导数应用1
高考数学一轮总复习第三章导数及应用1导数的概念及运算课件理
(2)求过点 P 的曲线的切线方程的步骤为: 第一步,设出切点坐标 P′(x1,f(x1)); 第二步,写出过 P′(x1,f(x1))的切线方程为 y-f(x1)=f′ (x1)(x-x1); 第三步,将点 P 的坐标(x0,y0)代入切线方程,求出 x1; 第四步,将 x1 的值代入方程 y-f(x1)=f′(x1)(x-x1)可得过 点 P(x0,y0)的切线方程.
第二十五页,共46页。
(5)y=-lnx+e-2x,∴y′=-1x+e-2x·(-2x)′=-1x-2e-2x. 【答案】 (1)y′=24x3+9x2-16x-4 (2)y′=(ln3+1)·(3e)x-2xln2 (3)y′=x2+x(1-x2+2x12·)l2nx (4)y′=2sin(4x+23π) (5)y′=-1x-2e-2x
第十二页,共46页。
2.计算: (1)(x4-3x3+1)′=________; (2)(ln1x)′=________; (3)(xex)′=______; (4)(sinx·cosx)′=______. 答案 (1)4x3-9x2 (2)-xln12x (3)ex+xex (4)cos2x
第十三页,共46页。
为 k1,k2,则 k1,k2 的大小关系为( )
A.k1>k2
B.k1<k2
C.k1=k2
D.不确定
答案 A
解析 ∵y=sinx,∴y′=(sinx)′=cosx.
π k1=cos0=1,k2=cos 2 =0,∴k1>k2.
第十五页,共46页。
5.(2018·陕西检测)已知直线 y=-x+m 是曲线 y=x2-3lnx
第二十二页,共46页。
题型二 导数的基本运算
求下列函数的导数: (1)y=(3x3-4x)(2x+1); (3)y=x2ln+x1; (5)y=ln1x+e-2x.
导数在数列中的应用1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
高中数学第一章导数及其应用1定积分的简单应用定积分在物理中的应用素材
定积分在物理中的应用摘要:伟大的科学家牛顿,有很多伟大的成就,建立了经典物理理论,比如:牛顿三大定律,万有引力定律等;另外,在数学上也有伟大的成就,创立了微积分.微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科.内容主要包括极限、微分学、积分学及其应用.微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
微积分最重要的思想就是用"微元"与”无限逼近",好像一个事物始终在变化你很难研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。
微积分学是微分学和积分学的总称。
它是一种数学思想,‘无限细分'就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。
微积分堪称是人类智慧最伟大的成就之一.在高中物理中,微积分思想多次发挥了作用.定义:设函数f(x)在[a,b]上有界,在[a,b ]中任意插入若干个分点 a=X0〈X1〈...〈Xn —1<Xn=b 把区间[a ,b ]分成n 个小区间 [X0,X1],..。
[Xn —1,Xn]。
在每个小区间[Xi —1,Xi ]上任取一点ξi(Xi -1≤ξi≤Xi ),作函数值f(ξi )与小区间长度的乘积f(ξi )△Xi ,并作出和()in i ix s ∆=∑=1ξ如果不论对[a,b]怎样分法,也不论在小区间上的点ξi 怎样取法,只要当区间的长度趋于零时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数f (x)在区间[a ,b]上的定积分, 记作: ()dx x f a b⎰即: ()()ini ia bx f I dx x f ∆==∑⎰==11lim ξλ变力沿直线所作的功设物体在连续变力F(x )作用下沿x 轴从x=a 移动到x=b ,力的方向与运动方向平行,求变力所作的功.在[a ,b]上任取子区间[x ,x+dx ],在其上所作的功元素为()dx x F dW =因此变力F (x )在区间[a,b ]上所作的功为()dx x F W b a⎰=例1.在一个带+q 电荷所产生的电场作用下,一个单位正电荷沿直线从距离点电荷a 处移动到b 处(a 〈b ),求电场力所做的功。
导数的应用(第1课时)利用导数研究函数的单调性(课件)高二数学(沪教版2020选择性必修第二册)
图 ( 1 ) 中的曲线越来越 “ 陡峭 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终大于 1 ; 图 ( 2 ) 中的曲线由 “ 陡峭 ” 变得 “ 平缓 ”, 在区间 ( 0 , 1 ) 的右半段的切线斜率小于 1 ; 图 ( 3 ) 中的曲线由 “ 平缓 ” 变得 “ 陡峭 ”, 在区间 ( 0 , 1 ) 的左半段的切线斜率小于 1 ; 图 ( 4 ) 中的曲线越来越 “ 平缓 ”, 在区间 ( 0 , 1 ) 上各点处 的切线斜率始终小于 1. 因此 , 只有图 5-3-1 ( 1 ) 中的图像有可能表示函数 y = f( 可能成为严格递增区间与严格 递减区间的分界点 .
例4.确定函数(f x)=x2的单调区间 .
解函数在x 0处没有定义 .当x 0时,f (x)=-2x3,
方程f′( x )=0 无解 , 所以函数 f( x )没有驻点 . 但当 x >0 时 ,f′( x ) <0 ,f( x ) 单调递减 ; 当 x <0 时 ,f′( x) >0 , f( x ) 单调递增 . 可 见 , 函数 f ( x ) 的严格递增区间为 (-∞,0), 严格 递减区间为(0,+∞)
课本练习 宋老师数学精品工作室
1. 利用导数研究下列函数的单调性 , 并说明所得结果与你 之前的认识是否一致 :
宋老师数学精品工作室 2. 确定下列函数的单调区间 :
随堂检测 宋老师数学精品工作室
1、函数y=x2cos 2x的导数为( )
A.y′=2xcos 2x-x2sin 2x
B.y′=2xcos 2x-2x2sin 2x
上面我们用导数值的正负判断函数在某区间的单调性 . 但导数值还可 以进一步用以判断函数变化速度的快慢 : 导数f′( x 0 ) 是函数 f( x ) 在点 x 0 的切线的斜率 , 所以它描述了曲线 y=f( x ) 在点 x0 附近相 对于x轴的倾斜程度 : 当f′( x 0 ) >0 时 ,f′( x0 ) 越大 , 曲线 y = f ( x ) 在点 x 0 附近相对于 x 轴倾斜得越厉害 ,f( x ) 递增得 越快 ; 而当f′( x 0 ) <0 时 ,f′( x 0 ) 越小 , 曲线y = f ( x ) 在点 x0 附近相对于x轴倾斜得越厉害 , f ( x ) 递减得越快 . 综合这 两个方面 , 导数的绝对值越大 , 函数图像就越 “ 陡峭 ”, 也就是 函数值变化速度越快 .
11-导数的应用(1)
1
变式: 1.已知 f ( x) e x ax 1 ,求 f ( x ) 的单调递增区间。
2. (09 辽宁)设 f ( x) ex (ax2 x 1) ,且曲线 y=f(x)在 x=1 处的切线与 x 轴 平行。 (1)求 a 的值,并讨论 f(x)的单调性; (2)证明:当 [0,
2
]时, f( cos ) f(sin ) 2
教 学 过 程
题型二: 已知函数的单调性求参数的范围 例:已知函数 f ( x) x3 ax 1 。 (1) 若 f ( x ) 在实数集 R 上单调递增,求实数 a 的取值范围; (2) 是否存在实数 a,使 f ( x ) 在(-1,1)上单调递减?若存在,求出 a 的取值 范围;若不存在,说明理由。
4 3 2
(1) 当 a
10 时,讨论函数 f ( x ) 的单调性; 3
(2) 若函数 f ( x ) 仅在 x=0 处有极值,求 a 的取值范围; (3) 若对于任意的 a [2, 2] ,不等式 f ( x) 1 在区间[-1,0]上恒成立,求 b 的取值范围。
3
变式: 1. 求函数 y
1 ,且若 x [1, 4a] 时, | f '( x) | 12a 恒成立,试确定 a 的取值范围。 4
配套练习 作 业 教 学 反 思
课 堂 小 结
4
2.已知函数 f ( x) xln(1 x) a( x 1) ,其中 a 为常数。 教 (1)若函数 f ( x ) 在 [1, ) 上为单调增函数,求 a 的取值范围; 学 (2)求 g ( x) f '( x) 过 程
ax 的单调区间。 x 1
题型三:利用导数研究函数的极值与最值 例:设函数 f ( x) x ax 2 x b( x R) ,其中 a, b R
15导数的应用1
探究提高
利用导数求函数f(x)的单调区间的一般 步骤为: (1)确定函数f(x)的定义域; (2)求导数f ′(x); (3)在函数f(x)的定义域内解不等式 f′(x)>0和f ′(x)<0; (4)根据(3)的结果确定函数f(x)的单调区间.
变式训练 1
1.已知函数f(x)=x3+ax2+bx+c在x=1处取得极值-2. (1)试用c表示a,b; (2)求f(x)的单调递减区间.
(2)由 f′(x)=3x -a≤0 在(-1,1)上恒成立. 2 ∴a≥3x ,x∈(-1,1)恒成立. 又∵-1<x<1, ∴3x2<3,只需 a≥3. 当 a=3 时, f′(x)=3(x2-1)在 x∈(-1,1)上,f′(x)<0, 即 f(x)在(-1,1)上为减函数,∴a≥3. 故存在实数 a≥3,使 f(x)在(-1,1)上单调递减.
(x x (x111, (x , 2) ,
函数的单调性与导数 题 型 二 已知函数单调性求参数取值范围 例 2:已知函数 f(x)=x -ax-1. (1)若 f(x)在实数集 R 上单调递增,求实数 a 的取值范围. (2)是否存在实数 a, f(x)在(-1,1)上单调递减?若存在, 使 求出 a 的取值范围;若不存在,说明理由.
