山东省邹城市第一中学高考数学复数专题复习(专题训练)doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.复数3(23)i +(其中i 为虚数单位)的虚部为( )
A .9i
B .46i -
C .9
D .46-
2.若复数z 满足()13i z i +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )
A .z 的实部是1
B .z 的虚部是1
C .z =
D .复数z 在复平面内对应的点在第四象限
3.已知,a b ∈R ,若2()2a b a b i -+->(i 为虚数单位),则a 的取值范围是( ) A .2a >或1a <- B .1a >或2a <- C .12a -<< D .21a -<<
4.已知i 为虚数单位,复数12i 1i z +=
-,则复数z 在复平面上的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
5.已知i 为虚数单位,若复数()12i z a R a i +=
∈+为纯虚数,则z a +=( )
A B .3 C .5 D .6.若复数1211i z i +=
--,则z 在复平面内的对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
7.已知复数2021
11i z i
-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i
8.在复平面内,复数z 对应的点是()1,1-,则
1z z =+( ) A .1i -+ B .1i + C .1i --
D .1i - 9.已知复数z 满足2021
22z i i i
+=+-+,则复数z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
10.已知复数1z i =+,z 为z 的共轭复数,则()1z z ⋅+=( )
A B .2 C .10 D
11.复数z 满足22z z i +=,则z 在复平面上对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 12.已知2021(2)i z i -=,则复平面内与z 对应的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
13.3
( )
A .i -
B .i
C .i
D .i -
14.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .8
15.复数()()212z i i =-+,则z 的共轭复数z =( )
A .43i +
B .34i -
C .34i +
D .43i -
二、多选题
16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( )
A .z =-1+2i
B .|z |=5
C .12z i =+
D .5z z ⋅=
17.已知复数(),z x yi x y R =+∈,则( )
A .20z
B .z 的虚部是yi
C .若12z i =+,则1x =,2y =
D .z =
18.已知复数012z i =+(i 为虚数单位)在复平面内对应的点为0P ,复数z 满足|1|||z z i -=-,下列结论正确的是( )
A .0P 点的坐标为(1,2)
B .复数0z 的共轭复数对应的点与点0P 关于虚轴对称
C .复数z 对应的点Z 在一条直线上
D .0P 与z 对应的点Z 间的距离的最小值为
2
19.已知复数122z =-
+(其中i 为虚数单位,,则以下结论正确的是( ). A .20z
B .2z z =
C .31z =
D .1z = 20.已知1z ,2z 为复数,下列命题不正确的是( )
A .若12z z =,则12=z z
B .若12=z z ,则12z z =
C .若12z z >则12z z >
D .若12z z >,则12z z >
21.已知i 为虚数单位,则下列选项中正确的是( )
A .复数34z i =+的模5z =
B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限
C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =-
D .对任意的复数z ,都有20z
22.已知i 为虚数单位,以下四个说法中正确的是( ).
A .234i i i i 0+++=
B .3i 1i +>+
C .若()2
z=12i +,则复平面内z 对应的点位于第四象限
D .已知复数z 满足11z z -=+,则z 在复平面内对应的点的轨迹为直线
23.已知复数12z =-+(其中i 为虚数单位),则以下结论正确的是( ) A .20z
B .2z z =
C .31z =
D .1z = 24.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根
25.已知复数()(()()211z m m m i m R =-+-∈,则下列说法正确的是( )
A .若0m =,则共轭复数1z =-
B .若复数2z =,则m
C .若复数z 为纯虚数,则1m =±
D .若0m =,则2420z z ++= 26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )
A .3||5
z =
B .12i 5z +=-
C .复数z 的实部为1-
D .复数z 对应复平面上的点在第二象限 27.若复数21i
z =+,其中i 为虚数单位,则下列结论正确的是( )
A .z 的虚部为1-
B .||z =
C .2z 为纯虚数
D .z 的共轭复数为1i -- 28.复数21i z i +=
-,i 是虚数单位,则下列结论正确的是( )
A .|z |=
B .z 的共轭复数为3122i +
C .z 的实部与虚部之和为2
D .z 在复平面内的对应点位于第一象限 29.给出下列命题,其中是真命题的是( )
A .纯虚数z 的共轭复数是z -
B .若120z z -=,则21z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数
30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数
B .若z 的共轭复数为z ,且z z =,则z 是实数
C .若||z z =,则z 是实数
D .||z 可以等于12
【参考答案】***试卷处理标记,请不要删除
一、复数选择题
1.C
【分析】
应用复数相乘的运算法则计算即可.
