实际问题及二元一次方程组经典例题

合集下载

实际问题及二元一次方程组经典例题

实际问题及二元一次方程组经典例题

实际问题及二元一次方程组经典例题实际问题与二元一次方程组经典例题目标认知研究目标:1.能够借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用2.进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易4.进一步培养化实际问题为数学问题的能力和分析问题,解决问题的能力5.掌握列方程组解应用题的一般步骤;重点:1.经历和体验用二元一次方程组解决实际问题的过程。

2.进一步体会方程(组)是刻画现实世界的有效数学模型。

难点:正确找出问题中的两个等量关系知识要点梳理知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.路程题目:1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程。

2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线XXX 帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行题目一样会呈现顺风航行和顺风航行,解题方法与船顺水航行、逆水航行题目相似。

2.工程题目:工作效率×工作时间=工作量.3.商品销售利润问题:1)利润=售价-本钱(进价);(2);(3)利润=本钱(进价)×利润率;(4)标价=本钱(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

利用二元一次方程组解决实际问题常见题型归纳

利用二元一次方程组解决实际问题常见题型归纳

利用二元一次方程组解决实际问题常见题型归纳学习目标:复习用二元一次方程组解决实际问题,注意分析问题中的各种等量关系,熟练掌握设未知数、列方程组、解方程组、检验、写出答案的过程。

类型一:列二元一次方程组解决——和差倍分问题1.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?【练习1】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少?【练习2】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。

如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?类型二:列二元一次方程组解决——生产中的配套问题2.一张方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做桌面50个,或做桌腿300条。

现有5立方米的木料,那么用多少立方米木料做桌面,用多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配多少张方桌?【练习】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,请你计算能配出多少套产品?分析:总结:【练习】某商场欲购甲、乙两种商品共50件,甲种商品每件进价为35元,利润率为20%;乙种商品进价为20元,利润率为15%,共获利278元,问甲、乙两种商品各购进多少件?类型四:列二元一次方程组解决——行程问题4.两地相距280km,一艘船在其间航行,顺流用14h,逆流用20h,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速【练习】甲乙两人练习跑步,如果甲让乙先跑10米,那么甲5秒后可以追上乙,如果让乙先跑2秒,那么甲4秒可以追上乙,求甲乙的速度。

