2020年高二上学期数学期中考试试卷
2020年高二数学上期中试卷附答案
22.光伏发电是将光能直接转变为电能的一种技术,具有资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位,2015年起,国家能源局、国务院扶贫办联合在6省的30个县开展光伏扶贫试点,在某县居民中随机抽取50户,统计其年用量得到以下统计表.以样本的频率作为概率.
用电量(单位:度)
5.B
解析:B
【解析】
【分析】
根据表格中的数据,求得样本中心为 ,代入回归直线方程,求得 ,得到回归直线的方程为 ,即可作出预测,得到答案.
【详解】
由题意,根据表格中的数据,可得 ,
即样本中心为 ,代入回归直线方程 ,即 ,
解得 ,即回归直线的方程为 ,
当 时, ,故选B.
【点睛】
本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.
(1)求直方图中a的值;
(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,若招收学生1200人,请估计所招学生中有多少人可以申请住宿;
(3)求该校学生上学路上所需的平均时间.
26.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值.
则甲同学收到李老师或张老师所发活动通知的信息的概率为 .
故选C.
【点睛】
本题考查相互独立事件的概率,考查对立事件的概率.在求两个事件中至少有一个发生的概率时一般先求其对立事件的概率,即两个事件都不发生的概率.这样可减少计算,保证正确.
2020-2021学年山西省太原市高二上学期期中数学试卷(解析版)
2020-2021学年山西省太原市高二(上)期中数学试卷一、选择题(共12小题).1.(3分)直线x﹣2y+6=0的斜率为()A.2B.﹣2C.D.﹣2.(3分)长方体的长、宽、高分别为,,1,且其顶点都在同一球面上,则该球的表面积为()A.3πB.6πC.12πD.24π3.(3分)已知A(0,0),B(1,1),直线l过点(2,0)且和直线AB平行,则直线l的方程为()A.x﹣y﹣2=0B.x+y﹣2=0C.2x﹣y﹣4=0D.2x+y﹣4=0 4.(3分)圆(x﹣1)2+(y+2)2=1的一条切线方程是()A.x﹣y=0B.x+y=0C.x=0D.y=05.(3分)已知直线a,b,c满足a⊥b,a⊥c,且a⊂α,b,c⊂β,有下列说法:①a⊥β;②α⊥β;③b∥c.则正确的说法有()A.3个B.2个C.1个D.0个6.(3分)直线x﹣2y+2=0关于直线x=1对称的直线方程是()A.x+2y﹣4=0B.2x+y﹣1=0C.2x+y﹣3=0D.2x+y﹣4=0 7.(3分)在三棱锥A﹣BCD中,E,F分别为AC,AD的中点,设三棱锥A﹣BCD的体积为V1,四棱锥B﹣CDFE的体积为V2,则V1:V2=()A.4:3B.2:1C.3:2D.3:18.(3分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.19.(3分)如图,在三棱锥P﹣ABC中,不能证明AP⊥BC的条件是()A.BC⊥平面APCB.BC⊥PC,AP⊥PCC.AP⊥PB,AP⊥PCD.AP⊥PC,平面APC⊥平面BPC10.(3分)已知半径为1的圆经过直线x+2y﹣11=0和直线2x﹣y﹣2=0的交点,那么其圆心到原点的距离的最大值为()A.4B.5C.6D.711.(3分)如图,正方体ABCD﹣A1B1C1D1中,DD1的中点为N,则异面直线AB1与CN 所成角的余弦值是()A.B.C.D.012.(3分)在同一平面直角坐标系中,直线y=k(x﹣1)+2和圆x2+y2﹣4x﹣2ay+4a﹣1=0的位置关系不可能是()A.①③B.①④C.②④D.②③二、填空题(共4小题).13.(4分)空间直角坐标系中,已知点A(4,1,2),B(2,3,4),则|AB|=.14.(4分)已知一个几何体的三视图如图所示,则该几何体的侧面积为.15.(4分)已知圆C:x2+y2﹣2mx﹣4y+m2=0(m>0)被直线l:x﹣y+3=0截得的弦长为2,则m=.16.(4分)已知四棱锥的底面是边长为2的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.三、解答题(本大题共3小题,共48分,解答应写出文字说明,证明过程或演算步骤)17.(8分)已知直线l1经过点M(2,1),在两坐标轴上的截距相等且不为0.(1)求直线l1的方程;(2)若直线l2⊥l1,且过点M,求直线l2的方程.18.(10分)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC,BD为圆锥底面的两条直径,M为母线PD上一点,连接MA,MO,MC.(1)若M为PD的中点,证明:PB∥平面MAC;(2)若PB∥平面MAC,证明:M为PD的中点.19.(10分)已知圆C经过点A(0,1),B(2,1),M(3,4).(1)求圆C的方程;(2)设点P为直线l:x﹣2y﹣1=0上一点,过点P作圆C的两条切线,切点分别为E,F.若∠EPF=60°,求点P的坐标.四.(本小题满分10分)说明:请同学们在(20)、(21)两个小题中任选一题作答。
2024-2025学年高二上学期期中模拟考试数学试题含解析
2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
2020-2021学年高二数学上学期期中测试试题
2020-2021学年高二数学上学期期中测试试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1、 本试卷共4页,包含填空题(第1题~第14题)、解答题(第15题~第20题)两部分。
本试卷满分160分,考试时间为120分钟。
考试结束后,请将答题纸上交。
2、 答题前,请务必将自己的姓名、考试证号、座位号用0.5毫米黑色签字笔填写在试卷及答题纸上。
3、 作答时必须用0.5毫米黑色签字笔写在答题纸上的指定位置,在其它位置作答一律无效。
4、 如有作图需要,可用2B 铅笔作答,并请加黑加粗,描写清楚。
1. 命题“∀0x ∈R ,02x>0”的否定是 ▲ .2. 经过点()2,1P 且与直线0943=++y x 垂直的直线方程是 ▲ .3. 已知正四棱柱的底面边长为2cm ,高为1cm ,则正四棱柱的侧面积是 ▲ 2cm .4. 圆心是(-1,0)且过原点的圆的方程是 ▲ .5. 已知m 为实数,直线1:30l mx y ++=,2:(32)20l m x my -++=, 则“1m =”是“12//l l ”的 ▲ 条件.(请在“充要、充分不必要、必要不充分、既不充分也不必要” 中选择一个)6. 设直线x y =与圆C :0222=-+ay y x 相交于A ,B 两点,若32=AB ,则圆C 的半径为 ▲ .7. 已知圆柱M 的底面半径为3,高为2,圆锥N 的底面直径和高相等,若圆柱M 和圆锥N 的体积相同,则圆锥N 的高为 ▲ . 8. 已知平面α,β,直线n m ,,给出下列命题:①若βα⊥, ,m n αβ⊥⊥,则m n ⊥.②若//m α,//,n m n β⊥,则βα⊥, ③若//αβ,//,//m n αβ,则||m n ,④若,,m n m n αβ⊥⊥⊥,则αβ⊥, 其中是真命题的是 ▲ .(填写所有真命题的序号)9. 圆221:4450C x y x y ++--=与圆222:8470C x y x y +-++=的公切线有 ▲ 条. 10. 如图,长方体1111ABCD A B C D -中,O 为1BD 的中点,三棱锥O ABD -的体积为1V ,四棱锥11O ADD A -的体积为2V ,则12V V 的值为 ▲ .11. 已知命题12:≤-x p ,命题0)4)((:≤+--a x a x q ,若q p 是成立的充分非必要 条件,则实数a 的取值范围是 ▲ .12. 关于x 的方程222+=-kx x x 有两个不同的实数根,则k 的范围为 ▲ . 13. 在平面直角坐标系xOy 中,圆C 的方程为2240x y x +-=.若直线)2(+=x k y 上存在一点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围为 ▲ .14. 已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a -4)2=1.若圆M 上存在点P ,过点P 作圆O的两条切线,切点为A ,B ,使得∠APB =60°,则实数a 的取值范围为 ▲ . 二、解答题:(本大题共90分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分14分)设命题p :032,2>--∈a a R a ;命题q :不等式x 2+ax +1>0∀x ∈R 恒成立,若p 且q为假,p 或q 为真,求a 的取值范围.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,, 的中点.已知 AC PA ⊥,,6=PA .5,8==DF BC 求证: (1)直线//PA 平面DEF ;(2) 平面⊥BDE 平面ABC .17.(本小题满分14分)矩形ABCD 的两条对角线相交于点M(2,0),AB 边所在直线的方程为,063=--y x 点()1,1-T 在AD 边所在直线上.(1)求AD 边所在的直线方程及A 的坐标. (2)求矩形ABCD 外接圆方程.18.(本小题满分16分)在三棱锥P - ABC 中,已知平面PBC ⊥平面ABC . (1)若AB ⊥BC ,CP ⊥PB ,求证:CP ⊥PA :(2)若过点A 作直线⊥l 平面ABC ,求证:l //平面PBC .19. (本小题满分16分)已知圆O :122=+y x 和A (4,2)(1)过点A 向圆O 引切线l ,求切线l 的方程.(2)设P 为圆A :9)2-()4-(22=+y x 上的任意一点,过点P 向圆O 引切线,切点为B.试探究:平面内是否存在一定点C,使得PCPB为定值,若存在,求出此定值,若不存在,说明理由.20. (本小题满分16分)已知圆M 的方程为062222=---+y x y x ,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E ,F 两点,圆N 内的动点D 使得DE ,DO ,DF 成等比数列,求DEDF •的取值范围;(3)过点M 作两条直线分别与圆N 相交于A ,B 两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行?并说明理由.xx 第一学期期中测试高二数学试题参考答案一、填空 1、02,00≤∈∃x R x 2、0234=+-y x 3、8 4、()1122=++y x5、充分不必要6、67、 68、①④9、3 10、21 11、[]5,312、⎪⎭⎫⎢⎣⎡--43,1 13、[]1,1-14、⎥⎦⎤⎢⎣⎡+---222,222 二、解答 15.解:由题知 q p ,一真一假。
湖北省部分中学2020年秋高二数学上学期期中联考试卷附答案解析
D.
0,1 2
二、选择题:本题共 4 小题,每小题 5 分,共 20 分,在每小题给出的选项中有多项符合题目要求,全部选 对的得 5 分,有选错的得 0 分,部分选对的得 3 分
9.下列说法正确的是( )
A.命题“ x R , x2 1 ”的否定是“ x0 R , x02 1”
B.命题“ x0 (3, ) , x02 9 ”的否定是“ x (3, ) , x2 9 ” C.“ m 0 ”是“关于 x 的方程 x2 2x m 0 有一正一负根”的充分不必要条件 D.“ a 5 ”是命题“ x R, x2 ax a 0 ”为假命题的充分不必要条件
湖北省部分中学 2020 年秋高二数学上学期期中联考试卷
第 I 卷(选择题)
一、选择题:本题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中只有一项是符合题目要 求的
1.已知点 A(-3, 2) , B(0, 1) ,则直线 AB 的倾斜角为( )
A. 300
B. 450
C.1350
10.抛掷一枚骰子 1 次,记“向上的点数是 4,5,6”为事件 A,“向上的点数是 1,2”为事件 B,“向上的点 数是 1,2,3”为事件 C,“向上的点数是 1,2,3,4”为事件 D,则下列关于事件 A,B,C,D 判断正确的是 ()
A.A 与 B 是互斥事件但不是对立事件
B.A 与 C 是互斥事件也是对立事件
所以“ m ”是“ m l ”的充要条件 故选 C
5.【答案】B
【解析】由圆的几何性质两圆在点 A 处的切线互相垂直,且过对方圆心 O2O1.则
在 Rt△O2AO1 中,|O1A|= 5 |O2A|= 20 ,斜边上的高为半弦,用等积法易 得: AB 5 5 20 ⇒|AB|=4.故答案为:B
湖北省2020学年高二数学上学期期中试题(含解析)
高二数学上学期期中试题(含解析)一、选择题(本大题共12小题)1.已知命题:0P x ∀>,总有(1)1xx e +>,则p ⌝为( )A. 00x ∃≤ 使得00(1)xx e +1≤B. 00x ∃> 使得00(1)xx e +1≤C. 0x ∀> 总有(1)1xx e +≤ D. 0x ∀≤,总有(1)1xx e +≤【答案】B 【解析】 【分析】利用全称命题的否定解答即得解.【详解】根据全称命题的否定为特称命题可知,¬p 为∃x 0>0,使得(x 0+1)0e x ≤1, 故选B .【点睛】本题主要考查全称命题的否定,意在考查学生对该知识的理解掌握水平.2.一直平面内的定点A ,B 和动点P ,则“动点P 到两定点A ,B 的距离之和为为一定值”是动点P 的轨迹是以A ,B 为焦点的椭圆的( ) A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要【答案】A 【解析】 【分析】结合椭圆的定义,利用充分条件和必要条件的定义进行判断.【详解】若点P 的轨迹是以A 、B 为焦点的椭圆,则根据椭圆的定义可知动点P 到两定点A ,B 的距离之和2PA PB a += (0a >,且a 为常数)成立是定值.若动点P 到两定点A ,B 的距离之和2PA PB a += (0a >,且a 为常数),当2a AB ≤,此时的轨迹不是椭圆.∴“动点P 到两定点A ,B 的距离之和为为一定值”是动点P 的轨迹是以A ,B 为焦点的椭圆的必要不充分条件. 故选:A【点睛】本题主要考查充分条件和必要条件的判断,结合椭圆的定义是解决本题的关键. 3.直线l 经过2(2,1),(3,)()A B t t R ∈两点,则直线l 的倾斜角的取值范围是( )A. π[0,)2∪3[,)4ππ B. [0,π) C. [0,]4πD. [0,]4π∪(,)2ππ【答案】A 【解析】 【分析】 先通过2121y y k x x -=-求出两点的斜率,再通过tan k α=求出倾斜角α的值取值范围.【详解】2213tan 1,,tan [1,[0,)2)[,)324t k t t R παααππ-===-∈⇒∈-+∞⋃⇒∈-故选A.【点睛】已知直线上两点求斜率利用公式2121tan y y x x α-=-.需要注意的是斜率不存在的情况.4.已知直线y kx b =+沿x 轴负方向平移3个单位长度,再沿y 轴正方向平移1个单位长度后,又回到原位置,则斜率k =( ). A. 13- B. 3-C.13D. 3【答案】A 【解析】 【分析】由函数图像的平移,求平移后的解析式,再求参数的值即可.【详解】解:将直线y kx b =+沿x 轴负方向平移3个单位长度,再沿y 轴正方向平移1个单位长度后,所得直线方程为(3)131y k x b kx b k =+++=+++ , 由题意可知310k +=,解得13k =-, 故选A.【点睛】本题考查了函数图像的平移,属基础题.5.已知椭圆22221(0)x y a b a b+=>>的短轴长为4,上顶点A ,左顶点B ,焦点1F ,2F 分别是椭圆左右焦点,且1F AB的面积为4- )B.C.D.【答案】C 【解析】 【分析】由题意可知2b =,且()142S a c b =-=-,列方程组求2c . 【详解】解:椭圆22221(0)x y a b a b+=>>的短轴长为4,可得2b =,上顶点A ,左顶点B ,焦点1F ,2F 分别是椭圆左右焦点,且1F AB的面积为4-, 可得()142a c b -=-()1242a c -⨯=-4a c -=-224a c -=,可得4a =,c =,椭圆的焦距为: 故选:C【点睛】本题考查椭圆的简单性质的应用,是基本知识的考查,是基础题.6.