第二讲风电场的电气系统.pptx

合集下载

2,3第二章风电场电气主系统课件

2,3第二章风电场电气主系统课件

接线端子 灭弧室
支持瓷瓶 操作机构
新能源学院
新能源学院
由气密绝缘外壳、 导电回路、灭弧装 置、屏蔽罩、波纹 管等组成。当断路 器分合闸时,动导 电杆经导向套上下 运动,波纹管被压 缩或拉伸,实现断 路器合闸或分闸 。
新能源学院
新能源学院
交联聚乙烯绝缘三相电力电缆
新能源学院
电流互感器
KI=I1/I2 ≈ N2/N1
新能源学院
三相三柱式电压互感器的接线,可用来测量 线电压。不许用来测量相对地的电压,即不能 用来监视电网对地绝缘,因此它的原绕组没有 引出的中性点。
新能源学院
三相五柱式电压互感器,测量线电压和相 电压,可用于监视电网对地的绝缘状电压互感器的接线,测量线电压和相 电压,可用于监视电网对地的绝缘状况和实 现单相接地的继电保护 适用于110~500kV 的中性点直接接地电网中。
新能源学院
电磁式电流互感器的接线
a、单相式接线 b、三相式接线 c、两相式接线
新能源学院
电压互感器
电磁式电压互感器: KU=U1/U2 ≈ N1/N2
新能源学院
1、油扩张器
2、瓷外壳 3、上柱绕组 4、铁芯 5、下柱绕组 6、支撑电木板 7、底座
新能源学院
瓷外壳装在钢板 做成的圆形底座 上。原绕组的尾 端、基本付绕组 和辅助付绕组的 引线端从底座下 引出。原绕组的 首端从瓷外壳顶 部的油扩张器引 出。油扩张器上 装有吸潮器。
新能源学院
电磁式电压互感器
电容式电压互感器
电子式电压互感器
新能源学院
电磁式和电容式电压互感器的接 线
单相电压互感器:测量任意两相之间的线电压
新能源学院
两只单相电压互感器接成不完全星形接线 (V—V形)测量线电压,不能测量相电压。这 种接线广泛用于小接地短路电流系统中。

《风电场电气部分》课件

《风电场电气部分》课件

风电场分类
01
02
03
陆上风电场
指在陆地上的风电场,一 般规模较大,风能资源丰 富。
海上风电场
指在海洋上的风电场,一 般规模较大,风能资源丰 富,但建设难度较大。
山地风电场
指在山地区域内的风电场 ,一般规模较小,风能资 源丰富,但建设难度较大 。
风电场发展历程
起步阶段
20世纪80年代初,我国开 始探索风电场建设,主要 集中在沿海地区。
升压站的运行管理对于保障风 电场的电力输出和电网稳定性 具有重要意义。
03
风电场电气系统运行
风力发电机组运行原理
风能转换
风力发电机组利用风能驱动涡轮 旋转,通过变速齿轮箱将动力传 递到发电机,从而将机械能转换
为电能。
发电原理
发电机通过电磁感应原理将机械能 转换为电能,产生的三相交流电通 过整流和逆变转换为直流电,供给 风电场的负荷。
定期检查集电线路的导线、绝缘子和杆塔等 部件,确保其正常运行。
集电线路检修
对集电线路进行全面的检查和维修,解决潜 在问题。
集电线路加固
对于存在安全隐患的集电线路,采取加固措 施,提高其稳定性。
集电线路更换
当集电线路的部件损坏或老化时,及时更换 。
升压站维护与检修
01
升压站维护
定期检查升压站的各设备,确保其 正常运行。
具有重要意义。
在风电场的建设和管理过程中,需要对集电线路进行 定期巡检和维护,以确保其正常运行。
集电线路是风电场中用于汇集和传输电能的线 路。
集电线路的设计需要考虑线路的电压等级、电流 大小、传输距离和环境条件等因素。
升压站
升压站是风电场中用于升高电 压和汇集电能的场所。