总结升华:行程问题可根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

补充练习:某大学共有5个大餐厅和2个小餐厅,经测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐。

8-3实际问题与二元一次方程组 同步练习

8-3实际问题与二元一次方程组 同步练习

8.3实际问题与二元一次方程组一、选择题1周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包 3 元,酒精湿巾每包 2 元,共用了 30 元钱(两种物品都买),小明的购买方案共有 ( ) A . 3 种B . 4 种C . 5 种D . 6 种2如图,宽为 50 cm 的长方形图案由 10 个全等的小长方形拼成,其中一个小长方形的面积为 ( )A .400 cm 2B .500 cm 2C .600 cm 2D .300 cm 23.“校长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了7场,以不败的战绩获得17分.那么该队胜了几场,平了几场?设该队胜了x 场,平了y 场,根据题意可列方程组为( )A .7317x y x y -=⎧⎨+=⎩B .7317x y x y -=⎧⎨+=⎩C .7317x y x y +=⎧⎨+=⎩D .7317x y x y +=⎧⎨+=⎩4.在学习完“垃圾分类”的相关知识后,小明和小丽一起收集了一些废电池,小明说:“我比你多收集了7节废电池啊!”小丽说:“如果你给我8节废电池,我的废电池数量就是你的2倍”.如果他们说的都是真的,设小明收集了x 节废电池,小丽收集了y 节废电池,则可列方程组为( )A .()7828x y x y -=⎧⎨-=+⎩B .()7288x y x y -=⎧⎨-=+⎩C .()728x y x y -=⎧⎨-=⎩D .()7828y x x y -=⎧⎨+=-⎩5.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x 岁和y 岁,根据题意可列方程组为()A.106(10)102(10)y xy x+=+⎧⎨-=-⎩B.106(10)102(10)y xy x-=-⎧⎨+=+⎩C.106(10)102(10)y xy x-=+⎧⎨+=-⎩D.102(10)106(10)y xy x-=-⎧⎨+=+⎩6.某班有学生x人,准备分成y个组开展活动,若每个小组7人,则余3人;若每个小组8人,则差5人,根据题意,列方程组为()A.7385y xy x=-⎧⎨=+⎩B.7385y xy x=+⎧⎨=-⎩C.7385y xy x=+⎧⎨=+⎩D.7385y xy x=-⎧⎨=-⎩7.对于题目:“小丽同学带11元钱去买钢笔和笔记本(两种文具都买),钢笔每支3元,笔记本每本1元,那么钢笔能买多少支?”,甲同学的答案是1支,乙同学的答案是2支,丙同学的答案是3支,则正确的是()A.只有甲的答案对B.甲、乙答案合在一起才完整C.甲、乙、丙答案合在一起才完整D.甲、乙、丙答案合在一起也不完整8.如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置()A.3个球B.4个球C.5个球D.6个球二、填空题1如图,商店里把塑料凳整齐地叠放在一起,根据图中的信息,当12张塑料凳整齐地叠放在一起时,高度是.2.某班学生分组搞活动,若每组7人,则余下4人,则有一组少3人.设全班有x人,分成y个小组,可得方程组为.3.甲、乙两块试验田去年春季共产小麦若干千克.改用良种后,去年秋季甲、乙的产量分别比去年春季增产了25%,20%;今年春季甲、乙的产量分别比去年春季增产了24%,22%.4.在学完书中例题后,小聪想用现有的硬纸板裁成如图①的长方形和正方形作为侧面与底面,做成如图②的竖式和横式两种无盖纸盒.已知一张硬纸板的裁剪方式有两种(均有余料)),n张硬纸板用方式二裁剪,则:(1)两种方式共裁出长方形张,正方形张(用m、n的代数式表示);(2)当10<m<15时,所裁得的长方形与正方形纸板恰好用完,做成的两种无盖纸盒一共可能是个.5.如图,把三个大小相同的正方形甲,乙,丙放在边长为9的大正方形中1,乙与丙的重叠部分面积记为S2,且均为正方形,正方形甲、乙一组邻边的延长线构成的正方形面积记为S3,若S1﹣S2=2S3,且S3=1,则图中阴影部分的面积为.6甲、乙两人共有图书80本,若甲赠给乙6本书,两人的图书就一样多,如果设甲、乙两人原来分别有x本、y本,依题意列方程组,得.三、解答题1港珠澳大桥是世界上最长的跨海大桥,它由桥梁和隧道两部分组成,桥梁和隧道全长共 55 km .其中桥梁长度比隧道长度的 9 倍少 4 km .求港珠澳大桥的桥梁长度和隧道长度. 2.有大小两种货车,2辆大车与3辆小车一次共可运货16吨,5辆大车与6辆小车一次共可运货37吨,求1辆大车与1辆小车一次共可运货多少吨?3.2022年冬奥会上智慧化全覆盖,机器人得到广泛应用,冬奥会组委会针对不同的物品运送场景选取了几个不同类型的智能物流机器人.这样不仅能高效运输,同时也能减少人员接触.具体运输情况如下表所示:问:每个A 型机器人和B 型机器人分别可以运输物品多少件?4.某旅游景点今年“五一”小长假共接待游客39200人,和去年同时期相比,游客总数增加了12%,其中省外游客增加了17%,省内游客增加了10%,求该景点去年“五一”小长假接待的省外游客和省内游客各是多少人?5.某电脑公司有A 型、B 型、C 型三种型号电脑,其中A 型每台6000元,B 型每台4000元,C 型每台2500元,某中学现有资金100500元,计划全部用于从这家电脑公司购进36台两种型号的电脑.请你设计几种不同的购买方案供这个学校选择,并说明理由.6.东坡区某学校举办“传承三苏家国情怀 弘扬中华传统文化”的校园演讲比赛,设立了一、二、三等奖,根据设奖情况买了36件奖品,且一等奖奖品数比二等奖奖品数的12倍少1件,各奖品单价如表所示.若二等奖奖品买了a 件,全部奖品的总价是b 元.(1)先填表,即用含a 的代数式表示出二等奖和三等奖奖品的件数,再用含a 的代数式表示b ,并化简;(2)当a =8时,买一等奖奖品和三等奖奖品分别花费了多少元?(3)若买二等奖奖品花费504元,则买全部奖品花费了多少元?。

