代数学的发展
代数的历史与发展
代数的历史与发展代数学(algebra)是数学中最重要的分支之一。
代数学的历史悠久,它随着人类生活的提高,生产技术的进步,科学和数学本身的需要而产生和发展。
在这个过程中,代数学的研究对象和研究方法发生了重大的变化。
代数学可分为初等代数学和抽象代数学两部分。
初等代数学是更古老的算术的推广和发展,而抽象代数学则是在初等代数学的基础上产生和发展起来的。
代数学的西文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要著作的名称。
该著作名为”ilm al-jabr wa’I muqabalah”,原意是“还原与对消的科学”。
这本书传到欧洲后,简译为algebra。
清初曾传入中国两卷无作者的代数书,被译为《阿尔热巴拉新法》,后改译为《代数学》(李善兰译,1853)。
初等代数学是指19世纪上半叶以前的方程理论,主要研究某一方程(组)是否可解,怎样求出方程所有的根(包括近似根)以及方程的根所具有的各种性质等。
代数之前已有算术,算术是解决日常生活中的各种计算问题,即整数与分数的四则运算。
代数与算术不同,主要区别在于代数要引入未知数,根据问题的条件列方程,然后解方程求未知数的值。
这一类数学问题,早在古埃及的数学纸草书(约公元前1800年)中就有了启示,书中将未知数称为“堆”(一堆东西),并以象形文字表示。
古巴比伦人也知道某些二次方程的解法,在汉穆拉比时代(公元前18世纪)的泥板中,就载有二次方程问题,甚至还有相当于三次方程的问题。
数学史家们曾为此发生过热烈争论:在什么意义下能把巴比伦数学看成代数?古希腊时代,几何学明显地从代数学中分离出来,并在希腊科学中占统治地位,其威力之大,以至于纯算术的或代数的问题都被转译为几何语言:量被理解为长度,两个量之积解释为矩形、面积等。
现在数学中保留的称二次幂为“平方”,三次幂为“立方”,就是来源于此。
古希腊时期流传至今的与代数有关的著作只有丢番图的《算术》。
该书中解决了某些一次、二次方程问题和不定方程问题,出现了缩写符号和应用负数之例。
简述代数学的发展历程
简述代数学的发展历程代数是一个较为基础的数学分支。
它的研究对象有许多,诸如数、数量、代数式、关系、方程理论、代数结构等等,就是说不仅是数字,还有各种抽象化的结构。
例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。
在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。
这篇文章中一起快速回顾代数发展的那些重要时刻:●公元前1800 年左右,旧巴比伦斯特拉斯堡泥板书中记述其寻找著二次椭圆方程的解法。
●公元前1600 年左右,普林顿322 号泥板书中记述了以巴比伦楔形文字写成的勾股数列表。
●公元前800 年左右,印度数学家包德哈亚那在其著作包德哈尔那绳法经中以代数方法找到了勾股数,给出了线性方程和如与等形式之二次方程的几何解法,且找出了两组丢番图方程组的正整数解。
●公元前600 年左右,印度数学家阿帕斯檀跋在其著作'阿帕斯檀跋绳法经'中给出了一次方程的一般解法和使用多达五个未知数的丢番图方程组。
●公元前300 年左右,在几何原本的第二卷里,欧几里德给出了有正实数根之二次方程的解法,使用尺规作图的几何方法。
此一方法是基于几何学中的毕达哥拉斯学派。
●公元前300 年左右,倍立方的几何解法被提了出来。
现已知道此问题无法使用尺规作图求解。
●公元前100 年左右,中国数学书《九章算术》中处理了代数方程的问题,其包括用试位法解线性方程、二次方程的几何解法及用相当于现今所用之消元法来解线性方程组。
还应用一次内插法。
●公元前100 年左右,写于古印度的巴赫沙利手稿中使用了以字母和其他符号写成的代数标记法,且包含有三次与四次方程,多达五个未知道的线性方程之代数解,二次方程的一般代数公式,以及不定二次方程与方程组的解法。
●公元150 年左右,希腊化埃及数学家希罗(又称海伦)在其三卷数学著作中论述了代数方程。
●200 年左右,希腊化巴比伦数学人丢番图,他居住于埃及且常被认为是“代数之父”,写有一本著名的算术,此书为论述代数方程的解法及数论之作。
演变过程从代数到数论的数学发展
演变过程从代数到数论的数学发展数学作为一门古老而迷人的学科,经历了漫长的历史进程,从代数学的发展逐渐转向数论研究。
本文将对这一数学发展的演变过程进行探讨,带领读者了解数学从代数到数论的发展历程。
一、代数学的崛起代数学作为现代数学的基石之一,最早可以追溯到古希腊时期。
古希腊人可以称为"几何学家",在数学发展中,几何学成为主导。
然而,在公元前3世纪欧几里得《几何原本》的问世后,代数学开始崭露头角。
欧几里得的《几何原本》被认为是公元前300年左右最重要的数学著作之一。
这本书将几何学和代数学联系在一起,将数学推向了一个崭新的阶段。
欧几里得提出了多个代数问题,例如在现在被称为“欧几里得算法”的问题中,他研究了带有两个未知数的二元一次方程,并找到了求解方法。
随着时代的变迁,代数学经历了一系列的发展和演变。
在中世纪,阿拉伯数学家穆罕默德·本·穆萨(Muhammad ibn Musa)的贡献使代数学得以进一步发展。
他们将印度的数字和阿拉伯的代数方法结合起来,推动了代数学的研究。
印度的贡献是十分重要的,他们发明了零的概念和十进制系统。
代数学的发展在文艺复兴时期得到了进一步的推动。
文艺复兴时期的数学家们致力于解决各种各样的代数问题,并开创了代数的新领域。
其中尤以文艺复兴时期的数学家费马(Pierre de Fermat)和笛卡尔(René Descartes)的贡献最为突出。
费马提出了至今未解的费马大定理,而笛卡尔创造了解析几何学,将代数问题转化为几何问题的研究。
二、数论的兴起随着代数学的发展,数论逐渐成为数学研究的重要方向。
数论是研究整数的性质和关系的数学分支,与代数学有着密切的联系。
数论在欧几里得时期就开始崭露头角,例如欧几里得的《几何原本》中就提到了欧几里得算法等与数论有关的问题。
然而,数论真正成为独立的学科要等到19世纪。
在这个时期,数论的研究重点逐渐从代数问题转向了整数问题,开启了数论的黄金时代。
走近中国古代数学,领略华夏智慧
引言概述:中国古代数学是世界数学史上的重要组成部分,其代表着华夏民族的智慧和文明。
几千年的积淀使中国古代数学成为独具特色的学科体系,包括了诸多领域,如算术、代数、几何等。
本文将带您走近中国古代数学,领略这一古老而伟大的学科。
正文内容:一、算术的探索1.古代数数图2.十进位制的发展3.古代算法的发展4.古代数学对民生的贡献5.算术在古代文化中的地位二、代数学的发展1.早期的代数记数法2.《九章算术》的贡献3.韩信点兵问题与方程求解4.割圆术的探索5.代数在日常生活中的应用三、几何学的研究1.《周髀算经》的几何内容2.对称性与形状研究3.《几何原本》的贡献4.海峡两岸的几何学5.几何在建筑中的应用四、数论的发展1.《数书九章》的数论研究2.数论在古代术数中的运用3.莱布尼兹发现的无穷小数与古代数论的联系4.形式化数论的起源5.数论的现代研究领域五、数学文化的传承与影响1.古代数学家的地位与影响2.数学思维对智力发展的促进3.数学与文学的交叉影响4.古代数学对现代数学的影响5.数学在当代社会的地位与发展总结:中国古代数学的发展历程充满着智慧和独特的思考方式,其不仅仅是一门学科,更是华夏民族智慧的结晶。
通过算术、代数、几何和数论等方面的探索,古代数学家们为世界数学史留下了宝贵的贡献。
同时,古代数学对中国的文化传承和智力发展也产生了深远的影响。
在当代社会,数学仍然扮演着重要的角色,其应用范围也更加广泛。
通过了解中国古代数学的历史与发展,我们能够更好地认识到数学的价值与意义,不断推动数学学科的发展。
代数学的发展
第一节代数学的发展一、伽罗瓦理论及群论的发展长期以来,求解方程一直是整个代数的中心内容,而且在19世纪前期仍是如此.19世纪在探讨方程求解的问题中,出现了一种全新的理论.这一理论虽然以解决方程论中的重要问题为目的,但却引入了群和域等新概念,从而开辟了代数学研究的新方向.阿贝尔和伽罗瓦是伽罗瓦理论及群论的主要奠基者.阿贝尔生于挪伽罗瓦生于巴黎附近的布拉伦(Bourg-la-Reine).他们俩有着共同的命运,很年轻就在数学的新领域做出了辉煌成就,但却不幸夭折,阿贝尔在26岁时死于结核病和营养不良,伽罗瓦21岁时死于决斗.在世时都没有为人所赏识.为了求解四次以上的方程,华林、拉格朗日、鲁菲尼(P.Ruffi-ni,1765—1822)、高斯、柯西等人都作了十分有价值的工作.他们提出了方程的根的初等对称函数、置换等内容.这些都对阿贝尔、伽罗瓦有直接的影响.阿贝尔在1824年春天成功地证明了:用根式求解一般的五次方程是不可能的.在这个过程中,他首先证明了今天的阿贝尔定理:可用根式求解的方程的根能以这样的形式给出,出现在根的表达式中的每个根式都可表成方程的根和某些单位根的有理函数.利用阿贝尔定理,1826年阿贝尔证明了高于四次的一般方程用根式求解的不可能性,根据阿贝尔的思想,克罗内克(L.Kro-necker,1823—1891)于1879年给出了一个直接、简单明了而又非常严密的证明.这样,几百年之久的求解高于四次的一般方程的问题就被阿贝尔解决了.不仅如此,阿贝尔还给出了特殊的可用根式求解的方程的特征:这些方程的所有根都是其中一个根的函数,即全部根为x,θ1(x),θ2(x),…,θn-1(x).其中θ1是有理函数.1853年,克罗内克称具有这种特征的方程为阿贝尔(Abel)方程.