第二章——方程与不等式

合集下载

第二章 二元二次函数、方程和不等式

第二章 二元二次函数、方程和不等式

第二章二元二次函数、方程和不等式本章主要介绍二元二次函数、方程和不等式的基本性质和解法。

二元二次函数二元二次函数是由两个变量的二次函数构成的,其一般形式为:$f(x, y) = ax^2 + by^2 + cxy + dx + ey + f$,其中$a, b, c, d, e, f$为常数。

二元二次函数的图像通常为二次曲线,例如椭圆、双曲线和抛物线。

它们可以描述二维空间中的各种现象和关系。

二元二次方程二元二次方程是由两个变量的二次方程构成的,一般形式为:$ax^2 + by^2 + cxy + dx + ey + f = 0$,其中$a, b, c, d, e, f$为已知常数,$x$和$y$为未知变量。

求解二元二次方程可以采用配方法、提公因式法、三角函数法等多种方法。

通过求解方程,我们可以找到方程的解集,进一步研究问题的解和特性。

二元二次不等式二元二次不等式是由两个变量的二次不等式构成的,其一般形式为:$ax^2 + by^2 + cxy + dx + ey + f > 0$(或$<$、$\ge$、$\le$等),其中$a, b, c, d, e, f$为已知常数,$x$和$y$为未知变量。

解二元二次不等式的方法与解方程类似,通过找到不等式的解集,可以确定不等式的满足条件以及在二维平面上的区域。

总结在本章中,我们介绍了二元二次函数、方程和不等式的基本概念和解法。

二元二次函数和方程可以用来描述二维空间中的各种现象和关系,而不等式则可以用来表示不同条件下的区域。

对于二元二次函数、方程和不等式的解法,我们可以根据具体情况选择不同的方法和策略。

通过深入学习和应用这些知识,我们能够更好地理解和解决相关问题。

第二章方程与不等式

第二章方程与不等式

第二章知识系统网络:一元一次分式方程一元一次方程二元一次方程组(与实际结合)方程与方程组根的判别式根与系数的关系一元二次方程二次三项式的因式分解一元二次分式方程不等式及其性质不等式的解集不等式与不等式组一元一次不等式的解法一元一次不等式组的解法及其应用(与实际相联系)重要知识点与难点:(一)方程1.一元二次方程根的判别式:△> 0 方程有_____________实数根△= 0 方程有_____________实数根△< 0 方程 _____________实数根2.一元二次方程根与系数的关系:若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1、x2,则x1+x2= ,x1x2= 。

(二)不等式不等式的性质(1)不等式的两边都加上(或减去)同一个整式或常数,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

易错点:1.解分式方程时忘了验根2.应用根的判别式的时候忽略二次项的系数不为03.不等式的两边都乘以(或除以)同一个负数,改变不等号的方向时易出错4.解系数是字母的不等式时,忽略字母的符号方程与方程组【命题趋势】一元一次方程和一元一次方程组是初中有关方程的基础,必考。

一元二次方程主要以填空,选择,解答和综合题(尤其与实际生活热点联系的题目)来考察一元二次方程的解法。

分式方程只考察能化简为一元一次分式方程的分式方程(即无论题目看上去多复杂,一定能通过化简化为一元一次分式方程),但分式方程是比较容易在化简过程中出错的,要仔细! 方程和方程组在中考中分值比例在14分~20分左右,主要考察概念与解法,形式比较固定。

【例题】1.(2009年四川省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .2 2.(2009年上海市)用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=3.(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 4.(2009年杭州市)已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为_____________.5.(2009贺州)解分式方程:163104245--+=--x x x x6.(2009年福州)整理一批图书,如果由一个人单独做要花60小时。

第二章 一元二次函数、方程和不等式(20页)

第二章 一元二次函数、方程和不等式(20页)
x+5x+2 x2+7x+10 x+12+5x+1+4
4
∴y=


=(x+1)+
+5
x+1
x+1
x+1
x+1
4
-x+1+
-x+1 +5≤-2 4+5=1,
=-
当(x+1)2=4,即 x=-3 时取“=”.]
题型探究
规律方法
基本不等式的主要应用是求函数的最值或范围,既适用于一个变
函数 y=x2+(1-a)x-a 的图象开口向上,所以
(1)当 a<-1 时,原不等式解集为{x|a<x<-1};
(2)当 a=-1 时,原不等式解集为∅ ;
(3)当 a>-1 时,原不等式解集为{x|-1<x<a}.
题型探究
规律方法
解一元二次不等式时,要注意数形结合,充分利用对应的二次
函数图像、一元二次方程的解的关系.如果含有参数,则需按一
定的标准对参数进行分类讨论.
当堂检测
3.若关于 x 的不等式 ax2+2x+2>0 在 R 上恒成立,
求实数 a 的取
值范围.
解:当 a=0 时,原不等式可化为 2x+2>0,其解集不为 R,故 a=0 不满足
a>0,
题意,舍去;当 a≠0 时,要使原不等式的解集为 R,只需
Δ=22-4×2a<0,
量的情况,也适用于两个变量的情况.基本不等式具有将“和式”
转化为“积式”和将“积式”转化为“和式”的放缩功能.解答此
类问题关键是创设应用不等式的条件,合理拆分项或配凑因式是
常用的解题技巧,而拆与凑的目的在于使等号能够成立.
当堂检测
1 9
16
2.已知 x>0,y>0,且 + =1,则 x+y 的最小值为________.

第二章 一元二次函数、方程和不等式 考点与题型解析(解析版)

第二章 一元二次函数、方程和不等式 考点与题型解析(解析版)

第二章一元二次函数、方程和不等式考点与题型解析一、本章知识体系二、考点与题型解读考点一本章考点方法梳理1.不等式的核心性质(1)a>b⇔b<a;(2)a>b,b>c⇒a>c;(3)a>b⇔a+c>b+c;(4)a>b,c>0⇒ac>bc;(5)a>b,c<0⇒ac<bc;(6)a>b,c>d⇒a+c>b+d;(7)a>b>0,c>d>0⇒ac>bd;(8)a>b>0,n∈N,n≥2⇒an>bn.2.不等式的性质是不等式理论的基础,在应用不等式性质进行论证时,要注意每个性质的条件,不要盲目乱用或错用性质,特别是乘法性质容易出错,要在记忆基础上加强训练,提高应用的灵活性.3.一元二次不等式的解法是根据一元二次方程的根与二次函数图像求解的,在求解含参数的一元二次不等式时,要注意相应方程根的情况的讨论.4.二元一次不等式的平面区域的确定,首先是画出直线(有虚实之分),然后用特殊点,一般选择原点去验证,以帮助选择直线的哪一侧.5.简单线性规划问题的解法称为图解法,针对应用题时,一定要正确地找到目标函数和线性约束条件,另外还应注意最优解问题以及移动直线时在y 轴上截距的正负与所求线性目标函数的最值之间的关系.当目标函数的几何意义为截距的正数倍时,截距最大时目标函数取最大值;而几何意义为截距的负数倍时,截距最大时目标函数取最小值.6.应用基本不等式求函数最值时,有三个条件:一是a 、b 为正;二是a +b 与a ·b 有一个为定值;三是等号要取到.这三个条件缺一不可,为了达到使用基本不等式的目的,常常需要对函数式(代数式)进行通分、分解等变形,构造和为定值或积为定值的模型.考点二 基本不等式及应用基本不等式:ab ≤a +b2(a>0,b>0)是每年高考的热点,主要考查命题判断、不等式证明以及求最值问题,特别是求最值问题往往与实际问题相结合,同时在基本不等式的使用条件上设置一些问题,实际上是考查学生恒等变形的技巧,另外,基本不等式的和与积的转化在高考中也经常出现.【例1】设a >0,b >0,2a +b =1,则1a +2b 的最小值为________.解析 ∵a >0,b >0,且2a +b =1,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+b a +4ab≥4+2b a ·4ab=8, 当且仅当⎩⎪⎨⎪⎧2a +b =1,b a =4a b ,即⎩⎪⎨⎪⎧a =14,b =12时等号成立.∴1a +2b 的最小值为8.答案 8【变式训练1】已知关于x 的不等式()224300x ax a a -+<>的解集为()12,x x ,则1212ax x x x ++的最小值是______.【答案】433考点三 一元二次不等式的解法对于一元二次不等式的求解,要善于联想两个方面的问题:①相应的二次函数图象及与x 轴的交点,②相应的一元二次方程的实根;反之对于二次函数(二次方程)的问题的求解,也要善于联想相应的一元二次不等式的解与相应的一元二次方程的实根.【例2】若不等式组⎩⎨⎧x 2-x -2>0,2x 2+2k +5x +5k <0,的整数解只有-2,求k 的取值范围.解:由x 2-x -2>0,得x <-1或x >2. 对于方程2x 2+(2k +5)x +5k =0有两个实数解 x 1=-52,x 2=-k .(1)当-52>-k ,即k >52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-k <x <-52,显然-2∉⎝ ⎛⎭⎪⎫-k ,-52.(2)当-k =-52时,不等式2x 2+(2k +5)x +5k <0的解集为∅.(3)当-52<-k ,即k <52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52<x <-k .∴不等式组的解集由⎩⎪⎨⎪⎧x <-1,-52<x <-k 或⎩⎪⎨⎪⎧x >2,-52<x <-k 确定.∵原不等式组整数解只有-2, ∴-2<-k ≤3,故所求k 的范围是-3≤k <2.【变式训练2】二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数()y b c x =+在同一坐标系中的大致图象可能是()A .B .C .D .【答案】B考点四 不等式的恒成立问题不等式中的恒成立问题,既是学习中的难点,又是高考中的热点,在求解不等式中的恒成立问题时,要注意转化,利用数形结合的方法,构造不等式或不等式组进行探讨.常见的解决恒成立问题的方法有:(1)判别式法;(2)数形结合法;(3)分离参数法;(4)分类讨论法.【例3】不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切实数x 恒成立,求m 的取值范围. 解:当m 2-2m -3=0时,m =-1或3. 而m =3时,-1<0符合题意,所以m =3; 当m 2-2m -3≠0时,应有⎩⎨⎧m 2-2m -3<0-m +32+4m 2-2m -3<0⇒⎩⎪⎨⎪⎧-1<m <3-15<m <3⇒-15<m <3.综上可得,m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪-15<m ≤3. 【变式训练3】已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围. 【答案】16<m考点五 线性规划问题1.高考中线性规划主要考查平面区域的表示和图解法的具体应用,命题形式以选择题、填空题为主,命题模式是以线性规划为载体,考查区域的划分、区域的面积,涉及区域的最值问题、决策问题、整点问题、参数的取值范围问题等.2.简单线性规划问题的图解法就是利用数形结合的思想,根据线性目标函数的几何意义,求线性目标函数在线性约束条件下的最优解,一般步骤如下: ①作图:画出约束条件(不等式组)所确定的平面区域; ②找初始直线:列目标函数,找初始直线l 0;③平移:将直线l 0平行移动,以确定最优解所对应的点的位置;④求值:解有关的方程组,求出最优解,再代入目标函数,求出目标函数的最值.【例4】设关于x ,y 的不等式组⎩⎨⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝ ⎛⎭⎪⎫-∞,-23D .⎝ ⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2, 因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 选C【变式训练4】若变量x ,y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,12z x y =+的最大值为m ,212y z x -=+的最小值为n ,则m n +=( ) A .2-B .2C .1D .1-【答案】C考点六 均值不等式的应用均值不等式通常用来求最值问题:一般用a +b ≥2ab (a ≥0,b ≥0)求“定积求和,和最小”问题,用ab ≤⎝⎛⎭⎪⎫a +b 22求“定和求积、积最大”问题.一定要注意适用的范围和条件:“一正、二定、三相等”.特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,及对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用均值不等式解决实际问题. 【例5】已知0<x <2,求函数y =x (8-3x )的最大值.解:∵0<x <2,∴0<3x <6,∴8-3x >0,∴y =x (8-3x )=13·3x ·(8-3x )≤13·⎝ ⎛⎭⎪⎫3x +8-3x 22=163, 当且仅当3x =8-3x ,即x =43时,取等号.∴当x =43时,y =x (8-3x )取得最大值,最大值为163.【变式训练5】已知函数()218f x ax bx =++,()0f x >的解集为()3,2-.(1)求()f x 的解析式;(2)当1x >-时,求()211f x y x -=+的最大值.【答案】(1)()23318f x x x =--+;(2)max 3y =-.。