新人教版初一下册数学实际问题与二元一次方程组经典例题word版本

新人教版初一下册数学实际问题与二元一次方程组经典例题word版本

新人教版初一下册数学实际问题与二元一次方程组经典例题2014年5月1日经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。

设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

二元一次方程组解决实际问题典型例题

二元一次方程组解决实际问题典型例题
【变式】 游泳池中有一群小朋友,男孩戴蓝 色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色 与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽 比红色的多1倍,你知道男孩与女孩各有多少人吗?
六安市长安小学
类型八:列二元一次方程组解决——数字问题
8. 两个两位数的和是68,在较大的两位数的右边 接着写较小的两位数,得到一个四位数;在较大的两位 数的左边写上较小的两位数,也得到一个四位数,已知 前一个四位数比后一个四位数大2178,求这两个两位数。
六安市长安小学
类型九:列二元一次方程组解决——浓度问题 9.现有两种酒精溶液,甲种酒精溶液的酒精
与水的比是3∶7,乙种酒精溶液的酒精与水的比是 4∶1,今要得到酒精与水的比为3∶2的酒精溶液 50kg,问甲、乙两种酒精溶液应各取多少?
【变式1】要配浓度是45%的盐水12千克,现有10% 的盐水与85%的盐水,这两种盐水各需多少?
【变式1】现有190张铁皮做盒子,每张铁皮做8个盒 身或【【2变2变个式式盒23】底】某,一工一张厂个方有盒桌工身由人与1个6两0桌人个面,盒、生底4产配条某成桌种一腿由个组一完成个整, 螺盒如栓子果套,1立两问方个用米螺多木母少料的张可配铁以套皮做产制桌品盒面,身5每,0个人多,每少或天张做生铁桌产皮腿螺制3栓盒001底条4 ,。 个可现或以有螺正5立母好方2制0米个成的,一木应批料分完,配整那多的么少盒用人子多生?少产立螺方栓米,木多料少做人桌生面, 产用螺多母少,立才方能米使木生料产做出桌的腿螺,栓做和出螺的母桌刚面好和配桌套腿。,恰 好配成方桌?能配多少张方桌?
求该商场购进A、B两种商 售价
1380
品各多少件;
(元/件)
六安长安小学
B 1000
1200

最新新人教版初一下册数学实际问题与二元一次方程组经典例题讲解学习

最新新人教版初一下册数学实际问题与二元一次方程组经典例题讲解学习

新人教版初一下册数学实际问题与二元一次方程组经典例题经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。

设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.举一反三:【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

二元一次方程组解决实际问题典型例题市公开课获奖课件省名师示范课获奖课件

二元一次方程组解决实际问题典型例题市公开课获奖课件省名师示范课获奖课件
【变式】 游泳池中有一群小朋友,男孩戴 蓝色游泳帽,女孩戴红色游泳帽。假如每位男孩看到蓝 色与红色旳游泳帽一样多,而每位女孩看到蓝色旳游泳 帽比红色旳多1倍,你懂得男孩与女孩各有多少人吗?
类型八:列二元一次方程组处理——数字问题
8. 两个两位数旳和是68,在较大旳两位数旳右边 接着写较小旳两位数,得到一种四位数;在较大旳两位 数旳左边写上较小旳两位数,也得到一种四位数,已知 前一种四位数比后一种四位数大2178,求这两个两位数 。 【变式1】一种两位数,十位上旳数字比个位上旳 数字大5,假如把十位上旳数字与个位上旳数字互换位 置,那么得到旳新两位数比原来旳两位数旳二分之一 还少9,求这个两位数?
类型七:列二元一次方程组处理——和差倍分问题
7.“爱心”帐篷厂和“温暖”帐篷厂原计划每七 天生产帐篷共9千顶,现某地震灾区急需帐篷14千顶 ,两厂决定在一周内赶制出这批帐篷.为此,全体职 员加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周 内制作旳帐篷数分别到达了原来旳1.6倍、1.5倍,恰 好按时完毕了这项任务.求在赶制帐篷旳一周内,“ 爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶 ?
【变式2】某三位数,中间数字为0,其他两个数位上数 字之和是9,假如百位数字减1,个位数字加1,则所得新 三位数恰好是原三位数各位数字旳倒序排列,求原三位数 。
类型九:列二元一次方程组处理——浓度问题
9.既有两种酒精溶液,甲种酒精溶液旳酒精 与水旳比是3∶7,乙种酒精溶液旳酒精与水旳比是 4∶1,今要得到酒精与水旳比为3∶2旳酒精溶液 50kg,问甲、乙两种酒精溶液应各取多少?
【变式】某商场计划拨款9万元从厂家购进50台 电视机,已知厂家生产三种不同型号旳电视机, 出厂价分别为:甲种每台1500元,乙种每台2100 元,丙种每台2500元。 (1)若商场同步购进其中两种不同型号旳电视机 50台,用去9万元,请你研究一下商场旳进货方 案; (2)若商场销售一台甲、乙、丙电视机 分别可获利150元、200元、250元, 在以上旳方案中,为使获利最多,你选择哪种进 货方案?

