湖北省武汉市部分学校2015-2016年七年级12月月考数学试题及答案
2015-2016学年湖北省武汉市部分学校联考九年级(上)期末数学试卷
2015-2016学年湖北省武汉市部分学校联考九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.将方程x2﹣8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.﹣8、﹣10B.﹣8、10C.8、﹣10D.8、102.如图汽车标志中不是中心对称图形的是()A.B.C.D.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球4.抛物线y=﹣3(x﹣1)2+2的对称轴是()A.x=1B.x=﹣1C.x=2D.x=﹣25.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.6.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°7.圆的直径为10cm,如果点P到圆心O的距离是d,则()A.当d=8cm时,点P在⊙O内B.当d=10cm时,点P在⊙O上C.当d=5cm时,点P在⊙O上D.当d=6cm时,点P在⊙O内8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支9.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2 10.如图,扇形OAB的圆心角的度数为120°,半径长为4,P为弧AB上的动点,PM⊥OA,PN⊥OB,垂足分别为M、N,D是△PMN的外心.当点P运动的过程中,点M、N分别在半径上作相应运动,从点N离开点O时起,到点M到达点O时止,点D运动的路径长为()A.πB.πC.2D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是.12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为.13.某村种的水稻前年平均每公顷产7 200kg,今年平均每公顷产8 450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为.14.在直角坐标系中,将抛物线y=﹣x2﹣2x先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要mm.16.我们把a、b、c三个数的中位数记作Z|a,b,c|,直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,则k的取值为.三、解答题(共8题,共72分)17.(8分)已知3是一元二次方程x2﹣2x+a=0的一个根,求a的值和方程的另一根.18.(8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.19.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AD交⊙O于点E(1)求证:AC平分∠DAB(2)连接CE,若CE=6,AC=8,直接写出⊙O直径的长.20.(8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.21.(8分)图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:(1)求拱桥所在抛物线的解析式;(2)当水面下降1m时,则水面的宽度为多少?22.(10分)用一段长32m的篱笆和长8m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成①设DE等于xm,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF 围成,求菜园面积的最大值.23.(10分)如图,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点.(1)如图1,若A、C、D三点共线,求∠P AC的度数;(2)如图2,若A、C、D三点不共线,求证:AP⊥DP;(3)如图3,若点C线段BE上,AB=1,CD=2,请直接写出PD的长度.24.(12分)问题探究:在直线y=x+3上取点A(2,4)、B,使∠AOB=90°,求点B的坐标.小明同学是这样思考的,请你和他一起完成如下解答:将线段OA绕点O逆时针旋转90°得到OC,则点C的坐标为:所以,直线OC的解析式为:点B为直线AB与直线OC的交点,所以,点B的坐标为:问题应用:已知抛物线y=﹣的顶点P在一条定直线l上运动.(1)求直线l的解析式;(2)抛物线与直线l的另一个交点为Q,当∠POQ=90°时,求m的值.2015-2016学年湖北省武汉市部分学校联考九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.将方程x2﹣8x=10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是()A.﹣8、﹣10B.﹣8、10C.8、﹣10D.8、10【思路探索】先化成一元二次方程的一般形式,再根据方程的特点得出一次项系数和常数项即可.【思路探索】解:x2﹣8x=10,x2﹣8x﹣10=0,所以一次项系数、常数项分别为﹣8、﹣10,故选:A.【解后反思】本题考查了对一元二次方程的一般形式的应用,把方程换成一般形式是解此题的关键,注意:说各个项的系数带着前面的符号.2.如图汽车标志中不是中心对称图形的是()A.B.C.D.【思路探索】根据中心对称图形的概念求解.【思路探索】解:A、是中心对称图形.故错误;B、不是中心对称图形.故正确;C、是中心对称图形.故错误;D、是中心对称图形.故错误.故选:B.【解后反思】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球【思路探索】根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案.【思路探索】解:∵布袋中有除颜色外完全相同的11个球,其中10个黑球、1个白球,∴从布袋中随机摸出一个球是黑球的概率为,摸出一个球是白球的概率为,∴A、这个球一定是黑球,错误;B、摸到黑球、白球的可能性的大小一样,错误;C、这个球可能是白球,正确;D、事先能确定摸到什么颜色的球,错误;故选:C.【解后反思】此题考查了可能性大小以及概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.抛物线y=﹣3(x﹣1)2+2的对称轴是()A.x=1B.x=﹣1C.x=2D.x=﹣2【思路探索】根据二次函数的顶点式直接进行解答即可.【思路探索】解:令x﹣1=0,则x=1.故选:A.【解后反思】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.5.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率是()A.B.C.D.【思路探索】让绿灯亮的时间除以时间总数60即为所求的概率.【思路探索】解:一共是60秒,绿的是25秒,所以绿灯的概率是.故选:C.【解后反思】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.6.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°【思路探索】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【思路探索】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.【解后反思】(1)此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,要熟练掌握.(2)此题还考查了圆内接四边形的性质,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).7.圆的直径为10cm,如果点P到圆心O的距离是d,则()A.当d=8cm时,点P在⊙O内B.当d=10cm时,点P在⊙O上C.当d=5cm时,点P在⊙O上D.当d=6cm时,点P在⊙O内【思路探索】先得到圆的半径为5cm,根据点与圆的位置关系的判定方法得到当d>5cm 时,点P在⊙O外;当d=5cm时,点P在⊙O上;当d<5cm时,点P在⊙O内,然后对各选项进行判断.【思路探索】解:∵圆的直径为10cm,∴圆的半径为5cm,∴当d>5cm时,点P在⊙O外;当d=5cm时,点P在⊙O上;当d<5cm时,点P在⊙O内.故选:C.【解后反思】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出()A.2根小分支B.3根小分支C.4根小分支D.5根小分支【思路探索】设每个支干长出x个小分支,利用主干、支干和小分支的总数是13列方程得到1+x+x•x=13,整理得x2+x﹣12=0,再利用因式分解法解方程求出x,然后检验即可得到x的值.【思路探索】解:设每个支干长出x个小分支,根据题意得1+x+x•x=13,整理得x2+x﹣12=0,解得x1=3,x2=﹣4(舍去).答:每个支干长出3个小分支.故选:B.【解后反思】本题考查了一元二次方程的应用:列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.9.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3B.m<3C.m<3且m≠2D.m≤3且m≠2【思路探索】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【思路探索】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.【解后反思】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.如图,扇形OAB的圆心角的度数为120°,半径长为4,P为弧AB上的动点,PM⊥OA,PN⊥OB,垂足分别为M、N,D是△PMN的外心.当点P运动的过程中,点M、N分别在半径上作相应运动,从点N离开点O时起,到点M到达点O时止,点D运动的路径长为()A.πB.πC.2D.2【思路探索】根据题意画出点N离开点O时,到点M到达点O时的图形,得到点D运动的轨迹,根据弧长公式计算即可.【思路探索】解:当点N与点O重合时,∠P′OA=30°,OD=OP′=2,当点M与点O重合时,∠P′′OB=30°,OD=OP′′=2,∵D是△PMN的外心,∴点D在线段PM的垂直平分线上,又PM⊥OA,∴D为OP的中点,即OD=OP=2,∴点D运动的轨迹是以点O为圆心,2为半径,圆心角为60°的弧,弧长为:=.故选:A.【解后反思】本题考查的是弧长的计算,掌握弧长的计算公式l=、根据题意确定点D的运动轨迹是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【思路探索】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【思路探索】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【解后反思】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为.【思路探索】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【思路探索】解:∵共8个数,大于5的有3个,∴P(大于5)=;故答案为:.【解后反思】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.某村种的水稻前年平均每公顷产7 200kg,今年平均每公顷产8 450kg.设这两年该村水稻每公顷产量的年平均增长率为x,根据题意,所列方程为7200(1+x)2=8450.【思路探索】由题意得:第一年水稻产量7200(1+x),第二年水稻产量:7200(1+x)(1+x),进而可得方程7200(1+x)2=8450.【思路探索】解:设这两年该村水稻每公顷产量的年平均增长率为x,根据题意得:7200(1+x)2=8450,故答案为:7200(1+x)2=8450.【解后反思】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14.在直角坐标系中,将抛物线y=﹣x2﹣2x先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为y=﹣x2.【思路探索】先利用配方法得到抛物线y=﹣x2﹣2x的顶点坐标为(﹣1,1),再根据点利用的规律得到点(﹣1,1)平移后所得对应点的坐标为(0,0),然后根据顶点式写出平移后抛物线的解析式.【思路探索】解:抛物线y=﹣x2﹣2x=﹣(x+1)2+1,它的顶点坐标为(﹣1,1),把点(﹣1,1)先向下平移一个单位,再向右平移一个单位得到对应点的坐标为(0,0),所以新的抛物线解析式是y=﹣x2.故答案为y=﹣x2.【解后反思】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.如图,要拧开一个边长为a=12mm的六角形螺帽,扳手张开的开口b至少要12 mm.【思路探索】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【思路探索】解:如图所示:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=12mm,∠AOB=60°,∴cos∠BAC=,∴AM=12×=6,∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=12mm.故答案为:12.【解后反思】本题考查了正多边形和圆的知识、三角函数;构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行计算是解决问题的关键.16.我们把a、b、c三个数的中位数记作Z|a,b,c|,直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,则k的取值为<k≤1或k=.【思路探索】画出函数y=Z|x2﹣1,x+1,﹣x+1|的图象,要使直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,只需直线经过(2,3)和经过(2,)之间.【思路探索】解:函数y=Z|x2﹣1,x+1,﹣x+1|的图象如图所示∵直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,当直线y=kx+(k>0)经过点(2,3)时,则3=2k+,解得k=,当直线y=kx+(k>0)经过点(﹣1,0)时,k=,当k=1时,平行于y=x+1,与函数y=Z|x2﹣1,x+1,﹣x+1|的图象也有且仅有两个交点;∴直线y=kx+(k>0)与函数y=Z|x2﹣1,x+1,﹣x+1|的图象有且只有2个交点,则k的取值为<k≤1或k=.故答案为<k≤1或k=.【解后反思】本题考查了一次函数的性质以及中位数的概念,数形结合思想的应用是解题的关键.三、解答题(共8题,共72分)17.(8分)已知3是一元二次方程x2﹣2x+a=0的一个根,求a的值和方程的另一根.【思路探索】根据一元二次方程的解的定义把x=3代入x2﹣2x+a=0可求出a的值,然后把a的值代入方程得到x2﹣2x﹣3=0,再利用因式分解法解方程即可得到方程的另一根.【思路探索】解:将x=3代入x2﹣2x+a=0中得32﹣6+a=0,解得a=﹣3,将a=﹣3代入x2﹣2x+a=0中得:x2﹣2x﹣3=0,解得x1=3,x2=﹣1,所以a=﹣3,方程的另一根为﹣1.【解后反思】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.18.(8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1)一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2)随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率.【思路探索】(1)用列表法举出所有情况,看两张卡片上的数都是偶数的情况占总情况的多少即可;(2)画出树形图即可求出第二次取出的数字小于第一次取出的数字的概率.【思路探索】解:(1)依题意列表如下:12345612,13,14,15,16,121,23,24,25,26,231,32,34,35,36,341,42,43,45,46,451,52,53,54,56,561,62,63,64,65,6由上表可知,随机抽取2张卡片可能出现的结果有15个,它们出现的可能性相等,其中“两张卡片上的数都是偶数”的结果有3个,所以P(两张卡片上的数都是偶数)=;(2)画树形图得:随机抽取2张卡片可能出现的结果有36个,第二次取出的数字小于第一次取出的数字有15种,所以其概率==.【解后反思】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AD交⊙O于点E(1)求证:AC平分∠DAB(2)连接CE,若CE=6,AC=8,直接写出⊙O直径的长.【思路探索】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO =∠DAC,即可得出答案;(2)根据圆周角定理和圆心角、弧、弦之间的关系求出CE=BC=6,根据勾股定理求出AB即可.【思路探索】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:∵∠CAD=∠CAO,∴=,∴CE=BC=6,∵AB为直径,∴∠ACB=90°,由勾股定理得:AB===10,即⊙O直径的长是10.【解后反思】本题考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角、弧、弦之间的关系的应用,能灵活运用知识点进行推理是解此题的关键.20.(8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.【思路探索】(1)利用旋转的性质分别得出对应点位置进而得出答案;(2)首先过点O作OG⊥OE与EB的延长线交于点G,利用正方形的性质结合全等三角形的判定方法得出△EAO≌△GBO(ASA),得出△GEO为等腰直角三角形,进而得出答案.【思路探索】解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GOE为等腰直角三角形,∴OE=EG=(EB+BG)=(EB+AE)∵AE=12,AB=13,∴BE=5,∴EB+AE=17,∴OE=∴EF=.【解后反思】此题主要考查了旋转变换以及全等三角形的判定与性质以及等腰直角三角形的性质等知识,得出△GEO为等腰直角三角形是解题关键.21.(8分)图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:(1)求拱桥所在抛物线的解析式;(2)当水面下降1m时,则水面的宽度为多少?【思路探索】(1)设出抛物线的解析式,由图中点在抛物线上,用待定系数法求出抛物线解析式;(2)把y=﹣1代入y=﹣x2+2,即可得到结论.【思路探索】解:(1)设这条抛物线的解析式为y=ax2+bx+c(a≠0).由已知抛物线经过点A(﹣2,0),B(2,0),C(0,2),将三点坐标代入得:解得:a=﹣1,b=0,c=2,故抛物线的解析式为y=﹣x2+2.(2)当y=﹣1时,即﹣x2+2=﹣1,解得:x=±,故当水面下降1m时,则水面的宽度为2m.【解后反思】本题主要考查了用待定系数法求二次函数的解析式,根据图中信息得出函数经过的点的坐标是解题的关键.22.(10分)用一段长32m的篱笆和长8m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成①设DE等于xm,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF 围成,求菜园面积的最大值.【思路探索】(1)①首先表设出DC=(32﹣x)m,进而利用矩形面积公式得出答案;②利用一元二次方程的解法结合①中自变量取值范围得出答案;(2)首先表示出AD的长,再利用矩形面积公式求出答案.【思路探索】解:(1)①由题意可得:设DE等于xm,则DC=(32﹣x)m,故菜园面积y与x之间的函数关系式为:y=(32﹣x)x=﹣x2+16x,(0<x≤8);②若菜园的面积等于110 m2,则﹣x2+16x=110.解得:x1=10,x2=22.因为0<x≤8,所以不能围成面积为110m2的菜园.(2)设DE等于xm,则菜园面积为:y=x(32+8﹣2x)=﹣x2+20x=﹣(x﹣10)2+100(0<x≤20),当x=10时,函数有最大值100.答:当DE长为10 m时,菜园的面积最大,最大值为100 m2.【解后反思】此题主要考查了二次函数的应用,根据题意正确表示出矩形的边长是解题关键.23.(10分)如图,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点.(1)如图1,若A、C、D三点共线,求∠P AC的度数;(2)如图2,若A、C、D三点不共线,求证:AP⊥DP;(3)如图3,若点C线段BE上,AB=1,CD=2,请直接写出PD的长度.【思路探索】(1)延长AP,DE,相交于点F,利用平行线的判定定理可得AB∥DE,由全等三角形的判定可得△ABP≌△FEP,利用全等三角形的性质和等腰三角形的性质可得结果;(2)延长AP到点F,使PF=AP,连接DF,EF,AD,首先由全等三角形的判定定理可得△BP A≌△EPF,由全等三角形的性质可得AC=FE,利用多边形的内角和定理可得∠ACD=∠FED,可证得△ACD≌△FED,可得AD=FD,可得结论;(3)连接AP,AD,易知∠ACD=90°,所以AD=,在Rt△APD中,∠P AD=30°,所以,PD=.【思路探索】(1)解:如图1,延长AP,DE,相交于点F,∵∠BAC=60°,∠CDE=120°∴∠BAC+∠CDE=180°,∵A,C,D三点共线,∴AB∥DE,∴∠B=∠PEF,∠BAP=∠EFP,在△ABP与△FEP中,,∴△ABP≌△FEP(AAS),∴AB=FE,∵AB=AC,DC=DE,∴AD=DF∴∠P AC=∠PFE,∵∠CDE=120°,∴∠P AC=30°;(2)证明:如图2,延长AP到点F,使PF=AP,连接DF,EF,AD,在△BP A与△EPF中,,∴△BP A≌△EPF(SAS),∴AB=FE,∠PBA=∠PEF,∵AC=BC,∴AC=FE,在四边形BADE中,∵∠BAD+∠ADE+∠DEB+∠EBA=360°,∵∠BAC=60°,∠CDE=120°,∴∠CAD+∠ADC+∠DEB+∠EBA=180°.∵∠CAD+∠ADC+∠ACD=180°,∴∠ACD=∠DEB+∠EBA,∴∠ACD=∠FED,在△ACD与△FED中,,∴△ACD≌△FED(SAS),∴AD=FD,∵AP=FP,∴AP⊥DP;(3)解:连接AP,AD,∵∠BAC=60°,AB=AC,∴△ABC为等边三角形,∴∠ACB=60°,∵DC=DE,∠CDE=120°,∴∠DCE=30°,∴∠ACD=90°,∵AB=AC=1,CD=2,∴AD=,由(2)知,AP⊥PD,∴A、C、P、D四点共圆,∵∠PCD=30°,∴∠P AD=30°,∵在Rt△APD中,∠P AD=30°,∴PD=.【解后反思】本题主要考查了全等三角形的性质、等腰三角形的性质和勾股定理等,作出恰当的辅助线,证得三角形全等是解答此题的关键.24.(12分)问题探究:在直线y=x+3上取点A(2,4)、B,使∠AOB=90°,求点B的坐标.小明同学是这样思考的,请你和他一起完成如下解答:将线段OA绕点O逆时针旋转90°得到OC,则点C的坐标为:(﹣4,2)所以,直线OC的解析式为:y=﹣x点B为直线AB与直线OC的交点,所以,点B的坐标为:(﹣3,)问题应用:已知抛物线y=﹣的顶点P在一条定直线l上运动.(1)求直线l的解析式;(2)抛物线与直线l的另一个交点为Q,当∠POQ=90°时,求m的值.【思路探索】根据旋转的性质,可得OA与OC的关系,根据全等三角形的判定与性质,可得C点坐标,根据待定系数法,可得OC的解析式,根据联立AB与OC,可得方程组,根据解方程组,可得B点坐标;(1)根据配方法,可得P点坐标,根据P点横坐标与纵坐标的关系,可得直线l的解析式;(2)根据联立抛物线与直线l,可得方程组,根据解方程组,可得P,Q点的坐标,根据旋转的性质,可得K点坐标,根据待定系数法,可得OK的解析式,根据联立OK与直线l,可得方程组,根据解方程组,可得m的值.【思路探索】解:如图1,将线段OA绕点O逆时针旋转90°得到OC,在△OAD和△OCD中,,△OAD≌△OCD(AAS),CE=AD=2,OE=OD=4,点C的坐标为:(﹣4,2 );直线OC的解析式为:y=﹣x;联立OC与AB,得,解得,点B的坐标为:(﹣3,);故答案为:(﹣4,2),(﹣3,).(1)∵抛物线y=﹣x2+mx﹣m2+m+=﹣(x2﹣2mx+m2)+m+=﹣(x﹣m)2+m+.所以,顶点P的坐标为(m,m+),∴点P在直线y=x+上运动.即直线l的解析式为:y=x+①.(2)因为,点P,Q为直线l与抛物线的交点,所以,加减消元,得x+=﹣(x﹣m)2+m+.解之,得,x1=m,x2=m﹣3.所以,P的坐标为(m,m+),Q的坐标为(m﹣3,).将线段OP绕点O逆时针旋转90°得到OK,得点K的坐标为:(﹣m﹣,m);所以,直线OK的解析式为:y=﹣x②;因为当∠POQ=90°时,点Q在直线OK上.联立①②,得(m+2)=﹣(m﹣3).解得m=1.抛物线与直线l的另一个交点为Q,当∠POQ=90°时,m的值是1.【解后反思】本题考查了二次函数综合题,利用线段旋转的性质得出OC=OA是解题关键,又利用全等三角形的性质得出C点坐标,再利用解方程得出B点坐标;利用配方法得出顶点坐标所在直线是解题关键.。