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件

人教版高中数学必修一第二章一元二次函数方程和不等式全套PPT课件
[解析] , ,又 , ,即 .又 , ,即 .故 , .
【变式探究】
已知 且 ,求 的取值范围.
[解析] 令 , ,则 , .由 解得 ,又 , , , .
方法总结 不等式具有可加性(需同向)与可乘性(需同正),但不能相减或相除,应用时要充分利用所给条件进行适当变形来求范围,注意等价变形.
方法总结 应用基本不等式时,注意下列常见变形中等号成立的条件:
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
学习目标
1.会用不等式(组)表示实际问题中的不等关系.(数学建模)
2.会运用作差法比较两个数或式子的大小.(数学运算)
3.梳理等式的性质,掌握不等式的性质,会用不等式的性质证明不等式或解决范围问题.(逻辑推理)
自主预习·悟新知
合作探究·提素养
(2)已知 , .求证: .

[解析] (1)对于①,若 , , , ,则 ,①错误;对于②,对于正数 , , ,若 ,则 ,所以 ,所以 ,又 ,所以 ,②正确.综上,正确结论的序号是②.(2)因为 ,所以 .所以 .又因为 ,所以 .所以 ,即 ,所以 .
探究2 重要不等式
设 , ,记 , , 分别为 , 的算术平均数、几何平均数、调和平均数.古希腊数学家帕波斯于公元4世纪在其名著《数学汇编》中研究过 时, , , 的大小关系.
问题1:.你能探究 , , 的大小关系吗?
[答案] 能,因为 , , ,所以 ,即 ; ,即 .所以 .所以 , , 中最大的为 ,最小的为 .
问题1:.小明的说法正确吗?用什么性质判断小明的说法是否正确?
[答案] 不正确,用等式的性质.当 时, 一定成立,反过来,当 时,不能推出 ,如当 时, 成立, 不成立.故“ 是 成立的充要条件”是错误的.

新教材2023年高中数学 第2章 一元二次函数、方程和不等式 2

新教材2023年高中数学 第2章 一元二次函数、方程和不等式 2

则不等式3xx--3a<0 即3xx--36<0 等价于 3(x-2)(x-3)<0,
不等式 3(x-2)(x-3)<0 的解集为{x|2<x<3},则不等式3xx--3a<0 的解
集为{x|2<x<3},
故答案为:{x|2<x<3}.
3.若x∈{x|1<x<2}时,不等式x2+mx+4<0恒成立,求m的取值范 围.
2.若不等式
ax2+5x+1≤0
的解集为x-12≤x≤-13
,则不等式
3x-a x-3 <0
的解集为______{_x|_2_<_x_<_3_}____.
[解析]
由不等式 ax2+5x+1≤0 的解集为x-12≤x≤-13

可知方程 ax2+5x+1=0 有两根 x1=-12,x2=-13,故 a=6,
因此4 1515-1<x≤2 3 3-1.
因为4 1515-1≈0.033=3.3%,2 3 3-1≈0.155=15.5%,所以该镇居 民的生活如果在 2005 年达到小康水平,那么他们的食品消费额的年增长 率就应在 3.3%到 15.5%的范围内取值,不包括 3.3%但包括 15.5%,也就 是说,平均每年的食品消费额增长率至多是 15.5%.
(1)x1,x2一正一负⇔x1x2<0. Δ≥0,
(2)x1>0,x2>0⇔x1+x2>0, x1x2>0.
Δ≥0, (3)x1<0,x2<0⇔x1+x2<0,
x1x2>0.
【对点练习】❸ (2021·陕西汉中高二期末)要使关于x的方程x2+(a2 - 1)x + a - 2 = 0 的 一 根 比 1 大 且 另 一 根 比 1 小 , 则 a 的 取 值 范 围 是 ____{_a_|_-__2_<_a_<_1_}_____.

第二章一元二次函数、方程和不等式

第二章一元二次函数、方程和不等式

<
������������.故该结论错误.
课堂篇 探究学习
探究一
探究二
探究三 思维辨析 随堂演练
课堂篇 探究学习
反思感悟 1.解决这类问题时,通常有两种方法:一是直接利用不 等式的性质,进行推理,看根据条件能否推出相应的不等式;二是采 用取特殊值的方法,判断所给的不等式是否成立,尤其是在选择题 中经常采用这种办法.
一二三四
课前篇 自主预习
3.做一做
若x为实数,则x2-1与2x-5的大小关系是
.
解析:∵(x2-1)-(2x-5)=x2-2x+4=(x-1)2+3>0,∴x2-1>2x-5.
答案:x2-1>2x-5
一二三四
课前篇 自主预习
三、重要不等式 1.∀a,b∈R,a2+b2与2ab大小有何关系? 提示:因为a2+b2-2ab=(a-b)2≥0恒成立,所以a2+b2≥2ab. 2.填空 ∀a,b∈R,a2+b2≥2ab,当且仅当a=b时,等号成立.
(4)由1������
>
1������,可知1������

1 ������
=
������������-������������>0.因为
a>b,所以
b-a<0,于是
ab<0.
又因为 a>b,所以 a>0,b<0.故该结论正确.
(5)依题意取
a=-2,b=-1,则������������
=
1 2
,
������������=2,显然������������
2.1 等式性质与不等式性质
-1-

高中数学第二章一元二次函数方程和不等式2.2基本不等式第1课时基本不等式课件新人教A版必修第一册

高中数学第二章一元二次函数方程和不等式2.2基本不等式第1课时基本不等式课件新人教A版必修第一册

6.若 a,b 都是正数,则1+ba1+4ba的最小值为(
)
A.7 B.8 C.9 D.10
答案 C
解析 因为 a,b 都是正数,所以1+ba1+4ba=5+ba+4ba≥5+2
b 4a a·b
=9,当且仅当 b=2a 时取等号.
7.已知 x>0,y>0,且 x+y=8,则(1+x)(1+y)的最大值为( ) A.16 B.25 C.9 D.36
8.若 a>b>0,则下列不等式一定成立的是( )
A.a-b>1b-1a B.ca2<cb2
2ab C. ab>a+b
D.3aa++3bb>ab
答案 C
解析 逐一考查所给的选项:当 a=2,b=13时,a-b=53,1b-1a=52,不 满足 a-b>1b-1a,A 错误;当 c=0 时,ca2=cb2=0,不满足ca2<cb2,B 错误;
x+4x=--x+-4x≤-2
-x·-4x=-4,C 错误,故选 D.
知识点二 直接利用基本不等式求最值 5.设 x>0,y>0,且 x+y=18,则 xy 的最大值为( ) A.80 B.77 C.81 D.82
答案 C 解析 因为 x>0,y>0,所以x+2 y≥ xy,即 xy≤x+2 y2=81,当且仅当 x=y=9 时,等号成立,所以 xy 的最大值为 81.
3x·1x=3-2 3,当且仅当 3x=1x,
4.设 x>0,则 x+2x+2 1-32的最小值为(
)
A.0
1 B.2
C.1
3 D.2
答案 解析
A 因为 x>0,所以 x+12>0,所以 x+2x+2 1-32=x+12+x+1 12-