新人教版初一下册数学实际问题与二元一次方程组经典例题

新人教版初一下册数学实际问题与二元一次方程组经典例题

新人教版初一下册数学实际问题与二元一次方程组经典例题经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。

设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.举一反三:【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

列二元一次方程组解决实际问题典型例题

列二元一次方程组解决实际问题典型例题

列二元一次方程组解决实际问题典型例题列二元一次方程组解决实际问题典型例题题型一配套问题1.某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?题型二年龄问题2.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁”.乙对甲说:“当我的岁数是你现在的岁数时,你将61岁”.请你算一算,甲、乙现在各多少岁?题型三百分比问题3.有甲乙两种铜和银的合金,甲种合金含银25%,乙种合金含银37.5%,现在要熔制含银30%的合金100千克,甲、乙两种合金各应取多少?题型四数字问题4.有一个两位数,个位上的数字比十位上的数字大5,如果把这两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.题型五古算术问题5.巍巍古寺在山林,不知寺内几多僧。

364只碗,看看用尽不差争。

三人共食一碗饭,四人共吃一碗羹。

请问先生明算者,算来寺内几多僧。

诗句的意思是:寺内有三百六十四只碗,如果三个和尚共吃一碗饭,四个和尚共吃一碗羹,刚好够用,寺内共有和尚多少个?题型六行程问题6.甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇。

相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?题型七工程问题7.某城市为了缓解缺水状况,实施了一项饮水工程,就是把200千米以外的的一条大河的水引到城市中来,把这个工程交给了甲乙两个施工队,工期为50天,甲、乙两队合作了30天后,乙队因另有任务需要离开10天,于是甲队加快速度,每天多修了0.6千米,10天后乙队回来,为了保证工期,甲队保持现在的速度不变,乙队也比原来多修0.4千米,结果如期完成。

问甲乙两队原计划每天各修多少千米?题型八方案决策问题8.已知某电脑公司有A型、B型、C型三种型号的电脑,其价格分别为A型每台6000元,B型每台4000元,C型每台2500元,我市东坡中学计划将100500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由。

二元一次方程组应用题目及答案

二元一次方程组应用题目及答案

二元一次方程组应用题目及答案一、题目1.某班有男生和女生两类同学,男生的人数比女生多10人,男生和女生之间的年龄差是5岁,如果男生的平均年龄是15岁,求这个班级男生和女生的人数各是多少人。

2.一家商店销售两种商品A和B,已知商品A的单价是商品B的1.5倍,若总销售额为2000元,其中商品A和B的销售金额之比为2:3,求商品A和B的销售额各是多少元。

3.某汽车行驶了180千米,前半程行驶速度是每小时30千米,后半程行驶速度是每小时60千米,求整个行程的平均速度。

二、解答1.設男生的人數爲x人,女生的人數爲y人。

由題意可知:–x = y + 10(男生的人数比女生多10人)–x - y = 10–x - 15 = y - 5(男生和女生之间的年龄差为5岁)解上面的方程組得到 x = 25,y = 15。

因此,男生有25人,女生有15人。

2.設商品B的銷售額爲x元,則商品A的銷售額爲1.5x元。

根據題意得到:– 1.5x + x = 2000(總銷售額為2000元)–5x = 2000–x = 400,1.5x = 600因此,商品B的銷售額爲400元,商品A的銷售額爲600元。

3.設整个行程的平均速度為v km/h。

由題意得到:–180 = 60 + 30 = 90km(前半程距離)–180 - 90 = 90km(後半程距離)–90 = 30v(後半程行駛時間為90/30=v小時)–v = 180/(5 + 2) = 180/7 ≈ 25.71km/h因此,整个行程的平均速度約爲25.71km/h。