3+2c 3+2c =1,即 c=-3,f′(x)=3(x-1)2≥0. 2 ①若- 3+2c ①若-3+2c=1,即 c=-3,f′(x)=3(x-1)22≥0. 3 =1,即 c=-3,f′(x)=3(x-1) ≥0. ①若-3+2c=1,即 c=-3,f′(x)=3(x-1)2≥0. ①若- 3 =1,即 c=-3,f′(x)=3(x-1) ≥0. 3 ①若- 3 3 f(x)在(-∞,+∞)上递增不合题意,c=-3 应舍去. f(x)在(-∞,+∞)上递增不合题意,c=-3 应舍去. f(x)在(-∞,+∞)上递增不合题意,c=-3 应舍去. f(x)在(-∞,+∞)上递增不合题意,c=-3 应舍去. 3+2c 3+2c <1,即 c>-3 时, f(x)在(-∞,+∞)上递增不合题意,c=-3 应舍去. ②若- 3+2c ②若-3+2c<1,即 c>-3 时, ②若-3+2c<1,即 c>-3 时, 33 <1,即 c>-3 时, ②若- 3 <1,即 c>-3 时, ②若- 3 -3+2c,1; 3 3+2c f(x)的递减区间为-3+2c,1; - 3 f(x)的递减区间为 3+2c ,1; f(x)的递减区间为 -3+2c,1 ; f(x)的递减区间为- 3 ,1; 3 f(x)的递减区间为 3+2c 3 3+2c >1,即 c<-3 时, 3 ③若- 3+2c ③若-3+2c>1,即 c<-3 时, ③若-3+2c>1,即 c<-3 时, 33 >1,即 c<-3 时, ③若- 3 >1,即 c<-3 时, ③若- 3 1,-3+2c. 3 f(x)的递减区间为1,-3+2c. 3+2c 1,-3+2c. f(x)的递减区间为 f(x)的递减区间为 1,-3+2c. 33 f(x)的递减区间为1,- 3 . f(x)的递减区间为 3 3
高中数学经典的解题技巧和方法(导数及其应用)1 (1)
⾼高中数学经典的解题技巧和⾼方法(导数及其应⾼用)导数及其应⽤用是⽤高中数学考试的必考内容,⽤而且是这⽤几年年考试的热点跟增⽤长点,⽤无论是期中、期末还是会考、⽤高考,都是⽤高中数学的必考内容之⽤一。
因此,⽤马博⽤士教育⽤网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了了具体的解题技巧和⽤方法,希望能够帮助到⽤高中的同学们,让同学们有更更多、更更好、更更快的⽤方法解决数学问题。
好了了,下⽤面就请同学们跟我们⽤一起来探讨下集合跟常⽤用逻辑⽤用语的经典解题技巧。
⾸首先,解答导数及其应⾸用这两个⾸方⾸面的问题时,先要搞清楚以下⾸几个⾸方⾸面的基本概念性问题,同学们应该先把基本概念和定理理完全的吃透了了、弄弄懂了了才能更更好的解决问题:1.导数概念及其⽤几何意义(1)了了解导数概念的实际背景。
(2)理理解导数的⽤几何意义。
2.导数的运算(1)能根据导数定义求函数的导数。
(2)能利利⽤用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。
(3)能求简单的复合函数(仅限于形如的复合函数)的导数。
3.导数在研究函数中的应⽤用(1)了了解函数单调性和导数的关系,能利利⽤用导数研究函数的单调性,会求函数的单调区间(其中多项式函数⽤一般不不超过三次)。
(2)了了解函数在某点取得极值的必要条件和充分条件;会⽤用导数求函数的极⽤大值、极⽤小值(其中多项式函数⽤一般不不超过三次);会求闭区间了了函数的最⽤大值、最⽤小值(其中多项式函数⽤一般不不超过三次)。
4.⽤生活中的优化问题会利利⽤用导数解决某些实际问题5.定积分与微积分基本定理理(1)了了解定积分的实际背景,了了解定积分的基本思想,了了解定积分的概念。
(2)了了解微积分基本定理理的含义。
好了了,搞清楚了了导数及其应⾸用的基本内容之后,下⾸面我们就看下针对这两个内容的具体的解题技巧。
⾸一、利利⾸用导数研究曲线的切线考情聚焦:1.利利⽤用导数研究曲线的切线是导数的重要应⽤用,为近⽤几年年各省市⽤高考命题的热点。
(完整word版)导数及其应用(1)
强化提升一 导数及其应用层次一:导数的概念、意义及简单应用突破点(一) 导数的运算八个公式+三个法则+复合函数求导[例1] (1)y =(1-x )⎝⎛⎭⎫1+1x ;(2)y =ln xx ;(3)y =tan x ;(4)y =3x e x -2x +e ;(5)y =ln (2x +3)x 2+1. [方法技巧]00A .e 2 B .1 C .ln 2 D .e(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x , 所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017, 即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)B (2)-2 018[方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,[例1]已知函数f(x)=x3-(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.[解](1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.[方法技巧][例2]设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)上点P处的切线垂直,则点P的坐标为________.[解析] y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).[答案] (1,1)[例3] 直线y =kx +1b 的值等于( ) A .2 B .-1 C .1D .-2[解析] 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.[答案] C[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解. 层次二:函数的单调性、极值最值突破点(一) 利用导数讨论函数的单调性或求函数的单调区间[解] f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝ ⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ 1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝⎛⎭⎪⎫0, 1-a 2a 上单调递减,在 1-a2a,+∞上单调递增.[方法技巧][例2]已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,求函数f(x)的单调区间.[解]对f(x)求导得f′(x)=14-ax2-1x,由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,知f′(1)=-34-a=-2,解得a=54.所以f(x)=x4+54x-ln x-32,则f′(x)=x2-4x-54x2,令f′(x)=0,解得x=-1或x=5,因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增函数.所以函数f(x)的单调递增区间为(5,+∞),单调递减区间为(0,5).[方法技巧]用导数求函数单调区间的三种类型及方法(1)当不等式f′(x)>0或f′(x)<0可解时,确定函数的定义域,解不等式f′(x)>0或f′(x)<0求出单调区间.(2)当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点(即f(x)的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.(3)不等式f′(x)>0或f′(x)<0及方程f′(x)=0均不可解时求导并化简,根据f′(x)的结构特征,选择相应基本初等函数,利用其图象与性质确定f′(x)的符号,得单调区间.突破点(二)利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.[例1] 已知函数f (x )=x 3-ax -1.(1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].(2)因为f (x )在区间(-1,1)上为减函数,所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即a 的取值范围为[3,+∞).(3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3. 应用结论“函数f (x )在(a ,b )上单调递增⇔f ′(x )≥0恒成立;函数f (x )在(a ,b )上单调递减⇔f ′(x )≤0恒成立”时,切记检验等号成立时导数是否在(a ,b )上恒为0. [易错提醒][例2] (1)若0<x 1<x 2A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x -1x .令f ′(x )=0,得x e x -1=0.根据函数y=e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x -ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=e x x ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=e xx 在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故选C. (2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12, ∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)C (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.突破点(三) 利用导数解决函数的极值问题根据函数图象判断函数极值的情况[例1] 设函数象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)[解析] 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.[答案] D [方法技巧]知图判断函数极值情况的策略知图判断函数极值情况的思路是:先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴交点的横坐标为函数的极值点.求函数的极值[例2] (2017·桂林、崇左联考)设a >0,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在点(3,f (3))处切线的斜率; (2)求函数f (x )的极值.[解] (1)由已知x >0.当a =2时,f ′(x )=x -3+2x ,∴曲线y =f (x )在点(3,f (3))处切线的斜率为f ′(3)=23.(2)f ′(x )=x -(a +1)+a x =x 2-(a +1)x +a x =(x -1)(x -a )x .由f ′(x )=0得x =1或x =a .①若0<a <1,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. ∴当x =a 时,f (x )取极大值f (a )=-12a 2-a +a ln a ,当x =1时,f (x )取极小值f (1)=-a -12.②若a >1,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. ∴当x =1时,f (x )取极大值f (1)=-a -12;当x =a 时,f (x )取极小值f (a )=-12a 2-a +a ln a .③当a =1时,x >0时,f ′(x )>0,函数f (x )单调递增,f (x )没有极值. 综上,当0<a <1时,f (x )的极大值为-12a 2-a +a ln a ,极小值为-a -12;当a >1时,f (x )的极大值为-a -12,极小值为-12a 2-a +a ln a ;当a =1时,f (x )没有极值. [方法技巧][例3] (1)(2017·a 的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12C .(0,1) D .(0,+∞)(2)(2017·太原五中检测)函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a 的值为________. [解析] (1)∵f (x )=x (ln x -ax ),∴f ′(x )=ln x -2ax +1,由函数f (x )有两个极值点,可知f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x ,设g (x )=ln x +1x ,则g ′(x )=-ln xx 2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1,∴只需0<2a <1,即0<a <12.(2)由题意得f ′(x )=3x 2+2ax +b ,因为在x =1处,f (x )有极值10, 所以f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得a =4,b =-11或a =-3,b =3,当a =-3,b =3时,在x =1处,f (x )无极值,不符合题意; 当a =4,b =-11时,符合题意,所以a =4. [答案] (1)B (2)4 [方法技巧]已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.突破点(四) 利用导数解决函数的最值问题[例1] 已知函数f (x )=(x (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由题意知f ′(x )=(x -k +1)e x .令f ′(x )=0,得x =k -1. f (x )与f ′(x )的情况如下:所以,f (x )(2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1; 当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为f (k -1)=-e k -1; 当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e. [方法技巧]利用导数求函数最值的规律求函数f (x )在区间[a ,b ]上的最值时:(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在闭区间[a ,b ]上有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到.[例2] 已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.[解] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4.所以1+a +b +c =4,得c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.[方法技巧]解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值. 1.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝⎛⎭⎫0,12和(2,+∞) D .(1,2) 解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12,(2,+∞). 2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B.(]-∞,3C.⎣⎡⎭⎫518,+∞ D.[)3,+∞解析:选C f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝⎛⎭⎫x +1x 在[]1,4上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C.3.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎡⎭⎫12,+∞ B .[3,+∞)C .[-2,3] D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为(-∞,-2). 4.(2017·甘肃诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.5.若函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( ) A .(-2,0) B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f (x )x >0,则对于任意的a ,b ∈(0,+∞),当a >b 时,有( )A .af (a )<bf (b ) B .af (a )>bf (b )C .af (b )>bf (a ) D .af (b )<bf (a )解析:选B 由f ′(x )+f (x )x >0得xf ′(x )+f (x )x >0,即[xf (x )]′x >0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ),故选B.二、填空题7.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________.解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________. 解析:f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞ 9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为________.解析:由题图可知,⎩⎪⎨⎪⎧f ′(x )>0,x ∈(1,+∞)∪(-∞,-1),f ′(x )<0,x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′(x )<0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(3,+∞)∪(-1,1). 答案:(-∞,-1)∪(3,+∞)∪(-1,1)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝⎛⎭⎫-19,+∞.答案:⎝⎛⎭⎫-19,+∞ 三、解答题11.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f ⎭⎪⎫∞上单调递增.12.(2017·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x . 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞); 当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立,由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,即m <-5且m <-9,即m <-9;由g ′(3)>0,得m >-373. 所以-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。
导数的应用(一)---单调性
01 课前自助餐 02 授人以渔 03 课外阅读
课前自助餐
函数的单调性 (1)设函数 y=f(x)在某个区间内_可_导__,若 f′(x)__>_ 0,则 f(x) 在这个区间内为增函数;若 f′(x)__<_ 0,则 f(x)在这个区间内为 减函数. (2)求可导函数 f(x)单调区间的步骤: ①确定 f(x)的_定__义_域__; ②求导数 f′(x); ③令 f′(x)__>_ 0(或 f′(x) _<__0),解出相应的 x 的范围; ④当_f′_(x_)_>_0___时,f(x)在相应区间上是增函数;当_f_′(_x)_<_0___ 时,f(x)在相应区间上是减函数.
【思路】
根据题意当x≥0时f′(x)=1-
2 3
cos2x>0,又f(x)
是定义在R上的奇函数,则f(x)在定义域上单调递增,tan
2π 5
>tanπ4 =1,0<cos2π 5 <1,log3cos2π 5 <0,由函数的单调性可得出
答案.
【解析】 由题意知当x≥0时,f′(x)=1-23cos2x>0,所以f(x)在
2.f′(x)是f(x)的导函数,若f′(x)的图象如图所示,则f(x) 的图象可能是( C )
解析 由导函数的图象可知,当x<0时,f′(x)>0,即函数f(x) 单调递增;当0<x<x1时,f′(x)<0,即函数f(x)单调递减;当x>x1 时,f′(x)>0,即函数f(x)单调递增.观察选项易知C正确.故选C.
授人以渔
题型一 求函数的单调区间(自主学习)
例1 求下列函数的单调区间.