2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)+答案解析
2023-2024学年湖北省武汉市黄陂区部分学校八年级(下)月考数学试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.二次根式有意义的条件是()A. B. C. D.2.下列各组线段中,不能构成直角三角形的是()A. B.7,24,25 C.5,12,13 D.3.如图,下列的四个图象中,不表示y是x的函数图象的是()A. B. C. D.4.已知直线经过点,则a的值是()A.2B.3C.4D.55.若一次函数的函数值y随x的增大而增大,则m的取值范围是()A. B. C. D.6.菱形的对角线长分别为6和8,则此菱形的面积为()A.48B.40C.24D.207.在中,点D,E分别是AB,AC上的点,且,点F是DE延长线上一点,连接添加下列条件后,不能判断四边形BCFD是平行四边形的是()A.B.C.D.8.清明期间,甲、乙两人同时登云雾山,甲、乙两人距地面的高度米与登山时间分之间的函数图象如图所示,且乙提速后乙的速度是甲的3倍.则下列说法错误的是()A.乙提速后每分钟攀登30米B.乙攀登到300米时共用时11分钟C.从甲、乙相距100米到乙追上甲时,乙用时分钟D.从甲、乙相距100米到乙追上甲时,甲、乙两人共攀登了330米.9.一次函数和,与x的部分对应值如表,与x的部分对应值如表:则当时,x的取值范围是()x…01…x…01……35……0…A. B. C. D.10.如图所示,在四边形A中,,,,,E,F分别是AD,BC边的中点,则EF的长为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
11.25的平方根是______.12.如图所示,,,,则BC的长为______.13.已知一次函数的图象经过点,且与直线平行,则一次函数的表达式为______.14.如图,在四边形ABCD中,,,,E为BC的中点,连接DE,如果,则______15.如图,直线与的交点的横坐标为下列结论:①,;②直线一定经过点;③当时,;④m与n满足其中正确的有______只填序号16.如图,直线分别与x轴、y轴交于点A、B,点C在线段OA上,线段OB沿BC翻折.点O落在AB边上的点D处.则点D的坐标为______.三、解答题:本题共8小题,共72分。
2015年高考湖北理科数学试题与答案(word解析版)
2015年普通高等学校招生全国统一考试(卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【1,5分】i 为虚数单位,607i的共轭复数....为( )(A )i (B )i - (C )1 (D )1- 【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .(2)【2015年,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米夹谷,抽样取米一把,数得254粒夹谷28粒,则这批米夹谷约为( )(A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米夹谷约为281534169254⨯=石,故选B . (3)【2015年,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数)(A )122(B )112 (C )102 (D )92【答案】【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)nx +中奇数项的二项式系数和为1091222⨯=,故选D . 以及计算能力.(4)【2015年,理4,5分】设211(,)X N μσ:,222(,)Y N μσ:,这两个正态分布密 (A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键(5)【2015年,理5,5分】设12,,,n a a a ∈R L ,3n ≥.若p :12,,,n a a a L 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L ,则( )(A q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a L 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当0=n a 时,22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立; ②当0≠n a 时,根据柯西不等式,等式22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++L L L 成立,则nn a a a a a a 13221-=⋅⋅⋅==,所以12,,,n a a a L 成等比数列,所以p 是q 的充分条件,但不是q 的必要(6)【2015年,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e < (C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】【解析】依题意,22211a b b e a a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a ma m ++++⎛⎫==+ ⎪++⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >,当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .(9)【2015年,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即 25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .复的元素.(10)【2015年,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年,理11,5分】已知向量OA AB ⊥u u u r u u u r ,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r . 【答案】9【解析】因为OA AB ⊥u u u r u u u r ,3OA =u u u r ,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .(12)【2015年,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点, 所以函数()f x 由2个零点.(13)【2015年,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处在西偏北30o 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75o 的方向上,仰角为30o ,则此山的高度CD = m .【答案】1006 【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中, 因为30CBD ∠=︒,3002BC =,所以tan303002CD CDBC ︒==,所以1006CD =m .(14)【2015年,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NB MB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =Q ,且E 为AB 中点,∴()0,21A -,()0,21B +,M Q ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+, ()222121222222NB MA NAMB+=+=++-=-+,【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.) (15)【P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______. 【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. (16)【2015年,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB = .【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得22322x y ⎧=⎪⎪⎨⎪=⎪⎩或22322x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,22A ⎛⎫ ⎪ ⎪⎝⎭,232,22B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 础的计算题.三、解答题:共6题,共75(17)【2015年,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期x ωϕ+ 0π2 π 3π2 2π x π3 5π6sin()A x ωϕ+0 5 5- 0(1)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 解:(1)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+ 0π2π 3π22πxπ12 π3 7π12 5π6 13π12 sin()A x ωϕ+55-且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律(18)【2015年,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++L L ① 2345113579212222222n n n T -=+++++L L ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-L L ,故12362nn n T -+=-. (19)【2015年,理19,12分】《九章算术》中,将底面为长方形且有如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE . (1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =I ,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =I ,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =I ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC ,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =I ,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BDDPF PD λ=∠==+=, 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. (1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ, (,1,1)PB λ=-u u u r ,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =u u u r ,于是0PB DE ⋅=u u u r u u u r,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =I ,所以PB DEF ⊥平面. 因(0,1,1)PC =-u u u r , 0DE PC ⋅=u u u r u u u r, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑,四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =u u u r是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--u u u r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+u u u r u u u r u u ur u u u r , 解得2λ=. 所以12.2DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 于难题.(20)【2015年,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶210001吨B 产品需鲜牛奶1.51.5小时,获利 1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过 12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为W 12 15 18 P 0.3 0.5 0.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200z y x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3, 四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200z y x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.故最大获利Z 的分布列为Z8160 10200 10800 P0.3 0.5 0.2 因此,()81600.3102000.5108000.29708.E Z =⨯+⨯+⨯= (2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.问题解决问题的能力.(21)【2015年,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆MN 通过N 处铰链与ON 连接,MN D AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 作往复运动时,带动..N 绕O 转动一周(D 不动时,N C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 OPQ 的面积是否存在最小值?若存在,求出该最小值; 解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,(2②8.【点评】本题的关键.综合性较强,运算量较大.(22)【2015年,理22,14(((解:(1①(2②(3运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
湖北省武汉市部分学校2023-2024学年高三上学期九月调研考试数学试题
湖北省武汉市部分学校2023-2024学年高三上学期九月调研考试数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.四个实数1-,2,x,y按照一定顺序可以构成等比数列,则xy的可能取值有四、双空题16.甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点表,并根据小概率值0.05a=的独立性检验,能否推断男生和女生的测试成绩优秀率有差异?11.AD【分析】先由题意可知0,1a b >>,由e ln 3a a b b ==,得ln e ln e 3a b a b =×=,构造函数()()e 0x f x x x =>,得ln a b =,再对四个选项逐一分析即可.【详解】由题意可得0,1a b >>,则由e ln 3a a b b ==,得ln e ln e 3a b a b =×=.对于A :设()()e 0x f x x x =>,()()1e x f x x ¢=+,则在区间()0,¥+上,()0f x ¢>,()f x 为增函数,所以由题意可得()()ln f a f b =,所以ln a b =,故A 正确;对于B :由ln a b =,得ln 3ab b b ==,故B 错误;对于C :由A 可知()e x f x x =在区间()0,¥+上为增函数,且e 3a a =,则()()()12f f a f <<,即12a <<,则2e e b <<,答案第251页,共22页。
华师版七年级下学期第一次月考数学试卷,初一数学下册测试题(含答案与解析)
D.20 道
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
二.填空题(每题 3 分,共 24 分)
9.(3 分)若代数式 m2n3x﹣5 与 n4x﹣3m2 的和为 m2n3x﹣5,则 x=
.
第 1页(共 11页)
10.(3 分)在方程 2x+4y=7,用含 x 的代数式表示 y,则可以表示为
就会迟到 5 分钟.问他家到学校的路程是多少 km?设他家到学校的路程是 xkm,则据题
意列出的方程是( )
A.
B.
C.
D.
7.(3 分)一份数学试卷,只有 25 个选择题,做对一题得 4 分,做错一题倒扣 1 分,某同
学做了全部试卷,得了 70 分,他一共做对了( )
A.17 道
B.18 道
C.19 道
∴某同学共做对了 25﹣6=19 道,
故选:C.
8.(3 分)定义“*”运算为 a*b=ab+2a,若(3*x)+(x*3)=14,则 x=( )
A.﹣1
B.1
C.﹣2
D.2
【解答】解:根据题意(3*x)+(x*3)=14,
可化为:(3x+6)+(3x+2x)=14,
解得 x=1.
故选:B.
二.填空题(每题 3 分,共 24 分)
19.(10 分)把 2005 个正整数 1,2,3,4,…,2005 按如图方式排列成一个表: (1)如图,用一正方形框在表中任意框住 4 个数,记左上角的一个数为 x,则另三个数 用含 x 的式子表示出来,从小到大依次是 x+1 , x+7 , x+8 ; (2)当(1)中被框住的 4 个数之和等于 416 时,x 的值为多少? (3)(1)中能否框住这样的 4 个数,它们的和等于 324?若能,则求出 x 的值;若不能, 则说明理由.
2014~2015学年度第二学期期末武汉市部分学校高中一年级调研测试数学
2014〜2015学年度第二学期末武汉市部分学校高一年级调研测试数学试卷武汉市教育科学研究院命制说明:本试卷分为第I卷和第n卷两部分。
第I卷为选择题,第n卷为非选择题。
第I 卷为1至2页,第n卷为3至4页。
本试卷满分150分,考试用时120分钟。
注意:请考生用钢笔或黑色水性笔将自己的姓名、班级等信息及所有答案填写在答题卷相应的位置上。
(选择题,共50 分)1A.-2A. 0.12B. 2.12C. 2.10D. 0.10、选择题:本大题共10小题,每小题有一项是符合题目要求的。
cos42 5分,共50分。
在每小题列出的四个选项中,只1.sin72cos72 sin42 2•不等式2x23的解集是3A. 1,2 B. 32,C.D.3•关于x的二次不等式ax2bx 0恒成立的充要条件是a 0A. b24ac 0B. ab24acaC. b2D.4aca 0b24ac 04•若实数x,y满足14x 2y的取值范围是2015 . 6. 30 D. 15.已知数列a n中,311 4 1 /,a n 1 (n4 a n 11),则a201514A. -B. 5C D. 2015456.在下列命题中,错误的是A. 如果一个直线上的两点在平面内,那么这条直线在此平面内B. 过不在一条直线上的三点,有且只有一个平面C. 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线D. 平行于同一个平面的两条直线平行7. 《莱因德纸草书》是世界上最古老的数学著作之一•书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的二是较小的两份之和,问最7小1份为()A. !.■ B . _i.i C . D. __3368. 一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为11 1 1A. —B. —C. —D.-8 7 6 59.数列a n的前n项和为S n,若印1耳1 3S n(n 1),则a6A. 3 44B. 3 44 1C. 45D. 45110. “祖暅原理”是我国古代数学学家祖暅在研究球的体积的过程中发现的一个原理。
湖北省武汉市蔡甸区2014-2015学年七年级数学12月月考试题新人教版
一、选择题(本大题共10小题,每小题3分,共30分)
1.某市2014年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温
比最低气温高( )
A.-10℃B.-6℃C.6℃D.10℃
2.如果一个数的倒数是它本身,那么这个数是( )
A.1 B.-1 C.+1或-1 D.0
(1)如上图,用一正方形框在表中任意框住4个数,记左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是___________,____________,____________.
(2)当(1)中被框住的4个数之和等于416时,x的值为多少?
(3)在(1)中能否框住这样的4个数,它们的和等于324?若能,则求出x的值;若不能,则说明理由.
A.-1 B.-2 C.0 D.为其它的值
x
-2
-1
0
1
4
0
-4
-8
-12
9.如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,……,2n,……,请你探究出前n行的点数和所满足的规律,若前n行点数和为930,则n=()
A.29B.30C.31D.32
10.下列结论:
①若x=1是关于x的方程a+bx+c=0的一个解,则a+b+c=0;
一、选择题(10×3=30分)
题号
1
2
3
4
5
6
7
8
9
10
得分
答案
2、填空题(6×3=18分)
11.12.13. a,b
14.15.,16.
