-ceramics forLTCC applications[J].Ceramics International,2018,44(9):10147-10153.[27]㊀DING Y Y,LIU S X,LI X Y,et al.Luminescent low temperature co-fired ceramics for high power LED package[J].Journal of Alloys andCompounds,2012,521:35-38.[28]㊀WANG S F,LAI B C,HSU Y F,et al.Physical and structural characteristics of sol-gel derived CaO-B2O3-SiO2glass-ceramics and theirdielectric properties in the5G millimeter-wave bands[J].Ceramics International,2022,48(7):9030-9037.[29]㊀ZHOU X H,LI E Z,YANG S L,et al.Effects of La2O3-B2O3on the flexural strength and microwave dielectric properties of low temperatureco-fired CaO-B2O3-SiO2glass-ceramic[J].Ceramics International,2012,38(7):5551-5555.[30]㊀ALENCAR M V S,BEZERRA G V P,SILVA L D,et al.Structure,glass stability and crystallization activation energy of SrO-CaO-B2O3-SiO2glasses doped with TiO2[J].Journal of Non-Crystalline Solids,2021,554:120605.[31]㊀FU S L,HSI C S,KANG C Y,et al.Investigations of lead-free glasses for post-fired and embedded thick film resistors[J].Key EngineeringMaterials,2013,573:137-142.[32]㊀HAJIAN A,ARTEMENKO A,KROMKA A,et al.Impact of sintering temperature on phase composition,microstructure,and porosificationbehavior of LTCC substrates[J].Journal of the European Ceramic Society,2022,42(13):5789-5800.[33]㊀DONG C,WANG H,YAN T N,et al.The influence of CaF2doping on the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2glass-ceramics for LTCC applications[J].Crystals,2023,13(5):748.[34]㊀LU Y,SHAN Y T,GUO X,et al.Effect of silica addition on microstructure,sintering behavior,and dielectric properties of borosilicateglass/alumina composites for LTCC application[J].Journal of Materials Science:Materials in Electronics,2023,34(5):443. [35]㊀任海深.B2O3-La2O3-MgO-TiO2微晶玻璃基低温共烧陶瓷研究[D].上海:中国科学院上海硅酸盐研究所,2018.REN H S.Study on B2O3-La2O3-MgO-TiO2glass-ceramics based LTCC materials[D].Shanghai:Shanghai Institute of Ceramics,Chinese Academy of Sciences,2018(in Chinese).。

电磁溅射方法镀银玻璃微珠的制备与表征

电磁溅射方法镀银玻璃微珠的制备与表征

电磁溅射方法镀银玻璃微珠的制备与表征电磁溅射方法镀银玻璃微珠的制备与表征摘要在本文中,我们展示了电磁溅射沉积技术涂覆10-100nm的镀银薄层,均匀性很好的在微珠的表面涂覆银层,改性核壳的性质。

实验通过在超声波外力场作用下电磁溅射使空心微珠,在表面镀上一层沉积的银层。

微珠粒子在镀银前后通过XRD,电镜和ICP-AES分析。

所有结果表明以在微珠上镀了一层金属银。

在给定条件下,通过ICP-AES分析,有镀银层的质量分数达到了3%,电镜结果表明其镀层紧密,有序且粘连性很好,且镀层成功的达到了51nm.XRD结果分析表明,纳米镀层具有面心结构。

关键字电磁溅射金属层ICP-AES XRD 空心微珠1 概述空心玻璃微珠,作为填料具有密度低,质量轻的特点。

通过在其表面镀上一层金属薄层,可以应用在很多新的领域,例如电磁屏蔽材料,吸波材料和高反射装置。

可以采用无电镀,化学气相镀和溶胶凝胶法得到具有金属镀层的空心微珠。

在这些方法中,无电镀技术应用最广泛,研究最多。

然而无化学镀方法也存在很多问题,(1)镀层粘连性不好,镀层不够紧密。

(2)由于形状球形,尺寸小,密度低导致活性中心少。

这些缺点限制了其实际的应用。

磁控溅射沉积方法是制备薄膜时广泛应用的方法。

磁控溅射沉积在大面积的平面镀层上没有问题。

但这项技术在非平面上的均匀镀银的有一些困难,如粉末颗粒。

在这项工作中,在一个新设计的磁控溅射系统中采用振动样品取得了很均匀的镀银层的空心微珠颗粒。

在镀银的前后空心微珠的结构和形态都要观察。

薄膜的均匀性和密实度都要测试。

2 实验磁控溅射微粒装置示意图如1所示,在该装置中,样品台连接一台超声波振动发生器。

不同的金属在平面基板上沉积,空心微珠需要各个方面的的均匀涂层粒子。

振动样品台可以保证空心微珠在所有方向基板上连续自由随机旋转运动的等离子束膜中的沉积。

通过调整溅射参数可以制造粘合,均匀致密的薄膜,在薄膜的生成过程中如样品振荡频率,超声波振动电源,在真空室中,工作压力,溅射功率,温度。

一种铂包覆银核壳结构纳米颗粒的制备方法[发明专利]

