大一高数第一章--函数、极限与连续

合集下载

高等数学第一章函数极限和连续讲义

高等数学第一章函数极限和连续讲义

第一章函数、极限和连续【考试要求】一、函数1.理解函数的概念:函数的定义,函数的表示法,分段函数.2.理解和掌握函数的简单性质:有界性,单调性,奇偶性,周期性.3.了解反函数:反函数的定义,反函数的图像.4.掌握函数的四则运算与复合运算.5.理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数.6.了解初等函数的概念.二、极限1.理解数列极限的概念:数列,数列极限的定义.2.了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则.3.理解函数极限的概念:函数在一点处极限的定义,左右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限.4.掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理.5.理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较.6.熟练掌握用两个重要极限求极限的方法.7.熟练掌握分段函数求极限的方法.三、连续1.理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类.2.掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型.3.掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题.4.理解初等函数在其定义区间上连续,并会利用连续性求极限. 5.熟练掌握分段函数连续性的判定方法.【考试内容】一、函数(一)函数的概念1.函数的定义:设数集D R ⊂,则称映射:f D R →为定义在D 上的函数,通常简记为()yf x =,x D ∈,其中x 称为自变量,y 称为因变量,D 称为定义域.说明:表示函数的记号是可以任意选取的,除了常用的f外,还可以用其他的英文字母或希腊字母,如“g ”、“F ”、“ϕ”等,相应的,函数可记作()y g x =,()y F x =,()y x ϕ=等.有时还直接用因变量的记号来表示函数,即把函数记作()y y x =,这一点应特别注意.2.函数的解析(公式)表示法 (1)函数的显式表示法(显函数):()yf x =形式的函数,即等号左端是因变量的符号,而右端是含有自变量的式子,如2cos xy xe x =-,13sin ln x x e y x e x-=++等.(2)函数的隐式表示法(隐函数):函数的对应法则由方程(,)0F x y =所确定,即如果方程(,)0F x y =确定了一个函数关系()y f x =,则称()y f x =是由方程(,)0F x y =所确定的隐函数形式.说明:把一个隐函数化成显函数,叫做隐函数的显化.例如从方程310x y +-=解出31y x =-,就把隐函数化成了显函数.但并非所有的隐函数都能显化,隐函数的显化有时是非常困难的,甚至是不可能的.(3)分段函数:如果函数的对应法则是由几个解析式表示的,则称之为分段函数,如1,0()1,0x x f x x x +≥⎧=⎨-<⎩ 是由两个解析式表示的定义域为(,)-∞+∞的一个函数.(4)由参数方程确定的函数:如果自变量x 与因变量y 的关系是通过第三个变量t 联系起来 ()()x t y t ϕφ=⎧⎨=⎩ (t 为参变量),则称这种函数关系为参数方程所确定的函数.例如:参数方程 2cos 2sin x t y t=⎧⎨=⎩ 表示的图形即为圆心在原点,半径为4的圆.(二)函数的几种特性1.有界性设函数()f x 的定义域为D ,数集X D ⊂,如果存在正数M,使得()f x M≤对任一x X ∈都成立,则称函数()f x 在X 上有界.如果这样的M不存在,就称函数()f x 在X 上无界.说明:我们这里只讨论有界无界的问题而不区分上界和下界,并且,由上述定义不难看出,如果正数M 是函数()f x 的一个界,则比M大的数都是函数()f x 的界.2.单调性 设函数()f x 的定义域为D ,区间I D ∈.如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x <,则称函数()f x 在区间I 上是单调增加的;如果对于区间I 上任意两点1x 及2x ,当12x x <时,恒有12()()f x f x >,则称函数()f x 在区间I 上是单调减少的.单调增加和单调减少的函数统称为单调函数. 3.奇偶性 设函数()f x 的定义域D 关于原点对称.如果对于任一x D ∈,()()f x f x -=恒成立,则称()f x 为偶函数.如果对于任一x D ∈,()()f x f x -=-恒成立,则称()f x 为奇函数.例如:()cos f x x =、2()f x x =都是偶函数,()s i n f x x =、()arctan f x x =是奇函数,而()sin cos f x x x =+则为非奇非偶函数.偶函数的图形关于y 轴对称,而奇函数的图形关于原点对称.说明:两个偶函数的和是偶函数,两个奇函数的和是奇函数;两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.其余结论读者可自行论证. 4.周期性设函数()f x 的定义域为D .如果存在一个正数l ,使得对于任一x D ∈有()x l D ±∈,且()()f x l f x +=恒成立,则称()f x 为周期函数,l 称为()f x 的周期,通常我们说周期函数的周期是指最小正周期.例如:函数sin x 、cos x 都是以2π为周期的周期函数,函数tan x 是以π为周期的周期函数.(三)函数的运算1.和差积商运算 设函数()f x ,()g x 的定义域依次为1D ,2D ,12D D D φ=≠,则我们可以定义这两个函数的下列运算: (1)和(差)f g ±:()()()()f g x f x g x ±=±,x D ∈;(2)积f g ⋅:()()()()f g x f x g x ⋅=⋅,x D ∈;(3)商f g :()()()f f x x g g x ⎛⎫= ⎪⎝⎭,\{()0,}x D x g x x D ∈=∈. 2.反函数(函数的逆运算)对于给定的y 是x 的函数()y f x =,若将y 当作自变量而x 当作因变量,则由关系式()y f x =所确定的函数()x y ϕ=称为函数()f x 的反函数,记为1()y f x -=,()f x 叫做直接函数.若直接函数()yf x =的定义域为D ,值域为M ,则反函数1()y f x -=的定义域为M ,值域为D .且直接函数的图像与反函数的图像关于直线y x =对称.3.复合函数(函数的复合运算)设函数()y f u =的定义域为fD ,函数()ug x =的定义域为g D ,且其值域g f R D ⊂,则由下式确定的函数[()]y f g x =,g x D ∈称为由函数()u g x =与函数()y f u =构成的复合函数,它的定义域为g D ,变量u 称为中间变量.说明:g 与f能构成复合函数的条件是函数g 的值域g R 必须含在函数f的定义域fD 内,即gf R D ⊂,否则不能构成复合函数.此外,复合函数可以由多个函数复合而成.(四)基本初等函数与初等函数1.基本初等函数 幂函数:yx μ=(R μ∈是常数); 指数函数:x y a =(0a >且1a ≠);对数函数:log a y x =(0a >且1a ≠,特别当a e =时记为ln y x =);三角函数:sin yx =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =;反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x =.以上五类函数统称为基本初等函数.说明:反三角函数是学习和复习的难点,因此这里重点给出三角函数和反三角函数的关系,这对于后边学习极限、渐近线及导数等知识是非常有帮助的,请大家牢记. (1)反正弦函数arcsin yx =:是由正弦函数sin y x =在区间[,]22ππ-上的一段定义的反函数,故其定义域为[1,1]-,值域为[,]22ππ-. (2)反余弦函数arccos y x =:是由余弦函数cos y x =在区间[0,]π上的一段定义的反函数,故其定义域为[1,1]-,值域为[0,]π. (3)反正切函数arctan yx =:是由正切函数tan y x =在区间(,)22ππ-上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(,)22ππ-. (4)反余切函数cot yarc x =:是由余切函数cot y x =在区间(0,)π上的一段定义的反函数,故其定义域为(,)-∞+∞,值域为(0,)π. 2.初等函数由常数和基本初等函数经过有限次的四则运算和有限次的函数复合步骤所构成并可用一个式子表示的函数,称为初等函数.例如:22sin cos y x x =,22y x =-,2ln(1)y x x =++,2arccos(1)y x =-等都是初等函数.在本课程中所讨论的函数绝大多数都是初等函数.二、极限(一)数列的极限1.数列极限的定义:设{}n x 为一数列,如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正整数N ,使得当n N >时,不等式n x A ε-<都成立,那么就称常数A 是数列{}n x 的极限,或者称数列{}n x 收敛于A ,记为lim n n x A →∞=或n x A →(n →∞).如果不存在这样的常数A ,就说数列{}n x 没有极限,或者说数列{}n x 是发散的,习惯上也说lim n n x →∞不存在.说明:数列极限中自变量n 的趋向只有一种,即n →∞,虽然含义表示正无穷,但不要写做n→+∞,注意与函数极限的区别.2.收敛数列的性质性质(1):(极限的唯一性)如果数列{}n x 收敛,那么它的极限唯一.性质(2):(收敛数列的有界性)如果数列{}n x 收敛,那么数列{}n x 一定有界. 说明:对于数列{}n x ,如果存在正数M ,使得对一切n ,都有n x M ≤,则称数列{}n x 是有界的,否则称数列{}n x 是无界的. 性质(3):(收敛数列的保号性)如果lim nn x A →∞=,且0A >(或者0A <),那么存在正整数N ,当n N >时,都有0n x >(或0n x <). (二)函数的极限1.函数极限的定义 (1)0xx →时函数的极限:设函数()f x 在点0x 的某个去心邻域内有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x 满足不等式00x x δ<-<时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A就叫做函数()f x 当0x x →时的极限,记作0lim ()x x f x A →=或()f x A →(当0x x →).说明:函数的左极限lim ()x x f x A -→=或0()f x A -=;右极限0lim ()x x f x A +→=或0()f x A +=;左极限与右极限统称单侧极限.函数()f x 当0x x →时极限存在的充要条件是左右极限都存在并且相等,即00()()f x f x -+=.(2)x →∞时函数的极限:设函数()f x 当x大于某一正数时有定义.如果存在常数A ,对于任意给定的正数ε(不论它多么小),总存在正数X ,使得当x 满足不等式x X >时,对应的函数值()f x 都满足不等式()f x A ε-<,那么常数A 就叫做函数()f x 当x →∞时的极限,记作lim ()x f x A →∞=或()f x A →(当x →∞).说明:此定义包含lim ()x f x A →+∞=和lim ()x f x A →-∞=两种情况.2.函数极限的性质(以0xx →为例)性质(1):(函数极限的唯一性)如果0lim ()x x f x →存在,那么这极限唯一.性质(2):(函数极限的局部有界性)如果0lim ()x x f x A →=,那么存在常数0M >和0δ>,使得当00x x δ<-<时,有()f x M ≤.性质(3):(函数极限的局部保号性)如果0lim()x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <). (三)极限运算法则1.如果0lim()x x f x A →=,0lim ()x x g x B →=,则有(1)0lim[()()]lim ()lim ()x x x x x x f x g x f x g x A B →→→±=±=±; (2)0lim[()()]lim ()lim ()x x x x x x fx g x f x g x A B →→→⋅=⋅=⋅;(3)000lim ()()lim()lim ()x x x x x x f x f x A g x g x B→→→==,其中0B ≠; (4)0lim[()]lim ()x x x x cfx c f x →→=,其中c 为常数;(5)0lim[()][lim ()]n n x x x x fx f x →→=,其中n 为正整数.2.设有数列{}n x 和{}n y ,如果lim nn x A →∞=,lim n n y B →∞=,则有(1)lim()nn n x y A B →∞±=±; (2)lim()nn n x y A B →∞⋅=⋅;(3)lim n n nx Ay B →∞=,其中0n y ≠(1,2,n =)且0B ≠.3.如果()()x x ϕψ≥,而0lim ()x x x A ϕ→=,0lim ()x x x B ψ→=,则A B ≥.4.复合函数的极限运算法则:设函数[()]y f g x =是由函数()u g x =与函数()y f u =复合而成,[()]f g x 在点0x 的某去心邻域内有定义,若00lim ()x x g x u →=,0lim ()u u f u A→=,且存在00δ>,当00(,)x U x δ∈时,有()g x u ≠,则lim [()]lim ()x x u u f g x f u A →→==.