风电场电气部分的构成和主接线方式课件

风电场电气部分的构成和主接线方式课件
根据电力系统需求
接线方式的选择需满足电力系统的稳定性、可靠性和经济性要求。
根据设备条件
设备的性能、容量和数量也是接线方式选择的重要考虑因素。
典型的主接线方式
集中式接线
所有风电机组通过集电线路接入升压站,再通过变压器升压 后接入电力系统。这种接线方式适用于规模较大的风电场, 便于管理和维护。
分散式接线
电缆
电缆是风电场中用于传输电能 的重要元件。
根据不同的电压等级和传输容 量,电缆的截面和结构也不同。
在风电场中,电缆通常被敷设 在电缆沟或电缆桥架内,需要 做好防火、防水、防腐蚀等措施。
电缆的性能和可靠性对风电场 的稳定运行至关重要,需要定 期进行维护和检修。
控制系 统
控制系统是风电场中用于监控、 控制和保护整个风电场的重要系

风电场电气部分的发展趋势
高电压等级的风电场电气部分
总结词
随着风电场规模的扩大和电压等级的 提高,高电压等级的风电场电气部分 已成为发展趋势。
详细描述
为了满足风电场远距离输电的需求, 高电压等级的输电线路和设备被广泛 应用。这不仅可以减少线路损耗,提 高输电效率,还能降低线路走廊的占 用,减少对环境的破坏。
根据主接线方式和风电场的实际情况,进行施工设计,制定施工组织方案,确 保风电场建设的顺利进行和施工质量。
主接线方式在风电场运行和维护中的应用
运行管理
根据主接线方式和风电场的实际情况,制定运行管理方案,确保风电场的正常运 行和安全。
维护与检修
根据主接线方式和风电场的实际情况,制定维护与检修方案,确保风电场的设备 能够正常运行和使用寿命。
优化电气部分的设计和运行可以降低 风电场的运营成本,包括维护成本和 能源消耗。

风电场电气部分ppt课件

风电场电气部分ppt课件
,降低投资成本。
可维护性原则
简化系统结构,提高设 备可维护性,方便后期
运营和维护。
主要电气设备选型依据
风电机组特性
根据风电机组的功率、电压等级、控 制方式等特性,选择匹配的电气设备 。
电网接入要求
遵循电网公司的接入标准和要求,选 用符合规定的电气设备和材料。
环境条件
考虑风电场所在地的气候条件、海拔 高度、污秽等级等环境因素,选择适 应性强的电气设备。
方案二
分布式电气系统设计方案。采用分布式的变压器 、开关柜等设备,实现风电场的分布式供电和控 制。该方案具有运行灵活、可靠性高等优点,但 投资成本相对较高。
方案比较与选择
根据风电场的实际情况和需求,综合考虑技术、 经济、环境等多方面因素,对以上三种方案进行 比较和选择。最终确定符合风电场实际情况和需 求的最佳电气系统设计方案。
针对可能发生的火灾事故,制定相应 的应急预案,并定期进行演练,提高
员工的应急处置能力。
消防设施建设
按照规范要求配置消防设施,如灭火 器、消防栓、烟雾探测器等,确保火 灾发生时能够及时扑救。
消防安全培训与宣传
加强员工的消防安全培训和宣传,提 高员工的消防安全意识和自防自救能 力。
2023 WORK SUMMARY
接地系统建设
建立完善的接地系统,确保接地电阻符合规范要 求,提高设备的防雷接地能力。
定期检查与维护
定期对防雷接地设备进行检查和维护,确保其性 能良好,有效预防雷击事故。
消防安全管理规定执行
消防安全责任制
明确各级人员的消防安全职责,建立消 防安全责任制,确保各项消防安全措施
得到有效执行。
应急预案制定与演练
原因分析
故障原因可能涉及设备老化、设计缺 陷、运行环境恶劣、人为操作失误等 。

