现代设计方法-有限元分析-概述

合集下载

有限元法概述

有限元法概述

大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。

【2019年整理】现代设计方法(ch1)

【2019年整理】现代设计方法(ch1)
② 分类:
子系统,超系统:汽车=轮胎+发动机+转向系,交通系统性
③ 技术过程:加工过程,工作过程
④ 技术过程的特点:不唯一
1.3 技术系统及其确定
一、技术系统 2.技术过程的确定步骤:
① 根据信息集约和调研预测的资料,分析确定作业对 象及其主要转换要求;
② 分析比较传统理论、现代理论和实践,确定实现主 要转换的工作原理;
7 经济成本
8 人机工程
9安 全
10 包装运输
课题名称 起止时间 课题经费
基本功能 辅助功能 作业对象:物料形状、尺寸、理化性质等 工 况:负载情况 环 境:温度、湿度、振动、噪声、灰尘等 动 力:功率、力、转矩等 运 动:运动形式、速度、加速度等 结构尺寸:作业尺寸、体积、重量 生产率(理论的、额定的、实际的) 可靠度、维修度和有效度 一次性使用寿命、多次性使用寿命(大修) 材料费、设计费、制造加工费、管理费、税费 操作方便、省力、视野宽广、舒适、仪表显示清晰、造型美观适度 保证人身安全、设备安全、如:过载保护 触电保护、连锁装置等 考虑运输方法,如:防震 、防腐、防锈、各种标记等
3. 评价过程中的几项主要工作
选定评价准则。如:成本低、寿命长、结构简单、 可靠性高等等 为评价准则选定度量尺度。即评价好坏的标准
确定评价对象有关各项准则的价值。即按预定 度量尺度对评价对象进行评定
对各单独评价值进行合成,以便对评价对象做 出总的比较
4、评价的意义
评价是决策的基础和依据
方案评价是提高产品质量的首要前提
地设计,必须对每一设计程序的信息,随时进行审核, 决不许有错误的信息流入下一道工序。实践证明,产品 设计质量不好,其原因往往是审核不严造成的。因此, 适时而严格地审核是确保设计质量的一项重要原则。

目前常见的机械现代设计方法

目前常见的机械现代设计方法

目前常见的机械现代设计方法
机械现代设计方法是指利用计算机辅助设计软件、仿真分析软件等现代化工具,将传统机械设计方法与现代科技手段相结合,以提高机械产品设计质量和效率。

目前常见的机械现代设计方法包括以下几种:
1. 三维建模设计:利用3D建模软件,将机械产品的三维模型建立起来,可视化地展现设计效果,便于设计师进行直观的审查和修改。

2. 有限元分析:利用有限元分析软件对机械产品进行力学分析,包括应力分析、变形分析、疲劳分析等,以评估产品的工作性能和耐久性。

3. 数值优化设计:利用数值优化算法,对机械产品的形状、材料等参数进行优化,以达到最优的设计效果。

4. 虚拟试验:利用仿真分析软件对机械产品进行虚拟试验,模拟产品在各种工作条件下的工作状态,预测产品的工作性能和故障情况,为产品的试制和改进提供依据。

5. 快速原型技术:利用快速原型技术,通过快速制造出机械产品的实物样品,以验证设计效果和性能,缩短产品开发周期。

以上方法在机械产品设计中得到广泛应用,为设计师提供了更加科学、高效、精准的工具和方法。

- 1 -。

现代设计方法概述

现代设计方法概述

设计过程:

物资资源转化为技术装置以满足客观需求的实践
活动就是一个设计过程。
二.设计方法的发展
设计方法的研究包括设计步骤和程式以及与之相 联系的解决具体设计问题的方法和手段的研究。
设计的发展分为四个阶段: 1. 直观发展阶段(设计过程是凭当事人的智力和
灵感,是一种具有很大偶然性的自发设计) 2. 经验发展阶段(传统设计阶段)
第一章:绪 论
一.设计与设计过程
设计就是提出或拟订把某些人工制品组装起来 的方案,或者是对人工制品提出改进的措施, 以便最佳地满足人们某些特殊的需求。(如机 械设计,工业造型设计等) AUTOCAD,VG,SOLIDEDGE
任何设计活动都具有如下特征:
1). 时空性(设计活动受到时间空间的限制) 2). 设计活动的物质性(所有的设计活动都是在特 定的物质条件约束下进行的,如工程材料,资源) 3). 设计的需求性特征(科学研究和工程设计的最 大区别) 4). 创造性 5). 设计活动的过程性
1.字段