【详解】
解:
所以的虚部为9.
故选:C.
解析:C
【分析】
应用复数相乘的运算法则计算即可.
【详解】
解:()()()3
2351223469i i i i +=-++=-+
所以()323i +的虚部为9.
故选:C. 2.C
【分析】
利用复数的除法运算求出,即可判断各选项.
【详解】
,
,
则的实部为2,故A 错误;的虚部是,故B 错误;
,故C 正;
对应的点为在第一象限,故D 错误.
故选:C.
解析:C
【分析】
利用复数的除法运算求出z ,即可判断各选项.
【详解】
()13i z i +=+,
()()()()
3132111i i i z i i i i +-+∴===-++-,
则z 的实部为2,故A 错误;z 的虚部是1-,故B 错误;
z ==,故C 正; 2z i =+对应的点为()2,1在第一象限,故D 错误.
故选:C.
3.A
【分析】
根据虚数不能比较大小可得,再解一元二次不等式可得结果.
【详解】
因为,,所以,,
所以或.
故选:A
【点睛】
关键点点睛:根据虚数不能比较大小得是解题关键,属于基础题.
解析:A
【分析】
根据虚数不能比较大小可得a b =,再解一元二次不等式可得结果.
【详解】
因为,a b ∈R ,2
()2a b a b i -+->,所以a b =,220a a -->,
所以2a >或1a <-.
故选:A
【点睛】
关键点点睛:根据虚数不能比较大小得a b =是解题关键,属于基础题. 4.C
【分析】
利用复数的除法法则化简,再求的共轭复数,即可得出结果.
【详解】
因为
,
所以,
所以复数在复平面上的对应点位于第三象限,
故选:C.
解析:C
【分析】
利用复数的除法法则化简z ,再求z 的共轭复数,即可得出结果.
【详解】
因为2
12(12)(1)11i i i z i i +++==-- 1322
i =-+, 所以1322
z i =--, 所以复数z 在复平面上的对应点1
3(,)22--位于第三象限,
故选:C.
5.A
【分析】
根据复数运算,化简后由纯虚数的概念可求得,.进而求得复数,再根据模的定义即可求得
【详解】
由复数为纯虚数,则,解得
则 ,所以,所以
故选:A
解析:A
【分析】
根据复数运算,化简后由纯虚数的概念可求得a ,.进而求得复数z ,再根据模的定义即可求得z a +
【详解】
()()()()()()2221222121122111
i a i a a i a i i a z a i a i a i a a a +-++--++====+++-+++ 由复数()12i z a R a i +=∈+为纯虚数,则222012101
a a
a a +⎧=⎪⎪+⎨-⎪≠⎪+⎩,解得2a =- 则z i =- ,所以2z a i +=--
,所以z a +=
故选:A
6.B
【分析】
利用复数的运算法则和复数的几何意义求解即可
【详解】
,
所以,在复平面内的对应点为,则对应点位于第二象限
故选:B
解析:B
【分析】
利用复数的运算法则和复数的几何意义求解即可
【详解】
()()12i 1i 12i 33i 33i 111i 2222
z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫-
⎪⎝⎭,则对应点位于第二象限 故选:B
7.C
【分析】
求出,即可得出,求出虚部.
【详解】
,,其虚部是1.
故选:C.
解析:C
【分析】
求出z ,即可得出z ,求出虚部.
【详解】
()
()()
2
2021
1i 1i i 1i 1i 1i z --===-++-,i z ∴=,其虚部是1. 故选:C. 8.A
【分析】
由得出,再由复数的四则运算求解即可.
【详解】
由题意得,则.
故选:A
解析:A
【分析】
由()1,1-得出1i z =-+,再由复数的四则运算求解即可.