风电场电气系统(朱永强)第2章 电气系统2

风电场电气系统(朱永强)第2章 电气系统2

风电场电气系统
风电场电气部分的构成和主接线方式
§2.3.1 电气主接线的分类
有汇流母线 采用有汇流母线的接线形式便于实现多回路的集中。 接线简单、清晰、运行方便,有利于安装和扩建。 配电装置占地面积较大,使用断路器等设备增多,因此更适 用于回路较多的情况,一般进出线数目大于4回。 有汇流母线的接线形式包括:单母线、单母线分段、双母线、 双母线分段、带旁路母线等。
风电场电气部分的构成和主接线方式
§2.3.2.4 单母线分段 当配电装置中有多个电源(发电机或变压器)存在的时候, 可以将单母线根据电源的数目进行分段,这也就单母线分 段形式
S1 S2
两台主变作为电源分别给两段母 线供电,两段母线之间由分段断 路器联系,两段母线可以由分段 断路器的闭合而并列运行,也可 以由分段断路器断开而分列运行 分段的数目由电源数量和容量决 定
风电场电气系统
风电场电气部分的构成和主接线方式
§2.2.1.4设备工作状态 送电过程中的设备工作状态变化为:
检修 冷备用 热备用 运行
停电过程中的设备工作状态变化为:
运行
热备用
冷备用
检修
风电场电气系统
风电场电气部分的构成和主接线方式
§2.2.1.5倒闸操作 利用开关电器,遵照一定的顺序,对电气设备完成上述四 种状态的转换过程称为倒闸操作。 倒闸操作必须严格遵守基本操作原则
风电场电气系统
风电场电气部分的构成和主接线方式
§2.2.1.2 电气主接线 在发电厂和变电所中,各种电气设备必须被合理组织连接以实 现电能的汇集和分配;而根据这一要求由各种电气设备组成, 并按照一定方式由导体连接而成的电路被称为电气主接线。 对于电气主接线的描述是 由电气主接线图来实现的。 主接线电路图用规定的电 气设备图形符号和文字符 号并按照工作顺序排列, 以单线图的方式详细地表 示电气设备或成套装置的 全部基本组成和连接关系 某些需要表示接线特征的 设备则要表示其三相特征

风电场电气工程 第2章 风电场电气部分的构成和主接线方式讲解

风电场电气工程 第2章 风电场电气部分的构成和主接线方式讲解

风电场电气部分的构成和主接线方式
六、 双母线分段 当220kV进出线回路甚多时,为了减少母线故障时候的停电 范围,需要对双母线进行分段 S1 S2
提高了供电可靠性和灵活性, 但是其增加了断路器的投资
风电场电气系统
WL1
WL2
WL3
WL4
风电场电气部分的构成和主接线方式
风电场电气系统
风电场电气部分的构成和主接线方式
§2.3.1 电气主接线的分类
无汇流母线的主接线 无汇流母线的接线形式使用开关电器较少,占地面积小,但 只适用于进出线回路少,不再扩建和发展的发电厂或变电站。 无汇流母线的接线形式包括:单元接线、桥形接线、角形接 线、变压器-线路单元接线等。
风电场电气系统
S
WL1
WL2 WL3 WL4
风电场电气系统
优点是:接线简单清晰、设备少、操作 简单、便于扩建和采用成套配电装置 缺点:单母线的可靠性较低 单母线接线适用于电源数目较少、容量 较小的场合: (1) 6~10kV配电装置的出线回路不超 过5回。 (2) 35~63kV配电装置的出线回路数不 超过3回。 (3) 110~220kV配电装置的出线回路 不超过2回。
风电场电气系统
风电场电气部分的构成和主接线方式
§ 2.2.2 电气主接线的设计原则
发电厂主接线设计的基本要求有三点: 一、可靠性 供电可靠性是电力生产的基本要求,在主接线设计中可以下 几方面加以考虑: 任一断路器检修时,尽量不会影响其所在回路供电; 断路器或母线故障及母线检修时,尽量减少停运回路数和停 运时间,并保证对一级负荷及全部二级负荷或大部分二级负 荷的供电; 尽量减小发电厂、变电所全部停电的可能性。
风电场电气系统
风电场电气部分的构成和主接线方式