湖北省武汉市部分学校2023-2024学年第一学期七年级期末考试数学试卷(word版含答案)
2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。
2015年高考湖北理科数学试题及答案(word解析版)
2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年湖北,理1,5分】i 为虚数单位,607i 的共轭复数....为( ) (A )i (B )i - (C )1 (D )1- 【答案】A【解析】60741513i i i i ⨯=⋅=-,共轭复数为i ,故选A .【点评】本题考查复数的基本运算,复式单位的幂运算以及共轭复数的知识,基本知识的考查.(2)【2015年湖北,理2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) (A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米内夹谷约为281534169254⨯=石,故选B .【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.(3)【2015年湖北,理3,5分】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) (A )122(B )112 (C )102 (D )92【答案】D 【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以37n n C C =,解得10n =,所以二项式(1)n x + 中奇数项的二项式系数和为1091222⨯=,故选D .【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用 以及计算能力.(4)【2015年湖北,理4,5分】设211(,)X N μσ,222(,)Y N μσ,这两个正态分布密度曲线如图所示.下列结论中正确的是( )(A )21()()P Y P Y μμ≥≥≥ (B )21()()P X P X σσ≤≤≤(C )对任意正数t ,()()P X t P Y t ≤≥≤ (D )对任意正数t ,()()P X t P Y t ≥≥≥ 【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤,故选C .【点评】本题考查了正态分布的图象与性质,学习正态分布,一定要紧紧抓住平均数μ和标准差σ这两个关键量,结合正态曲线的图形特征,归纳正态曲线的性质.(5)【2015年湖北,理5,5分】设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++,则( ) (A )p 是q 的充分条件,但不是q 的必要条件 (B )p 是q 的必要条件,但不是q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】对命题12:,,,n p a a a 成等比数列,则公比()13n n aq n a -=≥且0n a ≠;对命题q ,①当时,成立;②当时,根据柯西不等式,等式成立,则,所以成等比数列,所以p 是q 的充分条件,但不是q 的必要 0=n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++0≠n a 22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++nn a a a a a a 13221-=⋅⋅⋅==12,,,n a a a条件.故选A .(6)【2015年湖北,理6,5分】已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )(A )sgn[()]sgn g x x = (B )sgn[()]sgn g x x =- (C )sgn[()]sgn[()]g x f x = (D )sgn[()]sgn[()]g x f x =- 【答案】B【解析】因为()f x 是R 上的增函数,令()f x x =,所以()()1g x a x =-,因为1a >,所以()g x 是R 上的减函数,由符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩知,1,0,sgn 0,0,sgn 1,0.x x x x x >⎧⎪===-⎨⎪-<⎩,故选B .(7)【2015年湖北,理7,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( ) (A )123p p p << (B )231p p p << (C )312p p p << (D )321p p p << 【答案】B【解析】因为[],0,1x y ∈,对事件“12x y -≥”如图(1)阴影部分1S , 对事件“12x y -≤”,如图(2)阴影部分2S ,对事件“12xy ≤”,如图(3)阴影部分3S ,由图知,阴影部分的面积从下到大依次是231S S S <<,正方形的面积为111⨯=,根据几何概型公式可得231p p p <<,故选B .【点评】本题主要考查几何概型的概率计算,利用数形结合是解决本题的关键.本题也可以直接通过图象比较面积的大小即可比较大小.(8)【2015年湖北,理8,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e <(C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,22211a b b e a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a m ++++⎛⎫==+ ⎪+⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .【点评】本题考查双曲线的性质,考查学生的计算能力,比较基础.(9)【2015年湖北,理9,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【答案】C【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D中的整点(除去四个顶点),即77445⨯-=个,故选C .【点评】本题以新定义为载体,主要考查了几何的基本定义及运算,解题中需要取得重复的元素.(10)【2015年湖北,理10,5分】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立....,则正整数n 的最大值是( ) (A )3 (B )4 (C )5 (D )6 【答案】B【解析】由[]1t =得12t ≤<,由2[]2t =得223t ≤<,由43t ⎡⎤=⎣⎦得445t ≤<,可得225t ≤<,所以225t ≤<; 由3[]3t =得334t ≤<,所以5645t ≤<,由55t ⎡⎤=⎣⎦得556t ≤<,与5645t ≤<矛盾,故正整数n 的最大值是4,故选B .【点评】本题考查简单的演绎推理,涉及新定义,属基础题.二、填空题:共6小题,考生需作答5小题,每小题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. (一)必考题(11-14题)(11)【2015年湖北,理11,5分】已知向量OA AB ⊥,||3OA =,则OA OB ⋅= . 【答案】9 【解析】因为OA AB ⊥,3OA =,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===.【点评】本题考查了平面向量的数量积运算,考查了向量模的求法,是基础的计算题.(12)【2015年湖北,理12,5分】函数2π()4cos cos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 【答案】2 【解析】因为()()()()()24cos cos 2sin ln 121cos sin 2sin ln 1sin 2ln 122x x f x x x x x x x x x x ⎛⎫=----=+--+=-+ ⎪⎝⎭,所以函数()f x 的零点个数为函数sin 2y x =与()ln 1y x =+图像如图,由图知,两函数图像右2个交点,所以函数()f x 由2个零点.【点评】本题考查三角函数的化简,函数的零点个数的判断,考查数形结合与转化思想的应用.(13)【2015年湖北,理13,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD = m .【答案】1006【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒,所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中,因为30CBD ∠=︒,3002BC =,所以tan303002CD BC ︒==,所以1006CD =m . 【点评】本题主要考查了解三角形的实际应用.关键是构造三角形,将各个已知条件向这个主三角形集中,再通过正弦、余弦定理或其他基本性质建立条件之间的联系,列方程或列式求解.(14)【2015年湖北,理14,5分】如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(1)圆C 的标准..方程为 ;(2)过点A 任作一条直线 与圆22:1O x y +=相交于,M N 两点,下列三个结论: ①NA MA NBMB=; ②2NB MA NAMB-=; ③22NB MA NAMB+=.其中正确结论的序号是 . (写出所有正确结论的序号) 【答案】(1)()()22122x y -+-=;(2)①②③【解析】(1)依题意,设()1,C r (r 为圆的半径),因为2AB =,所以22112r =+=,所以圆心()1,2C ,故圆的标准方程为()()22122x y -+-=.(2)解法一:联立方程组()()22122x x y =⎧⎪⎨-+-=⎪⎩,解得021x y =⎧⎪⎨=-⎪⎩或021x y =⎧⎪⎨=+⎪⎩,因为B 在A 的上方,所以()0,21A -,()0,21B +,领直线MN 的方程为0x =,此时()0,1M -,()0,1N ,所以2MA =,22MB =+,22NA =-,2NB =,因为22212NA NB-==-,22122MA MB==-+,所以NA MA NBMB =所以()22212122222NB MA NAMB-=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.解法二:因为圆心()1,2C ,()0,2E ∴,又2AB =,且E 为AB 中点,∴()0,21A -,()0,21B +,M ,N 在圆22:1O x y +=,∴可设()cos ,sin M αα,()cos ,sin N ββ,()()22cos 0sin 21NA ββ⎡⎤∴=-+--⎣⎦()22cos sin 221sin 322βββ=+--+-()()()422221sin 2221221sin ββ=---=---()()2212sin β=--,()()22cos 0sin 21NB ββ⎡⎤∴=-+-+⎣⎦()22cos sin 221sin 322βββ=+-+++()()()422221sin 2221221sin ββ=+-+=+-+()()2212sin β=+-,()()()()2212sin 2121212212sin NA NBββ---∴===-++-,同理21MA MB=-.所以NA MA NBMB=,所以()22212122222NB MA NA MB -=-=+--=-+,()222121222222NB MA NAMB+=+=++-=-+,正确结论的序号是①②③.【点评】本题考查求圆的标准方程,用三角函数值表示单位圆上点的坐标是解决本题的关键,注意解题方法的积累,属于难题.(一)选考题(请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.)(15)【2015年湖北,理15,5分】(选修4-1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=_______.【答案】12【解析】因为PA 是圆的切线,A 为切点,PBC 是圆的割线,由切割定理知,()2PA PB PC PB PB BC =⋅=+,因为3BC PB =,所以224PA PB =,即2PA PB =,由A PAB PC ∆∆∽,所以12AB PB AC PA ==. 【点评】本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.(16)【2015年湖北,理16,5分】(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =.【答案】25【解析】因为()sin 3cos 0ρθθ-=,所以sin 3cos 0ρθρθ-=,所以30y x -=,即3y x =;由11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩,消去t 得224y x -=,联立方程组2234y x y x =⎧⎨-=⎩,解得2232x y ⎧=⎪⎪⎨⎪=⎪⎩或2232x y ⎧=-⎪⎪⎨⎪=-⎪⎩,即232,A ⎛⎫ ⎪ ⎪⎝⎭,232,B ⎛⎫-- ⎪ ⎪⎝⎭,由两点间的距离公式得22223232252222AB ⎛⎫⎛⎫=+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查极坐标方程化直角坐标方程,参数方程化普通方程,考查了直线和圆锥曲线的位置关系,是基础的计算题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年湖北,理17,11分】某同学用“五点法”画函数()sin()f x A x ωϕ=+π(0,||)2ωϕ><在某一个周期(1...........(2)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.解:(1)根据表中已知数据,解得π5,2,A ωϕ===-.数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(2)由(1)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-. 因为sin y x =的对称中心为(π,0)k ,k ∈Z .令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【点评】本题主要考查了由()sin y A x ωϕ=+的部分图象确定其解析式,函数()sin y A x ωϕ=+的图象变换规律的应用,属于基本知识的考查.(18)【2015年湖北,理18,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公、比为q .已知11b a =,22b =,q d =,10100S =.(1)求数列{}n a ,{}n b 的通项公式;(2)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(1)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n na nb -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是2341357921122222n n n T --=+++++ ① 2345113579212222222n n n T -=+++++ ② 由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-,故12362nn n T -+=-. 【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题.(19)【2015年湖北,理19,12分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,.DE DF BD BE .(1)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.解:解法一:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC PCD ⊥平面. 而DE PCD ⊂平面,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC . 而PB PBC ⊂平面,所以PB DE ⊥. 又PB EF ⊥,DE EF E =,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)如图1,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB DEF ⊥平面,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以 PD DG ⊥. 而PD PB P =,所以DG PBD ⊥平面.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角,设1PD DC ==,BC λ=,有21BD λ=+,在Rt △PDB 中, 由DF PB ⊥, 得π3DPF FDB ∠=∠=,则 2πtan tan 133BD DPF PD λ=∠==+=, 解得2λ=.所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,22DC BC =. 解法二:(1)如图2,以D 为原点,射线,,DA DC DP 分别为,,x y z 轴的正半轴,建立空间直角坐标系. 设1PD DC ==,BC λ=,则(0,0,0),(0,0,1),(,1,0),(0,1,0)D P B C λ,(,1,1)PB λ=-,点E 是PC 的中点,所以11(0,,)22E ,11(0,,)22DE =,于是0PB DE ⋅=,即PB DE ⊥. 又已知EF PB ⊥,而DE EF E =,所以PB DEF ⊥平面. 因(0,1,1)PC =-, 0DE PC ⋅=, 则DE PC ⊥, 所以DE PBC ⊥平面.由DE ⊥平面 PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,即四面体BDEF 是一个鳖臑, 四个面的直角分别为DEB DEF ∠∠,,EFB DFB ∠∠,. (2)由PD ABCD ⊥平面,所以(0,0,1)DP =是平面ABCD 的一个法向量;由(1)知,PB DEF ⊥平面,所以(,1,1)BP λ=--是平面DEF 的一个法向量. 若面DEF 与面ABCD 所成二面角的大小为π3,则2π11cos 32||||2BP DP BP DP λ⋅===⋅+, 解得2λ=. 所以12.DC BC λ== 故当面DEF 与面ABCD 所成二面角的大小为π3时,2DC BC =. 【点评】本题综合考查了空间直线平面的垂直问题,直线与直线,直线与平面的垂直的转化,空间角的求解,属于难题.(20)【2015年湖北,理20,12分】某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.解:(1)设每天,A B 两种产品的生产数量分别为,x y ,相应的获利为z ,则有2 1.5,1.512, 20,0, 0.x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩ (1) 目标函数为 10001200z x y =+.当12W =时,(1)表示的平面区域如图1,三个顶点分别为(0, 0), (2.4, 4.8), (6, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当 2.4, 4.8x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z z ==⨯+⨯=.当15W =时,(1)表示的平面区域如图2,三个顶点分别为(0, 0), (3, 6), (7.5, 0)A B C .将10001200z x y =+变形为561200z y x =-+,当3, 6x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z z ==⨯+⨯=.当18W =时,(1)表示的平面区域如图3,四个顶点分别为(0, 0), (3, 6), (6, 4), (9, 0)A B C D . 将10001200z x y =+变形为561200zy x =-+,当6,4x y ==时,直线l :561200zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z z ==⨯+⨯=.