段是数据中最基本的用来描述实体某个属性的数
四.现代设计方法的主要内容
1.计算机辅助设计. 1)现代CAD技术的内涵及其主要内容 2)工程数据处理及数据库技术(LISP等) 3)绘图基本原理(图形学)及工程图的绘制
2.产品设计理论与方法
3.计算机辅助工程(CAE)
1)弹性力学基本知识
2)有限元法
3)
应用有限元软件
4.最优化设计
建立在经验与技巧能才的积累上。
3. 中间试验辅助设计阶段 局部试验,模拟试验,作为设计过程的辅助手 段。通过中间试验可取得可靠的数据,选择合 适的结构,从而缩短试制周期,提高设计的可 靠性。

机械设计基础机械设计中的CAE分析方法

机械设计基础机械设计中的CAE分析方法

机械设计基础机械设计中的CAE分析方法机械设计是工程领域中非常重要的一项任务,它涉及到各种机械设备的设计和制造。

而在现代机械设计中,CAE(计算机辅助工程)分析方法的应用越来越广泛,为设计师提供了强大的工具和技术支持。

本文将介绍机械设计中常用的CAE分析方法,以及它们在设计过程中的应用。

一、有限元分析(Finite Element Analysis,简称FEA)有限元分析是机械设计中最常用的CAE分析方法之一。

它通过将实际的结构分割成有限数量的小元素,然后利用数值计算方法求解每个小元素的应力、变形等物理量。

这样可以在较小的计算范围内,准确预测结构的力学性能。

在机械设计中,有限元分析广泛应用于刚度、强度、稳定性、疲劳寿命等方面的评估。

设计师可以通过有限元分析来验证设计方案的可行性,确定合适的材料和尺寸,并最终优化设计方案。

二、计算流体力学分析(Computational Fluid Dynamics,简称CFD)计算流体力学分析是机械设计中另一个重要的CAE分析方法。

它用数值方法解决流体力学方程,对液态、气态流体的流动、传热、传质等进行模拟和计算。

在机械设计中,计算流体力学分析常用于气动性能、液压性能、热传导等方面的研究。

通过CFD分析,设计师可以预测流体在机械设备中的流动状态和传热效果,为设计方案的改进提供重要的参考。

三、多体动力学分析(Multibody Dynamics Analysis,简称MDA)多体动力学分析是机械设计中用于研究刚体与刚体之间相对运动的CAE分析方法。

它将机械系统视为由多个刚体组成的多体系统,通过求解动力学方程,计算系统中刚体的位移、速度、加速度等运动参数。

在机械设计中,多体动力学分析广泛应用于机构设计、机械振动、运动机理等方面的研究。

通过MDA分析,设计师可以了解机械系统的运动规律和力学性能,优化机构设计,提高系统的工作效率和稳定性。

四、耦合分析(Coupled Analysis)耦合分析是机械设计中将多个CAE分析方法整合起来进行综合分析的方法。

先进制造技术-现代设计方法

先进制造技术-现代设计方法

质的飞跃,在此基础上传统设计技术得到了延伸和发展,产生了现代设计技术。它是以网络为基
础,以电子计算为手段,建立在现代管理技术之上,运用工程设计的新理论和新方法,实现计算 结果最优化、设计过程高效化和自动化的设计技术。
现代设计技术
— 3—
2.1 现代设计技术的内涵与体系结构
2.1.2 现代设计技术的内涵和特点
程中适时地给出智能化提示,告诉设计者下一
步该做什么、当前设计存在的问题,并给出解 决问题的途径及方案建议。
现代设计技术
— 21 —
2.2 计算机辅助设计(CAD)技术
特征模型实例
现代设计技术
— 11 —
2.2 计算机辅助设计(CAD)技术
2.2.3 计算机辅助设计的关键技术
1.产品的造型建模技术
与几何建模相比较,特征建模具有以下特征:① 能够更好地表达统一、完整的产 品信息;② 能够更好地体现设计意图,使产品模型便于理解和组织生产;③ 有助于 加强产品设计和分析、加工制造、检验等各个部门之间的联系。因此,基于特征的建 模技术更适合于CAD/CAM的集成和CIMS的建模需要。
现代设计技术
— 12 —
2.2 计算机辅助设计(CAD)技术
2.2.3 计算机辅助设计的关键技术
2.单一数据库与相关性设计
单一数据库是指与设计相关的全部数据 信息来自同一个数据库。相关性设计是指任何 设计改动都将及时反馈到设计过程的其他相关 环节上。例如,修改二维零件工程图样的某个 尺寸后,与该零件工程图样相关联的产品装配
图、加工该零件的数控程序等也将会自动跟随
更新。建立在单一数据库基础上的产品开发, 可以实现产品的相关性设计。单一数据库和相 关性设计技术的应用可以减少设计中的差错,