随后,阿贝尔证明了更一般的定理:如果一个方程的所有根能表示成其中一个根的有理函数,且对于其中任意的两个根θα,θβ,有θα(θβ(x))=θβ(θα(x)).则该方程可用根式求解.阿贝尔一生在数学的其他领域也做出过重大的贡献.在椭圆函数方面、分析严密化方面都留下了他的足迹.其中有以他的名字命名的阿贝尔积分方程,阿贝尔定理,阿贝尔收敛判别法和关于幂级数的阿贝尔定理.阿贝尔的工作开辟了代数学研究的新方向,他引进了域和在给定域中不可约多项式这两个概念,并且开始了群论的研究.在群论、方程根的置换等问题的研究中,伽罗瓦也取得了重要成就.他试图解决这样的问题:虽然高于四次的方程一般不能用根式求解,但有些特殊的方程如阿贝尔方程却可用根式求解,那么哪些方程可用根式求解呢?为了解决这个问题,他利用了拉格朗日关于根的置换、排列的概念.如设x1,x2,x3,x4是一个四次方程的根,则在这四个根的排列中交换x i和x j就是一个置换,这样总共就有4!=24种可能的置换.经过任何两个置换后仍是其中的一个置换,所置换的集合形成一个群,这样伽罗瓦就给出了关于抽象群的一个早期定义.这样,方程的群就成了它的可解性的关键.然后再这样进行探讨:给了一个方程,按照某种方法找到方程在系数域中的群G——根的置换群,这些置换使根之间的系数在该域中的全部关系保持不变.找到G后,再找G的最大子群H,然后可以用一套仅含有理运算的手续来找到根的对于G的所有T≠R,它的值发生改变.存在一种方法构造R中的一个.这个方程称为一个部分预解式.经过一系列工作,伽罗瓦给出了找给定方程的群,逐次预解式以及方程关于逐次扩大了的系数域的群——原来群的逐次子群的一系列方法,在这些工作中,群论的基本理论有了一些框架.然后伽罗瓦引入了正规子群(或称自共轭子群,不变子群)的概念.他证明了当作为约化方程的群的预解或是一个素数次p的二项方程x p-A=0时,则H是G的一个具有指数p的正规子群;反之,如果H是G的一个正规子群,且具有素指数p,则相应的预解式是p次二项方程,或能化简到这样的方程.伽罗瓦引入了合成序列的概念:在子群序列G,H,K,L,…,E中,每一个都是前一个群中的极大正规子群.H对G的指数,K对H的指数等等,称为合成序列的指数.他得出了如下的重要结论:若一个方程的置换群的逐次子群所成的合成序列的指数都是素数,则这方程就能用根式求解;否则,该方程就不能用根式求解.利用这个结论,伽罗瓦证明,对于一般的n次方程,方程的置换群由n个根的全部n!个置换组成,置换群称为n级对称群.它的阶是n!.而n=2时,合成序列的指数是2,n=3时合成序列的指数是2和3,n=4时合成序列的指数是2,3,2,2,因此当n≢4时方程能用根式求解.伽罗瓦于1830年彻底解决了方程能用根式求解的问题.他证明一个素数次的不可约方程能用根式求解的充分必要条件是,这个方程的每个根都是其中两个根的带有R中系数的有理系数.满足这种条件的方程称为伽罗瓦方程.最简单的伽罗瓦方程是x p-A=0(p为素数).阿贝尔方程也是一种伽罗瓦方程.伽罗瓦的工作一部分是关于方程的伽罗瓦理论,另一部分本身就是他所开创的一个新领域——群论.他是在严格的意义上使用“群(Group)”的第一个人,他引进了置换群、不变子群等概念,并且把群和域的扩张对应起来.群论的产生深刻地改变了代数学的内容,使代数学从主要研究方程开始转向研究各种代数结构,并且使代数学开始向更严密的方向迈进.伽罗瓦理论不仅回答了方程的求解问题,而且解决了古希腊“三大几何问题”中的“三等分任意角”和“倍立方体”问题.他的工作提供了可作图的一个判别法:对于一个作图问题首先要建立一个代数方程,它的解就是所要求的量.可作图的条件是这个量必须属于给定量的域的某个二次扩张域.利用这个判别法就可以解决上述两个问题,判明这两个问题都是不可解的.实际上,1837年旺策尔(P.L.Wantzel,1814—1848)用其它的方法曾独立地证明了这两个问题的不可能性.1837年旺策尔还给出了正多边形可作图的必要性证明,这个问题是高斯在1796年提出的,高斯断言:一个正n边形是可作图的,当且仅当任意正整数或0.拉格朗日已经知道子群的阶整除群的阶.伽罗瓦则给出了单群、合成群以及两个群G与G′之间的同构的概念.由于伽罗瓦的工作1846年才陆续发表,所以直到1870年约当(C.Jordan,1838—1922)发表著名的《置换和代数方程专论》(Traitédes Substitutions et des équations al-gébriques),才第一次给伽罗瓦理论清楚、完善的表述,这时群的概念已从方程论进入到数学的更广泛的领域.约当不仅使群论系统化,而且做出了许多重要的工作.1869年,他从极大自共轭子群出发,引入了商群的概念,并且在1872年引入记号G i/G i+1表示商群.他曾证明了今天的约当—建立了同构、同态的概念,添加了关于传递群和合成群的许多结果,在书中,他还指出,可解方程的群都是交换群,他称这样的群为阿贝尔群.…,n)的线性变换来表示置换.1878年他曾提出,有限周期p的线性,…,n,εi是p次单位根.1868—1869年,他第一个对无限群进行了重要的研究,开创了利用群论研究几何变换的新道路.柯西也对群尤其是置换群的研究做出了重要的贡献.他的工作影响了著名的代数学家凯莱(A.Cayley,1821—1895).在1849—1854年发表的三篇文章中,他首次提出了抽象群的概念,把群从具体的对象(如数、置换)扩大到更一般的范围,奠定了群论的理论基础.1872年,F.克莱因将群论与几何学联系起来,1873年李(M.S.Lie)引入连续群的概念,使群论与分析与几何联系在一起,从而产生了李群,李代数.19世纪对群论做出贡献的数学家还有西罗(L.Sylow,1832—1918)、弗罗伯尼(F.G.Frobenius,1849—尤其重要的是,1849年物理学家、矿物学家布雷威(A.Bra-vais,1811—1863)通过研究行列式为±1的三个变量的线性变换现32类对称的分子结构.他的研究开创了群论在物理中尤其是物质结构理论中的应用,而且这种应用越来越广.这样,群论就迅速为人们所承认,进入数学的中心,并且一度使人们认为分析、几何、物理学可以通过群论统一起来.的确,群论作为从纯数学方程中研究所产生的成果,能够在几何、分析,尤其是在具体的物质晶体结构中得到应用,不仅使得其理论本身成了蓬勃发展的领域,而且冲击了人们对数学的固有观念,甚至冲击了人们的世界观.二、四元数与向量在1830年时,复数用于表示平面上的向量已众所周知.但复数只能表示在同一个平面上物体受力的情况.如果作用于一个物体上的几个力不在一个平面上,那么又该怎样表示呢?1837年,哈密顿首先引进有序偶(a, b)来表示复数a+bi,通过有序偶,他把复数的神秘性完全排除了.通过有序偶,对于两个复数a+bi 与c+di,他这样定义复数的运算:(a,b)±(c,d)=(a±c,b±d),(a,b)·(c,d)=(ac-bd,ad+bc),这样,复数的历史发展与逻辑发展就得到了统一.既然有序偶(a,b)表示的二维复数可以表示同一个平面的力,因此很自然地,哈密顿和许多人都试图寻找三维复数表示空间的力.他发现,要求三维复数具有当时所发现的数(从自然数到复数)所具有的乘法交换性,总是办不到,而且三维复数(a,b,c)无论如何也不能唯一地表示出空间的力.他长期为这个问题所困扰,苦思冥想长达十几年,但一无所获.1843年10月16日黄昏,哈密顿携夫人一道去都柏林作为会长主持爱尔兰皇家学会会议,当步行到勃洛翰格时,长期探求的内容突然像一道闪电出现了,“此时此刻我感到思想的电路接通了.”他在一刹那间顿悟出,要用新数表示出空间向量,必须作出两点让步:一是新数必须含有四个分量(1,i,j,k);二是必须牺牲乘法交换律.他把这种新的数a+bi+cj+dk (a,b,c,d为实数)叫做四元数,写成有序偶的形式为(a,b,c,d).对于基本分量的乘法,他定义为:两个四元数a+bi+cj+dk,e+fi+gj+hk,按普通多项式相加、相等并利用上述基本乘法公式,仍为一四元数.他通过有序偶给出了四元数的加法与乘法:(a,b,c,d)+(e,f,g ,h)=(a+e,b+f,c+g,d+h),(a,b,c,d)·(e,f,g,h)=(ae bf cg dh,af+be+ch-dg,ag+ce+df-bh,ah+bg+de-cf),四元数进行乘法运算时,交换律不再成立,如j·k=i,但k·j=-i;p=3+2i+6j+7k,q=4+6i+8j+9k,pq--111+24i+72j+35k,但qp=-111+28i+24j+75k.在数学史上,第一次出现了乘法交换律不成立的实例.在数学史乃至科学史上,四元数的产生是灵感导致伟大发明的极好例证.四元数的发明在方法论上也是富有启示的.首先是通过类比导致了哈密顿等人去寻求三维复数,但长期的错误类比困惑了人们相当长的时期.突然,一道思维的闪电将这种束缚击破,从而导致了四元数的发明.长期以来,我们只注意了群论的产生对代数学的冲击,而忽视了四元数对代数学的影响.正如非欧几何创立以前人们认为欧氏几何是唯一的、不可更改的几何一样,经过皮科克(G.Peacock, 1791—1858)等人的总结,到19世纪四十年代,数学界普遍接受的是下述代数公理:1.等量各加上第三个等量得到等量;2.(a+b)+c=a+(b+c) (加法结合律);3.a+b=b+a (加法交换律);4.等量加等量给出等量;5.等量加不等量给出不等量;6.a(bc)=(ab)c (乘法结合律);7.ab=ba (乘法交换律);8.a(b+c)=ab+bc (乘法对加法的分配律).那时数学家们把上述公理看作是自古不变的,认为存在与一般的代数不同的代数是不可思议的.