(2)由(1)知,一天最大获利超过10000元的概率1(10000)0.50.20.7p P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为()3311110.30.973p p =--=-=.【点评】本题考查离散型随机变量的分布列以及期望的求法,线性规划的应用,二项分布概率的求法,考查分析问题解决问题的能力.(21)【2015年湖北,理21,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(1)求曲线C 的方程;(2)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探 究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.解:(1)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =,且||||1DN ON ==,所以00(,)2(,)t x y x t y --=-,且22002200()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y +=(2)①当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.②当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为21d k =+和2||1||P Q PQ k x x =+-,可得22111222||||||||222121214OPQ P Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQS k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.【点评】本题主要考查椭圆方程的求解,以及直线和圆锥曲线的位置关系的应用,结合三角形的面积公式是解决本题的关键.综合性较强,运算量较大.(22)【2015年湖北,理22,14分】已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n+=+∈N ,e 为自然对数的底数.(1)求函数()1e x f x x =+-的单调区间,并比较1(1)n n+与e 的大小;(2)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212n n b b b a a a 的公式,并给出证明;(3)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.解:(1)()f x 的定义域为(,)-∞+∞,()1e x f x '=-.当()0f x '>,即0x <时,()f x 单调递增;当()0f x '<,即0x >时,()f x 单调递减. 故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞.当0x >时,()(0)0f x f <=,即1e xx +<. 令1x n=,得111e n n +<,即1(1)e n n +<. ①(2)11111(1)1121b a =⋅+=+=;22212121212122(1)(21)32b b b b a a a a =⋅=⋅+=+=;2333123312123123133(1)(31)43b b b b b b a a a a a a =⋅=⋅+=+=. 由此推测:1212(1).n n nb b b n a a a =+ ② 下面用数学归纳法证明②.①当1n =时,左边=右边2=,②成立.②假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+. 当1n k =+时,1111(1)(1)1k k k b k a k +++=+++,由归纳假设可得 111211211211211(1)(1)(1)(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++=⋅=+++=++.所以当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(3)由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得123n n T c c c c =++++=111131211212312()()()()nn a a a a a a a a a ++++111131212312112()()()()2341nn b b b b b b b b b n =+++++ 121111111[][]1223(1)2334(1)(1)n b b b n n n n n n =+++++++++⋅⨯⨯+⨯⨯++ 1211111(1)()()1211n b b b n n n n =-+-++-+++1212n b b b n <+++1212111(1)(1)(1)12n n a a a n =++++++12e e e n a a a <+++=e n S . 即e n n T S <.【点评】本题主要考查导数在研究函数中的应用,考查利用归纳法证明与自然数有关的问题,考查推理论证能力、运算求解能力、创新知识,考查了利用放缩法法证明数列不等式,是压轴题.。
湖北省武汉市部分学校2013届高三12月月考数学文试题(解析版)
湖北省武汉市部分学校2013届高三12月月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)i2013的值为()A.1B.i C.﹣1 D.﹣i考点:虚数单位i及其性质.专题:计算题.分析:把i2013写成i2012•i,然后由i2=﹣1化简i2012,最后可得i2013的值.解答:解:i2013=i2012•i=(i2)1006•i=(﹣1)1006i=i.所以i2013的值为i.故选B.点评:本题考查了虚数单位i及其性质,解答的关键是运用i2=﹣1,此题是基础题.2.(5分)全称命题:∀x∈R,x2>0的否定是()A.∀x∈R,x2≤0 B.∃x∈R,x2>0 C.∃x∈R,x2<0 D.∃x∈R,x2≤0考点:命题的否定.专题:阅读型.分析:欲写出命题的否定,必须同时改变两个地方:①:“∀”;②:“>”即可,据此分析选项可得答案.解答:解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.点评:这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.3.(5分)(2011•天津)阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6考点:程序框图.专题:图表型.分析:通过程序框图的要求,写出前四次循环的结果得到输出的值.解答:解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B点评:本题考查解决程序框图中的循环结构时,常采用写出前几次循环结果,找规律.4.(5分)已知某几何体的侧视图与其正视图相同,相关的尺寸如图所示,则这个几何体的体积是()A.8πB.7πC.2πD.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:该几何体为一空心圆柱,其中内层圆柱的底面直径为3,外层底面的直径为4;圆柱的高为1.据此可计算出体积.解答:解:由三视图可知:该几何体为一空心圆柱,其中内层圆柱的底面直径为3,外层底面的直径为4;圆柱的高为1.故其体积.故选D.点评:由三视图正确恢复原几何体是解题的关键.5.(5分)已知幂函数f(x)=x2+m是定义在区间[﹣1,m]上的奇函数,则f(m+1)=()A.8B.4C.2D.1考点:函数的值.专题:计算题;函数的性质及应用.分析:由幂函数f(x)=x2+m是定义在区间[﹣1,m]上的奇函数,知m=1,即f(x)=x3,由此能求出f(m+1)的值.解答:解:∵幂函数f(x)=x2+m是定义在区间[﹣1,m]上的奇函数,∴,∴m=1,即f(x)=x3,∴f(m+1)=f(2)=23=8,故选A.点评:本题考查函数值的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.6.(5分)已知A、B两点分别在两条互相垂直的直线2x﹣y=0和x+ay=0上,且AB线段的中点为P,则线段AB的长为()A.8B.9C.10 D.11考点:直线的一般式方程与直线的垂直关系;中点坐标公式.专题:直线与圆.分析:由两直线互相垂直的充要条件可得a的值,再由直角三角形斜边的中长O的长为斜边长的一半,求|PO|可得答案.解答:解析:由已知两直线互相垂直可得:2×1+(﹣1)×a=0,解得a=2,∴线段AB中点为P(0,5),且AB为直角三角形AOB的斜边,因为直角三角形斜边的中线PO的长为斜边AB的一半,且|PO|=5故|AB|=2|PO|=10,故选C.点评:本题为线段长度的求解,涉及两直线互相垂直的充要条件和直角三角形的知识,属基础题.7.(5分)(2013•牡丹江一模)已知数列{a n}满足log3a n+1=log3a n+1(n∈N*),且a2+a4+a6=9,则的值是()A.﹣5 B.C.5D.考点:等比数列的性质.专题:计算题;压轴题;方程思想.分析:先由“log3a n+1=log3a n+1”探讨数列,得到数列是以3为公比的等比数列,再由a2+a4+a6=a2。
2020-2021学年湖北省武汉市武昌区部分学校七年级(下)期中数学试卷
2020-2021学年湖北省武汉市武昌区部分学校七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)36的平方根是()A.﹣6B.36C.±D.±62.(3分)在,,0.1010010001…(依次增加一个0),3π,中,无理数有()A.2个B.3个C.4个D.5个3.(3分)已知方程:①+y=3;②3xy﹣y=0;③=3;④3x﹣y=2;⑤2x﹣3y =6.其中为二元一次方程的是()A.②④B.②⑤C.①④D.④⑤4.(3分)如图,直线a、b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠3+∠4=180°C.∠1=∠4D.∠2=30°,∠4=25°5.(3分)若点M(a﹣3,2a+4)到x轴的距离是到y轴距离的2倍,则点M的坐标是()A.(2.5,9)B.(﹣0.5,9)C.(﹣2.5,5)D.(0.5,﹣5)6.(3分)已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则()A.a可取任意实数,b=5B.a=﹣1,b可取任意实数C.a≠﹣1,b=5D.a=﹣1,b≠57.(3分)如图,AB∥CD,∠BAP=120°,∠APC=40°,则∠PCD=()A.120°B.150°C.140°D.160°8.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线上各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行9.(3分)已知≈0.5981,≈1.289,≈2.776,则≈()A.27.76B.12.89C.59.81D.5.98110.(3分)如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)二、填空题(每小题3分,共18分)11.(3分)9的算术平方根是.12.(3分)在平面直角坐标系中,已知点M(m﹣1,2m+3)在x轴上,则m=.13.(3分)比较大小:1.(填“>”或“<”或“=”)14.(3分)已知3x3m+5n+9与﹣x4m+6n﹣7是同类项,则m+n=.15.(3分)若关于x、y的方程组(其中a、b为常数)的解为,则方程组的解为.16.(3分)今年3月,“烂漫樱花地,最美英雄城”长江主题灯光秀在武汉展演,有两条笔直且平行的景观道AB、CD上放置P、Q两盏激光灯(如图所示),若光线PB按顺时针方向以每秒6°的速度旋转至P A便立即回转,并不断往返旋转;光线QC按顺时针方向每秒2°的速度旋转至QD边就停止旋转,若光线QC先转5秒,光线PB才开始转动,当光线PB旋转时间为秒时,PB1∥QC1.三、解答题(共8小题,共72分)17.(8分)计算:(1)+﹣;(2)|﹣|+3.18.(8分)求x的值:(1)x2﹣16=0;(2)(x﹣2)3=﹣27.19.(8分)完成下面的推理填空:如图,已知AB∥CD,∠1=∠2,∠3=∠4,求证:∠D=∠DCE.证明:∵AB∥CD,∴∠2=∠BAE().∵∠BAE=∠3+,∴∠2=∠3+,∵∠3=∠4,∴∠2=∠CAD,又∵∠2=,∴∠CAD=,∴AD∥().∴∠D=∠DCE.().20.(8分)平面直角坐标系中,将点A、B先向下平移3个单位长度,再向右平移2个单位后,分别得到点A′(3,﹣2)、B′(2,﹣4).(1)点A坐标为,点B坐标为,并在图中标出点A、B;(2)若点C的坐标为(2,﹣2),求△ABC的面积;(3)在(2)的条件下,如图所示网格中,点E为图中格点(不与C重合),且使得△ABE与△ABC的面积相等,符合条件的E点有个.21.(8分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|3﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.22.(8分)如图,AB∥CD,AC∥BH,点M在直线BA上,且∠MAC=30°,∠D=75°,BE平分∠DBA,求∠EBH的度数.23.(10分)已知直线a∥b,点A、B在直线a上(B在A左侧),点C在直线b上,E点在直线b的下方,连接AE交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC;(2)如图2,∠BAD的邻补角的角平分线与∠DEC的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由;(3)在(2)的条件下,将图2中点A向右平移,使得点D在C点右侧,直接写出∠AME 与∠ECD的数量关系.24.(12分)在平面直角坐标系中,点A(a,1),B(b,3)满足关系式(a+1)2+|b﹣2|=0.(1)求a、b的值;(2)若点P(3,n)满足△ABP的面积等于6,求n的值;(3)线段AB与y轴交于点C,动点E从点C出发,在y轴上以每秒1个单位长度的速度向下运动,动点F从点M(﹣8,0)出发,以每秒2个单位长度的速度向右运动,问t为何值时有S△ABE=2S△ABF?请直接写出t的值.2020-2021学年湖北省武汉市武昌区部分学校七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)36的平方根是()A.﹣6B.36C.±D.±6【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:D.2.(3分)在,,0.1010010001…(依次增加一个0),3π,中,无理数有()A.2个B.3个C.4个D.5个【解答】解:,是分数,属于有理数;=,是分数,属于有理数;无理数有0.1010010001…(依次增加一个0),3π,,共3个.故选:B.3.(3分)已知方程:①+y=3;②3xy﹣y=0;③=3;④3x﹣y=2;⑤2x﹣3y =6.其中为二元一次方程的是()A.②④B.②⑤C.①④D.④⑤【解答】解:①+y=3,不是整式方程,不符合题意;②3xy﹣y=0,是二元二次方程,不符合题意;③=3,不是整式方程,不符合题意;④3x﹣y=2,是二元一次方程,符合题意;⑤2x﹣3y=6,是二元一次方程,符合题意.故选:D.4.(3分)如图,直线a、b被直线c所截,下列条件能判断a∥b的是()A.∠1=∠2B.∠3+∠4=180°C.∠1=∠4D.∠2=30°,∠4=25°【解答】解:A.∠1=∠2,不能判断a∥b,故不合题意;B.∠3+∠4=180°,不能判断a∥b,故不合题意;C.∵∠1=∠4,∴a∥b(同位角相等两直线平行),故符合题意;D.∠2=30°,∠4=25°,不能判断a∥b,故不合题意;故选:C.5.(3分)若点M(a﹣3,2a+4)到x轴的距离是到y轴距离的2倍,则点M的坐标是()A.(2.5,9)B.(﹣0.5,9)C.(﹣2.5,5)D.(0.5,﹣5)【解答】解:由点M(a﹣3,2a+4)到x轴距离是到y轴的距离2倍,∴|2a+4|=2|a﹣3|,∴2a+4=2(a﹣3)或2a+4=﹣2(a﹣3),方程2a+4=2(a﹣3)无解;解方程2a+4=﹣2(a﹣3),得a=0.5,0.5﹣3=﹣2.5,2×0.5+4=5,∴点M的坐标为(﹣2.5,5).故选:C.6.(3分)已知两点A(a,5),B(﹣1,b)且直线AB∥x轴,则()A.a可取任意实数,b=5B.a=﹣1,b可取任意实数C.a≠﹣1,b=5D.a=﹣1,b≠5【解答】解:∵AB∥x轴,∴b=5,a≠﹣1,故选:C.7.(3分)如图,AB∥CD,∠BAP=120°,∠APC=40°,则∠PCD=()A.120°B.150°C.140°D.160°【解答】解:过P点作PE∥AB,∴∠A+∠APE=180°,∵∠A=120°,∴∠APE=180°﹣120°=60°,∵∠APC=40°,∴∠CPE=∠APE﹣∠APC=60°﹣40°=20°,∵AB∥CD,∴CD∥PE,∴∠C+∠CPE=180°,∴∠C=180°﹣20°=160°.故选:D.8.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是()A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线上各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【解答】解:由题意a⊥AB,b⊥AB,∴a∥b(垂直于同一条直线的两条直线平行),故选:A.9.(3分)已知≈0.5981,≈1.289,≈2.776,则≈()A.27.76B.12.89C.59.81D.5.981【解答】解:==×=10≈2.776×10=27.76.故选:A.10.(3分)如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【解答】解:根据题意可知:OA1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18•,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.二、填空题(每小题3分,共18分)11.(3分)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.12.(3分)在平面直角坐标系中,已知点M(m﹣1,2m+3)在x轴上,则m=﹣1.5.【解答】解:由题意得:2m+3=0,解得:m=﹣1.5.故答案为:﹣1.5.13.(3分)比较大小:>1.(填“>”或“<”或“=”)【解答】解:∵5>4,∴>,∴>2,∴>,∴>1.故答案为:>.14.(3分)已知3x3m+5n+9与﹣x4m+6n﹣7是同类项,则m+n=16.【解答】解:∵3x3m+5n+9与﹣x4m+6n﹣7是同类项,∴3m+5n+9=4m+6n﹣7.整理,得m+n=7+9=16,∴m+n=16.故答案为:16.15.(3分)若关于x、y的方程组(其中a、b为常数)的解为,则方程组的解为.【解答】解:根据题意得:,①+②得:2x=7,∴x=3.5,①﹣②得:2y=﹣1,∴y=﹣0.5.∴原方程组的解为.故答案为:.16.(3分)今年3月,“烂漫樱花地,最美英雄城”长江主题灯光秀在武汉展演,有两条笔直且平行的景观道AB、CD上放置P、Q两盏激光灯(如图所示),若光线PB按顺时针方向以每秒6°的速度旋转至P A便立即回转,并不断往返旋转;光线QC按顺时针方向每秒2°的速度旋转至QD边就停止旋转,若光线QC先转5秒,光线PB才开始转动,当光线PB旋转时间为 2.5或43.75秒时,PB1∥QC1.【解答】解:当PB1∥QC1,则∠PB1Q=∠CQC1,如下图:∵AB∥CD,∴∠PB1Q=∠BPB1.∴∠CQC1=∠BPB1.设光线PB旋转时间为ts,∴5×2+2t=6t.∴t=2.5.当PB1∥QC1,则∠CQC1=∠PB1C,如下图:∵AB∥CD,∴∠PB1Q=∠BPB1.∴∠BPB1=∠CQC1.设光线PB旋转时间为ts,此时光线PB由P A处返回,∴∠APB1=6t﹣180°.∴∠BPB1=180°﹣∠APB1=180°﹣(6t﹣180°)=360°﹣6t.∴360°﹣6t=2t+10°.∴t=43.75.综上,t的值为2.5s或43.75s.故答案为:2.5或43.75.三、解答题(共8小题,共72分)17.(8分)计算:(1)+﹣;(2)|﹣|+3.【解答】解:(1)原式=3+2﹣×=3+2﹣1=4;(2)原式=﹣+3=4﹣.18.(8分)求x的值:(1)x2﹣16=0;(2)(x﹣2)3=﹣27.【解答】解:(1)x2﹣16=0x2=16x=±4.