计量经济学多元线性回归模型审批稿
计量经济学 多元线性回归模型及参数估计 ppt课件
i
)
i 1 n
E(X
ik i )
0 0 0
i1
i 1
i1
0
计量经济学 多元线性回归模型及参 数估计
二、多元线性回归模型的参数估计
1.普通最小二乘估计
随机抽取被解释变量和解释变量的n组样本观测值
X i 1 ,X i 2 , ,X i, Y k i i 1 , 2 , , n
则有
YX ˆe
其中
Y 1
Y
Y2
Y n
1 X 1
X11
X21
X12
X22
X1k X2k
1 Xn1
Xn2
Xnk
n(k1) 1
e
e2
e n
计量经济学 多元线性回归模型及参 数估计
2.多元线性回归模型的基本假定(见教材P64-65)
习惯上,把常数项看成为一个虚变量(记作Xio) 的系数,在参数估计过程中该虚变量的样本观测值 始终取1(即Xi0 ≡1)。
这样: 模型中解释变量的数目为(k+1)。
计量经济学 多元线性回归模型及参 数估计
• 多元线性回归模型的矩阵表达式为: 注意这里的符号
YX
和教材P63的对 应关系。
其中
Y
Y Y
一、多元线性回归模型及其基本假定 二、多元线性回归模型的参数估计 三、OLS参数估计量的统计性质 四、样本容量问题 五、多元线性回归模型实例
计量经济学 多元线性回归模型及参 数估计
一、多元线性回归模型及其基本假定
• 由于:
– 在实际经济问题中,一个变量往往受到多个原 因变量的影响;
– “从一般到简单”的建模思路。
秩(X)=k+1,即Xn×(k+1)为列满秩矩阵。
计量经济实验报告多元(3篇)
第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
第3章 多元线性回归模型10301(计量经济学)PPT课件
第四节 多元线性回归模型检验
一、常用的检验方法
1. R(复相关系数)检验法
TSS (Yi Y)2 (Y (i Y ˆi)(Y ˆi Y))2 (Yi Y ˆi)22(Yi Y ˆi)Y (ˆi Y)(Y ˆi Y)2
5
总体回归模型n个随机方程的矩阵表达式为
Y 1 1 2 X 2 1 3 X 3 1 . .k . X k 1 u 1 Y 2 1 2 X 2 2 3 X 3 2 . .k . X k 2 u 2 . . . . . . . Y n 1 2 X 2 n 3 X 3 n . .k . X k n u n
一、多元线性回归模型的定义
设所研究的对象(因变量Y)受多个因素X1,X2,…,Xk和随机 干扰项u的影响,假设各因素与Y的关系是线性的,这样就 可把一元线性回归模型自然推广到多元的情形。
Y i X 1 i1 2 X 2 i 3 X 3 i . .k . X k i u i (i1,,n)
ei
ei称为残差或剩余项(residuals),可看成是总体回归函数
中随机扰动项i的近似替代。
样本回归函数的矩阵表达:
Yˆ XBˆ
或
Y XBˆ E
其中:
ˆ 1
ˆ
Bˆ
2
e1
E
e2
ˆ
en
k
8
二、多元线性回归模型的基本假设条件
⑴Y与X之间的关系是线性的; ⑵所有观测值的随机干扰向量期望值为0:E(u)=0 ⑶所有观测值的随机干扰项具有同方差:D (u)= E (uuT)=σu2I u ; ⑷不同观测值的随机干扰项之间相互独立: Cov(ui, uj) =0 (i≠j); ⑸随机干扰项ui与解释变量xk不相关:Cov(ui, xj) = 0 (j=1,2,.....k); ⑹ X不是随机变量,为确定矩阵,且在两个或多个自变量之间没有
计量经济学实验二 多元线性回归
实验二:Eviews的常用函数与多元线性回归分析【实验目的】掌握建立多元回归模型和比较、筛选模型的方法。
【实验内容】建立我国国有独立核算工业企业生产函数。
根据生产函数理论,生产函数的基本形式为:()ε,ftY=。
其中,L、K分别为生产过程中投入的劳动与资金,L,,K时间变量t反映技术进步的影响。
表3-1列出了我国1978-1994年期间国有独立核算工业企业的有关统计资料;其中产出Y为工业总产值(可比价),L、K分别为年末职工人数和固定资产净值(可比价)。
资料来源:根据《中国统计年鉴-1995》和《中国工业经济年鉴-1995》计算整理【实验步骤】一、建立多元线性回归模型㈠建立包括时间变量的三元线性回归模型;在命令窗口依次键入以下命令即可:⒈建立工作文件: CREATE A 78 94⒉输入统计资料: DATA Y L K⒊生成时间变量t : GENR T=@TREND(77) ⒋建立回归模型: LS Y C T L K 则生产函数的估计结果及有关信息如图3-1所示。