试图作乘法的交换律不成立的一种代数结构,不仅没有人会那样想,就是有人想出来了,也会被认为是异端邪说,a×b ≠b×a,这太与常识相悖了.哈密顿也就是长期不敢相信这个事实,但他终于迈出了这一步.现在有了四元数,其中乘法交换律不成立,而结合律等成立,同时又能发展出一套有用的理论体系,而且在逻辑上前后一致.这就使数学家们认识到:可以构造一个有意义的、有用的数系,它可以不具有实数和复数的交换法.人们可以考虑偏离实数和复数的通常性质的自由创造.这样,四元数就使得人们认识到:代数学的公理是可以改变的,不仅交换律,就是其他运算规则如结合律等也可以不满足.可以构造各种各样的代数,而上述公理可以一个或几个不成立,这样就有大量的系统能够研究了,从而使代数学第一次达到了可以“自由”研究的程度.从逻辑上完全可以这样认为,群论可以在四元数引起代数的这些变化之后作为一个系统来研究,今天大多数群论的教材就反映了这一点.1844年,格拉斯曼(H.G.Grassmann,1809—1877)把四元数推广到n元数组,使每一个数组(x1,x2,…,x n)与一个x1e1+x2e2+…+x n e n这样形式的结合代数相联系,建立了该代数的基本单位e1,e2,…,e n的乘法表,并由此建立了n维空间的概念,这样就把通常的二、三维解析几何坐标推广成n个,建立了相应的n维仿射空间和度量空间的几何学.这是代数、几何学上的重大突破,在这方面格拉斯曼几采与哈密顿齐名.1843年,凯莱也引入了n维空间的概念,1854年他又给出了八元数——称为凯莱数:x=x0+x1e1+x2e2+…+x7e7.克利福德(W.K.Clifford,1845—1879)创立了拟四元数q+wQ(q,Q是四元数,w2=-1).等等.面对这样多新涌现出来的代数,人们开始思索,自由创造的数学都能具有哪些性质?1857年,有人证明,在R上可除代数仅有的可能性是维数为1,2,4,8的代数,即实数、复数、四元数和凯莱数.1878年,弗罗伯尼证明了,具有有限个原始单元的、有乘法单位元素的实系数线性结合代数,如服从结合律,则只有实数、复数和实四元数的代数.魏尔斯特拉斯在1861年证明了,有有限个原始单元的,实或复系数线性结合代数,如服从乘积定律和乘法交换律,就是实数和复数的代数.赫尔维茨(A.Hurwi-tz,1859—1919)证明了实数、复数、实四元数和拟四元数是仅有的满足乘法定律的线性结合代数,哈密顿要是早知道这一点,他就不会徒劳无益地花十几年功夫寻求三维复数了.这些定理告诉人们,任意创造新的代数系统与保持某些代数性质是相互制约的.哈密顿、格拉斯曼、凯莱等人,以推出不同于传统代数的遵守某种结构规律的代数方法,而开创了现代抽象代数的研究.减弱或者去掉普通代数的各种假定,或像非欧几何一样将其中一个或多个假定代之以其他的假定,就可以出现多种可供人们研究的体系.按照这种方法,我们可以得到群、半群、环、整环、格、除环、布尔环、域、若尔当代数、李代数,等等.这种方法无疑地得益于四元数发明后产生的思想.20世纪的抽象代数已成为数学的主流之一,这些都应该追溯到四元数.四元数在向量分析的发展中起了重要作用,直接导出了向量分析.哈密顿本人把四元数a+bi+cj+dk分为两部分:实部和他称之为向量的复数部(a Complex Pant).两个向量按照四元数的运算法则所得出的乘积同样具有实部和向量部分.设他记实部(数量部分)为Sαα′、向量部分为Vαα′.如果把α,α′看作两个向量α-(x,y,z),α′=(x′y′z′),则有Sαα′=-α·α′,Vαα′=αxa′.这样,向量分析的基本公式(数积和叉积)借助四元数就被确定了.著名的物理学家、数学家麦克斯韦(J.Maxwell,1831—1879)在处理电、磁的有关问题时,曾明确指出,规定一个向量需用三个分量,这三个量能解释成沿三个坐标轴的长度,并且强调说,这个向量概念就是当它作用于点函数u(x,y,z)时,产生向量在哈密顿工作的基础上,19世纪80年代吉布斯(J.W.Gi-bbs,1839—1903)、希维赛德(O.Heavside,1850—1925)开创了向量分析这门新的数学分支,为物理学提供了十分有益的工具.他们两人提出,一个向量不过是四元数的向量部分,但独立于任何四元数,向量c为实数,称为分量.规定这样,吉布斯和希维赛德也建立起了数积和叉积;从而建立了向量代数.数.由t的不同值可以得到各个向量,如果都是O作为原点画出来,则这些向量的终点描出一条曲线(图13·1).上面我们看到的梯度、旋度就是向量微分.向量的积分形式被19世纪的数学家、物理学家用来把许多公式表成了更加简捷的形式.高斯—奥斯特洛格拉德斯基(Gauss—Ostrogradsky)公式写成了梯度公式写成了希维赛德把麦克斯韦方程写成了物理学家选择了形式上更简单、运用更方便的向量分析方法,但是相反四元数倒受到了冷落.三、线性代数四元数的出现为线性代数理论(主要是矩阵理论)的发展铺平了道路.19世纪的线性代数在行列式方面逐渐完善了,同时还新创立了重要的矩阵理论和线性变换理论.柯西于1812年给出了现代意义下的行列式这个词,并且在1815年引入了把元素排成方阵并采用双重足标的记法,而1841年凯莱则引入了两条竖线,到此为止标准的行列式已经出现了:-α′β,αβ′γ″-αβ″γ′+α′β″γ-α′βγ″+α″βγ′-α″β′γ,等.”1815年柯西给出了行列式乘法:|a ij|·|b ij|=|c ij|,其中|a ij|、|b ij|表示n,舍尔克(H.F.Scherk,1798—1885)给出了行列式的一系列新性质,如其中某一行是另两行或几行的线性组合时,行列式为零,三角行列式的值是主对角线上的元素的乘积,等等.1841年,雅可比给出了行列式D的导数公式(当其元素是t的函数其中a ij是t的函数,A ij是a ij的代数余子式.行列式还被用于多重积分的变量替换中.1832—1833年,雅可比给出了一些特殊的结果.1839年,卡塔兰(E.C.Catalan,1814—1894)给出了一般的结果:其中x=x(u,v),y=y(u,v)是D到D′变换,其中分也有类似结果.1841年,雅可比写了一篇文章专门讨论函数行列式J.他给出了这样的结果:若J≠0,则F1,F2,…,F M(线性)无关.他还给出了雅可比行列式的乘积定理:有用,利用行列式,19世纪的数学家在这方面取得了大量的成果.1801年,高斯在《算术探讨》(Disquisitiones Arith-meticae)中引入.西尔维斯特(J.J.Sylvester,1814—1897)于1852年证明y2s+1-…-y2r-s了著名的惯性定律:对于一个二次齐式来说,不管使用何种变换,正项的个数s以及负项的个数r-s总是不变的.西尔维斯特对19世纪线性代数的发展做出了卓越贡献.他和魏尔斯特拉斯共同完成了二次型的理论.19世纪数学家们讨论了各种各样的特殊行列式如对称行列式、斜对称行列式、正交行列式,等等,得到了许多特殊的结果.如阿达玛(J.Hadamard,1865—1963)于1893年得凯莱(A.Cayley)是矩阵论的创始人.在19世纪上半叶他就曾系统地研究过矩阵的有关性质.1849年他曾指出:矩阵在乘法下以及四元数在加法下构成群.1850年,西尔维斯特首先使用矩阵(Matix)一他写了《矩阵论的研究报告》(A Memoir on the Theory of Matrices)一文,给出了适用于n×n矩阵和m×n矩阵的许多定义:两个矩阵相等就是它们的对应元素相等;一个矩阵是两个矩阵之和,就是它的元素是两个他还给出了两个矩阵相乘的法则,并且指出,m×n矩阵只能用n×p 矩阵去乘.凯莱指出,矩阵乘法可结合,但一般不可交换.如AB≠BA.的公式凯莱给出了求一个矩阵A的逆矩阵A-1(其中A ij为行列式|A|中a ij的代数余子式.)他还断言,两个矩阵的乘积为零无需其中有一个为零矩阵.1870年,皮尔斯(B.Perice,1809—1880)引进了幂零元的概念:元素A对某个正整数n满足A n=0;同时还引进了幂等元的概念:元素A对某个n满足A n=A.后来,人们由此而定义了幂零矩阵A M=0与幂等矩阵Am=A.19世纪,人们定义了对称矩阵、反对称矩阵、斜对称矩阵、转置矩阵等特殊矩阵.1854年和1878年,埃尔米特、弗罗伯尼(F.G.Frobenius,1849—1917)分别给出了正交矩阵的定义:矩阵A是正交的,如果它等于它的转置矩阵A T的逆,即M=(M T).弗罗伯尼证明了正交矩阵总能写成(S-1-T)/(S+T)或者(I-T)/(I+T)的形式,其中S为对称矩阵,T为反对称矩阵,I为单位矩阵.从柯西开始,人们就开始讨论相似矩阵和相似行列式.如AP,则称矩阵A与B相似.相应地,人果存在一个可逆矩阵P使得B=P-1们也这样定义了相似行列式.1879年,弗罗伯尼利用行列式引进了矩阵的秩的概念.一个m×n矩阵的秩为r,当且仅当它至少有一个r阶子式的行列式不为零,而所有高于r阶的子式的行列式都为零.矩阵的秩有一系列性质:秩(AB)≢min(秩(A),秩(B)),等等.特征方程是矩阵和行列式理论中的重要内容,它最先是由欧拉开始研究的,随后拉格朗日、拉普拉斯在线性微分方程组的研究中明确地提出了这一概念,而“特征方程”这个术语则是柯西提出的.矩阵A的特征多项式是由下列多项式定义的:+…+(-1)n C n.F(λ)=|λI-A|=λn-C1λn-1λI-A称为A的特征矩阵,F(λ)=|λI-A|=0称为A的特征方程.1858年,凯莱得到了著名的哈密顿—凯莱(Hamilton—Caylay)定理:n阶矩阵A是它的特征多项式的根,即F(A)=0.1890年,泰伯(H.Taber,1860—?)