高中数学第二章一元二次函数方程和不等式等式与不等式1学生用书湘教版必修第一册

高中数学第二章一元二次函数方程和不等式等式与不等式1学生用书湘教版必修第一册

第二章一元二次函数、方程和不等式2.1 相等关系与不等关系 2.1.1 等式与不等式最新课程标准学科核心素养1.能从等式的性质类比不等式的性质.(数学抽象)2.理解实数比较大小的基本事实,会比较两个实数的大小.(数学运算)3.掌握不等式的性质及其成立的条件,会利用不等式的性质.(逻辑推理)4.灵活运用不等式的基本性质解决求范围问题、证明不等式.(逻辑推理)1.梳理等式的性质.2.理解不等式的概念.3.掌握不等式的性质.第1课时 等式与不等式(1)教材要点要点一 不等式中的文字语言与符号语言之间的转换文字语言大于大于等于小于小于等于至多至少不少于不多于符号语言>≥<≤≤≥≥≤状元随笔 不等式a≥b 或a≤b 的含义(1)不等式a≥b 含义是指“a >b, 或者a =b”,等价于“a 不小于b”,即若a >b 或a =b 中有一个正确,则a≥b 正确.(2)不等式a≤b 含义是指“a <b ,或者a =b”,等价于“a 不大于b”,即若a <b 或a =b 中有一个正确,则a≤b 正确.要点二 比较两个实数a ,b 大小的依据1.文字叙述如果a -b 是________,那么a >b ;如果a -b ________,那么a =b ;如果a-b是________,那么a<b,反之也成立.2.符号表示a-b>0⇔a________b;a-b=0⇔a________b;a-b<0⇔a________b.状元随笔 比较两实数a,b的大小,只需确定它们的差a-b与0的大小关系,与差的具体数值无关.因此,比较两实数a,b的大小,其关键在于经过适当变形,能够确认差a-b的符号,变形的常用方法有配方、分解因式、通分等.基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)两个实数a,b之间,有且只有a>b,a=b,a<b三种关系中的一种.( )(2)若ab>1,则a>b.( )(3)a与b的差是非负实数,可表示为a-b>0.( )(4)因为∀a,b∈R,(a-b)2≥0,所以a2+b2≥2ab.( )2.某路段竖立的的警示牌,是指示司机通过该路段时,车速v km/h应满足的关系式为( )A.v<60B.v>60C.v≤60D.v≥363.设M=x2,N=-x-1,则M与N的大小关系是( )A.M>N B.M=NC.M<N D.与x有关4.已知x<1,则x2+2与3x的大小关系是________.题型1 用不等式(组)表示不等关系例1 (1)某车工计划在15天里加工零件408个,最初三天中,每天加工24个,则以后平均每天至少需加工多少个,才能在规定的时间内超额完成任务?求解此问题需要构建的不等关系为________.(2)某钢铁厂要把长度为4000mm的钢管截成500mm和600mm的两种钢管.按照生产的要求,600mm的钢管数量不能超过500mm钢管的3倍.怎样写出满足上述所有不等关系的不等式组呢?方法归纳用不等式(组)表示不等关系的步骤(1)审清题意,明确表示不等关系的关键词语:至多、至少、大于等.(2)适当的设未知数表示变量.(3)用不等号表示关键词语,并连接变量得不等式.此类问题的难点是如何正确地找出题中的隐性不等关系,如由变量的实际意义限制的范围.跟踪训练1 (1)中国“神舟七号”宇宙飞船的飞行速度v不小于第一宇宙速度7.9km/s,且小于第二宇宙速度11.2km/s.表示为____________.(2)已知甲、乙两种食物的维生素A,B含量如下表:食物甲乙维生素A/(单位/kg)600700维生素B/(单位/kg)800400设用甲、乙两种食物各x kg,y kg配成混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.试用不等式表示x,y所满足的不等关系.题型2 实数(式)的比较大小例2 已知a>0,试比较a与1a的大小.方法归纳用作差法比较两个实数大小的四步曲跟踪训练2 (1)已知a∈R,p=(a-1)(a-3),q=(a-2)2,则p与q的大小关系为( )A.p>q B.p≥qC.p<q D.p≤q(2)已知b>a>0,m>0,比较b+ma+m与ba的大小.题型3 不等关系的转化及应用例3 2021年5月1日某单位职工去瞻仰毛泽东纪念馆需包车前往.甲车队说:“如果领队买全票一张,其余人可享受7.5折优惠”,乙车队说:“你们属团体票,按原价的8折优惠.”这两车队的原价、车型都是一样的,试根据单位的人数,比较两车队的收费哪家更优惠.方法归纳现实生活中的许多问题能够用不等式解决,其解题思路是将解决的问题转化成不等关系,利用作差法比较大小,进而解决实际问题.跟踪训练3 甲、乙两家饭馆的老板一同去超市购买两次大米,这两次大米的价格不同,两家饭馆老板购买的方式也不同,其中甲每次购进100千克大米,而乙每次用去100元钱.问:谁的购买方式更合算?课堂十分钟1.(多选)下列说法正确的是( )A.某人月收入x不高于2000元可表示为“x<2000”B.小明的身高x cm,小华的身高y cm,则小明比小华矮表示为“x>y”C.某变量x至少为a可表示为“x≥a”D.某变量y不超过a可表示为“y≤a”2.若m=x2-1,n=2(x+1)2-4(x+1)+1,则m与n的大小关系是( )A.m<n B.m>nC.m≥n D.m≤n3.某学校为高一3班男生分配宿舍,如果每个宿舍安排3人,就会有6名男生没有宿舍住,如果每个宿舍安排5人,有一间宿舍不到5名男生,那么该学校高一3班的男生宿舍可能的房间数量是( )A.3或4B.4或5C.3或5D.4或64.若x=(a+3)(a-5),y=(a+2)(a-4),则x与y的大小关系是____________.5.糖水在日常生活中经常见到,可以说大部分人都喝过糖水.下列关于糖水浓度的问题,能提炼出一个怎样的不等式呢?(1)如果向一杯糖水里加点糖,糖水变甜了;(2)把原来的糖水(淡)与加糖后的糖水(浓)混合到一起,得到的糖水一定比淡的浓、比浓的淡.第二章 一元二次函数、方程和不等式2.1 相等关系与不等关系2.1.1 等式与不等式第1课时 等式与不等式(1)要点二1.正数 等于0 负数2.> = <[基础自测]1.答案:(1)√ (2)× (3)× (4)√2.答案:C3.解析:因为M-N=x2+x+1=(x+12)2+34>0,所以M>N.故选A.答案:A4.解析:x2+2-3x=(x-1)(x-2),又x<1,∴x2+2-3x=(x-1)(x-2)>0,即x2+2>3x.答案:x2+2>3x题型探究·课堂解透例1 解析:(1)设该车工3天后平均每天需加工x个零件,加工(15-3)天共加工12x个零件,15天里共加工(3×24+12x)个零件,则3×24+12x>408.故不等关系表示为72+12x>408.(2)设截得500 mm的钢管x根,截得600 mm的钢管y根.根据题意,应有如下的不等关系:①截得两种钢管的总长度不超过4 000 mm.②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍.③截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:¿答案:(1)72+12x>408 (2)见解析跟踪训练1 解析:(1)“不小于”即大于或等于,故用不等式表示为:7.9≤v<11.2.(2)x kg 甲种食物含有维生素A 600x 单位,含有维生素B 800x 单位,y kg 乙种食物含有维生素A 700y 单位,含有维生素B 400y 单位,则x kg 甲种食物与y kg 乙种食物配成的混合食物总共含有维生素A(600x +700y )单位,含有维生素B(800x +400y )单位,则有{600x +700y ≥56000,800x +400y ≥63000,x ≥0,y≥0,即{6x +7y≥560,4x +2y≥315,x ≥0,y≥0.答案:(1)7.9≤v <11.2 (2)见解析例2 解析:因为a -1a =a 2−1a=(a −1)(a +1)a,a >0所以当a >1时,(a −1)(a +1)a>0,有a >1a ;当a =1时,(a −1)(a +1)a =0,有a =1a ;当0<a <1时,(a −1)(a +1)a<0,有a <1a .综上,当a >1时,a >1a;当a =1时,a =1a;当0<a <1时,a <1a.跟踪训练2 解析:(1)由题意,p =(a -1)(a -3),q =(a -2)2,则p -q =(a -1)(a -3)-(a -2)2=a 2-4a +3-(a 2-4a +4)=-1<0,所以p -q <0,即p <q .故选C.(2)作差:b +m a +m −b a =ab +am−ab −bm a (a +m )=m (a −b )a (a +m ).∵b >a >0,m >0,∴a -b <0,a +m >0,∴m (a −b )a (a +m )<0,∴b +m a +m <ba .答案:(1)C (2)见解析例3 解析:设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车队的车需花y 1元,坐乙车队的车需花y 2元.由题意,得y 1=x +34x ·(n -1)=14x +34nx ,y 2=45nx .因为y 1-y 2=14x +34nx -45nx =14x -120nx =14x (1−n 5),当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2,所以,当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.跟踪训练3 解析:设两次大米的价格分别为a 元/千克,b 元/千克(a >0,b >0,a ≠b ,)则甲两次购买大米的平均价格(元/千克)是:100(a +b )200=a +b2.乙两次购买大米的平均价格(元/千克)是:200100a +100b =21a +1b =2aba +b ,因为a +b 2−2ab a +b =(a +b )2−4ab 2(a +b )=(a −b )22(a +b )>0,所以a +b 2>2aba +b .所以乙饭馆的老板购买大米的方式更合算.[课堂十分钟]1.解析:对于A ,x 应满足x ≤2 000,故A 错;对于B ,x ,y 应满足x <y ,故B 不正确;CD 正确.故选CD.答案:CD2.解析:∵n -m =x 2≥0,∴n ≥m .故选D.答案:D3.解析:设宿舍房间数量为x ,男生人数为y ,则{y =3x +60<y −5(x−1)<5x ,y ∈N ∗,解得x =4,5.所以宿舍可能的房间数量为4或5.故选B.答案:B4.解析:因为x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,所以x <y .答案:x <y5.解析:(1)设糖水b克,含糖a克,易知糖水浓度为ab,加入m克糖后的糖水浓度为a+mb+m,则提炼出的不等式为:若b>a>0,m>0,则ab<a+mb+m.(2)设淡糖水b1,含糖a1克,浓糖水b2克,含糖a2克,易知淡糖水浓度为a1b1,浓糖水浓度为a2b2,则混合后的糖水浓度为a1+a2b1+b2,则提炼出的不等式为:若b1>a1>0,b2>a2>0,且a1b1<a2b2,则a1b1<a1+a2b1+b2<a2b2.。