一种铂包覆银核壳结构纳米颗粒的制备方法[发明专利]

专利名称:一种铂包覆银核壳结构纳米颗粒的制备方法专利类型:发明专利
发明人:胡晓斌,延阳
申请号:CN201410088379.6
申请日:20140311
公开号:CN103878365A
公开日:
20140625
专利内容由知识产权出版社提供
摘要:本发明涉及一种铂包覆银核壳结构纳米颗粒的制备方法,利用两步法,在银表面置换反应生成一层铂金属的包覆,首先利用一缩二乙二醇的还原性以及黏流性,在硫氢化钠的帮助下还有表面活性剂PVP,形核剂HCL的共同参与反应下生成银晶核;然后在弱还原剂及溶剂一缩二乙二醇中,混合氯铂酸以及表面活性剂PVP,使得铂离子可以在银核表面均匀的发生置换反应,致密的包覆在银表面。

与现有技术相比,本发明所制备的铂包覆银结构包覆致密、粒径较均匀、铂金属比表面积较大,充分的将金属银与金属铂结合在一起。

申请人:上海交通大学
地址:200240 上海市闵行区东川路800号
国籍:CN
代理机构:上海科盛知识产权代理有限公司
代理人:林君如
更多信息请下载全文后查看。

超细tatb-btf核-壳型复合粒子的制备

超细tatb-btf核-壳型复合粒子的制备

超细tatb-btf核-壳型复合粒子的制备近年来,超细tatb-btf核-壳型复合粒子因其在能源材料、军事技术等领域的重要应用价值备受关注。

本文将深入探讨超细tatb-btf核-壳型复合粒子的制备方法,以及其在实际应用中的潜在优势。

一、概述在能源材料领域,超细tatb-btf核-壳型复合粒子的制备技术一直备受关注。

超细tatb-btf核-壳型复合粒子具有高能量输出、良好的安全性和稳定性等优势,因此在细动能材料、固体推进剂等领域具有广阔的应用前景。

二、制备方法1. 溶剂挥发法溶剂挥发法是制备超细tatb-btf核-壳型复合粒子的常见方法之一。

在有机溶剂中溶解tatb和btf,然后通过挥发溶剂的方式,使得tatb和btf形成核-壳结构的复合粒子。

这种方法制备的超细tatb-btf核-壳型复合粒子粒径小、分布均匀,具有良好的应用性能。

2. 气相沉积法气相沉积法也是一种常用的制备方法。

通过控制反应条件,使得tatb 和btf在气相中发生化学反应,从而在微观尺度上形成核-壳型结构。

这种方法制备的超细tatb-btf核-壳型复合粒子具有粒径可控、表面光滑、结构稳定等特点,适用于不同场景的应用需求。

三、应用前景超细tatb-btf核-壳型复合粒子在固体推进剂、燃烧增强剂、爆炸装药等领域具有广泛的应用前景。

与传统材料相比,超细tatb-btf核-壳型复合粒子具有更高的燃烧速度、更稳定的燃烧性能和更低的敏感性,能够有效提高材料的能量输出和安全性能。

在军事技术领域,超细tatb-btf核-壳型复合粒子也有望应用于弹头、火箭等装备中,为国防安全提供有力支持。

四、个人观点从目前的研究进展来看,超细tatb-btf核-壳型复合粒子的制备技术已经取得了较大进展,但仍面临着一些挑战。

制备过程中需要控制反应条件、表面修饰以及复合粒子的稳定性等问题,需要进一步深入研究。

另外,在实际应用中,超细tatb-btf核-壳型复合粒子的性能与材料的具体配方、制备工艺等因素密切相关,需要进行更多的实验和应用验证。

羰基铁粉银核壳粒子及其复合材料的制备与电磁特性

羰基铁粉银核壳粒子及其复合材料的制备与电磁特性

No.10 1934~1939