(2))(x﹣2)3=﹣27x﹣2=﹣3x=﹣1.19.(8分)完成下面的推理填空:如图,已知AB∥CD,∠1=∠2,∠3=∠4,求证:∠D=∠DCE.证明:∵AB∥CD,∴∠2=∠BAE(两直线平行,同位角相等).∵∠BAE=∠3+∠CAE,∴∠2=∠3+∠CAE,∵∠3=∠4,∴∠2=∠CAD,又∵∠2=∠1,∴∠CAD=∠1,∴AD∥BC(内错角相等,两直线平行).∴∠D=∠DCE.(两直线平行,内错角相等).【解答】证明:∵AB∥CD,∴∠2=∠BAE(两直线平行,同位角相等).∵∠BAE=∠3+∠CAE,∴∠2=∠3+∠CAE,∵∠3=∠4,∴∠2=∠CAD,又∵∠2=∠1,∴∠CAD=∠1,∴AD∥BC(内错角相等,两直线平行).∴∠D=∠DCE(两直线平行,内错角相等).故答案为:两直线平行,同位角相等;∠CAE;∠CAE;∠1;∠1;BC;内错角相等,两直线平行;两直线平行,内错角相等.20.(8分)平面直角坐标系中,将点A、B先向下平移3个单位长度,再向右平移2个单位后,分别得到点A′(3,﹣2)、B′(2,﹣4).(1)点A坐标为(1,1),点B坐标为(0,﹣1),并在图中标出点A、B;(2)若点C的坐标为(2,﹣2),求△ABC的面积;(3)在(2)的条件下,如图所示网格中,点E为图中格点(不与C重合),且使得△ABE与△ABC的面积相等,符合条件的E点有5个.【解答】解:(1)∵将点A、B先向下平移3个单位长度,再向右平移2个单位后,分别得到点A′(3,﹣2)、B′(2,﹣4).∴点A(1,1),点B(0,﹣1),如图所示,故答案为(1,1),(0,﹣1);(2)S△ABC=2×3﹣×1×2﹣×1×2﹣×1×3=;(3)如图,过点A作BC的平行线,过点B作AC的平行线,两个平行线交于点E3,过点C和点E3作AB的平行线与网格相交于E1,E2,E4,E5四个格点,∴符合条件的E点有5个,故答案为:5.21.(8分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|3﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.【解答】解:(1)由图可知:2<a<3,∴a﹣>0,3﹣a>0,∴b=a﹣+3﹣a=3﹣;(2)∵b+2=3﹣+2=5﹣,∴b+2的整数部分是3,∴m=5﹣﹣3=2﹣.∵8﹣b=8﹣(3﹣)=8﹣3+=5+,∴8﹣b的整数部分是6,∴n=5+﹣6=﹣1.∴2m+2n+1=2(m+n)+1=2×(2﹣+﹣1)+1=3,∴2m+2n+1的平方根为.22.(8分)如图,AB∥CD,AC∥BH,点M在直线BA上,且∠MAC=30°,∠D=75°,BE平分∠DBA,求∠EBH的度数.【解答】解:∵AC∥BH,∴∠ABH=∠MAC=30°,∵AB∥CD,∴∠MBD+∠BDC=180°,∴∠MBD=180°﹣75°=105°,∵BE平分∠DBA,∴∠MBE==52.5°,∴∠EBH=∠EBA﹣∠HBA=52.5°﹣30°=22.5°.23.(10分)已知直线a∥b,点A、B在直线a上(B在A左侧),点C在直线b上,E点在直线b的下方,连接AE交直线b于点D.(1)如图1,若∠BAD=110°,∠DCE=45°,求∠DEC;(2)如图2,∠BAD的邻补角的角平分线与∠DEC的角平分线所在的直线交于点M,试探究∠AME与∠ECD之间的数量关系,并说明理由;(3)在(2)的条件下,将图2中点A向右平移,使得点D在C点右侧,直接写出∠AME与∠ECD的数量关系∠AME=∠DCE.【解答】解:(1)如图1中,过点E作EF∥CD.∵AB∥CD,EF∥CD,∴EF∥CD∥AB,∴∠AEF=∠BAE=110°,∠CEF=∠DCE=45°,∴∠DEC=∠AEF﹣∠CEF=110°﹣45°=65°.(2)如图2中,过点M作MF∥AB,过点E作EG∥AB.设∠BAE=α,∠DCE=β.∵AB∥CD,∴MF∥AB∥CD∥EG,∴∠BAE=∠AEG=α,∠DCE=∠CEG=β,∴∠DEC=α﹣β,∵∠BAD的邻补角的角平分线与∠DEC的角平分线所在的直线交于点M,∴∠MEC=(α﹣β),∠AMF=90°﹣,∴∠MEG=β+(α﹣β)=(α+β),∴∠AME=∠AMF+∠FME=90°﹣+=90°+,∴∠AME=90°+∠DCE.(3)如图3中,结论:∠AME=∠DCE.理由:延长EC交AB于T.设∠BAM=∠RAM=y,∠CEM=∠MED=x,∵AB∥CD,∴∠DCE=∠ATE,∵2y=2x+∠ATE,y=x+∠AME,∴∠AME=∠ATE=∠DCE.故答案为:∠AME=∠DCE.24.(12分)在平面直角坐标系中,点A(a,1),B(b,3)满足关系式(a+1)2+|b﹣2|=0.(1)求a、b的值;(2)若点P(3,n)满足△ABP的面积等于6,求n的值;(3)线段AB与y轴交于点C,动点E从点C出发,在y轴上以每秒1个单位长度的速度向下运动,动点F从点M(﹣8,0)出发,以每秒2个单位长度的速度向右运动,问t为何值时有S△ABE=2S△ABF?请直接写出t的值.【解答】解:(1)∵(a+1)2+|b﹣2|=0,∴a+1=0,b﹣2=0,∴a=﹣1,b=2;(2)如右图,过P作直线l垂直于x轴,延长AB交直线l于点Q,设Q的坐标为(3,m),过A作AH⊥l交直线l于点H,∵S△AHD=S△ABH+S△BQH,∴×4(m﹣1)=×(3+1)×(3﹣1)+(m﹣1)(3﹣2),解得m=,∴Q(3,),∵S△ABP=S△AQP﹣S△BPQ=PQ×(3+1)﹣PQ×(3﹣2)=PQ,又∵点P(3,n)满足△ABP的面积等于6,∴|n﹣|=6,解得n=或﹣;(3)如图2,延长BA交x轴于D,过A作AG⊥x轴于G,过B作BN⊥x轴于N,∵S梯形AGOC+S梯形CONB=S梯形AGNB,∴(1+OC)×1+(OC+3)×2=×(1+3)×3,解得OC=,∴C(0,),∵S△ADG+S梯形AGNB=S△DNB,∴DG×1+=(DG+3)×3,解得DG=,∵G(﹣1,0),∴D(﹣,0),由题知,当t秒时,F(﹣8+2t,0),∴DF=|﹣8+2t﹣(﹣)|=|2t﹣|,∵CE=t,∴S△ABE=CE×[2﹣(﹣1)]=t,S△ABF=S△BDF﹣S△DAF=DF×(3﹣1)=|2t﹣|,∵S△ABE=2S△ABF,∴t=2|2t﹣|,解得t=或2.。
湖北省武汉市部分学校2015届初三10月联考理化试卷
湖北省武汉市部分学校2015届初三10月联考理化试卷时间:120分钟总分:120分一.选择题(每小题只有一个选项正确,每小题3分共60分)1.下列变化不属于化学变化的是()A.蜡烛燃烧B.钢铁生锈C.电灯发光D.食物腐烂2.下列实验操作不正确的是A.倾倒液体B.检验气密性C.点燃酒精灯D.稀释浓硫酸3.日常生活里用到的下列物质,属于纯净物的是()A.调味用的食醋B.取暖用的煤C.降温用的冰水混合物D.澄清石灰水4.下列变化中属于分解反应的是()A.铁在氧气中燃烧B.加热高锰酸钾C.硫磺在空气中燃烧D.蜡烛燃烧5.下列现象中不能用分子的观点解释的是()A.金块和铅块紧压在一起,过几年后发现铅中有金、金中有铅B.酒香不怕巷子深C.沙尘暴起,尘土满天D.衣橱里的樟脑球会逐渐变小6.区别氧气、空气、二氧化碳三种气体最好的方法是()A.用带火星的木条B.测量气体的溶解度C.用澄清的石灰水D.用燃着的蜡烛7.关于原子结构的叙述中,正确的是A.原子核都由质子和中子构成的B.原子最外层电子数不超过8个C.原子变成离子,其电子层数一定减少D.最外层电子数为8的粒子一定是稀有气体元素的原子8.某元素原子A的质子数为z,已知B3+和A2+具有相同的核外电子数,则B元素的质子数为()A.z-2+3B.z-2-3C.z+2+3D.z+2-39. 下列现象中不能用分子热运动观点解释的是() A.酒香不怕巷子深 B.把青菜用盐腌成咸菜C.沙尘暴起,尘土满天 D.衣橱里的樟脑球逐渐变小10.关于温度、热量和内能的说法中不正确的是() A.任何物体都具有一定的内能B.物体温度越高,分子的无规则运动越剧烈C.物体吸收热量,温度不一定升高D.0℃的冰块和温度、质量相同的水,其内能相等11.用丝绸摩擦过的玻璃棒,去接触一个金属箔已张开一个小角度的验电器,接触时验电器的金属箔的张开角度变得更大,由此可以断定()A.验电器原来带正电,接触时有电子从玻璃棒传向验电器B.验电器原来带正电,接触时有电子从验电器传向玻璃棒C.验电器原来带负电,接触时有电子从玻璃棒传向验电器D.验电器原来带负电,接触时有电子从验电器传向玻璃棒12.在标准大气压下,将0.2kg水从25℃加热至沸腾需吸收的热量是(C水=4.2×103(kg•℃))() A.2.1×103J B.6.3×103J C.2.1×104J D.6.3×104J 13.汽油机和柴油机的主要不同点是()A.在构造上汽油机汽缸顶部有喷油嘴,而柴油机的汽缸顶部有火花塞B.在吸气冲程中汽油机吸入汽缸的是汽油,柴油机吸入汽缸的是柴油C.在压缩冲程末汽油机用点燃式点火,而柴油机采用的是压燃式点火D.在做功过程中汽油机里的燃气温度和压强比柴油机里的高14.小明同学分析了四个常见事例中的能量转化,其中正确的是() A.在汽油机的做功冲程中,内能转化为机械能B.电风扇正常工作过程中,电能主要转化为内能C.电热水器工作过程中,内能转化为电能D.跳水运动员在空中下落的过程中,动能转化为重力势能15.A,B两物体靠近时,互相吸引,那么这两个物体() A.一定带同种电荷 B.一定带异种电荷C.至少有一个物体带电 D. A一定带电16. 将L 1、L 2、L 3三只灯串联在电路中,发现L 1最暗,L 2较亮,L 3最亮,则通过三只灯电流的关是 ( ) A .I 1>I 2>I 3 B .I l =I 2=I 3 C .I 1<I 2<I 3 D .无法判断17.某同学使用电流表时,估计待测电路中的电流应选用0—0.6A 的量程,但他误用0—3A 的量程来测量。
湖北省武汉市部分学校高三数学二月调考试卷 理(含解析)
湖北省武汉市部分学校2015届高三二月调考数学试卷(理科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)下列函数中,定义域和值域相同的是()A.y=x2和y=2x B.y=sinx和y=tanxC.y=x3和y=log2x D.y=x2和y=|x|2.(5分)定义 A+B={x+y|x∈A,y∈B},设集合 M={0,1+i},N={0,},则集合 M+N中元素的个数为()A.4 B.3 C.2 D.13.(5分)某班5名学生负责校内3个不同地段的卫生工作,每个地段至少有1名学生的分配方案共有()A.60种B.90种C.150种D.240种4.(5分)设抛物线C1:y2=2x与双曲线C2:﹣=1的焦点重合,且双曲线C2的渐近线为y=±x,则双曲线C2的实轴长为()A.1 B.C.D.5.(5分)把函数y=cos(﹣2x)的图象向右平移,得到函数f(x)的图象,则函数f(x)为()A.周期为π的奇函数B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数6.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.37.(5分)设x>0,则“a≥1”是“x+≥2恒成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)某科研所共有职工20人,其年龄统计表如下:由于电脑故障,有两个数字在表格中不能显示出来,则下列说法正确的是()年龄38 39 40 41 42人数 5 3 2A.年龄数据的中位数是40,众数是38B.年龄数据的中位数和众数一定相等C.年龄数据的平均数∈(39,40)D.年龄数据的平均数一定大于中位数9.(5分)如图所示,若输入的n为10,那么输出的结果是()A.45 B.110 C.90 D.5510.(5分)设椭圆+=1和双曲线﹣=1有共同的焦点,连接椭圆的焦点和短轴的一个端点所得直线和双曲线的一条渐近线平行,设双曲线的离心率为e,则e2等于()A.B.C.D.二、填空题(本大题共4小题,考生共需作答5小题,每小题5分,共25分.)(一)必做题(11-14题)11.(5分)已知矩形 A BCD中,A B=2,BC=1,点 P是 BD上任意一点,则•(+)的取值范围是.12.(5分)在三角形 A BC中,A,B,C是三角形 A BC的内角,设函数f(A)=2sin sin (π﹣)+sin2(π+)﹣cos2,则f( A)的最大值为.13.(5分)设x,y满足约束条件,则z=x+y的最大值为.14.(5分)已知矩形 A BCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为.(二)选考题(请考生在第15、16两题中任选一题作答,如果全选,则按15题作答结果计分)【选修4-1:几何证明选讲】15.(5分)如图,已知直线 P A切圆 O于点 A,直线 P O交圆 O于点 B、C,若PC=2+,P A=1,则圆 O的半径长为.【选修4-4:坐标系与参数方程】16.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知抛物线C:y2=2px (p>0),直线l的参数方程:(t为参数).写出抛物线C的极坐标方程和直线l的普通方程、.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数f(x)=cosx(2sinx﹣cosx)+acos2(+x)的一个零点是x=.(1)求函数f(x)的周期;(2)求函数f(x)单调增区间.18.(12分)已知公比为负值的等比数列{a n}中,a1a5=4,a4=﹣1.(1)求数列{a n}的通项公式;(2)设b n=++…+,求数列{a n+b n}的前n项和S n.19.(12分)农科院分别在两块条件相同的试验田分别种植了甲、乙两种杂粮作物,从两块试验田中任意选取6颗该种作物果实,测得籽重(单位:克)数据如下:甲种作物的产量数据:111,111,122,107,113,114乙种作物的产量数据:109,110,124,108,112,115(1)作出两组数据的茎叶图;(2)设1颗杂粮作物果实的籽重为x,若x∈(110,120),则称该果实为标准果实,现从上述12颗果实中任选3颗,记标准果实的颗数为 X,求随机变量 X的期望.20.(12分)如图所示,在矩形ABCD中,AD=1,AB=2,点 E是线段AB的中点,把三角形AED 沿DE折起,设折起后点 A的位置为P,F是PD的中点.(1)求证:无论P在什么位置,都有AF∥平面PEC;(2)当点 P在平面ABCD上的射影落在线段DE上时,求二面角P﹣EC﹣D的余弦值.21.(13分)已知椭圆C1:x2+4y2=1的左、右焦点分别为F1、F2,点 P是C1上任意一点,O是坐标原点,=+,设点Q的轨迹为C2.(1)求点Q的轨迹C2的方程;(2)若点 T满足:=+2+,其中 M,N是C2上的点,且直线 O M,O N的斜率之积等于﹣,是否存在两定点 A,B,使|T A|+|T B|为定值?若存在,求出这个定值;若不存在,请说明理由.22.(14分)已知函数f(x)=lnx﹣ax+2,a∈R是常数.(1)若函数y=f(x)的图象在点(a,f(a))(a>0)与直线y=b相切,求a和b的值;(2)若函数y=f(x)有两个零点,求实数a的取值范围.湖北省武汉市部分学校2015届高三二月调考数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)下列函数中,定义域和值域相同的是()A.y=x2和y=2x B.y=sinx和y=tanxC.y=x3和y=log2x D.y=x2和y=|x|考点:函数的定义域及其求法;函数的值域.专题:函数的性质及应用.分析:分别求两个函数的定义域与值域,可求出答案解答:解:A、函数y=x2的值域为[0,+∞),函数y=2x的值域为(0,+∞),故不能选A;B、函数y=sinx的定义域为R,而函数y=tanx的定义域为x≠kπ+(k∈Z)的全体实数,故不能选B;C、函数y=x3的定义域为R,函数y=log2x的定义域为(0,+∞),故不能选C;D、两个函数的定义域与值域分别相同,故选:D.点评:本题主要考查函数的定义域与值域的求法,属于基础题.2.(5分)定义 A+B={x+y|x∈A,y∈B},设集合 M={0,1+i},N={0,},则集合 M+N中元素的个数为()A.4 B.3 C.2 D.1考点:元素与集合关系的判断.专题:集合;数系的扩充和复数.分析:先根据已知确定集合M中元素的属性,然后结合复数的运算求出各个元素即可.解答:解:因为==﹣1﹣i,所以﹣1﹣i+1+i=0.所以M+N={0,1+i,﹣1﹣i}.共有3个元素.故选B点评:本题考查了元素与集合间的关系以及复数的运算,属于基础题.3.(5分)某班5名学生负责校内3个不同地段的卫生工作,每个地段至少有1名学生的分配方案共有()A.60种B.90种C.150种D.240种考点:计数原理的应用.专题:排列组合.分析:根据题意,分2步进行分析:①、先将5名学生分成3组,每组至少一人,分析可得有2,2,1或3,1,1两种情况;分别求出每种情况的分组方法数目,再由分类计数原理可得全部的分组方法数目,②、将分好的3组对应3个地段,有A33=6种情况,进而由分步计数原理计算可得答案.解答:解:分2步进行分析:①、先将5名学生分成3组,每组至少一人,有2,2,1或3,1,1两种情况;若分成2,2,1的三组,有=15种分组方法,若分成3,1,1的三组,有=10种分组方法,则将5名学生分成3组,每组至少一人,有15+10=25种分组方法,②、将分好的3组对应3个地段,有A33=6种情况,故共有25×6=150种不同的分配方案.故选:C点评:本题考查分步、分类计数原理的运用,分析本题要先分组,再对应三个地段进行全排列,解题时注意排列、组合公式的灵活运用.4.(5分)设抛物线C1:y2=2x与双曲线C2:﹣=1的焦点重合,且双曲线C2的渐近线为y=±x,则双曲线C2的实轴长为()A.1 B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出抛物线的焦点,可得c=,由渐近线方程可得=,再由a,b,c的关系,可得a,进而得到实轴长2a.解答:解:抛物线C1:y2=2x的焦点为(,0),则双曲线的c=,又渐近线方程为y=x,即有=,由c2=a2+b2,解得a=,则实轴长为2a=.故选B.点评:本题考查抛物线和双曲线的方程和性质,考查双曲线的渐近线方程和实轴的长,考查运算能力,属于基础题.5.(5分)把函数y=cos(﹣2x)的图象向右平移,得到函数f(x)的图象,则函数f(x)为()A.周期为π的奇函数B.周期为π的偶函数C.周期为2π的奇函数D.周期为2π的偶函数考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的周期性、奇偶性,得出结论.解答:解:把函数y=cos(﹣2x)=cos(2x﹣)的图象向右平移,得到函数f(x)=cos[2(x﹣)﹣]=cos(2x﹣)=sin2x 的图象,由于f(x)是周期为π的奇函数,故选:A.点评:本题主要考查诱导公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的周期性、奇偶性,属于基础题.6.(5分)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,分别计算侧面积,即可得出结论.解答:解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE 的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.点评:本题考查三视图与几何体的关系,几何体的侧面积的求法,考查计算能力.7.(5分)设x>0,则“a≥1”是“x+≥2恒成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先求命题“对任意的正数x,不等式x+≥2成立”的充要条件,再利用集合法判断两命题间的充分必要关系解答:解:∵x>0,若a≥1,则x+≥2≥2恒成立,若x+≥2恒成立,即x2﹣2x+a≥0恒成立,设f(x)=x2﹣2x+a,则△=(﹣2)2﹣4a≤0,或,解得:a≥1,故“a≥1”是“x+≥2恒成立的充分必要条件,故选:C.点评:本题考查了命题充要条件的判断方法,求命题充要条件的方法,不等式恒成立问题的解法,转化化归的思想方法.8.(5分)某科研所共有职工20人,其年龄统计表如下:由于电脑故障,有两个数字在表格中不能显示出来,则下列说法正确的是()年龄38 39 40 41 42人数 5 3 2A.年龄数据的中位数是40,众数是38B.年龄数据的中位数和众数一定相等C.年龄数据的平均数∈(39,40)D.年龄数据的平均数一定大于中位数考点:众数、中位数、平均数.专题:概率与统计.分析:根据表中数据,结合平均数的定义与计算公式,得出正确的结论.解答:解:根据表中数据,得;(5×38+10×39+3×41+2×42)<x<(5×38+10×40+3×41+2×42),解得39.35<x<39.85,所以x∈(39,40).故选:C.点评:本题考查了判断一组数据的平均数、中位数与众数的应用问题,是基础题目.9.