说明:本法则以0xx →为例,其他趋向下亦成立.(四)极限存在准则1.准则I 如果数列{}n x 、{}n y 及{}n z 满足下列条件: (1)从某项起,即0n N ∃∈,当0n n >时,有n n n y x z ≤≤,(2)lim nn y A →∞=,lim n n z A →∞=,那么数列{}n x 的极限存在,且lim nn x A →∞=.准则I ' 如果函数()f x 、()g x 及()h x 满足下列条件:(1)当0(,)x U x r ∈(或x M >)时,()()()g x f x h x ≤≤,(2)0()lim ()x x x g x A →→∞=,0()lim ()x x x h x A →→∞=,那么0()lim ()x x x f x →→∞存在,且等于A .说明:准则I 及准则I '称为夹逼准则.2.准则II 单调有界数列必有极限.准则II ' 单调有界函数必有极限.(函数有界一般是指在某个邻域内有界)(五)两个重要极限1.0sin lim1x xx→=,可引申为()0sin ()lim1()x x x ϕϕϕ→=,式中不管自变量x 是哪种趋向,只要在此趋向下()0x ϕ→即可(()0x ϕ+→或()0x ϕ-→时亦成立).2.10lim(1)xx x e →+= 或 1lim(1)x x e x→∞+=,可引申为1()()0lim (1())x x x e ϕϕϕ→+=(()0x ϕ+→或()0x ϕ-→时亦成立)或()()1lim (1)()x x ex ϕϕϕ→∞+=(()x ϕ→+∞或()x ϕ→-∞时亦成立). 说明:数列亦有第二种极限形式,即1lim(1)nn e n→∞+=.两个重要极限是考试的必考内容,请大家务必好好掌握.(六)无穷小和无穷大1.定义(1)无穷小的定义:如果函数()f x 当0x x →(或x →∞)时的极限为零,那么称函数()f x 为当0x x →(或x →∞)时的无穷小量(简称无穷小).特别地,以零为极限的数列{}n x 称为n→∞时的无穷小.说明:以后我们再提到无穷小时,把数列{}n x 当作特殊的函数来看待,故所谓的无穷小本质上就是函数,并且一定是在自变量x 的某一趋向下才有意义. (2)无穷大的定义:如果在自变量的某一变化过程中,函数()f x 的绝对值无限增大,则称函数()f x 为自变量在此变化过程中的无穷大量(简称无穷大).说明:在自变量的同一变化过程中,如果()f x 为无穷大,则1()f x 为无穷小;反之,如果()f x 为无穷小且()0f x ≠,则1()f x 为无穷大. 2.无穷小的比较设α,β均为自变量同一趋向下的无穷小,且0α≠,(1)如果lim0βα=,则称β是比α高阶的无穷小,记作()o βα=; (2)如果lim βα=∞,则称β是比α低阶的无穷小;(3)如果lim0c βα=≠,则称β与α是同阶无穷小; (4)如果lim 1βα=,则称β与α是等价无穷小,记作~αβ;(5)如果lim0k c βα=≠,0k >,则称β是关于α的k 阶无穷小. 3.无穷小的性质(1)有限个无穷小的和是无穷小. (2)常数与无穷小的乘积是无穷小. (3)有限个无穷小的乘积是无穷小. (4)有界函数与无穷小的乘积是无穷小.(5)求两个无穷小之比的极限时,分子及分母都可用等价无穷小来替换,即设α,β,α',β'均为自变量同一趋向下的无穷小,且~αα',~ββ',limβα''存在,则lim lim ββαα'='(lim 表示自变量的任一趋向下的极限,以后文中出现此符号时均为此意,不再解释).说明:等价无穷小非常重要,故将常用的等价无穷小列举如下,请大家务必牢记.0x →时sin ~x x ,可引申为()0x ϕ→时,sin ()~()x x ϕϕ; 0x →时tan ~x x ,可引申为()0x ϕ→时,tan ()~()x x ϕϕ;0x →时sin ~arc x x ,可引申为()0x ϕ→时,sin ()~()arc x x ϕϕ; 0x →时211cos ~2x x -,可引申为()0x ϕ→时,211cos ()~()2x x ϕϕ-;0x →时111~n x x n +-,可引申为()0x ϕ→时,11()1~()n x x nϕϕ+-;0x →时1~x e x -,可引申为()0x ϕ→时,()1~()x e x ϕϕ-;0x →时ln(1)~x x +,可引申为()0x ϕ→时,ln(1())~()x x ϕϕ+.三、连续(一)连续的概念1.连续的定义连续性定义(1):设函数()f x 在点0x 的某一邻域内有定义,如果000lim lim[()()]0x x y f x x f x ∆→∆→∆=+∆-=,则称函数()yf x =在点0x 连续(即自变量的变化量趋于零时函数值的变化量也趋于零). 连续性定义(2):设函数()f x 在点0x 的某一邻域内有定义,如果00lim ()()x x f x f x →=,则称函数()yf x =在点0x 连续.2.左连续、右连续及区间连续 (1)左连续:lim ()x x f x -→存在且等于0()f x ,即00()()f x f x -=;(2)右连续::lim ()x x f x +→存在且等于0()f x ,即00()()f x f x +=;(3)区间连续:若函数()f x 在区间每一点都连续,则称()f x 为该区间上的连续函数,或者说函数()f x 在该区间上连续.如果区间包括端点,则函数()f x 在右端点连续是指左连续,()f x 在左端点连续是指右连续.说明:一切初等函数在其定义区间内都是连续的.(二)函数的间断点1.定义:设函数()f x 在点0x 的某去心邻域内有定义,如果函数有下列三种情形之一:(1)在0xx =处没有定义;(2)虽在0x x =处有定义,但0lim ()x x f x →不存在;(3)虽在0x x =处有定义,且0lim ()x x f x →存在,但00lim ()()x x f x f x →≠,则函数()f x 在点0x 为不连续,而点0x 称为函数()f x 的不连续点或间断点.2.分类:(1)第一类间断点:如果0x 是函数()f x 的间断点,但左极限0()f x -和右极限0()f x +都存在,那么0x 称为函数()f x 的第一类间断点.00()()f x f x -+=时称0x 为可去间断点,00()()f x f x -+≠时称0x 为跳跃间断点.(2)第二类间断点:不是第一类间断点的任何间断点,称为第二类间断点.常见的第二类间断点有无穷间断点和振荡间断点.(三)闭区间上连续函数的性质1.有界性与最值定理:在闭区间[,]a b 上连续的函数在该区间上有界且一定能取得它的最大值和最小值. 2.零点定理:设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使得()0f ξ=. 3.介值定理:设函数()f x 在闭区间[,]a b 上连续,且在这区间的端点取不同的函数值()f a A =及()f b B =,那么对于A 与B 之间的任意一个数C ,在开区间(,)a b 内至少有一点ξ,使得()f C ξ=(a b ξ<<).【典型例题】【例1-1】求复合函数. 1.设()12xf x x =-,求[()]f f x . 解:求[()]f f x 就是用()f x 代替x 然后化简,得12[()]122141212xx xx f f x x x x x x -===----⋅-. 2.设2,01()3,12x x f x x x ⎧≤≤=⎨<≤⎩ ,()xg x e =,求[()]f g x .解:当01xe ≤≤即0x ≤时,22[()]()x xfg x e e ==, 当12xe <≤即0ln 2x <≤时,[()]3xfg x e =,故2,0[()]3,0ln 2x x e x f g x e x ⎧≤=⎨<≤⎩ .【例1-2】求函数的定义域. 1.()arcsin(21)ln(1)f x x x =-+-.解:由arcsin(21)x -可得1211x -≤-≤,即01x ≤≤;由arcsin(21)x -可得arcsin(21)0x -≥,即0211x ≤-≤,112x ≤≤;由l n (1)x -可得10x->,即1x <,故原函数的定义域为三部分的交集,即1[,1)2. 2.21()arccos(2)2x f x x x x -=+---. 解:由1x -可得10x -≥,即1x ≥;由220x x --≠即(1)(2)0x x +-≠可得1x ≠-且2x ≠;由arccos(2)x -可得121x -≤-≤,13x ≤≤,故原函数的定义域为三部分的交集,即为[1,2)(2,3].【例1-3】判断函数的奇偶性. 1.设()f x 和()g x 为任意函数,定义域均为(,)-∞+∞,试判定下列函数的奇偶性. (1)()()()()f x f x g x g x +-++-解:由奇偶性的判定可知,()()f x f x +-与()()g x g x +-均为偶函数,故其和亦为偶函数. (2)()()()()f x f x g x g x --++-解:由奇偶性的判定可知,()()f x f x --为奇函数,()()g x g x +-为偶函数,故其和为非奇非偶函数. 2.判定函数2()ln(1)f x x x =++的奇偶性.解:因2()ln(()1)f x x x -=-+-+2ln(1)x x =-++21ln 1x x=++2ln(1)()x x f x =-++=-,故原函数为奇函数.【例1-4】计算下列极限.1.22212lim()n nn n n→∞+++.解:当n →∞时,此题是无限个无穷小之和,不能直接求极限,先变形化简再计算:222221(1)121212lim()lim lim 2n n n n n n n n n n n n →∞→∞→∞+++++++===. 2.222111lim()12n n n n n→∞++++++. 解:因22222111121nn n n n n n nn <+++<+++++,并且2l i m1n nn n→∞=+,2lim 11n nn →∞=+,故原极限值为1.(夹逼准则)3.222lim(1)nn n n→∞++.解:22(22)222222222222lim(1)lim(1)lim(1)n n n n n n n n n n n n e n n n n+⋅+→∞→∞→∞++++=+=+=.4.23lim()21nn n n →∞-+.解:21424212344lim()lim(1)lim(1)212121n nn n n n n n n e n n n +-⋅--+→∞→∞→∞---=+=+=+++. 【例1-5】计算下列极限. 1.sin limx xx→∞.解:当x →∞时,1x为无穷小,sin x 虽没有极限但却是有界函数,故根据无穷小与有界函数的乘积仍为无穷小,可得sin lim0x xx→∞=.说明:本极限与01lim sin x x x →意义是一样的.2.21lim 1n x x x x nx →+++--.解:2211111lim lim 11n n x x x x x n x x x x x →→+++--+-++-=--2121lim[1(1)(1)(1)]n n x x x x x x x --→=+++++++++++(1)1232n n n +=++++=. 说明:此题也可用洛必达法则(见第三章)求解,过程如下:2111(1)lim lim(12)12n n x x x x x n n n x nx x -→→+++-+=+++=-.3.0sin(1)lim 3x x e x→-.解:因当0x →时,sin(1)~1xx ee --,1~x e x -,故 00sin(1)11limlim 333x x x x e e x x →→--==. 说明:本题可以使用洛必达法则求解如下:00sin(1)cos(1)1lim lim 333x x x x x e e e x →→--⋅==. 4.sin 0limsin x x x e e x x→--.解:sin sin sin 00(1)lim lim 1sin sin x x x x x x x e e e e x x x x-→→--==--(0x →时,sin ~sin x x e x x --).5.23lim()2xx x x→∞++. 解:2(2)2222311lim()lim(1)lim(1)222x x x x xx x x x e x x x+⋅+→∞→∞→∞+=+=+=+++. 6.11lim(sincos )x x x x→∞+. 解:111(sin cos 1)11sin cos 11111lim(sin cos )lim[1(sin cos 1)]x x x x x xx x x x x x⋅+-+-→∞→∞+=++-211111sin cos 1sincos 12limlim lim 1lim 111110x x x x x x x x x xx xxe e e e e →∞→∞→∞→∞-+--+++=====.【例1-6】已知()f x 是多项式,且32()2lim 2x f x x x →∞-=,0()lim 3x f x x→=,求()f x . 解:利用前一极限式可令32()22f x x x ax b =+++,再利用后一极限式,得 00()3lim lim()x x f x ba x x→→==+,则 3a =,0b =,故32()223f x x x x =++.【例1-7】当0x →时,比较下列无穷小的阶. 1.2x 比1cos x -.解:因 22002limlim 211cos 2x x x x x x →→==-,故2x 与1cos x -是同阶无穷小. 2.2x 比11x +-.解:因 220limlim 01112x x x x x x→→==+-,故2x 是比11x +-高阶的无穷小. 3.11x x +--比x .解:因 0011(11)(11)lim lim (11)x x x x x x x x x x x x →→+--+--++-=++-2lim 1(11)x x x x x →==++-,故11x x +--与x 是等价无穷小. 4.2x 比tan sin x x -.解:因 2220002cos limlim lim 1tan sin sin (1cos )2x x x x x x x x x x x x x →→→===∞--⋅, 故2x 是比tan sin x x -低阶的无穷小. 