羰基铁粉/银核.壳粒子及其复合 材料的制备与电磁特性
王一龙1”,李 维1,章桥新1,王 维1,官建国1
(1.武汉理工大学材料复合新技术国家重点实验室,2.理学院化学系,武汉4300r70)
摘要运用液相化学还原银技术,制备了羰基铁粉/银核-壳复合粒子;以该复合粒子为屏蔽填料,制备了一 种宽频、高效的新型电磁屏蔽橡胶材料.分析了该屏蔽填料的表面形貌和组成,研究了其电磁特性对电磁屏 蔽橡胶材料屏蔽效能的影响规律.结果表明,具有完整核壳结构的羰基铁粉/银复合粒子兼具优异的磁性能 和高导电率,用其组成的电磁屏蔽橡胶材料对电磁波能同时产生较强的吸收损耗和反射损耗,屏蔽效能 (sE)优于传统的屏蔽橡胶材料. 关键词 羰基铁粉/银核.壳复合粒子;电磁屏蔽;磁导率;屏蔽效能
银离子的作用,避免反应过快;当银离子被甲醛还原后,所形成的银晶核通过自相成核以及异相成核 过程,在羰基铁粉的表面生长,最终形成复合粒子的壳层.图l是羰基铁粉、羰基铁粉/银核.壳复合粒
子和导电银粉的SEM照片.羰基铁粉的粒径小于5岬,其表面比较光滑[图l(A)];当羰基铁粉经过
液相化学还原银反应后,在羰基铁粉的表面均匀地包覆了一层致密的纳米银壳层,如图1(B)所示.反
后将其在硫化温度、时间和压力分别为150.0℃、50 IIlin和10.0 MPa条件下,加工得到电磁屏蔽橡胶
材料样品.磁性橡胶和导电橡胶分别按上述类似过程制备.
1.4结构表征与性能测试
将磁性橡胶以及导电导磁型电磁屏蔽橡胶分别加工成内径7.0 mm、外径16.0衄及厚度10.O 咖的同轴块后,用美国安捷伦公司8714B型矢量网络分析仪测试复磁导率.按照SJ 20673—1998《军用
苯(DCP,瑞彩国际工业集团有限公司). XSK-160型开放式塑炼机(常州市东南橡塑机械厂).XLB—DC.700 x 700.zC/250型电磁平板硫化

2024Al复合材料制备及电磁屏蔽性能研究的开题报告

2024Al复合材料制备及电磁屏蔽性能研究的开题报告

空心微珠/2024Al复合材料制备及电磁屏蔽性能研究
的开题报告
一、选题背景及意义
随着电子产品的普及,电磁波的干扰也开始日益严重,因此开展电磁屏蔽材料的研究具有重要的现实意义。

空心微珠/2024Al复合材料作为一种新型的电磁屏蔽材料,在电子产品、航空航天、能源、通信等领域有着广泛的应用前景,因此对其研究也具有重要意义。

二、研究对象和内容
研究对象为空心微珠/2024Al复合材料,研究内容包括制备工艺、微观结构分析和电磁屏蔽性能研究。

1. 制备工艺
制备空心微珠/2024Al复合材料的工艺包括以下几个步骤:
(1)选取适当的空心微珠和2024Al基体材料;
(2)将空心微珠表面进行处理,改善其与基体材料的附着力;
(3)将处理后的空心微珠和2024Al基体材料进行混合,并采用热压、热挤压等方法进行成形;
(4)对制备的材料进行表面处理等后续工艺。

2. 微观结构分析
采用扫描电子显微镜、X射线衍射仪等工具对制备的空心微珠
/2024Al复合材料进行微观结构分析,研究其微观结构和相互作用机制。

3. 电磁屏蔽性能研究
采用板缝法、天线法等工具对制备的空心微珠/2024Al复合材料进行电磁屏蔽性能测试,研究其电磁波反射率、透射率等性能。

三、研究目的和意义
通过研究制备工艺、微观结构和电磁屏蔽性能,探究空心微珠
/2024Al复合材料的结构和性能之间的关系,并为其在电子产品、航空航天、能源、通信等领域的应用提供参考。