图3-1 我国国有独立核算工业企业生产函数的估计结果 因此,我国国有独立工业企业的生产函数为:K L t y 7764.06667.06789.7732.675ˆ+++-=(模型1) t =(-0.252) (0.672) (0.781) (7.433)9958.02=R 9948.02=R 551.1018=F模型的计算结果表明,我国国有独立核算工业企业的劳动力边际产出为0.6667,资金的边际产出为0.7764,技术进步的影响使工业总产值平均每年递增77.68亿元。
回归系数的符号和数值是较为合理的。
9958.02=R ,说明模型有很高的拟合优度,F 检验也是高度显著的,说明职工人数L 、资金K 和时间变量t 对工业总产值的总影响是显著的。
从图3-1看出,解释变量资金K 的t 统计量值为7.433,表明资金对企业产出的影响是显著的。
但是,模型中其他变量(包括常数项)的t 统计量值都较小,未通过检验。
计量经济学多元线性回归模型(老师作业要求范本)范文
计量经济学·多元线性回归模型应用作业一、概述在当今市场上,一国的原油产量与多个因素存在着紧密的联系,例如民用汽车拥有量、宏观经济等都是影响一国原油产量的重要因素。
本次将以中国1990-2006年原油产量与国内民用汽车拥有量、GDP等因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调的重要性,从而促进国内原油产业的发展。
二、模型构建过程⒈变量的定义解释变量:X1民用汽车拥有量,X2电力产量,X3国内生产总值,X4能源消费总量。
被解释变量:Y 原油产量建立计量经济模型:解释原油产量与民用汽车拥有量、电力产量、国内生产总值、以及能源消费总量之间的关系。
⒉模型的数学形式设定原油产量与五个解释变量相关关系模型,样本回归模型为:∧Y i=∧β+∧β1X i1+∧β2X i2+∧β3X i3+∧β4X i4+e i⒊数据的收集该模型的构建过程中共有四个变量,分别是中国从1990-2006年民用汽车拥有量、电力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数据作为预测对比数据,收集的数据如下所示:⒋用OLS法估计模型回归结果,散点图分别如下:Y=20425.46-2.1872X1-0.1981X2+0.0823X3+0.0011X4 id.f.=12 ,R 2=0.9933 ,Se=(531.1592) (0.4879) (0.1123) (0.0082) (0.0057) t=(38.4545) (-4.4825) (-1.7635) (10.0106) (0.1998)三、 模型的检验及结果的解释、评价⒉拟合优度检验及统计检验R 2=0.9933,可以看到模型的拟合优度非常高,说明原油产量与上述四个解释变量之间总体线性关系显著。
● 模型总体性检验(F 检验):给定显著水平α=0.05,查自由度为(4,12)的F 分布表,得F(4,12)=3.26,可见该模型的F 值远大于临界值,因此该回归方程很明显是显著的。
5、计量经济学【多元线性回归模型】
二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。
计量经济学实验报告(多元线性回归 自相关 )
计量经济学实验报告(多元线性回归自相关 )1. 背景计量经济学是一门关于经济现象的定量分析方法研究的学科。
它的发展使得我们可以对经济现象进行更加准确的分析和预测,并对社会发展提供有利的政策建议。
本文通过对多元线性回归模型和自相关模型的实验研究,来讨论模型的建立与评价。
2. 多元线性回归模型在多元线性回归模型中,我们可以通过各个自变量对因变量进行预测和解释。
例如,我们可以通过考虑家庭收入、年龄和教育程度等自变量,来预测某个家庭的消费水平。
多元线性回归模型的一般形式为:$y_i=\beta_0+\beta_1 x_{i1}+\beta_2 x_{i2}+...+\beta_k x_{ik}+\epsilon_i$在建立模型之前,我们需要对因变量和自变量进行观测和测算。
例如,我们可以通过调查一定数量的家庭,获得他们的收入、年龄、教育程度和消费水平等数据。
接下来,我们可以通过多元线性回归模型,对家庭消费水平进行预测和解释。
在实际的研究中,我们需要对多元线性回归模型进行评价。
其中一个重要的评价指标是 $R^2$ 值,它表示自变量对因变量的解释程度。
$R^2$ 值越高,说明多元线性回归模型的拟合程度越好。
3. 自相关模型在多元线性回归模型中,我们假设各个误差项之间相互独立,即不存在自相关性。
但实际上,各个误差项之间可能会互相影响,产生自相关性。
例如,在一个气温预测模型中,过去的温度对当前的温度有所影响,说明当前的误差项和过去的误差项之间存在相关性。