第二章 不等式含答案

第二章 不等式含答案

第二章 一元二次函数、方程和不等式2.1 等式性质与不等式性质1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = b a -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b<1⇔a < b (a ∈R ,b >0).2.等式的性质性质1:如果a =b ,那么b =a ;性质2:如果a =b ,b =c ,那么b =c ; 性质3:如果a =b ,那么a ±c=b ±c ; 性质4:如果a =b ,那么a c=bc ; 性质5:如果a =b ,c 0≠那么cbc a =;3.不等式的性质性质1 a b >⇔ ________;(对称性) 性质2 a b >,b c >⇒ ________;(传递性)性质3 a b >⇒ ______________;(可加性) 推论:a b c >⇒+___________;(移项法则) 性质4 a b >,0c >⇒ __________,(可乘性)a b >,0c ac bc <⇒<;(乘负反序性) 性质5 a b >,c d >⇒ ______________;(同向可加性) 性质6 0a b >>,0c d >>⇒ __________;(同正同向可乘性) 性质7 0a b >>⇒ __________()2n N n ∈≥,.(可乘方性)性质8 ①a >b ,ab >0⇒1a < 1b . ②a <0<b ⇒1a < 1b.(可倒性)典例例1 某矿山车队有4辆载重为10t 的甲型卡车和7辆载重为6t 的乙型卡车,且有9名驾驶员,此车队每天至少要运360t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.例2 已知a ,b +例3 若0a b <<,则下列结论正确的是( )A .22a b <B 2ab b < C .11a b> D .22ac bc > 例4 已知1025m <<,3015n -<<-,求m+n ,m n -与mn 的取值范围.例5 已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.课时作业1.设a ,b ∈R ,若a -|b|>0,则下列不等式中正确的是( ) A.b -a>0 B.a 3+b 3<0 C.a 2-b 2<0 D.b+a>02、当1x ≤时,比较大小:33x 231x x -+.3、设1≤a -b ≤2, 2≤a +b ≤4,求4a -2b 的取值范围.4、已知a ∈R ,且a ≠1,比较a+2与31-a的大小.2.2 基本不等式1. 重要的不等式:a 2+b 2≥2ab (a ,b ∈R ).2.基本不等式:ab ≤a +b2:两个正数的几何平均数不大于它们的算术平均数.(a+b ≥2ab )注意:(1)此结论运用前提:一正、二定、三相等典例例1.(1)函数y =x +1x(x >0)的值域为( )A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞) (2).已知m >0,n >0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243(3).已知x <0,则y =2+4x+x 的最大值为_______例2、当x >0时,则y =2xx 2+1的最大值为________.例3、若x >1,则x +4x -1的最小值为________.例4、已知a >0,b >0,且a +b =1,求1a +2b的最小值.例5、函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2例6 如图所示动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大? (2)要使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?课时作业一、选择题1、已知x >0,函数y=x+的最小值是( ) A .2 B .4C .6D .82、当x ∈R 时,x+的取值范围是( )A .(﹣∞,﹣4]B .(﹣∞,﹣4)∪(4,+∞)C .[4,+∞)D .(﹣∞,﹣4]∪[4,+∞)3、已知x >0,y >0,且2x+y=1,则xy 的最大值是( ) A .B .C .4D .84、的最小值为)(函数)0(2>+=ab abb a y A .B.12C .4D .65、函数15(1)1y x x x =++>-的最小值为A .5B .6C 7 D.86、已知正数x,y 满足431x y +=,则x+3y 的最小值为A .5B .12C .13D .25 7、设,,若,则的最小值为 A . B .6 C . D .8、已知y=,其中x≥0,则y 的最小值为( )A .1B .C .D .9.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由形状为长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示).(1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=x (x>1),求公园ABCD所占面积S 关于x 的函数解析式;(2)要使公园所占面积最小,休闲区A 1B 1C 1D 1的长和宽该如何设计?1a >0b >2a b +=121a b+-3+2.3 二次函数与一元二次方程、不等式一、形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式. 二、“三个二次”之间的对应关系设()00022≠<++>++a c bx ax c bx ax 或相应的一元二次方程()002≠=++a c bx ax 的两根为1x ,2,则不等式的解的各种情况如下表:0>∆ 0=∆0<∆c bx ax y ++=2cbx ax y ++=2cbx ax y ++=2三、一元二次不等式的解法: (1)化二次项系数为正;(2)令左边=右边,求出两根x 1 , x 2; (当0<∆时,需另作考虑) (3)大于取两根之外,小于取两根之间。

第二章 一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章  一元二次函数 、 方程和不等式(公式、定理、结论图表)--2023年高考数学必背(新教材)

第二章一元二次函数、方程和不等式(公式、定理、结论图表)1.不等关系不等关系常用不等式来表示.2.实数a,b的比较大小文字语言数学语言等价条件a-b是正数a-b>0a>ba-b等于零a-b=0a=ba-b是负数a-b<0a<b3.重要不等式一般地,∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.4.等式的性质(1)性质1如果a=b,那么b=a;(2)性质2如果a=b,b=c,那么a=c;(3)性质3如果a=b,那么a±c=b±c;(4)性质4如果a=b,那么ac=bc;(5)性质5如果a=b,c≠0,那么ac=b c .5.不等式的基本性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇔a+c>b+c.(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(5)加法法则:a>b,c>d⇒a+c>b+d.(6)乘法法则:a>b>0,c>d>0⇒ac>bd.(7)乘方法则:a>b>0⇒a n>b n>0(n∈N,n≥2).6.基本不等式(1)有关概念:当a,b均为正数时,把a+b2叫做正数a,b的算术平均数,把ab叫做正数a,b的几何平均数.(2)不等式:当a,b是任意正实数时,a,b的几何平均数不大于它们的算术平均数,即ab≤a+b2,当且仅当a=b时,等号成立.7.已知x、y都是正数,(1)若x+y=S(和为定值),则当x=y时,积xy取得最大值S24.(2)若xy=p(积为定值),则当x=y时,和x+y取得最小值2p.上述命题可归纳为口诀:积定和最小,和定积最大.8.一元二次不等式的概念只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.9.一元二次不等式的一般形式(1)ax2+bx+c>0(a≠0).(2)ax2+bx+c≥0(a≠0).(3)ax2+bx+c<0(a≠0).(4)ax2+bx+c≤0(a≠0).思考1:不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.10.一元二次不等式的解与解集使一元二次不等式成立的未知数的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.思考2:类比“方程x2=1的解集是{1,-1},解集中的每一个元素均可使等式成立”.不等式x2>1的解集及其含义是什么?提示:不等式x2>1的解集为{x|x<-1或x>1},该集合中每一个元素都是不等式的解,即不等式的每一个解均使不等式成立.11.三个“二次”的关系|b提示:结合二次函数图象可知,若一元二次不等式ax2+x-1>0的解集为R,则>0,+4a<0,解得a∈∅,所以不存在a使不等式ax2+x-1>0的解集为R. 12.分式不等式的解法主导思想:化分式不等式为整式不等式类型同解不等式思考1:x -3x +2>0与(x -3)(x +2)>0等价吗?将x -3x +2>0变形为(x -3)(x +2)>0,有什么好处?提示:等价;好处是将不熟悉的分式不等式化归为已经熟悉的一元二次不等式.13.(1)不等式的解集为R (或恒成立)的条件设二次函数y =ax 2+bx +c若ax 2+bx +c ≤k 恒成立⇔y max ≤k 若ax 2+bx +c ≥k 恒成立⇔y min ≥k14.从实际问题中抽象出一元二次不等式模型的步骤(1)阅读理解,认真审题,分析题目中有哪些已知量和未知量,找准不等关系.(2)设出起关键作用的未知量,用不等式表示不等关系(或表示成函数关系).(3)解不等式(或求函数最值).(4)回扣实际问题.思考2:解一元二次不等式应用题的关键是什么?提示:解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x,用x来表示其他未知量,根据题意,列出不等关系再求解.<解题方法与技巧>1.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.典例1:已知x≤1,比较3x3与3x2-x+1的大小.[解]3x3-(3x2-x+1)=(3x3-3x2)+(x-1)=3x2(x-1)+(x-1)=(3x2+1)(x-1).∵x≤1得x-1≤0,而3x2+1>0,∴(3x2+1)(x-1)≤0,∴3x3≤3x2-x+1.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.典例2:若a>b>0,c<d<0,e<0,求证:e(a-c)2>e(b-d)2.[思路点拨]可结合不等式的基本性质,分析所证不等式的结构,有理有据地导出证明结果.[证明]∵c<d<0,∴-c>-d>0.又∵a>b>0,∴a-c>b-d>0.∴(a-c)2>(b-d)2>0.两边同乘以1(a-c)2(b-d)2,得1(a-c)2<1(b-d)2.又e<0,∴e(a-c)2>e(b-d)2.3.对基本不等式的理解2.对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a、b都是正典例3:给出下面四个推导过程:①∵a、b为正实数,∴ba+ab≥2ba·ab=2;②∵a∈R,a≠0,∴4a+a≥24a·a=4;③∵x、y∈R,xy<0,∴xy+yx=-- 2.其中正确的推导为()A.①②B.①③C.②③D.①②③B[解]①∵a、b为正实数,∴ba、ab为正实数,符合基本不等式的条件,故①的推导正确.②∵a∈R,a≠0,不符合基本不等式的条件,∴4a+a≥24a·a=4是错误的.③由xy<0,得xy、yx均为负数,但在推导过程中将整体xy+yx提出负号后,为正数,符合均值不等式的条件,故③正确.]4.利用基本不等式比较大小1.在理解基本不等式时,要从形式到内含中理解,特别要关注条件.等号成立的条件是a=b;a2+b2≥2ab成立的条件是a,b∈R,等号成立的条件是a=b.典例4:(1)已知a,b∈R+,则下列各式中不一定成立的是()A.a+b≥2ab B.ba+a b ≥2C.a2+b2ab ≥2ab D.2aba+b≥ab(2)已知a,b,c是两两不等的实数,则p=a2+b2+c2与q=ab+bc+ca的大小关系是________.(1)D(2)a2+b2+c2>ab+bc+ac[解](1)由a+b2≥ab得a+b=2ab,∴A成立;∵ba+ab≥2ba·ab=2,∴B成立;∵a2+b2ab≥2abab=2ab,∴C成立;∵2aba+b≤2ab2ab=ab,∴D不一定成立.(2)∵a、b、c互不相等,∴a2+b2>2ab,b2+c2>2ac,a2+c2>2ac.∴2(a2+b2+c2)>2(ab+bc+ac).即a2+b2+c2>ab+bc+.]5.利用基本不等式证明不等式1.条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系.2.先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法.典例5:已知a,b,c是互不相等的正数,且a+b+c=1,求证:1a+1b+1c>9.[思路点拨]看到1a+1b+1c>9,想到将“1”换成“a+b+c”,裂项构造基本不等式的形式,用基本不等式证明.[证明]∵a,b,c∈R+,且a+b+c=1,∴1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+b a +c a +a b +c b +a c +b c=3≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+2+2+2=9.当且仅当a =b =c 时取等号,∴1a +1b +1c>9.6.利用基本不等式求最值利用基本不等式求最值的关键是获得满足基本不等式成立条件,即“一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应凑出定和或定积;典例6:(1)已知x <54,求y =4x -2+14x -5的最大值;(2)已知0<x <12,求y =12(1-2x )的最大值.[思路点拨](1)看到求y =4x -2+14x -5的最值,想到如何才能出现乘积定值;(2)要求y=12x (1-2x )的最值,需要出现和为定值.[解](1)∵x <54,∴5-4x >0,∴y =4x -2+14x -5=--4x 3≤-2+3=1,当且仅当5-4x =15-4x,即x =1时,上式等号成立,故当x =1时,y max =1.(2)∵0<x<12,∴1-2x>0,∴y=14×2x(1-2x)≤14×=14×14=116∴当且仅当2x=1-2xx=14时,y max=116.7.利用基本不等式求条件最值1.本题给出的方法,用到了基本不等式,并且对式子进行了变形,配凑出满足基本不等式的条件,这是经常使用的方法,要学会观察、学会变形.f(x)=ax(b-ax)型.典例7:已知x>0,y>0,且满足8x+1y=1.求x+2y的最小值.[解]∵x>0,y>0,8x+1 y=1,∴x+2yx+2y)=10+xy+16yx≥10+2xy·16yx=18,+1y=1,=16yx,=12,=3时,等号成立,故当x=12,y=3时,(x+2y)min=18.8.利用基本不等式解决实际问题1.在应用基本不等式解决实际问题时,应注意如下思路和方法:(1)先理解题意,设出变量,一般把要求最值的量定为函数;(2)建立相应的函数关系,把实际问题抽象成函数的最大值或最小值问题;(3)在定义域内,求出函数的最大值或最小值;(4)正确写出答案.时,可用函数的单调性求解典例8:如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.现有36m 长的钢筋网材料,每间虎笼的长、宽分别设计为多少时,可使每间虎笼面积最大?[解]设每间虎笼长x m ,宽y m ,则由条件知,4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥22x ·3y =26xy ,所以26xy ≤18,得xy ≤272,即S max =272,当且仅当2x =3y 时,等号成立.x +3y =18,x =3y ,=4.5,=3.故每间虎笼长为4.5m,宽为3m 时,可使每间虎笼面积最大.法二:由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =-32y =32y (6-y ).∵0<y <6,∴6-y >0.∴S ≤32(6-y )+y 22=272.当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长为4.5m ,宽为3m 时,可使每间虎笼面积最大.9.不等式恒成立问题对于恒成立不等式求参数范围问题常见类型及解法有以下两种:(1)变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元.(2)转化法求参数范围已知二次函数y=ax2+bx+c的函数值的集合为B={y|m≤y≤n},则(1)y≥k恒成立⇒y min≥k即m≥k;(2)y≤k恒成立⇒y max≤k即n≤k.典例9:已知y=x2+ax+3-a,若-2≤x≤2,x2+ax+3-a≥0恒成立,求a的取值范围.[思路点拨]对于含参数的函数在某一范围上的函数值恒大于等于零的问题,可以利用函数的图象与性质求解.[解]设函数y=x2+ax+3-a在-2≤x≤2时的最小值为关于a的一次函数,设为g(a),则(1)当对称轴x=-a2<-2,即a>4时,g(a)=(-2)2+(-2)a+3-a=7-3a≥0,解得a≤73,与a>4矛盾,不符合题意.(2)当-2≤-a2≤2,即-4≤a≤4时,g(a)=3-a-a24≥0,解得-6≤a≤2,此时-4≤a≤2.(3)当-a2>2,即a<-4时,g(a)=22+2a+3-a=7+a≥0,解得a≥-7,此时-7≤a<-4.综上,a的取值范围为-7≤a≤2.。