同时,该研究对于推动电磁屏蔽材料的发展和绿色环保材料的研究也有着一定的推动作用。

银金核壳纳米粒子的制备、表征及在生物分析中的应用的开题报告

银金核壳纳米粒子的制备、表征及在生物分析中的应用的开题报告

银金核壳纳米粒子的制备、表征及在生物分析中的应用的开题报告一、选题背景随着纳米技术的不断发展,纳米材料在生物分析领域的应用日益广泛。

金、银等金属材料应用广泛,被广泛应用于生物传感器、光谱学分析、光电热材料等领域。

在这些应用过程中,金、银的纳米颗粒又被证实有着更好的化学和成像性质。

银金核壳纳米粒子在生物学中有着广泛的应用,具有很高的稳定性和生物相容性。

其表面功能化可使其具有特定的生物无毒性和针对性,从而实现其在生物成像、病因学、药物研究和治疗等方面的应用。

为此,相关研究领域就出现了大量针对银金核壳纳米粒子的制备、表征及其在生物分析中的应用方面的研究。

二、研究目的本次研究的目的就是设计一种高效的方法来制备银金核壳纳米粒子,并对其进行表征,以此应用于生物分析。

三、研究内容1.银金核壳纳米粒子的制备方法研究。

2.对制备出来的银金核壳纳米粒子进行形貌、结构、粒径分析等表征。

3.研究银金核壳纳米粒子在生物分析中的应用,包括生物成像、病因学、药物研究和治疗等方面的应用。

4.对生物分析中的应用结果进行分析,并对可能的未来发展进行讨论。

四、研究意义本次研究的意义在于为银金核壳纳米粒子在生物分析领域的应用提供一种更加高效的方法,并可以促进相关技术在诊断、治疗、成像和疾病预防等方面的应用和发展。

同时,该研究还将对纳米技术在生物领域中的应用带来新的启示和思考。

五、研究进度安排1.阅读相关文献及研究现有的银金核壳纳米粒子制备方法、表征、应用情况,制定研究方案。

(已完成)2.开展银金核壳纳米粒子的制备工作。

3.利用透射电子显微镜、扫描电子显微镜、紫外光谱等技术对银金核壳纳米粒子进行详细的表征分析。

4.进行生物分析的实验研究。

5.撰写研究论文并进行交流。

六、总结本次研究将围绕银金核壳纳米粒子的制备、表征及其在生物分析中的应用展开研究,预计将有助于推动相关技术在生物领域中的应用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马会娜等:导电颗粒钨对氮化铝陶瓷性能的影响· 301 ·电磁屏蔽材料用银包玻璃微珠核–壳粒子的制备及其性能王一龙1,2,官建国1,邵寒梅1,章桥新1,段君元1,孙斌3(1. 武汉理工大学,材料复合新技术国家重点实验室,武汉 430070;2. 武汉理工大学理学院化学系,武汉 430070;3. 武汉理工大学材料科学与工程学院)摘要:采用自组装化学镀银技术制备了银包玻璃微珠核–壳粒子,并且运用X射线衍射仪、扫描电镜和电子能谱仪等对该核–壳粒子的物相和形貌等进行了表征。

分析了该核–壳粒子的介电性能与结构的关系,并以此为屏蔽填料,研究了电磁屏蔽涂料的相关性能。

结果表明,银粒子在玻璃微珠的表面包覆均匀且致密,该粒子的介电常数较包覆前大幅度提高。

该电磁屏蔽涂料的导电性能随着填料的体积分数(下同)的增加而增加,达到25%时,其表面电阻率为0.0507Ω/cm2。

同时,在电磁波的频率范围为30~1500MHz时,屏蔽效能达40~65dB,并且该材料具有较好力学性能和耐环境性能。

关键词:核–壳粒子;屏蔽涂料;化学镀银;电磁屏蔽;屏蔽效能中图分类号:TQ171.71;TM24 文献标识码:A 文章编号:0454–5648(2007)03–0301–05PREPARATION AND PROPERTIES OF SILVER-COATED GLASS MICROSPHERE CORE–SHELL PARTICLES ON ELECTROMAGNETIC SHIELDING MATERIALSWANG Yilong1,2,GUAN Jianguo1,SHAO Hanmei1,ZHANG Qiaoxin1,DUAN Junyuan1,SUN Bin1(1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology,Wuhan 430070; 2. Department of Chemistry, School of Sciences, Wuhan University of Technology, Wuhan 430070;3. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)Abstract: Silver-coated glass microsphere core–shell particles were prepared by silver (Ag) electroless plating on the self-assembly monolayer technique. The core–shell particles were characterized by X-ray diffraction, scanning electron microscope and energy dis-persive spectrometer. The relationship between the dielectric properties and the microstructure of the core–shell particles was ana-lyzed. The related properties of the electromagnetic shielding coatings based on the core–shell particles were studied. The results show that the Ag shell of composite particles is even and compact. The dielectric constants of the core–shell particles are much bigger than before. The electric properties of the electromagnetic shielding coating increase with the increasing of the volume fraction of the shielding filler. When the volume fraction of the filler reached 25%, the surface resistivity of the shielding coating was 0.0507Ω/cm2. At the same time, shielding effectiveness of the coating varied from 40dB to 65dB when the frequency of electromagnetic wave ranged between 30MHz and 1500MHz. The coating material had good mechanical properties and durability.Key words: core–shell particle; shielding coating; electroless silver plating; electromagnetic shielding; shielding effectivenessAt present, core–shell composite particles with different microstructures have been attracting considerable scien-tific interest both at home and abroad because these par-ticles not only exhibit good properties in their core and shell material, but also possess unique physical and chemical properties. Thus, core–shell composite particles have broad application prospects in the optical, electronic, magnetic, catalytic and biological fields.[1–6] Generally, powder material with high conductivity or magnetocon-ductivity, such as silver (Ag) powder, copper powder or nickel powder, have been used as traditional shielding filler in electromagnetic shielding techniques. Afterwards, some core–shell particles (e.g., Ag-coated nickel compo- site particles and Ag-coated copper composite particles) have been applied in these fields. The common short-coming is prevalently high density and high cost of收稿日期:2007–07–09。