【详解】
由题意得1i z =-+,则
1i 1i i 111i 1i i i 1
z z -----+==⋅==-++-. 故选:A
9.C
【分析】
由已知得到,然后利用复数的乘法运算法则计算,利用复数的周期性算出的值,最后利用复数的几何意义可得结果.
【详解】
由题可得,,
所以复数在复平面内对应的点为,在第三象限,
故选:C .
解析:C
【分析】
由已知得到2021(2)(2)i i i z -++-=,然后利用复数的乘法运算法则计算(2)(2)i i -++,利用复数n i 的周期性算出2021i 的值,最后利用复数的几何意义可得结果.
【详解】
由题可得,2021(2)(2)5i z i i i -+=+-=--,
所以复数z 在复平面内对应的点为(5,1)--,在第三象限,
故选:C .
10.D
【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.
【详解】
因为,
所以,,
所以,
故选:D.
解析:D
【分析】
求出共轭复数,利用复数的乘法运算以及复数的求模公式可得答案.
【详解】
因为1z i =+, 所以1z i =-,12z i +=+,
所以()()()1123z z i i i ⋅+=-⋅+=-==
故选:D.
11.B
【分析】
先设复数,根据复数模的计算公式,以及复数相等,求出,得出复数,再由复数的几何意义,即可得出结果.
【详解】
设复数,
由得,
所以,解得,
因为时,不能满足,舍去;
故,所以,其对应的
解析:B
【分析】
先设复数(),z x yi x R y R =+∈∈,根据复数模的计算公式,以及复数相等,求出,x y ,得出复数,再由复数的几何意义,即可得出结果.
【详解】
设复数(),z x yi x R y R =+∈∈, 由22z z i +=
得222x yi i +=,
所以2022x y ⎧⎪+=⎨=⎪⎩
,解得31x y ⎧=±⎪⎨⎪=⎩
,
因为1x y ⎧=⎪⎨⎪=⎩
时,不能满足20x =,舍去;
故1x y ⎧=⎪⎨⎪=⎩
z i =+
,其对应的点⎛⎫ ⎪ ⎪⎝⎭位于第二象限, 故选:B.
12.C
【分析】
由复数的乘方与除法运算求得,得后可得其对应点的坐标,得出结论.
【详解】
由题意,,
∴,对应点,在第三象限.
故选:C .
解析:C
【分析】 由复数的乘方与除法运算求得z ,得z 后可得其对应点的坐标,得出结论.
【详解】 由题意2021(2)i z i i -==,(2)12122(2)(2)555
i i i i z i i i i +-+====-+--+,
∴
12
55
z i
=--,对应点
12
(,)
55
--,在第三象限.
故选:C.
13.B
【分析】
首先,再利用复数的除法运算,计算结果. 【详解】
复数.
故选:B
解析:B
【分析】
首先3i i
=-,再利用复数的除法运算,计算结果.【详解】
313
3
i i
i
+
====.
故选:B
14.D
【分析】
利用复数的乘法运算及复数相等求得a,b值即可求解
【详解】
,故则
故选:D
解析:D
【分析】
利用复数的乘法运算及复数相等求得a,b值即可求解
【详解】
()
312
++=+
a i i bi,故332
a i bi
-+=+则32,38
a b a b
-==∴+=故选:D
15.D
【分析】
由复数的四则运算求出,即可写出其共轭复数.
【详解】
∴,
故选:D
解析:D
【分析】
由复数的四则运算求出z ,即可写出其共轭复数z .
【详解】
2(2)(12)24243z i i i i i i =-+=-+-=+ ∴43z i =-,
故选:D
二、多选题
16.AD
【分析】
因为复数Z 在复平面上对应的向量,得到复数,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量,
所以,,|z|=,,
故选:AD
解析:AD
【分析】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断.
【详解】
因为复数Z 在复平面上对应的向量(1,2)OZ =-,
所以12z i =-+,12z i =--,|z 5z z ⋅=,
故选:AD
17.CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取,则,A 选项错误;
对于B 选项,复数的虚部为,B 选项错误;
解析:CD
【分析】
取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.