说明:本题中的四个题目均可用洛必达法则求解. 【例1-8】讨论下列分段函数在指定点处的连续性.1.2,01()1,11,1x x f x x x x ⎧≤<⎪==⎨⎪+>⎩在1x =处的连续性. 解:因(1)1f =,11(1)lim ()lim 22x x f f x x ---→→===, 11(1)lim ()lim(1)2x x f f x x +++→→==+=,从而1lim ()2(1)x f x f →=≠,故函数在1x =处不连续.2.1,0()ln(1),0x e x f x x x ⎧⎪<=⎨⎪+≥⎩ 在0x =处的连续性.解:因(0)0f =,1(0)lim ()lim 0xx x f f x e ---→→===,(0)lim ()lim ln(1)0x x f f x x +++→→==+=,从而0lim ()0(0)x f x f →==,故函数在0x =处连续.【例1-9】当常数a 为何值时,函数2,0()ln(1),0x a x f x x x x-≤⎧⎪=⎨+>⎪⎩ 在0x =处连续?解:因(0)f a =-,0(0)lim ()lim(2)x x f f x x a a ---→→==-=-,10000ln(1)1(0)lim ()lim lim ln(1)lim ln(1)1xx x x x x f f x x x xx +++++→→→→+===+=+=,故由连续性可得,(0)(0)(0)f f f -+==,即1a -=,故1a =-.【例1-10】求下列函数的间断点并判断其类型. 1.1()xf x e= .解:所给函数在0x =处无定义,故0x =是间断点.又1lim x x e +→=+∞,10lim 0xx e -→=,故0x=是()f x 的第二类间断点.2.()sin xf x x= .解:所给函数在x k π=(0,1,2,k =±±)处无定义,故0x =、x k π=(1,2,k=±±)是间断点.又0lim1sin x xx→=,故0x =是第一类间断点,且是可去间断点;lim sin x k xxπ→=∞,故x k π=是第二类间断点,且是无穷间断点.3.111()1xxe f x e -=+ .解:所给函数在0x=处无定义,故0x =是间断点.又111(0)lim 11xx xe f e ++→-==+,111(0)lim 11xx xe f e --→-==-+,故0x =是()f x 的第一类间断点且是跳跃间断点.4.1arctan ,0()0,0x f x xx ⎧≠⎪=⎨⎪=⎩ . 解:该题是分段函数的连续性问题,因0x ≠时1arctanx 是初等函数,故1arctan x在0x ≠时是连续的,所以该题主要考虑分界点0x =处的连续性.由1(0)lim arctan 2x f x π++→==,01(0)lim arctan 2x f x π--→==-,可知0x =是()f x 的第一类间断点且是跳跃间断点.【例1-11】证明方程32410x x -+=在区间(0,1)内至少有一个根.证:函数32()41f x x x =-+在闭区间[0,1]上连续,又(0)10f =>,(1)20f =-<,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即32410ξξ-+= (01ξ<<),该等式说明方程32410x x -+=在区间(0,1)内至少有一个根是ξ.【例1-12】证明方程21xx ⋅=至少有一个小于1的正根.证:由题意,函数()21x f x x =⋅-在区间[0,1]上连续,又(0)10f =-<,(1)10f =>,根据零点定理,在(0,1)内至少有一点ξ,使得()0f ξ=,即210ξξ⋅-= (01ξ<<),该等式说明方程21x x ⋅=在区间(0,1)内至少有一个小于1的正根ξ.【历年真题】一、选择题1.(2010年,1分)函数211arccos 2x y x +=--的定义域是( )(A )[3,1]- (B )[3,1]-- (C )[3,1)-- (D )[1,1]-解:因 2101112x x ⎧-≥⎪⎨+-≤≤⎪⎩,故 11212x x -≤≤⎧⎨-≤+≤⎩ , 1131x x -≤≤⎧⎨-≤≤⎩ ,所以 11x -≤≤,故选(D ). 2.(2010年,1分)极限0sin3lim x xx→等于( )(A )0 (B )1 (C )13(D )3 解:00sin33limlim 3x x x xx x→→==,故选(D ). 3.(2009年,1分)极限(1)limnn n n→∞+-=( ) (A )1 (B )0 (C )∞ (D )不存在解:(1)(1)(1)lim lim[1]1lim 101n n n n n n n n n n→∞→∞→∞+---=+=+=+=,故选(A ).4.(2009年,1分)若1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,则0lim ()x f x →=( )(A )1- (B )0 (C )1 (D )不存在解:因00lim ()lim(1)1x x f x x --→→=-=-,0lim ()lim(1)1x x f x x ++→→=+=,lim ()lim ()x x f x f x -+→→≠,故0lim ()x f x →不存在,选(D ). 5.(2009年,1分)2x π=是函数tan xy x=的( ) (A )连续点 (B )可去间断点 (C )跳跃间断点 (D )第二类间断点解:因 2lim 0tan x x x π→=,故2x π=是函数tan xy x =的可去间断点,选(B ). 6.(2008年,3分)设1()sinf x x x= ,则lim ()x f x →∞等于( )(A )0 (B )不存在 (C )∞ (D )1解:1sin1lim ()lim sin lim11x x x x f x x x x→∞→∞→∞===,故选(D ).7.(2008年,3分)当0x →时,23x 是2sinx 的( )(A )高阶无穷小 (B )同阶无穷小,但不等价 (C )低阶无穷小 (D )等价无穷小解:因 22220033lim lim 3sin x x x x x x→→==,故选(B ).8.(2007年,3分)当0x →时,tan 2x 是( )(A )比sin3x 高阶的无穷小 (B )比sin3x 低阶的无穷小 (C )与sin3x 同阶的无穷小 (D )与sin3x 等价的无穷小解:因0tan 222limlim sin333x x x x x x →→==,故选(C ). 9.(2006年,2分)设()sin f x x = ,,0(),0x x g x x x ππ-≤⎧=⎨+>⎩ ,则[()]f g x =( )(A )sin x (B )cos x (C )sin x - (D )cos x - 解:当0x ≤时,[()]()sin()sin()sin f g x f x x x x πππ=-=-=--=-;当0x>时,[()]()sin()sin f g x f x x x ππ=+=+=-,故选(C ). 10.(2005年,3分)设120lim(1)xx mx e →-=,则m =( )(A )12- (B )2 (C )2- (D )12解:由11()20lim(1)lim[1()]m m xmxx x mx mx e e ⋅---→→-=+-==,得2m =-,选(C ).11.(2005年,3分)设1xy e-=是无穷大,则x 的变化过程是( )(A )0x+→ (B )0x -→ (C )x →+∞ (D )x →-∞解:0x +→时,1x →+∞,1x-→-∞,10x e -→;0x -→时,1x →-∞,1x-→+∞,1x e -→+∞;故选(B ). 二、填空题1.(2010年,2分)若函数21,1(),1x x f x x a x -+≤⎧=⎨->⎩ 在1x =处连续,则a = .解:11lim()lim(21)1x x f x x --→→=-+=-,11lim ()lim()1x x f x x a a ++→→=-=-,因()f x 在点1x =处连续,故11lim ()lim ()x x f x f x -+→→=,即11a -=-,2a =. 2.(2010年,2分)0x =是函数1()cos f x x x=的第 类间断点.解:因1lim ()lim cos0x x f x x x→→==,故0x =是函数()f x 的第一类间断点.3.(2009年,2分)设1,1()0,11,1x f x x x ⎧<⎪==⎨⎪->⎩,()x g x e =,则[(l n 2)]g f = .解:因0ln 21<<,故 (ln 2)1f =,所以 1[(ln 2)](1)g f g e e ===.4.(2009年,2分)1sin y x=在0x =处是第 类间断点.解:因0x →时,1x→∞,1sin x 没有极限,故 0x = 是第二类间断点.5.(2008年,4分)函数ln arcsin yx x =+的定义域为 .解:由题意,011x x >⎧⎨-≤≤⎩ ,故原函数的定义域为 (0,1].6.(2008年,4分)设数列n x 有界,且lim 0n n y →∞=,则lim n n n x y →∞= .解:数列可看作特殊的函数,因数列n x 有界,数列n y 为无穷小,所以根据无穷小与有界函数的乘积仍然是无穷小可得,lim 0n nn x y →∞=.7.(2008年,4分)函数31y x =+的反函数为 .解:由31yx =+可得,31y x =+,31x y =-,故反函数为 31y x =-.8.(2007年,4分)函数21arcsin 3x y -=的定义域为 .解:由21113x --≤≤得,3213x -≤-≤,即12x -≤≤,所以定义域为[1,2]-. 9.(2007年,4分)21lim()xx x x→∞-= .解:22(2)2111lim()lim(1)lim(1)x x x x x x x e x x x-⋅--→∞→∞→∞---=+=+=.10.(2006年,2分)若函数2121212(),0()12,0x x x f x xx a x +⎧->⎪=⎨+⎪-≤⎩在0x =处连续,则a = .解:0lim()lim(2)x x f x x a a --→→=-=-,22211221(3)3322000123lim ()lim()lim(1)11x x x x x x xx f x e xx+++++⋅---→→→--==+=++, 因()f x 在0x =处连续,故0lim ()lim ()x x f x f x -+→→=,即3a e --=,故3a e -=-. 三、计算题1.(2010年,5分)求极限lim xx x c x c →∞+⎛⎫⎪-⎝⎭,其中c 为常数.解:22222lim lim 1lim 1x c cxxxc x cc x x x x c c c e x c x c x c -⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.2.(2010年,5分)求极限3tan limx x xx→-. 解:22322000tan sec 1tan 1lim lim lim 333x x x x x x x x x x →→→--===. 说明:此题也可多次使用洛必达法则,解法如下:232000tan sec 12sec sec tan 1lim lim lim 363x x x x x x x x x x x x →→→--⋅===. 3.(2009年,5分)求极限 3113lim 11x x x →⎛⎫- ⎪--⎝⎭ . 解:此题为“∞-∞”型的极限,解法如下:23321111313(1)(2)lim lim lim 1111(1)(1)x x x x x x x x x x x x x →→→++--+⎛⎫-===- ⎪----++⎝⎭. 4.(2009年,5分)求极限 0limsin x x x e e x-→- .解:002limlim 2sin cos 1x x x x x x e e e e x x --→→-+===.5.(2008年,5分)求极限 2sin 2lim cos()x xx ππ→- .解:22sin 22cos2limlim 2cos()sin()(1)x x x x x x ππππ→→==----⋅-.6.(2007年,5分)求极限011lim()1x x x e →-- . 解:20000111111lim()lim lim lim 1(1)22x x x x x x x x x e x e x e x e x e x x →→→→------====--. 说明:0x →时,1~xex -.7.(2006年,4分)求极限 011limcot ()sin x x x x→- .解:2300011cos (sin )sin limcot ()lim lim sin sin x x x x x x x xx x x x x x→→→---== 2220011cos 12lim lim 336x x xx x x →→-===.8.(2006年,4分)设1cos 20()sin xf x t dt -=⎰,56()56x xg x =+,求0()lim()x f x g x →. 解:因0x →时,1cos 20()sin 0xf x t dt -=→⎰,56()056x xg x =+→,且1cos 220()(sin )sin sin(1cos )xf x t dt x x -''==-⎰,45()g x x x '=+,故 2245450000()()sin sin(1cos )(1cos )lim lim lim lim ()()x x x x f x f x x x x x g x g x x x x x →→→→'--==='++224454500011()124lim lim lim 041x x x x x x x x x x x x x→→→⋅====+++.9.(2005年,5分)求极限111lim()1ln x x x→-- .解: 1111111ln 1lim()lim lim 11ln (1)ln ln x x x x x xx x x x x x x→→→--+-==---+11111limlim ln 1ln 112x x x x x x x →→--===-+-++.。