修改稿收到日期:2007–12–13。

基金项目:国家“863”计划(2006AA03Z461);国防基础科研(A1420080185)资助项目。

第一作者:王一龙(1974—),男,博士研究生,讲师。

通讯作者:官建国(1969—),男,教授,博士研究生导师。

Received date:2007–07–09. Approved date: 2007–12–13.First author: WANG Yilong (1974–), male, postgraduate student for doctor degree, lecturer.E-mail: wangyilong@Correspondent author: GUAN Jianguo (1969–), male, professor.E-mail: guanjg@第36卷第3期2008年3月硅酸盐学报JOURNAL OF THE CHINESE CERAMIC SOCIETYVol. 36,No. 3March,2008硅酸盐学报· 302 ·2008年shielding materials based on these shielding fillers. Fillers with high density will lead to sedimentation when the materials are being painted with electromagnetic shiel- ding coating, which increases the surface resistivity of the electromagnetic shielding coating. Compared with the former fillers, Ag-coated glass microspheres with hollow structures show better promise for application in shielding materials. Although their preparation has been reported in many articles, these studies mostly involved the traditional electroless plating technique. This method involves several processing steps, including roughening, sensitization and activation, making it time-consuming and complicated.[7–8] In addition, research about the electric and electromagnetic properties of Ag-coated glass microsphere core–shell par-ticles is seldom discussed in the literature.In this study, self-assembly technique of chemical plating was firstly used to prepare core–shell particles with even and compact Ag shells. The electromagnetic shielding coating based on core–shell particles has good electric properties, shielding effectiveness, mechanical properties and durability, which indicated that the Ag-coated glass microsphere core–shell particles should have extensive application prospects in the electromag-netic compatibility (EMC) field.1 Experiment1.1 Materials and reagentsThe glass microspheres (1250mesh, 10µm) were purchased from Shanghai Green Sub-Nanoscale Material Co., Ltd. 3–mercaptopropyltrimethoxysilane (MPTS) was purchased from Wuhan University Organosilicon New Material Co., Ltd. and was vacuum distilled before usage. Silver nitrate (AgNO3), glucose (C12H12O6), tar-taric acid, ammonia water (NH3·H2O), sodium hydroxide (NaOH), alcohol (C2H5OH) and polyvinyl pyrrolidone (PVP) were all analytical-reagent grade. The epoxy resin adhesive was made in our laboratory.1.2 Preparation of samplesFirst, the surfaces of glass microspheres were func-tionalized by usage of 3–mercaptopropyltrimethoxy- silane[9] and some improvements were done in this step. The electroless plating solution was prepared according to the literature [10].2000mL reduction solution was added in the reactor, and then some PVP and 200g of functionalized glass microspheres were added. The above mixtures were stirred for 30min. The Ag[(NH3)2]+ solution with the same volume was dropped into the reactor with stirring for 4 h. The products were filtrated and washed by deionized water with 10.0MΩ electrical resistivity. Then the Ag-coated glass microsphere core–shell particles were dried in an incubator at 120℃ for 2h.The Ag-coated glass microsphere core–shell particles with different volume fractions were mixed into the epoxy resin adhesive, and the coating samples were processed at 100℃ for 10h. [11]1.3 Characterization of core–shell particles andproperties of the coating samplesX-ray diffraction (XRD) with Cu Kα radiation was used for phase analysis. The surface morphology and structure of particles were determined using a field emis-sion scanning electron microscope (FESEM) with an energy dispersive spectrometer (EDS). The complex permittivity of 2–18GHz was determined with a coaxial cell on a Hewlett–Packard 8510C Vector Network Ana-lyzer. The glass microsphere and core–shell particles were processed as well-dispersed mixtures, respectively. For example, the mixtures containing 30% (in volume, the same below) glass microsphere sample and 70% solid paraffin as an adhesive resulted in the coaxial cylindrical samples with the following characteristics: outer diameter of 7.00mm, inner diameter of 3.02mm and thickness of about 3.5mm. For core–shell particles, samples were produced as well-dispersed mixtures at the same volume percent using solid paraffin.The electric properties of electromagnetic