中考数学复习:第二章:方程与不等式专题复习

中考数学复习:第二章:方程与不等式专题复习

分式方程及其应用
•中考预知 •1、分式方程的解法; •2、分式方程实际的应用。
考点1:分式方程的解法
• 1.分式方程:分母中含有字母的方程叫分式方程. • 2.解分式方程的一般步骤: • (1)去分母,在方程的两边都乘以分母的最小公倍数,约去分母,
化成整式方程;
• (2)解这个整式方程; • (3)验根,把整式方程的根代入最简公分母,看结果是不是零,使
一次方程,它们的解就是原一元二次方程的解.
典例精讲
• 1、下列方程是一元二次方程的是( )
• A.ax2 bx c 0
• B.x2 2x x2 1
• C.x 1x 3 0
• D. 1 x 2 x2
• 2、分别用下列方法解方程
• (1)(2x 1) 2 9(直接开平方法)
(2)4x2–8x+1=0(配方法)
2cx+a=0,cx2+2ax+b=0,不可能都有两个相等的实数根.
• 七、判定三角形的形状 • 例7 设a、b、c是△ABC的三边长,且关于x的方程c(x2+n)+b(x2-n)
-2ax=0(n>0)有两个相等的实数根,试判断△ABC的形状.
• 八、讨论方程有理根的问题 • 例8 m为有理数,讨论后为何值时,方程x2+4(1-m)x+3m2-2m+4k=0
典例精讲
• 1、已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的 是( )
• A.a+c>b+c
B.c-a<c-b
• C.
D.a2>ab>b2
• 2、若a>b,则下列不等关系一定成立的是( )
• A. ac bc
B. a b cc
C. c a c b D. a c b c

第二章方程与不等式

第二章方程与不等式

知识梳理
• • 一元一次方程 • 整式方程——

有关概念
等式的性质 移项法则 去括号法则 解法步骤
概念
• • •
• •
一元二次方程
解法 根与系数的关系
• •
二元一次方程组 概念
解法
合作复习
• 一、填写《龙江中考》17页回答:
• 1、解一元一次方程的一般步骤是什么?每一步的依据是 什么? • 2、解二元一次方程组的基本思想是什么?方法是什么?
合作复习
• 填写《龙江中考》27页回答: 1、请你说说什么样的式子是不等式? 2、不等式的基本性质是什么? 3、怎样确定不等式组的解集?
达标检测
• 海东青25页1、4、5; • 26页21题
学习小结
• 请小组合作交流你在本节课中的收获,你 还有哪些困惑?
作业
《海东青》25页5、6、8、9题 26页16、17题 27页22、23、26题
• 二、填写《龙江中考》33页回答:
• • • • 1、一元二次方程的一般形式是什么? 2、不解方程如何判断根的情况? 3、一元二次方程根与系数有怎样的关系? 4、列方程解应用题的一般步骤是什么?
学习小结
• 请小组合作交流你在本节课中的收获,你 还有哪些困惑?
课后作业
• • • • • 《海东青》 17页3、4、8、9、10、14、15。 18页16、17、18、19、20。 20页26、27。 21页、22页、23页24题。
教学反思
(2)分式方程
学习目标:
1、理解分式方程的概念; 2、能正确地解分式方程; 3、能列分式方程解决有关实际问题。 重点:正确解分式方程,知道每一个解题步骤的 依据。 难点:能列分式方程解决有关实际问题。

第二章方程与不等式

第二章方程与不等式

第二篇 方程与不等式专题五 一次方程(组)及应用一、考点扫描 1、方程的有关概念含有未知数的等式叫做方程.使方程左右两边的值相等的未知数的值叫做方程的解(只含有—个未知数的方程的解,也叫做根). 2、一次方程(组)的解法和应用只含有一个未知数,并且未知数的次数是1,系数不为零的方程,叫做一元一次方程.解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成1. 3、方程组的有关概念含有两个未知数并且未知项的次数是1的方程叫做二元一次方程.两个二元—次方程合在一起就组成了一个—。

元一次方程组.二元一次方程组可化为⎩⎨⎧=+=+r ny mx c by ax ,(a ,b ,m 、n 不全为零)的形式.使方程组中的各个方程的左、右两边都相等的未知数的值,叫做方程组的解. 4、一次方程组的解法和应用解二元(三元)一次方程组的一般方法是代入消元法和加减消元法.专题六 分式方程及应用一、考点扫描1.分式方程.分母中含有未知数的方程叫做分式方程. 2.分式方程的解法:解分式方程的关键是大分母(方程两边都乘以最简公分母人将分式方程转化为整式方程.3.分式方程的增根问题:⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根l 增根;⑵ 验根:因为解分式方程可能出现增根,所以解分式方程必须验根. 4.分式方程的应用:列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.5.通过解分式方程初步体验“转化”的数学思想方法,并能观察分析所给的各个特殊分式或分式方程,灵活应用不同的解法,特别是技巧性的解法解决问题.专题七 一元二次方程及应用一、考点扫描1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0) 2.一元二次方程的解法:⑴ 配方法:用配方法解一元二次方程:ax 2+bx+c=0(k≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m )2=n 的形式;⑤如果n ≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵ 公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是a ac b b x 242-±-=(b 2-4ac ≥0)⑶ 因式分解法:因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x 的方程(k 2-1)x 2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵ 应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a 、b 、c 的值;③求出b 2-4ac 的值;④若b 2-4ac ≥0,则代人求根公式,求出x 1 ,x 2.若b 2-4a <0,则方程无解.⑶方程两边绝不能随便约去含有未知数的代数式.如-2(x+4)2=3(x+4)中,不能随便约去(x+4⑷注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法.4.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.5.注重.解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.专题八一元一次不等式(组)及应用一、考点扫描1.一元一次不等式及不等式组的概念2.不等式的基本性质:()不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.3.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集.5.求不等式(组)解集的过程叫做解不等式.6.一元一次不等式的解法.解一元一次不等式的步骤:①去分母,②去话号,③移项,④合并同类项,⑤系数化为1(不等号的改变问题)7、一元一次不等式组的解.(1)分别求出不等式组中各个不等式的解集(2)利用数轴或口诀求出这些解集的公共部分,即这个不等式的解。

中专《数学》第一册 第二章-方程与不等式

中专《数学》第一册 第二章-方程与不等式

例4:解不等式组
x-5 ≤ 2x-4

3x+1<9-x

解:由不等式①得
x-2x ≤ 5-4
-x ≤ 1
x ≥ -1
所以不等式①得解集是{x丨x ≥ -1}
由不等式②得
3x + x<9-1
4x<8
x<2
所以不等式②得解集是{x丨x<2}
2.2.2 不等式的解集与区间
不等式①②解集的共同解集就是{x丨-1 ≤ x<2}, 所以不等式组的解集为{x丨-1 ≤ x<2}
A>B(A<B)
2.2.1 不等式的基本性质
例1:比较a²+ 4与4a的大小 解: ∵(a²+4)- 4a = a²-4a +4 = (a - 2)² ≥ 0 ∴ a²+4 ≥ 4a
2.2.1 不等式的基本性质
不等式的性质 性质1:若a>b,b>c,则a>c(传递性) 性质2:若a>b,则对任何实数c,有a+c>b+c(加法法则) 性质3:若a>b,c>0,则ac>bc 若a>b,c<0,则ac<bc(乘法法则) 若a>b,c=0,则ac=bc 性质4:若a>b,且c>0,则 a >b cc ab 若a>b,且c<0,则 c < c (乘法法则) 推论1:若a+b>c,b>c,则a>c - b. 推论2:若a>b,b>c,则a>c - b. 推论3:若a>b>0,且c>d>0则a>c - b.
第二章
方程与不等式
2.1 一元二次方程
2.2 不等式
2.2.1 不等式的基本性质 2.2.2 不等式的解集与区间 2.2.3 含有绝对值的不等式 2.2.4 一元二次不等式
2.1 一元二次方程
一、观察: 下列方程,你能通过观察得到它们的共同特点吗?