高数大一最全知识点

高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。

掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。

下面将为大家整理总结大一高数中最全的知识点。

第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。

2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。

3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。

第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。

2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。

3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。

第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。

2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。

3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。

第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。

2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。

3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。

第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。

2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。

3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。

第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。

2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。

大学高数高数第一章(终)课后参考答案及知识总结

大学高数高数第一章(终)课后参考答案及知识总结

第一章函数、极限与连续内容概要课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① a log □,( □0>) ② /N □, ( □0≠) ③(0)≥W④ arcsin W (W[]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ;(2)31121121arcsin≤≤-⇒≤-≤-⇒-=x x x y ; (3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★ 2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,x x g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★ 3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数;思路:注意自变量的不同范围; 解:216sin)6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★ 4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。

大学数学第1章:_函数、极限、连续

大学数学第1章:_函数、极限、连续

复合函数的复合过程 u=φ(x)
y=f (u)
y=f [φ(x)]
中间 变量
关于复合函数,需要说明一点: 不是任何两个函数都可以复合成一个函数的。
例如,y=arcsinu与u=x2+8就不能复合成一个函数。 因为由函数u=x2+8确定的u的值域是[8,+∞),不在 函数y=arcsinu的定义域内。
1.1.4 反函数
定义1-6 设函数y=f (x)的定义域为D,值域为Rf 。若对
每一个 y Rf ,都有惟一确定的 xD满足f (x)=y,
那么就可以把y作为自变量,而x是y的函数。 这个新的函数称为y=f (x)的反函数,记作
y=f -1(x) 这个函数的定义域为Rf ,值域为D。 相应地,函数y=f (x)称为直接函数。
如果在定义1-10中限制x只取正值或者只取负值, 即有
limf(x)A或 limf(x)A
称函数f (xx) 当x 趋向正无穷大(或x负无 穷大)时的极限为A。
W={y|y=f (x), x∈D}
为函数的值域,也可以记作 Rf 或 f (D)。
如果自变量在定义域内任取一个数值时,对应的 函数值总是只有一个,这种函数叫做单值函数,否则 叫多值函数. 函数的表示方法有解析法(也称公式法)、图像法、 表格法等等。
还需要指出,函数可以含有一个或多个自变量。 含有一个自变量的函数称为一元函数。 含有多个自变量的函数称为多元函数。
(3) p ex2
是由 p e s 和 s x 2 复合而成的
(4) ysin3(10t)
6
是由 y u 3、usina 和a 10t 复合而成的
6
1.1.5 初等函数
常值函数、幂函数、指数函数、对数函数、三角函数

高等数学第一章第一课-2022年学习资料

高等数学第一章第一课-2022年学习资料

空集为任意集合A的子集,即Φ cA-若A与B互为子集,即AcB,且BCA,则称集合-A与B相等,记作A=B或 =A.-五、集合的运算-交集:A∩B={xxeA且xeB}:-→∩
并集:AUB={xx∈A或x∈B;-例5设A={1,2,4,6,B={2,4,7}-则AUB={1,2,3 4,6,7-A∩B={2,4-6设A={x-1≤x≤2,B={xx>0,-则AUB={xx≥-1,AnB= x0<x≤2-例7设A={xx≤1,B={x2≤x≤5}-则AUB={xx≤1,或2x≤5},AnB=D. →∩
例4设fx=x2+x-1,求f1,fa,fx+1-〔》奶-解f1=1+1-1=1-fa=a2+a-1-fx =x++x+-1-=x2+3x+1-→
f[fx]=[fx]+[fx]-1-=x2+x-1+x2+x--1-=x4+2x3-1-→∩
如果自变量在定义域内任取一个数值时-对应的函数值总是只有一个,叫做单值函数,-否则叫做多值函数.-例如:y ±V2-x2-定义:点集C={x,yy=∫x,x∈D}称为-函数y=fx的图形-→∩
第一章-函数-极限与连续-§1.1-集合-一、概念-具有某种特定性质并且可以彼此区别的事物的-总体,称为集 -集合里的每一个事物称为集合的元素。-例1方程x2-3x+2=0的根.-有限集合-→∩
例2-全体实数.常记为R.-例3-全体正实数.常记为R-例4-全体自然数.常记为N.-无限集合-若某个元素 属于集合A,则记作x∈A;-若某个元素x不属于集合A,则记作xEA.-例如:-2R,4∈N.-二、集合的表 法-1.列举法:按任意顺序列出集合的所有元素-并用花括号括起来,