shielding coating materials were measured according to the method described in General Specification for Military Electromag-netic Shielding Coating (GJB 2604–96). The shielding ef-fectiveness of the coating was measured according to ASTM–ES–7. The mechanical properties of the coating were determined by Determination of Adhesive Force of Film (GB1720–79), Determination of Film Hardness by Pencil Test (GB/T 6739–96), Determination of Impact Re-sistance of Film (GB/T 1732–93) and Determination of Abrasive Resistance of Film (GB/T 1768–79). The dura-bility of the shielding coating was analyzed by Environ-mental Test Method for Military Equipments Damp Heat Test (GJB 150.9–86) and Environmental Test Method for Military Equipments Salt Fog Test (GJB 360.2–87).2 Results and discussion2.1 Characterization of the Ag-coated glass mic-rosphere core–shell particles2.1.1 XRD analysis Figure 1 shows the XRD pat-terns of the functionalized glass spheres (curve 1 in Fig. 1). According to the figure, the wide peaks from 20°to 25°at 2θ corresponded to the characteristics of the XRD peak of the amorphous glass microspheres, and no other pat-tern of diffraction peaks existed.[12] The typical XRD pattern for Ag-coated glass microsphere core–shell parti-cles is illustrated in Fig.1 (see curve 2). The XRD analy-sis revealed four main characteristic peaks for the (111), (2 0 0), (2 2 0), and (3 1 1) planes of the intact face-centered cubic (fcc) Ag at 2θ=38.2°, 44.4°, 64.6°, and 77.6°, and indicated the formation of pure Ag of high crystallinity in the shell of the as-synthesized composite particles.2.1.2 FESEM analysis Figure 2 shows the FESEM王一龙 等:电磁屏蔽材料用银包玻璃微珠核–壳粒子的制备及其性能· 303 ·第36卷第3期Fig.1 XRD patterns of glass microspheres and Ag-coatedglass microspheres core-shell particlesFig.2 FESEM photographs of glass microspheres andas-synthesized core-shell particlesphotographs of glass microspheres (see Fig.2(a)) and core–shell particles (see Fig.2(b)–2(c)). The SEM image in Fig.1a shows that the glass microspheres consisted of well-dispersed microspheres with smooth surfaces. By electroless Ag plating on the self-assembly monolayer technique, the Ag nanoparticles were constantly reduced on the glass microspheres and finally formed even and compact Ag shells. No Ag nanoparticle was free, and Ag nanoparticles did not agglomerate. This indicated that the composite particles had perfect core–shell structures. 2.1.3 EDS analysis Figure 3 shows the EDS spectra of the glass microspheres and core–shell particles. Figure 3(a) indicates that the glass microsphere samples con-tained Si, Al, O, K, and Na. Figure 3(b) shows the presence of Ag in addition to these elements. These results revealed further that the shells of the as-synthesized composite particles contained Ag element.Fig.3 EDS analysis of glass microspheres and as-synthesizedcore–shell particles2.2 Dielectric properties of the Ag-coated glassmicrosphere core–shell particlesThe profile of the electromagnetic wave frequencies for the real and image parts of the dielectric constants of glass microsphere and Ag-coated glass microsphere core–shell particles are shown in Fig.4. According to Fig.4(a), the real part of the dielectric constants for glass microsphere was between 3.25 and 3.50 with the frequency of electromag-netic wave ranging from 2 GHz to 18 GHz. At the same time, the image part did not exceed 0.3. However, the real and image parts of the dielectric constants for Ag-coated glass microsphere core–shell particles were much bigger than those of glass microsphere. This indicated that the Ag硅酸盐学报· 304 ·2008年Fig.4 Real and image parts of of dielectric constants glass microspheres and as-synthesized core–shell particles shell of the special structure for composite particles pos-sibly contributed to the above results. In addition, ε' and ε'' for composite particles decreased sharply with the in-crease of the frequency of the electromagnetic wave.2.3 Electric properties of the electromagneticshielding coatingThe electromagnetic shielding coatings were processed by mixing various quantities of shielding filler (Ag- coated glass spheres core–shell particles) into epoxy resin adhesive. After the coating samples were processed at 100℃ for 10h, the electric property of the shielding