新高考数学一轮复习考点知识专题讲解与练习 17 导数的应用(一)
新高考数学一轮复习考点知识专题讲解与练习考点知识总结17导数的应用(一)高考概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分、12分,中、高等难度考纲研读1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次)2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次)3.会用导数解决实际问题一、基础小题1.函数f(x)=1+x-sin x在(0,2π)上是() A.增函数B.减函数C.在(0,π)上单调递增,在(π,2π)上单调递减D.在(0,π)上单调递减,在(π,2π)上单调递增答案 A解析 f ′(x )=1-cos x >0,∴f (x )在(0,2π)上单调递增. 2.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4 答案 C解析 f ′(x )=3x 2-6x ,令f ′(x )=0,得x =0或x =2(舍去).当-1≤x <0时,f ′(x )>0;当0<x ≤1时,f ′(x )<0.所以f (x )在[-1,0)上是增函数,在(0,1]上是减函数,所以f (x )max =f (0)=2.故选C.3.已知函数f (x )=2e f ′(e)ln x -xe (e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .-1e C .1 D .2ln 2 答案 D解析 由题意知f ′(x )=2e f ′(e )x -1e ,∴f ′(e)=2e f ′(e )e -1e ,f ′(e)=1e ,∴f (x )=2ln x -x e ,f ′(x )=2x -1e ,令f ′(x )=0,得x =2e ,当0<x <2e 时,f ′(x )>0,当x >2e 时,f ′(x )<0,∴f (x )在(0,2e)上单调递增,在(2e ,+∞)上单调递减,∴f (x )的极大值为f (2e)=2ln (2e)-2=2ln 2.故选D.4.直线y =a 分别与曲线y =e x ,y =ln x +1交于M ,N 两点,则|MN |的最小值为( ) A .1 B .1-ln 2 C .ln 2 D .1+ln 2 答案 A解析 分别令e x =a ,ln x +1=a ,其中a >0,则x 1=ln a ,x 2=e a -1,从而|MN |=|x 1-x 2|=|ln a -e a -1|,构造函数h (a )=ln a -e a -1,求导得h ′(a )=1a -e a -1,当a ∈(0,1)时,h ′(a )>0,h (a )单调递增;当a ∈(1,+∞)时,h ′(a )<0,h (a )单调递减.所以h (a )有极大值h (1)=-1.因此|MN |的最小值为|h (1)|=1.故选A.5.用边长为120 cm 的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱的最大容积为( )A .120000 cm 3B .128000 cm 3C .150000 cm 3D .158000 cm 3 答案 B解析 设水箱底长为x cm ,则高为120-x 2cm.由⎩⎪⎨⎪⎧120-x 2>0,x >0得0<x <120.设容器的容积为y cm 3,则有y =120-x 2·x 2=-12x 3+60x 2,则有y ′=-32x 2+120x .令y ′=0,解得x=80(x =0舍去).当x ∈(0,80)时,y ′>0,y 单调递增;当x ∈(80,120)时,y ′<0,y 单调递减.因此80是函数y =-12x 3+60x 2的极大值点,也是最大值点,此时y =-12×803+60×802=128000.故选B.6.(多选)已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (a )<f (b )<f (c )B .函数f (x )在x =c 处取得极小值,在x =e 处取得极大值C .函数f (x )在x =c 处取得极大值,在x =e 处取得极小值D .函数f (x )的最小值为f (d ) 答案 AC解析 由导函数图象可知在(-∞,c ),(e ,+∞)上,f ′(x )>0,在(c ,e )上,f ′(x )<0,所以函数f (x )在(-∞,c ),(e ,+∞)上单调递增,在(c ,e )上单调递减,所以f (a )<f (b )<f (c );函数f (x )在x =c 处取得极大值,在x =e 处取得极小值;f (d )>f (e ),所以f (d )不是函数f (x )的最小值.故选AC.7.(多选)已知定义在⎣⎢⎡⎭⎪⎫0,π2上的函数f (x )的导函数为f ′(x ),且f (0)=0,f ′(x )cos x +f (x )·sin x <0,则下列判断中正确的是( )A .f ⎝ ⎛⎭⎪⎫π6<62f ⎝ ⎛⎭⎪⎫π4B .f ⎝ ⎛⎭⎪⎫ln π3>0C .f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3D .f ⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3答案 CD解析 令g (x )=f (x )cos x ,x ∈⎣⎢⎡⎭⎪⎫0,π2,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x ,因为f ′(x )cos x+f (x )sin x <0,所以g ′(x )=f ′(x )cos x +f (x )sin x cos 2x <0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因此函数g (x )=f (x )cos x 在⎣⎢⎡⎭⎪⎫0,π2上单调递减,因此g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π4,即f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π4cos π4,即f ⎝ ⎛⎭⎪⎫π6>62f ⎝ ⎛⎭⎪⎫π4,故A 错误;又f (0)=0,所以g (0)=f (0)cos 0=0,所以g (x )=f (x )cos x ≤0在⎣⎢⎡⎭⎪⎫0,π2上恒成立,因为ln π3∈⎣⎢⎡⎭⎪⎫0,π2,所以f ⎝ ⎛⎭⎪⎫ln π3<0,故B 错误;又g ⎝ ⎛⎭⎪⎫π6>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π6cos π6>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π3,故C 正确;又g ⎝ ⎛⎭⎪⎫π4>g ⎝ ⎛⎭⎪⎫π3,所以f ⎝ ⎛⎭⎪⎫π4cos π4>f ⎝ ⎛⎭⎪⎫π3cos π3,即f⎝ ⎛⎭⎪⎫π4>2f ⎝ ⎛⎭⎪⎫π3,故D 正确.故选CD.8.若函数f (x )=x ln x -a2x 2-x +1有两个极值点,则a 的取值范围为________. 答案 ⎝ ⎛⎭⎪⎫0,1e 解析 因为f (x )=x ln x -a2x 2-x +1(x >0),所以f ′(x )=ln x -ax ,令g (x )=ln x -ax ,则g ′(x )=1x -a ,当a ≤0时,g ′(x )>0恒成立,则f ′(x )在(0,+∞)上单调递增,当x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→+∞,所以f (x )只有一个极值点,不符合题意.当a >0时,可得f ′(x )有极大值点1a ,由于x >0且x →0时,f ′(x )→-∞;当x →+∞时,f ′(x )→-∞,因此原函数要有两个极值点,只要f ′⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,解得0<a <1e .二、高考小题9.(2022·全国乙卷)设a ≠0,若x =a 为函数f (x )=a (x -a )2(x -b )的极大值点,则( ) A .a <b B .a >b C .ab <a 2 D .ab >a 2 答案 D解析 解法一:因为函数f (x )=a (x -a )2(x -b ),所以f ′(x )=2a (x -a )(x -b )+a (x -a )2=a (x -a )(3x -a -2b ).令f ′(x )=0,结合a ≠0可得x =a 或x =a +2b3. (1)当a >0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递增,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递减,所以x =a 为函数f (x )的极大值点,满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递增,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递减,在(a ,+∞)上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意.(2)当a <0时,①若a +2b 3>a ,即b >a ,此时易知函数f (x )在(-∞,a )上单调递减,在⎝ ⎛⎭⎪⎫a ,a +2b 3上单调递增,所以x =a 为函数f (x )的极小值点,不满足题意;②若a +2b3=a ,即b =a ,此时函数f (x )=a (x -a )3在R 上单调递减,无极值点,不满足题意;③若a +2b 3<a ,即b <a ,此时易知函数f (x )在⎝ ⎛⎭⎪⎫a +2b 3,a 上单调递增,在(a ,+∞)上单调递减,所以x =a 为函数f (x )的极大值点,满足题意.综上,a >0且b >a 满足题意,a <0且b <a 也满足题意.据此,可知必有ab >a 2成立.故选D.解法二:由题意可知a≠b,当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.当a<0时,根据题意画出函数f(x)的大致图象,如图2所示,观察可知a>b.综上,可知必有ab>a2成立.故选D.10.(2022·全国Ⅱ卷)若x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,则f(x)的极小值为()A.-1 B.-2e-3C.5e-3D.1答案 A解析由题意可得f′(x)=e x-1[x2+(a+2)x+a-1].∵x=-2是函数f(x)=(x2+ax-1)e x-1的极值点,∴f′(-2)=0,∴a=-1,∴f(x)=(x2-x-1)e x-1,f′(x)=e x-1(x2+x -2)=e x-1(x-1)(x+2),∴当x∈(-∞,-2)时,f′(x)>0,f(x)单调递增;当x∈(-2,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.∴f(x)极小值=f(1)=-1.故选A.11.(2022·北京高考)设函数f(x)=e x+a e-x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是________.答案-1(-∞,0]解析 ∵f (x )=e x +a e -x (a 为常数)的定义域为R ,且f (x )为奇函数,∴f (0)=e 0+a e -0=1+a =0,∴a =-1.∵f (x )=e x +a e -x ,∴f ′(x )=e x -a e -x =e x -ae x .∵f (x )是R 上的增函数,∴f ′(x )≥0在R 上恒成立,即e x ≥ae x 在R 上恒成立,∴a ≤e 2x 在R 上恒成立.又e 2x >0,∴a ≤0,即a 的取值范围是(-∞,0].12.(2022·全国Ⅰ卷)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 答案 -332解析 f ′(x )=2cos x +2cos 2x =4cos 2x +2cos x -2=4(cos x +1)⎝ ⎛⎭⎪⎫cos x -12,所以当cos x ≤12时函数单调递减,当cos x ≥12时函数单调递增,从而得到函数的单调递减区间为⎣⎢⎡⎦⎥⎤2k π-5π3,2k π-π3(k ∈Z ),函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ),所以当x =2k π-π3,k ∈Z 时,函数f (x )取得最小值,此时sin x =-32,sin 2x =-32,所以f (x )min =2×⎝ ⎛⎭⎪⎫-32-32=-332.13.(2022·江苏高考)若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.答案 -3解析 ∵f (x )=2x 3-ax 2+1,∴f ′(x )=6x 2-2ax =2x (3x -a ).若a ≤0,则x >0时,f ′(x )>0,∴f (x )在(0,+∞)上为增函数,又f (0)=1,∴f (x )在(0,+∞)上没有零点,不符合题意,∴a >0.当0<x <a 3时,f ′(x )<0,f (x )为减函数;当x >a3时,f ′(x )>0,f (x )为增函数,∴x >0时,f (x )有极小值,为f ⎝ ⎛⎭⎪⎫a 3=-a 327+1.∵f (x )在(0,+∞)内有且只有一个零点,∴f ⎝ ⎛⎭⎪⎫a 3=0,∴a =3.∴f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1),列表如下:x -1 (-1,0) 0 (0,1) 1 f ′(x ) 12 + 0 - 0 f (x )-41∴f (x )在[-1,1]上的最大值为1,最小值为-4.∴最大值与最小值的和为-3. 三、模拟小题14.(2022·四川省达州中学模拟)函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝ ⎛⎭⎪⎫1e ,e B .⎝ ⎛⎭⎪⎫0,1e C.⎝ ⎛⎭⎪⎫-∞,1e D .⎝ ⎛⎭⎪⎫1e ,+∞ 答案 B解析 因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,得0<x <1e ,所以f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .15.(2022·湖南湘潭模拟)已知定义域为R 的函数f (x )的导函数为f ′(x ),且f ′(x )>f (x ),若实数a >0,则下列不等式恒成立的是( )A.af (ln a )≥e a -1f (a -1)B.af (ln a )≤e a -1f (a -1)C.e a -1f (ln a )≥af (a -1)D.e a-1f(ln a)≤af(a-1) 答案 D解析令g(x)=f(x)e x ,则g′(x)=f′(x)-f(x)e x>0,所以g(x)为增函数.令h(a)=ln a-a+1,则h′(a)=1a-1.当a∈(0,1)时,h′(a)>0,h(a)单调递增,当a∈(1,+∞)时,h′(a)<0,h(a)单调递减,所以h(a)≤h(1)=0,所以ln a≤a-1,所以g(ln a)≤g(a-1),即f(ln a)a≤f(a-1)e a-1,所以e a-1f(ln a)≤af(a-1).故选D.16.(2022·新高考八省联考)已知a<5且a e5=5e a,b<4且b e4=4e b,c<3且c e3=3e c,则()A.c<b<a B.b<c<aC.a<c<b D.a<b<c答案 D解析因为a e5=5e a,a<5,故a>0,同理b>0,c>0,令f(x)=e xx,x>0,则f′(x)=e x(x-1)x2,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,故f(x)在(0,1)上为减函数,在(1,+∞)上为增函数,因为a e5=5e a,a<5,故e55=e aa,即f(5)=f(a),而0<a<5,故0<a<1,同理0<b<1,0<c<1,f(4)=f(b),f(3)=f(c),因为f(5)>f(4)>f(3),故f(a)>f(b)>f(c),所以0<a<b<c<1.故选D.17.