我们可以通过自相关函数来研究误差项之间的相关性。
自相关函数表示当前误差项和过去 $l$ 期的误差项之间的相关性。
其中,$l$ 称为阶数。
自相关函数的一般形式为:$\rho_l={\frac{\sum_{t=l+1}^{T}(y_t-\bar{y})(y_{t-l}-\bar{y})}{\sum_{t=1}^{T}(y_t-\bar{y})^2}}$在自相关模型中,我们通过对误差项进行差分或滞后变量,来消除误差项之间的自相关性。
计量经济学多元线性回归共57页文档
Beta系数
上例揭示了什么问题? 被估计系数的大小是不可比较的。 一个相关的问题是,当变量大小差别过大时,在
回归中因运算近似而导致的误差会比较大。
10
Beta系数
有时,我们会看见“标准化系数”或“Beta系 数”,这些名称有着特殊的意义
使用Beta系数是因为有时我们把y和各个x替换 为标准化版本——也就是,减去均值后除以标准 离差。
-0.0289 (0.0057) --
0.0058 (0.0018) 7.3109 (0.0656) 1388 0.0298 2177.5778 1.2539
(3) bwght
--
-9.268 (1.832) 0.0927 (0.0292) 116.974 (1.049) 1388 0.0298 557.485.51 20.063
本章大纲
数据的测度单位换算对OLS统计量的影响 对函数形式的进一步讨论 拟合优度和回归元选择的进一步探讨 预测和残差分析
1
课堂提纲
重新定义变量的影响
估计系数 R 平方 t 统计量
函数形式
对数函数形式 含二次式的模型 含交叉项的模型
2
重新定义变量
为什么我们想这样做? 数据测度单位变换经常被用于减少被估参数小数
5
改变被解释变量测度单位的影响
因为1磅=16盎司,被解释变量被除以16。
b · w g h t / 1 6 ˆ 0 / 1 6 ( ˆ 1 / 1 6 ) c i g s ( ˆ 2 / 1 6 ) f a m i n c
比较第1列与第2列。 (1)中被估参数/16= (2)中被估参数 (1)中被估参数的标准差/16= (2)中被估参数的标准差 (1)和(2)中 t 统计量相同 R平方相同 (1)中SSR/(16*16)= (2)中SSR (1)中SER(标准差)/16= (2)中SER
多元线性回归模型计量经济学
多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。
计量经济学(2012B)(第二章多元线性回归)详解
2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2
(ˆ
n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受
,
0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551
多元线性回归模型实验报告 计量经济学
多元线性回归模型实验报告计量经济学多元线性回归模型是一种比较常见的经济学建模方法,其可用于对多个自变量和一个因变量之间的关系进行分析和预测。
在本次实验中,我们将使用一个包含多个自变量的数据集,对其进行多元线性回归分析,并对分析结果进行解释。
数据集介绍本次实验使用的数据集来自于UCI Machine Learning Repository,数据集包含有关汽车试验的多个自变量和一个连续因变量。
数据集中包含了204条记录,其中每条记录包含了一辆汽车的14个属性,分别是:MPG(燃油效率),气缸数(Cylinders)、排量(Displacement)、马力(Horsepower)、重量(Weight)、加速度(Acceleration)、模型年(Model Year)、产地(Origin)等。
模型建立在进行多元线性回归分析之前,我们首先需要对数据进行预处理。
为了确保数据的可用性,我们需要先检查数据是否存在缺失值和异常值。
如果有,需要进行相应的处理,以确保因变量和自变量之间的关系受到了正确地分析。
在对数据进行预处理之后,我们可以使用Python中的statsmodels包来对数据进行多元线性回归分析。