现代设计方法

现代设计方法

绿色设计
在产品整个生命周期内,着重考虑产品环境属性(可 拆卸性,可回收性、可维护性、可重复利用性等)并将其 作为设计目标,在满足环境目标要求的同时,保证产品应 有的功能、使用寿命、质量等要求。
并行设计
并行设计是一种对产品及其相关过程(包括设计制造过 程和相关的支持过程)进行并行和集成设计的系统化工作模 式。 Nhomakorabea 虚拟设计
虚拟设计技术是由多学科先进知识形成的综合系统技 术,其本质是以计算机支持的仿真技术为前提,在产品设 计阶段,实时地并行地模拟出产品开发全过程及其对产品 设计的影响,预测产品性能、产品制造成本、产品的可制 造性、产品的可维护性和可拆卸性等,从而提高产品设计 的一次成功率。
相似性设计
人们在长期探索自然规律的过程中,逐渐形成了研究 自然界和工程中各种相似现象的“相似方法”、“模化设 计方法”和相应的相似理论、模拟理论。相似方法就是把 个别现象的研究结果推广到所有相似现象上去的方法。
模块化设计
模块化设计(Block-based design)就是将产品的某些 要素组合在一起,构成一个具有特定功能的子系统,将这 个子系统作为通用性的模块与其他产品要素进行多种组合, 构成新的系统,产生多种不同功能或相同功能、不同性能 的系列产品。
三次设计
三次设计即三阶段设计,所谓三阶段设计,是建立在 试验设计技术基础之上的一种在新产品开发设计过程中进 行三阶段设计的设计方法。
优化设计
优化设计(Optimal Design)是把最优化数学原理应 用于工程设计问题,在所有可行方案中寻求最佳设计方案 的一种现代设计方法。
可靠性设计
可靠性设计(Reliability Design)是以概率论和数理统 计为理论基础,是以失效分析、失效预测及各种可靠性试 验为依据,以保证产品的可靠性为目标的现代设计方法。

现代机械设计理论与方法(1)

现代机械设计理论与方法(1)
2 2 g7 ( X ) z小x3 x2 AHT小(1 z小 / z大) 0
⑦ 满足轮齿弯曲强度要求,应有
2 g8 ( X ) x3 z小x2 AFT小YF 0
3)选用合适的优化方法求解,得
z1 22 X b 53 m 4. 5
优化设计
将设计问题的 物理模型转化 为数学模型
选用适当的优化方 法和计算机程序
通过计算机 求解得到最 佳设计方案
② 计算机辅助设计(CAD)
CAD能够帮助我们完成机械设计中的图形设计(制图) 及部分分析计算。(以计算机为工具) 计算机辅助设计
传统设计
人工计算、绘图
用计算机设计、 计算、绘图。
设计精度、稳定性 和效率有限,修改 不方便
四、现代设计方法的特点
程式性。研究设计的全过程,要求设计者从产品 规划、方案设计、技术设计到试验、试制进行全面考 虑,按步骤有计划地进行设计。
创造性。突出人的创造性,力求探寻更多新方案, 开发创新性产品。
最优化。设计的目的是得到功能全、性能好、成 本低的最优产品。 综合性。建立在系统工程和创造工程基础上,综 合运用信息论、优化论、相似论、决策论、预测论等 相关理论,提供多种途径解决产品的设计问题。 计算机化。
④ 模数和齿宽之间要求 5m b 17 m
g 4 ( X ) x2 5x3 0 g5 ( X ) 17x3 x2 0
⑤ 保证各行星轮之间齿顶不相碰撞,应满足
g 6 ( X ) x1 sin