(5分)如图所示,若输入的n为10,那么输出的结果是()A.45 B.110 C.90 D.55考点:程序框图.专题:算法和程序框图.分析:模拟执行程序,依次写出每次循环得到的S,k的值,当k=11时,不满足条件k≤10,退出循环,输出S=1+2+3+…+10==55.解答:解:模拟执行程序,可得n=10,S=1,k=2满足条件k≤10,S=1+2=3,k=3满足条件k≤10,S=3+3=6,k=4满足条件k≤10,S=6+4=10,k=5满足条件k≤10,S=10+5=15,k=6…满足条件k≤10,S=1+2+3+…+10,k=11不满足条件k≤10,退出循环,输出S=1+2+3+…+10==55.故选:D.点评:本题主要考查了程序框图和算法,在写程序运行结果时,模拟程序运行结果是最常用的方法,一定要熟练掌握,属于基础题.10.(5分)设椭圆+=1和双曲线﹣=1有共同的焦点,连接椭圆的焦点和短轴的一个端点所得直线和双曲线的一条渐近线平行,设双曲线的离心率为e,则e2等于()A.B.C.D.考点:双曲线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出椭圆焦点(c,0)和短轴的一个端点(0,a),运用直线的斜率公式和双曲线的渐近线方程,结合两直线平行的条件可得a2=bc,再由4﹣2a2=b2,c2=4﹣a2,解方程可得a2,c2,再由离心率公式计算即可得到.解答:解:由于椭圆+=1和双曲线﹣=1有共同的焦点(﹣c,0),(c,0),则4﹣a2=a2+b2,设椭圆的焦点(c,0)和短轴的一个端点(0,a),即有所得直线的斜率为﹣,双曲线的一条渐近线方程为y=﹣x,即有=,由a2=bc,4﹣2a2=b2,c2=4﹣a2,解得a2=6﹣2(由于a2<4,a2=6+2舍去),c2=2﹣2,e2===,故选A.点评:本题考查椭圆和双曲线的方程和性质,考查双曲线的渐近线方程和两直线平行的条件,考查离心率的求法,考查运算能力,属于中档题.二、填空题(本大题共4小题,考生共需作答5小题,每小题5分,共25分.)(一)必做题(11-14题)11.(5分)已知矩形 A BCD中,A B=2,BC=1,点 P是 BD上任意一点,则•(+)的取值范围是[﹣5,].考点:平面向量数量积的运算.专题:平面向量及应用.分析:以D为原点,DA为x轴的正半轴,DC为y轴的正半轴建立坐标系,得到所需向量的坐标,然后进行向量的坐标运算,求范围.解答:解:以D为原点,DA为x轴的正半轴,DC为y轴的正半轴建立坐标系,则A(1,0),B(1,2),C(0,2),所以BD的直线方程为y=2x,设P(x,2x),x∈[0,1],所以=(x﹣1,2x﹣2),=(1﹣x,﹣2x),=(﹣x,2﹣2x),则=(1﹣2x,2﹣4x),•(+)=﹣5(2x2﹣3x+1)=﹣10(x﹣)2+,因为x∈[0,1],所以•(+)∈[﹣5,].故答案为:[﹣5,].点评:本题考查了向量的加减运算、数量积的运算以及与二次函数相结合的最值求法,属于中档题.12.(5分)在三角形 A BC中,A,B,C是三角形 A BC的内角,设函数f(A)=2sin sin (π﹣)+sin2(π+)﹣cos2,则f( A)的最大值为.考点:三角函数中的恒等变换应用.专题:三角函数的求值;三角函数的图像与性质.分析:首先把三角函数关系式进行恒等变换,变换成正弦型函数,进一步利用三角形的内角的范围求出三角函数的最值.解答:解:函数f(A)=2sin sin(π﹣)+sin2(π+)﹣cos2=+==sinA﹣cosA=由于:A是三角形的内角,所以:0<A<π故当时,即A=时,函数f(A)的最大值为.故答案为:点评:本题考查的知识要点:三角函数关系时的恒等变形,利用三角形的内角求函数的最值问题,属于基础题型.13.(5分)设x,y满足约束条件,则z=x+y的最大值为3.考点:简单线性规划.专题:不等式的解法及应用.分析:转化约束条件为不等式组,画出可行域,平移直线方程,利用几何意义求出最大值.解答:解:约束条件,转化为:,作出不等式组对应的平面区域如图:(阴影部分)由z=x+y得y=﹣x+z,平移直线y=﹣x,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,由,解得,即A(1,2),此时z最大.代入目标函数z=x+y得z=1+2=3.即目标函数z=x+y的最大值为3.故答案为:3.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.14.(5分)已知矩形 A BCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为13π.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题;空间位置关系与距离.分析:正六棱柱的底面边长为x,高为y,则6x+y=9,0<x<1.5,表示正六棱柱的体积,利用基本不等式求最值,求出正六棱柱的外接球的半径,即可求出外接球的表面积.解答:解:设正六棱柱的底面边长为x,高为y,则6x+y=9,0<x<1.5,正六棱柱的体积V==≤=,当且仅当x=1时,等号成立,此时y=3,可知正六棱柱的外接球的球心是其上下底面中心连线的中点,则半径为=,∴外接球的表面积为=13π.故答案为:13π.点评:本题考查外接球的表面积,考查基本不等式的运用,确定正六棱柱的外接球的半径是关键.(二)选考题(请考生在第15、16两题中任选一题作答,如果全选,则按15题作答结果计分)【选修4-1:几何证明选讲】15.(5分)如图,已知直线 P A切圆 O于点 A,直线 P O交圆 O于点 B、C,若PC=2+,P A=1,则圆 O的半径长为.考点:与圆有关的比例线段.专题:立体几何.分析:由切割线定理,得:PA2=PB•PC,从而得到BC=PC﹣PB=(2+)﹣(2﹣)=2,由此能求出圆O的半径长.解答:解:∵直线PA切圆O于点A,交圆O与点C,B,∴由切割线定理,得:PA2=PB•PC,解得1=PB•(2+),∴PB==2﹣,∴BC=PC﹣PB=(2+)﹣(2﹣)=2,∵直线PO过圆心O,∴BC是圆O的直径,∴圆O的半径长为.故答案为:.点评:本题考查圆的半径长的求法,是中档题,解题时要认真审题,注意切割线定理的合理运用.【选修4-4:坐标系与参数方程】16.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建坐标系,已知抛物线C:y2=2px (p>0),直线l的参数方程:(t为参数).写出抛物线C的极坐标方程和直线l的普通方程ρsin2θ=2pcosθ、x﹣y﹣2=0.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:首先利用y=ρsinθ,x=ρcosθ把直角坐标方程转化成极坐标方程,进一步把指向的参数方程转化成直角坐标方程.解答:解:根据y=ρsinθ,x=ρcosθ可得到:ρ2sin2θ=2pρcosθ整理得:ρsin2θ=2pcosθ,直线l的参数方程:消去参数t可得到直线方程为:y+4=x+2整理得:x﹣y﹣2=0故答案为:ρsin2θ=2pcosθ和x﹣y﹣2=0点评:本题考查的知识要点:直角坐标方程和参数方程的互化,直角坐标方程与极坐标方程的互化,属于基础题型.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)设函数f(x)=cosx(2sinx﹣cosx)+acos2(+x)的一个零点是x=.(1)求函数f(x)的周期;(2)求函数f(x)单调增区间.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法.专题:三角函数的求值;三角函数的图像与性质.分析:(1)首先对三角函数关系是进行恒等变换,进一步利用函数的零点求出a的值.(2)根据(1)的结论,进一步对三角函数关系式进行恒等变换,变形成正弦型函数,进一步利用整体思想求出函数的单调区间.解答:解:(1)f(x)=cosx(2sinx﹣cosx)+acos2(+x)=2sinxcosx﹣cos2x+asin2x=+由于x=是函数的零点,所以:f()==解得:a=1则:f(x)=2sinxcosx﹣cos2x+asin2x=所以:函数的周期为:(2)令:(k∈Z)解得:(k∈Z)所以函数的单调递增区间为:[](k∈Z)点评:本题考查的知识要点:零点在三角函数中的应用,三角函数关系式的恒等变换,整体思想的应用,正弦型函数单调性的应用.属于基础题型.18.(12分)已知公比为负值的等比数列{a n}中,a1a5=4,a4=﹣1.(1)求数列{a n}的通项公式;(2)设b n=++…+,求数列{a n+b n}的前n项和S n.考点:数列的求和;等比数列的通项公式.专题:等差数列与等比数列.分析:(1)设等比数列{a n}的公比为q<0,由a1a5=4,a4=﹣1.可得,=﹣1,解得即可;(2)由b n=++…+=(n+1)+…+=n,可得a n+b n=+n,再利用等差数列与等比数列的前n项和公式即可得出.解答:解:(1)设等比数列{a n}的公比为q<0,∵a1a5=4,a4=﹣1.∴,=﹣1,解得q=﹣,a1=8.∴=.(2)∵b n=++…+=(n+1)+…+=(n+1)×=n,∴a n+b n=+n,其前n项和S n=+=+.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.19.(12分)农科院分别在两块条件相同的试验田分别种植了甲、乙两种杂粮作物,从两块试验田中任意选取6颗该种作物果实,测得籽重(单位:克)数据如下:甲种作物的产量数据:111,111,122,107,113,114乙种作物的产量数据:109,110,124,108,112,115(1)作出两组数据的茎叶图;(2)设1颗杂粮作物果实的籽重为x,若x∈(110,120),则称该果实为标准果实,现从上述12颗果实中任选3颗,记标准果实的颗数为 X,求随机变量 X的期望.考点:离散型随机变量的期望与方差;茎叶图.专题:概率与统计.分析:(1)由已知条件,以百位和十位作茎,以个位作叶,能作出两组数据的茎叶图.(2)根据题意,X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X 的期望.解答:解:(1)由已知条件,作出两组数据的茎叶图,如右图.(2)根据题意,X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴随机变量X的分布列为:X 0 1 2 3PE(X)==.点评:本题考查茎叶图的作法,考查离散型随机变量的数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.20.(12分)如图所示,在矩形ABCD中,AD=1,AB=2,点 E是线段AB的中点,把三角形AED 沿DE折起,设折起后点 A的位置为P,F是PD的中点.(1)求证:无论P在什么位置,都有AF∥平面PEC;(2)当点 P在平面ABCD上的射影落在线段DE上时,求二面角P﹣EC﹣D的余弦值.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(1)设CD的中点为G,连结AG、FG,由已知得四边形AECG是平行四边形,从而AG∥平面PEC,由FG∥PC,得FG∥平面PEC,由此能证明平面AGF∥平面PEC,从而得到AF∥平面PEC.(2)若点P的射影为O,点P的射影在线段DE上,则O是线段DE的中点,且PO⊥平面EBCD,以O为原点,OP为z轴,过O平行于AB的直线为y轴,建立空间直角坐标系,利用向量法能求出二面角P﹣EC﹣D的余弦值.解答:(1)证明:设CD的中点为G,连结AG、FG,∵CG AE,∴四边形AECG是平行四边形,∴AG∥EC,又AG⊄平面PEC,EC⊂平面PEC,∴AG∥平面PEC,又∵FG∥PC,FG⊄平面PEC,PC⊂平面PEC,∴FG∥平面PEC,又∵FG⊂平面AGF,AG⊂平面AGF,FG∩AG=G,∴平面AGF∥平面PEC,∵AF⊂平面AGF,∴AF∥平面PEC.(2)解:∵PD=PE=1,若点P的射影为O,点P的射影在线段DE上,∴O是线段DE的中点,且PO⊥平面EBCD,以O为原点,OP为z轴,过O平行于AB的直线为y轴,建立空间直角坐标系,∵△PDE是等腰直角三角形,PD=PE=1,∴OP=,P(0,0,),E(,0),C(﹣,,0),∴,=(﹣),设平面PEC的法向量=(x,y,z),则,取z=,得=(1,1,),又=(0,0,)是平面ECD的法向量,∴cos<>==,∴二面角P﹣EC﹣D的余弦值为.点评:本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.(13分)已知椭圆C1:x2+4y2=1的左、右焦点分别为F1、F2,点 P是C1上任意一点,O是坐标原点,=+,设点Q的轨迹为C2.(1)求点Q的轨迹C2的方程;(2)若点 T满足:=+2+,其中 M,N是C2上的点,且直线 O M,O N的斜率之积等于﹣,是否存在两定点 A,B,使|T A|+|T B|为定值?若存在,求出这个定值;若不存在,请说明理由.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)可分别设出点Q与P的坐标,然后根据已知条件找到两点坐标之间的关系,然后用所求的点Q的坐标表示出P点的坐标,然后代入已知的方程即可;(2)根据已知条件与所求可以看出所求的结果应该与椭圆的定义有关,因此可以先将点M,N 的坐标给出来,然后再代入已知的条件化简得到点T坐标满足的关系式,然后进行判断即可.解答:解:(1)设点Q的坐标为(x,y),点P的坐标为(x0,y0),则x02+4y02=1,易知F1,F2的坐标分别为(),(),因为,所以(x,y)=(﹣2x0,﹣2y0),即,代入x02+4y02=1得.即椭圆C2的方程为得.(2)设T点的坐标为(x,y),M,N的坐标分别为(x1,y1)(x2,y2).由=+2+得(x,y)=(x1﹣x2,y1﹣y2)+2(x1,y1)+(x2,y2).所以x=2x2+x1,y=2y2+y1.设直线OM,ON的斜率分别为k OM,k ON,由已知得k OM•k ON=.即x1x2+4y1y2=0,又,所以2=16y1y2=20+4(x1x2+4y1y2)=20,所以x2+4y2=20,即T是椭圆上的点,根据椭圆的定义可知,存在两定点A,B分别为椭圆的两个焦点使|TA|+|TB|为定值,因为此时a2=20,所以,所以|TA|+|TB|=2a=.点评:本题考查了代入法求轨迹方程的方法,第二问主要是考查对椭圆的定义及性质的理解和掌握情况,属于中档题.22.(14分)已知函数f(x)=lnx﹣ax+2,a∈R是常数.(1)若函数y=f(x)的图象在点(a,f(a))(a>0)与直线y=b相切,求a和b的值;(2)若函数y=f(x)有两个零点,求实数a的取值范围.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的综合应用.分析:(1)求出函数的导数,利用导数的几何意义建立方程关系即可求a和b的值;(2)求函数的导数,利用导数研究函数的最值和极值,结合函数的单调性进行讨论求解即可.解答:解:(1)函数的导数f′(x)=,∵y=f(x)的图象在点(a,f(a))(a>0)与直线y=b相切,∴f′(a)=,解得a=1或a=﹣1(舍去),则f(1)=1=b,即b=1.(2)由f(x)=lnx﹣ax+2=0,得a=,令g(x)=,则g′(x)=,令g′(x)>0得0,此时函数递增,令g′(x)<0,得x>,此时函数递减,故当x=时函数取得最大值g()=e,若a>e,则y=f(x)没有零点,若a=e,则y=f(x)有且只有一个零点,当a≤0,f′(x)=>0恒成立,则f(x)在(0,+∞)上单调递增,此时函数f(x)有且只有一个零点.,当0<a<e时,g()=﹣e3,g()=e,即g()<a<g(),∵g(x)在(0,)上递增,∴当x∈(0,)时,y=a与g(x)的图象有且只有一个交点,即函数f(x)在(0,)上有且只有一个零点.当x→+∞时,由幂函数和对数函数的单调性可知,g(x)→0,而0<a<e,∴当x∈(,+∞)时,y=a与g(x)的图象有且只有一个交点,即函数在(,+∞)上有且只有一个零点.∴当0<a<e时,函数f(x)在(0,+∞)上有两个两点.点评:本题主要考查导数的应用,利用导数的几何意义以及函数最值和导数之间的是解决本题的关键.考查学生的运算能力,综合性较强,运算量较大.。
2024年湖北省武汉市部分学校中考模拟数学试题
2024年湖北省武汉市部分学校中考模拟数学试题一、单选题1.已知a 的相反数是2024-,则a 的值是( ) A .2024-B .2024C .12024-D .120242.以下是清华大学、北京大学、上海交通大学、中国人民大学四个大学的校徽,其中是轴对称图形的是( )A .B .C .D .3.在一个不透明的袋子中装有形状、大小、质地完全相同的5个球,其中3个黑球、2个白球,从袋子中一次摸出3个球,下列事件是必然事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的球中至少有1个是黑球D .摸出的是2个白球、1个黑球4.在下面的四个几何体中,主视图和左视图不一定相同的是( )A .B .C .D .5.下列运算正确的是( )A .6242a a a -=B .()341228a a -=-C .623a a a ÷=D 2-6.已知m ,n 是一元二次方程2320x x ++=的两根,则 )A .2B .2-C D .7.如图,点P 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,选项图是点P 运动时,△PBC 的面积y (cm 2)随时间x (s )变化的关系图象是( )A .B .C .D .8.如图,某景区有A ,B ,C 三个入口,D ,E 两个出口,小红任选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 或B 入口进入,从D 出口离开的概率是( )A .16B .13C .12D .239.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()24a b -=,大正方形的面积为20,现用一个半径为r 的圆形纸片将阴影部分完全覆盖,则r 的最小值是( )A B .52C D 10.已知关于x 的一元三次方程32210ax bx cx k ++++=的解为13x =-,21x =,32x =,请运用函数的图象,数形结合的思想方法,判断关于x 的不等式32210ax bx cx k ++++>的解集( )A .31x -<<或2x >B .30x -<<或12x <<C .3x <-或12x <<D .3x <-或01x <<或2x >二、填空题11(结果保留整数).12.如果反比例函数的图象经过点()2,2023A -,()11,B x y ,()22,C x y ,且120x x <<,那么1y 和2y 的大小关系是. 13.方程1133xx x+=--的解是. 14.如图,ABC V 、△FED 区域为驾驶员的盲区,驾驶员视线PB 与地面BE 的夹角43PBE ∠=︒,视线PE 与地面BE 的夹角20PEB ∠=︒,点A ,F 为视线与车窗底端的交点,AF BE ∥,AC BE ⊥,FD BE ⊥.若A 点到B 点的距离 1.6m AB =,则盲区中DE 的长度是米.(参者数据:sin 430.7︒≈,tan 430.9︒≈,sin 200.3︒≈,tan 200.4︒≈)15.如图,点E 在正方形ABCD 的边AD 上,连接BE ,过点A 作BE 的垂线AF ,连接CF ,则点E 在AD 上运动(不与端点重合)的过程中,CFCE的范围是.16.已知关于x 的函数2223y x x =---,有下列结论:①当1x <-时,y 随x 增大而减小; ②函数的图象是轴对称图形;③点1(,)M x m ,2(,)N x m 是函数的图象上不同的两点,则122x x +<; ④函数的最小值为6-.其中正确的结论是.(填写序号)三、解答题17.求不等式组221541x x x x +>+⎧⎨+≥-⎩①②的非负整数解.18.如图,在菱形ABCD 中.点E 是AD 边的中点,点M 是AB 边上一动点(不与点A 重合)延长ME 交射线CD 于点N ,连接MD ,AN .(1)求证:NDE MAE △≌△;(2)6AB =,60DAB ∠=︒,当AM 的值为______时,四边形AMDN 是矩形.19.我区某学校举行了数学计算能力比赛,李老师从七、八年级各随机抽取了10名学生的比赛成绩整理分析,成绩得分用x 表示(x 为整数),共分为四组:A .8085x ≤<;B .8590x ≤<;C .9095x ≤<;D .95100x ≤≤. 七年级10名学生的成绩是:96,80,96,86,99,96,90,100,89,88. 八年级10名学生的成绩在C 组中的数据是:90,92,94.根据以上信息,解答下列问题:(1)=a ______,b =______,c =______,m =______. (2)扇形C 的圆心角度数为______︒.(3)学校八年级参加数学计算能力比赛的学生有900人,请你估计成绩超过90分的学生有多少人?20.如图,O e 是ABC V 的外接圆,AB 是直径,OD OC ⊥,且ADO BOC ∠=∠.(1)求证:AD 是O e 的切线;(2)若1tan 2BAC ∠=,3AD =,求O e 的半径.21.如图是由小正方形组成的99⨯网格,每个小正方形的顶点叫做格点A ,B ,C 三点是格点,F 点是BC 与网格线的交点.,仅用无刻度直尺在给定网格中完成画图.(1)在图1中,取AB 的中点D ,AC 的中点E ,连接ED ,再作平行四边形BDEK ; (2)在图2中,在AB 上画出一点G ,使ACG ACF S S =△△;(3)在图3中,点T 在格点上,连接BT ,CT ,在CT 上画点M ,使AM 平分四边形ABTC 的面积.22.一个瓷碗的截面图如图1所示,碗体DEC 呈抛物线状(碗体厚度不计),点E 是抛物线的顶点,碗底高1cm EF =,碗底宽AB =,当瓷碗中装满面汤时,液面宽CD =,此时面汤最大深度6cm EG =.以F 为原点,直线AB 为x 轴,直线EF 为y 轴,建立平面直角坐标系如图2所示.(1)直接写出图2中抛物线的解析式______;(2)倒去部分面汤后,其液面下降了1.5cm 至线段MN 处,试求此时液面MN 的宽度; (3)将瓷碗绕点B 缓缓倾斜倒出部分面汤,如图3,当30ABK ∠=︒时停止,此时液面CH 宽______cm ;碗内面汤的最大深度是______cm . 23.已知,点D 在ABC V 的边BC 上,连接AD .(1)如图1,若BAD C ∠=∠.求证:2BA BD BC =⋅;(2)如图2,若AD BC ⊥,5BD =,3CD =,4tan 3BAC ∠=.求线段AD 的长; (3)如图3,M 、N 分别是AC AB 、上的两点,连接MN 交AD 于点P ,当AB AC =,::2:5:6BD BA BC =时,若APN C ∠=∠,直接写出MPMN的值______. 24.如图1,抛物线()21:230C y ax ax a a =--<与x 轴交于A ,B 两点(A 在B 的左边),与y 轴正半轴交于点C ,ABC V 的面积为4.(1)求抛物线的解析式;(2)如图2,点D 是第一象限抛物线1C 上一点,ABD △外接圆的圆心在抛物线1C 的对称轴上,若D 点的纵坐标为2,求tan ADB ∠的值;(3)如图3,已知直线:21l y x =-,将抛物线沿直线l 方向平移,平移过程中抛物线与直线l 相交于E ,F 两点.设平移过程中若抛物线的顶点D 的横坐标为m ,在x 轴上存在唯一的一点P ,使90EPF ∠=︒,求m 的值.。