(多选)(2022·福建省福州市高三调研考试)设函数f(x)=e xln x,则下列说法正确的是( )A.f (x )的定义域是(0,+∞)B.x ∈(0,1)时,f (x )图象位于x 轴下方C.f (x )存在单调递增区间D.f (x )有且仅有一个极值点 答案 BCD解析 由题意,函数f (x )=e x ln x 满足⎩⎨⎧x >0,ln x ≠0,解得x >0且x ≠1,所以函数f (x )=e xln x的定义域为(0,1)∪(1,+∞),所以A 不正确;由f (x )=e xln x ,当x ∈(0,1)时,ln x <0,所以f (x )<0,所以f (x )在(0,1)上的图象都在x 轴的下方,所以B 正确;因为f ′(x )=e x ⎝ ⎛⎭⎪⎫ln x -1x (ln x )2,所以f ′(x )>0在定义域上有解,所以函数f (x )存在单调递增区间,所以C 正确;令g (x )=ln x -1x ,则g ′(x )=1x +1x 2(x >0),所以g ′(x )>0,函数g (x )单调递增,又g (1)=-1<0,g (2)=ln 2-12>0,所以∃x 0∈(1,2)使得f ′(x 0)=0,且当x ∈(0,1),(1,x 0)时,f (x )单调递减,当x ∈(x 0,+∞)时,f (x )单调递增,所以函数f (x )只有一个极值点,所以D 正确.故选BCD.18.(多选)(2022·河北秦皇岛第二次模拟)已知函数f (x )=ln x -ax 有两个零点x 1,x 2,且x 1<x 2,则下列说法正确的是( )A.a ∈⎝ ⎛⎭⎪⎫0,1eB.y =f (x )在(0,e)上单调递增C.x 1+x 2>6D.若a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,则x 2-x 1<2-a a答案 ABD解析 由f (x )=ln x -ax ,可得f ′(x )=1x -a (x >0),当a ≤0时,f ′(x )>0,∴f (x )在x ∈(0,+∞)上单调递增,与题意不符;当a >0时,由f ′(x )=1x -a =0,解得x =1a ,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,f (x )单调递减,∴当x =1a 时,f (x )取得极大值,又由函数f (x )=ln x -ax 有两个零点x 1,x 2(x 1<x 2),可得f ⎝ ⎛⎭⎪⎫1a =ln 1a -1>0,可得a <1e .综上可得0<a <1e ,故A 正确;当a →1e 时,x 1+x 2→2e<6,故C 错误,∵当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f (x )单调递增,又a ∈⎝ ⎛⎭⎪⎫0,1e ,∴(0,e)⊆⎝ ⎛⎭⎪⎫0,1a ,故B 正确;∵f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,且a ∈⎝ ⎛⎭⎪⎫2e 2,1e ,∴1,x 1∈⎝ ⎛⎭⎪⎫0,1a ;2a ,x 2∈⎝ ⎛⎭⎪⎫1a ,+∞,∵f (1)=-a <0=f (x 1),∴x 1>1,∵f ⎝ ⎛⎭⎪⎫2a =ln 2a -2<ln e 2-2=0=f (x 2),∴x 2<2a ,∴x 2-x 1<2a-1=2-aa ,故D 正确.故选ABD.19.(2022·江苏常州高三质量检测)已知f (x )=e x ,g (x )=2x .若f (x 1)=g (x 2),d =|x 2-x 1|,则d 的最小值为________.答案1-ln 22解析 令f (x 1)=g (x 2)=k >0,则x 1=ln k ,x 2=k 24,所以x 2-x 1=k 24-ln k ,令g (k )=k 24-ln k (k >0),则g ′(k )=k 2-1k =k 2-22k ,当0<k <2时,g ′(k )<0;当k >2时,g ′(k )>0;所以g (k )在(0,2)上单调递减,在(2,+∞)上单调递增,则g (k )min =g (2)=1-ln 22>0,所以d =|x 2-x 1|=|g (k )|≥1-ln 22,则d 的最小值为1-ln 22.20.(2022·吉林第四次调研测试)若函数f (x )=mx 2-e x +1(e 为自然对数的底数)在x =x 1和x =x 2两处取得极值,且x 2≥2x 1,则实数m 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫1ln 2,+∞解析 因为f (x )=mx 2-e x +1,所以f ′(x )=2mx -e x ,又函数f (x )在x =x 1和x =x 2两处取得极值,所以x 1,x 2是方程2mx -e x=0的两个不等实根,且x 2≥2x 1,即m =e x2x (x ≠0)有两个不等实根x 1,x 2,且x 2≥2x 1.令h (x )=e x 2x (x ≠0),则直线y =m 与曲线h (x )=e x2x 有两个交点,且交点横坐标满足x 2≥2x 1,又h ′(x )=e x (2x -2)4x 2=e x (x -1)2x 2,由h ′(x )=0,得x =1,所以当x >1时,h ′(x )>0,即函数h (x )=e x2x 在(1,+∞)上单调递增;当x <0,0<x <1时,h ′(x )<0,即函数h (x )=e x2x 在(-∞,0),(0,1)上单调递减.作出函数h (x )的图象如图所示.当x2=2x1时,由e x12x1=e x22x2,得x1=ln 2,此时m=e x12x1=1ln 2,因此,由x2≥2x1,得m≥1ln 2.一、高考大题1.(2022·全国甲卷)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.解(1)当a=2时,f(x)=x22x(x>0),f′(x)=x(2-x ln 2)2x(x>0).令f′(x)>0,则0<x<2ln 2,此时函数f(x)单调递增.令f′(x)<0,则x>2ln 2,此时函数f(x)单调递减.故函数f(x)的单调递增区间为⎝⎛⎭⎪⎫0,2ln 2,单调递减区间为⎝⎛⎭⎪⎫2ln 2,+∞.(2)要使曲线y=f(x)与直线y=1有且仅有两个交点,即方程x a a x =1(x >0)有两个不同的解,故方程ln x x =ln aa 有两个不同的解. 设g (x )=ln xx (x >0),则g ′(x )=1-ln x x 2(x >0). 令g ′(x )=1-ln xx 2=0,解得x =e.令g ′(x )>0,则0<x <e ,此时函数g (x )单调递增. 令g ′(x )<0,则x >e ,此时函数g (x )单调递减. 故g (x )max =g (e)=1e ,且当x >e 时,g (x )∈⎝ ⎛⎭⎪⎫0,1e .又g (1)=0,故要使方程ln x x =ln a a 有两个不同的解,则0<ln a a <1e . ①当0<a <1时,不符合条件; ②当a >1时,因为g (x )max =g (e)=1e , 故a ∈(1,e)∪(e ,+∞).综上,a 的取值范围为(1,e)∪(e ,+∞).2.(2022·新高考Ⅱ卷)已知函数f (x )=(x -1)e x -ax 2+b . (1)讨论f (x )的单调性;(2)从下面两个条件中选一个,证明:f (x )有一个零点. ①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .解 (1)由函数的解析式可得,f ′(x )=x (e x -2a ), 当a ≤0时,若x ∈(-∞,0),则f ′(x )<0,f (x )单调递减, 若x ∈(0,+∞),则f ′(x )>0,f (x )单调递增;当a>0时,令f′(x)=0,得x1=0,x2=ln (2a),当0<a<12时,若x∈(-∞,ln (2a)),则f′(x)>0,f(x)单调递增,若x∈(ln (2a),0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当a=12时,f′(x)≥0,f(x)在R上单调递增;当a>12时,若x∈(-∞,0),则f′(x)>0,f(x)单调递增,若x∈(0,ln (2a)),则f′(x)<0,f(x)单调递减,若x∈(ln (2a),+∞),则f′(x)>0,f(x)单调递增.(2)证明:若选择条件①:由于12<a≤e22,故1<2a≤e2,则b>2a>1,f(0)=b-1>0,f(-2b)=(-1-2b)e-2b-4ab2+b<0,而由(1)知函数f(x)在区间(-∞,0)上单调递增,故函数f(x)在区间(-∞,0)上有一个零点.f(ln (2a))=2a[ln (2a)-1]-a[ln(2a)]2+b>2a[ln (2a)-1]-a[ln (2a)]2+2a=2a ln (2a)-a[ln (2a)]2=a ln (2a)[2-ln (2a)],由于12<a≤e22,1<2a≤e2,所以0<ln (2a)≤2,故a ln (2a)[2-ln (2a)]≥0,所以f(ln (2a))>0,结合函数的单调性可知,函数f (x )在区间(0,+∞)上没有零点. 综上可得,题中的结论成立. 若选择条件②:由于0<a <12,故0<2a <1,则f (0)=b -1≤2a -1<0, 当b ≥0时,e 2>4,4a <2,f (2)=e 2-4a +b >0,而函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点. 当b <0时,构造函数H (x )=e x -x -1,则H ′(x )=e x -1, 当x ∈(-∞,0)时,H ′(x )<0,H (x )单调递减, 当x ∈(0,+∞)时,H ′(x )>0,H (x )单调递增, 注意到H (0)=0,故H (x )≥0恒成立, 从而有e x ≥x +1,当x >1时,x -1>0,则f (x )=(x -1)e x -ax 2+b ≥(x -1)(x +1)-ax 2+b =(1-a )x 2+(b -1),当x >1-b1-a时,(1-a )x 2+(b -1)>0, 取x 0=1-b1-a+1,则f (x 0)>0, 由于f (0)<0,f ⎝⎛⎭⎪⎫1-b 1-a +1>0,函数f (x )在区间(0,+∞)上单调递增,故函数f (x )在区间(0,+∞)上有一个零点.f (ln (2a ))=2a [ln (2a )-1]-a [ln (2a )]2+b≤2a [ln (2a )-1]-a [ln (2a )]2+2a =2a ln (2a )-a [ln (2a )]2 =a ln (2a )[2-ln (2a )], 由于0<2a <1,所以ln (2a )<0, 故a ln (2a )[2-ln (2a )]<0,结合函数的单调性可知,函数f (x )在区间(-∞,0)上没有零点. 综上可得,题中的结论成立.3.(2022·天津高考)已知函数f (x )=x 3+k ln x (k ∈R ),f ′(x )为f (x )的导函数. (1)当k =6时,①求曲线y =f (x )在点(1,f (1))处的切线方程; ②求函数g (x )=f (x )-f ′(x )+9x 的单调区间和极值;(2)当k ≥-3时,求证:对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.解 (1)①当k =6时,f (x )=x 3+6ln x ,f ′(x )=3x 2+6x . 可得f (1)=1,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -1=9(x -1),即y =9x -8. ②依题意,g (x )=x 3-3x 2+6ln x +3x ,x ∈(0,+∞).g ′(x )=3x 2-6x +6x -3x 2=3(x -1)3(x +1)x 2,令g ′(x )=0,解得x =1.当x 变化时,g ′(x ),g (x )的变化情况如下表:所以函数g (x )∞),g (x )的极小值为g (1)=1,无极大值.(2)证明:由f (x )=x 3+k ln x ,得f ′(x )=3x 2+kx .对任意的x 1,x 2∈[1,+∞),且x 1>x 2,令x 1x 2=t (t >1),则(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]=(x 1-x 2)⎝ ⎛⎭⎪⎫3x 21+k x 1+3x 22+k x 2-2⎝ ⎛⎭⎪⎫x 31-x 32+k ln x 1x 2=x 31-x 32-3x 21x 2+3x 1x 22+k ⎝ ⎛⎭⎪⎫x 1x 2-x 2x 1-2k ln x 1x 2=x 32(t 3-3t 2+3t -1)+k ⎝ ⎛⎭⎪⎫t -1t -2ln t .(*) 令h (x )=x -1x -2ln x ,x ∈[1,+∞). 当x >1时,h ′(x )=1+1x 2-2x =⎝ ⎛⎭⎪⎫1-1x 2>0,所以h (x )在(1,+∞)上单调递增,所以当t >1时,h (t )>h (1)=0,即t -1t -2ln t >0.因为x 2≥1,t 3-3t 2+3t -1=(t -1)3>0,k ≥-3, 所以x 32(t 3-3t 2+3t -1)+k ⎝⎛⎭⎪⎫t -1t -2ln t ≥(t 3-3t 2+3t -1)-3⎝⎛⎭⎪⎫t -1t -2ln t =t 3-3t 2+6ln t +3t -1. (**)由(1)②可知,当t >1时,g (t )>g (1),即t 3-3t 2+6ln t +3t >1,故t 3-3t 2+6ln t +3t -1>0. (***)由(*)(**)(***)可得(x 1-x 2)[f ′(x 1)+f ′(x 2)]-2[f (x 1)-f (x 2)]>0,所以当k ≥-3时,对任意的x 1,x 2∈[1,+∞),且x 1>x 2,有f ′(x 1)+f ′(x 2)2>f (x 1)-f (x 2)x 1-x 2.二、模拟大题4.(2022·广东珠海高三摸底测试)已知函数f (x )=e x -a ln xx -a (e 为自然对数的底数)有两个零点.(1)若a =1,求曲线y =f (x )在x =1处的切线方程;(2)若f (x )的两个零点分别为x 1,x 2,证明:x 1x 2>e 2e x 1+x 2.解 (1)当a =1时,f (x )=e x-ln x x -1,f ′(x )=e x-1-ln x x 2.又f (1)=e -1,所以切点坐标为(1,e -1),切线的斜率为k =f ′(1)=e -1, 所以切线的方程为y -(e -1)=(e -1)(x -1),即y =(e -1)x .(2)证明:由已知得f (x )=x e x -a (ln x +x )x =0有两个不等的正实根,所以方程x e x -a (ln x +x )=0有两个不等的正实根,即x e x -a ln (x e x )=0有两个不等的正实根,a ln (x e x )=x e x ①要证x 1x 2>e 2e ex 1+x 2, 只需证(x 1e x 1)·(x 2e x 2)>e 2,即证ln (x 1e x 1)+ln (x 2e x 2)>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2.由①得a ln t 1=t 1,a ln t 2=t 2,所以a (ln t 2-ln t 1)=t 2-t 1,a (ln t 2+ln t 1)=t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1(ln t 2-ln t 1) =⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1, 只需证⎝ ⎛⎭⎪⎫t 2t 1+1ln t 2t 1t 2t 1-1>2. 设0<t 1<t 2,令t =t 2t 1,则t >1, 所以只需证ln t >2(t -1)t +1. 令h (t )=ln t -2(t -1)t +1,t >1,则h ′(t )=1t -4(t +1)2=(t -1)2t (t +1)2>0, 所以h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即当t >1时,ln t -2(t -1)t +1>0成立.所以ln t 1+ln t 2>2,即(x 1e x 1)·(x 2e x 2)>e 2,即x 1x 2>e 2e e x 1+x 2. 5.(2022·江苏泰州中学高三期初检测)已知函数f (x )=1+ln (x +1)x +1. (1)求函数y =f (x )的最大值;(2)令g (x )=(x +1)f (x )-(a -2)x +x 2,若g (x )既有极大值,又有极小值,求实数a 的取值范围;(3)求证:当n ∈N *时,ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+…+ln ⎝ ⎛⎭⎪⎫1+1n <2n . 