风电场电气二次系统概述(PPT 61页)

风电场电气二次系统概述(PPT 61页)
根据所实现的功能,二次回路可以分为:保护 回路,控制回路,测量和监视回路,信号回路,为 其提供电源的直流电源系统。
§6.接触器 QF
+
-
FU1
FU2
QF
SB1
12 KM
LD R SB2
QF 34
YT
HD R + FU3 KM YC
KM FU4 -
控制小母 熔线 断器
电动合闸回路
绿灯指示 回路
电动跳闸回路
红灯指示 回路
合闸回路
SB1和断路器QF常闭辅助触点(1、2之间)、合闸接触 器KM的线圈形成合闸回路;SB2和断路器QF常开辅助触点 (3、4之间)、跳闸线圈YT形成跳闸回路。
对一次设备的工作进行监测、控制、调节、 保护以及为运行、维护人员提供运行工况或生产 指挥信号所需的低压电气设备,称为二次设备, 如熔断器、控制开关、继电器、控制电缆等。
二次设备与二次回路
一次 设备
生产,输送,分 配,消耗电能
的设备
电力 系统
电气 设备
二次 设备
对一次设备进行 监测,控制,调节 和保护的电气设
控制按钮
常开(动合)按钮
SB
电路符号
常闭(动断)按钮
SB
电路符号
复合按钮
SB
电路符号
§10. 成套保护装置和测控装置 成套式的保护装置,即将保护元件、控制元件等集中于单一装置中,装设
于保护、测控屏柜中提供给用户使用。 用户只需要使用电缆将保护、测控屏柜和其他屏柜及断路器等设备连接起来就
完成了二次回路的构建。
BM+ KM1+ KM2+ KM3+
KA
2
1

风电场电气二次系统素材课件

风电场电气二次系统素材课件

保护系统应用案例二
某风电场针对电网低电压穿越能力不足的 问题,采用了动态无功补偿装置,提高了 风电场的稳定性。
控制系统应用案例
控制系统概述
控制系统是风电场电气二次系统中的重要组成部分,用于 控制风电机组的启动、停止、并网和脱网等操作。
控制系统应用案例一
某风电场采用了基于PLC的控制系统,实现了对风电机组 的远程控制和自动调节,提高了风电场的自动化水平。
系统集成化
统一平台
建立风电场电气二次系统 的统一平台,实现各子系 统之间的数据共享和协同 工作。
集成保护
将风电场电气二次系统的 保护和控制功能集成在一 起,提高系统的稳定性和 可靠性。
集成管理
将风电场电气二次系统的 管理和维护功能集成在一 起,提高系统的管理效率 和维护水平。
智能化发展
智能诊断
利用人工智能和大数据技术,实现风电场电气二 次系统的智能诊断和故障预警。
保护系统应用案例
保护系统应用案例一
某风电场采用了差动保护装置,有效避免 了因电流不平衡引起的发电机组损坏问题。
保护系统概述
保护系统是风电场电气二次系统中 的重要安全保障措施,用于在异常 情况下快速切断故障电流,防止事
故扩大。
A
B
C
D
保护系统应用案例三
某风电场通过配置过电压保护和抗干扰装 置,有效降低了设备损坏的风险。
智能控制
应用智能控制算法,优化风电场电气二次系统的 运行效率和稳定性。
智能运维
建立风电场电气二次系统的智能运维体系,实现 远程监控、智能预警和快速响应。
06 风电场电气二次系统常 见问题及解决方案
监控系统常见问题及解决方案
监控系统无响应