2015年高考理科数学湖北卷(含答案解析)
数学试卷 第1页(共24页)数学试卷 第2页(共24页)数学试卷 第3页(共24页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用2B 铅笔将答题卡上试卷类型A 后的方框涂黑. 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1-2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石3.已知(1)nx +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .122B .112C .102D .924.设211(,)X N μσ~,222(,)Y N μσ~,这两个正态分布密度曲线如图所示.下列结论中正确的是 ( )A .21()()P Y P Y μμ≥≥≥B .21()()P X P X σσ≤≤≤C .对任意正数t ,()()P X t P Y t ≤≥≤D .对任意正数t ,()()P X t P Y t ≥≥≥5.设12,,,n a a a ∈R ,3n ≥.若p :12,,,n a a a 成等比数列;q :222121()n a a a -+++22(a +222312231)()n n n a a a a a a a a -++=+++,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.已知符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,则( )A .sgn[()]sgn g x x =B .sgn[()]sgn g x x =-C .sgn[()]sgn[()]g x f x =D .sgn[()]sgn[()]g x f x =-7.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则( )A .123p p p <<B .231p p p <<C .312p p p <<D .321p p p <<8.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >9.已知集合22{(,)|1,,}A x y x y x y =+∈Z ≤,{(,)|||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 ( ) A .77B .49C .45D .30 10.设x ∈R ,[]x 表示不超过x 的最大整数.若存在实数t ,使得[]1t =,2[]2t =,…,[]n t n =同时成立,则正整数n 的最大值是( )A .3B .4C .5D .6 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题,考生需作答5小题,每小题5分,共25分.把答案填在题中的横线上. (一)必考题(11~14题)11.已知向量OA AB ⊥,||3OA =,则OA OB =___________. 12.函数2π()4cos cos()2sin |ln(1)|22xf x x x x =---+的零点个数为___________. 13.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m .14.如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A 的上方),且2AB =.(1)圆C 的标准方程为___________;(2)过点A 任作一条直线与圆22:1O x y +=相交于M ,N 两点,下列三个结论: ①||||||||NA MA NB NB =; ②||||2||||NB MA NA MB -=;③||||||||NB MA NA MB += 其中正确结论的序号是___________(写出所有正确结论的序号). -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共24页)数学试卷 第5页(共24页)数学试卷 第6页(共24页)(二)选考题(请考生在第15,16两题中任选一题作答,如果全选,则按第15题作答结果记分) 15.(选修4—1:几何证明选讲)如图,P A 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=___________. 16.(选修4—4:坐标系与参数方程)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1,x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),l与C 相交于A ,B 两点,则||AB =___________.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 17.(本小题满分11分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象.若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值.18.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .19.(本小题满分12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 如图,在阳马P ABCD -中,侧棱PD ⊥底面ABCD , 且PD CD =,过棱PC 的中点E ,作EF PB ⊥交PB 于点F ,连接,,,DE DF BD BE . (Ⅰ)证明:PB DEF ⊥平面.试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由; (Ⅱ)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC的值.20.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产,A B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W (单位:吨)是一个该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量. (Ⅰ)求Z 的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率. 21.(本小题满分14分)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,MN 3=.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.22.(本小题满分14分)已知数列{}n a 的各项均为正数,*1(1)()n n n b n a n n=+∈N ,e 为自然对数的底数. (Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n +与e 的大小; (Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T ,证明:e n n T S <.数学试卷 第7页(共24页)数学试卷 第8页(共24页)数学试卷 第9页(共24页)2015年普通高等学校招生全国统一考试(湖北卷)数学(理科)答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】60760433i i i i +===-,它的共轭复数为i . 【提示】直接利用复数的单位的幂运算求解即可. 【考点】虚数单位i 及其性质 2.【答案】B【解析】由题意,这批米内夹谷约为281534169254⨯≈石. 【提示】根据254粒内夹谷28粒,可得比例,即可得出结论. 【考点】随机抽样,样本估计总体的实际应用 3.【答案】D【解析】已知(1)nx +的展开式中第4项与第8项的二项式系数相等,可得37nnC C =,可得3710n =+=,10(1)x +的展开式中奇数项的二项式系数和为1091222⨯=.【提示】直接利用二项式定理求出n ,然后利用二项式定理系数的性质求出结果即可. 【考点】二项式定理,二项式系数的性质 4.【答案】C【解析】正态分布密度曲线图象关于x μ=对称,所以12μμ<,从图中容易得到()()P X t P Y t ≤≥≤.【提示】直接利用正态分布曲线的特征,集合概率,直接判断即可.【考点】正态分布曲线的特点及曲线所表示的意义 5.【答案】A【解析】由12,,,,3n a a a n ⋯∈≥R ,运用柯西不等式,可得:222222212-1231223-1()()()n n n n a a a a a a a a a a a a ++⋯+++⋯+≥++⋯+,若12,,,na a a ⋯成等比数列,即有32121n n a a a a a a -==⋯=,则22222212-1231223-1()()()nnn n a a a aaa a a a a a a ++⋯+++⋯+=++⋯+,即由p 推得q ,但由q 推不到p ,比如1230n a a a a ===⋯==,则12,,,n a a a ⋯不成等比数列,故p 是q 的充分不必要条件.【提示】运用柯西不等式,可得22222212-1231223-1()()()nn nn a a a aaa a a a a a a++⋯+++⋯+≥++⋯+,讨论等号成立的条件,结合等比数列的定义和充分必要条件的定义,即可得到. 【考点】等比数列的性质 6.【答案】B【解析】由于本题是选择题,可以常用特殊法,符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,()f x 是R 上的增函数,()()()(1)g x f x f ax a =->,令()f x x =,2a =,则()()()g x f x f a x x=-=-,sgn[()]sgn()g x x =-,所以A 不正确,B 正确,sgn[()]sgn()f x x =,C 不正确;D 正确;对于D ,令()1f x x =+,2a =, 则()()()g x f x f ax x=-=-,1,1sgn[()]sgn(1)0,11,1x f x x x x >⎧⎪=+==-⎨⎪-<-⎩;1,0sgn[()]sgn()0,01,0x g x x x x >⎧⎪=-==⎨⎪-<⎩,1,1sgn[()]sgn(1)0,11,1x f x x x x ->-⎧⎪-=+==-⎨⎪<-⎩;所以D 不正确;故选B .【提示】直接利用特殊法,设出函数()f x ,以及a 的值,判断选项即可.【考点】函数与方程的综合运用 7.【答案】B【解析】分别作出事件对应的图象如图(阴影部分).P 1:10,2D ⎛⎫ ⎪⎝⎭,1,02F ⎛⎫⎪⎝⎭,(0,1)A ,(1,1)B ,(1,0)C ,则阴影部分的面积11111711122288S =⨯-⨯⨯=-=,211113112122243S =⨯-⨯⨯⨯=-=, 31111121ln 212222S dx x =⨯+=+⎰,231S S S ∴<<,即231p p p <<.【提示】作出每个事件对应的平面区域,求出对应的面积,利用几何概型的概率公式进行计算比较即可. 【考点】几何概型 8.【答案】D【解析】由题意,双曲线C 1:222c a b =+,1ce a =;双曲线C 2:222()()c a m b m '=+++,2e =,222222122()(2)()b b m abm bm am e e a a a m +++∴-=-+,∴当a b >时,12e e <;当a b <时,12e e >.【提示】分别求出双曲线的离心率,再平方作差,即可得出结论.【考点】双曲线的简单性质 9.【答案】C【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有5个元素,即图中圆中的整点,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,中有5525⨯=个元素,即图中正方形ABCD 中的整点,12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D 中的整点(除去四个顶点),即77445⨯-=个.数学试卷 第10页(共24页)数学试卷 第11页(共24页)数学试卷 第12页(共24页)【提示】分别求出集合A 与集合B 的解集,将其在坐标系中标出,即可求. 【考点】集合中元素个数的最值 10.【答案】B【解析】若[]1t =,则[1,2)t ∈,若2[]2t =,则t ∈(因为题目需要同时成立,则负区间舍去),若3[]3t =,则t ∈,若4[]4t =,则t ∈,若5[]5t =,则t ∈,1.732≈1.587≈1.4951.431 1.495≈<; 通过上述可以发现,当4t =时,可以找到实数t使其在区间334554[1,2)[2,3)[3,4)[4,5)[5,6)上,但当5t =时,无法找到实数t 使其在区间334554[1,2)[2,3)[3,4)[4,5)[5,6)上,∴正整数n 的最大值4.【提示】由新定义可得t 的范围,验证可得最大的正整数n 为4. 【考点】进行简单的演绎推理第Ⅱ卷二、填空题 (一)必考题 11.【答案】9【解析】由OA AB ⊥uu r uu u r ,得0O A A B =u u r u uur g ,即()0O A O B O A -=uu r uu u r uu r g ,3OA =uu rQ ,2||9OA AB OA ∴==u u r u u u r u u r g .【提示】由已知结合平面向量是数量积运算求得答案. 【考点】平面向量数量积的运算 12.【答案】2【解析】函数()f x 的定义域为{|1}x x >-.22π()4cos cos 2sin |ln(1)|2sin 2cos 1|ln(1)|sin 2|ln(1)|222x x f x x x x x x x x ⎛⎫⎛⎫=---+=--+=-+ ⎪ ⎪⎝⎭⎝⎭,分别画出函数sin 2y x =,|ln(1)|y x =+的图象,由函数的图象可知,交点个数为2,所以函数的零点有2个.【提示】利用二倍角公式化简函数的解析式,求出函数的定义域,画出函数的图象,求出交点个数即可.【考点】根的存在性及根的个数判断 13.【答案】【解析】设此山高h (m ),则BC =,在ABC △中,30BAC ∠=,105CBA ∠=,45BCA ∠=,600AB =,根据正弦定理得600sin 30sin 45=,解得h =m ). 【提示】设此山高h (m ),在BCD △中,利用仰角的正切表示出BC ,进而在ABC △中利用正弦定理求得h .【考点】解三角形的实际应用 14.【答案】(1)22(1)(2x y -+= (2)①②③【解析】解:(1)Q 圆C 与x 轴相切于点(1,0)T ,∴圆心的横坐标1x =,取AB 的中点E ,||2AB =Q ,||1BE ∴=,则||BC=,即圆的半径||rBC ==∴圆心C ,则圆的标准方程为22(1)(2x y -+=.(2)Q 圆心C,E ∴,又||2AB =Q,且E 为AB 中点,1)A ∴,1)B ,Q M 、N 在圆O :221x y +=上,∴可设(cos ,sin )M αα,(cos ,sin )N ββ, ||NA ∴=====||NB====||1||NA NB∴===, 同理可得||1||MA MB =,||||||||NA MA NB MB ∴=,①成立; ||||1)2||||NB NA NA NB-==,②正确; ||||1)||||NB MA NA MB +==,③正确.【提示】(1)取AB 的中点E ,通过圆C 与x 轴相切于点T ,利用弦心距、半径与半弦长之间的关系,计算即可;(2)设(cos ,sin )M αα,(cos ,sin )N ββ,计算出||||MA MB 、||||NA NB、||||NB NA 的值即可. 【考点】命题的真假判断与应用,圆与圆的位置关系及其判定 (二)选考题 15.【答案】12数学试卷 第13页(共24页)数学试卷 第14页(共24页)数学试卷 第15页(共24页)【解析】由切割线定理可知2PA PB PC =g ,又3BC PB =,可得2PA PB =,在PAB △与PAC △中,P P ∠=∠,PAB PCA ∠=∠(同弧上的圆周角与弦切角相等),可得PAB PCA△∽△, 122AB PB PB AC PA PB ∴===.【提示】利用切割线定理推出2PA PB =,利用相似三角形求出比值即可. 【考点】与圆有关的比例线段 16.【答案】【解析】由(sin 3cos )0ρθθ-=,得30y x -=,由C 的参数方程为11x t ty t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),两式平方作差得224x y -=-.联立2234y x x y =⎧⎨-=-⎩,得212x =,即2x =±,22A ⎛∴ ⎝⎭,,22B ⎛-- ⎝⎭,||AB ∴==.【提示】化极坐标方程化直角坐标方程,参数方程化为普通方程,联立直线方程和双曲线方程后求得交点坐标,由两点间的距离公式可得答案. 【考点】简单曲线的极坐标方程,双曲线的参数方程 三、解答题 17.【答案】(Ⅰ)π127π12 13π12π()5sin 26f x x ⎛⎫=- ⎪⎝⎭(Ⅱ)π6【解析】(Ⅰ)根据表中已知数据,解得5A =,2,ω=,π6ϕ=-,数据补全如下表:且函数表达式为()5sin 26f x x ⎛⎫=- ⎪⎝⎭.(Ⅱ)由(Ⅰ)知π()5sin 26f x x ⎛⎫=- ⎪⎝⎭,得π()5sin 226g x x θ⎛⎫=+- ⎪⎝⎭,因为sin y x =的对称中心为(π,0)k ,k ∈Z ,令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z , 由于函数()y g x =的图象关于点5π,012⎛⎫⎪⎝⎭成中心对称, 令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6. 【提示】(Ⅰ)根据表中已知数据,解得5A =,2,ω=,π6ϕ=-,从而可补全数据,解得函数表达式为π()5sin 26f x x ⎛⎫=- ⎪⎝⎭;(Ⅱ)由(Ⅰ)及函数sin()y A x ωϕ=+的图象变换规律得π()5sin 226g x x θ⎛⎫=+- ⎪⎝⎭.