已知实数,x y 满足{0134x y x y≥≥+≤,则231x y x +++的取值范围是( )A. 2[,11]3B. [3,11]C. 3[,11]2D. [1,11]【答案】C 【解析】232(1)1.11x y y x x +++=+++其中11y x ++表示两点(,)x y 与(1,1)--所确定直线的斜率,由图知,min max 10114,5,13410PB PA k k k k ----======----所以11y x ++的取值范围是1[,5],4231x y x +++的取值范围是3[,11].2选C.7.过点作圆224x y +=的两条切线,切点分别为A 、B ,O 为坐标原点,则OAB ∆的外接圆方程是A. 22(2)(1)5x y -+-= B. 22(4)(2)20x y -+-= C. 22(2)(1)5x y +++= D. 22(4)(2)20x y +++=【答案】A 【解析】【详解】由题意知,OA⊥PA,BO⊥PB, ∴四边形AOBP 有一组对角都等于90°, ∴四边形AOBP 的四个顶点在同一个圆上,所以此圆的直径是OP ,OP 的中点为(2,1),5, ∴四边形AOBP 的外接圆的方程为22(2)(1)5x y -+-=, ∴△AOB 外接圆的方程为22(2)(1)5x y -+-=, 故选 A .8.椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( )31+ 31C.2251- 【答案】B 【解析】【分析】根据椭圆的定义可知12||||2PF PF a +=,又1PF 恰好与圆2F 相切于点P ,可知2||PF c =且12PF PF ⊥,即可列出方程求椭圆的离心率.【详解】由1PF 恰好与圆2F 相切于点P ,可知2||PF c =,且 12PF PF ⊥, 又12||||2PF PF a +=,可知1||2PF a c =-, 在12Rt PF F ∆中,222(2)4a c c c -+=, 即2222a ac c -= 所以2220,(0,1)e e e +-=∈,解得212e -+==, 故选:B【点睛】本题主要考查了椭圆的定义,椭圆的简单几何性质,圆的切线的性质,属于中档题. 9.唐代诗人李欣的是《古从军行》开头两句说“百日登山望烽火,黄昏饮马傍交河”诗中隐含着一个有缺的数学故事“将军饮马”的问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从()2,0A 出发,河岸线所在直线方程40x y +-=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )B. 1C.1【答案】B 【解析】 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】设点A 关于直线4x y +=对称点(,)A a b ','2AA bk a =-, AA '的中点为2,22a b +⎛⎫⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =,要使从点A 到军营总路程最短,即为点f A 到军营最短的距离, 即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径, “将军饮马”的最短总路程为4161251+-=-,故选:B【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.10.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,(点P 与点,A B 不重合),则PAB △的面积最大值是( ).A. 25B.52C. 55【答案】B 【解析】 【分析】先求出0m =时,交点(0,3)P ,131322PABS =⨯⨯=;当0m ≠时,利用基本不等式求PAB △的面积最大值,综合得解.【详解】动直线0x my +=,令0y =,解得0x =, 因此此直线过定点(0,0)A .动直线30mx y m --+=,即()130m x y -+-=, 令10x -=,30y -=, 解得1x =,3y =, 因此此直线过定点()1,3B .0m =时,两条直线分别为0x =,3y =,交点(0,3)P ,131322PABS=⨯⨯=. 0m ≠时,两条直线的斜率分别为:1m-,m , 则11m m-⨯=-, 因此两条直线相互垂直.22211115()1024442PAB S PA PB PA PB AB ∆=⋅⋅≤+=⋅=⋅=当PA PB ==PAB △的面积取得最大值52. 综上可得:PAB △的面积最大值是52. 故选B .【点睛】本题主要考查直线的位置关系,考查利用基本不等式求最值,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.设椭圆C :2211612x y +=上的一点P 到两条直线4y =和8x =的距离分别是1d ,2d ,则122d d +的最小值( )A. 5B. 6C. 7D. 8【答案】D 【解析】 【分析】设()4P cos θθ,02θπ≤<,由题意可得:1222484d d cos θθ+=-+-,利用三角函数的单调性、和差公式即可得出结论.【详解】解:设()4P cos θθ,02θπ≤<, 由题意可得:122248416416816886d d cos cos sin πθθθθθ⎛⎫+=-+-=--=-+≥-= ⎪⎝⎭.当且仅当816sin πθ⎛⎫+= ⎪⎝⎭时取等号. 122d d ∴+的最小值为8.故选:D【点睛】本题考查了椭圆的标准方程及其参数方程、三角函数的单调性、和差公式,考查了推理能力与计算能力,属于中档题.12.已知椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,点P 是椭圆C 上一点,椭圆C 内一点Q 满足:点Q 在2PF 的延长线上1.QF QP ⊥若13sin 5F PQ ∠=,则该椭圆离心率的取值范围是( )A. 1,32⎛ ⎝⎭B. 1,13⎛⎫⎪⎝⎭C. ⎫⎪⎪⎝⎭D.2⎝⎭【答案】A 【解析】 【分析】由1QF QP ⊥,可得点Q 在以12F F 为直径,原点为圆心的圆上,由点Q 在椭圆的内部,可得以12F F 为直径的圆在椭圆内,可得c b <;于是e <,再根据临界值,由点P 的位置建立不等式,确定即可得出e 的范围. 【详解】解:1QF QP ⊥,∴点Q 在以12F F 为直径,原点为圆心的圆上,点Q 在椭圆的内部,∴以12F F 为直径的圆在椭圆内,c b ∴<;222c a c ∴<-,222c a ∴<,故202e <<. 13sin 5F PQ ∠=,14cos 5F PQ ∠=,设1PF m =,2PF n =,222142cos c m n mn F PQ ∴=+-⋅∠,()2222818424455c m n mn mn c a mn ∴=+--⇒=- ,222184445mn a c b ∴=-=,① 12113sin 210PF F S mn F PQ mn ∆=⋅∠=,由已知可知,点Q 在以12F F 为直径的圆上,不包含1F ,2F 两个点,当点Q 与2F 重合时,此时22b PF a =,12PF F S ∆的最大值是1222122PF F b b cS c a a ∆=⋅⋅= 由图象可知其他满足条件的Q 满足条件时,需满足2310b cmn a < ②由①②可知2109mn b = ,2103b cmn a<⋅ 22101093b c b a∴<⋅,解得:13ca>,综上可知:1232e<<.故选:A【点睛】本题考查了椭圆的标准方程及其性质、数形结合方法,考查了推理能力与计算能力,属于中档题,本题的关键是根据满足条件的点P的位置确定,建立面积条件的12PF F∆的不等关系,求出离心率的范围.二、填空题(本大题共4小题)13.已知直线l过点(1,2),且原点到直线l的距离为1,则直线l方程为__________.【答案】x=1或3x﹣4y+5=0【解析】【分析】分两种情况,当斜率不存在时,验证是否满足题意;当斜率存在时,设出点斜式方程,再由点到直线的距离公式求出斜率即可求解.【详解】直线l的斜率不存在时,可得直线l的方程为:x=1,满足题意;直线l的斜率存在时,可设直线l的方程为:y﹣2=k(x﹣1),化为:kx﹣y+2﹣k=0.2211kk-=+,解得:k34=,∴直线l的方程为:y﹣234=(x﹣1),化为:3x﹣4y+5=0,综上可得:直线l的方程为:x=1或3x﹣4y+5=0,故答案为:x=1或3x﹣4y+5=0.【点睛】本题主要考查直线的点斜式方程、点到直线的距离公式,注意斜率不存在的情况,考查分类讨论的思想,属于基础题14.若椭圆2214x y m+=的焦距为1,则m =______.【答案】154或174【解析】 【分析】讨论焦点的位置,然后利用21c =,求m 的值.【详解】解:椭圆2214x y m+=的焦距为1,当焦点在x 轴时,24a =,2b m =21c ∴=== ,解得:154m =当焦点在y 轴时,2a m =,24b =,21c ∴===,解得:174m =. 故答案为:154或174. 【点睛】本题考查根据椭圆方程的形式求参数,是基础题,解题时要认真审题,注意椭圆的性质的合理运用.15.已知O 为坐标原点,椭圆T :22221x y a b +=()0,1B ,过椭圆上一点P 的两条直线PA ,PC 分别与椭圆交于A ,C ,设PA ,PC 的中点分别为D ,E ,直线PA ,PC 的斜率分别是1k ,212(,0)k k k <,若直线OD ,OE 的斜率之和为2,则124k k +的最大值为______. 【答案】94- 【解析】 【分析】首先根据待定系数法求椭圆方程,再利用点差法求OD k 和OE k 与12,k k 的斜率关系,最后利用基本不等式求最值.【详解】不妨设a b >,根据题意可知22221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得:1,1a b c ===∴椭圆方程是2212x y +=设()()()112233,,,,,P x y A x y B x y221122221212x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减得()2222121202x x y y -+-= 整理为:()()()()1212121202x x x x y y y y +-++-=当120x x +≠,且120x x -≠时,12121212102y y y y x x x x +-+⨯=+-, 1102OD k k ∴+⋅=,即112OD k k =-,同理:212OE k k =-, 1211222k k ∴--=,即12114k k +=- ,()21121212124111144544k k k k k k k k k k ⎛⎫⎛⎫⎛⎫∴+=-⨯++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211245144k k k k ⎛⎫=--+ ⎪⎝⎭12,0k k <,122140,0k kk k ∴>>,211244k k k k ∴+≥= ,21124114k k k k ⎛⎫∴-+≤- ⎪⎝⎭21124515914444k k k k ⎛⎫∴--+≤--=- ⎪⎝⎭.当且仅当21124k kk k=时等号成立,即212k k=时,故124k k+的最大值是94-.故答案为:94-【点睛】考查点差法求斜率关系式,和利用基本不等式求最值,意在考查推理能力和计算能力,属于中档题型,本题的关键是利用点差法求斜率间的关系.16.已知直线0x y b-+=与圆229x y+=交于两点A,B,若24OA OB AB+≥(其中O 为坐标原点),则实数b的取值范围______【答案】(32,22,32--⋃【解析】【分析】利用平行四边形法则,转化为224OD AB≥,借助于弦长公式22194OD AB+=,求得219OD≤<,利用点到直线的距离求b的取值范围.【详解】解:设AB中点为D,则OD AB⊥,2OA OB AB+≥,224OD AB∴≥,42.AB OD∴≤221||94OD AB+=,2||1OD∴≥.直线0x y b-+=与圆229x y+=交于不同的两点A、B,2||9OD ∴<. 21||9OD ∴≤<,则219≤<.b ∴-≤b ≤<即实数b的取值范围是(.-⋃故答案为:(.-⋃【点睛】本题考查向量知识的运用,考查直线与圆的位置关系,考查学生的推理和计算能力,属于中档题.三、解答题(本大题共6小题)17.已知1:210l x y -+=和2:20l x y +-=的交点为P . (1)求经过点P 且与直线3:3450x l y -+=垂直的直线的方程(2)直线l '经过点P 与x 轴、y 轴交于A 、B 两点,且P 为线段AB 的中点,求OAB ∆的面积.【答案】(1)4370x y +-=;(2)2 【解析】 【分析】(1)联立两条直线的方程,解方程组求得P 点坐标,根据3l 的斜率求得与其垂直直线的斜率,根据点斜式求得所求直线方程.(2)根据(1)中P 点的坐标以及P 为AB 中点这一条件,求得,A B 两点的坐标,进而求得三角形OAB 的面积.【详解】解:(1)联立21020x y x y -+=⎧⎨+-=⎩,解得交点P 的坐标为()1,1,∵l 与3l 垂直, ∴l 的斜率3143k k =-=-, ∴l 的方程为()4113y x -=--,即4370x y +-=. (2)∵P 为AB 的中点,已知(2,0)A ,(0,2)B ,即2OA OB ==,∴1122222OAB S OA OB ∆=⋅⋅=⨯⨯= 【点睛】本小题主要考查两条直线交点坐标的求法,考查两条直线垂直斜率的关系,考查直线的点斜式方程,考查三角形的面积公式以及中点坐标,属于基础题.18.已知P :方程2222220x y x my m m +++-++=表示圆心在第三象限的圆,q :方程2231x my +=表示焦点在y 轴上的椭圆.()1若p ⌝为真命题,求实数m 的取值范围;()2若“p q ∧”为假,“p q ∨为真”,求m 的取值范围.【答案】(1)(] ,1-∞;(2)][()0,13,⋃+∞. 【解析】 【分析】(1)首先求p 为真命题时,m 的取值范围,再求其补集,就是p ⌝为真时,m 的取值范围; (2)求出命题q 为真时m 的取值范围,利用“p q ∧”为假,“p q ∨为真”时p 、q 一真一假;从而列不等式求得实数m 的取值范围.【详解】解:()1方程2222220x y x my m m +++-++=可化为222(1)()21x y m m m +++=--;若P 为真命题,则20210m m m -<⎧⎨-->⎩,解得1m >;所以p ⌝为真命题时,实数m 的取值范围是(],1-∞;()2命题q :方程2231x my +=表示焦点在y 轴上的椭圆,若q 为真命题时,03m <<;由“p q ∧”为假,“p q ∨为真”,则p 、q 一真一假; 当p 真q 假时,103m m m >⎧⎨≤≥⎩或,即3m ≥;当p 假q 真时,103m m ≤⎧⎨<<⎩,即01m <≤;综上知,实数m 的取值范围是][()0,13,⋃+∞.【点睛】本题考查了圆的方程与椭圆的标准方程应用问题,也考查了简单的复合命题真假性判断问题,是基础题.19.若直线34120x y -+=与x 轴,y 轴的交点分别为,A B ,圆C 以线段AB 为直径. (Ⅰ)求圆C 的标准方程;(Ⅱ)若直线l 过点3,44⎛⎫- ⎪⎝⎭,与圆C 交于点,M N ,且120MCN ∠=,求直线l 的方程.【答案】(Ⅰ)()22325224x y ⎛⎫++-= ⎪⎝⎭;(Ⅱ)34x =-或1216730x y -+=.【解析】 【分析】(1)本题首先根据直线方程确定A 、B 两点坐标,然后根据线段AB 为直径确定圆心与半径,即可得出圆C 的标准方程;(2)首先可根据题意得出圆心C 到直线l 的距离为54,然后根据直线l 的斜率是否存在分别设出直线方程,最后根据圆心到直线距离公式即可得出结果.【详解】(1)令方程34120x y -+=中的0x =,得3y =,令0y =,得4x =-. 所以点,A B 的坐标分别为()()4,0,0,3A B -.所以圆C 的圆心是32,2⎛⎫- ⎪⎝⎭,半径是52r , 所以圆C 的标准方程为()22325224x y ⎛⎫++-= ⎪⎝⎭.(2)因为120MCN ∠=,圆C 的半径为52,所以圆心C 到直线l 的距离为54.若直线l 的斜率不存在,直线l 的方程为34x =-,符合题意. 若直线l 的斜率存在,设其直线方程为344y k x ⎛⎫=++ ⎪⎝⎭,即3404kx y k -++=.圆C 的圆心到直线l的距离54d ==,解得34k =. 则直线l 的方程为33444y x ⎛⎫=++ ⎪⎝⎭,即1216730x y -+=.综上,直线l 的方程为34x =-或1216730x y -+=.【点睛】本题考查圆的标准方程与几何性质,考查直线和圆的位置关系,当直线与圆相交时,半径、弦长的一半以及圆心到直线距离可构成直角三角形,考查计算能力,在计算过程中要注意讨论直线l 的斜率是否存在,是中档题.20.