《风电场电气系统》课件

《风电场电气系统》课件

风电场电气系统的维护与管理
风电场电气系统的维护与管理是确保风力发电持续运行的关键。本节将介绍 安全管理、运行维护和故障处理等方面的内容。
风电场电气系统的未来发展
风电场电气系统将朝着智能化、新能源电力系统和网络化管理系统方向发展。本节将展望风电场电气系 统未来的发是将风力发电机组产生的电能进行变压、变流、接入电网的设 备。本节将介绍变电站的作用,变压器的分类,开关设备的作用以及线路的 作用。
风机并网
风机并网是将风力发电机组产生的电能与电网连接的过程。本节将介绍并网的意义,必要的要求以及实 现并网的方法。
风机的控制系统
风机的控制系统包括主控制系统、监控系统和底层控制系统。本节将详细介 绍这些控制系统的功能和作用。
《风电场电气系统》PPT 课件
风电场电气系统是风力发电的重要组成部分。本课件将介绍风电场电气系统 的概念、作用与功能,以及风电场变电站、风机并网和风机控制系统等内容。
风电场电气系统简介
风电场电气系统是风力发电中不可或缺的一部分。本节将概述风电场电气系 统的基本概念,以及其在风力发电中的作用与功能。

风电场电气部分的构成和主接线方式课件

风电场电气部分的构成和主接线方式课件
提高设备寿命
合理的维护和检修能够延长设备的使用寿命,降低风电场的运营 成本。
保证经济效益
风电场设备的正常运行是实现经济效益的前提,维护和检修能够 保证设备的正常运行。
维护和检修的主要内容
日常检查
对风电场设备进行日常巡检, 记录设备的运行状态和参数。
定期维护
按照设备的维护要求,进行设 备的清洗、润滑、紧固等操作。
定制化 根据不同地区和风资源条件,定制适合当地特点的风电场 电气部分解决方案,实现风电场的高效开发和运营。
END
THANKS
感谢观看
KEEP VIEW
维护与校验
保护设备应定期进行维护和校验, 确保其正常工作;对有缺陷的保 护设备应及时维修或更换。
测量设备
种类与功能
测量设备用于监测风电场的电气参数,如电流、电压、功率、频 率等,包括各种仪表、传感器和测量系统等。
安装与配置
测量设备应安装在适当的位置,便于监测和维护;根据实际需求进 行合理配置,确保监测数据的准确性和可靠性。
操作与维护
开关设备应定期进行操作 和检查,确保其正常工作; 对有缺陷的开关设备应及 时维修或更换。
保护设备
作用与分类
保护设备用于保护风电场电气设 备和输电线路的安全,包括继电
器、熔断器、避雷器等。
配置与选择
根据风电场的实际情况,合理配 置和选择保护设备,确保在异常 情况下能够及时切断故障线路或
启动相应的保护措施。
故障处理
在设备发生故障时,及时进行 故障诊断和修复,恢复设备的 正常运行。
预防性维护
根据设备的运行状态和历史数 据,预测设备的维护需求,提
前进行维护操作。
PART 0势
高效