令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z ,令ππ5π21212k θ+-=,解得ππ23k θ=-,k ∈Z ,由0θ>可得解.【考点】由sin()y A x ωϕ=+的部分图象确定其解析式,函数sin()y A x ωϕ=+的图象变换18.【答案】(Ⅰ)21n a n =-,12n n b -=或1(279)9n a n =+,1299n n b -⎛⎫= ⎪⎝⎭g (Ⅱ)12362n n n T -+=-【解析】(Ⅰ)设1a a =,由题意可得10451002a d ad +=⎧⎨=⎩,解得12a d =⎧⎨=⎩,或929a d =⎧⎪⎨=⎪⎩,当12a d =⎧⎨=⎩时,21n a n =-,12n nb -=; 当929a d =⎧⎪⎨=⎪⎩时,1(279)9n a n =+,1299n n b -⎛⎫= ⎪⎝⎭g .(Ⅱ)当1d >时,由(Ⅰ)知21n a n =-,12n n b -=,1212n n n n a n c b --∴==, 23411111113579(21)22222n n T n -∴=++++++-g g g g L g ,234111*********(23)(21)2222222n n n T n n -∴=+++++-+-g g g g L g g 23421111111232(21)322222222n n n n n T n -+=++++++--=-L g 12362n n n T -+∴=-.【提示】(Ⅰ)利用前10项和与首项、公差的关系,联立方程组计算即可;(Ⅱ)当1d >时,由(Ⅰ)知1212nn n c --=,写出n T 、12n T 的表达式,利用错位相减法及等比数列的求和公式,计算即可. 【考点】数列的求和 19.【答案】(Ⅰ)见解析(Ⅱ)DC BC =【解析】解法一:(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥,由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =,所以BC ⊥平面PCD , 而DE ⊂平面PDC ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥, 而PC CB C =I ,所以DE ⊥平面PBC ,而PB ⊂平面PBC ,所以PB DE ⊥.又PB EF ⊥,DE FE E =I ,所以PB ⊥平面DEF .数学试卷 第16页(共24页)数学试卷 第17页(共24页) 数学试卷 第18页(共24页)由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB ∠,DEF ∠,EFB ∠,DFB ∠. (Ⅱ)如图,在面BPC 内,延长BC 与FE 交于点G ,则D G 是平面DEF 与平面ACBD 的交线.由(Ⅰ)知,PB ⊥平面DEF ,所以PB DG ⊥. 又因为PD ⊥底面ABCD ,所以PD DG ⊥, 而PD PB P =I ,所以DG ⊥平面PBD , 所以DG DF ⊥,DG DB ⊥.故BDF ∠是面DEF 与面ABCD 所成二面角的平面角, 设1PD DC ==,BC λ=,有BD =在Rt PDB △中,由DF PB ⊥,得π3DPF FDB ∠=∠=,则πtan tan 3BDDPF PD=∠===解得λ=1DC BC λ=, 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =解法二:(Ⅰ)以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系.设1PD DC ==,BC λ=,则(0,0,0)D ,(0,0,1)P ,(,1,0)B λ,(0,1,0)C ,(,1,1)PB λ=-uu r,点E 是PC 的中点,所以110,,22E ⎛⎫ ⎪⎝⎭,110,,22DE ⎛⎫= ⎪⎝⎭uuur ,于是0PB DE =uu r uuu rg ,即PB DE ⊥.又已知EF PB ⊥,而ED EF E =I ,所以PB ⊥平面DEF , 因(0,1,1)PC =-uu u r ,0DE PC =uuu r uu u rg ,则DE PC ⊥,所以DE ⊥平面PBC .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为DEB ∠,DEF ∠,EFB ∠,DFB ∠.(Ⅱ)由PD ⊥底面ABCD ,所以(0,0,1)DP =uu u r是平面ACDB 的一个法向量;由(Ⅰ)知,PB ⊥平面DEF ,所以(,1,1)BP λ=--uu r是平面DEF 的一个法向量.若面DEF 与面ABCD 所成二面角的大小为π3,则运用向量的数量积求解得出π1cos 32==,解得λ=12DC BC λ==, 故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =【提示】解法一:(Ⅰ)直线与直线,直线与平面的垂直的转化证明得出PB EF ⊥,DE FE E =I ,所以PB ⊥平面DEF ,即可判断DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形,确定直角;(Ⅱ)根据公理2得出DG 是平面DEF 与平面ACBD 的交线,利用直线平面的垂直判断出DG DF ⊥,DG DB ⊥,根据平面角的定义得出BDF ∠是面DEF 与面ABCD 所成二面角的平面角,转化到直角三角形求解即可.解法二:(Ⅰ)以D 为原点,射线DA ,DC ,DP 分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,运用向量的数量积判断即可;(Ⅱ)由PD ⊥底面ABCD ,所以(0,0,1)DP =uu u r是平面ACDB 的一个法向量;由(Ⅰ)知,PB ⊥平面DEF ,所以(,1,1)BP λ=--uu r是平面DEF 的一个法向量,根据数量积得出夹角的余弦即可得出所求解的答案.【考点】用空间向量求平面间的夹角,直线与平面垂直的判定 20.【答案】(Ⅰ)见解析 (Ⅱ)0.973【解析】(Ⅰ)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为Z ,则有2 1.51.512200,0x y W x y x y x y +≤⎧⎪+≤⎪⎨-≥⎪⎪≥≥⎩①,如图1,目标函数为10001200Z x y =+.当12W =时,①表示的平面区域如图1,三个顶点分别为(0,0)A ,(2.4,4.8)B ,(6,0)C ,将10001200Z x y =+变形为561200Zy x =-+,当 2.4x =, 4.8y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 2.41000 4.812008160Z Z ==⨯+⨯=; 当15W =时,①表示的平面区域如图2,三个顶点分别为(0,0)A ,(3,6)B ,(7.5,0)C , 将10001200Z x y =+变形为561200Zy x =-+,当3x =,6y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 310006120010200Z Z ==⨯+⨯=; 当18W =时,①表示的平面区域如图3,四个顶点分别为(0,0)A ,(3,6)B ,(6,4)C ,(9,0)D , 将10001200Z x y =+变形为561200Zy x =-+,当6x =,4y =时,直线l :561200Zy x =-+在y 轴上的截距最大,最大获利max 610004120010800Z Z ==⨯+⨯=.因此,()81600.3102000.5108000.29708E Z =⨯+⨯+⨯=.数学试卷 第19页(共24页)数学试卷 第20页(共24页)数学试卷 第21页(共24页)(Ⅱ)由(Ⅰ)知,一天最大获利超过10000元的概率1(10000)0.50.20.7P P Z =>=+=,由二项分布,3天中至少有1天最大获利超过10000元的概率为311(1)0.973P P =--=.【提示】(Ⅰ)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z ,列出可行域,目标函数,通过当12W =时,当15W =时,当18W =时,分别求出目标函数的最大获利,然后得到Z 的分布列,求出期望即可;(Ⅱ)判断概率类型是二项分布,然后求解所求概率即可. 【考点】简单线性规划的应用,离散型随机变量的期望与方差21.【答案】(Ⅰ)221164x y += (Ⅱ)见解析【解析】(Ⅰ)设(,0)(||2)D t t ≤,00(,)N x y ,(,)M x y ,由题意得2MD DN =uuu r uuu r,且||||1DN ON ==uuu r uuu r ,00(,)2(,)t x y x t y ∴--=-,且22002200()11x t y x y ⎧-+=⎪⎨+=⎪⎩,即00222t x x t y y -=-⎧⎨=-⎩,且0(2)0t t x -=, 由于当点D 不动时,点N 也不动,∴t 不恒等于0,于是02t x =,故04x x =,02yy =-, 代入2201x y +=,得方程221164x y +=.(Ⅱ)(1)当直线l 的斜率k 不存在时,直线l 为:4x =或4x =-,都有14482OPQ S =⨯⨯=△, (2)直线l 的斜率k 存在时,直线l 为:12y kx m k ⎛⎫=+≠± ⎪⎝⎭,由22416y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=, 直线l 总与椭圆C 有且只有一个公共点,2222644(14)(416)0k m k m ∴∆=-+-=,即22164m k =+①. 由20y kx m x y =+⎧⎨-=⎩,可得2,1212m m P k k ⎛⎫ ⎪--⎝⎭,同理得2,1212mm Q k k -⎛⎫ ⎪++⎝⎭, 原点O 到直线PQ的距离d =和|||P Q PQ x x -, 可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ==-=+=-+-△②. 将①代入②得222224181441OPQm k S k k +==--△, 当214k >时,22241288184141OPQ k S k k ⎛⎫+⎛⎫==+> ⎪ ⎪--⎝⎭⎝⎭△, 当2104k ≤<时,22222414128881414114OPQ k k S k k k ⎛⎫++⎛⎫==-=-+ ⎪ ⎪---⎝⎭⎝⎭△, 2104k ≤<时,20141k ∴<-≤,22214k ≥-, 2281814OPQS k ⎛⎫∴=-+≥ ⎪-⎝⎭△,当且仅当0k =时取等号,0k ∴=时,OPQ S △的最小值为8.综上可知当直线l 与椭圆C 在四个顶点处相切时,三角形OPQ 的面积存在最小值为8. 【提示】(Ⅰ)根据条件求出a ,b 即可求椭圆C 的方程;(Ⅱ)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.【考点】直线与圆锥曲线的关系,椭圆的标准方程22.【答案】(Ⅰ)()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞11e nn ⎛⎫+< ⎪⎝⎭ (Ⅱ)见解析 (Ⅲ)见解析【解析】(Ⅰ)()f x 的定义域为(,)-∞+∞,()1e x f x '=-, 当()0f x '>,即0x <时,()f x 单调递增, 当()0f x '<,即0x >时,()f x 单调递减,故()f x 的单调递增区间为(,0)-∞,单调递减区间为(0,)+∞. 当0x >时,()(0)0f x f <=,即1e x x +<,令1x n =,得111e n n +<,即11e nn ⎛⎫+< ⎪⎝⎭①(Ⅱ)1111111121b a ⎛⎫=+=+= ⎪⎝⎭g ;222121212121221(21)32b b b b a a a a ⎛⎫==+=+= ⎪⎝⎭g g ;32331233121231231331(31)43b b b b b b a a a a a a ⎛⎫==+=+= ⎪⎝⎭g g ; 由此推测:1212(1)n nnb b b n a a a =+L L ② 下面用数学归纳法证明②,(1)当1n =时,2==左边右边,②成立.(2)假设当n k =时,②成立,即1212(1)k kk b b b k a a a =+L L , 当1n k =+时,1111(1)11k k k b k a k +++⎛⎫=++ ⎪+⎝⎭,由归纳假设可得111211211211211(1)(1)1(2)1k k k k k k k k k k k b b b b b b b b k k k a a a a a a a a k ++++++⎛⎫==+++=+ ⎪+⎝⎭L L g L L∴当1n k =+时,②也成立.根据(1)(2),可知②对一切正整数n 都成立.(Ⅲ)证明:由n c 的定义,②,算术-几何平均不等式,n b 的定义及①得数学试卷 第22页(共24页) 数学试卷 第23页(共24页) 数学试卷 第24页(共24页)111131212311212312()()()()nn n n T c c c c a a a a a a a a a =++++=++++11113121231212312112112()()()()2341122334(1)nn n b b b b b b b b bb b b b b b b b b n n n ++++++=++++≤+++++⨯⨯⨯+L L L L1211111111223(1)2334(1)(1)n b b b n n n n n n ⎡⎤⎡⎤=+++++++++⎢⎥⎢⎥⨯⨯+⨯⨯++⎣⎦⎣⎦L L L g 1212111111121112n n b b b b b b n n n n n ⎛⎫⎛⎫⎛⎫=-+-++-<+++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭ 121212111111e e e 12nn n a a a a a a n ⎛⎫⎛⎫⎛⎫=++++++<+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L L即e n n T S <.【提示】(Ⅰ)求出()f x 的定义域,利用导数求其最大值,得到1e x x +<,取1x n=即可得到答案;(Ⅱ)由11()nn n b n a n n +⎛⎫=+∈ ⎪⎝⎭N ,变形求得11b a ,1212b b a a ,123123b b b a a a ,由此推测1212(1)n nnb b b n a a a =+,然后利用数学归纳法证明;(Ⅲ)由n c 的定义、1212(1)n n n b b b n a a a =+、算术-几何平均不等式、n b 的定义及11e nn ⎛⎫+< ⎪⎝⎭,利用放缩法证得e n n T S <. 【考点】数列与不等式的综合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑶若P点表示的数为-0.5,点A、点B和P点同时向左运动,它们的速度分别是1、2、1个长度单位/分,则第几分钟时,P为AB的中点?并求出此时P点所对应的数(5分)
七年级数学试题答题卷
一、选择题(每小题3分,共30分)
题号
1
2
3
4
5
6
7
8
9
10
答案
二、填空题(每小题3分,共18分)
11、12、13、
14、15、16、
17、计算(8分)
(-72)+(+63)- ×4+ ÷ -
18、解方程(8分)
4-3(2-x)=5xx- =1-
19、(8分)已知 与 互为相反数,a、b互为倒数,试求xy+ab的值
20、先化简再求值(8分)
23、(12分)某市为了节约用水,对自来水的收费标准作了如下规定:每月每户用水不超过10吨的部分,按2元/吨收费;超过10吨的部分按2.5元/吨收费。
⑴若黄老师家5月份用水16吨,问他应该缴多少钱水费?
⑵若黄老师家6月份缴了30元水费,则他家6月份用了多少吨水?
⑶若黄老师家7月份用水a吨,问他家应该缴多少钱水费?(用含a的代数式表示)
2015年武汉市部分学校七年级12月联考
数学试题
一、选择题(每小题3分,共30分)
1、向东走3千米记作+3千米,那么-5千米表示()
A向北走5千米B向南走5千米
C向西走5千米D向东走5千米
2、“比a的 大1的数”用代数式表示为()
A a+1B a+1C a-1D a-1
3、下列各组数中互为相反数的是()
所以x=-2 y=3
所以原式=-2×3+1=-5
20、解:原式=3 -4
=
当a=- 时
原式= -4× +2
= + 2+2
=4
21、解:依题意知:
a=±5 b=±3
又 =b-a
所以 <0
a=-5b=3或a=-5b=-3
所以a+b=-5+3=-2或者a+b=-5+(-3)=-8
22、解: + - (a+b)- + b(a-b)
(请阅读下面的文字解答第24小题)在数轴上A点表示的数为a,B点表示的数为b,则线段AB的长可以用右边的数减去左边的数表示,即AB=b-a。请用这个知识解答下面的问题。
24、(12分)已知数轴上A、B两点对应数分别为-2和4,P为数轴上一点,对应的数为x。
⑴若P为线段AB的三等分点,求P点对应的数。
10、下列关于有理数加减法表示正确的是()
Aa 0b 0,并且 > ,则a+b=
Ba 0b 0,并且 > ,则a+b=
Ca 0b 0,并且 < ,则a-b=
Da 0b 0,并且 > ,则a-b=
二、填空题(每小题3分,共18分)
11、7.2-(-4.8)=(-7)×6×( )× =
( )÷ )=
12、 235000000用科学计数法表示为
参考答案
一、选择题(每小题3分,共30分)
题号
1
2
3
4
5
6
7
8
9
10
答案
C
A
B
B
D
B
Aபைடு நூலகம்
C
B
D
二、填空题(每小题3分,共18分)
11、126-25 12、-2.35× 13、-18
14、-6-115、 16、s=
17、⑴原式=-9⑵原式=-5
18、⑴x=-1⑵x=-3
19、解:依题意知:
x+y-1=0 x+2=0ab=1
= + - - - + -
=
23、⑴10×2+(16-10)×2.5=35元
⑵解:由于黄老师家交了30元水费,则他家用水超过了10吨,设他家6月用了x吨水,则有:
10×2+(x-10)×2.5=30
20+2.5x-25=30
2.5x=35
X=14
⑶当a≤10时,水费为2a元
当a>10时,水费为:10×2+(a-10)×2.5=(2.5a-5)元
A 1B-1C 0D0或1
7、计算:- =()
A2.2B-3.2C-2.2D3.2
8、一件商品a元,先涨价20%,然后再降价20%,此时这件商品的售价为()
Aa元B 1.08aC 0.96aD 0.8a
9、若 =19, =97且 =a+b,那么a-b=()
A -78或116B 78或116C -78或-116D 78或-116
(-72)+(+63)- ×4+ ÷ -
18、解方程(8分)
4-3(2-x)=5xx- =1-
19、(8分)已知 与 互为相反数,a、b互为倒数,试求xy+ab的值。
20、先化简再求值(8分)
3 -2( )+2( ),其中a=-
21、解答(8分)
已知 =5、 =3,且 =b-a,试求a+b的值
22、(8分)下图中大、小正方形的边长分别为a和b,请用含a、b的代数式表示图中阴影部分的面积并化简。
A- 和-(+ )B-(+3)和+
C-(-3)和+(+3)D-4和-(+4)
4、已知下列方程:①xy-1=2 ②0.3x=4③x=1④ -4x=3⑤2x+3y=6,是一元一次方程的有()个
A2个B3个C4个D5个
5、若x=2是方程2a-3x=6的解,则a的值是()
A B-4C D6
6、单项式2 与 的和是单项式,则 =()
24、⑴设P点表示的数为x
⑶若黄老师家7月份用水a吨,问他家应该缴多少钱水费?(用含a的代数式表示)(4分)
24、⑴若P为线段AB的三等分点,求P点对应的数。(3分)
⑵数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由。(4分)
⑶若P点表示的数为-0.5,点A、点B和P点同时向左运动,它们的速度分别是1、2、1个长度单位/分,则第几分钟时,P为AB的中点?并求出此时P点所对应的数(5分)
13、三个连续偶数的和是-60,那么其中最大的一个是
14、 的最小值是,此时 =
15、一项工程,m个人要x天完成,若增加b个人,则需要天完成。
16、下列每个图形是由若干个花盆组成的三角形的图案,每条边(包括顶点)有n(n>1)盆花,每个图案共有s盆花,则s与n之间的关系式为
三、解答题(72分)
17、计算(8分)
3 -2( )+2( ),其中a=-
21、解答(8分)已知 =5、 =3,且 =b-a,试求a+b的值
22、(8分)下图中大、小正方形的边长分别为a和b,请用含a、b的代数式表示图中阴影部分的面积并化简。
23、⑴若黄老师家5月份用水16吨,问他应该缴多少钱水费?(4分)
⑵若黄老师家6月份缴了30元水费,则他家6月份用了多少吨水?(4分)