如图,1l ,2l 是通过某城市开发区中心O 的两条南北和东西走向的街道,链接M ,N 两地之间的铁路是圆心在2l 上的一段圆弧,若点M 在O 正北方向,且3MO km =,点N 到1l ,2l 距离分别为4km 和5km .()1建立适当的坐标系,求铁路线所在圆弧的方程;()2若该城市的某中学拟在O 点正东方向选址建分校,考虑环境问题,要求校址到点O 的距离大于4km ,并且铁路线上任意一点到校址的距离不能少于29km ,求该校址距离点O 的最近距离.(注:校址视为一个点)【答案】(1)()22(4)2504,53x y x y -+=≤≤≥≥ (2)距O 最近6km 的地方. 【解析】 【分析】()1建立坐标系,利用圆心在弦的垂直平分线上求圆心坐标,再求半径,进而写出圆的方程. ()2据条件列出不等式,运用函数单调性解决恒成立问题.【详解】解:()1分别以2l 、1l 为x 轴,y 轴建立如图坐标系.据题意得()0,3M ,()4,5N ,531402MN k -∴==-, MN 中点为()2,4,∴线段MN 的垂直平分线方程为:()422)y x -=--,故圆心A 的坐标为()4,0,半径5R ==.∴弧MN 的方程为:()22(4)2504,53x y x y -+=≤≤≥≥()2设校址选在(),0(4)B a a >,04x ≤≤恒成立.04x ≤≤恒成立()﹡ 整理得:()282200a x a -+-≥,对04x ≤≤恒成立().﹡令()()28220f x a x a =-+-.4a >,820a ∴-<,()f x ∴在[]0,4上为减函数.()()244824200a f a a >⎧⎨=-⨯+-≥⎩, 解得6a ≥,即校址选在距O 最近6km 的地方.【点睛】本题主要考查求圆的方程的方法,函数的恒成立问题,利用二次函数在闭区间上的单调性求函数的值域,意在考查抽象和概括,将实际问题转化为数学问题,属于中档题.21.已知椭圆C :22221(0)x y a b a b +=>>的离心率3,连接椭圆的四个顶点得到的菱形的面积为.()1求椭圆C 的方程;()2如图所示,该椭圆C 的左、右焦点1F ,2F 作两条平行的直线分别交椭圆于A ,B ,C ,D 四个点,试求平行四边形ABCD 面积的最大值.【答案】(1)22 132x y +=;(2) 最大值为33. 【解析】 【分析】()1由题意离心率可得6a =,再结合面积求解a ,b 的值,则椭圆方程可求; ()2由()1知,()11,0F -,且直线AB 的斜率不为0,设直线AB 的方程为1x ty =-,联立直线方程与椭圆方程,把平行四边形ABCD 的面积用三角形OAB 的面积表示,然后利用换元法结合单调性求最值.【详解】解:()1由题意,3c e a ==,则22213a b a -=,即6a =. 又122262a b ⋅⋅=3a ∴=2b = ∴椭圆C 的方程为22132x y +=;()2由()1知,()11,0F -,且直线AB 的斜率不为0,设直线AB 的方程为1x ty =-,()11,A x y ,()22,B x y ,联立221132x ty x y =-⎧⎪⎨+=⎪⎩,消去x 得:()2223440t y ty +--=.得122423t y y t +=+,122423y y t -=+. 四边形ABCD 是平行四边形,根据对称性可知,A C 和,B D 关于点O 对称,∴1121442OABABCD S SOF y y ==⋅⋅-=四边形== 令21m t =+,则1m ≥,ABCD S ∴==四边形 1m ≥,且函数144y m m=++在[)1,+∞上单调递增, ∴当1m =,即0t =时,平行四边形ABCD .【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,训练了利用换元法与函数的单调性求最值,是中档题.22.已知ABC 的两个顶点为()0,2B -,()0,2C ,平面内P ,Q 同时满足0PA PB PC ++=①;QA QB QC ==②;//PQ BC ③.()1求顶点A 的轨迹E 的方程;()2过点()F 作两条互相垂直的直线1l ,2l ,直线1l ,2l 被点A 的轨迹E 截得的弦分别为11A B ,22A B ,设弦11A B ,22A B 的中点分别为M ,.N 试问:直线MN 是否恒过一个顶点?若过定点,请求出该顶点,若不过定点,请说明理由.【答案】(1)()2210124x y x +=≠;(2)直线MN 过定点,0.2⎛⎫ ⎪ ⎪⎝⎭【解析】 【分析】()1由已知向量等式可知P 为三角形ABC 的重心,设(),A x y ,则,33x y P ⎛⎫⎪⎝⎭,再由QA QB QC ==,知Q 是三角形ABC 的外心,结合//PQ BC 得,03x Q ⎛⎫ ⎪⎝⎭, 由QC QA =列式求解顶点A 的轨迹E 的方程;()2设出直线1l 的方程,与椭圆方程联立求得M 的坐标,同理求得N 的坐标,求得MN 的斜率,写出直线方程的点斜式,整理后利用线系方程说明直线MN 过定点.⎫⎪⎪⎝⎭【详解】解:()10PA PB PC ++=,P ∴为三角形ABC 的重心,设(),A x y ,则,33x y P ⎛⎫ ⎪⎝⎭, 由QA QB QC ==,知Q 是三角形ABC 的外心,Q ∴在x 轴上, 又//PQ BC ,,0.3x Q ⎛⎫∴ ⎪⎝⎭由QC QA=,得=221124x y +=. A ,B ,C 三点不共线,∴顶点A 的轨迹方程为()2210124x y x +=≠; ()2由()1知,()F 为A 的轨迹E 的右焦点, 设()111,A x y ,()122,B xy , 由221124x ty x y ⎧=+⎪⎨+=⎪⎩,得()22340t y ++-=.则12y y +=,12243y y t -=+, ()1212x x t y y ∴+=++=由中点坐标公式得22,33M t t ⎛⎫- ⎪ ⎪++⎝⎭,同理可求得222,.3131N t t ⎛⎫ ⎪ ⎪++⎝⎭则当21t ≠时,()2431MN t k t ==-. ∴直线MN的方程为()2431t y x t ⎛= -⎝⎭. 即()()22244431)3131t t t y x x t t t ⎛⎛==- ---⎝⎭⎝⎭. ∴直线MN过定点.2⎛⎫ ⎪ ⎪⎝⎭【点睛】本题考查圆锥曲线方程的求法,考查平面向量的应用,考查直线与圆锥曲线位置关系的应用,考查计算能力,是中档题.1、在最软入的时候,你会想起谁。
高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版
2023-2024学年高二数学上学期期中考试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的()A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】B【分析】根据充分条件和必要条件的定义判断即可.【详解】lg 0m >等价于1m >.若2m =,则方程()2211m x y m -+=-表示单位圆.若方程()2211m x y m -+=-表示椭圆,则椭圆方程可化为2211y x m +=-,则1m >且2m ≠.故“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的必要不充分条件.故选:B.2.直线()()()2212:110,:120l a x ay l a x a a y -+-=-+++=,若12//l l ,则实数a 的值不可能是()A .1-B .0C .1D .2-【答案】A【分析】根据平行列式,求得a 的值,进而确定正确答案.【详解】由于12//l l ,所以()()()2211a a a a a -⨯+=⨯-,()()()21110a a a a a +---=,()()()()()()22211112120a a a a a a a a a a ⎡⎤-+-=-+=-+=⎣⎦,解得0a =或1a =或2a =-.当0a =时,12:10,:20l x l x --=-+=,即12:1,:2l x l x =-=,两直线平行,符合题意.当1a =时,12:10,:220l y l y -=+=,即12:1,:1l y l y ==-,两直线平行,符合题意.当2a =-时,12:3210,:3220l x y l x y --=-++=,即12:3210,:3220l x y l x y --=--=,两直线平行,符合题意.所以a 的值不可能是1-.故选:A3.如图,在四面体OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2,OM MA N =为BC 中点,则MN等于()A .121232a b c-+ B .211322a b c-++C .111222a b c+- D .221332a b c+-【答案】B【分析】连接ON ,利用空间向量基本定理可得答案.【详解】连接()12211,23322ON MN ON OM OB OC OA a b c =-=+-=-++.故选:B.4.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,若1AM AB AA λμ=+,[]0,1λ∈,[]0,1μ∈,若1D M CP ⊥,则BCM 面积的最小值为()A .4B .8C .855D .82【答案】C【分析】由题意知点M 在平面11ABB A 内,建立如图空间直角坐标系A xyz -,设(,0,)M a b ,根据空间向量的数量积的坐标表示可得24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,结合线面垂直的性质即可求解.【详解】由1,[0,1]AM AB AA λμλμ=+∈、,知点M 在平面11ABB A 内,以1,,AB AD AA 所在直线为坐标轴建立如图空间直角坐标系A xyz -,则1(0,0,2),(4,4,0),(0,4,4)P C D ,设(,0,)M a b ,则1(,4,4),(4,4,2)D M a b CP =--=-- ,由1D M CP ⊥,得1416280D M CP a b ⋅=-++-=,即24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,则4245525BQ ⨯==,又BC ⊥平面11ABB A ,故BC BQ ⊥,所以BCM S △的最小值为145854255QBC S =⨯⨯= .故选:C.5.在平面直角坐标系中,设军营所在区域为221x y +≤,将军从点()2,0A 出发,河岸线所在直线方程为4x y +=,假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程()A .101-B .251-C .25D .10【答案】B【分析】根据题意作出图形,然后求出()2,0A 关于直线4x y +=的对称点A ',进而根据圆的性质求出A '到圆上的点的最短距离即可.【详解】若军营所在区域为22:1x y Ω+≤,圆:221x y +=的圆心为原点,半径为1,作图如下:设将军饮马点为P ,到达营区点为B ,设(),A x y '为A 关于直线4x y +=的对称点,因为()2,0A ,所以线段AA '的中点为2,22x y +⎛⎫⎪⎝⎭,则2422x y ++=即60x y +-=,又12AA yk x '==-,联立解得:42x y =⎧⎨=⎩,即()4,2A ',所以总路程||||||||PB PA PB PA '+=+,要使得总路程最短,只需要||||PB PA '+最短,即点A '到圆22=1x y +上的点的最短距离,即为11OA OB OA ''-=-=.故选:B.6.在等腰直角三角形ABC 中,4AB AC ==,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图).若光线QR 经过ABC 的重心,则QR 的长度等于()AB.9C.9D.9【答案】B【分析】建立平面直角坐标系,得出ABC 各顶点以及重心的坐标,设(),0P a ,04a <<.求出直线BC 的方程,根据光的反射原理得出点P 关于BC 以及y 轴的对称点的坐标,表示出RQ 的方程,代入重心坐标,求出a 的值,得出RQ 的方程.进而求出,R Q 的坐标,即可根据两点间的距离公式得出答案.【详解】如图,建立平面直角坐标系,则()0,0A ,()4,0B ,()0,4C ,ABC 的重心坐标为44,33⎛⎫⎪⎝⎭,BC 方程为40x y +-=,设(),0P a ,04a <<.根据光的反射原理以及已知可知,点P 关于BC 的对称点1P 在QR 的反向延长线上,点P 关于y 轴的对称点2P 在QR 的延长线上,即12,,,P P Q R 四点共线.由已知可得点()111,P x y 满足()11110422011a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=--⎪⎩,解得1144x y a =⎧⎨=-⎩,所以()14,4P a -.易知()2,0P a -.因为12,,,P P Q R 四点共线,所以有直线QR 的斜率为()40444a ak a a ---==--+,所以,直线QR 的方程为()44ay x a a-=++.由于直线QR 过重心44,33⎛⎫⎪⎝⎭,所以有444343a a a -⎛⎫=+ ⎪+⎝⎭,整理可得2340a a -=,解得43a =或0a =(舍去),所以直线QR 的方程为44434343y x -⎛⎫=+⎪⎝⎭+,整理可得3640x y -+=.所以,R 点坐标为20,3⎛⎫⎪⎝⎭.联立QR 与BC 的方程364040x y x y -+=⎧⎨+-=⎩,解得209169x y ⎧=⎪⎪⎨⎪=⎪⎩,即2016,99Q ⎛⎫ ⎪⎝⎭,所以,QR ==.故选:B.7.正四面体的棱长为3,点M ,N 是它内切球球面上的两点,P 为正四面体表面上的动点,当线段MN 最长时,PM PN ⋅的最大值为()A .2B .94C .3D .52【答案】C【分析】设四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,根据题意求出内切球的半径,当MN 为内切球的直径时,MN 最长,再化简()()PM PN PO OM PO ON ⋅=+⋅+可求得其最大值.【详解】设正四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,则AO BO =.因为正四面体的棱长为3,所以22333BG BE ==所以AG ===r ,则()222AG r r BG -=+,)22rr =+,解得4r =,当MN 为内切球的直径时MN 最长,此时0+= OM ON,238OM ON ⋅=-=-⎝⎭ ,()()PM PN PO OM PO ON⋅=+⋅+()2238PO PO OM ON OM ON PO =+⋅++⋅=- ,因为P 为正四面体表面上的动点,所以当P 为正四体的顶点时,PO 最长,POPM PN ⋅的最大值为23348⎛⎫-= ⎪ ⎪⎝⎭.故选:C8.已知M 为椭圆:()222210x y a b a b+=>>上一点,1F ,2F 为左右焦点,设12MF F α∠=,21MF F β∠=,若sin sin cos 1sin cos sin 3ααββαβ-=+,则离心率e =()A .12B .13C .12D .23【答案】C【分析】设12||,||MF m MF n ==,12||2F F c =,结合三角恒等变换以及正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+化为22243224c n m n m m c cm+--⋅=+,继而推出,,a b c 的关系,求得答案.【详解】设12||,||MF m MF n ==,12||2F F c =,则2m n a +=,由sin sin cos 1sin cos sin 3ααββαβ-=+得3sin 3sin cos sin cos sin ααββαβ-=+,即3sin 2sin cos sin sin cos cos sin sin sin()ααββαβαββαβ-=++=++,在12MF F △中,由正弦定理得1222sin sin sin sin()n m c cF MF αβαβ===∠+,故32cos 2n m m c β-=+,又2224cos 4c n mcmβ+-=,故22243224c n m n m m c cm+--⋅=+,即282(3)()()0c c m n m n n m +-++-=,即[4()][2()]0c m n c n m -+--=,即4c m n =+或2c n m =-,结合椭圆定义可知2m n c +>且||2m c -<,故4c m n =+,即142,2c c a e a =∴==,故选:C【点睛】关键点睛:本题是椭圆的离心率的求解问题,即求,,a b c 之间的关系,解答的关键是对于已知等式的化简,即利用三角恒等变换结合正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+转化为三角形边之间的关系式,进而化简可得,,a b c 的关系,即可求解答案.