得到了这样的结论:特征方程的所有根之和即特征根之和是矩阵A的对角线之和,即矩阵A之值,也就是说C1=tr(A)=∑a ij;而特征方程的常数项就是A的行列式之值,C n=|A|.西尔维斯特还得出了“西尔维斯特定理”:若A是m×n矩阵,B是n ×m矩阵,m≣n,AB的特征多项式是f AB(λ),BA的特征多项式是f BA(λ),则f AB(λ)=λM·f BA(λ).-n1878年,弗罗伯尼提出了矩阵A的最小多项式的概念,并指出它是由特征多项式的因子形成的而且是唯一的.但直到1904年亨泽尔(K.Hensel,1861—1941)才证明了唯一性,同时他还证明了,若h(x)是矩阵A的最小多项式,g(x)是A满足的任一其他多项式,则有h(x)|g(x).今天,我们把含有参数λ的矩阵叫做λ—矩阵,19世纪对λ—矩阵及其行列式进行了充分的讨论.1851年,西尔维斯特从对行列式以后,1878年弗罗伯尼将这两个概念引入到矩阵中,进行了大量的工作,并以完美的逻辑形式整理了初等因子、不变因子的理论,其中的重要工作是彻底弄清楚了矩阵之间关系的结构.如果存在两个可逆矩阵U,V使A=UBV,则称A,B等价.1878年弗罗伯尼证明了,矩阵A,B等价的充要条件是A和B有相同的初等因子或不变因子;而早在1868年,魏尔斯特拉斯就已经证明,两个矩阵相似的充要条件是它们有相同的不变因子和初等因子.他们所讨论的矩阵(同时也涉及到行列式)的元素不仅是实数,也扩充到了复元素.1870年,若尔当(亦称约当)证明了任何一个矩阵A可以变到标准型J称为约当标准型,J i称做对于λi的约当块.矩阵A的特征多项式矩阵的约当标准型的完整理论.1892年,梅茨勒(W.H.Metzler,1863—?)引入了矩阵的超越函数,如e M,lnM,sinM,arc sinM(其中M为矩阵);而且其他人将矩阵(行列式)推广到了无穷阶的情形,矩阵元素也由普通的实数、复数扩充到属于抽象域了.凯莱、西尔维斯特建立了线性变换的理论.实际上,凯莱就是从两个相继线性变换的效应表示给出了矩阵的乘法定义.他们把一个矩阵看作一线性变换,从而利用线性变换处理了矩阵的相似、等价、合同等关系.后来线性变换又被应用于研究数论、射影几何,取得了巨大的成就,这一世纪已经出现了线性变换的矩阵标准形式:实际上,由于这一时期已经有了一般的n维空间理论,而且变换的思想早已进入数学界,在数论、代数、几何中引用各种变换已成为一种基本方法,因此,19世纪形成线性变换的基本理论是势在必然的事情.四、数论数论是最古老的数学分支之一,但是,数千年来它只是一系列孤立的巧妙结果、方法的集合.真正形成一门完整的学科——具有自己独特的范。
代数学发展简史及线性代数简史
代数学发展简史及线性代数简史代数学的发展简史:代数学作为一门数学学科,起源非常古老。
早在公元前3000年,古巴比伦人就开始使用代数方法解决一些实际问题,比如计算土地面积与粮食数量。
然而,真正意义上的代数学发展始于古希腊时期。
在公元前5世纪,古希腊数学家毕达哥拉斯提出了“万物皆数字”的概念,并建立了一套基本的代数规则。
他的学生柏拉图以及柏拉图的学生亚里士多德进一步发展了这些理论。
随着时代的推移,代数学逐渐与几何学分离,成为一个独立的学科。
在16世纪,意大利数学家费拉里奥首次使用代数符号来表示未知量。
17世纪,法国数学家笛卡尔在其著作《几何学》中,将代数与几何紧密结合,发展了解析几何。
在18世纪和19世纪,代数学得到了飞速发展,出现了复数、矩阵论、高斯消元法等重要概念和方法。
20世纪是代数学的黄金时期。
在这个时期,代数学被赋予了更深层次的意义。
20世纪初,德国数学家希尔伯特提出了20个关于数学基础的未解问题,其中许多涉及代数学领域。
这些问题推动了代数学的发展,并促使人们对数学基础的研究。
现代代数学已经成为数学中的一门重要分支,涉及众多领域,如数论、代数几何、群论、环论等。
代数学的发展不仅深化了人们对数学本质的认识,也为其他学科的发展提供了强有力的数学工具。
线性代数的发展简史:线性代数作为代数学中的一个重要分支,起源于17世纪。
早在17世纪,数学家哈密尔顿开始研究线性代数的基本概念。
然而,线性代数的理论基础最早是由19世纪英国数学家卡尔·弗里德里希·高斯奠定的。
高斯在矩阵理论和线性方程组的解法上做出了重要贡献,他发展了行列式的概念,并提出了高斯消元法。
19世纪末和20世纪初,线性代数得到了飞速发展。
德国数学家大卫·希尔伯特和俄罗斯数学家安德烈·马尔科夫开创了线性算子理论的研究。
他们引入了现代线性空间的概念,并发展了线性变换、特征值、特征向量等重要概念。
此外,瑞士数学家埃尔米特和德国数学家约尔当也对线性代数做出了重要贡献,他们提出了埃尔米特矩阵和约旦标准型等概念。
代数学发展历程
代数学发展历程在宽广的数学领域范围内,代数学只是其中的一个分支,一个部分.“代数学”这个名称,在我国是1859年正式开始使用的.那么什么是代数?代数学又是如何发展的呢?1847年,英国人伟烈亚力来到上海,他用中文写了一本《数学启蒙》,在序中说:“有代数、微分诸书在,余将续梓之.”这是第一次使用代数这个词来作为数学分科的名称.李善兰是我国清代数学家.1859年和伟烈亚力合译英国棣么甘(Augustus De Morgan)的“Elements of Algebra”正式定名为《代数学》.这是我国第一本代数学书,代数的名称就是这样来的.代数是对字母、字母表达式进行运算或变换的学问.在初等数学中字母代表数,在近代数学中字母可以代表更广泛的对象,如向量、张量、矩阵、变换等.代数的发展大致分为三个时期.第一个时期从九世纪的花拉子米始,到十六世纪止.这个时期人们把代数看成为对字母进行运算,关于字母公式的变换以及关于代数方程式的学问.这些就是目前中学代数的内容.第二个时期从十六世纪开始到十九世纪,这时意大利数学家解出了三次方程和四次方程.由此人们开始研究更高次的代数方程.代数的中心问题逐渐变为代数方程式的理论了.十九世纪谢尔的两卷本的代数问世,在这部书中代数被定义为方程式论.这在当时是个创举.在第二个时期内,行列式与矩阵的理论,二次型与变换的理论,特别是不变量的理论等代数工具也发展起来了.在这个时期内群论及不变量的理论的发展对几何学的发展起了重大影响.第三个时期从上世纪末到本世纪.这时在力学,物理以及数学本身越来越频繁地研究到一些对象,对这些对象也要考虑加法、减法,有时要考虑乘法和除法.这些对象中有矩阵、张量、旋量、超复数等.这样人们就不得不考虑某种更一般的集合,在这种集合中有某种运算,并满足一定的运算法则.这就是说,我们不得不考虑某种代数系统.这样一来,代数的目的是研究各种代数系统.这就是公理化,或抽象化的代数.说它是抽象的,是因为所考虑的代数系统是用字母表示的.说它是公理化的,是因为它只遵从作为它的基础的那些公理.有趣的是这样的代数系统无论就数学本身而言,或就它的应用而言都具有巨大意义.以下我是通过初等代数,高等代数以及抽象代数三个阶段的发展来研究代数学领域的发展的.1.初等代数初等代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科.初等代数是更古老的算术的推广和发展.在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解方程的原理为中心问题的初等代数.代数是由算术演变来的,这是毫无疑问的.代数和算术的主要区别,就在于前者引入未知量,根据问题的条件列出方程,然后解方程求出未知量的值.至于什么年代产生的代数学这门学科,就很不容易说清楚了.比如,如果你认为“代数学”是指解这类用符号表示的方程的技巧,那么,这种“代数学”是在十六世纪才发展起来的.如果我们对代数符号不是要求象现在这样简练,那么代数学可以上溯到更早的年代.大约在公元前2000年,巴比伦算术已经演化成为一种高度发展的用文字叙述的代数学.从载有数字表的文件中,可以获得巴比伦人的数系和数字运算方面的许多知识.他们既能用相当于代入一般公式的方法,又能用配方法来解二次方程,还讨论了某些三次方程和双二次(四次)方程.已经发现一块书板,它给出的数表不仅包括从1到30的整数的平方和立方,还包括了这个范围的整数组合.公元前2500年左右,埃及的草片文书(Ahmes)中有求一个未知量问题的解法,这个问题大体上相当于今日的一元一次方程.不过用的方法纯粹是算术的,并且在埃及人心目中这并不成其为一门独特的学科——解方程.公元200—1200年时期,印度人也在代数上获得一些进展.他们用缩写文字和一些记号来描述运算.印度人认识到二次方程有两个根,而且包括负根和无理根.在不定方程方面印度人超过了Diaphanous,印度人要求出所有整数解,而Diaphanous则只得出一个有理的解.印度人也研究了不定二次方程.他们解出了(其中不是平方数)这种类型的方程,并可看出这种类型对处理很重要.西方人将公元前三世纪古希腊数学家Diaphanous看作是代数学的鼻祖.而在中国,用文字来表达的代数问题出现得就更早了.“代数”作为一个数学专有名词,代表一门数学分支在我国正式使用,最早是在1859年.那年,清代数学家李善兰和英国人韦列亚力共同翻译了英国人棣么甘所写的一本书,译本的名称就叫做《代数学》.当然,代数的内容和方法,我国古代早就产生了,比如成书于公元一世纪初的《九章算术》中就有方程问题.在《九章》方程章中,经刘徽注给方程予以最早的定义:“程,课程也.群物总杂,各列有数,总言其实.令每行为率,二物者再程,三物者三程,皆如物数程之,并列为行,帮谓之方程”.这里的“群物总杂,各列有数,总言其实”是说每一行(相当于今称的方程式)的系数、未知数和常数项(此叫“实”)的组成方法.