高等数学第一章 函数、极限与连续第一节 函数

高等数学第一章 函数、极限与连续第一节 函数

称为函数y f ( x )的图形 .
1. 几个特殊的函数举例
(1) 符号函数
1 y
1 当x 0 y sgn x 0 当x 0 1 当x 0
o
.
-1
x
x sgn x x
(2) 取整函数 y = [x]
[x] 表示不超过 x 的最大整数
y
-4 -3 -2 -1
则称函数 f ( x )在区间 I上是单调增加的 ;
y
y f ( x)
f ( x2 )
f ( x1 )
o
I
x
设函数 f ( x )的定义域为D, 区间 I D,
如果对于区间 I 上任意两点 x1及 x 2 , 当 x1 x 2时,
恒有 ( 2) f ( x1 ) f ( x2 ),
1 1 x ln . 2 1 x
y ar tanh x
D : ( 1,1)
奇函数,
在 ( 1,1) 内单调增加 .
作业 习题1--1:1(1,4),5 习题1--2:6(2,3),8
思考题1
1 2 设 x 0 ,函数值 f ( ) x 1 x , x 求函数 y f ( x ) ( x 0)的解析表达式.
例如, y 1 x 2 1 例如, y 1 x2
D : [1,1] D : ( 1,1)
如果自变量在定 义域内任取一个数值 时,对应的函数值总 是只有一个,这种函 数叫做单值函数,否 则叫做多值函数.
y W
y
( x, y)
x
例如,x y a .
2 2 2
o
x
D
定义: 平面点集 C {( x , y ) y f ( x ), x D}

经典-高数第1章:函数、极限与连续

经典-高数第1章:函数、极限与连续

重要结论:
基本初等函数在 其定义域上 都是连续的
函数的复合
复合函数的定义 y f x
y f u
是由u x
和 x
注意: 域内
复合而成的函数
的值域应落在f(x)的定义
理解:可以理解为换元法的过程
反三角函数 f(x)=arcsinx
初等函数
注意:高中阶段对反三角函数介绍较少,
等价无穷小(注意:不是等阶)
等价无穷小的转移定理
注意:表达 方法
无穷小量
等价无穷小转移定理的应用
经典题型
比较无穷小量的高低阶 证明无穷小(大) 求特殊的极限 计算极限中的系数值
应用
函数的连续
函数连续的定义
函数在x0连续的三个条件
函数在x0及其左右有定义 函数在x0的极限存在 函数在x0的极限值等于该点的函数值,即
经典题型:怎么判断一个表达式是不是函 数?
最主要的判断方法:一个x是对应了几个y值
定义域
自变量x的取值范围 经典题型:求定义域关注哪些要点?
①分母不能为零; ②偶次根号下非负; ③对数的真数大于零; ④正切符号下的式子不等于kπ +π /2;
值域
因变量y的值的集合
经典题型
与定义域或∞有关的极限计算
0/0型
解法:通常分子分母可以化简、消项
∞/ ∞型 解法:分子、分母同时除以最高项
极限
带有开方型 解法:有理化分子(注意:是有理化 分子)
换元法
无穷小量
无穷小量定义
注意:一定要讲函数 是在趋于某个值x0时 的无穷小,否则,趋 于另外一个值时,有 可能就不是无穷小了

(完整版)高等数学笔记

(完整版)高等数学笔记

第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。

㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。

2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim 称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界. 2.函数的极限:⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x→时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim㈡无穷大量和无穷小量 1.无穷大量:+∞=)(limx f称在该变化过程中)(x f 为无穷大量。

大一高数有几章知识点

大一高数有几章知识点

大一高数有几章知识点大一高数一共有六章知识点。

以下是对每一章的简要介绍:第一章:极限与连续这一章主要介绍了函数极限的概念与性质,以及连续函数的定义和基本性质。

其中包括极限的四则运算、夹逼准则、函数极限存在的条件等内容。

第二章:一元函数的导数与微分在这一章中,我们学习了导数的定义及其基本性质。

通过对一元函数的导数定义和推导,掌握了用导数求函数的增减性、极值、凹凸区间等问题。

还学习了微分的概念和微分的应用。

第三章:一元函数的积分在这一章中,我们主要学习了定积分和不定积分的概念及其性质。

学会了利用积分求解曲线下的面积、曲线的长度、体积等问题。

同时,掌握了反常积分的概念和计算方法。

第四章:多元函数的极限与连续这一章主要介绍了多元函数的极限和连续。

通过学习多元函数的极限定义、极限存在的条件、连续函数的定义和性质,掌握了对多元函数进行极限运算和连续性分析的方法。

第五章:多元函数的偏导数与全微分在这一章中,我们学习了多元函数的偏导数和全微分的概念。

通过对多元函数的偏导数的计算和性质的研究,了解了多元函数的切平面和切线方程的求解方法。

第六章:多元函数的积分学这一章主要介绍了多元函数的重积分和曲线积分。

通过学习多重积分的概念、计算方法和应用,掌握了对二重积分和三重积分的计算。

同时,学习了曲线积分的定义和计算方法,以及格林公式和高斯公式的应用。

以上为大一高数课程的六章知识点的简要介绍。

掌握这些知识,对于深入理解数学的基本概念和方法非常重要。

希望同学们能够认真学习,并在实际问题中灵活运用这些知识。

大一高等数学教材课本目录

大一高等数学教材课本目录

大一高等数学教材课本目录第一章函数与极限1.1 实数与数轴1.2 函数概念和图像1.3 函数的极限1.4 极限的性质1.5 无穷小量与无穷大量1.6 极限存在准则1.7 常用极限1.8 函数连续概念1.9 连续函数性质第二章导数与微分2.1 导数的定义2.2 基本导数公式2.3 高阶导数2.4 微分中值定理2.5 泰勒公式与展开2.6 隐函数导数2.7 弧微分与相对误差2.8 函数的单调性与凹凸性第三章微分中值定理与导数应用 3.1 高阶导数的应用3.2 导数在近似计算中的应用3.3 中值定理的证明3.4 罗尔中值定理与其应用3.5 拉格朗日中值定理与其应用 3.6 卡内尔中值定理与其应用3.7 泰勒中值定理及其应用第四章不定积分4.1 不定积分的定义与符号4.2 基本积分表4.3 定积分与微元法4.4 牛顿-莱布尼兹公式4.5 分部积分法4.6 有理分式的积分4.7 函数积分法4.8 徒手计算的积分第五章定积分5.1 定积分定义与性质5.2 定积分的几何意义5.3 定积分的计算方法5.4 定积分在几何学中的应用5.5 牛顿-莱布尼兹公式的积分形式 5.6 广义积分的定义与判敛5.7 瑕积分的计算方法第六章微分方程6.1 微分方程的基本概念6.2 可分离变量的微分方程6.3 齐次微分方程6.4 一阶线性微分方程6.5 高阶线性微分方程6.6 化简与降阶第七章多元函数及其偏导数7.1 二元函数的概念与图像7.2 二元函数的极限与连续性 7.3 偏导数的定义与几何意义 7.4 偏导数的计算方法7.5 高阶偏导数与混合偏导数 7.6 隐函数偏导数7.7 多元函数的微分学基本定理 7.8 方向导数与梯度第八章多重积分8.1 二重积分概念与性质8.2 二重积分的计算方法8.3 二重积分在几何学中的应用 8.4 三重积分概念与性质8.5 三重积分的计算方法8.6 三重积分在几何学中的应用第九章曲线与曲面积分9.1 曲线积分的概念与性质9.2 第一类曲线积分的计算方法9.3 第二类曲线积分的计算方法9.4 曲面积分的概念与性质9.5 曲面积分的计算方法9.6 格林公式与高斯公式第十章空间曲线与格林公式10.1 空间曲线的参数方程10.2 第一类曲线积分10.3 第二类曲线积分10.4 空间曲面的参数方程10.5 曲面的面积与曲面元10.6 曲面积分10.7 格林公式和高斯公式的空间推广第十一章广义积分11.1 广义积分的概念与性质11.2 广义积分判敛方法11.3 正项级数的判敛11.4 参数积分的连续性条件11.5 瑕积分的计算方法第十二章泰勒展开与无穷级数12.1 函数的泰勒展开12.2 常用函数的泰勒展开式12.3 泰勒展开的应用12.4 函数项级数与定理12.5 幂级数的求和与收敛域12.6 函数项级数的运算与应用以上为大一高等数学教材的目录,各章节主要包括基础概念的介绍,公式的推导及性质的阐述,相关定理的证明,以及典型例题和习题的讲解。

大一高等数学的教材目录

大一高等数学的教材目录

大一高等数学的教材目录第一章:函数与极限1.1 函数的定义与性质1.2 函数的极限与连续性1.3 极限运算法则1.4 无穷小与无穷大1.5 极限存在准则第二章:导数与微分2.1 导数的定义与性质2.2 基本初等函数的导数2.3 反函数与参数方程的导数2.4 高阶导数与函数的近似2.5 微分的定义与应用第三章:积分与反常积分3.1 不定积分与换元积分法3.2 定积分与牛顿-莱布尼兹公式3.3 反常积分的概念与性质3.4 反常积分的审敛法3.5 广义积分与无穷级数第四章:多元函数与偏导数4.1 多元函数的概念与性质4.2 偏导数的定义与计算4.3 隐函数与复合函数的偏导数4.4 方向导数与梯度4.5 多元函数的极值与条件极值第五章:重积分与曲线积分5.1 二重积分的概念与性质5.2 二重积分的计算方法5.3 三重积分的概念与性质5.4 三重积分的计算方法5.5 曲线积分的定义与计算第六章:无穷级数与级数展开6.1 收敛级数与无穷级数的运算6.2 正项级数的审敛法6.3 幂级数与泰勒级数6.4 函数展开与近似计算6.5 傅里叶级数与傅里叶变换第七章:常微分方程7.1 常微分方程的基本概念7.2 可分离变量方程与一阶线性方程7.3 二阶线性常系数齐次方程7.4 二阶线性常系数非齐次方程7.5 线性方程组与常微分方程应用第八章:概率论与数理统计8.1 随机事件与概率8.2 条件概率与事件独立性8.3 随机变量与概率分布8.4 多维随机变量与联合分布8.5 统计量与抽样分布第九章:常用数学方法和定理9.1 矩阵与线性方程组9.2 特征值与特征向量9.3 数学归纳法及其应用9.4 极值、最值与不等式9.5 极限的定义与性质第十章:复变函数10.1 复数与复数函数10.2 复变函数的导数与解析函数10.3 共轭函数与全纯函数10.4 积分与柯西公式10.5 函数级数与留数定理总结:本教材涵盖了大一高等数学的核心内容,从函数与极限起步,通过导数与微分、积分与反常积分、多元函数与偏导数、重积分与曲线积分等章节的学习,引导学生掌握数学分析的基本方法和思维,为日后的数学学习打下坚实基础。

高数大一知识点总结第一章

高数大一知识点总结第一章

高数大一知识点总结第一章在大一的数学课程中,高等数学(简称高数)是一门重要的基础课程。

在高等数学的学习中,第一章涵盖了很多基础知识点,包括数列与极限、函数与极限以及连续性等内容。

接下来,我将对这些知识点进行总结和概述。

1. 数列与极限数列是由一系列有序的数所组成的序列。

在数列的学习中,我们需要了解等差数列和等比数列两种基本类型。

等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

等比数列的通项公式为an=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

极限是数列中的一个重要概念。

如果一个数列的前n项无限接近于某个常数a,那么我们称这个常数a为该数列的极限,记作lim(n→∞)an=a。

通过计算数列的极限,我们可以探讨数列的性质、趋势以及收敛性。

2. 函数与极限函数是一种关系,将一个自变量映射到一个因变量。

数学中有多种类型的函数,如线性函数、二次函数、指数函数和对数函数等。

函数的图像反映了自变量和因变量之间的关系。

函数的极限是研究函数性质的重要内容。

如果一个函数在某个点处的自变量无限接近于某个常数x0时,其因变量也无限接近于某个常数a,我们称这个常数a为该函数在点x0处的极限。

记作lim(x→x0)f(x)=a。

通过研究函数的极限,我们可以了解函数在不同自变量值下的表现和趋势。

3. 连续性连续性是函数的一种性质,反映了函数在一定区间内的光滑程度。

如果一个函数在某个点处的极限等于该点处的函数值,那么我们称这个函数在该点处连续。

函数的连续性可以分为左连续、右连续和间断。

我们可以利用函数的连续性来探讨函数的变化情况和特性。

通过分析函数的连续性,可以判断函数是否在某一区间内单调增加或者单调减少。

4. 极大值与极小值极大值和极小值是函数图像上的特殊点。

对于定义在某个区间的函数,如果存在一个点x0使得在该点的某个领域内,函数值都小于等于f(x0),那么我们称该点x0为函数的极大值点。

大一高数第一章知识点总结

大一高数第一章知识点总结

大一高数第一章知识点总结导言:大一高数作为大学数学的入门课程,对于大多数理工科专业的学生来说,是一门重要且必修的课程。

在大一高数中,第一章是基础知识的引入和应用部分。

本文将对大一高数第一章的知识点进行总结和概述,以帮助同学们更好地掌握这一章的内容。

一、数集与区间在大一高数中,我们首先需要了解数集和区间的概念。

数集是由一堆数构成的集合,可以是有限个数,也可以是无限多个数。

数集的分类有有理数集、无理数集、整数集等等,每个数集都有其特定的性质和表示方法。

而区间可以看作是一个连续的数集,常见的包括开区间、闭区间和无穷区间等。

掌握数集与区间的概念对于理解后续章节的内容具有重要的意义。

二、实数与数轴实数是数学中一个重要的基础概念,是有理数和无理数的统称。

大一高数中,我们需要了解实数的性质及其在数轴上的表示。

数轴可以看作是一个直线上的点与实数的对应关系,在数轴上,我们可以通过点的位置来表示实数的大小关系,掌握实数的概念和在数轴上的表示能够帮助我们更好地理解实数的性质。