第二章:一元二次函数、方程与不等式重点题型复习-【题型分类归纳】(解析版)

第二章:一元二次函数、方程与不等式重点题型复习-【题型分类归纳】(解析版)

第二章:一元二次函数、方程与不等式重点题型复习题型一 不等式的性质应用【例1】若,,R a b c ∈,则下列命题为假命题的是( ) A a b >a b > B .若a b >,则ac bc > C .若0b a >>,则11a b> D .若22ac bc >,则a b > 【答案】B【解析】对A a b 0a b >≥,故选项A 正确;对B :因为a b >,R c ∈,所以当0c >时,ac bc >; 当0c 时,ac bc =;当0c <时,ac bc <,故选项B 错误;对C :因为0b a >>,所以由不等式的性质可得110ab>>,故选项C 正确; 对D :因为22ac bc >,所以20c >,所以a b >,故选项D 正确. 故选:B.【变式1-1】已知120b a<<,则下列不等式正确的是( ) A .11a b ab <+ B .21a b ab >+ C .2aba b>+ D .22ab b < 【答案】A【解析】方法一:因为120ba<<,可知0,0a b <<,所以20a b <<,所以0ab >,0a b +<,所以11a b ab <+,21a b ab <+,0aba b<+, 所以A 正确,B ,C 错误.因为20a b <<,所以22ab b >,所以D 错误,故选:A 方法二;因为120b a<<,设10a =-,2b =-, 所以20ab =,12a b +=-,228b =,所以11a b ab <+,21a b ab <+,2ab a b<+,22ab b >,所以A 正确,B ,C ,D 错误,故选:A【变式1-2】(多选)若0a b >>,则下列正确的是( ) A .55a ab b+<+ B .2a b ab +> C .11a b b a+>+ D a b a b >-【答案】ABC【解析】选项A ,因为0a b >>,所以()()55055b a b b a a a a -+-=<++,55b b a a +∴<+,故A 正确; 选项B ,由均值不等式,当0,0a b >>,2a bab +0a b >>, 故等号不成立,即2a bab +>B 正确; 选项C ,由于0a b >>,故110ba>>,故11a b ba+>+,故C 正确; 选项D ,取4,1a b ==3a b a b =-=D 错误 故选:ABC【变式1-3】(多选)若0a b <<,且1a b +=,则在22,,2,a a b ab b +四个数中正确的是( )A .222a b ab +>B . 12a < C .12b < D .22b a b >+ 【答案】ABD【解析】由于0a b <<,则222a b ab +>,又1a b +=,所以1012a b <<<<,又()()2222122120a b b a b ab b ab b a ab a b +-=+--=--=-=-<,即22b a b >+.故选:ABD题型二 利用不等式求代数式的取值范围【例2】已知23,21<<-<<-a b ,则2-a b 的取值范围为( ) A .(0,2) B .(2,5) C .(5,8) D .(6,7) 【答案】C【解析】23,21<<-<<-a b ,故426a <<,12b <-<,得528<-<a b 故选:C【变式2-1】若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围( )A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞ 【答案】A【解析】设2()(52)x y m x y n x y +=+++,则5221m n m n +=⎧⎨+=⎩,解得13m n ==,故112()(52)33x y x y x y +=+++,又因1522x y x y +≥⎧⎨+≥⎩,所以()()1112,523333x y x y +≥+≥,所以21x y +≥.故选:A.【变式2-2】已知15a b ≤+≤,13a b -≤-≤,求32a b -的取值范围.【答案】[20]1-,【解析】设()()32a b m a b n a b -=++-,则有:32m n m n +=⎧⎨-=-⎩,解得:1252m n ⎧=⎪⎪⎨⎪=⎪⎩,所以()()153222a b a b a b -=++-.因为15a b ≤+≤,所以()115222a b ≤+≤,因为13a b -≤-≤,所以()5515222a b -≤-≤, 所以()()1521022a b a b -≤++-≤, 即23210a b -≤-≤, 所以32a b -的取值范围为.【变式2-3】已知1260a ,1536b ,求2a b -,2ab的取值范围. 【答案】2a b -的取值范围是()60,30-,2a b 的取值范围是2,83⎛⎫ ⎪⎝⎭. 【解析】因为1536b ,所以72230b -<-<-.又1260a ,所以127226030a b -<-<-, 即60230a b -<-<.因为1260a ,所以242120a , 因为1536b ,所以1113615b <<, 所以2421203615a b <<,即2283a b<<. 所以2a b -的取值范围是()60,30-,2a b 的取值范围是2,83⎛⎫⎪⎝⎭.题型三 解一元二次不等式【例3】已知集合{}210210A x x x =-+≤,{}7524B x x =-≤-≤,则A ∩B =( )A .132x x ⎧⎫≤≤⎨⎬⎩⎭ B .{}67x x ≤≤ C .{}27x x -≤≤D .{}36x x ≤≤ 【答案】D【解析】因为{|37}A x x =≤≤,1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭,所以{|36}A B x x ⋂=≤≤.故选:D【变式3-1】不等式23180x x -++<的解集为( )A .{6x x >或3}x <-B .{}36x x -<<C .{3x x >或6}x <-D .{}63x x -<< 【答案】A【解析】23180x x -++<可化为23180x x -->,即()()630x x -+>,即6x >或3x <-. 所以不等式的解集为{6x x >或3}x <-.故选:A【变式3-2】解下列不等式: (1)262318x x x -≤-<; (2)1232x x +≥-; (3)2320x x -+>. 【答案】(1){32x x -<≤-或}36x ≤<;(2)213x x ⎧⎫<≤⎨⎬⎩⎭;(3){2x x <-或11x -<<或}2x >【解析】(1)原不等式等价于22623318x x x x x ⎧-≤-⎨-<⎩,即22603180x x x x ⎧--≥⎨--<⎩,即()()()()320630x x x x ⎧-+≥⎪⎨-+<⎪⎩,所以2336x x x ≤-≥⎧⎨-<<⎩或,所以32x -<≤-或36x <≤,所以原不等式的解集{32x x -<≤-或}36x ≤<; (2)由1232x x +≥-,可得155203232x x x x +-+-=≥--, 所以()()55320320x x x ⎧--≤⎨-≠⎩,解得213x <≤,所以原不等式的解集为213x x ⎧⎫<≤⎨⎬⎩⎭;(3)原不等式等价于23200x x x ⎧-+>⎨≥⎩或23200x x x ⎧-+>⎨<⎩,分别解这两个不等式组,得01x ≤<或2x >或10x -<<或2x <-, 故原不等式的解集为{2x x <-或11x -<<或}2x >.【变式3-3】解下列关于x 的不等式:(a 为实数) (1)220x x a ++<;(2)102ax x ->-. 【答案】(1)详见解析;(2)详见解析【解析】(1)原不等式对应的一元二次方程为:220x x a ++=,Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<<-- 综上所述,1a ≥时,原不等式无解,当1a <时,原不等式的解集为{1111}xa x a --<<-+-∣; (2)原不等式等价于()()120ax x -->,当0a =时,解集为(),2-∞;当0a <时,原不等式可化为()()120ax x -+-<, 因为12a <,所以解集为1,2a ⎛⎫ ⎪⎝⎭;当102a <<时,12a >,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当12a =时,原不等式等价于()11202x x ⎛⎫--> ⎪⎝⎭, 所以2(2)0x ->,解集为{}2xx ≠∣;当12a >时,12a <,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 综上所述,当0a =时,解集为(),2-∞;当0a <时,解集为1,2a ⎛⎫ ⎪⎝⎭; 当102a <≤时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当12a >时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭.题型四 三个“二次”之间的关系【例4】已知关于x 的一元二次不等式20ax bx c -+<的解集为{}23x x -<<,则不等式20bx ax c -+<的解集是( )A .()2,3-B .()(),23,-∞-+∞C .()3,2-D .()(),32,-∞-+∞【答案】A【解析】不等式20ax bx c -+<的解集是()2,3-,所以方程20ax bx c -+=的解是2-和3,且0a >,则()()2323b a c a ⎧-+=⎪⎪⎨⎪-⨯=⎪⎩,解得b a =,6c a =-, 所以不等式20bx ax c -+<化为260ax ax a --<, 即260x x --<,解得23x -<<,所以,所求不等式的解集是()2,3-.故选:A .【变式4-1】不等式20ax bx c ++>的解集为()2,4-,则不等式0ax cbx c+≤-的解集为______.【答案】()[),48,-∞+∞【解析】因为20ax bx c ++>的解集为()2,4-,则0a <,且对应方程的根为-2和4, 所以242b a -=-+=,248ca=-⨯=-,且0a <, 不等式0ax c bx c+≤-可化为8028ax aax a -≤-+, 则8028x x -≤-+,即804x x-≤-,解得4x <或8x ≥. 故答案为()[),48,-∞+∞.【变式4-2】已知不等式20ax bx c ++>的解集是{|}x x αβ<<,0α>,则不等式20cx bx a ++>的解集是____________. 【答案】11βα⎛⎫⎪⎝⎭,【解析】由不等式20ax bx c ++>的解集是{|}0x x αβα<<>(),可知:α,β是一元二次方程20ax bx c ++=的实数根,且0a <;由根与系数的关系可得:ba αβ+=-,c aαβ⋅= , 所以不等式20cx bx a ++>化为210c bx x a a++<, 即:()210x x αβαβ-++<;化为()()110x x αβ--<;又,0<>αβα,110αβ∴>>;∴不等式20cx bx a ++<的解集为:{x |11x βα<<},故答案为:11βα⎛⎫⎪⎝⎭,【变式4-3】已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥ 【答案】A【解析】由二次函数图象知:20ax bx c ++>有21x -<<.故选:A【变式4-4】已知二次函数2y x bx c =++图象如图所示.则不等式230bx cx -+≤的解集为_________.