令每行为率(就是列出几个等式),二物者再乘(两个未知数,列两个等式或程式),三物三乘(三个未知数列三个等式或程式),如物数程之(就是有几个未知数,就列出几个等式或程式),用算筹并列成一方形,所以叫做方程.在方程的定义里,“程”就是“课”,而“课”的本义是试验,考核.正是在试验与考核的意义上,“程”与“课”是相通的.由“课”将数学应用题转化为盈亏类问题,而由“程”把问题布列为“方程”.这种问题模式化的思想和方法是一脉相承的.当然,在这里方程的定义是狭隘的,仅指线性方程组,但《九章》实际上还涉及到二次方程,而且已能用“带从开方术”(“从”读“纵”)求出方程的正根.共步骤相当于“配方法”.《九章》关于多元一次方程组的解法,是将其“所出率”用算筹摆成一个方阵,然后应用“遍乘,通约,齐同”三种基本演算,达到“消元”为目的.《九章》称解方程组的过程为“直除”,即现代的消元法.《九章》方程解法有方程术和正负术,刘徽注又添了新方程术,反映了我国古代方程理论发展的不同阶段.这些解法经刘徽注释,把它们作为比率理论的应用和发展,从而获得了统一的理论基础.初等代数的中心内容是解方程,因而长期以来都把代数学理解成方程的科学,数学家们也把主要精力集中在方程的研究上.它的研究方法是高度计算性的.要讨论方程,首先遇到的一个问题是如何把实际中的数量关系组成代数式,然后根据等量关系列出方程.所以初等代数的一个重要内容就是代数式.由于事物中的数量关系的不同,大体上初等代数形成了整式,分式和根式这三大类代数式.代数式是数的化身,因而在代数中它们都可以进行四则运算,服从基本运算定律,而且还可以进行乘方和开方两种新的运算.通常把这六种运算叫做代数运算,以区别于只包含四种运算的算术运算.在初等代数的产生和发展的过程中,通过解方程的研究也促进了数的概念的进一步发展,将算术中讨论的整数和分数的概念扩充到有理数的范围,使数包括正负整数、正负分数和零.这是初等代数的又一重要内容,就是数的概念的扩充.有了有理数,初等代数能解决的问题就大大地扩充了.但是,有些方程在有理数范围内仍然没有解.于是,数的概念再一次扩充到了实数,进而又进一步扩充到了复数.那么到了复数范围内是不是仍然有方程没有解,还必须把复数再进行扩展呢?数学家们说:不用了.这就是代数里的一个著名的定理——代数基本定理.这个定理简单地说就是n个方程有n个根.1742年12月15日,瑞士数学家欧拉曾在一封信中明确地做了陈述.后来另一个数学家德国的高斯在1799年给出了严格的证明.把上面分析过了的内容综合起来,组成初等代数的基本内容就是:三种数——有理数、无理数、复数.三种式——整式、分式、根式.中心内容是方程——整式方程、分式方程、根式方程和方程组.初等代数的内容大体上相当于现代中学设置的代数课程的内容,但又不完全相同.比如严格地说,数的概念,排列和组合应归入算术的内容;函数是分析数学的内容;不等式的解法有点像解方程的方法,但不等式作为一种估算数值的方法,本质上是属于分析数学的范围;坐标法是研究解析几何的…….这些都只是历史上形成的一种编排方法.初等代数是算术的继续和推广,初等代数研究的对象是代数式的运算和方程的求解.代数运算的特点是只进行有限次的运算.全部初等代数总起来有十条规则.这是学习初等代数需要理解并掌握的要点.这十条规则是:五条基本运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法对加法的分配律;两条等式基本性质:等式两边同时加上一个数,等式不变;等式两边同时乘以一个非零的数,等式不变;三条指数律:同底数幂相乘,底数不变指数相加;幂的乘方等于底数不变指数相乘;积的乘方等于乘方的积.初等代数学进一步向两个方面发展,一方面是研究未知数更多的一次方程组;另一方面是研究未知数次数更高的高次方程.这时候,代数学已由初等代数向着高等代数的方向发展了.2.高等代数初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组.沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组(也叫线性方程组)的同时还研究次数更高的一元方程组.发展到这个阶段,就叫做高等代数.高等代数是代数学发展到高级阶段的总称,它包括许多分支.现在大学里开设的高等代数一般包括两部分:线性代数、多项式代数.高等代数在初等代数的基础上研究对象进一步扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等.这些量具有和数相类似的运算特点,不过研究的方法和运算的方法都更加繁复.集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些规则的集合.向量空间中的运算对象已经不只是数,而是向量了,其运算性质也有了很大的不同.古典代数学(即初等代数学)的中心课题是解方程问题.就方程本身而言,它是向两个方向发展的.一个方向是一元高次方程,另一个方向是多元一次方程组与多元高次联立方程组.前者发展成为后来的方程论(或多项式论)的研究,方程论的扩展便是高等代数学.到了十九世纪,还诱发了近世代数的出现.后者的发展形成了线性代数学,它的中心内容是行列式与线性方程组,矩阵及线性空间和线性变换的理论等.多项式是一类最常见,最简单的函数,它的应用非常广泛.多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论.研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法.多项式代数所研究的内容,包括整除性理论,因式分解理论等.这些大体上和中学代数里的内容类似.多项式的整除性质对于解代数方程是很有用的.解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解.我们知道一次方程叫线性方程,讨论线性方程的代数就叫做线性代数.线性代数学的兴起与发展是随着十七、十八世纪生产和科学技术的发展与要求而发展的.在线性代数中最重要的内容是行列式和矩阵.早在十七世纪和十八世纪初,行列式在解方程中就得到了发展.在线性方程组中,由于碰到方程的个数与未知量个数相等,所以就提出行列式这个词.行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书中对行列式的概念和它的展开已经有了清楚的叙述.此外,1750年瑞士克莱姆(C ramer,1704--1752)的“克莱姆法则”也出现,但没有把行列式作为一个单独理论加以研究和阐述.欧洲第一个提出行列式概念的是德国的数学家莱布尼茨.1772年法国数学家范德蒙(Vandermonde,1735--1796)首先把行列式作为专门理论独立于线性方程组之外进行研究.故人们称他是行列式理论的奠基者.德国数学家雅可比于1841年发表了《论行列式的形式与性质》一文标志着行列式的系统理论的建立.行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具.行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数.因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论.矩阵概念和行列式一样是从解线性方程组中产生的.矩阵概念最早也出现在我国的《九章算术》方程章里.该书所说的“方程”实际是“矩阵”,所说的“方程术”的中心内容是对“方程”(即矩阵)施行“遍乘”与“直除”两种运算.在欧洲,由于有行列式的成果作为基础,1850年前后,矩阵的理论发展是非常迅速的.“矩阵”这个词是西勒维斯特(J.J.Sylvester,1814--1897)在1850年首先提出并使用的.他在碰到线性方程组的方程的个数与未知量个数不等,无法运用行列式概念时提出这个词的.1855年凯莱也引出了矩阵概念.他在文章中介绍他发现这一概念的思想时说:“我决不是通过四元数而获得矩阵概念的,它或是直接从行列式的概念而来,或是作为一个表达方程组的方便的方法而来的.”矩阵也是由数排成行和列的数表,行数和列数可以相等也可以不等.矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法.利用矩阵这个工具可以把线性方程组中的系数组成向量空间中的向量,这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以彻底地解决.矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都有十分广泛的应用.1879年,德国数学家弗罗尼乌斯(Frobenius)引入矩阵秩的概念,英国数学家史密斯(H.J.S Smith,1826--1883)引入增广矩阵的概念,证明了n 个未知数m个方程的方程组相容的充分必要条件是其增广矩阵与非增广矩阵的秩相等.在行列式的理论和矩阵理论与应用发展的同时,线性空间以及与之相联系的线性变换的理论也蓬蓬勃勃地发展起来.由于采用向量的概念,可以使得解析几何特别地简单和清楚.向量可以相加,也可以相乘,并且满足如下运算规律:1.2.存在着“零元素”0,使得对任意x,3.对于任意元素x,存在着一个逆元素-x,使得4.5.6.7.8.这里x、y、z是线性空间里的元素,而1、、、是数.如果向量由它的坐标(即它在坐标轴上的射影)给出,那么在向量上进行的加法运算和数乘运算就相应着由它的坐标所组成的行(或列)上同名的运算.