具体建模过程如下:```import statsmodels.api as sm# 准备自变量和因变量数据X = data[['Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin']]y = data['MPG']# 添加常数项X = sm.add_constant(X)# 拟合线性回归模型model = sm.OLS(y, X).fit()# 输出模型摘要print(model.summary())```在上述代码中,我们首先通过data[['Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration', 'Model Year', 'Origin']]选择了所有自变量列,用于进行多元线性回归分析;然后,我们又通过`sm.add_constant(X)`,向自变量数据中添加了一列全为1的常数项,用于对截距进行建模;最后,我们使用`sm.OLS(y, X).fit()`来拟合线性回归模型,并使用`model.summary()`输出模型摘要。
计量经济学实验报告---多元回归模型实验
2011-2012学年第1学期计量经济学实验报告实验(二):多元回归模型实验(1)估计参数利用EViews6估计模型的参数,方法是:1、建立工作文件:首先,双击EViews6图标,进入EViews6主页。
在菜单一次点击File\New\Workfile,出现对话框“Workfile Create”。
在“Workfile structure type ”中选择数据频率:Datad-regular frequency.在“Data specification”中Start data输入“1980”,在End data中输入“2002”点击“ok”出现“Workfile UNTITLED”工作框。
其中已有变量:“c”—截距项“resid”—剩余项。
2、Eviews命令:data y x p1 p2 p3 回车,输入数据,得到如图:图2-1 数据的输入3.对数据进行回归分析,eviews命令:LS Y C X P1 P2 P3图2-2根据上图,模型的估计的结果为:lnY=3.616+0.001lnX-0.506lnP1+0.119lnP2+0.048lnP3(0.450) (0) (0.162) (0.086) 0.051)t=(0.805) (4.652) (-3.115) (1.388) (0.942)R2=0.940 2 r=0.926 F=70.105(2)作对家庭人均鸡肉年消费量Y与猪肉价格P2、牛肉价格P3的散点图,图2-3和图2-4图2-3 图2-4图2-3 家庭人均鸡肉年消费量Y与猪肉价格P2的散点图图2-4 家庭人均鸡肉年消费量Y与牛肉价格P3的散点图由上面两张图可知都呈现线性关系,建立线性回归方程:i i i u X X Y +++=22110i βββi=1,2, .....,23 输入LS Y C P2 P3,用eviews6进行估计的输出结果如图:模型的估计结果为: Y=2.111+0.168P2+0.031P3(0.371)(0.060)(0.077) t=(5.689) (2.813) (0.402)R 2=0.834 2-r =0.817 F=50.150模型检验:①经济意义检验该地区家庭人均鸡肉消费量与鸡肉价格和牛肉价格成正相关,当牛肉价格不变时,猪肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.168单位;当猪肉价格不变时,牛肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.031单位,与猪肉价格成更大正相关关系符合一般情况。
计量经济学实验报告之多元回归
X X X学院实验报告第 1 页(1)用eviews得到数据如下:建立回归模型:AHE=-6.631562+0.186713*CLFPRM+0.004974*UNRMR2=0.622402,F=11.53822,P=0.001094,T=(-2.093464)(4.419819)(0.238515)可知城市男性劳动参与率和城市男性失业率与真实的平均小时工资存在正相关关系。
经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加一个百分点,真实的平均小时工资增加0.186713美元,城市男性失业率每增加百分之一,真实的平均小时工资增加0.004974美元。
(2)用eviews得到数据如下:建立回归模型:AHE=10.60094-0.05345*CLFPRFR2=0.65384,F=28.33262,P=0.000085,T=(18.85195)(-5.32284)可知城市女性劳动参与率与真实的平均小时工资存在负相关关系。
经济意义:说明在其他条件保持不变的情况下,城市女性劳动参与率每增加一个百分点,真实的平均小时工资减少0.05345美元。
(3)用eviews得到数据如下:第 3 页建立回归模型:AHE=157.048-1.919573*CLFPRM-0.232917*UNRMR2=0.91981,F=80.29262,P=0.000,T=(11.69701)(-10.72079)(-2.635153)可知城市男性劳动参与率和城市男性失业率与当前平均小时工资存在显著的负相关关系。