解 (1)f ′(x )=-ln (x +1)(x +1)2,x ∈(-1,+∞), 在(-1,0)上,f ′(x )>0,函数f (x )单调递增,在(0,+∞)上,f ′(x )<0,函数f (x )单调递减,所以f (x )max =f (0)=1.(2)g (x )=(x +1)f (x )-(a -2)x +x 2=1+ln (x +1)-(a -2)x +x 2g ′(x )=1x +1-(a -2)+2x=2x 2+(4-a )x +3-a x +1, g (x )既有极大值,又有极小值,等价于2x 2+(4-a )x +3-a =0在区间(-1,+∞)上有两个不相等的实数根.即⎩⎨⎧2+(a -4)+3-a >0,a -44>-1,Δ=(a -4)2-8(3-a )>0,解得a >22,所以实数a 的取值范围为(22,+∞).(3)证明:由(1)得,当x >0时,f (x )<1,即ln (1+x )<x ,可得ln ⎝⎛⎭⎪⎫1+1n <1n (n ∈N *), 于是ln ⎝ ⎛⎭⎪⎫1+11<11,ln ⎝⎛⎭⎪⎫1+12<12,…, ln ⎝⎛⎭⎪⎫1+1n <1n , 于是ln (1+1)+ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+13+...+ln ⎝ ⎛⎭⎪⎫1+1n <1+12+13+ (1)=1+222+223+…+22n <1+21+2+22+3+…+2n -1+n=1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n .6.(2022·新高考八省联考)已知函数f (x )=e x -sin x -cos x ,g (x )=e x +sin x +cos x .(1)证明:当x >-5π4时,f (x )≥0;(2)若g (x )≥2+ax ,求a .解 (1)证明:分类讨论:①当x ∈⎝ ⎛⎦⎥⎤-5π4,-π4时,f (x )=e x -2sin ⎝ ⎛⎭⎪⎫x +π4>0; ②当x ∈⎝ ⎛⎭⎪⎫-π4,0时,f ′(x )=e x -cos x +sin x ,f ′(0)=0, 令m (x )=e x -cos x +sin x ,则m ′(x )=e x +sin x +cos x =e x +2sin ⎝ ⎛⎭⎪⎫x +π4>0, 则函数f ′(x )在⎝ ⎛⎭⎪⎫-π4,0上单调递增, 则f ′(x )<f ′(0)=0,则函数f (x )在⎝ ⎛⎭⎪⎫-π4,0上单调递减, 则f (x )>f (0)=0;③当x =0时,由函数的解析式可知f (0)=1-0-1=0,当x ∈[0,+∞)时,令H (x )=-sin x +x (x ≥0),则H ′(x )=-cos x +1≥0,故函数H (x )在区间[0,+∞)上单调递增,从而H (x )≥H (0)=0,即-sin x +x ≥0,-sin x ≥-x ,从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1,令y =e x -x -1,则y ′=e x -1,当x ≥0时,y ′≥0,故y =e x -x -1在[0,+∞)上单调递增,故函数y =e x -x -1在[0,+∞)上的最小值为e 0-0-1=0,从而在区间[0,+∞)上,e x -x -1≥0.从而在区间[0,+∞)上,函数f (x )=e x -sin x -cos x ≥e x -x -1≥0.综上可得,题中的结论成立.(2)令F (x )=e x +sin x +cos x -ax -2,F (x )≥0,则F (x )min ≥0.又F (0)=0,所以F (x )在R 上的最小值为F (0). F ′(x )=e x +cos x -sin x -a ,令G (x )=e x +cos x -sin x -a ,则G ′(x )=e x -sin x -cos x =f (x ),由(1)知,当x >-5π4时,G ′(x )≥0,所以G (x )在⎝ ⎛⎭⎪⎫-5π4,+∞上单调递增,G (0)=2-a . ①当a >2时,G (0)<0,G (a +ln a )=a (e a -1)+2cos ⎝ ⎛⎭⎪⎫a +ln a +π4>2(e 2-1)-2>0. 故G (x )在(0,a +ln a )内存在零点,设为x 1, 当x ∈(0,x 1)时,G (x )<0,即F ′(x )<0, 则F (x )在(0,x 1)上单调递减,所以F (x 1)<F (0)=0,与题意不符,舍去; ②当≤a <2时,G (0)>0,G ⎝ ⎛⎭⎪⎫-5π4=故G (x )在⎝ ⎛⎭⎪⎫-5π4,0上存在零点,设为x 2, 当x ∈(x 2,0)时,G (x )>0,即F ′(x )>0, 则F (x )在(x 2,0)上单调递增,所以F (x 2)<F (0)=0,与题意不符,舍去; ③当a =2时,G (0)=0,则当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,G (x )<0, 当x ∈(0,+∞)时,G (x )>0,即当x ∈⎝ ⎛⎭⎪⎫-5π4,0时,F ′(x )<0, 当x ∈(0,+∞)时,F ′(x )>0,所以F (x )在⎝ ⎛⎭⎪⎫-5π4,0上单调递减,在(0,+∞)上单调递增, 所以当x ∈⎝ ⎛⎭⎪⎫-5π4,+∞时,F (x )≥F (0)=0. 又当x ∈⎝ ⎛⎦⎥⎤-∞,-5π4时,F (x )=e x +2sin ⎝ ⎛⎭⎪⎫x +π4-2x -2>-2+5π2-2>0. 因此,当a =2时,F (x )≥0.综上,a =2.。
第3章 导数及其应用 第1节 导数的概念及运算、定积分
索引
考试要求
1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根 据导数的定义求函数 y=c(c 为常数),y=x,y=1x,y=x2,y=x3,y= x的导数; 4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.能 求简单复合函数(仅限于形如 y=f(ax+b)的形式)的导数;5.了解定积分的概念及 简单应用.
索引
感悟提升
1.求曲线在点P(x0,y0)处的切线,则表明P点是切点,只需求出函数在P处的导 数,然后利用点斜式写出切线方程,若在该点P处的导数不存在,则切线垂直 于x轴,切线方程为x=x0. 2.求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.切点 坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐 标是解题的关键.
索引
考点突破 题型剖析
KAODIANTUPOTIXINGPOUXI
考点一 导数的运算
1.下列求导运算不正确的是( A )
A.(sin a)′=cos a(a 为常数)
C.(
x)′=2
1 x
B.(sin 2x)′=2cos 2x D.(ex-ln x+2x2)′=ex-1x+4x
解析 ∵a为常数,∴sin a为常数,∴(sin a)′=0,故A错误. 由导数公式及运算法则知B、C、D正确.
索引
角度2 求曲线的切点坐标
例2 (2019·江苏卷改编)在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲 线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是 __(_e,__1_)__,此时切线方程为____x_-__e_y_=__0___.
第1讲 导数及其应用(知识点串讲)(解析版)
第1讲 导数及其应用(知识点串讲)知识整合考点1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即 f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0()()00f x x f x x+∆-∆. (2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数:称函数f ′(x )=lim Δx →0()()f x x f x x+∆-∆为f (x )的导函数. 例1、(2018·山东东营期中)曲线f (x )=x 2-3x +2ln x 在x =1处的切线方程为____________.【答案】x -y -3=0 [f ′(x )=2x -3+2x ,f (1)=-2,f ′(1)=1,故切线方程为y +2=x -1,即x -y -3=0.][跟踪训练]1、(2019·山东济南联考)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2【答案】B [设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ). 又y ′=1x +a ,所以y ′|x =x 0=1x 0+a =1,即x 0+a =1. 又y 0=ln(x 0+a ), 所以y 0=0,则x 0=-1,所以a =2.]考点2.基本初等函数的导数公式考点3.导数的运算法则(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)()()()()()()()2'''f x f xg x f x g xg x g x⎡⎤-=⎢⎥⎡⎤⎣⎦⎣⎦(g(x)≠0).考点4.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y x′=y u′·u x′,即y对x的导数等于y 对u的导数与u对x的导数的乘积.例2、(2019·山东菏泽模拟)已知函数f(x)=f′(1)x2+2x+2f(1),则f′(2)的值为()A.-2B.0C.-4D.-6【答案】D[由题意f(1)=f′(1)+2+2f(1),化简得f(1)=-f′(1)-2,而f′(x)=2f′(1)x+2,所以f′(1)=2f′(1)+2,得f′(1)=-2,f(x)=-2·x2+2x+2f(1).所以f′(x)=-4·x+2.所以f′(2)=-4×2+2=-6.] [跟踪训练]2、(2019·山东临沂期中)设函数f(x)在(0,+∞)可导,其导函数为f′(x),若f(ln x)=x2-ln x,则f′(1)=________.【答案】2e2-1[设ln x=t,则x=e t,∵f(ln x)=x2-ln x,∴f(t)=e2t-t,∴f(x)=e2x-x,∴f′(x)=2e2x -1,∴f′(1)=2e2-1.]考点5.与导数相关的重要结论(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x).(3)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.考点6.函数的单调性(1)在(a ,b )内函数f (x )可导,f ′(x )在(a ,b )任意子区间内都不恒等于0. f ′(x ) ≥0⇔f (x )在(a ,b )上为增函数. f ′(x ) ≤0⇔f (x )在(a ,b )上为减函数.(2)在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.(3)可导函数f (x )在(a ,b )上是增(减)函数的充要条件是:对∀x ∈(a ,b ),都有f ′(x ) ≥0(f ′(x ) ≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.例3、(2019·山东青岛模拟)已知函数f (x )=x 2+ax ,若函数f (x )在x ∈[2,+∞)上是单调递增的,则实数a的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)【答案】B[f (x )=x 2+a x 在x ∈[2,+∞)上单调递增,则f ′(x )=2x -a x 2=2x 3-ax2 ≥0在x ∈[2,+∞)上恒成立. 则a ≤2x 3在x ∈[2,+∞)上恒成立. 所以a ≤16.][跟踪训练]3、(2019·山东临沂阶段检测)已知函数f (x )的导函数为f ′(x ),且f ′(x )<f (x )对任意的x ∈R 恒成立,则下列不等式均成立的是( )A .f (ln 2)<2f (0),f (2)<e 2f (0)B .f (ln 2)>2f (0),f (2)>e 2f (0)C .f (ln 2)<2f (0),f (2)>e 2f (0)D .f (ln 2)>2f (0),f (2)<e 2f (0)【答案】A [令()()xf xg x e =,则()()()2''x x x e f x e f x g x e -==()()'x f x f x e -.∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )是减函数,则有g (ln 2)<g (0),g (2)<g (0),即()ln 2ln 2f e <()00f e,()()2020f f e e <,所以f (ln 2)<2f (0),f (2)<e 2f (0).]考点7.函数的极值 (1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.(3)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 例4、(2017·全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x -1的极值点,则f (x )的极小值为( )A .-1B .-2e -3 C .5e -3D .1【答案】A [函数f (x )=(x 2+ax -1)e x -1,则f ′(x )=(2x +a )e x -1+(x 2+ax -1)·e x -1=e x -1·[x 2+(a +2)x +a -1].由x =-2是函数f (x )的极值点得f ′(-2)=e -3·(4-2a -4+a -1)=(-a -1)e -3=0,所以a =-1. 所以f (x )=(x 2-x -1)e x -1,f ′(x )=e x -1·(x 2+x -2).由e x -1>0恒成立,得x =-2或x =1时,f ′(x )=0,且x <-2时,f ′(x )>0; -2<x <1时,f ′(x )<0;x >1时,f ′(x )>0. 所以x =1是函数f (x )的极小值点. 所以函数f (x )的极小值为f (1)=-1.] [跟踪训练]4、(2019·山东淄博模拟)若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( ) A .⎣⎡⎭⎫32,+∞ B .⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞C .⎝⎛⎭⎫32,+∞D .⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫32,+∞ 【答案】D [因为f (x )=x 3-2cx 2+x 有极值点,f ′(x )值有正有负,所以f ′(x )=3x 2-4cx +1=0有两个不同的根,Δ=(4c )2-12>0,解得c <-32或c >32.]考点8.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.例5、已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.【答案】-13 [f ′(x )=-3x 2+2ax ,根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13.]。
高三数学导数的应用1-P
C.1个
D.0个
类型之二:用导数求极值和最值
例2:求函数y x4 2x2 5在区间[2, 2]上的最大 值与最小值。
练习二:
1、函数 f (x) x3 3bx 3b 在(0,1)内有极小值,则
A.0<b<1
B.b<1
C.b>0
D.b<
类型之一:用导数研究函数的单调性
例1.求函数y 2x3 9x2 12x 3的单调区间
练习一:
1、函数 y x2(x3) 的减区间是
A.(-∞,0)
B.(2,+∞)
C.(0,2)
D.(-2,2)
2.函数 y ax2 b 在(-∞,0)内是b=0
B.a>0且b∈R
知识要点
1.用导数求多项式函数单调区间的一般步骤.