这样一来,由三个数组成的行或列就宜于几何上地解释作三维空间中的向量,同时在“行”(或“列”)上进行的运算就解释作为空间中向量上所进行的相应的运算,使得由三个数所组成行(或列)的代数在形式上与三维空间中的向量代数没有差别.线性方程组的系数、线性方程组的解是一个多元有序数组,在多元有序数组集合中引进加法、数乘运算,可以简化线性方程组的讨论,这使它们自然地将三维向量空间推广到n元有序数组集合的n维向量空间.不仅n维向量的集合具备上面所说的这些特性,就是同一类型的矩阵集合以及物理向量:力、速度、加速度等等也具备这些性质.完全是另外性质的数学对象,如一个变元的多项式全体、已知区间[a,b]上的连续函数的全体,线性齐次微分方程解的全体等等,也都具备这些性质.这些例子引导人们进一步推广向量空间的概念,这种空间的元素可以是任意数学对象或物理对象,这就引进了一般的线性空间的概念.同样它们满足加法和数乘一定的运算规律.在很多数学研究中需要改换变数,即从一组变数,…… ,过渡到与它们有函数关系的另一组变数,,…….例如,如果变数是平面上或空间中点的坐标,那么从一个坐标系过渡到另一个坐标系就引起坐标的一个交换,它将原来的坐标用新的坐标表出.此外,在研究一个物体从一个位置或状态变为另一个位置或状态时,如果它的位置或状态由变数的值所给出,变数的变换也会产生.线性变换是线性空间到自身的变换.线性空间中每一个线性变换都对应着一个方阵,变换本身可以用矩阵语言写成形状,这里x是原向量的坐标组成的列,y是变换后的向量的坐标组成的列,是变换的系数矩阵.欧氏空间中,将保持向量长度不变的线性变换称为正交变换.正交变换是将三维空间中坐标原点不动的旋转或旋转与对通过原点的某一平面的反射的联合对n维空间的推广.正交变换是非退化变换的重要特殊情形.线性空间与线性变换是线性代数的几何架构,数组向量和矩阵实际上是它们的代数形式,其间的转换枢纽是基底,就好象是平面和立体几何里的坐标系.然而线性代数里的向量空间却往往从抽象定义开始,这只是相当大的一般性.3.抽象代数在十八世纪后半叶,数学内部悄悄积累的矛盾已经开始酝酿新的变革.当时数学家们面临一系列数学发展进程中自身提出的、长期悬而未决的问题,其中在代数方面最突出的是:高于四次的代数方程的根式求解问题.在十九世纪初,这个问题已变得越发尖锐而不可回避.它们引起了数学家们集中的关注和热烈的探讨,并导致了代数学发展的新突破.在前面曾经说过,中世纪的阿拉伯数学家把代数学看成是解方程的学问.直到十九世纪初,代数学研究仍未超出这个范围.不过这时数学家们的注意力集中在了五次和高于五次的代数方程上.考虑一般的五次式更高次的方程能否像二、三、四次方程一样来求解,也就是说对于形如:(其中)的代数方程,它的解能否通过只对方程的系数作加、减、乘、除和求正整数次方根等运算的公式得到呢?遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪都没有解决.最终,阿贝尔(1802--1829)解决了五次和高于五次的一般方程的求解问题,证明了五次或五次以上方程不可能有代数解.即这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来.他还考虑了一些特殊的能用根式求解的方程,其中的一类被称为“阿贝尔方程”.在这一工作中,他实际上引进了“域”这一重要的近世代数概念,虽然他没有这样来称呼.但他没能解决判定已知方程是否可用根式来求解的问题.这个问题最终由另一个年轻的天才数学家法国的伽罗瓦彻底解决.在十九世纪,代数学的研究对象已突破了数(包括用符号表示的数)的范畴,这种突破是由伽罗瓦群的概念开始的.伽罗瓦20岁的时候,因为积极参加法国资产阶级革命运动曾两次被捕入狱,1832年4月,他出狱不久便在一次私人决斗中死去,年仅21岁.伽罗瓦在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿.他在给朋友舍瓦利叶的信中说:“我在分析方面做了一些新发现.有些是关于方程论的;有些是关于整函数的……公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见.我希望将来有人发现消除所有这些混乱对它们是有益的.”伽罗瓦死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中.他的论文手稿过了14年,才由刘维尔(1809--1882)编辑出版了他的部分文章,并向数学界推荐.随着时间的推移,伽罗瓦的研究成果的重要意义愈来愈为人们所认识.伽罗瓦虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念.在伽罗瓦之后,群的概念本身进一步发展,除了有限的、离散的群,又出现了无限群、连续群等,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革.从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步发展.在数学大师们的经典著作中,伽罗瓦的论文是最薄的,但他的数学思想却是光彩夺目的.代数对象的扩张,在十九世纪还沿着其他途径进行,先后产生了许多其他代数系统,例如四元数与超复数、域、理想等.十九世纪数学家还引进了环(戴德金,1871.克罗内克也研究过环并称之为“order”,希尔伯特首先使用了“ring”即环这个名称)和格(戴德金,1897)等.。
代数在中国的发展
代数在中国的发展
代数在中国的发展可以追溯到古代。
在春秋战国时期,中国的数学家已经开始研究代数,并取得了很多重要的成果。
其中最著名的就是《九章算术》,这是一部重要的数学著作,包含了大量的代数问题及其解法。
在随后的朝代中,代数研究不断发展,逐渐形成了自己的特色和体系。
到了宋元时期,代数学在中国取得了巨大的进展。
数学家们提出了许多新的代数概念和方法,如“天元术”、“二元一次方程组”等,这些都对代数学的发展做出了重要的贡献。
明朝时期,中国代数学的发展达到了巅峰,许多数学家都对代数学进行了深入的研究,并取得了许多重要的成果。
到了近代,随着西方数学的传入,中国代数与世界代数开始融合。
中国的数学家开始学习并引进西方的代数理论和方法,并将其与中国传统代数相结合,形成了新的代数理论和方法体系。
如今,中国代数已经成为世界代数的重要组成部分,对世界代数的发展做出了重要的贡献。
总的来说,中国代数的历史源远流长,经历了从古代到现代的发展历程。
在代数的演变过程中,中国的数学家不断探索和创新,提出了许多重要的代数概念和方法,为世界代数的发展做出了重要的贡献。
代数的发展史
代数的发展史代数作为数学的一个分支,经历了漫长的发展过程,逐渐形成了今天我们所熟知的数学体系。
下面将分别介绍代数的发展史中的几个主要阶段。
1.代数起源代数的起源可以追溯到古代的算术和几何。
在那个时期,人们已经开始使用字母来表示未知数和已知数,这种做法可以看作是代数的萌芽。
随着时间的推移,人们开始尝试用符号表示运算,如加、减、乘、除等,从而形成了代数的初步概念。
2.古代代数古代代数指的是文艺复兴以前的代数学。
在这个时期,代数学的发展主要集中在解一次方程和二次方程的方法上。
中国的《九章算术》和阿拉伯的《阿尔·芬格尼》等著作都包含了丰富的代数内容。
这些古代代数的著作主要探讨的是线性方程和二次方程的求解,使用了符号化表示和运算。
3.现代代数现代代数起源于19世纪末期,其标志是德国数学家域论的诞生。
域论提出了代数结构的概念,将代数学从对数字和方程的研究扩展到了对更为抽象的代数结构的研究。
这一阶段,代数学开始涉及到更高阶的群、环、模等抽象概念,为后续的代数学发展奠定了基础。
4.抽象代数抽象代数是现代代数的一个分支,它运用抽象的方法研究代数的结构和性质。
在这个阶段,代数学开始深入研究群、环、域等抽象代数结构,发展出了丰富的理论体系。
抽象代数的研究方法为后续的数学研究提供了新的思路和方法。
5.线性代数线性代数是代数学的一个分支,主要研究线性方程组、向量空间等线性代数结构。
它与矩阵、行列式等概念密切相关。
线性代数的研究成果被广泛应用于物理、化学、工程等领域。
在20世纪初期,线性代数的理论体系逐渐形成并逐渐发展完善。
6.群论与环论群论与环论是抽象代数的两个重要分支。
群论主要研究的是满足结合律的二元运算下,元素的集合的性质;而环论则研究的是具有两个运算(加法和乘法)的代数结构。
这些理论在数论、几何等领域都有着广泛的应用。
7.域论与伽罗瓦理论域论是代数学的一个重要分支,它主要研究的是在某个运算下封闭的数的集合。
代数的起源
代数的起源代数的起源可以追溯到古希腊时期。
代数学最重要的奠基人之一是古希腊数学家毕达哥拉斯(Pythagoras),他关注数的典型属性和关系,发展出一套数学观念和方法。
他的学派将数与形式、神秘和宇宙之间的关系联系在一起。
随着时间的推移,代数学的发展经历了重要的里程碑。
在公元3世纪,亚历山大的丢番图(Diophantus of Alexandria)创立了丢番图方程,这种方程的解法被称为丢番图方程的困难。
这是代数的一大进步,它将数学从几何学分离出来。
另一个重要的阶段是在16世纪,数学家弗朗西斯科·比亚略(François Viète)发展了代数符号和方程的符号表示。
这开创了代数符号的使用,并使代数成为数学的一个独立领域。
进一步的发展发生在17世纪,当时数学家如笛卡尔(RenéDescartes)和费马(Pierre de Fermat)开始使用代数的方法来解决几何问题。
这个时期还出现了一些重要的代数学家如伽罗瓦(Évariste Galois)和阿贝尔(Niels Henrik Abel),他们对代数理论做出了巨大贡献。