coatings was studied.Table 1 shows the relationship between the volume fraction of Ag-coated glass microsphere core–shell parti-cles in electromagnetic shielding coating and the surface resistivity of the coating. As far as the Ag-coated glass microsphere core–shell particles are concerned, the core of the glass microsphere is insulated by powder, and the Ag shell is a good conductive material. Therefore, the electric properties of fillers depend on the core–shell structure of the composite particles; that is, whether or not the Ag shell is even and compact for each composite particle. The con-ductive pathway theory can explain the electrical conduc-tivity of the coating. If the coating materials have goodTable 1 Relationship between the volume fraction of Ag- coated glass microsphere core-shell particles and sur-face resistivity of electromagnetic shielding coatingSampleNo.V olume fraction offiller/ %V olume fraction of epoxyresin adhesive/ %Surface resistivity/(Ω·cm–2)1 18 82 7.6642 20 80 1.2473 22.5 77.5 0.1814 25 75 0.05075 27 73 0.04636 30 70 0.0442 electric properties, a high volume fraction of filler will be required to establish a sufficient three- dimensional con-ductive pathway.[13–15] Here, the electric properties of the electromagnetic shielding coating increased with the in-crease of the volume fraction of the shielding filler. When the volume fraction reached 25%, the surface resistivity of the shielding coating was 0.0507Ω/cm2 (as shown in Ta-ble 1). When the volume fraction of the shielding filler progressively increased, the surface resistivity of the coating did not improve obviously. However, the volume fraction of the filler was too high, which resulted in the poor mechanical properties of material. This is disadvanta-geous to its application in EMC.2.4 Shielding effectiveness of the electromagneticshielding coatingCompared to coating material with excessive volume fraction for fillers, inadequate fillers will lead to inferior electric properties of the coating. According to Schelku- noff’s theory, shielding material with perfect electric properties will have perfect electromagnetic shielding properties. The perfect electric properties contribute to strong reflection and absorbance losses in the shielding effectiveness of electromagnetic shielding material. Ac-cording to the results (listed in chapter 2.3), the shielding effectiveness of the coatings was studied when the vo- lume fraction of the filler was 25%. The shielding effec-tiveness (SE) of coatings with the frequency of electro-magnetic wave ranging from 30MHz to 1500MHz using ASTM–ES–7 coaxial transmission line method is shown in Fig.5. In Fig.5, the SE varied from 40dB to 50dB with the frequency of electromagnetic wave ranging from 30 MHz to 244MHz. The SE was 50dB to 61dB with the frequency ranging from 244MHz to 633MHz, and the SE was between 60 and 65 in the last frequency range. Therefore, the electromagnetic shielding coating had good electromagnetic shielding properties when the Ag-coated glass microsphere core–shell particles synthe-sized in this study were used as electromagnetic shielding filler. However, the mechanical properties and durability of the shielding coating should be investigated, to con-firm whether these coating materials will have extensive application in the electromagnetic compatibility field.王一龙等:电磁屏蔽材料用银包玻璃微珠核–壳粒子的制备及其性能· 305 ·第36卷第3期Fig5 Shielding effectiveness of electromagnetic shielding coatings with the frequency of electromagnetic waveranging from 30MHz to 1500MHz2.5 Mechanical properties and durability of theelectromagnetic shielding coatingAccording to the national standard determination (listed in chapter 1.3), the mechanical properties of the coating were determined when the volume fraction of the filler was 25% for the coating samples. Its adhesive force was not less than the first level and its hardness was 6 H. After the coating samples were impacted, no cracking or peeling occurred. The samples’ impact resistance was at least 50cm·Kg. The loss mass of the coating samples was 0.00171g/cm2 for determination of abrasive resistance.To assess the material’s durability, relevant tests, in-cluding damp heat and salt fog tests, were carried out ac-cording to GJB 150.9–86 and GJB 