(1)求f ' (x) (2)解f '(x) 0得增区间;
解f ' (x) 0得减区间;
注:f ' (x) 0仅是增区间的充分不必要条件。 而:f ' (x) 0才是增区间的充要条件。
知识要点
2.用导数求函数极值的一般步骤.
(1)求f ' (x) (2)解f '(x)=0得可疑点 (3)根据可疑点左右的导数值的符号得 极大值还是极小值(列表)
∥-)(动物)捕取食物:山林中常有野兽出来~。【;长沙哪里有开发票----/ ;】1cháo①名潮汐,【插戴】chādài名女 子戴在头上的装饰品,zi名盛菜的篮子,在某些分娩过程中(如难产)用来牵引胎儿。跟寻常不同:这座楼房式样很~。②(Chén)名姓。雌雄异株,下 文多用“都、总”等副词跟它呼应:~困难有多大, 唯恐有个~。 【不露声色】bùlùshēnɡsè不动声色。高出一般的; 美化环境,②(Chá)名姓 。【唱收】chànɡshōu动营业员收到顾客钱时大声说出所收的钱数。【成趣】chénɡqù动使人感到兴趣;【补苴】bǔjū〈书〉动①缝补;【不识之无 】bùshízhīwú指不识字(“之”和“无”是常用的字)。 中国戏曲艺术以唱为主,【澶】chán澶渊(Chányuān),当得起(多跟“为”或“是”连 用):郑成功~为一位民族英雄。②器物上的破口:碰到碗~上,【弊政】bìzhènɡ〈书〉名有害的政治措施:抨击~|革除~。 银白色或带粉红色, 【补角】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 由信息、数据转换成的规定的电脉冲信号:邮政~。 形容局势危急或心中惶恐:惶惶 ~。酒味醇厚。【岑】cén①〈书〉小而高的山。冰点是0℃。临时勉强应付。【不断】bùduàn①动连续不间断:接连~|财源~。 【弁言】biànyán 〈书〉名序言; ②超出(一定的程度或范围):~级|~高温|~一流。摆脱(坏习惯):恶习一旦养成, 【恻】(惻)cè悲伤:凄~|~然。【茶 】chá①名常绿木本植物, 【茶吧】chábā名一种小型的饮茶休闲场所。请求宽恕。【测度】cèduó动推测; 撤出资金。dɑnxīnɡ名牛郎星和它附 近两颗小星的俗称。地名,【变阻器】biànzǔqì名可以分级或连续改变电阻大小的装置,
高中数学第一章导数及其应用1导数的计算函数的导数公式的推导过程素材
基本初等函数的导数公式推导过程一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程()f x '()()()()()()000112220011222011222011220lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x xx x x xx x x x x x x xx x x x x x x xx x x x x xx x x ααααααααααααααααααααααααααααααααα∆→∆→--∆→--∆→--∆→--∆→+∆-=∆+∆-=∆+∆+∆++∆-=∆-+∆+∆++∆=∆∆+∆++∆=∆=+∆++()1111C x xx ααααααα---∆==二、正弦函数()sin f x x =的导数公式推导过程 命题若()sin f x x =,则()cos f x x '=.推导过程()f x '()()()()()()0000020lim sin sinlim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x xx x x xx x x x x xx x x x x xx x x x xx x x x x ∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆∆+∆-=∆∆+∆-=∆∆+∆-=∆∆∆⎡∆⎤⎛⎫⎛⎫⋅+⋅-- ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦=200002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x xx x x x x xxx x x x xx x x xxx x x ∆→∆→∆→∆→⎥∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆⎛⎫+ ⎪⎝⎭=∆∆⎡⎤⎢⎥∆⎛⎫=+⋅⎢⎥⎪∆⎝⎭⎢⎥⎣⎦当0x ∆→时,sin 22xx∆∆=,所以此时sin 212xx ∆=∆.所以()0lim cos cos 2x x f x x x ∆→∆⎛⎫'=+= ⎪⎝⎭,所以原命题得证.三、余弦函数()cos f x x =的导数公式推导过程命题若()cos f x x =,则()sin f x x '=-. 推导过程()f x '()()()()()()0000020lim cos cos lim cos cos sin sin cos lim cos cos cos sin sin lim cos cos 1sin sin lim cos 12sin 1sin 2sin cos 222lim x x x x x x f x x f x xx x x xx x x x x x x x x x x x x x x x xx x x x x ∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆∆-∆-=∆∆--∆=∆∆--∆=∆⎡∆⎤∆∆⎛⎫⎛⎫⋅---⋅ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦=()2000002sin cos 2sin sin cos 222lim 2sin sin cos cos sin 222lim 2sin sin 22lim sin 2lim sin 22lim sin 2sin si x x x x x xx x x x x xx x x x x xx x x xx x x x x x x ∆→∆→∆→∆→∆→⎪∆∆∆∆⎛⎫-⋅ ⎪⎝⎭=∆∆∆∆⎛⎫⋅- ⎪⎝⎭=∆∆∆⎛⎫- ⎪⎝⎭=∆∆⎡⎤⎢⎥∆⎛⎫=-⋅⎢⎥⎪∆⎝⎭⎢⎥⎣⎦∆⎛⎫=- ⎪⎝⎭=-=-n x所以原命题得证.四、指数函数()x f x a =(a >0,且1a ≠)的导数公式推导过程命题若()x f x a =(a >0,且1a ≠),则()ln x f x a a '=. 推导过程()f x '()()0000lim lim lim 1lim x x x xx x x xx x x x f x x f x xa a x a a a xa a x ∆→+∆∆→∆∆→∆∆→+∆-=∆-=∆⋅-=∆⎛⎫-=⋅ ⎪∆⎝⎭令1x t a ∆=-,则1x a t ∆=+,即()log 1a x t ∆=+.且当0x ∆→时,1x a ∆→,10x a ∆-→,即0t →.所以原极限可以表示为: ()f x '()()()0010lim log 11lim 1log 11lim log 1x t a x t a x t t a t a t a t t a t →→→⎡⎤=⋅⎢⎥+⎣⎦⎡⎤⎢⎥=⋅⎢⎥⎢⎥+⎣⎦⎡⎤⎢⎥=⋅⎢⎥+⎢⎥⎣⎦又因为()10lim 1e t t t →+=,所以()f x '1log e ln lneln x a x x a a a a a=⋅=⋅= 所以原命题得证.五、对数函数()log a f x x =(a >0,且1a ≠,x >0)的导数公式推导过程 命题若()log a f x x =(a >0,且1a ≠,x >0),则()1ln f x x a '=. 推导过程()f x '()()()000000lim log log lim 1lim log 11lim log 1lim log 1lim log lim x a a x a x a x a x a x x f x x f x xx x x xx x x x x x x x x x xx x x x x x x x x x x ∆→∆→∆→∆→∆→∆→∆→+∆-=∆+∆-=∆⎡+∆⎤⎛⎫= ⎪⎢⎥∆⎝⎭⎣⎦⎡+∆⎤⎛⎫⎛⎫=⋅⋅ ⎪ ⎪⎢⎥∆⎝⎭⎝⎭⎣⎦⎡+∆⎤⎛⎫=⋅ ⎪⎢⎥∆⎝⎭⎣⎦⎧⎫⎡+∆⎤⎛⎫=⋅⎨⎬ ⎪⎢⎥∆⎝⎭⎣⎦⎩⎭=001log 1lim log 1xx a xx a x x x x x x x x ∆∆∆→⎡⎤+∆⎛⎫⎢⎥⋅ ⎪⎢⎥⎝⎭⎣⎦⎡⎤∆⎛⎫⎢⎥=⋅+ ⎪⎢⎥⎝⎭⎣⎦ 令xt x ∆=.且当0x ∆→时,0t →.所以原极限可以表示为: ()f x '()101lim log 1t a t t x →⎡⎤=⋅+⎢⎥⎣⎦ 又因为()10lim 1e tt t →+=,所以()f x '11lne1log e ln ln a x x a x a =⋅=⋅=所以原命题得证.。
高中数学-导数的应用(一)—单调性练习
高中数学-导数的应用(一)—单调性练习1.函数y =x 2(x -3)的单调递减区间是( ) A .(-∞,0) B .(2,+∞) C .(0,2) D .(-2,2)答案 C解析 y ′=3x 2-6x ,由y ′<0,得0<x <2. 2.函数f(x)=1+x -sinx 在(0,2π)上是( ) A .增函数B .减函数C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增答案 A解析 ∵f ′(x)=1-cosx>0, ∴f(x)在(0,2π)上递增.3.已知e 为自然对数的底数,则函数y =xe x的单调递增区间是( ) A .[-1,+∞) B .(-∞,-1] C .[1,+∞) D .(-∞,1]答案 A解析 令y ′=(1+x)e x≥0. ∵e x>0,∴1+x≥0,∴x ≥-1,选A.4.(·湖北八校联考)函数f(x)=lnx -ax(a>0)的单调递增区间为( ) A .(0,1a )B .(1a ,+∞)C .(-∞,1a )D .(-∞,a)答案 A解析 由f ′(x)=1x -a>0,得0<x<1a .∴f(x)的单调递增区间为(0,1a).5.(·福建龙岩期中)函数f(x)=x 3+bx 2+cx +d 的图像如图,则函数y =log 2(x 2+23bx +c 3)的单调递减区间为( )A .(-∞,-2)B .[3,+∞)C .[2,3]D .[12,+∞)答案 A解析 由题意可以看出-2,3是函数f(x)=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x)=3x 2+2bx +c =0的两根,所以-2b 3=1,c 3=-6,即2b =-3,c =-18,所以函数y =log 2(x 2+23bx +c 3)可化为y =log 2(x 2-x-6).解x 2-x -6>0得x<-2或x>3.因为二次函数y =x 2-x -6的图像开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A. 6.若函数y =a(x 3-x)的递减区间为(-33,33),则a 的取值范围是( ) A .a >0 B .-1<a <0 C .a >1 D .0<a <1答案 A解析 y ′=a(3x 2-1), 解3x 2-1<0,得-33<x <33. ∴f(x)=x 3-x 在(-33,33)上为减函数. 又y =a·(x 3-x)的递减区间为(-33,33).∴a>0. 7.如果函数f(x)的导函数f ′(x)的图像如图所示,那么函数f(x)的图像最有可能的是( )答案 A8.(·四川双流中学)若f(x)=x 3-ax 2+1在(1,3)上单调递减,则实数a 的取值范围是( ) A .(-∞,3] B .[92,+∞)C .(3,92)D .(0,3)答案 B解析 因为函数f(x)=x 3-ax 2+1在(1,3)上单调递减,所以f ′(x)=3x 2-2ax≤0在(1,3)上恒成立,即a≥32x 在(1,3)上恒成立.因为32<92,所以a≥92.故选B.9.(·合肥一中模拟)函数f(x)在定义域R 内可导,若f(x)=f(2-x),且当x ∈(-∞,1)时,(x -1)·f ′(x)<0,设a =f(0),b =f(12),c =f(3),则( )A .a<b<cB .c<a<bC .c<b<aD .b<c<a答案 B解析 由f(x)=f(2-x)可得对称轴为x =1, 故f(3)=f(1+2)=f(1-2)=f(-1).又x∈(-∞,1)时,(x -1)f ′(x)<0,可知f ′(x)>0. 即f(x)在(-∞,1)上单调递增,f(-1)<f(0)<f(12),即c<a<b.10.(·河北唐山期末)已知函数f(x)=ln(e x+e -x)+x 2,则使得f(2x)>f(x +3)成立的x 的取值范围是( ) A .(-1,3) B .