【答案】(][),13,-∞-⋃+∞【解析】根据二次函数2y x bx c =++的图象可知,1,2-为方程20x bx c ++=的两根,故12,12b c -+=--⨯=,即1,2b c =-=-,则230bx cx -+≤即2230x x -++≤,也即2230x x --≥,()()310x x -+≥,解得3x ≥或1x ≤-.故不等式解集为(][),13,-∞-⋃+∞. 故答案为:(][),13,-∞-⋃+∞.题型五 一元二次不等式恒成立与有解问题【例5】“关于x 的不等式220x ax a -+>对x ∀∈R 恒成立”的一个必要不充分条件是( )A .01a <<B .02a <<C .102a << D .1a >【答案】B【解析】由“关于x 的不等式220x ax a -+>对R x ∀∈恒成立”,可得()2240a a --<,解得:01a <<.故选:B .【变式5-1】已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是( )A .6,7⎛⎫+∞ ⎪⎝⎭B .1515∞∞⎛⎫-+-⋃+ ⎪ ⎪⎝⎭⎝⎭C .6,7⎛⎫-∞ ⎪⎝⎭ D .1515-+⎝⎭【答案】D【解析】对任意[]1,3m ∈,不等式215mx mx m --<-+恒成立,即对任意[]1,3m ∈,()216m x x -+<恒成立, 所以对任意[]1,3m ∈,261x x m -+<恒成立, 所以对任意[]1,3m ∈,2min612x x m ⎛⎫-+<= ⎪⎝⎭,所以212x x -+<1515x -+<<, 故实数x 的取值范围是1515-+⎝⎭.故选:D .【变式5-2】若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是( ) A .(0,1] B .[0,1) C .(,1]-∞ D .(,1)-∞ 【答案】D【解析】当0a =时,不等式为210x +<,有实数解,满足题意;当0a <时,不等式对应的二次函数开口向下, 所以不等式2210ax x ++<有实数解,满足题意;当0a >时,要使不等式有实数解,则需满足440∆=->a ,解得01a <<, 综上,a 的取值范围是(,1)-∞.故选:D.【变式5-3】已知命题p :“[1,5]x ∃∈,250x ax -->”为真命题,则实数a 的取值范围是( ) A .4a < B .4a C .4a > D .4a >-【答案】A【解析】由题意不等式250x ax -->在[1,5]上有解,所以150a -->或25550a -->, 解得4a或4a <,所以4a <.故选:A .题型六 利用基本不等式求最值【例6】已知0a >,0b >,则()28a b a b ⎛⎫++ ⎪⎝⎭的最小值为___________.(人教B 版)【答案】18 【解析】0a >,0b >,()2828101021088128b a b a b a b a a b a b =++≥+⨯=⎛⎫∴+⎝⎭++= ⎪当且仅当28b aa b =,即2b a =时,等号成立,()28a b a b ⎛⎫++ ⎪⎝⎭∴的最小值为18,故答案为:18.【变式6-1】已知正实数a 、b 满足11m ab+=,若11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为4,则实数m 的取值范围是( )A .{}2B .[)2,+∞C .(]0,2D .()0,∞+ 【答案】B【解析】因为,a b 为正实数,11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=12abab 1224≥⋅=ab ab, 当1ab ab =,即1ab =时等号成立,此时有1b a =, 又因为11m ab+=,所以1am a,由基本不等式可知12a a +≥(1a =时等号成立), 所以2m ≥.故选:B.【变式6-2】已知正实数a ,b 满足12a b +=,则12ab a+的最小值是( ) A .52 B .3 C .92D .221 【答案】A【解析】因为12a b +=,所以12>0a b =-,所以02b << ,所以()122221+212112bbb b b a a b b b ⎛⎫-+=- ⎪-+-⎝⎭=,令21b t -=,则+12t b =,且13t -<< , 所以+11111522+2++222222122t t t t t t ab a t =≥⋅=+=,当且仅当122t t =,即12t =,32,43b a ==时,取等号, 所以12ab a+的最小值是52.故选:A.【变式6-3】已知正实数x ,y 满足211x y +=,则436xy x y --的最小值为( )A .2B .4C .8D .12 【答案】C【解析】解:由0x >,0y >且211x y +=,可得2xy x y =+,所以43648362xy x y x y x y x y--=+--=+()214424428y x y x x y x y x y x y ⎛⎫=++=++≥+⋅ ⎪⎝⎭, 当且仅当4y xx y =,即4x =,2y =时取等号.故选:C【变式6-4】下列命题中不正确的为( )①.若正实数a ,b 满足2a b +=,则222a b +的最小值为83②.已知0a >,0b >,21a b +=a b 2③.存在实数a ,b 满足2a b +=,使得33a b +的最小值是6 ④.若2x y +=,则11211x y +++的最小值为56A .④B .②④C .③④D .①② 【答案】A【解析】①正实数a ,b 满足2a b +=,故2b a =-,所以()22222228222344333a b a a a a a ⎛⎫+=+-=-+=-+ ⎪⎝⎭,当23a =时,222283332a a b ⎛⎫=-+ +⎪⎝⎭取得最小值为83,故①正确;②因为0a >,0b >,所以)22221212a ba b ab ab a b =++=+≤++=,a b =(2a b ∈, a b 2,②正确; ③因为30,30a b >>,所以233233236a ba b a b ++≥⋅=⨯=,当且仅当33a b =,即1a b ==时,等号成立,故存在实数a ,b 满足2a b +=,使得33a b +的最小值是6,③正确; ④当1x =-,3y =时,满足2x y +=,此时111351211446x y +=-+=-<++, 故11211x y +++的最小值不是56;④错误故选:A题型七 基本不等式恒成立问题【例7】已知0,0x y >>且141x y +=,若28x y m m +>+恒成立,则实数m 的取值范围是( )A .1|2x x ⎧⎫≥⎨⎬⎩⎭B .{}|3x x ≤-}C .{}|1x x ≥D .{}|91x x -<< 【答案】D【解析】∵0,0x y >>,且141x y +=,∴1444()()5259y x y x x y x y xyxy x y+=++=++≥⋅=, 当且仅当3,6x y ==时取等号,∴min ()9x y +=,由28x y m m +>+恒成立可得2min 8()9m m x y +<+=,解得:91m -<<,故选:D.【变式7-1】已知实数x 、y 满足2241x y xy +-=,且不等式20x y c ++>恒成立,则c 的取值范围是( )A .()23+∞,B 26⎫+∞⎪⎪⎝⎭C .()32+∞, D .(22-∞, 【答案】B【解析】2241x y xy +-=,225(2)151(2)8x y xy x y ∴+=+≤++,当且仅当2x y =时“=”成立,()2823x y ∴+≤26262x y ≤+≤又不等式20x y c ++>恒成立,260c ∴>,26c ∴> c ∴的取值范围是26⎫+∞⎪⎪⎝⎭.故选:B .【变式7-2】若对任意正数x ,不等式22214a x x+≤+恒成立,则实数a 的取值范围为( )A .[)0,∞+B .1,4⎡⎫-+∞⎪⎢⎣⎭ C .1,4⎡⎫+∞⎪⎢⎣⎭ D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】依题意得,当0x >时,2222144x a x x x+=++ 恒成立,又因为44x x+,当且仅当2x =时取等号, 所以,24x x+的最大值为12,所以1212a +,解得a 的取值范围为1[,)4-+∞.故选:B【变式7-3】对任意12x ≤≤及13y ≤≤,不等式2220x axy y -+≥恒成立,则实数a的取值范围是( )A .92a ≤ B .22a ≥ C .113a ≤D .22a ≤【答案】D【解析】依题意,对任意12x ≤≤及13y ≤≤,不等式2220x axy y -+≥恒成立等价于对任意12x ≤≤及13y ≤≤,2222x y x ya xy y x+≤=+恒成立. 设yt x=,则22x y t y xt +=+. 因为12x ≤≤,13y ≤≤, 所以1112x ≤≤,则132y x ≤≤,即132t ≤≤, 则22222t t tt+≥⋅当且仅当2t t=,即2t =时取等号, ∴22a ≤故选:D.【变式7-4】若关于x 的不等式4142x a x +≥-对任意2x >恒成立,则正实数a 的取值集合为( )A .(-1,4]B .(0,4)C .(0,4]D .(1,4] 【答案】C【解析】由题意可得4(2)1842x a x a-+--对任意2x >恒成立, 由0,2a x >>,可得4(2)122x a x -+-4(2)12x a x a-⋅-, 当且仅当4(2)12x a x -=-即2ax = 则844aa-,解得04a <.故选:C.【变式7-5】已知a >b >c ,若14m a b b c a c+≥---恒成立,则m 的最大值为( ) A .3 B .4 C .8 D .9 【答案】D【解析】由a b c >>,知0a b ->,0b c ->,0a c ->,由14m a b b c a c+---,得14()()ma c ab b c-+--, 又a c ab bc -=-+-,1414()()[()()]()a c a b b c a b a b b c∴-+=-+-+---4()4()5529a b b c a b b c b c a b b c a b----=+++⋅----,当且仅当4()a b b cb c a b--=--, 即2()b c a b -=-时,14()()a c a b b c -+--取得最小值9,9m ∴,m ∴的最大值为9.故选:D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 方程与不等式§2.1 一元一次方程、二元一次方程(组)的解法一、知识要点一元一次方程、二元一次方程(组)及其解法,解方程组的基本思想. 二、课前演练1.已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为( )A .2B .3C .4D .52.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,则a -b =.3.方程组326x y x y +=⎧⎨-=⎩的解为. 4.已知:132=--+y x y x ,用含x 的代数式表示y ,得.三、例题分析例1解下列方程(组): (1)3(x +1)-1=8x ;(2)⎩⎨⎧=+=-1732623y x y x .例2(1)m 为何值时,代数式2m -5m -13的值比代数式7-m2的值大5?(2)若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,求a 的值.四、巩固练习1.若⎩⎪⎨⎪⎧x =1,y =2.是关于x 、y 的方程ax -3y -1=0的解,则a 的值为______.2.已知(x-2)2+|x-y-4|=0,则x+y=.3.定义运算“*”,其规则是a*b=a-b 2,由这个规则,方程(x+2)*5=0的解为. 4.如图,已知函数y=ax+b 和y=kx 的图象交于点(-4,-2)则方程组⎩⎪⎨⎪⎧y=ax+b ,y=kx的解是.5.