三、集合在大一高数的第一章中,集合是一个必不可少的概念。

集合是指具有某种特定性质的对象的总体,它由元素组成。

大一高数中,我们需要掌握集合的表示方法、集合的运算、常见的集合运算律以及集合之间的关系等。

掌握集合的知识对于理解后续章节的内容非常重要。

四、函数函数是数学中一个重要的概念,也是大一高数中的重点内容。

函数可以看作是一个输入与输出的对应关系,通常用字母表示。

大一高数中,我们需要了解函数的定义、函数的性质以及函数的图像表示等。

函数的概念在工程和科学领域中具有广泛的应用,掌握函数的知识对于解决实际问题至关重要。

五、极限与连续极限和连续是大一高数中的核心概念,也是数学分析的基础。

在大一高数中,我们需要了解极限的定义、极限的性质以及常见的极限计算方法。

而连续则是指函数在某一点附近的值与该点处函数值之间的无缝连接。

了解极限和连续的概念能够帮助我们更好地理解函数的性质和行为。

高数第一章知识点总结

高数第一章知识点总结

高数第一章知识点总结导读:篇一:高数第一章知识点总结1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。

数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。

6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。

差分方程的基本概念与一介常系数线形方程求解方法打有准备之战,胜算才能更大。

希望各2015考研生抓紧时间复习,在考研中取得好成绩。

一分耕耘一分收获。

加油!【高数第一章知识点总结】1.高数下知识点总结大全2.高数知识点总结心得3.高数上知识点总结4.高数重要知识点总结怎么写5.成考高数二知识点总结6.考研高数知识点总结7.大一高数一知识点总结8.考研高数二知识点总结上文是关于高数第一章知识点总结,感谢您的阅读,希望对您有帮助,谢谢。

大一高数总结上册

大一高数总结上册

0 0 0 0 2n→ 第一章 函数、极限、连续(小结)一、函数1. 邻域:U (a ) ,U (a )以a 为中心的任何开区间;π2. 定义域: y = tan x {x ≠ k π+}; 2π πy = cot x {x ≠ k π};π πy = arctan x {x ∈ R , y ∈(- , )} ;y = arcsin x 2 2 {x ∈[-1,1], y ∈[- , ]}2 2y = arccos x {x ∈[-1,1], y ∈[0,π]} .二、极限1. 极限定义:(了解)lim x = a ⇔ 若对于∀ε> 0 , ∃N ∈ Z + , st . 当 n > N 时,有| x- a |< ε;n →∞ nnNote: | x n - a |< ε→ n > ?lim f (x ) = A ⇔ ∀ε> 0 , ∃δ> 0 , st .x →x 0当0 < x - x 0 < δ时,有 f (x ) - A < ε;Note : f (x ) - A < ε→ x - x 0 < ?lim f ( x ) = A ⇔ ∀ε> 0 , ∃X > 0 , st . 当 x x →∞> X 时,有 f (x ) - A < ε;Note : f (x ) - A < ε→ x > ?2. 函数极限的计算(掌握)(1) 定理: lim x →x -f ( x ) = A ⇔ f (x - ) = f (x +) = lim x →x -f ( x ) = A ;(分段函数) (2) 0 型:①约公因子,有理化; 比如: lim x 2-1 3 , lim 2; 0 ②重要极限lim sin x =lim x →1 x -1 sin u (x ) =1 ;x →1 x + x - 2 x →0 x u ( x )→0 u (x )③等价无穷小因式代换: tan x x , sin x x , arc sin x x ,1- cos x ~ 1x 2,-1 ~ 1 x , e x-1 ~ x , ln(1 + x ) ~ x∞ - ∞ 型:先通分; 比如: lim1- 2x →1 1 - x 1 - x 2∞型:转化为无穷小; 比如: lim ∞x →∞ x x 2 + 1 2+ x - 2111∞型: 重要极限lim (1 + x )x = x 0lim u ( x )→0(1 + u ( x ) )u (x ) = e ;(3) 无穷小量:无穷小⋅ 无穷小=无穷小;无穷小⋅ 有界量=无穷小n 2 + 1n 2 + 2n 2 + n 0 0 0 0 00 0 0 0 0 0 比如: lim cos xx →∞ 2x(4) 函数极限与无穷小的关系:lim f ( x ) = A ⇔ f ( x ) = A + α, 其中:lim α= 0(抽象函数)x → x 0x → x 0(5) 微分中值定理: f (b ) - f (a ) = f '(ξ) ;比如: lim arctan x - arctan1(第 3 章)b - ax →1 x -1(6) 罗必达法则: lim f (x ) = limf '(x ) ⎛ 0 , ∞ ⎫ 比如: lim tan x - x(第 3 章) x → x 0 g (x ) x → x 0 g '(x ) 0 ∞ ⎪x →0 x 2 sin x⎝ ⎭3. 数列极限的计算:夹逼原则: lim1 +1n →∞+ 1积分定义: lim 1 ∑n 1 + i = ⎰ 1 + xdx ; lim q n = 0(| q |< 1) ; lim n a =1 .(第五章) n →∞ n i =1 n 0n →∞ n →∞三、连续1. 函数在点 x 0 处连续: lim f ( x ) = f ( x 0 ) .x →x 0一切初等函数在其定义域都是连续的.2. 闭区间上函数连续的性质:最大最小值定理:若 f (x ) 在[ a , b ] 上连续,则 f (x ) 在[ a , b ] 上一定有最大、最小值. 零点定理:设 f (x ) ∈C [ a , b ] ,且 f (a ) ⋅ f (b ) < 0 ,⇒ 至少有一点ξ∈( a , b ) ,使得 f (ξ) = 0介值定理:设 f (x ) ∈C [ a , b ] ,且 f (a ) = A , f (b ) = B , A ≠ B⇒ 则对 A , B 之间的任意常数C ,至少有一点ξ∈( a , b ) ,使得 f (ξ) = C .四、间断点1. 第一类间断点:f (x - ) 、 f (x + ) 存在若 f (x -) = f (x +) ≠ f (x ) ,则称 x 为可去间断点; 若 f (x -) ≠ f (x +) ,则称 x 为跳跃间断点; 2. 第二类间断点:f (x - ) 、 f (x +) 至少一个不存在若其中一个趋向∞ ,则称 x 0 为无穷间断点; 若其中一个为振荡,则称 x 0 为振荡间断点;1dy dx dt dt ⎩ 第二章 导数与微分(小结)一、导数的概念1. f '(x ) = lim∆y= lim f (x 0 + ∆x ) - f (x 0 ) = lim f (x 0 + h ) - f (x 0 )∆ x →0 ∆ x ∆ x →0 ∆ xh →0 hNote :①该定义主要用于相关定理的分析与证明;②导函数求导公式: f '(x ) = limh →0f (x + h ) - f (x ).h2. 分段函数在分段点处可导性判别:定理: f (x ) 在 x 0 处可导⇔ f (x ) 在 x 0 处即左可导,又右可导f '(x ) = limf (x ) - f (x 0 ) , f '(x ) = lim f (x ) - f (x 0 ) .+x → x 0x - x 0 - 0 x → x 0 x - x 03. 导数的几何意义:切线斜率,即 k = f '(x 0 )当 f '(x 0 ) ≠ ∞ 时,曲线在点(x 0 , y 0 ) 处的切线、法线方程为:切线方程: y - y = f '(x )(x - x ) ;法线方程:y - y = - 1(x - x )二、导数的运算f '(x 0 )1. 四则运算: [u (x ) ± v (x )]' = u '(x 0 ) ± v '(x 0 ) ;[u (x )v (x )]' = u '(x )v (x ) + u (x )v '(x ) ;⎡ u (x ) ⎤' u '(x )v (x ) -u (x )v '(x ) ⎢ v (x ) ⎥ = ; v 2(x )⎣ ⎦2. 反函数求导: y = f (x ) , x = ϕ( y ) 互为反函数,则 f '(x ) =1ϕ'( y )3. 复合函数求导: y = f [ϕ(x )],则d y= d xf '(u ) ⋅ϕ'(x ) . 4. 隐函数求导: F (x , y ) = 0 两边关于 x 求导,把 y 看成是 x 的函数.⎧x = x (t ), 5. 参数方程: ⎨ y = y (t ),则dy = dy ⋅ dt = = y '(t )dx dt dx x '(t )三、微分1. 微分的概念:若有 ∆y =f (x 0 + ∆x ) - f (x 0 ) =A ∆ x + o (∆x ) 成立,记作: dy = A ∆x dyNote : dy = A ∆x = Adx = f '(x )dx ,y = f (x ), dy = f '(x )dx ;2. 微分在近似计算中的应用(1)近似计算f (x ) ≈ f (x 0 ) + f '(x 0 )(x - x 0 ) .+-0 ⎭ ⎭ 第三章 微分中值定理及导数的应用一、微分中值定理1、罗尔(Rolle)中值定理: (a , b ) 内至少存在一点ξ,使得 f '(ξ) = 0 .Note :① 证明导函数根的存在性. ② 证明原函数根的唯一性.2、拉格朗日中值定理:在(a , b ) 内至少存在一点ξ,使得 Note :① 把f (b ) - f (a ) 用 f '(ξ) 做代换,求极限.b - a② 由 a < ξ< b 建立不等式,用于证明不等式.f '(ξ) = f (b ) - f (a ) .b - af '(ξ)f (b ) - f (a )3、柯西中值定理:在(a , b ) 内至少存在一点ξ,使得: g '(ξ) = g (b ) - g (a )Note :用于说明洛必达法则.二、洛必达法则(1) 可结合两个重要极限、等价无穷小代换,约公因子等方法灵活运用. (2) 若∞-∞ ,不为分式,可通过令: x = 1 ,创造分式.t比如: lim[x 2ln(1 + 1) - x ] 0x →∞x∞0通分取倒数 取对数∞-∞ → ← 0 ⋅∞ ← ← 00三、函数图形的描绘(1)写定义域,研究 f (x ) 的奇偶性、周期性;∞1∞∞(2)求 f '(x ) , f '(x ) ;(3) 令 f '(x ) = 0⎫ ⇒ 可疑极值点 x , f '(x ) = 0⎫⇒ 可疑拐点 x ;f '(x )不∃ ⎬ 1f '(x )不∃ ⎬2(4) 补充个别特殊点,求渐近线: lim f ( x ) = C , lim f (x ) = ∞ ;x →∞x →x 0(5) 列表分析单调性、凹凸性、拐点、极值点; (6)画图五、最值的计算:(1)求 f (x ) 在(a , b ) 内的可疑极值点: x 1, x 2, , x mx1- x 2⎰ 4x d x = 1a d x = + C(2)最大值: M = max { f (x 1), f (x 2 ) , , f (x m ), f (a ), f (b ) } 特别的,(1) f (x ) 在 [a , b ] 上只有一个可疑极值点,若此点取得极大值,则也是最大值点.(2) f (x ) 在 [a , b ] 上单调时,最值必在端点处达到.(3) 对应用问题 , 有时可根据实际意义判别求出的可疑点是否为最大 值点或最小值点 .第四章 不定积分一、不定积分: ⎰f (x )d x = F (x ) + C , Note : ① C 为积分常数不可丢!② d⎡⎰f (x )d x ⎤ = f (x )⎰ F '(x ) d x = F (x ) + Cdx ⎣ ⎦ ③ ⎰[ f (x )+ g (x )]d x = ⎰ f (x )d x + ⎰ ④几个常用的公式g (x ) d x ; ⎰ kf (x )d x = k ⎰ f (x )d x .μμ+1xa x1⎰ μ+1⎰ ln a ⎰ x ⎰sec x tan x d x = sec x + C ,⎰ c sc x cot x d x = - csc x + C ,二、 换元积分法:1. ⎰f [ϕ(x )]ϕ'(x )d xu =ϕ( x )=⎰ f (u ) d u .Note :①常见凑微分:dx = d (x + c ), xdx = 1d (x 2 + c ), 21 dx = 2d (+ c ),1 dx = d (ln | x | +c )x1 1+x 2dx = d (arc tan x ) = -d (arc cot x ), 1dx = d (arcsin x ) = -d (arc cos x )②适用于被积函数为两个函数相乘的情况,若被积函数为一个函数,比如:⎰(e2 x⋅1)d x ,若被积函数多于两个,比如:sin x cos xd x ,要分成两类;1+ sin x③一般选择“简单”“熟悉”的那个函数写成ϕ'(x ) ; ④若被积函数为三角函数偶次方,降次;奇次方,拆项;u =ϕ( x )2. ⎰ f (u ) d u = ⎰f [ϕ(x )]ϕ(' x )d xx x + C ,d x = ln x + Cx 2 - a 2 a 2 - x 2 a 2 + x 2 x c x +d⎝ ⎭∑ i i b bNote :常见代换类型:⎰ f (x , nax + b ) d x, t = ⎰f (x , ) d x, x = a sec t ⎰f (x , ) d x , x = a sin t ⎰f (x , ) d x , x = a tan t ⎰ f (a x) d x ,t = a x⎰ f (x ,na x +b) d x , t三、分部积分法: ⎰u v 'd x = uv - ⎰u 'v d x .Note :①按“ 反对幂指三” 的顺序,谁在前谁为u② ⎰ u 'v 要比⎰u v ' 容易计算;③适用于两个异名函数相乘的情况,若被积函数只有一个,比如:⎰ arcsin x ⋅1dx , ⎰ e xdx (t = ); ④多次使用分部积分法:u u ' u ' → 求导 v ' v三、 有理函数的积分⎰ v→ 积分⎛ P (x ) ⎫1. 假分式= 多项式 + 真分式 Q (x ) ⎪ ;2. 真分式= (拆成)若干部分分式之和;Note:拆项步骤:①将分母分解: Q (x ) = (x - a )2⋅(x 2+ p x + q )2②根据因式的情况将真分式拆成分式之和:( p2- 4q < 0)3. 逐项积分.P 1 (x ) = Q (x ) A 1 x - a + A 2 ( x - a )2 + B 1x +C 1 +x 2 + p x + q B 2 x +C 2(x 2 + p x + q ) 2注:有时一个题目会用到几种积分方法,要将所有的方法灵活运用,融会贯通!第五章 定积分一、 定积分的概念及性质bn(b - a )i 1. 定义:⎰af (x )dx = lim f (ξ)∆x λ→0i =1,其中ξi = n;2. 几何意义: f (x ) ≥ 0 ,⎰a f (x ) d x ——曲边梯形面积f (x ) ≤ 0 , ⎰af (x ) d x ——曲边梯形面积的负值n ax + b n a x +bc x +dbb b b = - ≤⎰abaaab →-∞aa a= 3. 性质:baa(1)⎰af (x ) d x = -⎰b f (x ) d x ⎰af (x ) d x = 0(2) ⎰a d x = b - a(3)⎰a k f (x ) d x = k ⎰af (x ) d x ;bbb(4)⎰a [ f (x ) ± g (x )]d x = ⎰a f (x ) d x ± ⎰a g (x ) d x ;bcb(5)⎰af (x ) d x = ⎰a f (x ) d x + ⎰c f (x ) d x ;(6)若在[a , b ] 上 f (x ) ≥ 0 ,则⎰af (x ) d x ≥ 0 ;(7) 设 M = max f (x ), [a , b ]bb m min f (x ) ,则 m (b a ) [a , b ]f (x ) d x ≤ M (b - a ) ;(8)积分中值定理:⎰af (x ) d x = f (ξ)(b - a ) ,ξ∈[a , b ] .4. 变上限函数: Φ(x ) =⎰af (t ) d tdNote : d x⎰x f (t ) d t = - f (x ) ; d x φ( x )a f (t ) d t f [φ(x )]φ'(x )d φ( x ) d ⎡ a f (t ) d t f (t ) d t +φ(x ) f (t ) d t ⎤ d x ⎰ψ( x )d x ⎢ ⎰ψ( x ) ⎰a ⎥ ⎣ ⎦= f [φ(x )]φ'(x ) - f [ψ(x )]ψ'(x )5. 牛顿—莱布尼茨公式:⎰ bf (x ) d x = F (x ) b= F (b ) - F (a ) .aa二、 定积分的计算1. 换元积分:换元必须换限,无需变量回代,凑微分不必换限;2. 分部积分: ⎰buv 'dx = uv b- ⎰bu 'vdx ;3. 若 f (x ) 为奇函数,则⎰- a f (x )dx = 0 ;若 f (x ) 为偶函数,则⎰- a f (x )dx = 2⎰0 f (x )dx .aa+∞a4. 广义积分: ⎰-∞f (x )dx = lim ⎰b f (x )dx ; ⎰bf (x )dx = lim a →∞f (x )dx ;三、 定积分的应用 1. 平面图形的面积直角坐标: A =⎰af (x ) d xx d ⎰ ⎰b= bb β⎨y =ψ(t ) β b ⎰ ⎰bd推广: A=⎰a[ f (x ) - g (x )]dxA=⎰c [ f ( y ) - g ( y )]dy极坐标: A = 1 ⎰ βφ2(θ) d θ2. 曲线的弧长 (1) s =⎰a2 αd x = ⎰a 1+ f ' (x ) d x , y = f (x ) (a ≤ x ≤ b ) 2(2) s =⎰α d t , ⎧ x = φ(t )(α≤ t ≤ β) ⎩(3) s =⎰αd θ, r = r (θ)(α≤θ≤ β)3. 已知平行截面面积函数为 A (x ) 的立体体积:V = ⎰aA (x ) d xNote :特别的,当立体为曲线 f (x ) 绕坐标轴形成的旋转体时,① f (x ) 绕 x 轴:V =bπ[ f (x )]2d x a② f (x ) 绕 y 轴:V =bπ[φ( y )]2d y a1+ y '2φ'2(t ) +ψ'2(t ) r 2 (θ) + r '2 (θ) b。