【详解】
对于A 选项,取z i ,则210z =-<,A 选项错误;
对于B 选项,复数z 的虚部为y ,B 选项错误;
对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;
对于D 选项,z =
D 选项正确.
故选:CD.
【点睛】
本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题. 18.ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出,利用,结合复数模的运算进行化简,由此判断出点的轨迹,由此判读C 选项的正确
解析:ACD
【分析】
根据复数对应的坐标,判断A 选项的正确性.根据互为共轭复数的两个复数坐标的对称关系,判断B 选项的正确性.设出z ,利用|1|||z z i -=-,结合复数模的运算进行化简,由此判断出Z 点的轨迹,由此判读C 选项的正确性.结合C 选项的分析,由点到直线的距离公式判断D 选项的正确性.
【详解】
复数012z i =+在复平面内对应的点为0(1,2)P ,A 正确;
复数0z 的共轭复数对应的点与点0P 关于实轴对称,B 错误;
设(,)z x yi x y R =+∈,代入|1|||z z i -=-,得|(1)(1)i|x yi x y -+=+-,即
=y x =;即Z 点在直线y x =上,C 正确; 易知点0P 到直线y x =的垂线段的长度即为0P 、Z 之间距离的最小值,结合点到直线的距
2
=,故D 正确. 故选:ACD
【点睛】
本小题主要考查复数对应的坐标,考查共轭复数,考查复数模的运算,属于基础题. 19.BCD
【分析】
计算出,即可进行判断.
【详解】
,
,故B 正确,由于复数不能比较大小,故A 错误;
,故C 正确;
,故D 正确.
故选:BCD.
【点睛】
本题考查复数的相关计算,属于基础题.
解析:BCD
【分析】 计算出23
,,,z z z z ,即可进行判断.
【详解】
1
2z =-+, 221313i i=22z z ,故B 正确,由于复数不能比较大小,故A 错误; 33131313i i i 122
2z ,故C 正确; 2213122z
,故D 正确.
故选:BCD.
【点睛】 本题考查复数的相关计算,属于基础题.
20.BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小
解析:BCD
【分析】
根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.
【详解】
因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确; 当两个复数的模相等时,复数不一定相等,
比如11i i -=+,但是11i i -≠+,所以B 项是错误的;
因为当两个复数相等时,模一定相等,所以A 项正确;
故选:BCD.
【点睛】
该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.
21.AB
【分析】
求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.
【详解】
解:对于,复数的模,故正确;
对于,若复数,则,在复平面内对应的点的坐标为,在第四
解析:AB
【分析】
求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.
【详解】
解:对于A ,复数34z i =+的模||5z ==,故A 正确;
对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;
对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,
则223402240
m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.
故选:AB .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 22.AD
【分析】
根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义判断C ;由模长公式化简,得出,从而判断D.
【详解】
,则A 正确;
虚数不能比较大小,则B 错误;
,则,
解析:AD
【分析】
根据复数的运算判断A ;由虚数不能比较大小判断B ;由复数的运算以及共轭复数的定义
判断C ;由模长公式化简11z z -=+,得出0x =,从而判断D.
【详解】
234110i i i i i i +++=--+=,则A 正确;
虚数不能比较大小,则B 错误;
()22
1424341z i i i i =++=+-+=,则34z i =--,
其对应复平面的点的坐标为(3,4)--,位于第三象限,则C 错误; 令,,z x yi x y R =+∈,|1||1z z -=+∣
,
=,解得0x =
则z 在复平面内对应的点的轨迹为直线,D 正确;
故选:AD
【点睛】
本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.
23.BCD
【分析】
利用复数的运算法则直接求解.
【详解】
解:复数(其中为虚数单位),
,故错误;
,故正确;
,故正确;
.故正确.
故选:.
【点睛】
本题考查命题真假的判断,考查复数的运算法则
解析:BCD
【分析】
利用复数的运算法则直接求解.
【详解】
解:复数12z =-(其中i 为虚数单位),
2131442z ∴=-=--,故A 错误; 2z z ∴=,故B 正确;
31113()()12244
z =--+=+=,故C 正确;
||1z ==.故D 正确. 故选:BCD .