风电场的二次系统接线图PPT课件

风电场的二次系统接线图PPT课件

LW2 H手柄可取出、定位,适合同期开关
2)中间环节 连接控制、信号、保护、自动装置、执行和电源等元件组成的控制电路。
3)操作机构 与控制电路相连的合闸线圈和跳闸线圈。
(四)、音响监视的断路器控制回路
合闸动作过程: 将SA打到预合闸位, SA的13—14节点通,闪光继电器接入,电从(+)SA13— 14节点K2.1绿灯直至3L–,则绿灯闪光。再将SA打到合闸位,其9—12节点通, 电
电气防跳原理:
同上图。
五、 信号系统
要求:掌握重复动作的中央信号回路原理。
(一)、信号分类
位置信号 电站信号分故 事障 故信 信号 号
指挥联系信号
其中事故和故障信号统称中央信号。
重复动作中央信号:出现故障信号,复归音响后,若此故障还存在,光字牌还亮时,
中央信号分 相继发生的故障仍能启动音响,点亮光字牌。
跳闸动作过程:
手动分闸时,首先将控制开关的手柄旋转至预备分闸位置,其触点13 —14接通,红灯闪光,表明分闸回路完好,然后将控制开关手柄转至分闸位置, 其触点6—7闭合,使分闸线圈Y2通电,断路器分闸。分闸后,Q2断开,Q1 闭合,SA11—10接点接通,电从1L+经过SA11—10、GN、S11、Q1、直 至1L–,则绿灯 GN发平光。
❖ 回路编号应用遵循一定的规则,主要为: 1)对不同用途的直流回路,使用不同的数字范
围,如控制与保护回路用1~399(400~599),励 磁回路用600~699。
2)保护与控制回路使用的数字按熔断器(或小 开关)分组,每一百为一组,如101~199,301~ 399等,其中正极性回路编为单数,由小至大,负极 性回路编为双数,由大至小。
K的内阻大得多,故电压基本降在K2上,则K2励磁,则K2.1闭合,而此时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递过来的过电压
风电机与变压器的连接
•风电机大小 •电流引起的损 耗大小 •额外的电压变 化 •风电机位置靠 得远近
多台风机的连接
பைடு நூலகம்电场内部接线形式之一
2M W 1#
2M W 2#
2M W 3#
3
110kV
4
3
2
T1
Z2
Z1
Z2
1大
电 源
4
10kV
系 统
L6 0 0 k W
4#
600kW 5#