360.2–87. After these tests, there was no cracking, bubbling or peeling on the coating samples, its surface resistivity still remained 0.0588Ω/cm2. For the electromagnetic shielding properties of the coating samples, there was no obvious decrease with the same frequency range of electromagnetic wave. Specifi-cally, the SE did not change for the frequency of electro-magnetic wave varying from 30MHz to 244MHz, but decreased for another frequency range (244–1500MHz), and the ∆SE was only about 3dB to 4dB. From the results, it could be concluded that the shielding materials based on Ag-coated glass microsphere core–shell particles described in this paper have good application prospects on the field of electromagnetic compatibility.3 ConclusionsThe Ag-coated glass microsphere core–shell particles with even and compact Ag shells were firstly prepared by electroless Ag plating on the self-assembly monolayer technique. The Ag nanoparticles in the shells of the core–shell particles were the intact face-centered cubic structure. The dielectric constants of the core–shell parti-cles were much higher than before. The electric proper-ties of the electromagnetic shielding coating increased with the increase of the quantity of the shielding filler. When the volume fraction of the filler reached 25%, the surface resistivity of the shielding coating was 0.0507Ω/cm2 and the shielding effectiveness of it was between 40dB and 65 dB with the frequency of electromagnetic wave ranging from 30MHz to 1500MHz. The coating had good mechanical properties and durability. These results indicated that the Ag-coated glass microsphere core–shell particles should have extensive application prospects in the electromagnetic compatibility field. Reference:[1] GUAN Jianguo, DENG Huiyong, WANG Wei, et al. Preparation ofwell-defined core–shell nanocomposite particles based on colloidal templates [J]. Prog Chem (in Chinese), 2004,16(3): 321–334.[2] KOBAYASHI Y, KATAKAMI H, MINE E, et al. Silica coating ofsilver nanoparticles using a modified Stöber method [J]. J Colloid In-terf Sci, 2005, 283: 392–396.[3] CHEN Z M, CHEN X, ZHENG L L, et al. A simple and controlledmethod of preparing uniform Ag midnanoparticles on Tollens-soaked silica spheres [J]. J Colloid Interf Sci, 2005, 285: 146–151.[4] ZHANG D B, CHENG H M, MA J M, et al. Synthesis of silver-coatedsilica nanoparticles in nonionic reverse micelles [J]. J Mater Sci Lett, 2001, 20: 439–440.[5] CHEN Z, WANG Z L, ZHAN P, et al. Preparation of metallodielectriccomposite particles with multishell structure [J]. Langmuir, 2004, 20(8): 3042–3046.[6] ZHU M W, QIAN G D, HONG Z L, et al. Preparation and characteri-zation of silica–silver core–shell structural submicrometer spheres [J].J Phys Chem Solids, 2005(66): 748–752.[7] HUANG Shaoqiang, QIU Wenge. Electroless silver plating for glassmicrosphere [J]. Electroplating Finishing (in Chinese), 2004, 23(1): 7–9. [8] HUANG Shaoqiang, QIU Wenge, CHEN Jiangtao. Effect factors ofeleetroless silver plating on nonmetallic powder [J]. J Mater Prot (in Chinese), 2004, 37(10): 23–25.[9] LIU Zhengchun, HE Quanguo, XIAO Pengfeng, et al. Electroless Agplating on self-assembly monolayer [J]. Acta Chimica Sinica (in Chi-nese), 2002, 60(4): 627–632.[10] JIANG Xiaoxia, SHEN Wei. The fundamental and practice of elec-troless plating [M] (in Chinese). Beijing: National Defence Industry Press, 2000: 360–361.[11] LIU Zhihua, YAN Gongqin, TAO Janqing, et al. Study on synthesis ofα,ω-biaminophenyl-terminated poly(propylene glycol) and its-based epoxy resin adhesive [J]. China Adhes (in Chinese), 2005, 14(6):1–4. [12] HUANG zheng, GUAN Jianguo, WANG Yilong. Preparation andcharacterization of glass sphere/silver core–shell nanocomposite parti-cles [J]. J Chin Ceram Soc (in Chinese), 2006, 34(7): 882–886. [13] LU D, TONG Q K, WONG C P. Conductivity mechanism of isotropicalconductive adhesives [J]. IEEE T Electron Pack, 1999, 22(3): 223–227. [14] KIM M S, KIM H K, BYUN S W, et al. PET fabric/polypyrrolecomposite with high electrical conductivity for EMI shielding [J].Synthetic Met, 2002, 126: 233–239.[15] HONG Y K, LEE C Y, JEONG C K, et al. Electromagnetic interferenceshielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag [J]. Curr Appl Phy, 2001, (1): 439–442.。

相关文档
最新文档