【点睛】
本题考查命题真假的判断,考查复数的运算法则等基础知识,考查运算求解能力,属于基础题.
24.ABCD
【分析】
利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.
【详解】
因为(1﹣i )z =
解析:ABCD
【分析】
利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.
【详解】
因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)
2i i i i i i +-+===-+-+,所以
||z ==A 正确; 所以1i z =--,故B 正确;
由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;
因为2
(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.
故选:ABCD.
【点睛】
本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 25.BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,时,,则,故A 错误;
对于B ,若复数,则满足,解得,故B 正确;
对于C ,若复数z 为纯虚数,则满足,解得,
解析:BD
【分析】
根据每个选项里的条件,求出相应的结果,即可判断选项的正误.
【详解】
对于A ,0m =
时,1z =-
,则1z =-,故A 错误;
对于B ,若复数2z =
,则满足(()212
10m m m ⎧-=⎪⎨-=⎪⎩
,解得m ,故B 正确; 对于C ,若复数z
为纯虚数,则满足(()210
10m m m ⎧-=⎪⎨--≠⎪⎩,解得1m =-,故C 错误; 对于D ,若0m =
,则1z =-+
,(
)()221420412z z ++=+--+=+,故
D 正确.
故选:BD.
【点睛】 本题主要考查对复数相关概念的理解,注意不同情形下的取值要求,是一道基础题.
26.BD
【分析】
因为复数满足,利用复数的除法运算化简为,再逐项验证判断.
【详解】
因为复数满足,
所以
所以,故A 错误;
,故B 正确;
复数的实部为 ,故C 错误;
复数对应复平面上的点在第二象限
解析:BD
【分析】
因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-
+,再逐项验证判断. 【详解】
因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55
i i i z i i i i +===-+--+
所以5z ==,故A 错误;
1255
z i =-
-,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,
55⎛⎫- ⎪⎝⎭
在第二象限,故D 正确. 故选:BD
【点睛】
本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 27.ABC
【分析】
首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.
【详解】
因为,
对于A :的虚部为,正确;
对于B :模长,正确;
对于C :因为,故为纯虚数,
解析:ABC
【分析】
首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.
【详解】 因为()()()2122211i 1i 12
i i z i i --====-++-, 对于A :z 的虚部为1-,正确;
对于B :模长z =
对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;
对于D :z 的共轭复数为1i +,错误.
故选:ABC .
【点睛】
本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.
28.CD
【分析】
根据复数的四则运算,整理复数,再逐一分析选项,即得.
【详解】
由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一
解析:CD
【分析】
根据复数的四则运算,整理复数z ,再逐一分析选项,即得.
【详解】 由题得,复数22(2)(1)13131(1)(1)122
i i i i z i i i i i ++++====+--+-,可得
||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22
,位于第一象限,则D 正确.综上,正确结论是CD.
故选:CD
【点睛】
本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.
29.AD
【分析】
A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D. 根据,得到,再用共轭复数的定义判断.
【详解】
A .根据共轭
解析:AD
【分析】
A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.
【详解】
A .根据共轭复数的定义,显然是真命题;
B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;
C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;
D. 若120z z -=,则12z z =
,所以1z 与2z 互为共轭复数,故D 是真命题.
故选:AD
【点睛】 本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.
30.BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当时,,此时为纯虚数,A 错误;若z 的共轭复数为,且,则,因此,B 正确;由是实数,且知,z 是实数,C 正确;由
解析:BC
【分析】
根据纯虚数、共轭复数、复数的模、复数为实数等知识,选出正确选项.
【详解】
当0a =时,1b =,此时z i 为纯虚数,A 错误;若z 的共轭复数为z ,且z z =,则
a bi a bi +=-,因此0
b =,B 正确;由||z 是实数,且||z z =知,z 是实数,C 正确;由1
||2z =得2214
a b +=,又1a b +=,因此28830a a -+=,64483320∆=-⨯⨯=-<,无解,即||z 不可以等于
12,D 错误. 故选:BC
【点睛】
本小题主要考查复数的有关知识,属于基础题.。