到了18世纪,代数的发展成为整个数学领域中的一个重要分支。
数学家欧拉(Leonhard Euler)和拉格朗日(Joseph-Louis Lagrange)等人通过研究多项式和方程的性质,进一步发展了代数学。
代数学的现代形式在19世纪末和20世纪初形成。
当时,代数被广泛应用于数论、几何、物理学等其他数学分支,并发展出了许多重要的理论和工具,如线性代数、抽象代数和矩阵理论等。
因此,代数的起源可以追溯到古希腊时期,经过了数学家们的不断努力和发展,成为了现代数学的重要组成部分。
代数学发展的三个阶段参考文献
代数学发展的三个阶段参考文献代数学是数学的一个重要分支,它研究的是数和运算的关系。
代数学的发展可以分为三个阶段,分别是古代代数学、近代代数学和现代代数学。
古代代数学是代数学的起源阶段,它起源于古希腊和古印度。
古希腊的代数学主要集中在解方程的研究上,其中最著名的代表是毕达哥拉斯学派和柏拉图学派。
毕达哥拉斯学派在解方程的过程中使用了几何的方法,而柏拉图学派则将代数学与哲学相结合,提出了数的本质问题。
古印度的代数学则主要表现在解方程和数列的研究上,其中最著名的代表是印度数学家布拉马古普塔,他提出了著名的布拉马古普塔定理,解决了二次方程的问题。
古代代数学的研究内容相对较为简单,主要是对方程和数的运算规律的研究。
近代代数学是代数学的发展的第二个阶段,它的起源可以追溯到16世纪。
近代代数学的一个重要里程碑是文森特·费拉里的《代数学纲要》,这本书系统地总结了代数学的基本概念和方法。
在近代代数学的发展过程中,人们开始研究更加抽象的代数结构,例如群、环、域等。
这些抽象的代数结构不仅仅是用来解方程,而是研究数学结构的一种方法。
近代代数学的发展使得代数学从一个局部的数学分支发展成了一个独立的学科。
现代代数学是代数学的发展的最新阶段,它始于20世纪初。
现代代数学的一个重要特点是使用了更加抽象和一般化的方法。
现代代数学的发展涉及到了众多的分支领域,例如线性代数、群论、环论、域论等。
现代代数学的一个重要里程碑是艾米·诺特的《代数学引论》,这本书系统地介绍了现代代数学的基本理论和方法。
现代代数学的发展不仅仅局限于数学领域,而是对其他科学领域的发展产生了重要影响。
例如,在物理学中,量子力学的研究需要使用到抽象代数结构的方法。
总结起来,代数学的发展可以分为古代代数学、近代代数学和现代代数学三个阶段。
古代代数学主要研究方程和数的运算规律,近代代数学开始研究抽象的代数结构,而现代代数学则更加注重抽象和一般化的方法。
数学专业的代数学发展状况
数学专业的代数学发展状况数学专业是一门研究数与空间关系、数量及其变化规律的学科。
在数学专业中,代数学是其中的一门重要分支。
代数学研究的是数与代数结构之间的关系,是数学专业中的基础课程之一。
本文将探讨数学专业的代数学发展状况。
代数学的起源可以追溯到古希腊的毕达哥拉斯学派和泰勒学派。
古希腊人率先提出了代数学中的基本概念和方法,如方程、代数式等。
然而,直到16世纪,代数学才得以建立起相对完整的数学体系。
随着时间的推移,代数学逐渐壮大并分化出不同的研究领域。
在19世纪,代数学经历了一次重大的革新,尤其是通过创立矩阵论和向量空间理论的发展,为线性代数的建立奠定了基础。
此外,群论、环论、域论等代数结构的研究也成为了代数学的重要组成部分。
20世纪以来,随着理论和计算机科学的发展,代数学取得了多方面的突破和发展。
尤其是在代数几何学和代数拓扑学领域,代数学与几何学的融合促进了代数学的进一步发展。
具体来说,在代数几何学中,代数学的方法和概念被用来研究几何对象的性质和变换规律;而代数拓扑学则研究了由代数方法刻画的拓扑空间和拓扑变换。
代数学在现代科学和技术领域中起着重要作用。
代数学的研究成果被广泛应用于密码学、编码理论、通信技术、计算机科学等领域。
例如,代数编码理论在数据传输和存储中起着关键作用;代数组合技术在计算机科学和人工智能领域应用广泛。
此外,在数论、代数方程等数学领域中,代数学的发展也给出了许多重要的结论和定理。
例如,费马大定理是代数数论中的一个重要成果,它在解决整数解方程方面起到了极大的推动作用。
总的来说,数学专业的代数学发展状况是蓬勃的。
代数学作为数学专业的重要组成部分,扮演着无可替代的角色。
通过不断的研究和应用,代数学为其他学科的发展和实践提供了坚实的支持。
未来,代数学将继续在数学专业中发挥重要作用,并为人类的科学研究和技术创新做出更大的贡献。
代数的历史
代数的历史
代数是一门研究符号与数学结构间关系的数学分支。
它几乎囊括
了数学中的所有分支,包括数论、几何、拓扑、图论、代数学等等。
代数的历史可以追溯到古代文明时期,然而在古代,人们并没有把代
数作为一门独立的学科来研究。
代数首次出现在欧洲文化中,是在公
元9世纪的阿拉伯文明时期。
阿拉伯人制定了一套精密的代数符号体系,以便更好地进行计算和研究。
在欧洲,代数最早出现在文艺复兴时期。
16世纪的数学家奥地利的数学家卡尔第一次将代数学引入欧洲全面的教科体系,使代数学成
为一门独立的学科。
之后,代数学又被许多数学家继续发展,包括法
国数学家伽罗瓦、德国数学家高斯、英国数学家欧拉,后来也涌现出
来了许多其他数学家。
随着数学和科学的不断发展,代数学也变得越来越重要。
如今,
代数学已经成为现代数学中的核心分支之一,涉及的领域越来越广泛。
例如,在计算机科学中,代数用于设计算法并解决各种计算问题。
在
物理学中,代数用于研究力学、量子物理学和相对论等领域。
总的来说,代数学的历史是一部充满创新、发展和不断尝试的故事。
在许多数学家的不懈努力下,代数学终于成为了一门独立的学科,并对现代数学、科学和技术发展做出了不可磨灭的贡献。
代数式的发展历史
代数式的发展历史一、古希腊时代的代数式代数式的发展可以追溯到古希腊时代。
在公元前6世纪,古希腊数学家毕达哥拉斯提出了一个重要的数学概念——比例。
他研究了一种特殊的比例关系,即等差比例,这对于后来的代数发展起到了重要的推动作用。
毕达哥拉斯的研究奠定了代数式的基础,为后来的代数学家提供了重要的启示。
二、古代阿拉伯数学家的贡献在古代,阿拉伯地区的数学家也为代数式的发展做出了重要的贡献。
他们将代数式的研究与几何学相结合,提出了一种新的解方程方法——代数法。
这种方法通过将未知数表示为虚数,将方程转化为代数式,从而解决了许多复杂的数学问题。
阿拉伯数学家的研究使代数式的发展迈出了重要的一步。
三、文艺复兴时期的代数式在文艺复兴时期,代数式的研究经历了一个重要的变革。
数学家开始将代数式与几何学分离,并将其视为一门独立的学科。
他们提出了一种新的解方程方法——方程法。
这种方法通过代数式之间的运算关系,将方程转化为更简单的形式,从而解决了许多复杂的数学问题。
文艺复兴时期的代数学家的研究为代数式的发展开辟了新的道路。
四、近代代数学的发展在近代,代数学得到了迅猛的发展。
数学家们通过对代数式的研究,提出了许多重要的概念和定理。
其中最重要的是代数方程的根与系数之间的关系——韦达定理。
这个定理揭示了代数方程的根与系数之间的关系,为解方程提供了重要的方法。
此外,近代代数学家还研究了多项式的因式分解、数列的递推关系等重要内容,丰富了代数式的研究领域。
五、现代代数学的发展随着科学技术的进步,代数学的研究也得到了极大的推动。
现代代数学家通过引入抽象代数的概念,将代数式的研究推向了一个新的高度。
他们提出了一系列新的概念和定理,如群论、环论、域论等,极大地拓展了代数式的研究领域。
现代代数学的发展使代数式不仅仅局限于数学领域,还广泛应用于物理学、工程学、计算机科学等各个领域。
六、代数式的应用和未来发展代数式作为数学的一个重要分支,广泛应用于各个领域。
代数学的创立与发展过程
代数学是一门研究数学结构和运算规则的学科,它的创立和发展可以追溯到古希腊和古印度时期。
以下是代数学的创立和发展过程的简要概述:
1. 古希腊时期,毕达哥拉斯学派发现了数学的基本定理,包括勾股定理和平方差定理等,这些定理为代数学的发展奠定了基础。
2. 古印度时期,阿拉伯数学家将代数学引入欧洲,他们发展了代数学中的一些基本概念,如方程、多项式和因式分解等。
3. 16世纪,意大利数学家卡尔达诺发明了求解三次和四次方程的方法,开创了代数学的新时代。
4. 17世纪,牛顿和莱布尼茨发明了微积分学,为代数学的发展提供了新的工具和方法。
5. 19世纪,群论的发展使代数学得到了更深入的理解,代数学家开始研究代数结构和代数变换等问题。
6. 20世纪,代数学家们开始研究抽象代数学,研究代数结构的一般性质和分类问题。
代数学的发展是一个漫长而丰富多彩的历史过程,代数学家们不断地探索代数结构的本质和规律,并将代数学应用于各种实际问题的解决中。
代数学在数学、物理、工程、计算机科学等领域都有着广泛的应用,是现代科学发展中不可或缺的一部分。
简述代数学发展的4个阶段
数学发展史的四个阶段
数学的发展史大致可以分为四个时期分别是:第一时期是数学形成时期,第二时期是常量数学时期,第三时期:变量数学时期,第四时期:现代数学时期。
其研究成果有李氏恒定式、华氏定理、苏氏锥面。
第一时期:数学形成时期(远古—公元前六世纪),这是人类建立最基本的
数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本、最简单的几何形式,算术与几何还没有分开。
第二时期:初等数学时期、常量数学时期(公元前六世纪—公元十七世纪初)
这个时期的基本的、最简单的成果构成中学数学的主要内容,大约持续了两千年。