大一上学期高等数学必记公式

大一上学期高等数学必记公式

第一章:1、极限2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法 2、分部积分法(注意加C )定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面4、空间旋转面(柱面)高数解题技巧。

(高等数学、考研数学通用)高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE 可逆,则先分解因子aA+bE再说。

●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 函数、极限与连续由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数.极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述.第一节 变量与函数一、变量及其变化范围的常用表示法在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ⎡⎤⎣⎦,即 ,{|}a b x a x b =≤≤⎡⎤⎣⎦;满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即(,){|}a b x a x b =<<;满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ⎤⎦ (或),a b ⎡⎣),即(,{|}a b x a x b =<≤⎤⎦ (或),{|}a b x a x b =≤<⎡⎣),左开右闭区间与右开左闭区间统称为半开半闭区间,实数a ,b 称为区间的端点.以上这些区间都称为有限区间.数b a -称为区间的长度.此外还有无限区间:(){|}x x -∞+∞=-∞<<+∞=R ,,(,{|}b x x b -∞=-∞<≤⎤⎦,(,){|}b x x b -∞=-∞<<, ){|}a x a x +∞=≤<+∞⎡⎣,, (){|}a x a x +∞=<<+∞,,等等. 这里记号“-∞”与“+∞”分别表示“负无穷大”与“正无穷大”.邻域也是常用的一类区间.设0x 是一个给定的实数,δ是某一正数,称数集:{}00|x x δxx δ-<<+为点0x 的δ邻域,记作0(,)U x δ.即(){}000,|U x δx x δx x δ=-<<+称点0x 为该邻域的中心,δ为该邻域的半径(见图1-1).称{}00(,)U x δx -为0x 的去心δ邻域,记作0(,)x δoU ,即{}00(,)|0U x δx x x δ︒=<-<图1-1下面两个数集(){}000,|U x δx x δx x ︒-=-<<,(){}000,|U x δx xx x δ︒+=<<+,分别称为0x 的左δ邻域和右δ邻域.当不需要指出邻域的半径时,我们用0()U x ,0()x oU 分别表示0x 的某邻域和0x 的某去心邻域,(),x δ-oU ,(),U x δ︒+分别表示0x 的某左邻域和0x 的某右邻域.二、函数的概念在高等数学中除了考察变量的取值范围之外,我们还要研究在同一个过程中出现的各种彼此相互依赖的变量,例如质点的移动距离与移动时间.曲线上点的纵坐标与该点的横坐标,弹簧的恢复力与它的形变,等等.我们关心的是变量与变量之间的相互依赖关系,最常见的一类依赖关系,称为函数关系.定义 1 设A ,B 是两个实数集,如果有某一法则f ,使得对于每个数x A ∈,均有一个确定的数y B ∈与之对应,则称f 是从A 到B 内的函数.习惯上,就说y 是x 的函数,记作()y f x = ()x A ∈其中,x 称为自变量,y 称为因变量,()f x 表示函数f 在x 处的函数值.数集A 称为函数f 的定义域,记为()D f ;数集{}()|(),f A y y f x x A B ==∈⊆称为函数f 的值域,记作()R f .从上述概念可知,通常函数是指对应法则f ,但习惯上用“() ,y f x x A =∈”表示函数,此时应理解为“由对应关系()y f x =所确定的函数f ”.确定一个函数有两个基本要素,即定义域和对应法则.如果没有特别规定,我们约定:定义域表示使函数有意义的范围,即自变量的取值范围.在实际问题中,定义域可根据函数的实际意义来确定.例如,在时间t 的函数()f t 中,t 通常取非负实数.在理论研究中,若函数关系由数学公式给出,函数的定义域就是使数学表达式有意义的自变量x 的所有可以取得的值构成的数集.对应法则是函数的具体表现,它表示两个变量之间的一种对应关系.例如,气温曲线给出了气温与时间的对应关系,三角函数表列出了角度与三角函数值的对应关系.因此,气温曲线和三角函数表表示的都是函数关系.这种用曲线和列表给出函数的方法,分别称为图示法和列表法.但在理论研究中,所遇到的函数多数由数学公式给出,称为公式法.例如,初等数学中所学过的幂函数、指数函数、对数函数、三角函数与反三角函数都是用公式法表示的函数.从几何上看,在平面直角坐标系中,点集()(){(,)|,}x y y f x x D f =∈称为函数()y f x =的图像(如图1-2所示).函数()y f x =的图像通常是一条曲线,()y f x =也称为这条曲线的方程.这样,函数的一些特性常常可借助于几何直观来发现;相反,一些几何问题,有时也可借助于函数来作理论探讨.现在我们举一个具体函数的例子.图1-2例1求函数y . 解 要使数学式子有意义,x 必须满足> ,240,10x x ⎧-≥⎪⎨-⎪⎩即 >2,1.x x ⎧≤⎪⎨⎪⎩由此有 12x <≤,因此函数的定义域为(12⎤⎦,.有时一个函数在其定义域的不同子集上要用不同的表达式来表示对应法则,称这种函数为分段函数.下面给出一些今后常用的分段函数.例2 绝对值函数<,0,,0.x x y x x x ≥⎧==⎨-⎩ 的定义域()()D f =-∞+∞,,值域()[0,)R f =+∞,如图1-3所示. 例3 符号函数<>1,0,sgn 0,0,1,0x y x x x -⎧⎪===⎨⎪⎩的定义域()()D f =-∞+∞,,值域()11{0}R f =-,,,如图1-4所示.图1-3 图1-4例4 最大取整函数y x =⎡⎤⎣⎦,其中x ⎡⎤⎣⎦表示不超过x 的最大整数.例如,113⎡⎤-=-⎢⎥⎣⎦,00=⎡⎤⎣⎦,12⎡⎤=⎣⎦,π3=⎡⎤⎣⎦等等.函数y x =⎡⎤⎣⎦的定义域()()D f =-∞+∞,,值域(){}R f =整数.一般地,y x n ==⎡⎤⎣⎦,1n x n ≤<+,120,,n =±±L ,,如图1-5所示.图1-5在函数的定义中,对每个()x D f ∈,对应的函数值y 总是唯一的,这样定义的函数称为单值函数.若给定一个对应法则g ,对每个()x D g ∈,总有确定的y 值与之对应,但这个y 不总是唯一的,我们称这种法则g 确定了一个多值函数.例如,设变量x 与y 之间的对应法则由方程2225x y +=给出,显然,对每个55[,]x ∈-, 由方程2225x y +=可确定出对应的y 值,当5x =或5-时,对应0y =一个值;当55(,)x ∈-时,对应的y 有两个值.所以这个方程确定了一个多值函数.对于多值函数,往往只要附加一些条件,就可以将它化为单值函数,这样得到的单值函数称为多值函数的单值分支.例如,由方程2225x y +=给出的对应法则中,附加“0y ≥”的条件,即以“2225x y +=且0y ≥”作为对应法则,就可以得到一个单值分支()2125y g x x ==-;附加“0y ≤”的条件,即以“2225x y +=且0y ≤” 作为对应法则, 就可以得到一个单值分支22()25y g x x ==--.关系的,如高度为一定值的圆柱体的体积与其底面圆半径r 的关系,就是通过另外一个变量其底面圆面积S 建立起来的对应关系.这就得到复合函数的概念.定义2 设函数()y f u =的定义域为()D f ,函数()u g x =在D 上有定义,且()()g D D f ⊆.则由下式确定的函数()()y f g x =,x D ∈称为由函数()y f u =与函数()u g x =构成的复合函数,记作()()()()y f g x f g x =︒=,x D ∈,它的定义域为D ,变量u 称为中间变量.这里值得注意的是,D 不一定是函数()u g x =的定义域()D g ,但()D D g ⊆.D 是()D g 中所有使得()()g x D f ∈的实数x 的全体的集合.例如,()y f u u ==, ()21u g x x ==-.显然,u 的定义域为(),-∞+∞,而()(0,)D f =+∞.因此,11,D -⎡⎤⎣⎦=,而此时1()0,R f g ︒=⎡⎤⎣⎦.两个函数的复合也可推广到多个函数复合的情形.例如, log a μxu y x a ==()10a a >≠且可看成由指数函数u y a =与log a u μx =复合而成.又形如()log ()()()a v x u x v x y u x a ==()0u x ⎡⎤⎣⎦>()10a a >≠且的函数称为幂指函数,它可看成由wy a =与()log ()a w v x u x =复合而成. 而y =可看成由y =sin u v =,2v x =复合而成.例5 设()1xf x x =+()1x ≠-,求()()()f f f x解 令()y f w =,()w f u =,()u f x =,则()()()f f f x 是通过两个中间变量w 和u 复合而成的复合函数,因为()111121x x x x uxw f u u x ++====+++,12x ≠-;()2121,1131xx x x wxy f w w x ++====+++13x ≠-,所以 ()()()31x f f f x x =+,111,,23x ≠---.定义3 设给定函数()y f x =,其值域为()R f .如果对于()R f 中的每一个y 值,都有只从关系式()y f x =中唯一确定的x 值与之对应,则得到一个定义在()R f 上的以y 为自变量,x 为因变量的函数,称为函数()y f x =的反函数,记为()1x fy -=.从几何上看,函数()y f x =与其反函数()1x f y -=有同一图像.但人们习惯上用x 表示自变量,y 表示因变量,因此反函数()1xf y -=常改写成()1y f x -=.今后,我们称()1y f x -=为()y f x =的反函数. 此时,由于对应关系1f-未变,只是自变量与因变量交换了记号,因此反函数()1y fx -=与直接函数()y f x =的图像关于直线y x =对称,如图 1 - 6所示.图1-6值得注意的是,并不是所有函数都存在反函数,例如函数2y x =的定义域为()-∞+∞,,值域为,但)0+∞⎡⎣,对每一个()0y ∈+∞,,有两个x 值即1x =和2x =因此x 不是y 的函数,从而2y x =不存在反函数.事实上,由逆映射存在定理知,若f 是从()D f 到()R f 的一一映射,则f 才存在反函数1f -.例6 设函数(1)1xf x x +=+ ()1x ≠-,求()11f x -+.解 函数()1y f x =+可看成由()y f u =,1u x =+复合而成.所求的反函数()11y f x -=+可看成由()1y fu -=,1u x =+复合而成.因为()11x u f u x u-==+,0u ≠, 即1u y u -=,从而,()11u y -=-, 11u y=-,所以 ()111y f u u-==-, 因此 ()1111,01(1)f x x x x-+==-≠-+.三、函数的几种特性1. 函数的有界性设函数()f x 在数集D 上有定义,若存在某个常数L ,使得对任一x D ∈有()f x L ≤(或()f x L ≥),则称函数()f x 在D 上有上界(或有下界),常数L 称为()f x 在D 上的一个上界(或下界);否则,称()f x 在D 上无上界(或无下界).若函数()f x 在D 上既有上界又有下界,则称()f x 在D 上有界;否则,称()f x 在D 上无界.若()f x 在其定义域D f ()上有界,则称()f x 为有界函数.容易看出,函数()f x 在D 上有界的充要条件是:存在常数M>0,使得对任一x D ∈,都有()f x M ≤.例如,函数sin y x =在其定义域()-∞+∞,内是有界的,因为对任一()x ∈-∞+∞,都有sin 1x ≤,函数1y x=在()10,内无上界,但有下界. 从几何上看,有界函数的图像界于直线y M =±之间.2. 函数的单调性设函数()f x 在数集D 上有定义,若对D 中的任意两数12,x x 12()x x <,恒有()()12f x f x ≤ [或()()12f x f x ≥],则称函数()f x 在D 上是单调增加(或单调减少)的.若上述不等式中的不等号为严格不等号,则称为严格单调增加(或严格单调减少)的.在定义域上单调增加或单调减少的函数统称为单调函数;严格单调增加或严格单调减少的函数统称为严格单调函数.如图1-7所示.图1-7例如,函数()3f x x =在其定义域()-∞+∞,内是严格单调增加的;函数()cos f x x =在π0,()内是严格单调减少的. 从几何上看,若()y f x =是严格单调函数,则任意一条平行于x 轴的直线与它的图像最多交于一点,因此()y f x =有反函数.3. 函数的奇偶性设函数()f x 的定义域()D f 关于原点对称(即若()x D f ∈,则必有()x D f -∈.若对任意的()x D f ∈,都有()()f x f x -=-[或()()f x f x -=],则称()f x 是()D f 上的奇函数(或偶函数).奇函数的图像对称于坐标原点,偶函数的图像对称于y 轴,如图1-11所示.图1-8例7 讨论函数()(ln f x x =的奇偶性. 解 函数()f x 的定义域()-∞+∞,是对称区间,因为()(lnln f x x ⎛⎫-=-= (()ln x f x =-+=-所以,()f x 是()-∞+∞,上的奇函数. 4. 函数的周期性设函数()f x 的定义域为()D f ,若存在一个不为零的常数T ,使得对任意()x D f ∈,有x T D f ±∈()(),且f x T f x +=()(),则称()f x 为周期函数,其中使上式成立的常数T 称为()f x 的周期,通常,函数的周期是指它的最小正周期,即:使上式成立的最小正数T T (如果存在的话).例如,函数sin f x x =()的周期为π2;()tan f x x =的周期是π. 并不是所有函数都有最小正周期,例如,狄利克雷(Dirichlet )函数为数为无数10 ,) (,x D x x ⎧=⎨⎩有理,理.任意正有理数都是它的周期,但此函数没有最小正周期.四、函数应用举例下面通过几个具体的问题,说明如何建立函数关系式.例8 火车站收取行李费的规定如下:当行李不超过50千克时,按基本运费计算.如从上海到某地每千克以0.15元计算基本运费,当超过50千克时,超重部分按每千克0.25元收费.试求上海到该地的行李费y (元)与重量x (千克)之间的函数关系式,并画出函数的图像.解 当500x <≤时,150.y x =;当50x >时,1552550.00.(0)y x =⨯+-. 所以函数关系式为:0.15, 050;7.50.25(50),50.x x y x x <≤⎧=⎨+->⎩这是一个分段函数,其图像如图1-9所示.图1-9例9 某人每天上午到培训基地A 学习,下午到超市B 工作,晚饭后再到酒店C 服务,早、晚饭在宿舍吃,中午带饭在学习或工作的地方吃.A B C ,,位于一条平直的马路一侧,且酒店在基地与超市之间,基地与酒店相距3km ,酒店与超市相距5km ,问该打工者在这条马路的A 与B 之间何处找一宿舍(设随处可找到),才能使每天往返的路程最短. 解 如图1-10所示,设所找宿舍D 距基地A 为x (km ),用f x ()表示每天往返的路程函数.图1-10当D 位于A 与C 之间,即30x ≤≤时,易知()()8823222f x x x x x =++-+-=-(), 当D 位于C 与B 之间,即38x ≤≤时,则()882312()()0.f x x x x x =++-+-=+ 所以22,03;()102,38.x x f x x x -≤≤⎧=⎨+≤≤⎩这是一个分段函数,如图1-11所示,在30,⎡⎤⎣⎦上,()f x 是单调减少,在38,⎡⎤⎣⎦上,()f x 是单调增加.从图像可知,在3x =处,函数值最小.这说明,打工者在酒店C 处找宿舍,每天走的路程最短.图1-11五、基本初等函数初等数学里已详细介绍了幂函数、指数函数、对数函数、三角函数、反三角函数,以上我们统称为基本初等函数.它们是研究各种函数的基础.为了读者学习的方便,下面我们再对这几类函数作一简单介绍.1. 幂函数 函数μy x = (μ是常数)称为幂函数.幂函数μy x =的定义域随μ的不同而异,但无论μ为何值,函数在()0+∞,内总是有定义的. 当0μ>时,μy x =在)0+∞⎡⎣,上是单调增加的,其图像过点0,0()及点()1,1,图1-12列出了12μ=,1μ=,2μ=时幂函数在第一象限的图像. 当0μ<时,μy x =在()0+∞,上是单调减少的,其图像通过点()1,1,图1-13列出了12μ=-,1μ=-,2μ=-时幂函数在第一象限的图像.图1-12 图1-132. 指数函数 函数x y a =(a 是常数且10a a >≠,)称为指数函数.指数函数x y a =的定义域是()-∞+∞,,图像通过点()10,,且总在x 轴上方. 当时1a >,x y a =是单调增加的;当10a <<时,x y a =是单调减少的,如图1-14所示.以常数e 271828182.=L 为底的指数函数e x y =是科技中常用的指数函数.图1-143. 对数函数指数函数x y a =的反函数,记作log a y x =(a 是常数且10,a a >≠),称为对数函数.对数函数log a y x =的定义域为()0+∞,,图像过点()1,0.当1a >时,log a y x =单调增加;当10a <<时,log a y x =单调减少,如图1-15所示.