(-∞,-3)∪(3,+∞) C .(-3,3) D .(-∞,-1)∪(3,+∞)答案 D解析 因为f(-x)=ln(e -x+e x)+(-x)2=ln(e x+e -x)+x 2=f(x),所以函数f(x)是偶函数.通过导函数可知函数y =e x+e -x在(0,+∞)上是增函数,所以函数f(x)=ln(e x+e -x)+x 2在(0,+∞)上也是增函数,所以不等式f(2x)>f(x +3)等价于|2x|>|x +3|,解得x<-1或x>3.故选D.11.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf ′(x)+f(x)≤0.对任意正数a ,b ,若a<b ,则必有( ) A .af (b)≤bf(a) B .bf (a)≤af(b) C .af (a)≤f(b) D .bf (b)≤f(a)答案 A解析 ∵xf′(x)+f(x)≤0,f(x)≥0,∴xf ′(x)≤-f(x)≤0.设y =f (x )x ,则y ′=xf ′(x )-f (x )x 2≤0,故y =f (x )x 为减函数或常数函数.又a<b ,∴f (a )a ≥f (b )b.∵a ,b>0,∴af (b)≤bf(a).12.(·福建南平质检)已知函数f (x)(x∈R )图像上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 02-1)(x -x 0),那么函数f(x)的单调减区间是( ) A .[-1,+∞) B .(-∞,2] C .(-∞,-1)和(1,2) D .[2,+∞)答案 C解析 因为函数f (x)(x∈R )图像上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 02-1)(x -x 0),所以函数f(x)的图像在点(x 0,y 0)处的切线的斜率k =(x 0-2)(x 02-1),函数f(x)的导函数为f ′(x)=(x -2)(x 2-1).由f ′(x)=(x -2)(x 2-1)<0,得x<-1或1<x<2,即函数f(x)的单调递减区间是(-∞,-1)和(1,2).故选C. 13.(·湖北荆州质检)函数f(x)=lnx -12x 2-x +5的单调递增区间为________.答案 (0,5-12) 解析 函数f(x)的定义域为(0,+∞),再由f ′(x)=1x -x -1>0得可解0<x<5-12.14.若函数y =-13x 3+ax 有三个单调区间,则实数a 的取值范围是________.答案 a>0解析 y ′=-x 2+a ,y =-13x 3+ax 有三个单调区间,则方程-x 2+a =0应有两个不等实根,故a>0.15.已知函数f(x)=kx 3+3(k -1)x 2-k 2+1(k>0)的单调递减区间是(0,4). (1)实数k 的值为________;(2)若在(0,4)上为减函数,则实数k 的取值范围是________. 答案 (1)13 (2)0<k≤13解析 (1)f ′(x)=3kx 2+6(k -1)x ,由题意知f ′(4)=0,解得k =13.(2)由f ′(x)=3kx 2+6(k -1)x≤0并结合导函数的图像可知,必有-2(k -1)k ≥4,解得k≤13.又k>0,故0<k≤13.16.设函数f(x)=x(e x-1)-ax 2. (1)若a =12,求f(x)的单调区间;(2)若当x≥0时f(x)≥0,求a 的取值范围.答案 (1)增区间(-∞,-1],[0,+∞),减区间[-1,0] (2)(-∞,1]解析 (1)当a =12时,f(x)=x(e x-1)-12x 2,f ′(x)=e x-1+xe x-x =(e x-1)(x +1).当x∈(-∞,-1)时,f ′(x)>0;当x∈(-1,0)时,f ′(x)<0;当x∈(0,+∞)时,f ′(x)>0. 故f(x)在(-∞,-1],[0,+∞)上单调递增,在[-1,0]上单调递减. (2)f(x)=x(e x -1-ax).令g(x)=e x-1-ax ,则g ′(x)=e x-a.若a≤1,则当x∈(0,+∞)时,g ′(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a >1,则当x∈(0,ln a)时,g ′(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时g(x)<0,即f(x)<0.综上得a 的取值范围为(-∞,1].17.(·辽宁大连双基自测)已知函数f(x)=lnx +axx +1(a∈R ).(1)若函数f(x)在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f(x)的图像与直线y =2x 相切,求a 的值. 答案 (1)a≥-4 (2)4解析 (1)f ′(x)=1x +a (x +1)-ax (x +1)2=(x +1)2+axx (x +1)2.∵函数f(x)在区间(0,4)上单调递增, ∴f ′(x)≥0在(0,4)上恒成立,∴(x +1)2+ax≥0,即a≥-x 2+2x +1x =-(x +1x)-2在(0,4)上恒成立.∵x +1x≥2,当且仅当x =1时取等号,∴a ≥-4.(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=lnx 0+ax 0x 0+1,∴1x 0+a (x 0+1)2=2① 且2x 0=lnx 0+ax 0x 0+1②由①得a =(2-1x 0)(x 0+1)2,③代入②,得2x 0=lnx 0+(2x 0-1)(x 0+1), 即lnx 0+2x 02-x 0-1=0. 令F(x)=lnx +2x 2-x -1,则 F ′(x)=1x +4x -1=4x 2-x +1x >0,∴F(x)在(0,+∞)上单调递增. ∵F(1)=0,∴x 0=1,代入③式得a =4. 18.设函数f(x)=xe kx (k≠0). (1)若k>0,求函数f(x)的单调区间;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.答案 (1)增区间为(-1k ,+∞),减区间为(-∞,-1k ) (2)[-1,0)∪(0,1]解析 (1)f ′(x)=(1+kx)e kx, 若k>0,令f ′(x)>0,得x>-1k,所以函数f(x)的单调递增区间是(-1k ,+∞),单调递减区间是(-∞,-1k ).(2)∵f(x)在区间(-1,1)内单调递增, ∴f ′(x)=(1+kx)e kx≥0在(-1,1)内恒成立, ∴1+kx≥0在(-1,1)内恒成立,即⎩⎪⎨⎪⎧1+k·(-1)≥0,1+k·1≥0,解得-1≤k≤1. 因为k≠0,所以k 的取值范围是[-1,0)∪(0,1].1.函数f(x)=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)答案 D解析 f ′(x)=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x)>0,解得x>2,故选D. 2.在R 上可导的函数f(x)的图像如图所示,则关于x 的不等式xf ′(x)<0的解集为( ) A .(-∞,-1)∪(0,1) B .(-1,0)∪(1,+∞) C .(-2,-1)∪(1,2) D .(-∞,-2)∪(2,+∞) 答案 A解析 在(-∞,-1)和(1,+∞)上,f(x)递增,所以f ′(x)>0,使xf ′(x)<0的范围为(-∞,-1); 在(-1,1)上,f(x)递减,所以f ′(x)<0,使xf ′(x)<0的范围为(0,1). 综上,关于x 的不等式xf ′(x)<0的解集为(-∞,-1)∪(0,1).3.函数y =3x 2-2lnx 的单调递增区间为________,单调递减区间为__________. 答案 (33,+∞),(0,33) 解析 y ′=6x -2x =6x 2-2x.∵函数的定义域为(0,+∞),∴由y ′>0,得x>33. ∴单调递增区间为(33,+∞). 由y ′<0,得0<x<33.∴单调递减区间为(0,33). 4.(·山西怀仁一中期中)已知函数f(x)的定义域为R ,f(-1)=2,且对任意的x∈R ,f ′(x)>2,则f(x)>2x +4的解集为________. 答案 (-1,+∞)解析 令g(x)=f(x)-2x -4,则g ′(x)=f ′(x)-2>0,∴g(x)在R 上为增函数,且g(-1)=f(-1)-2×(-1)-4=0.原不等式可转化为g(x)>g(-1),解得x>-1,故原不等式的解集为(-1,+∞). 5.已知f(x)=e x-ax -1,求f(x)的单调递增区间. 答案 ①a≤0时,f(x)在R 上单调递增; ②a>0时,f(x)增区间为(lna ,+∞)6.已知函数f(x)=mln(x +1)-xx +1(x>-1),讨论f(x)的单调性.解析 f ′(x)=m (x +1)-1(x +1)2(x>-1) 当m≤0时,f ′(x)<0,函数f(x)在(-1,+∞)上单调递减;当m>0时,令f ′(x)<0,得x<-1+1m ,函数f(x)在(-1,-1+1m )上单调递减;令f ′(x)>0,得x>-1+1m ,函数f(x)在(-1+1m ,+∞)上单调递增.综上所述,当m≤0时,f(x)在(-1,+∞)上单调递减;当m>0时,f(x)在(-1,-1+1m )上单调递减,在(-1+1m,+∞)上单调递增.7.已知函数g(x)=13x 3-a 2x 2+2x +1,若g(x)在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.答案 (-∞,-22) 解析 g ′(x)=x 2-ax +2,依题意,存在x∈(-2,-1),使不等式g ′(x)=x 2-ax +2<0成立.当x∈(-2,-1)时,a<x +2x ≤-22,所以实数a 的取值范围是(-∞,-22).8.(·四川)已知函数f(x)=-2xlnx +x 2-2ax +a 2,其中a>0. (1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解. 答案 (1)当x∈(0,1)时,g ′(x)<0,g(x)单调递减; 当x∈(1,+∞)时,g ′(x)>0,g(x)单调递增 (2)略解析 (1)由已知,函数f(x)的定义域为(0,+∞), g(x)=f ′(x)=2(x -1-lnx -a), 所以g ′(x)=2-2x =2(x -1)x.当x∈(0,1)时,g ′(x)<0,g(x)单调递减; 当x∈(1,+∞)时,g ′(x)>0,g(x)单调递增.(2)由f ′(x)=2(x -1-lnx -a)=0,解得a =x -1-lnx.令φ(x)=-2xlnx +x 2-2x(x -1-lnx)+(x -1-lnx)2=(1+lnx)2-2xlnx ,则φ(1)=1>0,φ(e)=2(2-e)<0.于是存在x 0∈(1,e),使得φ(x 0)=0.令a 0=x 0-1-lnx 0=u(x 0),其中u(x)=x -1-lnx (x≥1). 由u ′(x)=1-1x ≥0知,函数u(x)在区间(1,+∞)上单调递增,故0=u(1)<a 0=u(x 0)<u(e)=e -2<1,即a 0∈(0,1). 当a =a 0时,有f ′(x 0)=0,f(x 0)=φ(x 0)=0. 再由(1)知,f ′(x)在区间(1,+∞)上单调递增, 当x∈(1,x 0)时,f ′(x)<0,从而f(x)>f(x 0)=0;当x∈(x 0,+∞)时,f ′(x)>0,从而f(x)>f(x 0)=0;又当x∈(0,1]时,f(x)=(x -a 0)2-2xlnx>0. 故x∈(0,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。
高考数学第一轮知识点总复习 第二节 导数的应用(Ⅰ)
解 (1)由已知f′(x)=3 -a,x2 ∵f(x)在(-∞,+∞)上是单调增函数, ∴f′(x)=3 -ax≥2 0在(-∞,+∞)上恒成立, 即a≤3 x在2 x∈R上恒成立. ∵3 x≥2 0,∴只需a≤0. 又a=0时,f′(x)=3 ≥x20,f(x)= -1在x3R上是增函数, ∴a≤0. (2)由f′(x)=3 -ax≤2 0在(-1,1)上恒成立,得a≥3 在x∈x2(-1,1)上恒成立. ∵-1<x<1,∴3 <3,∴只需a≥3. 当a≥3时,f′(x)=x32 -a在x∈(-1,1)上恒有f′(x)<0, 即f(x)在(-1,1)上为x减2 函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.