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2222x y -+=上,则ABP 面积可能是()A .1B .3C .4D .7【答案】BC【分析】根据给定条件,求出线段AB 长,点P 到直线AB 的距离范围,再利用三角形面积公式求解即得.【详解】依题意,点(2,0),(0,2)A B --,则||AB =圆()2222x y -+=的圆心(2,0)C ,半径2r =,则点C 到直线AB 的距离4222r =>,因此点P 到直线AB 的距离[2,32]d ∈,ABP 的面积1||2[2,6]2S AB d d =⋅=∈,显然BC 满足,AD 不满足.故选:BC10.已知圆2221:2100C x y mx y m ++-+=,圆222:450C x y y ++-=,则下列说法正确的是()A .若点()1,1在圆1C 的内部,则24m -<<B .若2m =,则圆12,C C 的公共弦所在的直线方程是41490x y -+=C .若圆12,C C 外切,则15m =±D .过点()3,2作圆2C 的切线l ,则l 的方程是3x =或724270x y -+=【答案】BCD【分析】根据点在圆的内部解不等式2112100m m ++-<+即可判断A 错误;将两圆方程相减可得公共弦所在的直线方程可知B 正确;利用圆与圆外切,由圆心距和两半径之和相等即可知C 正确;对直线l 的斜率是否存在进行分类讨论,由点到直线距离公式即可得D 正确.【详解】对于A ,由点(1,1)在圆1C 的内部,得2112100m m ++-<+,解得42m -<<,故A 错误;对于B ,若2m =,则圆221:41040C x y x y ++-+=,将两圆方程相减可得公共弦所在的直线方程是41490x y -+=,故B 正确;对于C ,圆1C 的标准方程为22()(5)25x m y ++-=,圆心为()1,5C m -,半径15r =,圆2C 的标准方程为22(2)9x y ++=,圆心为()20,2C -,半径23r =,若圆12,C C 外切,则1212C C r r =+,即24953m +=+,解得15m =±,故C 正确;对于D ,当l 的斜率不存在时,l 的方程是3x =,圆心2C 到l 的距离23d r ==,满足要求,当l 的斜率存在时,设l 的方程为()32y k x =-+,圆心2C 到l 的距离224331k d r k -===+,解得724k =,所以l 的方程是724270x y -+=,故D 正确.故选:BCD.11.如图,正方体1111ABCD A B C D -的棱长为2,E 为11A B 的中点,P 为棱BC 上的动点(包含端点),则下列结论正确的是()A .存在点P ,使11D P AC ⊥B .存在点P ,使1PE D E =C .四面体11EPCD 的体积为定值83D .二面角11P DE C --的余弦值的取值范围是23⎡⎢⎣⎦【答案】AB【分析】利用向量法,根据线面垂直,两点间的距离,几何体的体积,二面角等知识对选项进行分析,从而确定正确答案.【详解】建立如图所示空间直角坐标系,设()02CP a a =≤≤,则(),2,0P a ,()2,1,2E ,()()12,0,0,0,2,2A C ,()10,0,2D ,则()12,2,2AC =- ,()1,2,2D P a =-,112442D AC a a P ⋅=-+-=-,当0a =时,即P 点与C 点重合时,11D P AC ⊥,故A 正确.由1PE D E =2a =,此时P 点与B 点重合,故B 正确.111111111422223323E PC D P C D E C D E V V S --==⨯⋅=⨯⨯⨯⨯= 为定值,故C 错误.又()12,1,0D E = ,()1,2,2D P a =-,设平面1D EP 的法向量()1,,n x y z = ,由11112002200D E n x y D P n ax y z ⎧⋅=+==⎪⎨⋅=+-==⎪⎩,令1x =则=2y -,22a z =-,11,2,22a n ⎛⎫∴=-- ⎪⎝⎭ ,又平面11D EC 的法向量()20,0,2n =,12cos ,22n an ∴=-又02a ≤≤,122cos ,3n n ⎤∴∈⎣⎦,故D 错误.故选:AB12.已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫ ⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B.椭圆C C .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为2636c e a ===,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()22212122446F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.在三棱锥-P ABC 中,PC ⊥底面,90,4,45ABC BAC AB AC PBC ∠∠==== ,则点C 到平面PAB 的距离是.【答案】463/463【分析】建立空间直角坐标系,设平面PAB 的一个法向量为(),,m x y z =,由点C 到平面PAB 的距离为PC m d m⋅=求解.【详解】解:建立如图所示的空间直角坐标系,则()()()()0,0,0,4,0,0,0,4,0,0,4,42A B C P ,所以()()()0,4,42,4,0,0,0,0,42AP AB PC ===-.设平面PAB 的一个法向量为(),,m x y z =,则0,0,m AP m AB ⎧⋅=⎪⎨⋅=⎪⎩ 即4420,40,y z x ⎧+=⎪⎨=⎪⎩令y 1z =-,所以()1m =-,所以点C 到平面PAB的距离为PC m d m⋅==14.若非零实数对(),a b满足关系式1771a b a b ++=-+=,则a b=.【答案】34-或43【分析】化简转化为点到直线的距离,利用直线的位置关系即可求解.【详解】由1771a b a b ++=-+=5==,()1,1A 到直线10ax by ++=的距离1d,()7,7B -到直线10ax by ++=的距离2d ,5==,所以125d d ==.因为10AB =,1210d d +=,所以当点A ,B 在直线10ax by ++=同侧时,直线AB 与直线10ax by ++=平行,当点A ,B 在直线10ax by ++=异侧时,A ,B 关于直线10ax by ++=对称,因为直线AB 的斜率174173k +==--,直线10ax by ++=的斜率为ab-,所以43a b -=-或413a b ⎛⎫⎛⎫-⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以43a b =或34ab=-.故答案为:34-或43.15.过椭圆2222:1(0)x y C a b a b+=>>的右焦点F且与长轴垂直的弦的长为(2,1)P 且斜率为1-的直线与C 相交于,A B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为.【答案】3/3+【分析】利用点差法可求基本量的关系,再结合通径的长可求基本量,故可求焦半径的最大值.我们也可以联立直线方程和椭圆方程,从而可用基本量表示中点,从而得到基本量的一个关系式,同样结合通径长可取基本量,故可求焦半径的最大值.【详解】法一:将x c =代入椭圆C 的方程得2b y a =±,所以22ba=,设()11,A x y ,()22,B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得()()()()12121212220x x x x y y y y a b -+-++=,又124x x +=,1212122,1y y y y x x -+==--,所以22210a b-=②,解①②得3a b ==,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.法二:将x c =代入椭圆C 的方程得2by a=±,所以22b a =,直线AB 的方程是1(2)y x -=--,即3y x =-,代入椭圆的方程并消去y 整理得()2222222690a b x a x a a b +-+-=,则()()()()22222222222490694a a b a a b a b a b ∆=--++-->=,设()11,A x y ,()22,B x y ,则2122264a x x a b+==+,即222a b =②,解①②得3a b ==,满足0∆>,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.故答案为:3.16.在平面直角坐标系xOy 中,已知()1,1A --,圆22:1O x y +=,在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),则Q 的坐标为.【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设00(,)Q x y ,(,)P x yλ=对圆O 上任意点(,)P x y 恒成立,从而得到202202(22)()320x x y x λλλ+++--=对任意[x y +∈恒成立,从而得到202220220320x x λλλ⎧+=⎨--=⎩,即可求出λ与0x ,从而得解.【详解】设00(,)Q x y ,(,)P x y ,则PA =PQ =若在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),λ=对圆O 上任意点(,)P x y 恒成立,即22222200(1)(1)()()x y x x y y λλ+++=-+-,整理得222222022000(1)()(22)(22)2()0x y x x y y x y λλλλ-++++++-+=,因为点Q 在直线AO 上,所以00x y =,由于P 在圆O 上,所以221x y +=,故202202(22)()320x x y x λλλ+++--=恒成立,其中点(),P x y 在圆22:1O x y +=上,令x y m +=,则0x y m +-=,所以直线0x y m +-=与圆有交点,所以圆心到直线的距离小于等于半径,即1d ≤,解得m ≤≤[x y +∈,所以202220220320x x λλλ⎧+=⎨--=⎩,显然0λ≠,所以021x λ=-,故22230λλ--=,因为0λ>,解得λ=1λ=.当1λ=时,(1,1)Q --,此时,Q A 重合,舍去.当λ=11,22Q ⎛⎫-- ⎪⎝⎭,综上,存在满足条件的定点11,22Q ⎛⎫-- ⎪⎝⎭,此时λ=故答案为:11,22⎛⎫-- ⎪⎝⎭【点睛】关键点睛:本题解决的关键是利用题设条件,结合221x y +=与00x y =化简得202202(22)()320x x y x λλλ+++--=恒成立,从而得到关于0,x λ的方程组,由此得解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,E ,F 分别是AB ,PB 的中点.(1)求证:EF CD ⊥.(2)已知点G 在平面PAD 内,且GF ⊥平面PCB ,试确定点G 的位置.【答案】(1)证明见解析(2)点G 为AD 的中点【分析】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,设AD a =,再根据0EF DC ⋅= 即可证明.(2)设(,0,)G x z ,根据GF ⊥平面PCB 得到0FG CB ⋅= ,0FG CP ⋅= ,即可得到答案.【详解】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系(如图),设AD a =,则(0,0,0)D ,(,,0)B a a ,(0,,0)C a ,,,02a E a ⎛⎫ ⎪⎝⎭,(0,0,)P a ,,,222a a a F ⎛⎫ ⎪⎝⎭,所以,0,22a a EF ⎛⎫=- ⎪⎝⎭ ,(0),,0DC a = ,所以,0,(0,,0)022a a EF DC a ⎛⎫⋅=-⋅= ⎪⎝⎭ ,所以EF CD ⊥.(2)因为∈G 平面PAD ,设(,0,)G x z ,所以,,222a a a FG x z ⎛⎫=--- ⎪⎝⎭ .由(1),知(,0,0)CB a = ,(0,),CP a a =- .因为GF ⊥平面PCB ,所以,,(,0,0)()02222a a a a FG CB x z a a x ⎛⎫⋅=---⋅=-= ⎪⎝⎭ ,2,,(0,,)022222a a a a a FG CP x z a a a z ⎛⎫⎛⎫⋅=---⋅-=+-= ⎪ ⎪⎝⎭⎝⎭ ,所以2a x =,0z =,所以点G 的坐标为,0,02a ⎛⎫ ⎪⎝⎭,即点G 为AD 的中点.18.(12分)已知直线:1l y kx k =+-.(1)求证:直线l 过定点;(2)若当44x -<<时,直线l 上的点都在x 轴下方,求k 的取值范围;(3)若直线l 与x 轴、y 轴形成的三角形面积为1,求直线l 的方程.【答案】(1)证明见解析(2)11[,]35-(3)(21y x =+++(21y x =+【分析】(1)由直线方程观察得定点坐标即证;(2)由4x =±时对应点的纵坐标不小于0可得;(3)求出直线与坐标轴的交点坐标,再计算三角形面积从而得直线的斜率,即得直线方程.【详解】(1)由1y kx k =+-,得1(1)y k x +=+.由直线方程的点斜式可知,直线l 过定点(1,1)--;(2)若当44x -<<时,直线l 上的点都在x 轴下方,则410,410,k k k k -+-≤⎧⎨+-≤⎩解得1135k -≤≤,所以k 的取值范围是11[,35-;(3)设直线l 与x 轴的交点为A ,与y 轴的交点为B ,坐标原点为O .当0x =时,得||||1|OB k =-,当0y =时,得|1|||||k OA k -=,所以11|1||||||1|22||AOB k S OA OB k k -==-⨯△,即211|1|12||k k -⨯=,解得2k =2,所以直线l 的方程为(21y x =+(21y x =+19.(12分)如图所示,第九届亚洲机器人锦标赛VEX 中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD (包含边界和内部,A 为坐标原点),AD 10米,在AB 边上距离A 点4米的F 处放置一只电子狗,在距离A 点2米的E v ,电子狗行走速度为2v ,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M ,那么电子狗将被机器人捕获,点M 叫成功点.(1)求在这个矩形场地内成功点M 的轨迹方程;(2)若P 为矩形场地AD 边上的一点,若电子狗在线段FP 上都能逃脱,问:P 点应在何处?【答案】(1)2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭(2)P 的横坐标范围为⎤⎥⎝⎦即可逃脱.【分析】(1)分别以,AD AB 为,x y 轴,建立平面直角坐标系,由题意2MF ME v v =,利用两点间的距离公式可得答案.(2)利用三角函数得到极端情况时P 点的横坐标即可得到答案.【详解】(1)分别以AD ,AB 为x ,y 轴,建立平面直角坐标系,则()0,2E ,()0,4F ,设成功点(),M x y ,可得2MF ME v v ==化简得2241639x y ⎛⎫+-= ⎪⎝⎭,因为点M 需在矩形场地内,所以403x ≤≤,故所求轨迹方程为2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭.(2)当线段FP 与(1)中圆相切时,则413sin 4243AFP ∠==-,所以30AFP ∠=︒,所以4tan 30AP =︒=,若电子狗在线段FP 上都能逃脱,P点的横坐标取值范围是⎤⎥⎝⎦.20.(12分).如图,//AD BC 且2,,//AD BC AD CD EG AD =⊥且,//EG AD CD FG =且2,CD FG DG =⊥平面,2ABCD DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求平面BCE 和平面BCF 夹角的正弦值;(3)若点P 在线段DG 上,且直线与平面ADGE 所成的角为45︒,求点P 到平面CDE 的距离.【答案】(1)证明见解析;(2)10;(3)2.