三、結論通過解答以上應用題目,我們得到了相應的結果。

二元一次方程组在應用數學中有著重要的作用,通過對題目的分析和方程的求解,我們可以得到確切的答案。

希望本文的解答結果能對讀者在學習二元一次方程組時有所幫助。

习题范例解二元一次方程组的实际问题

习题范例解二元一次方程组的实际问题

习题范例解二元一次方程组的实际问题在学习数学的过程中,我们经常会遇到解二元一次方程组的实际问题。

解二元一次方程组是通过找到两个方程的公共解来确定未知数的值。

本文将通过几个具体的习题范例,来展示如何应用二元一次方程组来解决实际问题。

习题一:老师带学生去参观博物馆假设一个班级的学生共有男生a名,女生b名,已知男生人数是女生人数的两倍。

如果该班级的总人数为52人,那么男生和女生各有多少人?首先,我们可以设立两个方程来表示问题:1)男生人数等于女生人数的两倍:a = 2b2)总人数为52人:a + b = 52接下来,我们可以使用消元法来解决这个方程组。

将方程(1)中的a替换成2b,得到:2b + b = 52。

合并同类项后,得到3b = 52。

进一步求解,可以得到b = 17⅓。

但是,由题意可知,学生的人数应该是整数,所以我们需要找到一个最接近17⅓的整数,使得a和b的值满足方程(1)和方程(2)。

可以得到,b = 17时,a = 2 × 17 = 34。

因此,男生人数为34人,女生人数为17人。

习题二:汽车行驶的速度和时间某辆汽车以每小时x公里的速度行驶,并且从A地到B地的距离为y千米。

如果车辆从A地出发到B地花费的时间为3小时,那么x和y的值分别是多少?同样地,我们可以建立两个方程来解决这个问题:1)车辆的速度和时间的关系:x × 3 = y2)车辆的行驶时间为3小时:3 = y / x为了简化计算,我们可以将方程(1)变形为:x = y / 3。

将这个结果代入方程(2)中,得到3 = y / (y / 3),进一步化简得到3 = 3。

这个方程是恒等式,无论x和y的值是多少,都成立。

因此,x和y可以取任意实数作为其值。

习题三:鸡兔同笼在一个鸡兔同笼的场景中,设有鸡和兔的总数为x只,总脚数为y 只。

已知一只鸡有两只脚,一只兔有四只脚。

如果总共有20只脚,那么鸡和兔的数量分别是多少?我们可以设置以下方程来解决这个问题:1)鸡和兔的总数量:x = 鸡数量 + 兔数量2)总脚数:y = 2 ×鸡数量 + 4 ×兔数量将方程(2)变形为:鸡数量 = (y - 4 ×兔数量) / 2。

人教版数学七年级下册-《实际问题与二元一次方程组》典型例题

人教版数学七年级下册-《实际问题与二元一次方程组》典型例题

典型例题1.有一个两位数,它的十位、个位数字的和为5,则符合这个条件的两位数共有( )A .4个B .5个C .6个D .无数个解答:设个位数字为x ,十位上数字为y所以x+y = 5,即y = 5−x因为x 为个位上数字,所以x = 0,1,2,…,9又因为y 为十位上数字,所以y = 1,2,3…,9所以⎩⎨⎧==50y x 或⎩⎨⎧==41y x 或⎩⎨⎧==32y x 或⎩⎨⎧==23y x 或⎩⎨⎧==14y x 即共有五个这样的两位数:50,41,32,23,14所以答案为B .2.将________吨含铁72%和________吨含58%的铁矿石混合后配成含铁64%的铁矿石70吨.解答:设需含铁72%的x 吨,需58%的y 吨根据题意有⎩⎨⎧⨯=+=+%6470%58%7270y x y x ,化简得⎩⎨⎧=+=+2240293670y x y x ,用代入法不难解得⎩⎨⎧==4030y x ,即需含铁72%的30吨,需含铁58%的40吨.3.甲、乙两人相距12km ,二人同时出发同向而行,甲3小时可追上乙;相向而行,1小时相遇,求二人的平均速度.解:设甲的平均速度为xkm/h ,乙的平均速度为ykm/h则根据题意有⎩⎨⎧=-=⨯+12)(3121)(y x y x ,即⎩⎨⎧=-=+412y x y x ,解这个方程组不难得出⎩⎨⎧==48y x 答:甲、乙二人的平均速度分别为8km/h 和4km/h .4.打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元;打折后,买500件A 商品和500件B 商品用了9600元,比不打折少花多少钱?解:设打折前A 商品每件x 元,B 商品每件y 元,则打折后都买500件,比打折前都买500件少花元又根据题意有⎩⎨⎧=+=+840105010803060y x y x ,即⎩⎨⎧=+=+845362y x y x ,用加减法解该方程组易得⎩⎨⎧==416y x ,则500(x+y)−9600 = 400 答:比不打折少花400元.。