经济意义:说明在其他条件保持不变的情况下,城市男性劳动参与率每增加百分之一,当前平均小时工资减少1.919573美元,城市男性失业率每增加百分之一,当前平均小时工资减少0.232917美元。
(4)用eviews得到数据如下:建立回归模型:AHE=-23.92719+0.595155*CLFPRFR2=0.958337,F=345.0332,P=0.000,T=(-13.33538)(18.57507)可知城市女性劳动参与率与当前平均小时工资存在显著的正相关关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学多元线性回
归模型
YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】
多元线性回归模型
一.概述
当今农村农民人均纯收入与多个因素存在着紧密的联系,例如人均工资收入,
人均农林牧渔产值人均生产费用支出,人均转移性和财产性收入等。
本次将以安徽1995-2009年农村居民纯收入与人均工资收入,人均生产费用支出,人均
转移性和财产性收入等因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调农村居民生活的重要性,从而促进全国经济的发展。
二、模型构建过程
⒈变量的定义
被解释变量:农民人均纯收入y
解释变量:人均工资收入x1, 人均农林牧渔产值x2
人均生产费用支出x3 人均转移性和财产性收入x4。
建立计量经济模型:解释农民人均纯收入与人均工资收入,人均生产费用支出,人均转移性和财产性收入的关系
⒉模型的数学形式
设定农民人均纯收入与五个解释变量相关关系模型,样本回归模型为:
∧Y i=∧
β
+
∧
β
1
X i1+∧β
2
X i2+∧β
3
X i3+∧β
4
X i4+e i
⒊数据的收集
该模型的构建过程中共有四个变量,分别是中国从1995-2009年人均工资
收入,人均农林牧渔产值人均生产费用支出,人均转移性和财产性收入,因此
为时间序列数据,最后一个即2009年的数据作为预测对比数据,收集的数据如下所示:
⒋用OLS法估计模型
回归结果,散点图分别如下:
Yˆ=+X1+X2X3X4 ,R2= , i
Se=
t=
三、模型的检验及结果的解释、评价
⒉拟合优度检验及统计检验
R 2=,可以看到模型的拟合优度非常高,说明农民人均纯收入与上述四个解释变量之间总体线性关系显着。
● 模型总体性检验(F 检验):给定显着水平α=,查自由度为(4,10)的F 分
布表,得F(4,10)=,可见该模型的F 值远大于临界值,因此该回归方程很明显是显着的。
但由于X3系数不显着且符号为负,与经济意义不符,因此我们认为解释变量之间存在多重共线性。
● 变量的显着性检验(t 检验):给定显着水平α=,查自由度为10的t 分布
表,得t 2/α10=,大于该临界值的的显着变量为x1,x2,x4; x3解释变量未通过检验,说明x3与被解释变量之间不存在显着的线性相关关系。
⒊多重共线性的检验 ⑴相关系数检验法
上图是Eviews输出所有变量的相关系数矩阵,可发现Y与所有解释变量都是正相关的关系,所以进一步确定了上面的回归存在共线性问题。
另外,我们发现X1和X2的相关系数很高,两变量很可能存在共线性。
⑵多个解释变量的相关性检验
由上面的分析可知,X1和X2有很高的相关性,那么我们这里就用X1做被解释变量,X2和X3做解释变量,可得回归模型如下:
Xˆ1=+X2+X3
t=
R2=,
R2=,F=,DW=。
可以看到,回归模型的拟合优度非常高,F值也远大于临界值。
如果将显着水平扩大到 =10%的话,X2 系数显着,X3系数不显着。
因此x 1 ,x2 存在共线性。
四、模型的建立
这里我们用逐步回归法得到农民人均纯收入模型。
⒈分别用四个解释变量对Y进行回归,回归结果分别如下:
x拟合优度R2最大,因此将这个方程作为基本方程,然后往可以看出,Y与
2
里加入其他变量。
⒉引入第二个变量
x后,t值
引入变量
1
< 临界值,其系数通不过显着性检验。
x后,t值 < 临界值,其系数通不过显着性检验。
引入变量
3
x后,t值 < 临界值,其系数通不过显着性检验。
引入变量
4
x,其最终输出结果如下:综上所述,本次模型只引入变量
2
模型的最终结果为
Y∧=+2X
()()
R2=,
-
R2=,F=, DW=
一.异方差检验(怀特检验)
n*R2=<χ205.0(2)=,不存在异方差。
六、自相关检验及修正
LM=n*R2=<χ205.0(1)=,模型不存在一阶自相关。