【分析】(1)取GD 中点为Q ,连接NQ ,MQ ,通过证明平面//MQN 平面CDE ,可得//MN 平面CDE ;(2)如图,建立以D 为原点的空间直角坐标系,分别求出平面BCE 和平面BCF 夹角的法向量,即可得答案;(3)由(2),设()0,0,P t ,直线BP 与平面ADGE 所成的角为45︒可得点P 坐标,可得点P 到平面CDE 的距离.【详解】(1)取GD 中点为Q ,连接NQ ,MQ .因M 为CF 的中点,N 为EG 的中点,Q 为GD 中点,由三角形及梯形中位线定理,可得,NQ ED MQ DC .又注意到,,ED DC ⊂平面EDC ,,NQ MQ ⊄平面EDC ,,NQ MQ ⊂平面MNQ ,∩NQ MQ Q =,则平面//MQN 平面CDE .又MN ⊂平面MQN ,则//MN 平面CDE .(2)因DG ⊥平面ABCD ,,⊂DA DC 平面ABCD ,则,DG DC DG DA ⊥⊥,又AD DC ⊥,则如图建立以D 为原点的空间坐标系.则()()()()()()()000200020002120202012,,,,,,,,,,,,,,,,,,,,D A C G B E F .()()()100122112,,,,,,,,BC BE BF =-=-=--.设平面BCE 和平面BCF 的法向量分别为()()11112222,,,,,n x y z n x y z == .则1111110220BC n x BE n x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取()10,1,1n = ;222222020BC n x BF n x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,取()20,2,1n = .设平面BCE 和平面BCF 夹角为θ,则1210cos cos ,θn n === .则平面BCE 和平面BCF夹角的正弦值为sin θ=(3)由(2),设()0,0,P t ,其中[]0,2t ∈,则()12,,BP t =-- 又由题可得,平面ADGE 的一个法向量可取()30,1,0n = .结合直线BP 与平面ADGE 所成的角为45︒,则32cos ,n BP t ==⇒=则(DP = ,()()020202,,,,,DC DE == .设平面CDE 法向量为()4444,,n x y z = ,则4444420220DC n y DE n x z ⎧⋅==⎪⎨⋅=+=⎪⎩ .取()4101,,n =- ,则点P 到平面CDE的距离442n DP d n ⋅=== .21.(12分)已知在平面直角坐标系xOy 中,已知A 、B 是圆O :228x y +=上的两个动点,P 是弦AB 的中点,且90AOB ∠=︒;(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线τ,若C ,D 是曲线τ与x 轴的交点,E 为直线l :4x =上的动点,直线CE ,DE 与曲线τ的另一个交点分别为M ,N ,判断直线MN 是否过定点,若是,求出定点的坐标,若不是,请说明理由.【答案】(1)224x y +=(2)过定点()1,0Q .【分析】(1)设点(),P x y 为曲线上任意一点,根据几何关系得到2OP =,得到轨迹方程.(2)设()4,E t ()0t ≠,分别计算CE ,DE 的直线方程,联立圆方程得到交点坐标,考虑直线MN 斜率存在和不存在两种情况,计算直线方程得到答案.【详解】(1)设点(),P x y 为曲线上任意一点,P 是弦AB 的中点,且90AOB ∠=︒,圆O :228x y +=的半径r =122OP AB ===,故点P 的轨迹方程为:224x y +=.(2)不妨取()2,0C -,()2,0D ,设()4,E t ()0t ≠,则直线CE 的方程为()26t y x =+,直线DE 的方程为()22t y x =-,联立()22264t y x x y ⎧=+⎪⎨⎪+=⎩,得2222364440363636t t t x x +++-=,则224236M t x t -=-+,即2272236M t x t -=+,()2242636M M t t y x t =+=+,所以22272224,3636t t M t t ⎛⎫- ⎪++⎝⎭.联立()22224t y x x y ⎧=-⎪⎨⎪+=⎩,得22224404t x t x t +-+-=,则22424N t x t +=+,即22284N t x t -=+,()28224N N t t y x t -=-=+,所以222288,44t t N t t ⎛⎫-- ⎪++⎝⎭.①当t ≠±MN 的斜率222222224883647222812364MNt t t t t k t t t t t --++==----++,则直线MN 的方程为222288284124t t t y x t t t ⎛⎫---=- ⎪+-+⎝⎭,即()28112t y x t =--,直线过定点()1,0,所以()1,0Q ;②当t =±MN 垂直于x 轴,方程为1x =,也过定点()1,0Q .综上所述:直线MN 恒过定点()1,0Q .【点睛】关键点睛:本题考查了圆的轨迹方程,定点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中设出E 的坐标,分别计算,M N 坐标再计算直线方程是解题的关键.22.(12分)如图所示,已知椭圆2219x y +=中()3,0A ,()0,1B ;P 在椭圆上且为第一象限内的点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N(1)求证:①||||AN BM ⋅为定值;②PMN 与PAB 面积之差为定值;(2)求MON △面积的最小值.【答案】(1)①证明见解析;②证明见解析(2)92+【分析】(1)①设00(,)P x y ,利用直线方程求出点,M N 坐标,从而可得||||AN BM ⋅的表达式,结合点在椭圆上化简,即可证明结论;②利用PMN 与PAB 面积之差为MAN BAN S S - ,利用三角形面积公式,结合①的定值即可证明结论;(2)利用三角形面积公式表示出MON △面积的表达式,利用(1)的定值结合基本不等式,即可求得答案.【详解】(1)证明:①设00(,)P x y ,()001,030x y <<<<,则220019x y +=,即220099x y +=,直线()0033:y PA y x x =--,令0x =,则0033M y y x =--,故003|||1|3y BM x =+-;直线0011:y PB y x x =+-,令0y =,则001N x x y -=-,故00|||3|1x AN y =+-;所以00000000003|||||3||1||33|||133331x y x y x y AN BM y x y x ⋅=+⋅+⋅-+----+()()()2220000000000000033996618||||3133x y x y x y x y x y x y x y +-+++--==----+000000001666183|38x y x y x y x y --++-==-,即||||AN BM ⋅为定值6;②PMN 与PAB 面积之差为11||||||||22MAN BAN S S AN OM AN OB -=⋅-⨯⋅ 1||||32AN BM =⨯⋅=,即PMN 与PAB 面积之差为定值3;(2)MON △面积()()11||||3||1||22OMN S ON OM AN BM =⋅=++ ()1||||||3||32AN BM AN BM =⋅+++()1966322+≥+=,当且仅当||3||AN BM =,结合||||6AN BM ⋅=,即|||AN BM ==时取等号,即MON △面积的最小值为92+.【点睛】关键点睛:解答本题的关键在于证明||||AN BM ⋅为定值,解答时要利用直线方程表示出||,||AN BM ,从而求得||||AN BM ⋅表达式,结合点在椭圆上化简即可证明结论.。
2020-2021学年海南省海口市海南中学高二上学期期中考试数学试题 Word版
海南中学2020-2021学年度第一学期期中考试高二 数学(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .314. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21515. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,),半径线段MN线段MN四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3),所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0. (2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面.又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即020x x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =,∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ, 则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.22. (12分)已知椭圆2222:1(0)xy M a b a b+=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为 (1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2, 又椭圆的离心率为2√23, 即ca =2√23, 所以c =2√23a , 所以a =3,c =2√2. 所以b =1,椭圆M 的方程为x 29+y 2=1; (Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2), 则有y 1+y 2=−2kmk +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0. 由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0.将x 1=ky 1+m ,x 2=ky 2+m 代入上式,得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。
2020学年高二(上)期中数学试卷带答案
2020学年高二(上)期中数学试卷一.填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)数列{n+2n}中的第4项是.2.(5分)抛物线x2=4y的准线方程为.3.(5分)若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是.4.(5分)已知等差数列{a n},其中a1=,a2+a5=4,a n=33,则n的值为.5.(5分)若x,y满足,则目标函数z=x+2y的最大值为.6.(5分)设等比数列{a n}的前n项和为S n,若27a3﹣a6=0,则=.7.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是.8.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.9.(5分)已知数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,求S5.10.(5分)已知椭圆:的焦距为4,则m为.11.(5分)若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是.12.(5分)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.13.(5分)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=.14.(5分)若实数a,b满足a=+2,则a的最大值是.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,﹣6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.16.(14分)已知数列{a n}的通项公式是a n=n2+kn+4(1)若k=﹣5,则数列中有多少项是负数?n为何值时,a n有最小值.并求出最小值,(2)对于n∈N*,都有a n>a n,求实数k的取值范围.+117.(14分)某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3﹣,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?18.(16分)(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的焦距为2.(1)若椭圆C经过点(,1),求椭圆C的标准方程;(2)设A(﹣2,0),F为椭圆C的左焦点,若椭圆C上存在点P,满足=,求椭圆C的离心率的取值范围.20.(16分)已知递增数列{a n}的前n项和为S n,且满足a1=1,4S n﹣4n+1=a n2.设b n=,n∈N*,且数列{b n}的前n项和为T n.(1)求证:数列{a n}为等差数列;(2)试求所有的正整数m,使得为整数;(3)若对任意的n∈N*,不等式λT n<n+18(﹣1)n+1恒成立,求实数λ的取值范围.二.高二数学试题(第二卷)21.(5分)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有辆.22.(5分)若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为.23.(5分)已知命题甲是“{x|≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)24.(5分)下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;②若命题P:∃x∈R,x2+x+1<0,则﹁p:∀x∈R,x2+x+1≥0;③若命题“﹁p”与命题“p或q”都是真命题,则命题q一定是真命题;④命题“若0<a<1则log a(a+1)<”是真命题.其中正确命题的序号是.(把所有正确命题序号都填上)25.(10分)设命题p:函数y=kx+1在R上是增函数,命题q:∃x∈R,x2+(2k﹣3)x+1=0,如果p∧q是假命题,p∨q是真命题,求k的取值范围.26.(10分)将扑克牌4种花色的A,K,Q共12张洗匀.(1)甲从中任意抽取2张,求抽出的2张都为A的概率;(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.参考答案与试题解析一.填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)数列{n+2n}中的第4项是20.【分析】根据题意,可得数列的通项a n=n+2n,将n=4代入通项计算可得答案.【解答】解:根据题意,数列{n+2n}的通项a n=n+2n,则其第4项a4=4+24=20;故答案为:20.【点评】本题考查数列的通项公式,涉及数列的表示方法,关键是理解数列通项公式的定义.2.(5分)抛物线x2=4y的准线方程为y=﹣1.【分析】由抛物线x2=2py(p>0)的准线方程为y=﹣即可求得抛物线x2=4y的准线方程.【解答】解:∵抛物线方程为x2=4y,∴其准线方程为:y=﹣1.故答案为:y=﹣1.【点评】本题考查抛物线的简单性质,掌握其几何性质是关键,属于基础题.3.(5分)若原点(0,0)和点(1,1)在直线x+y﹣a=0的两侧,则a的取值范围是(0,2).【分析】因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,由此能求出a的取值范围.【解答】解:因为原点O和点P(1,1)在直线x+y﹣a=0的两侧,所以(﹣a)•(1+1﹣a)<0,解得0<a<2,故答案为:(0,2).【点评】本题考查二元一次不等式的几何意义,解题时要认真审题,注意公式的灵活运用.4.(5分)已知等差数列{a n},其中a1=,a2+a5=4,a n=33,则n的值为50.【分析】由已知求得等差数列的公差,代入a n=33可求n的值.【解答】解:在等差数列{a n},由a1=,a2+a5=4,得2a1+5d=4,即,.∴,由a n=33,得,解得:n=50.故答案为:50.【点评】本题考查了等差数列的通项公式,是基础的计算题.5.