若关于x 、y 的方程组⎩⎪⎨⎪⎧x+y=5k ,x -y=9k 的解也是方程2x +3y =6的解,则k 的值为()A .- 34B .34C .43D .- 436.解下列方程(组):(1)2(x +3)-5(1-x )=3(x -1); (2)1432312=---x x ;(3)31328x y x y +=-⎧⎨-=⎩ ; (4)⎩⎨⎧-=+-=+1)(258y x x y x .§2.2 一元二次方程的解法及其根的判别式一、知识要点一元二次方程的概念及解法,根的判别式,根与系数的关系(选学). 二、课前演练1.下列方程中,有两个不相等的实数根的是 ()A .x 2+1=0B .x 2-2x +1=0C .x 2+x +2=0D .x 2+2x -1=02.用配方法解方程x 2-4x +2=0,下列配方正确的是( )A .(x -2)2=2B .(x +2)2=2C .(x -2)2=-2D .(x -2)2=63.已知关于x 的方程的一个根是5,那么m =,另一根是. 4.若关于x 的一元二次方程kx 2-3x +2=0有实数根,则k 的非负整数值是. 三、例题分析 例1 解下列方程:(1) 3(x +1)2=13; (2) 3(x -5)2=2(x -5);(3) x 2+6x -7=0; (4) x 2-4x +1=0(配方法).例2 关于x 的一元二次方程.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)在(1)的条件下,自取一个整数k 的值,再求此时方程的根.四、巩固练习1.下列方程中有实数根的是( )A .x 2+2x +3=0B .x 2+1=0C .x 2+3x +1=0D .x x -1=1x -12.若关于x 的方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的范围是( )A .a <2B .a >2C .a <2且a ≠1D .a <-23.若直角三角形的两条直角边a 、b 满足(a 2+b 2)(a 2+b 2+1)=12,则此直角三角形的 斜边长250x mx +-=2(4)210k x x ---=为.4.已知x1、x2是方程x2+4x+2=0的两个实数根,则1x1 +1x2=.5.解下列方程:(1)(y+4)2=4y;(2)2x2 +1=3x(配方法);(3)2x(x-1)=x2-1;(4)4x2-(x-1)2=0.6.先阅读,然后回答问题:解方程x2-|x|-2=0,可以按照这样的步骤进行:(1)当x≥0时,原方程可化为x2-x-2=0,解得x1=2,x2=-1(舍去).(2)当x≤0时,原方程可化为x2+x-2=0,解得x1=-2,x2=1(舍去).则原方程的根是_____________________.仿照上例解方程:x2 -|x-1|-1=0.§2.3 一元一次不等式(组)的解法一、知识要点不等式的性质,一元一次不等式(组)的解法及应用.二、课前演练1.用适当的不等号表示下列关系:(1)x的5倍大于x的3倍与9的差:;(2)b2-1是非负数:;(3)x的绝对值与1的和不大于2:.2.已知a>b,用“<”或“>”填空:(1)a-3b-3;(2)-3a -3b;(3)1-a 1-b ; (4)m 2am 2b (m ≠0). 3.(1)不等式-5x <3的解集是;(2)不等式3x -1≤13的正整数解是; (3)不等式x ≤2.5的非负整数解是.4.把不等式组⎩⎪⎨⎪⎧x+1>0,x -1≤0的解集在数轴上表示,正确的是( )A B C D 三、例题分析例1 解不等式组:⎩⎪⎨⎪⎧3x -7<2(1-3x ),x -32 +1≤3x -14 ,并把它的解集在数轴上表示出来.例2已知不等式组:⎩⎪⎨⎪⎧3(2x -1)<2x +8,2+3(x +1)8 >3-x -14 . (1)求此不等式组的整数解;(2)若上述的整数解满足方程ax +6=x -2a , 求a 的值.四、巩固练习1.(1)不等式-5x <3的解集是_________;(2)不等式3x -1≤13的正整数解是 ; (3)不等式x ≤2.5的非负整数解是 .2. 不等式组⎩⎪⎨⎪⎧2x -1<3,1-x ≥2的解集是.3.不等式组⎩⎪⎨⎪⎧x -1≤0,-2x <3的整数解...是. 4.如图,直线y =kx+b 过点A (-3,0),则kx+b >0的解集是_________.5.(1) 不等式组⎩⎪⎨⎪⎧x+4>3,x ≤1的解集在数轴上可表示为( )(2)已知点P (1-m ,2-n ),如果m >1,n <2,那么点P 在第( )象限 A .一 B .二 C .三 D .四 6.(1)解不等式组:⎩⎪⎨⎪⎧5x -12≤2(4x -3),3x -12 <1,并把它的解集在数轴上表示出来.(2)若直线y =2x +m 与y =-x -3m -1的交点在第四象限,求m 的取值范围.A B C D§2.4 不等式(组)的应用一、知识要点能够根据具体问题中的数量关系,建立不等式(组)模型解决实际问题.二、课前演练1.已知:y1=2x-5,y2=-2x+3.如果y1<y2,则x的取值范围是()A.x>2 B.x<2 C.x>-2 D.x<-22.在一次“人与自然”知识竞赛中,竞赛题共25道,每题4个答案,其中只有一个正确,选对得4分,不选或选错倒扣2分,得分不低于60分得奖,那么得奖至少应答对题()A.18题 B.19题 C.20题 D.21题3.某公司打算至多用1200元印刷广告单,已知制版费50元,每印一张广告单还需支付0.3 元的印刷费,则该公司可印刷的广告单数量x(张)满足的不等式为_____________.4.关于x的方程kx-1=2x的解为正实数,则k的取值范围是_______________.三、例题分析例1 已知利民服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N 两种型号的时装共80套,已知做一套M型号时装需A种布料0.6米,B种布料0.9米,做一套N型号时装需用A种布料1.1米,B种布料0.4米.(1)若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装有几种方案?(2)销售一套M型号时装可获利润45元,销售一套N型号时装可获利50元,请你设计一个方案使利润P最大,并求出最大利润P.(用函数知识解决).例2某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元;(2)据市场调研,1株甲种花木的售价为760元,1株乙种花木的售价为540元.该花农决定在成本不超过30000元的前提下培育甲、乙两种花木,若培育乙种花木的株数是甲种花木株数的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?四、巩固练习1.若点P(4a-1,1-3a)关于x轴的对称点在第四象限,则a的取值范围是_______.2.有一个两位数,其十位上的数比个位上的数小2,已知这个两位数大于20且小于40,则这个两位数为_____________.3.在比赛中,每名射手打10枪,每命中一次得5分,每脱靶一次扣1分,得到的分数不少于35分的射手为优胜者,要成为优胜者,至少要中靶多少次?4. 某幼儿园在六一儿童节购买了一批牛奶.如果给每个小朋友分5盒,则剩下38盒,如果给每个小朋友分6盒,则最后小朋友不足5盒,但至少分得1盒.问:该幼儿园至少有多少名小朋友?最多有多少名小朋友.5.某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A、B两种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克;生产一件B种产品需要甲种原料2.5千克,乙种原料3.5千克,该化工厂现有的原料能否保证生产顺利进行?若能的话,有几种方案?请你设计出来.6.今年我省干旱灾情严重,甲地需要抗旱用水15万吨,乙地需用水13万吨,现有A、B两水库各调出14万吨支援甲、乙两地抗旱,从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.(1)设从A水库调往甲地的水量为x万吨,完成下表:(2)设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离)§2.5 分式方程及其应用一、知识要点分式方程的概念及解法,增根的概念,分式方程的应用.二、课前演练1. 如果方程2a(x-1)=3的解是x=5,则a=.2.解分式方程1x-1 =3(x-1)(x+2)的结果为()A.1B.-1 C.-2 D.无解3. 如果分式2x-1与3x+3的值相等,则x的值是()A.9 B.7 C.5 D.34. 已知方程xx-3 =2-33-x有增根,则这个增根一定是()A.2 B.3 C.4 D.5 三、例题分析例1解下列方程:(1)2x+2=3x-2; (2)32x-5+55-2x=1;(3)x-2x+2-1=16x2-4.例2某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元?四、巩固练习1. 方程xx-2+12-x=12的解是_______.2.方程x2-1x+1=0的解是()A.x=±1 B.x=1 C.x=-1 D.x=03. 若关于x的方程m-1x-1-xx-1=0有增根,则m的值是()A.3 B.2 C.1 D.-1 4. 解下列方程:(1)xx-1-31-x= 2;(2)1x-1+42-x=0;(3)x+1x-1-4x2-1=4;(4)5x-42x-4=2x+53x-6-12.5.某部队要进行一次急行军训练,路程为32km.大部队先行,出发1小时后,由特种兵组成的突击小队才出发,结果比大部队提前20分钟到达目的地.已知突击小队的行进速度是大部队的1.5倍,求大部队的行进速度.§2.6 方程(组)的应用一、知识要点一元一次方程、二元一次方程组、一元二次方程的应用.二、课前演练1.有一个三位数,个位数字是x,十位数字是y,百位数字是z,则此三位数是____________.2.家具厂生产一种餐桌,1m3木材可做5张桌面或30条桌腿.现在有25 m3木材,应生产桌面____张,生产桌腿_____条,使生产出来的桌面和桌腿恰好配套(一张桌面配4条桌腿).3.某电器进价为250元,按标价的9折出售,利润率为15.2﹪,则此电器标价是元.4.有一块长方形的铁皮,长为24cm,宽为18cm,在四角都截去相同的小正方形,折起来做成一个无盖的盒子,使底面面积是原来的一半,则盒子的高为_________cm.三、例题分析例1 菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率.(2)小华准备到李伟处购买5吨蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.四、巩固练习1.某市2014年投入教育经费2500万元,预计2016年要投入教育经费3600万元.已知2014年至2016年的教育经费投入以相同的百分率逐年增长,则2015年该市要投入的教育经费为万元.2.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了张.3.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,这两个正方形面积之和的最小值为cm2.4.某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需________ 元.5.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加2千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少呢?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢得市场,该店应该按原售价的几折出售?。

相关文档
最新文档