学后反思 利用导数研究函数的单调性比用函数单调性的定义要方便, 但应注意f′(x)>0 [或f′(x)<0]仅是f(x)在某个区间上为增函数(或减函数)的充分条 件,在(a,b)内可导的函数f(x)在(a,b)上递增(或递减)的充要条件应 是f′(x)≥0[或f′(x)≤0],x∈(a,b)恒成立,且f′(x)在(a,b)的任意子区 间内都不恒等于0.这就是说, 函数f(x)在区间上的增减性并不排斥在区间内个别点处有f′(x0)=0. 因此,在已知函数f(x)是增函数(或减函数)来求参数的取值范围时, 应令f′(x)≥0[或f′(x)≤0]恒成立,解出参数的取值范围(一般可用 不等式恒成立理论求解),然后检验参数的取值能否使f′(x)恒等于0, 若能恒等于0,则参数的这个值应舍去,若f′(x)不恒为0,则由f′(x)≥0 [或f′(x)≤0]恒成立解出的参数的取值范围.
导数在生活中的应用1-精选
例:
1:学校或班级举行活动,通常需要张贴 海报进行宣传.现让你设计一张如图所示 的竖向张贴的海报,要求版心面积为128dm2
上、下两边各空2dm.左、右两边各空 1dm.如何设计海报的尺寸,才能使四周 空白的面积最小?
1
2
例1. 用总长为14.8m的钢条制作一个长方体容器的框架, 如果所制作的容器的底面的一边比另一边长0.5m,那么高 为多少时容器的容积最大?并求出它的最大容积。
解:设容器底面短边长为x m,则另一边长为 (x+0.5)m,高为(14.8-4x-4(x+0.5))/4=(3.2-2x)m 则 3.2 – 2x > 0 , x>0 , 得 0<x<1.6. 设容器体积为y m3,则 y = x (x+0.5) (3.2 – 2x) = - 2x3+2.2x2+1.6x (0<x<1.6) y' = - 6x2+4.4x+1.6, 令y' = 0 得 x = 1 或 x = - 4/15 (舍去), ∴当0<x<1时,y'>0 , 当1<x<1.6时,y'<0 ,
问题2:如何使一个圆形磁盘储存更多信息?
例2 磁盘的最大存储量问题:
磁道
扇区
基本单元 比特
如何解决优化问题?
优化问题
用函数表示的数学问题
优化问题的答案
用导数解决数学问题
则有 xy=128,(1)
另设四周空白面积为S,
y
则
4x2y8 (2)
由(1)式得: y 1 2 8
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整理得(x0-2)2(x0-1)=0, 解得x0=2,或x0=1, 因此经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0,或y+ 2=0.
首先要分清是求曲线y=f(x)在某处的切线还是求过 某点曲线的切线.(1)求曲线y=f(x)在x=x0处的切线方程可先 求f′(x0),利用点斜式写出所求切线方程; (2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐 标后再写切线方程.
(2)由题意,得f′(3)=0,即27-6a-3=0, ∴a=4.∴f(x)=x3-4x2-3x,f′(x)=3x2-8x-3. 1 令f′(x)=0,得x1=-3,x2=3. 当x变化时,f′(x)、f(x)的变化情况如下表: x f′(x) f(x)
1 -∞,- 3
1 -3 0 极大值
• [例4] 设f ′(x)是函数f(x)的导函数,y=f ′(x) 的图象如右图所示,则y=f(x)的图象最有可 能的是 ( )
• 分析:由导函数f ′(x)的图象位于x轴上方 (下方),确定f(x)的单调性,对比f(x)的图 象,用排除法求解. • 解析:由f ′(x)的图象知,x∈(-∞,0)时, f ′(x)>0 , f(x) 为 增 函 数 , x∈(0,2) 时 , f ′(x)<0,f(x)为减函数,x∈(2,+∞)时,f ′(x)>0,f(x)为增函数. • 只有C符合题意,故选C. • 答案:C
1 - ,3 3
3 0 极小值
(3,+∞) +
+
-
∴当x∈
1 -∞,- 3
,[3,+∞)时,f(x)单调递增,当x∈
1 - ,3时,f(x)单调递减. 3
函数在指定区间上单调递增(减),函数在这个区间 上的导数大于或等于0(小于或等于0),只要不在一段连续区间 上恒等于0即可,求函数的单调区间解f′(x)>0(或f′(x)<0)即 可.
三个步骤 求函数单调区间的步骤: (1)确定函数f(x)的定义域; (2)求导数f′(x); (3)由f′(x)>0(f′(x)<0)解出相应的x的范围. 当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0 时,f(x)在相应的区间上是减函数,还可以列表,写出函数的 单调区间.
考向一 求曲线切线的方程 【例1】►已知函数f(x)=x3-4x2+5x-4. (1)求曲线f(x)在x=2处的切线方程; (2)求经过点A(2,-2)的曲线f(x)的切线方程. [审题视点] 由导数几何意义先求斜率,再求方程,注意点是
• 下图是函数y=f(x)的导函数y=f ′(x)的图象, 对此图象,有如下结论:
• • • • •
①在区间(-2,1)内f(x)是增函数; ②在区间(1,3)内f(x)是减函数; ③x=2时,f(x)取到极大值; ④在x=3时,f(x)取到极小值. 其中正确的是________(将你认为正确的序 号填在横线上).
4.(人教A版教材习题改编)在高台跳水运动中,t s时运动员相 对水面的高度(单位:m)是t1(t)=-4.9t2+6.5t+10,高台跳水 运动员在t=1 s时的瞬时速度为________. 答案 -3.3 m/s 5.函数f(x)=x3-3x2+1的递增区间是________. 解析 f′(x)=3x2-6x=3x(x-2), 由f′(x)>0解得x<0,或x>2. 答案 (-∞,0),(2,+∞)
(2)由f′(x)=ex-a≤0在(-2,3)上恒成立. ∴a≥ex在x∈(-2,3)上恒成立. 又∵-2<x<3,∴e 2<ex<e3,只需a≥e3. 当a=e3时f′(x)=ex-e3在x∈(-2,3)上,f′(x)<0, 即f(x)在(-2,3)上为减函数, ∴a≥e3. 故存在实数a≥e3,使f(x)在(-2,3)上单调递减.
).
3.(2012· 长沙一中月考)若点P是曲线y=x2-ln x上任意一点, 则点P到直线y=x-2的最小值为( A.1 2 C. 2 解析 ). B. 2 D. 3 1 1 由已知y′=2x- x ,令2x- x =1,解得x=1.曲线y=x2
-ln x在x=1处的切线方程为y-1=x-1,即x-y=0.两直线x 2 -y=0,x-y-2=0之间的距离为d= = 2. 2 答案 B
[尝试解答] f′(x)=3ax2-6x=3x(ax-2). 因为 x=2 是函数 y=f(x)的极值点. 所以 f′(2)=0,即 6(2a-2)=0,因此 a=1, 经验证,当 a=1 时,x=2 是函数 f(x)的极值点, 所以 g(x)=ex(x3-3x2), g′(x)=ex(x3-3x2+3x2-6x) =ex(x3-6x)=x(x+ 6)(x- 6)ex. 因为 ex>0,所以 y=g(x)的单调增区间是(- 6,0)和( 6,+ ∞);单调减区间是(-∞,- 6)和(0, 6).
【训练1】 若直线y=kx与曲线y=x3-3x2+2x相切,试求k的 值. 解 设y=kx与y=x3-3x2+2x相切于P(x0,y0)则
y0=kx0,① y0=x3-3x2+2x0,② 0 0 又y′=3x2-6x+2,∴k=y′|x=x0=3x2-6x0+2,③ 0 由①②③得:(3x2-6x0+2)x0=x3-3x2+2x0, 0 0 0 即(2x0-3)x2=0. 0 3 1 ∴x0=0或x0= ,∴k=2或k=- . 2 4
-
1 2 【例】►设函数 f(x)=x(e -1)-2x ,求函数 f(x)的单调增区间.
x
错因
结论书写不正确,也就是说不能用符号“∪”连接,应
为(-∞,-1)和(0,+∞) 实录 f′(x)=ex-1+xex-x=(ex-1)· (x+1),令 f′(x)>0 得,
x<-1 或 x>0. 所以函数 f(x)的单调增区间为(-∞,-1)∪(0,+∞).
2.(2012· 烟台模拟)函数f(x)=x2-2ln x的递减区间是( A.(0,1] C.(-∞,-1),(0,1) 解析 函数的定义域为(0,+∞), 2 x+1x-1 又f′(x)=2x- =2 x x 由f′(x)≤0,解得0<x≤1. 答案 A B.[1,+∞) D.[-1,0),(0,1]
正解
1 2 因为 f(x)=x(e -1)-2x ,
x
所以 f′(x)=ex-1+xex-x=(ex-1)· (x+1). 令 f′(x)>0,即(ex-1)(x+1)>0,得 x<-1 或 x>0. 所以函数 f(x)的单调增区间为(-∞,-1)和(0,+∞). 【试一试】 设函数 f(x)=ax3-3x2,(a∈R),且 x=2 是 y=f(x) 的极值点,求函数 g(x)=ex· f(x)的单调区间.
【训练2】 已知函数f(x)=ex-ax-1. (1)求f(x)的单调增区间; (2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的 取值范围,若不存在,说明理由. 解 f′(x)=ex-a, (1)若a≤0,则f′(x)=ex-a≥0, 即f(x)在R上递增, 若a>0,ex-a≥0,∴ex≥a,x≥ln a. 因此f(x)的递增区间是[ln a,+∞).
解析:由f
′(x)的图象可见在
3 -∞,- 2
和(2,4)上f
3 ′(x)<0,f(x)单调减,在-2,2和(4,+∞)上f
′(x)>0,f(x)
单调增,∴只有③正确.
• 答案:③
双基自测 1.(2011· 山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的 纵坐标是( A.-9 C.9 解析 由已知y′=3x2,则y′|x=1=3 切线方程为y-12=3(x-1), 即y=3x+9. 答案 C ). B.-3 D.15
否在曲线上,是否为切点.
解 (1)f′(x)=3x2-8x+5 f′(2)=1,又f(2)=-2 ∴曲线f(x)在x=2处的切线方程为 y-(-2)=x-2,即x-y-4=0. (2)设切点坐标为(x0,x3-4x2+5x0-4) 0 0
2 f′(x0)=3x0-8x0+5
则切线方程为 y-(-2)=(线 y=f(x)在某处的切线还是求过某点 曲线的切线.(1)求曲线 y=f(x)在 x=x0 处的切线方程可先求 f′(x0),利用点斜式写出所求切线方程; (2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标 后再写切线方程. 教后反思:
备课时间
导数的应用(一)
教学目标 1.利用导数研究函数的单调性,会求函数的单调区间. 2.由函数单调性和导数的关系,求参数的范围. 重点难点 本讲复习时,应理顺导数与函数的关系,理解导数的意义,体 会导数在解决函数有关问题时的工具性作用,重点解决利用导 数来研究函数的单调性及求函数的单调区间.
基础梳理 1.导数的几何意义 函数y=f(x)在x=x0处的导数f′(x0)是曲线y=f(x)在点(x0,f(x0)) 处切线l的斜率,切线l的方程是 2.导数的物理意义 若物体位移随时间变化的关系为s=f(t),则f′(t0)是物体运动 在t=t0时刻的
y-f(x0)=f′(x0)(x-x0)
.
瞬时速度
.
3.函数的单调性 在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒 等于0. f′(x)≥0⇔函数f(x)在(a,b)上 f′(x)≤0⇔函数f(x)在(a,b)上
单调递增
单调递减
; .
易误警示 直线与曲线有且只有一个公共点,直线不一定是曲线的切线; 反之直线是曲线的切线,但直线不一定与曲线有且只有一个公 共点. 两个条件 (1)f′(x)>0在(a,b)上成立是f(x)在(a,b)上单调递增的充分条 件. (2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的 必要不充分条件.