(5分)若x,y满足,则目标函数z=x+2y的最大值为3.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分).由z=x+2y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大.由,解得,即B(1,1),代入目标函数z=x+2y得z=2×1+1=3故答案为:3.【点评】本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.6.(5分)设等比数列{a n}的前n项和为S n,若27a3﹣a6=0,则=28.【分析】设出等比数列的首项和公比,由已知求出公比,代入等比数列的前n 项和得答案.【解答】解:设等比数列{a n}的首项为a1,公比为q,由27a3﹣a6=0,得27a3﹣a3q3=0,即q=3,∴=.故答案为:28.【点评】本题考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.7.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是5.【分析】将方程变形,代入可得3x+4y=(3x+4y)()=×3,然后利用基本不等式即可求解.【解答】解:∵x+3y=5xy,x>0,y>0∴∴3x+4y=(3x+4y)()=×3=5当且仅当即x=2y=1时取等号故答案为:5【点评】本题主要考查了利用基本不等式求解最值问题,解题的关键是基本不等式的应用条件的配凑8.(5分)已知双曲线﹣y2=1(a>0)的一条渐近线为x+y=0,则a=.【分析】运用双曲线的渐近线方程为y=±,结合条件可得=,即可得到a 的值.【解答】解:双曲线﹣y2=1的渐近线方程为y=±,由题意可得=,解得a=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的渐近线方程的求法,属于基础题.9.(5分)已知数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1,且a4与2a7的等差中项为,求S5.【分析】由a2•a3=2a1=a1•a4,可得a4=2,再由a4与2a7的等差中项为,得a4 +2a7 =,故有a7 =.求出首项和公比,再利用等比数列的前n项和公式求出s5.【解答】解:数列{a n}是等比数列,S n是它的前n项和,若a2•a3=2a1=a1•a4,可得a4=2.再由a4与2a7的等差中项为,可得a4 +2a7 =,故有a7 =.∴q3==,∴q=,∴a1=16.∴s5==31.【点评】本题主要考查等差数列的定义和性质,等比数列的通项公式,等比数列的前n项和公式,属于中档题.10.(5分)已知椭圆:的焦距为4,则m为4或8.【分析】分焦点在x,y轴上讨论,结合焦距为4,可求m的值.【解答】解:由题意,焦点在x轴上,10﹣m﹣m+2=4,所以m=4;焦点在y轴上,m﹣2﹣10+m=4,所以m=8,综上,m=4或8.故答案为:m=4或8.【点评】本题考查椭圆的性质,考查学生对椭圆方程的理解,属于基础题.11.(5分)若数列x,a1,a2,y成等差数列,x,b1,b2,y成等比数列,则的取值范围是[4,+∞)或(﹣∞,0] .【分析】由题意可知===++2.由此可知的取值范围.【解答】解:在等差数列中,a1+a2=x+y;在等比数列中,xy=b1•b2.∴===++2.当x•y>0时,+≥2,故≥4;当x•y<0时,+≤﹣2,故≤0.答案:[4,+∞)或(﹣∞,0]【点评】本题考查数列的性质和应用,解题时要认真审题,仔细思考.12.(5分)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.【分析】设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.【解答】解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.【点评】本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.13.(5分)将石子摆成如图所示的梯形形状,称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第100项,即a100=5252.【分析】根据题意,分析所给的图形可得a n﹣a n﹣1=n+2(n≥2),结合a1的值,可得a100=a1+(a2﹣a1)+(a3﹣a2)+…+(a100﹣a99),代入数据计算可得答案.【解答】解:根据题意,分析相邻两个图形的点数之间的关系:a2﹣a1=4,a3﹣a2=5,…由此我们可以推断:a n﹣a n﹣1=n+2(n≥2),又由a1=5,所以a100=a1+(a2﹣a1)+(a3﹣a2)+…+(a100﹣a99)=5+4+5+…+102=5+=5252;即a100=5252;故答案为:5252.【点评】本题考查数列的表示方法,涉及归纳推理的运用,关键是依据图形,发现变化的规律.14.(5分)若实数a,b满足a=+2,则a的最大值是20.【分析】用换元法,设=x,=y,则x≥0,y≥0;求出b与a的解析式,由a=+2得出y与x的关系式,再根据其几何意义求出a的最大值.【解答】解:设=x,=y,且x≥0,y≥0;∴b=x2,4a﹣b=y2,即a==;∴a=+2可化为=y+2x,即(x﹣4)2+(y﹣2)2=20,其中x≥0,y≥0;又(x﹣4)2+(y﹣2)2=20表示以(4,2)为圆心,以2为半径的圆的一部分;∴a==表示圆上点到原点距离平方的,如图所示;∴a的最大值是×(2r)2=r2=20故答案为:20.【点评】本题考查了给出条件求最值的应用问题,主要考查了换元法和圆的方程的运用问题,考查了数形结合和运算能力,属于中档题.二.解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点(2,﹣6);(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.【分析】(1)设椭圆的标准方程为=1,或,a>b>0,由已知得a=2b,且椭圆过点(2,﹣6),由此能求出椭圆的标准的方程.(2)设椭圆的标准方程为=1,a>b>0,由已知条件推导出c=b=3,由此能求出椭圆的标准方程.【解答】解:(1)设椭圆的标准方程为=1,或,a>b>0,∵长轴长是短轴长的2倍,∴a=2b,①∵椭圆过点(2,﹣6),∴=1,或=1,②由①②,得a2=148,b2=37或a2=52,b2=13,故所求的方程为或.(2)设椭圆的标准方程为=1,a>b>0,∵在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6,如图所示,∴△A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且OF=c,A1A2=2b,∴c=b=3.∴a2=b2+c2=18.故所求椭圆的方程为.【点评】本题考查椭圆的标准方程的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.16.(14分)已知数列{a n}的通项公式是a n=n2+kn+4(1)若k=﹣5,则数列中有多少项是负数?n为何值时,a n有最小值.并求出最小值,>a n,求实数k的取值范围.(2)对于n∈N*,都有a n+1【分析】(1)将k=﹣5代入可知a n=(n﹣1)(n﹣4),进而令a n<0可得负数项,通过配方可得最小值;>a n化简得k>﹣2n﹣1,进而可知k>﹣2﹣1=﹣3.(2)通过a n+1【解答】解:(1)若k=﹣5,则a n=n2﹣5n+4=(n﹣1)(n﹣4),令a n<0,则1<n<4,∴数列中第2、3项共2项为负数,∵f(x)=x2﹣5x+4是开口向上,对称轴x=的抛物线,∴当n=2或3时,a n有最小值22﹣5×2+4=﹣2;(2)依题意,a n>a n,即(n+1)2+k(n+1)+4>n2+kn+4,+1整理得:k>﹣2n﹣1,>a n,又∵对于n∈N*,都有a n+1∴k大于﹣2n﹣1的最大值,∴k>﹣2﹣1=﹣3.【点评】本题考查数列的递推式,考查运算求解能力,注意解题方法的积累,属于基础题.17.(14分)某厂家计划在2016年举行商品促销活动,经调查测算,该商品的年销售量m万件与年促销费用x万元满足:m=3﹣,已知2016年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家的产量等于销售量,而销售收入为生产成本的1.5倍(生产成本由固定投入和再投入两部分资金组成).(1)将2016年该产品的利润y万元表示为年促销费用x万元的函数;(2)该厂2016年的促销费用投入多少万元时,厂家的利润最大?【分析】(1)由题目中,每件产品的销售价格为 1.5×(万元),则利润y=m[1.5×]﹣(8+16m+x),整理即可.(2)对(1)利润函数y=﹣[+(x+1)]+29(x≥0),利用基本不等式求最大值即可.【解答】解:(1)由题意知,每件产品的销售价格为1.5×(万元),∴利润函数y=m[1.5×]﹣(8+16m+x)=4+8m﹣x=﹣[+(x+1)]+29(x≥0).(2)因为利润函数y=﹣[+(x+1)]+29(x≥0),所以,当x≥0时,+(x+1)≥8,∴y≤﹣8+29=21,当且仅当=x+1,即x=3(万元)时,y max=21(万元).所以,该厂家2016年的促销费用投入3万元时,厂家的利润最大,最大为21万元.【点评】本题考查了商品利润函数模型的应用,也考查了基本不等式a+b≥2(a>0,b>0)的灵活运用,是中档题.目.18.(16分)(1)解关于x的不等式:(a2+a﹣1)x>a2(1+x)+a﹣2(a∈R);(2)如果x=a2﹣4在上述不等式的解集中,求实数a的取值范围.【分析】(1)把原不等式右边的未知项移项到左边进行合并,同时右边的式子分解因式,然后根据a﹣1大于0,a﹣1等于0及a﹣1小于0三种情况,根据不等式的基本性质把x的系数化为1,分别求出原不等式相应的解集即可;(2)解法一:分两种情况:a大于1时,根据相应的解集列出关于a的不等式组;同理a小于1时列出相应的不等式组,求出两不等式组解集的并集即可得到a的范围;解法二:把x=a2﹣4代入原不等式中化简,得到关于a的不等式,画出相应的图形,根据图形即可得到满足题意的a的取值范围.【解答】解:(1)(a2+a﹣1)x>a2(1+x)+a﹣2,(a2+a﹣1)x﹣a2x>a2+a﹣2,(a﹣1)x>a2+a﹣2,(a﹣1)x>(a﹣1)(a+2),当a>1时,解集为{x|x>a+2};当a=1时,解集为∅;当a<1时,解集为{x|x<a+2};(2)解法一:由题意,或,分别化为:或,解得:a>3或﹣2<a<1,则实数a的取值范围为(﹣2,1)∪(3,+∞);解法二:将x=a2﹣4代入原不等式,并整理得:(a+2)(a﹣1)(a﹣3)>0,根据题意画出图形,如图所示:根据图形得:实数a的取值范围为(﹣2,1)∪(3,+∞).【点评】此题考查了其他不等式的解法,利用了分类讨论及数形结合的思想,第二小题有两种解法:一种是利用转化的思想,讨论a大于1和a小于1,根据第一问求出的解集列出相应的不等式组;另一种是直接把x的值代入原不等式,借助图形来求解.19.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的焦距为2.(1)若椭圆C经过点(,1),求椭圆C的标准方程;(2)设A(﹣2,0),F为椭圆C的左焦点,若椭圆C上存在点P,满足=,求椭圆C的离心率的取值范围.【分析】(1)由题意可得a2﹣b2=1,代入已知点,可得a,b的方程,解方程即可得到所求椭圆方程;(2)设P(x,y),运用两点的距离公式,化简整理,即可得到P的轨迹方程,由题意和圆相交的条件,结合离心率公式,即可得到所求范围.【解答】解:(1)由题意可得c=1,即a2﹣b2=1,又代入点(,1),可得+=1,解方程可得a=,b=,即有椭圆的方程为+=1;(2)由题意方程可得F(﹣1,0),设P(x,y),由PA=PF,可得=•,化简可得x2+y2=2,由c=1,即a2﹣b2=1,由椭圆+=1和圆x2+y2=2有交点,可得b2≤2≤a2,又b=,可得≤a≤,即有离心率e=∈[,].【点评】本题考查椭圆的方程的求法,注意运用方程的思想,考查轨迹方程的求法,以及椭圆和圆相交的关系,考查运算能力,属于中档题.20.(16分)已知递增数列{a n}的前n项和为S n,且满足a1=1,4S n﹣4n+1=a n2.设b n=,n∈N*,且数列{b n}的前n项和为T n.(1)求证:数列{a n}为等差数列;(2)试求所有的正整数m,使得为整数;(3)若对任意的n∈N*,不等式λT n<n+18(﹣1)n+1恒成立,求实数λ的取值范围.【分析】(1)由已知条件推导出a n﹣2=a n﹣1(n≥2)或a n﹣2=﹣a n﹣1(n≥2),由此能证明数列{a n}为等差数列.(2)由a n=2n﹣1,知=1﹣,由此能求出所有的正整数m,使得为整数.(3)由a n=2n﹣1,知,由此利用裂项求和法结合已知条件能求出实数λ的取值范围.【解答】(1)证明:由,得,…(2分)所以,即,即(n≥2),所以a n﹣2=a n﹣1(n≥2)或a n﹣2=﹣a n﹣1(n≥2),即a n﹣a n﹣1=2(n≥2)或a n+a n﹣1=2(n≥2),…(4分)若a n+a n﹣1=2(n≥2),则有a2+a1=2,又a1=1,所以a2=1,则a1=a2,这与数列{a n}递增矛盾,所以a n﹣a n﹣1=2(n≥2),故数列{a n}为等差数列.…(6分)(2)解:由(1)知a n=2n﹣1,所以==,…(8分)因为,所以,又2m﹣1≥1且2m﹣1为奇数,所以2m﹣1=1或2m﹣1=3,故m的值为1或2.…(10分)(3)解:由(1)知a n=2n﹣1,则,所以T n=b1+b2+…+b n==,…(12分)从而对任意n∈N*恒成立等价于:当n为奇数时,恒成立,记,则≥49,当n=3时取等号,所以λ<49,当n为偶数时,恒成立.记,因为递增,所以g(n)min=g(2)=﹣40,所以λ<﹣40.综上,实数λ的取值范围为λ<﹣40.…(16分)【点评】本题考查等差数列的证明,考查满足条件的所有的正整数的求法,考查实数的取值范围的求法,解题时要注意裂项求和法的合理运用.二.高二数学试题(第二卷)21.(5分)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有80辆.【分析】由频率分布直方图先求出时速在区间[40,60)内的汽车的频率,由此能求出时速在区间[40,60)内的汽车数量.【解答】解:由频率分布直方图得:时速在区间[40,60)内的汽车的频率为(0.01+0.03)×10=0.4.∴时速在区间[40,60)内的汽车有0.4×200=80(辆).故答案为:80.【点评】本题考查频数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.22.(5分)若随机安排甲乙丙三人在3天节日中值班,每人值班1天,则甲与丙都不在第一天的概率为.【分析】由甲与丙都不在第一天值班,得乙在第一天值班,由此能求出甲与丙都不在第一天值班的概率.【解答】解:随机安排甲乙丙三人在3天节日中值班,每人值班1天,∵甲与丙都不在第一天值班,∴乙在第一天值班,∵第一天值班一共有3种不同安排,∴甲与丙都不在第一天值班的概率p=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.23.(5分)已知命题甲是“{x|≥0}”,命题乙是“{x|log3(2x+1)≤0}”,则甲是乙的必要不充分条件.(从充分不必要、必要不充分、充要、既不充分也不必要中选填)【分析】利用不等式的解法分别化简甲乙命题,进而判断出结论.【解答】解:命题甲:≥0,化为x(x﹣1)(x+1)≥0,且x≠1,解得:﹣1≤x≤0,或x>1.命题乙:log3(2x+1)≤0,化为0<2x+1≤1,解得:0.则甲是乙的必要不充分条件.故答案为:必要不充分.【点评】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.24.(5分)下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;②若命题P:∃x∈R,x2+x+1<0,则﹁p:∀x∈R,x2+x+1≥0;③若命题“﹁p”与命题“p或q”都是真命题,则命题q一定是真命题;④命题“若0<a<1则log a(a+1)<”是真命题.其中正确命题的序号是②、③.(把所有正确命题序号都填上)【分析】利用命题的否定的形式判断出①错;利用含量词的命题的否定形式判断出②对;利用复合命题的真假与构成其简单命题的真假的关系判断出③对;利用对数函数的单调性判断出④错.【解答】解:对于①,由于否命题是对命题的条件、结论同时否定,①只否定了结论,条件没否定,故①错;对于②,由于含量词的命题有否定公式是:量词交换,结论否定,故②对;对于③,因为”¬p“为真,故p假;因为“p或q”为真,所以p,q有真,所以q 一定为真,故③对;对于④,因为0<a<1,y=log a x是减函数,∵∴,故④错.故答案为:②③【点评】本题考查命题的否定与命题的否命题的区别:命题的否定是将命题全盘否定,一般只将结论否定即可;二否命题是条件、结论同时否定.注意对数函数的单调性与底数的范围有关.25.(10分)设命题p:函数y=kx+1在R上是增函数,命题q:∃x∈R,x2+(2k ﹣3)x+1=0,如果p∧q是假命题,p∨q是真命题,求k的取值范围.【分析】分别求出p,q为真时的k的范围,根据p,q一真一假,得到关于k 的不等式组,解出即可.【解答】解:∵y=kx+1在R递增,∴k>0,由∃x∈R,x2+(2k﹣3)x+1=0,得方程x2+(2k﹣3)x+1=0有根,∴△=(2k﹣3)2﹣4≥0,解得:k≤或k≥,∵p∧q是假命题,p∨q是真命题,∴命题p,q一真一假,①若p真q假,则,∴<k<;②若p假q真,则,∴k≤0;综上k的范围是(﹣∞,0]∪(,).【点评】本题考查了复合命题的判断,考查一次函数以及二次函数的性质,是一道中档题.26.(10分)将扑克牌4种花色的A,K,Q共12张洗匀.(1)甲从中任意抽取2张,求抽出的2张都为A的概率;(2)若甲已抽到了2张K后未放回,求乙抽到2张A的概率.【分析】(1)甲从中任意抽取2张,基本事件总数n==66,抽出的2张都为A包含的基本事件个数m=,由此能求出抽出的2张都为A的概率.(2)甲已抽到了2张K后未放回,余下10张中抽出2张的方法有=45,抽出的两张都是A的方法有,由此能求出乙抽到2张A的概率.【解答】解:(1)将扑克牌4种花色的A,K,Q共12张洗匀.甲从中任意抽取2张,基本事件总数n==66,抽出的2张都为A包含的基本事件个数m=,∴抽出的2张都为A的概率p==.(2)甲已抽到了2张K后未放回,余下10张中抽出2张的方法有=45,抽出的两长都是A的方法有,∴乙抽到2张A的概率p==.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.。