新人教版初一下册数学实际问题与二元一次方程组经典例题

新人教版初一下册数学实际问题与二元一次方程组经典例题

新人教版初一下册数学实际问题与二元一次方程组经典例题2014年5月1日经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。

设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与二元一次方程组经典例题目标认知学习目标:1.能够借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用2.进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易4.进一步培养化实际问题为数学问题的能力和分析问题,解决问题的能力5.掌握列方程组解应用题的一般步骤;重点:1.经历和体验用二元一次方程组解决实际问题的过程。

2.进一步体会方程(组)是刻画现实世界的有效数学模型。

难点:正确找出问题中的两个等量关系知识要点梳理知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。

这类问题比较直观,画线段,用图便于理解与分析。

其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。

这类问题也比较直观,因而也画线段图帮助理解与分析。

这类问题的等量关系是:双方所走的路程之和=总路程。

(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。

注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。

2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。

②利息:银行付给顾客的酬金叫做利息。

③本息和:本金与利息的和叫做本息和。

④期数:存入银行的时间叫做期数。

⑤利率:每个期数内的利息与本金的比叫做利率。

⑥利息税:利息的税款叫做利息税。

(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。

④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥。

注意:免税利息=利息5.配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。

6.增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。

如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排。

需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。

注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。

知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.解答步骤简记为:问题方程组解答(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验。

经典例题透析类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机.这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系:①相向而行:汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;②同向而行:汽车行驶小时的路程=拖拉机行驶小时的路程.解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组解这个方程组,得:.答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略。

举一反三:【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙两人每小时分别行走千米、千米。

根据题意可得:解得:答:甲每小时走6千米,乙每小时走3.6千米。

【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

分析:船顺流速度=静水中的速度+水速船逆流速度=静水中的速度-水速解:设船在静水中的速度为x千米/时,水速为y千米/时,则,解得:答:船在静水中的速度为17千米/时,水速3千米/时。

类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元。

设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.解:(1)设甲组单独做一天商店应付x元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元。

(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,故请乙组单独做费用最少。

答:请乙组单独做费用最少。

总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进行分析。

举一反三:【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:设甲、乙两公司每周完成总工程的和,由题意得:,解得:所以甲、乙单独完成这项工程分别需要10周、15周。

设需要付甲、乙每周的工钱分别是万元,万元,根据题意得:,解得:故甲公司单独完成需工钱:(万元);乙公司单独完成需工钱:(万元)。

答:甲公司单独完成需6万元,乙公司单独完成需4万元,故从节约的角度考虑,应选乙公司单独完成.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。

价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为x元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元。

举一反三:【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设李大叔去年甲种蔬菜种植了亩,乙种蔬菜种植了亩,则:,解得答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.【变式2(注:获利=售价—进价)求该商场购进A、B两种商品各多少件;解:设购进A种商品件,B种商品件,根据题意得:化简得:解得:答:该商场购进A、B两种商品分别为200件和120件。

类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)思路点拨:设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华:我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.举一反三:【变式1】李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税可得利息43.92元.已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应缴利息所得税=利息金额×20%)思路点拨:扣税的情况:本金×年利率×(1-20%)×年数=利息(其中,利息所得税=利息金额×20%).不扣税时:利息=本金×年利率×年数.解:设第一种储蓄的年利率为x,第二种储蓄的年利率为y,根据题意得:,解得:答:第一种储蓄的年利率为2.25%,第二种储蓄的年利率为0.99%.【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设第一种存款数为X元,则第二种存款数为y元,根据题意得:,解得:答:第一种存款数为1500元,第二种存款数为2500元。

相关文档
最新文档