这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
第三时期:变量数学时期(公元十七世纪初—十九世纪末)变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二
步是微积分的创立。
第四时期:现代数学时期(十九世纪末开始),数学发展的现代阶段的开端,以其所有的基础,代数、几何、分析中的深刻变化为特征。
代数的发展历程
代数的发展历程代数是数学的一个重要分支,它研究的是数和数之间的关系,以及数的运算规律。
代数的发展历程可以追溯到古希腊时期,但直到18世纪,代数才逐渐成为现代数学的核心内容。
古希腊数学家毕达哥拉斯(Pythagoras)被认为是代数的奠基人之一。
他首次将代数问题转化为几何问题,并使用比例关系解决了许多几何难题。
毕达哥拉斯的学说奠定了代数和几何之间的联系,为后来的代数发展铺平了道路。
在17世纪,法国数学家笛卡尔(René Descartes)提出了解析几何的概念,将几何问题转化为代数问题。
他引入了坐标系,将几何图形用代数方程来表示,从而将几何问题转化为代数问题的求解。
笛卡尔的贡献使得代数与几何更加紧密地结合在一起,为代数的发展注入了新的活力。
18世纪,欧拉(Leonhard Euler)和拉格朗日(Joseph-Louis Lagrange)等数学家对代数进行了深入的研究。
欧拉系统地研究了代数方程的根和根的性质,提出了欧拉公式和欧拉恒等重要结果。
拉格朗日则在代数方程的研究中提出了拉格朗日定理,对解方程问题进行了重要的推进。
19世纪,高斯(Carl Friedrich Gauss)和阿贝尔(Niels Henrik Abel)等数学家进一步推动了代数的发展。
高斯在代数方程理论方面作出了杰出的贡献,提出了高斯消元法和高斯整数等重要概念,为代数方程的求解提供了新的方法。
阿贝尔则证明了五次及以上的代数方程无法用根式求解,从而奠定了代数方程理论的基础。
20世纪,抽象代数成为代数学的一个重要分支。
抽象代数研究的是代数结构的一般性质,如群、环、域等。
通过对代数结构的抽象研究,数学家们发现了许多代数结构之间的共性和联系。
抽象代数的发展不仅推动了代数学的发展,也对其他数学分支产生了深远的影响。
随着计算机的发展,计算代数成为代数学的一个新的研究方向。
计算代数利用计算机技术来处理代数问题,包括代数方程的求解、代数计算的自动化等。
代数学的起源
代数学的起源
代数学的起源可以追溯到古代,尤其是古希腊和古巴比伦。
古希腊的数学家如毕达哥拉斯和欧几里得研究了几何学,但他们也开始探索代数问题,如解多项式方程。
古巴比伦是一个古老的文明,在公元前2000年左右已经发展出了代数学的基本概念。
他们使用了一种称为“巴比伦法”的方法来处理代数问题,这种方法利用了数字系统和一些基本运算规则。
在古代,代数学主要被应用于商业和土地测量等实际问题。
随着时间的推移,代数学逐渐独立于几何学,成为一门独立的数学学科。
在中世纪,阿拉伯数学家对代数学的发展起到了重要作用。
他们翻译和扩展了古希腊和古巴比伦的数学著作,并引入了一些新的概念和技巧。
其中最重要的贡献之一是将代数问题转化为方程,从而将代数问题转化为求解方程的问题。
随着现代科学的兴起,代数学变得更加抽象和理论化。
17世纪的欧洲数学家如笛卡尔和费马开创了代数几何学,将代数和几何学结合在一起。
他们开发了解析几何学,这是一种利用代数方法研究几何问题的方法。
18世纪末和19世纪初,代数学进一步发展,出现了新的分支和概念。
例如,线性代数、群论、环论和域论等内容逐渐成为代数学的重要组成部分。
这些新的概念和技巧为数学家们解决
更加复杂的代数问题提供了强大的工具。
到了20世纪,代数学成为了现代数学的基石之一。
它在纯数学领域和应用数学领域都有广泛的应用,涉及到代数结构的研究和代数方法的应用。
现代代数学已经从早期的实用学科发展成为一门极其抽象和理论化的数学学科。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清朝李善兰在1859年正式用「代数」这个词作为他译的<代数学>一书的名称。
从此,代数一次正式在我国流传并广为接受。
并且到了1873年,华蘅芳和英国人傅兰雅合译英国数学家华里司(Wallis)的<代数术>里说:代数之法,无论何数,皆可以任何记号代之。
为为国人解析代数一次的意义。
不过早在几千年前,代数这门学科就已经生机勃勃的发展起来。
“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;代数是巴比伦人、希腊人、阿拉伯人、中国人、印度人和西欧人一棒接一棒而完成的伟大数学成就。
发展至今,它包含算术、初等代数、高等代数、数论、抽象代数五个部分。
1、算数
算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。
另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。
现在一般所说的“算术”,往往指自然数的四则运算
现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。
它后来被阿拉伯人采用,之后传到西欧。
15世纪,它被改造成现在的形式。
在印度算术的后面,明显地存在着我国古代的影响。
19世纪中叶,格拉斯曼(Grassmann)第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。
后来,皮亚诺(Peano)进一步完善了格拉斯曼的体系。
2、初等代数
作为中学数学课程主要内容的初等代数,其中心内容是方程理论。
代数一词的拉丁文原意是“归位”。
古巴比伦(公元前19世纪~前17世纪)解决了一次和二次方程问题,欧几里得的《原本》(公元前4世纪)中就有用几何形式解二次方程的方法。
我国的《九章算术》(公元1世纪)中有三次方程和一次联立方程组的解法,并运用了负数。
3世纪的丢番图用有理数求一次、二次不定方程的解。
13世纪我国出现的天元术(李冶《测圆海镜》)是有关一元高次方程的数值解法。
16世纪意大利数学家发现了三次和四次方程的解法。
3、高等代数
在高等代数中,一次方程组(即线性方程组)发展成为线性代数理论;而二次以上方程
发展成为多项式理论。
线性代数是高等代数的一大分支。
我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。
在线性代数中最重要的内容就是行列式和矩阵。
行列式和矩阵在十九世纪受到很大的注意。
1750年克莱姆(Cramer)在他的《线性代数分析导言》(Introduction d l'analyse des lignes courbes alge'briques)中发表了求解线性系统方程的重要基本公式(既人们熟悉的Cramer克莱姆法则)。
1764年,Bezout把确定行列式每一项的符号的手续系统化了。
对给定了含n个未知量的n个齐次线性方程,Bezout证明了系数行列式等于零是这方程组有非零解的条件。
Vandermonde是第一个对行列式理论进行系统的阐述(即把行列式理论与线性方程组求解相分离)的人。
并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。
就对行列式本身进行研究这一点而言,他是这门理论的奠基人。
参照克莱姆和Bezout的工作,1772年,Laplace在《对积分和世界体系的探讨》中,证明了Vandermonde的一些规则。
相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。
大约在1800年,高斯(Gauss)提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。
1848年,英格兰的J.J. Sylvester首先提出了矩阵(matrix)这个词,它来源于拉丁语,代表一排数。
在1855年矩阵代数得到了Arthur Cayley的进一步发展。
矩阵的发展是与线性变换密切相连的。
到19世纪它还仅占线性变换理论形成中有限的空间。
现代向量空间的定义是由Peano于1888年提出的。
4、抽象代数
抽象代数(Abstract algebra)又称近世代数(modern algebra),它产生于十九世纪。
抽象代数是研究各种抽象的公理化代数系统的数学学科。
由于代数可处理实数与复数以外的物集,例如向量、矩阵超数、变换(transformation)等,这些物集的分别是依它们各有的演算定律而定
1843年,哈密顿(Hamilton, W. R. )发明了一种乘法交换律不成立的代数——四元数代数。
第二年,Grassmann推演出更有一般性的几类代数。
1857年,Cayley设计出另一种不可交换的代数——矩阵代数。
1870年,克隆尼克(Kronecker)给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;狄德金和克隆尼克创立了环论;
1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系统的理论和布尔巴基学派;
数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国。
科学的历史是那门学科中最重要的一门,因为科学只能给我只是,历史却能给我们智慧。
数学的历史是最重要的,它是他是文明史的重要组成部分,人类的进步和科学思想也将一致。