2.2.2 配电网接地方式选择
配电网中性点接地方式的选择 涉及到配电网的绝缘水平、安
全性、经济性、供电的可靠性。
配电网接地方式
(1)中性点直接接地方式 ——单相接地时,通过接地中性点形成单相短路,很大的零序电流,根据零序分量的 特点可构成保护,保护动作后跳闸。 ——不对称短路引起的工频电压升高较小,操作过电压较低,对系统绝缘水平的要求 相对较低。
(4)接地的作用
1)防止人和动物遭受电击 电击所产生的电击电流会对人体造成伤害甚至导致死亡,所以必须采取防护措施。接地
中避免危害人和设备的大的电位差。电气设备在正常情况下不带电的金属部分与接地机制 件作良好的金属连接,可以保护人体的安全。 2)保障电气系统的正常运行
采用中性点接地的方式,中性点与地间的电位接近于零。如果中性点不接地,那么当相 线与外壳或者地接触时,其他两相对地电压会升高为相电压的 3 倍,绝缘水平要求更高。 采用中性点接地可以降低设备的制造成本和建设费用,提高继电保护的可靠性。 3)防止雷击和静电的危害 采取适当的接地方式,,使对人和动物的雷击危害最小化; 4)为接地故障电流的建立低阻抗通路,从而满足保护动作要求。 5)改善雷电保护,使电压保持在可接受的范围内
架空线(绝缘架空线) 电缆(直流电缆、交流电缆)
海上风电场电气接线一例
电缆特性:电阻与面积、距离;充电电流 与面积、距离
海上风电用电缆传输的比较: HVDC、VSC、交流
风电场电压等级
从发电机到塔基的主电路的电压等级一般低于1000 V,国际上选的一 种标准电压是线电压690 V。 ——好处:方便和有成本-效益,发电机成本低; 低电压的开关设备 和下垂的柔软电缆可以广泛选择; ——低电压导致大的电流。例如600 kW的风力机组工作在690 V需 要超过500A的电流。 ——联网送电需要升压变压器(位于塔中或邻近塔)
电气系统要求可靠、灵活、经济地把电能送入系统 风电场内的电气系统和常规电厂内的电气系统比较简单,辅
助设施少 风电场内的电气接线特殊点
容量、设备、分布性、厂用负荷及地区负荷、
电缆与架空线
在风场内,风机与变电所之间的连接有两种方 式:场地布置相对集中时用电缆直埋;场地布 置相对分散时用架空10kV线路。 考虑:经济性、景观
的“电气地”。以下几类在广义下都可被称作地: 1)导电性的土壤,具有等电位,且任意点的电位可以看成零电位 2)导电体,如土壤或钢船的外壳,作为电路的返回通道,或作为零电位 的参考点 3)电路中相对于地具有零电位的位置或部分 4)电路与地或其他起导电作用的导电体的有意的或偶然的连接 (2)接地的概念 接地是指将有关系统、电路或设备与地连接。通过接地可以使连接到地 的导体具有等于或者近似于大地的电位并引导入地电流流入和流出大地。
(3)接地的分类
保护性接地和功能性接地 保护性接地 为了系统与设备运行安全而采取的接地措施,有以下几类: 1)防电击接地:为了防止电气设备绝缘损坏或产生漏电流时,使平时不带电的外露导电部分带电而导致电
击而将设备的外露导电部分接地。这种接地还可以限制线路涌流或低压线路及设备由于高压窜入引起 的高电压;当产生电气故障时,有利于电流保护装置动作而切断电源。 2)防雷接地:将雷电导入大地,防止雷电流使人身受到电击或设备受到破坏 3)防静电接地:将静电荷引入大地,防止由于静电积聚对人体和设备造成危害。 4)防电蚀接地:地下埋设金属体作为牺牲阳极或阴极,防止电缆、金属管道等受到电蚀。 功能性接地 为了设备正常运行或者提供电流回路而采取的接地措施,有以下几类: 1)工作接地:为了保证电力系统运行,防止系统震荡。保证继电保护的可靠性,在交直流电力系统的适当 地方进行接地,交流一般为中性点,直流一般为中点。 2)逻辑接地:为了确保稳定的参考电位,将电子设备中的适当金属件作为“逻辑地”。常将逻辑接地及其 他模拟信号接地统称为直流地 3)屏蔽接地:将电气干扰源引入大地,抑制外来电磁干扰,减少电子设备产生的干扰影响其它电子设备 4)信号接地:为保证信号具有稳定的基准电位而设置的接地
风电场集电系统的中压(MV)电平的选择通常由当地配电公司的经验 确定。这样电缆和开关设备都比较容易获得。 一般选择在10 kV至35 kV之间,可以是10 kV, 20 kV和35 kV 等。
2.1 集电系统
固定转速风力发电机电气系统简图
风电机
主要电气设备
发电机,定子输出经三条柔软下垂电缆到塔下断路器 铠装断路器(moulded case circuit breaker-MCCB),MCCB 装备
第二讲 风电场的电气系统
概述 2.1 集电系统 2.2风电场的接地的系统 2.3风电场的防雷保护 2.4电气保护
2.4.1 风电场和发电机保护 2.4.2 异步发电机的孤立运行和自励磁 2.4.3 分界面保护
概述
中型或大型风力发电机(几百千瓦到几兆瓦)主要是采用并网 运行方式,好处:与公共电网互补、充分发挥风电的效益、 电能质量更好、
大型风电场风机布局(海上、海岸) 风电场风机布局图(5MW风机)
海上风电场一例
1
2.1 风电场的接地的系统
2.2.1接地的基本概念
2.2.2配电网接地方式选择 2.2.3 风电场的接地的系统
2.2.1接地的基本概念
(1)地的概念 电力系统中的“地”不是普遍意义上的“地理地”,而是电力概念中
有防备故障的瞬时过流保护,有延滞(热)功能的过电流保护 双向晶闸管软起动单元,通常具有一个旁路电流接触器,被用来
减小在发电机接通时的浪涌电流 功率因数校正电容器(PFC)电路,分级投切,+小的电感器限制
容性合闸电流(浪涌电流) 辅助交流电源,直流电源(风轮机控制器、保护等用) 保护保险丝额定电流较小。 浪涌分流器(避雷器),避免内部电气系统遭受站内电气网络传
相关文档
最新文档