2019-2020学年北京师范大学附属中学高二上学期期中考试数学试题
北京师范大学附属中学2019-2020学年高二上学期期中考试数学试题★祝考试顺利★注意事项:1、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
3、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
5、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(本大题共8小题)1.命题p:“∀x∈(-∞,0),3x≥4x”的否定¬p为()A. ,B. ,C. D.2.在等比数列{a n}中,a3=2,a5=8,则a4=()A. 4B. 5C.D.3.若a>b>c且a+b+c=0,则下列不等式中正确的是()A. B. C. D.4.设0<x<1,则a=,b=1+x,c=中最大的一个是()A. aB. bC. cD. 不能确定5.在等比数列{a n}中,a1=3,前n项和为S n,若数列{a n+1}也是等比数列,则S n等于()A. 2nB. 3nC.D.6.若互不相等的实数a,b,c成等差数列,c,a,b成等比数列,且a+3b+c=10,则a=()A. 4B. 2C.D.7.设{a n}是各项为正数的无穷数列,A i是边长为a i,a i+1的矩形的面积(i=1,2,…),则{A n}为等比数列的充要条件是()A. 是等比数列B. ,,,,或,,,,是等比数列C. ,,,,和,,,,均是等比数列D. ,,,,和,,,,均是等比数列,且公比相同8.设某公司原有员工100人从事产品A的生产,平均每人每年创造产值t万元(t为正常数).公司决定从原有员工中分流x(0<x<100)人去进行新开发的产品B 的生产.分流后,继续从事产品A生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A的年产值不减少,则最多能分流的人数是()A. 15B. 16C. 17D. 18二、填空题(本大题共6小题)9.数列{a n}中,已知a1=1,a2=2,a n+1=a n+a n+2(n∈N*),则a7= ______ .10.若实数x,y满足xy=1,则x2+4y2的最小值为______.11.设a,b是两个实数,给出下列条件:①a+b>1;②a+b=2;③a+b>2;④a2+b2>2;⑤ab>1.其中能推出:“a,b中至少有一个大于1”的条件是______ .(填序号,只有一个正确选项)12.已知{a n}是等差数列,a1=1,公差d≠0,S n为其前n项和,若a1,a2,a5成等比数列,则S8=________.13.等比数列{a n}中,若前n项的和为S n=2n-1,则a+a22+…+a n2=______.14.珠海市板樟山森林公园(又称澳门回归公园)的山顶平台上,有一座百子回归碑.百子回归碑是一座百年澳门简史,记载着近年来澳门的重大历史事件以及有关史地,人文资料等,如中央四数连读为1999-12-20标示澳门回归日,中央靠下有23-50标示澳门面积约为23.50 平方公里.百子回归碑实为一个十阶幻方,是由1 到100 共100 个整数填满100个空格,其横行数字之和与直列数字之和以及对角线数字之和都相等.请问如图2 中对角线上数字(从左上到右下)之和为______ .三、解答题(本大题共6小题)15.记S n为等差数列{a n}的前n项和,已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.16.已知命题:“∃x∈{x|-1<x<1},使等式x2-x-m=0成立”是真命题,(1)求实数m的取值集合M;(2)设不等式(x-a)(x+a-2)<0的解集为N,若x∈N是x∈M的必要条件,求a 的取值范围.17.甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是元.(1)要使生产该产品2小时获得的利润不低于3000元,求x的取值范围;(2)要使生产1200千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.18.已知p:(x+1)(2-x)≥0,q:关于x的不等式x2+2mx-m+6>0恒成立.(1)当x∈R时q成立,求实数m的取值范围;(2)若p是q的充分不必要条件,求实数m的取值范围.19.已知数列{a n}是各项均不为0的等差数列,公差为d,S n为其前n项和,且满足,n∈N*.数列{b n}满足,T n为数列{b n}的前n项和.(1)求a1、d和T n;(2)若对任意的n∈N*,不等式恒成立,求实数λ的取值范围.20.已知无穷数列{a n}(a n∈Z)的前n项和为S n,记S1,S2,…,S n中奇数的个数为b n.(Ⅰ)若a n=n,请写出数列{b n}的前5项;(Ⅱ)求证:“a1为奇数,a i(i=2,3,4,…)为偶数”是“数列{b n}是单调递增数列”的充分不必要条件;(Ⅲ)若a i=b i,i=1,2,3,…,求数列{a n}的通项公式.答案和解析1.【答案】C【解析】解:命题是全称命题,则¬p:,故选:C.根据全称命题的否定是特称命题进行判断.本题主要考查含有量词的命题的否定,根据全称命题的否定是特称命题,特称命题的否定是全称命题是解决本题的关键.比较基础.2.【答案】C【解析】解:根据题意,设等比数列{a n}的公比为q,由已知得,所以q=±2,都符合题意,所以a4=a3•q=±4,故选:C.根据题意,设等比数列{a n}的公比为q,由等比数列的通项公式可得,解可得q的值,代入通项公式计算可得答案.本题考查等比数列的性质,注意等比数列的通项公式的应用.3.【答案】A【解析】解:a>b>c且a+b+c=0,∴a>0>c,b∈R.∴ab>ac,ac<bc,a|b|与c|b|大小关系不确定,a2、b2、c2大小关系不确定.则上述不等式中正确的是A.故选:A.a>b>c且a+b+c=0,可得a>0>c,b∈R.利用不等式的基本性质即可判断出结论.本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.4.【答案】C【解析】解:∵0<x<1,∴1+x>2=>.∴只需比较1+x与的大小.∵1+x-==-<0,∴1+x<.故选:C.先由基本不等式确定a,b的大小,再对b,c作差比较即可.本题主要考查比较几个数的大小问题.比较大小一般通过基本不等式、作差、运用函数的单调性等来完成.5.【答案】B【解析】解:因数列{a n}为等比,则a n=3q n-1,因数列{a n+1}也是等比数列,则(a n+1+1)2=(a n+1)(a n+2+1)∴a n+12+2a n+1=a n a n+2+a n+a n+2∴a n+a n+2=2a n+1∴a n(1+q2-2q)=0∴q=1即a n=3,所以s n=3n,故选:B.根据数列{a n}为等比可设出a n的通项公式,因数列{a n+1}也是等比数列,进而根据等比性质求得公比q,进而根据等比数列的求和公式求出s n.本题考查了等比数列的定义和求和公式,着重考查了运算能力.6.【答案】D【解析】解:由互不相等的实数a,b,c成等差数列,可设a=b-d,c=b+d,由题设得,,解方程组得,或,∵d≠0,∴b=2,d=6,∴a=b-d=-4,故选:D.因为a,b,c成等差数列,且其和已知,故可设这三个数为b-d,b,b+d,再根据已知条件寻找关于b,d的两个方程,通过解方程组即可获解.此类问题一般设成等差数列的数为未知数,然后利用等比数列的知识建立等式求解,注意三个成等差数列的数的设法:x-d,x,x+d.7.【答案】D【解析】解:依题意可知A i=a i•a i+1,∴A i+1=a i+1•a i+2,若{A n}为等比数列则==q(q为常数),则a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比均为q;反之要想{A n}为等比数列则=需为常数,即需要a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相等;故{A n}为等比数列的充要条件是a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同.故选D根据题意可表示A i,先看必要性,{A n}为等比数列推断出为常数,可推断出a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同;再看充分性,要使题设成立,需要为常数,即a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相等,答案可得.本题主要考查了等比数列的性质,充分条件,必要条件和充分必要条件的判定.考查了学生分析问题和基本的推理能力.8.【答案】B【解析】解:由题意,公司原有100人每年创造的产值为100t(万元),分流后剩余(100-x)人每年创造的产值为(100-x)(1+1.2x%)t,则由,解得:0<x<.∵x∈N,∴x的最大值为16.故选:B.分流后从事产品A生产的人数为100-x,根据要保证分流后,该公司产品A的年产值不减少,可列不等式组求解.本题考查数学建模思想方法,关键是考查学生理解题意的能力,是中档题.9.【答案】1【解析】解:由a n+1=a n+a n+2,得a n+2=a n+1-a n,所以a3=a2-a1=1,a4=a3-a2=1-2=-1,a5=a4-a3=-1-1=-2,a6=a5-a4=-2-(-1)=-1,a7=a6=a5=-1-(-2)=1.故答案为:1.根据递推公式a n+1=a n+a n+2,得a n+2=a n+1-a n,把a1=1,a2=2带入可依次求出前7项,从而得到答案.本题考查数列的递推公式,数列的递推公式是给出数列的一种方法.10.【答案】4【解析】解:若实数x,y满足xy=1,则x2+4y2≥2x•2y=4xy=4,当且仅当x=2y=±时,上式取得最小值4.故答案为:4.运用不等式a2+b2≥2ab(当且仅当a=b取得等号),计算可得所求最小值.本题考查基本不等式的运用:求最值,考查运算能力,属于基础题.11.【答案】③【解析】解:关于①,a+b>1,可取,,不能推出:“a,b中至少有一个大于1”;关于②,a+b=2,可取a=1,b=1,不能推出:“a,b中至少有一个大于1”;关于④,a2+b2>2,可取a=-2,b=-2,不能推出:“a,b中至少有一个大于1”;关于⑤,ab>1,可取a=-2,b=-2,不能推出:“a,b中至少有一个大于1”.关于③,若a+b>2,则a,b中至少有一个大于1,可用反证法证明,它是正确的.证明如下:假设a≤1且b≤1,则a+b≤2.与已知条件“a+b>2”矛盾,故假设不成立.即有a,b中至少有一个大于1,故③正确.故选③.本题可以利用反证法,“假设a,b两数均小于或等于1,可得结论a+b小于等于2.”,由些推理可得到正确结论.本题考查的是不等式的基本性质和反证法,注意在判断其它命题错误时,可以举反例.本题计算量不大,但有一定的思维量,属于中档题.12.【答案】64【解析】解:∵{a n}是等差数列,a1,a2,a5成等比数列,∴=a1•(a1+4d),又a1=1,∴d2-2d=0,公差d≠0,∴d=2.∴其前8项和S8=8a1+×d=8+56=64.故答案为:64.依题意,a1=1,=a1•(a1+4d),可解得d,从而利用等差数列的前n项和公式即可求得答案.本题考查等差数列的前n项和,考查方程思想与运算能力,属于基础题.13.【答案】【解析】解:∵a1=S1=1,a2=S2-S1=3-1=2,∴公比q=2.又∵数列{}也是等比数列,首项为=1,公比为q2=4,∴==故答案为:由已知可得等比数列{a n}的首项和公比,进而可得数列{}也是等比数列,且首项为=1,公比为q2=4,代入等比数列的求和公式可得答案.本题考查等比数列的前n项和公式,得出数列为等比数列是解决问题的关键,属基础题.14.【答案】505【解析】解:由题意得:82+75+53+54+19+20+98+4+31+69=505,故答案为:505.将图中对角线上数字从左上到右下相加即可.本题考查了简单的合情推理问题,考查n阶幻方,是一道基础题.15.【答案】解:(1)根据题意,等差数列{a n}中,设其公差为d,若S9=-a5,则S9==9a5=-a5,变形可得a5=0,即a1+4d=0,若a3=4,则d==-2,则a n=a3+(n-3)d=-2n+10;(2)若S n≥a n,则na1+d≥a1+(n-1)d,当n=1时,不等式成立,当n≥2时,有≥d-a1,变形可得(n-2)d≥-2a1,又由S9=-a5,即S9==9a5=-a5,则有a5=0,即a1+4d=0,则有(n-2)≥-2a1,又由a1>0,则有n≤10,则有2≤n≤10,综合可得:1≤n≤10.n∈N.【解析】本题考查等差数列的性质以及等差数列的前n项和公式,涉及数列与不等式的综合应用,属于中档题.(1)根据题意,等差数列{a n}中,设其公差为d,由S9=-a5,即可得S9==9a5=-a5,变形可得a5=0,结合a3=4,计算可得d的值,结合等差数列的通项公式计算可得答案;(2)若S n≥a n,则na1+d≥a1+(n-1)d,分n=1与n≥2两种情况讨论,求出n的取值范围,综合即可得答案.16.【答案】解:(1)由x2-x-m=0可得m=x2-x=∵-1<x<1∴M={m|}(2)若x∈N是x∈M的必要条件,则M⊆N①当a>2-a即a>1时,N={x|2-a<x<a},则即②当a<2-a即a<1时,N={x|a<x<2-a},则即③当a=2-a即a=1时,N=φ,此时不满足条件综上可得【解析】(1)利用参数分离法将m用x表示,结合二次函数的性质求出m的取值范围,从而可求集合M;(2)若x∈N是x∈M的必要条件,则M⊆N分类讨论①当a>2-a即a>1时,N={x|2-a <x<a},②当a<2-a即a<1时,N={x|a<x<2-a},③当a=2-a即a=1时,N=φ三种情况进行求解本题主要考查了二次函数在闭区间上的值域的求解,集合之间包含关系的应用,体现了分类讨论思想的应用.17.【答案】解:(1)由题意可得:200(5x+1-)≥3000,即5x-≥14,解得x≥3,又1≤x≤10,∴3≤x≤10.(2)设生产1200千克产品的利润为y,则y=100(5x+1-)•=120000(-++5)=120000[-3(-)2+],∴当=即x=6时,y取得最大值610000.故甲厂以6千克/小时的速度生产可使利润最大,最大利润为610000元.【解析】(1)根据题意列不等式求出x的范围即可;(2)设总利润为y,得出y关于x的函数解析式,配方得出最大值即可.本题考查了函数解析式,函数最值的计算,属于中档题.18.【答案】解:(1)∵4m2+4m-24<0,∴m2+m-6<0,∴-3<m<2,∴实数m的取值范围为:(-3,2).