科学技术中常用以e 为底的对数函数e log y x =,图1-15它被称为自然对数函数,简记作ln y x =.另外以10为底的对数函数1log 0y x =,也是常用的对数函数,简记作g l y x =.4. 三角函数 常用的三角函数有正弦函数sin y x =, 余弦函数cos y x =, 正切函数tan y x =, 余切函数 cot y x =,其中自变量x 以弧度作单位来表示.它们的图形如图1-16,图1-17,图1-18和图1-19所示,分别称为正弦曲线,余弦曲线,正切曲线和余切曲线.图1-16图1-17正弦函数和余弦函数都是以π2为周期的周期函数,它们的定义域都为(),-∞+∞,值域都为1,1-⎡⎤⎣⎦.正弦函数是奇函数,余弦函数是偶函数.图1-18 图1-19由于πcos sin 2x x ⎛⎫=+ ⎪⎝⎭,所以,把正弦曲线sin y x =沿x 轴向左移动π2个单位,就获得余弦曲线cos y x =.正切函数sin tan cos xy x x==的定义域为()21{|(),}D f x x x n n =∈≠+R ,整为数. 余切函数cos cot sin xy x x==的定义域为 ()π{,}D f x x x n n =∈≠R |,整为数.正切函数和余切函数的值域都是()-∞+∞,,且它们都是以π为周期的函数,且都是奇函数.另外,常用的三角函数还有正割函数sec y x =; 余割函数cscy x =.它们都是以π2为周期的周期函数,且1sec cos x x=; 1csc sin x x =.5. 反三角函数常用的反三角函数有反正弦函数 arcsin y x = (如图1-20); 反余弦函数 arccos y x = (如图1-21); 反正切函数 arctan y x = (如图1-22); 反余切函数 arccot y x = (如图1-23).它们分别称为三角函数sin y x =,cos y x =,tan y x =和cot y x =的反函数.这四个函数都是多值函数.严格来说,根据反函数的概念,三角函数sin y x =,cos y x =,tan y x =和cot y x =在其定义域内不存在反函数,因为对每一个值域中的数y ,有多个x 与之对应.但这些函数在其定义域的每一个单调增加(或减少)的子区间上存在反函数.例如,sin y x=在闭区间,22ππ⎡⎤-⎢⎥⎣⎦上单调增加,从而存在反函数,称此反函数为反正弦函数arcsin x 的主值,记作y =arcsin x .通常我们称arcsin y x =为反正弦函数.其定义域为11,-⎡⎤⎣⎦,值域为,22ππ⎡⎤-⎢⎥⎣⎦.反正弦函数arcsin y x =在11,-⎡⎤⎣⎦上是单调增加的,它的图像如图1-20中实线部分所示. 类似地,可以定义其他三个反三角函数的主值arccos arctan ,y x y x ==和arccot y x =,它们分别简称为反余弦函数,反正切函数和反余切函数.反余弦函数arccos y x =的定义域为1,1-⎡⎤⎣⎦,值域为π0,⎡⎤⎣⎦,在1,1-⎡⎤⎣⎦上是单调减少的,其图像如图1-21中实线部分所示.反正切函数arctan y x =的定义域为(),-∞+∞,值域为ππ22⎛⎫- ⎪⎝⎭,,在()-∞+∞,上是单调增加的,其图像如图1-22中实线部分所示.反余切函数arccot y x =的定义域为()-∞+∞,,值域为π0,(),在()-∞+∞,上是单调减少的,其图像如图1-23中实线部分所示.图1-20 图1-21图1-22 图1-23六、初等函数由常数和基本初等函数经有限次四则运算和复合运算得到并且能用一个式子表示的函数,称为初等函数.例如,23sin4y x x =+,(ln y x =+,3arctan22sin 1xy x x =+等等都是初等函数.分段函数是按照定义域的不同子集用不同表达式来表示对应关系的,有些分段函数也可以不分段而表示出来,分段只是为了更加明确函数关系而已.例如,绝对值函数也可以表示成y x =1,,()0,x a f x x a <⎧=⎨>⎩ 也可表示成1()12f x ⎛ =-⎝⎭.这两个函数也是初等函数.七、双曲函数与反双曲函数1. 双曲函数双曲函数是工程和物理问题中很有用的一类初等函数.定义如下:双曲正弦 sh e e 2x xx --= ()x -∞<<+∞,双曲余弦 ch e e 2x xx -+= ()x -∞<<+∞,双曲正切 th e e e e sh ch x xx xx x x ---==+ ()x -∞<<+∞, 其图像如图1-24和图1-25所示图1-24 图1-25.双曲正弦函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内单调增加.双曲余弦函数的定义域为()x -∞<<+∞,它是偶函数,其图像通过点()10,且关于y 轴对称,在(),0-∞内单调减少;在()0+∞,内单调增加. 双曲正切函数的定义域为()x -∞<<+∞,它是奇函数,其图像通过原点()0,0且关于原点对称.在()x -∞<<+∞内是单调增加的.由双曲函数的定义,容易验证下列基本公式成立.()sh sh ch ch sh x y x y x y ±=±,()ch ch ch sh sh x y x y x y ±=±,sh22sh ch x x x =,2222ch2ch sh 12sh 2ch 1x x x x x =+=+=-,22ch sh 1x x -=.2. 反双曲函数双曲函数的反函数称为反双曲函数,sh y x =,ch y x =和th y x =的反函数,依次记为反双曲正弦函数 a rsh y x =, 反双曲余弦函数 arch y x =, 反双曲正切函数 a rth y x =.反双曲正弦函数a rsh y x =的定义域为()-∞+∞,,它是奇函数,在()-∞+∞,内单调增加,由sh y x =的图像,根据反函数作图法,可得a rsh y x =的图像,如图1-26所示.利用求反函数的方法,不难得到(a rsh ln y x x ==+.反双曲余弦函数arch y x =的定义域为)1+∞⎡⎣,,在)1+∞⎡⎣,上单调增加,如图1-27所示,利用求反函数的方法,不难得到(arch ln y x x ==.图1-26 图1-27反双曲正切函数a rtanh y x =的定义域为11()-,,它在11()-,内是单调增加的.它是奇函数,其图像关于原点(00),对称,如图1-28所示.容易求得a rth 1ln 1xy x x+==-.图1-28第二节 数列的极限一、数列极限的定义定义1 如果函数f 的定义域()*{}D f N ==L ,,,123,则函数f 的值域()(){}**|f N f n n N =∈中的元素按自变量增大的次序依次排列出来,就称之为一个无穷数列,简称数列,即()()()12,,f f f n L L ,,.通常数列也写成12,n x x x L L ,,,,并简记为{}n x ,其中数列中的每个数称为一项,而()n x f n =称为一般项.对于一个数列,我们感兴趣的是当n 无限增大时,n x 的变化趋势.我们看下列例子:数列 12,,,,231nn +L L (1-2-1) 的项随n 增大时,其值越来越接近1;数列 2462 n L L ,,,,, (1-2-2)的项随n 增大时,其值越来越大,且无限增大;数列 1111(1)0,n n-+-L L ,,,, (1-2-3)的各项值交替地取1与0;数列 ()11111,,,,,23n n---LL (1-2-4) 的各项值在数0的两边跳动,且越来越接近0;数列 2222L L ,,,,, (1-2-5)各项的值均相同.在中学教材中,我们已知道极限的描述性定义,即“如果当项数n 无限增大时,无穷数列{}n x 的一般项n x 无限地趋近于某一个常数a (即n x a -无限地接近于0),那么就说a 是数列{}n x 的极限”.于是我们用观察法可以判断数列{}1n n -,1(1)n n -⎧⎫-⎨⎬⎩⎭,{}2都有极限,其极限分别为1,20,.但什么叫做“n x 无限地接近a ”呢?在中学教材中没有进行理论上的说明.我们知道,两个数a 与b 之间的接近程度可以用这两个数之差的绝对值b a -来度量.在数轴上b a -表示点a 与点b 之间的距离,b a -越小,则a 与b 就越接近,就数列(1-2-1)来说,因为111n x n n-=-=, 我们知道,当n 越来越大时,1n 越来越小,从而n x 越来越接近1.因为只要n 足够大, 11n x n-=就可以小于任意给定的正数,如现在给出一个很小的正数1100,只要n 100>即可得11100n x -<,11120,0,n =L如果给定110000,则从10001项起,都有下面不等式1110000n x -<成立.这就是数列1n n x n-=12 (,,)n =L ,当n →∞时无限接近于1的实质.一般地,对数列{}n x 有以下定义.定义2 设{}n x 为一数列,若存在常数a 对任意给定的正数ε(无论多么小),总存在正整数N ,当n N >时,有不等式n x a ε-<即(,)n x U a ε∈,则称数列{}n x 收敛,a 称为数列{}n x 当n →∞时的极限,记为lim n n x a →∞=或n x a →()n →+∞.若数列{}n x 不收敛,则称该数列发散.定义中的正整数N 与ε有关,一般说来,N 将随ε减小而增大,这样的N 也不是唯一的.显然,如果已经证明了符合要求的N 存在,则比这个N 大的任何正整数均符合要求,在以后有关数列极限的叙述中,如无特殊声明,N 均表示正整数.此外,由邻域的定义可知,()n x U a ε∈,等价于n x a ε-<.我们给“数列{}n x 的极限为a ”一个几何解释:将常数a 及数列123,,,,,n x x x x L L 在数轴上用它们的对应点表示出来,再在数轴上作点a 的ε邻域,即开区间(,)a εa ε-+,如图1-29所示图1-29因两个不等式 ||n x a ε-<, n a εx a ε-<<+等价,所以当n N >时,所有的点n x 都落在开区间(,)a εa ε-+内,而只有有限个点(至多只有N 个点)在这区间以外.为了以后叙述的方便,我们这里介绍几个符号,符号“∀”表示“对于任意的”、“对于所有的”或“对于每一个”;符号“∃”表示“存在”;符号“{}ax m X ”表示数集X 中的最大数;符号“{}min X ”表示数集X 中的最小数.数列极限lim n n x a →∞=的定义可表达为:lim n n x a →∞=0ε⇔∀>,∃正整数N ,当n N >时,有n x a ε-<.例1 证明 1lim 02n n →∞=.证 0ε∀>(不防设1ε<),要使11022nn ε-=<,只要21nε>,即ln ln21/n ε>(). 因此,0ε∀>,取ln /ln21N ε⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦,则当n N >时,有102n ε-<.由极限定义可知1lim 02n n →∞=. 例2 证明 π1lim cos04n n n →∞=. 证 由于ππ111cos 0cos 44n n n n n -=≤,故0ε∀>,要使π1cos 04n εn -<,只要1εn <,即1n ε>.因此,0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,有π1cos 04n εn -<.由极限定义可知 π1lim cos 04n n n →∞=. 用极限的定义来求极限是不太方便的,在本章的以后篇幅中,将逐步介绍其他求极限的方法.二、数列极限的性质定理1(惟一性) 若数列收敛,则其极限惟一. 证 设数列{}n x 收敛,反设极限不惟一:即lim n n x a →∞=,lim n n x b →∞=,且a b ≠,不妨设a b <,由极限定义,取2b a ε-=,则10N ∃>,当1n N >时,2n b ax a --<,即 322n a b a bx -+<<, (1-2-6) 20N ∃>,当2n N >时,2n b ax b --<,即322n a b b ax +-<<, (1-2-7) 取{}12m ,N ax N N =,则当n N >时,(1-3-6),(1-3-7)两式应同时成立,显然矛盾.该矛盾证明了收敛数列{}n x 的极限必惟一.定义3 设有数列{}n x ,若存在正数M ,使对一切12,,n =L ,有n x M ≤,则称数列{}n x 是有界的,否则称它是无界的.对于数列{}n x ,若存在常数M ,使对12n =L ,,,有n x M ≤,则称数列{}n x 有上界;若存在常数M ,使对12,,n =L ,有n x M ≥,则称数列{}n x 有下界.显然,数列{}n x 有界的充要条件是{}n x 既有上界又有下界. 例3 数列{}211n +有界;数列{}2n 有下界而无上界;数列{}2n -有上界而无下界;数列{}11nn --()既无上界又无下界.定理2(有界性) 若数列{}n x 收敛,则数列{}n x 有界.证 设lim n n x a →∞=,由极限定义,0ε∀>,且1ε<,0N ∃>,当n N >时,1||n x a ε-<<,从而<1n x a +.取{}12m 1,,,,N M ax a x x x =+⋯,则有n x M ≤,对一切123,,,n =L ,成立,即{}n x 有界.定理2 的逆命题不成立,例如数列{}1()n -有界,但它不收敛.定理3(保号性) 若lim n n x a →∞=,0a >(或0a <),则0N ∃>,当n N >时,0n x >(或0n x <).证 由极限定义 ,对02aε=>,0N ∃>,当n N >时,2n a x a -<,即322n a x a <<,故当n N >时,02n ax >>.类似可证0a <的情形.推论 设有数列{}n x ,0N ∃> ,当n N >时,0n x > (或0n x <),若lim n n x a →∞=,则必有0a ≥ (或0a ≤).在推论中,我们只能推出0a ≥ (或0a ≤),而不能由0n x > (或0n x <)推出其极限(若存在)也大于0(或小于0).例如10n x n=>,但1lim lim 0n n n x n →∞→∞==.下面我们给出数列的子列的概念.定义4 在数列{}n x 中保持原有的次序自左向右任意选取无穷多个项构成一个新的数列,称它为{}n x 的一个子列.在选出的子列中,记第1项为1n x ,第2项为2n x ,…,第k 项为k n x ,…,则数列{}n x 的子列可记为{}k n x .k 表示k n x 在子列{}k n x 中是第k 项,k n 表示k n x 在原数列{}n x 中是第k n 项.显然,对每一个k ,有k n k ≥;对任意正整数h ,k ,如果h k ≥,则h k n n ≥;若h k n n ≥,则h k≥由于在子列{}k n x 中的下标是k 而不是k n ,因此{}k n x 收敛于a 的定义是:0ε∀>,0K ∃>,当k K >时,有k n x a ε-<.这时,记为lim k n k x a →+∞= .定理4 lim n k x a →∞=的充要条件是:{}n x 的任何子列{k n x }都收敛,且都以a 为极限.证 先证充分性.由于{}n x 本身也可看成是它的一个子列,故由条件得证. 下面证明必要性.由lim n k x a →∞=,0ε∀>,0N ∃>,当n N >时,有n x a ε-<.今取K N =,则当k K >时,有k K N n n n N >=≥,于是k n x a ε-<.故有lim k n k x a →∞=.定理4用来判别数列{}n x 发散有时是很方便的.如果在数列{}n x 中有一个子列发散,或者有两个子列不收敛于同一极限值,则可断言{}n x 是发散的.例4 判别数列{}*πsin ,8n n x n N =∈的收敛性.解 在{}n x 中选取两个子列:{}*8πsin ,8k k N ∈,即{}πππ8168sin ,sin ,sin ,888k ⋅⋅⋅⋅⋅⋅; ()*164πsin ,8k k N +⎧⎫∈⎨⎬⎩⎭,即()ππ16420sin ,sin ,88k ⎧⎫+⎪⎪⋅⋅⋅⋅⋅⋅⎨⎬⎪⎪⎩⎭. 显然,第一个子列收敛于0,而第二个子列收敛于1,因此原数列{}πsin 8n 发散.三、收敛准则定义5 数列{}n x 的项若满足121n n x x x x +≤≤≤≤≤L L ,则称数列{}n x 为单调增加数列;若满足121n n x x x x +≥≥≥≥≥L L ,则称数列{}n x 为单调减少数列.当上述不等式中等号都不成立时,则分别称{}n x 是严格单调增加和严格单调减少数列.收敛准则 单调增加有上界的数列必有极限;单调减少有下界的数列必有极限. 该准则的证明涉及较多的基础理论,在此略去证明.例5 证明数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭收敛.证 根据收敛准则,只需证明11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭单调增加且有上界(或单调减少且有下界).由二项式定理,我们知道1221111(1)1n n n n n n nx C C C n n n n =+=++++L 11112112111(1)(1)(1)(1)(1)(1)2!3!!n n n n n n n n -=++-+--++---L L ,11211111211111(1)111(1)(1)n n n n n n n x C C C n n n n +++++++=+=++++++++L 1111211(1)(1)(1)2!13!11n n n =++-+--++++L1121(1)(1)(1)!111n n n n n -+--++-+++L 112(1)(1)(1)(1)!111n n n n n +--++-++++L , 逐项比较n x 与1n x +的每一项,有1n n x x +<,1,2,.n =L这说明数列{}n x 单调增加,又111112!3!!n x n <+++++L 211111222n <+++++L。

相关文档
最新文档