(2)p:-1≤x≤2,设A={x|-1≤x≤2},B={x|x2+2mx-m+6>0},∵p是q的充分不必要条件,∴A⊊B①由(1)知,-3<m<2时,B=R,满足题意;②m=-3时,B={x|x2-6x+9>0}={x|x≠3},满足题意;③m=2时,B={x|x2+4x+4>0}={x|x≠-2},满足题意;④m<-3,或m>2时,设f(x)=x2+2mx-m+6,f(x)对称轴为x=-m,由A⊊B得或,∴或,∴或,∴或综上可知:【解析】(1)由△<0得含m的不等式,解之得m的取值范围;(2)把p是q的充分不必要条件转化为由A⊊B,在各种情况下找出充要条件不等式组,进而求出实数m的取值范围.本题考查了充分必要条件,考查解不等式问题,考查了推理能力与计算能力,属于中档题.19.【答案】解:(1)∵,a1≠0,∴a1=1.….(1分)∵,∴(1+d)2=3+3d,∴d=-1,2,当d=-1时,a2=0不满足条件,舍去.因此d=2.….(4分)∴a n=2n-1,∴,∴T n=.….(6分)(2)当n为偶数时,,∴,∵,当n=2时等号成立,∴最小值为,因此.….(9分)当n为奇数时,,∵在n≥1时单调递增,∴n=1时的最小值为,∴.….(12分)综上,.….(14分)【解析】(1)利用,n取1或2,可求数列的首项与公差,从人体可得数列的通项,进而可求数列的和;(2)分类讨论,分离参数,求出对应函数的最值,即可求得结论.本题考查数列的通项与求和,考查恒成立问题,解题的关键是分类讨论,分离参数,属于中档题.20.【答案】解:(I)a n=n,S n=.∴S1=1,S2=3,S3=6,S4=10,S5=15.∴b1=1,b2=2,b3=2,b4=2,b5=3.证明:(II)(充分性)∵a1是奇数,a i(i=2,3,4…)为偶数,∴对于任意i∈N*,S i都是奇数,∴b n=n,∴数列{b n}是单调递增数列.(不必要性)当数列{a n}中只有a2是奇数,其余项都是偶数时,S1为偶数,S i(i=2,3,4…)均为奇数,∴b n=n-1,数列{b n}是单调递增数列,∴“a1为奇数,a i(i=2,3,4,…)为偶数”是“数列{b n}是单调递增数列”的不必要条件.综上,:“a1为奇数,a i(i=2,3,4,…)为偶数”是“数列{b n}是单调递增数列”的充分不必要条件.(Ⅲ)(1)当a k为奇数时,若S k为偶数,若a k+1是奇数,则S k+1为奇数,∴b k+1=b k+1=a k+1为偶数,与a k+1=b k+1矛盾;若a k+1为偶数,则S k+1为偶数,∴b k+1=b k=a k为奇数,与a k+1=b k+1矛盾.∴当a k为奇数时,S k不能为偶数;(2)当a k为偶数,若S k为奇数,若a k+1为奇数,则S k+1为偶数,∴b k+1=b k=a k为偶数,与a k+1=b k+1矛盾,若a k+1为偶数,则S k+1为奇数,∴b k+1=b k+1=a k+1为奇数,与a k+1=b k+1矛盾,∴当a k为偶数时,S k不能是奇数.综上,a k与S k同奇偶,∵a1=b1=S1为偶数,且0≤b1≤1,∴b1=a1=0,∵a2=b2≤b1+1=1,且b2≥0,∴b2=a2=0,以此类推,得到a n=0.【解析】(I)推导出a n=n,S n=.由此能写出数列{b n}的前5项.(II)先证充分性,推导出b n=n,从而数列{b n}是单调递增数列;再证不必要性,当数列{a n}中只有a2是奇数,其余项都是偶数时,S1为偶数,S i(i=2,3,4…)均为奇数,b n=n-1,数列{b n}是单调递增数列,由此能证明:“a1为奇数,a i(i=2,3,4,…)为偶数”是“数列{b n}是单调递增数列”的充分不必要条件.(Ⅲ)当a k为奇数时,推导出S k不能为偶数;当a k为偶数,推导出S k不能是奇数,从而a k与S k同奇偶,由此得到a n=0.本题考查数列递推关系、等比数列的通项公式与求和公式、错位相减法,考查推理能力与计算能力,属于中档题.。
高二上学期期中考试数学试卷含答案(共5套)
高二上学期期中考试数学试题本卷分Ⅰ(选择题)、Ⅱ卷(非选择题)两部分,其中Ⅰ卷1至2页,第二卷2至4页,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)一、单选题:本题共12个小题,每小题5分1.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.有下列四个命题:(1)“若,则,互为倒数”的逆命题;(2)“面积相等的三角形全等”的否命题;(3)“若,则有实数解”的逆否命题;(4)“若,则”的逆否命题.其中真命题为()A.(1)(2)B.(2)(3)C.(4)D.(1)(2)(3)3.若则为()A.等边三角形 B.等腰直角三角形C.有一个内角为30°的直角三角形 D.有一个内角为30°的等腰三角形4.已知.若“”是真命题,则实数a的取值范围是A.(1,+∞)B.(-∞,3)C.(1,3)D.5.的内角,,的对边分别为,,,若,,,则的面积为A.B.C.D.6.已知中,,则等于()A.B.或C.D.或7.等差数列的前项和为,若,则等于()A.58B.54C.56D.528.已知等比数列中,,,则()A.2B.C.D.49.已知,则z=22x+y的最小值是A.1 B.16 C.8 D.410.若关于的不等式的解集为,则的取值范围是()A.B.C.D.11.当a>0,关于代数式,下列说法正确的是()A.有最小值无最大值B.有最大值无最小值C.有最小值也有最大值D.无最小值也无最大值12.在△ABC中,AB=2,C=,则AC+BC的最大值为A.B.3C.4D.2第Ⅱ卷(非选择题,共90分)二、填空题:共4个小题,每小题5分,共20分13.命题的否定是______________.14.已知的三边长构成公差为2的等差数列,且最大角的正弦值为,则这个三角形的周长为________.15.已知数列{a n}的前n项和为S n,a1=1,当n≥2时,a n+2S n-1=n,则S2 017的值____ ___ 16.已知变量满足约束条件若目标函数的最小值为2,则的最小值为__________.三、解答题:共6题,共70分,解答应写出必要的文字说明、证明过程或演算步骤。
2020—2020学年高二数学上学期期中考试题 (2) 精品
2020—2020学年度上学期期中考试高二数学试题【新课标】本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
考试时间100分钟。
第I 卷 选择题(共48分)一、选择题(本大题共12小题,每小题4分,共48分)1、AB C ∆中,A 、B 、C 的对边分别是a 、b 、c ,若222c b a <+,则AB C ∆的形状是 A .锐角三角形 B .直角三角形C .钝角三角形D .锐角或直角三角形2、等比数列{}n a 是递增数列,若51a a 60-=,42a a 24-=则公比q 为A .21B .2C .221-或D .212或3、下列判断正确的是A .a=7,b=14,A=30o,有两解B .a=30,b=25,A=150o,有一解C .a=6,b=9,A=45o,有两解D .a=9,b=10,A=60o,无解4、设110a b <<,则下列不等式成立的是A .22a b >B.a b +> C .11()()22a b> D .2ab b <5、不等式组⎪⎩⎪⎨⎧-≥≤+≤-110y y x x y ,表示的平面区域的面积是A .49B .29 C .89D .36、在AB C ∆中,三边c b a ,,与面积S 的关系是4222c b a S -+=,则∠C 的度数为A .030B .060C .045D .0907、在a 和b 两个数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为A .b an- B .1b an -+ C .1b an ++ D .2b an -+ 8、在ABC ∆中,b=8,3,c = 060A =则此三角形的外接圆的面积为A .1963B .1963π C .493π D .4939、关于x 的不等式01)1()1(22<----x a x a 的解集为R ,则实数a 的取值范围是A .⎥⎦⎤⎝⎛-1,53 B .()1,1- C .(]1,1-D .⎪⎭⎫⎝⎛-1,53 10、数列12,,,,1-n x x x Λ的前n 项和为A .xx n--11B .x x n ---111C .xx n --+111D .以上均不正确11、已知不等式0322<--x x 的解集为A ;不等式062>+--x x 的解集为B ;不等式02<++b ax x 的解集为A B I ,则b a +的值为A .3-B .1C .1-D .312、已知数列}{n a 的通项公式为*)(21log 2N n n n a n ∈++=,设其前n 项和为S n ,5-<n S 成立的自然数n A .有最大值63B .有最小值63C .有最大值32D .有最小值32第II 卷(非选择题,共72分)二、填空题(本大题共4小题,每小题4分,共16分)13、已知数列{}n a 的通项公式是n a n 226-=,若此数列的前n 项和n S 最大,则n 的值为14、设y x ,满足⎪⎩⎪⎨⎧≥≤≤+01y x y y x ,则y x z +=2的最大值为 ;15、已知正数y x ,满足12=+y x ,则yx 11+的最小值为 ; 16、已知三个数成等比数列,它们的和是13,它们的积是27,则这三个数为 .三、解答题(本大题共5小题,共56分。
吉林省2020学年高二数学上学期期中试题理(含解析)
命題 :若 ,则 .
命题 :若 ,则 .
(1)写出命题 的逆否命题;
(2)判断命题 , , 的真假,并说明理由.
【答案】(1)命题 的逆否命题为若 或 ,则 (2) 为假命题, 为真命题,理由见解析
【解析】
【分析】
(1)根据逆否命题的书写规则书写即可.
故选B.
【点睛】本题考查了抛物线的定义的应用,考查了两点之间的距离公式,属于基础题.
12.实轴长为 的双曲线 上恰有 个不同的点 满足 ,其中 , 分别是双曲线 的左、右顶点.则 的离心率的取值范围为( )
A. B. C. D.
【答案】A
【解析】
【分析】
先由题意,得到 , , ,设 ,根据 ,得 ,再与双曲线联立,消去 ,得到 ,根据双曲线上存在 个不同的点满足 ,得到只需 ,求出 ,进而可求出离心率的范围.
【答案】
【解析】
【分析】
过 分别作 , 的高,垂足分别为 , ,根据题意,得到 , , 两两垂直;以 为坐标原点, , , 分别为 轴的正方向,建立空间直角坐标系 ,求出 与 的坐标,再由向量数量积的坐标表示,即可得出结果.
【详解】如图.过 分别作 , 的高,垂足分别为 , ,
因为平面 平面 , ,平面 平面 ,
【详解】由题意可得: , ,设 是平面 一个法向量,则 ,即 ,令 ,得 .
设 与平面 所成角为 ,则 .
故选:A
【点睛】本题主要考查求直线与平面所成角的正弦值,熟记空间向量的方法求线面角即可,属于常考题型.
10.已知 , 分别为椭圆 : 的左顶点、下顶点,过点 且斜率为1的直线 与 的另一个公共点为 ,则 ()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020 年高二上学期数学期中考试试卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 4 题;共 8 分)
1. (2 分) (2016 高二下·洞口期末) 若平面向量 、 满足| |= ,则 与 的夹角是( )
,| |=2,( ﹣ )⊥
A. π
B.
C.
D.
2. (2 分) 在
中,“
A . 充分非必要条件
B . 必要非充分条件
C . 充分必要条件
D . 既非充分也非必要条件
”是“
”的
()
3. (2 分) (2016 高二下·市北期中) 设 x,y 满足约束条件 >0)的最大值为 12,则 + 的最小值为( )
A.4
B. C.1
第 1 页 共 12 页
,若目标函数 z=ax+by(a>0,b
D.2 4. (2 分) (2018 高二上·嘉兴期中) 于 ,则 的最小值是( ) A.1
B.
C.
是边长为 2 的等边三角形, 是边 上的动点,
D.
二、 填空题 (共 12 题;共 12 分)
5. (1 分) (2018 高一下·瓦房店期末) 与向量
垂直的单位向量为________.
6. (1 分) (2019 高二上·上海期中) 若矩阵
,
,则
________.
7. (1 分) 当 a>0,b>0 且 a+b=2 时,行列式 8. (1 分) (2018 高二上·扬州期中) 直线
的值的最大值是________ . 的倾斜角为________.
9. (1 分) 已知矩阵 A=
. 若矩阵 A 属于特征值 6 的一个特征向量为 a1= , 属于特征值 1 的一
个特征向量为 a2=
, 矩阵 A=________ .
10. (1 分) (2019 高一下·宿迁期末) 线 的值为________
的方程为
,若
,则实数
11. (1 分) (2017 高一上·长春期末) 已知圆 C:(x﹣3)2+(y﹣4)2=1,点 A(0,﹣1),B(0,1),设 P 是圆 C 上的动点,令 d=|PA|2+|PB|2 , 则 d 的取值范围是________.
12. (1 分) 圆心为(1,1)且与直线 x﹣y=4 相切的圆的方程是________
第 2 页 共 12 页
13. (1 分) (2018 高二上·东台月考) 已知实数 , 满足
则
的最小值为________.
14. (1 分) (2018 高一下·重庆期末) 已知圆 上总存在点 ,它关于直线 的对称点在 轴上,则
,直线 的取值范围是________.
,如果圆
15. (1 分) (2018 高二下·磁县期末) 若直线 l:
相交于 B,被圆
截得的弦长为 4,则
与 x 轴相交于点 A,与 y 轴 为坐标原点 的最小值为________.
16. (1 分) (2017·山东) 在平面直角坐标系 xOy 中,双曲线
=1(a>0,b>0)的右支与焦点为 F
的抛物线 x2=2py(p>0)交于 A,B 两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.
三、 解答题 (共 5 题;共 65 分)
17. (10 分) (2018·河北模拟) 在矩形
中,
,
一个三等分点,点 ,使得平面
是线段
上的一个动点,且
平面
.
,点 是线段 .如图,将
上靠近点 的
沿
折起至
(1) 当
时,求证:
;
(2) 是否存在 ,使得 请说明理由.
与平面
所成的角的正弦值为 ?若存在,求出 的值;若不存在,
18. (10 分) 已知| |=4,| |=8, 与 夹角是 120°.
(1)求 的值及| + |的值;
(2)当 k 为何值时,( +2 ) (k - )?
第 3 页 共 12 页
19. (15 分) (2017 高一下·龙海期中) 设△ABC 的内角 A,B,C 所对的边分别为 a,b,c 且 acosC﹣ =b.
(1) 求角 A 的大小;
(2) 若 a=1,求△ABC 的周长的取值范围.
20. (15 分) (2019 高二上·上海期中) 如图,已知直线
射线 的一个法向量为
,点 为坐标原点,
、 上的动点,直线 和 之间的距离为 2,
于点
和直线 , ,
, ,点 、 分别是直线 于点 ;
(1) 若
,求
的值;
(2) 若
,求
的最大值;
(3) 若
,
,求
的最小值.
21. (15 分) (2017·潍坊模拟) 已知抛物线 C 顶点在原点,焦点在 y 轴上,抛物线 C 上一点 Q(a,2)到焦 点的距离为 3,线段 AB 的两端点 A(x1 , y1)、B(x2 , y2)在抛物线 C 上.
(1) 求抛物线 C 的方程;
(2)
若 y 轴上存在一点 M(0,m)(m>0),使线段 AB 经过点 M 时,以 AB 为直径的圆经过原点,求 m 的值;
(3)
在抛物线 C 上存在点 D(x3,y3),满足 x3<x1<x2,若△ABD 是以角 A 为直角的等腰直角三角形,求△ABD 面
第 4 页 共 12 页
积的最小值.
第 5 页 共 12 页
一、 单选题 (共 4 题;共 8 分)
1-1、 2-1、 3-1、 4-1、
二、 填空题 (共 12 题;共 12 分)
5-1、 6-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、 13-1、
参考答案
14-1、
第 6 页 共 12 页
15-1、 16-1、
三、 解答题 (共 5 题;共 65 分)
17-1、
第 7 页 共 12 页
17-2、
第 8 页 共 12 页
18-1、 19-1、
19-2、
第 9 页 共 12 页
20-1、 20-2、
第 10 页 共 12 页
20-3、
21-1、
21-2、
21-3、
第11 页共12 页
第12 页共12 页。