C

1 x1 (i 2)(1 sin ) 0 2 C
⑥ 满足接触强度要求,应有
主要应用于 以下方面

现代设计方法

现代设计方法

现代设计方法设计是人类改造自然的一种重要的创新活动。

可以说,人类在改造自然的历史长河中一直从事着设计活动,一直生活在大自然和自身“设计”的世界中。

机械设计,建筑设计、服装设计等设计活动都有着十分悠久的历史,人类通过通过这些设计活动创造了丰富而伟大的物质文明。

从某种意义上来讲,人类文明的历史,就是不断进行设计活动的历史。

人类自觉的设计活动开始于15世纪,欧洲文艺复兴时期,但直到20世纪中期,设计仍被限定在狭窄的专业范围内。

随着科学技术和生产力的不断发展,设计和设计科学也在不断地想更深、更广的层次发展,其内容、要求、理论和手段等都在不断更新,设计的内涵和外延也都在扩大。

设计不再仅仅是考虑构成产品的物质条件和能够满足的功能需求,而是综合了经济、社会、环境、人机工程学、人的心理、文化层次等多种因素的系统设计。

从设计内容上来看,设计贯穿了产品从孕育到消亡的真个生命周期,含钙量需求获取、概念设计、技术设计、技术设计、详细设计、工艺设计、营销设计及回收设计等设计活动,并把实验、研究、设计、制造、安装、使用、维修、作为一个整体来进行规划。

现代设计方法是随着当代科学技术的飞速发展和计算机技术的广泛应用而在设计领域发展起来的一门新兴多元交叉学科,是一设计产品为目标的一个只是群体的统称。

他是为了适应剧烈的师承竞争的需要,提高设计质量和缩短设计周期,以及推动计算机在设计中的广泛应用,于20世纪60年代在设计领域诞生与发展起来的一些列的新兴学科的集成。

随着网络时代的到来,全球化的经济进程的家属,迫使企业面对全球化的大市场,参与国际市场的竞争,企业间的合作越来越广泛,为了真和资源,需要形成超越空间约束的分散网络的设计开发系统,以进行动态联盟组织的设计及制造活动,支持企业实施异地协同设计,形成跨地区的联合设计。

现代设计方法的分类及主要现代设计方法简介在产品设计领域,机械产品的设计最有代表性和典型性,这里主要以机械产品的现代设计方法为主进行介绍。

有限元分析方法的现状

有限元分析方法的现状

有限元分析方法的现状有限元分析(Finite Element Analysis,简称FEA)是一种数值计算方法,通过将连续体分割为有限个小单元,建立节点和单元的数学模型,通过求解这些模型的方程,得到结构或物体在不同工况下的力学行为。

作为一种重要的工程分析方法,有限元分析在结构、流体、热传导、电磁场等领域广泛应用,成为现代工程设计的重要手段。

在有限元分析方法发展的早期,主要应用于工程结构的力学分析,如静力学分析、动力学分析和疲劳分析。

随着计算机技术的快速发展,有限元分析方法得以更广泛地应用于各个工程领域。

现在,有限元分析已经发展成为一个功能强大、应用广泛、领域较为完备的数值分析方法。

1.理论基础的完善:有限元理论是有限元分析的基石,近年来在有限元分析理论方面的研究取得了很大进展。

研究人员提出了各种新的有限元方法和数学模型,如非线性有限元方法、材料非线性模型、多尺度有限元方法等。

这些理论的提出和应用,使得有限元方法能够更加准确地描述和模拟真实工程问题,为工程设计和优化提供了更好的支持。

2.软件工具的发展:有限元分析方法需要进行大量的计算和数据处理,因此需要强大的计算机软件进行辅助。

近年来,有限元分析软件的功能不断提升,用户界面更加友好,求解速度更快,可模拟的问题类型更多。

同时,一些商业软件还提供了数据可视化、结果后处理、优化设计等功能,为工程师提供了全方位的支持和便利。

3.多物理场分析的发展:有限元分析逐渐扩展到多物理场分析领域,如结构-热场、结构-流场、结构-电磁场等多物理场耦合问题。

这种多物理场分析能够更全面地模拟复杂工程问题,为工程师提供更详尽的结果和更准确的设计指导。

4.高性能计算的应用:随着高性能计算技术的发展,有限元分析方法在计算速度和问题规模上有了突破性的进展。

研究人员通过并行计算、分布式计算等手段,能够更快速地进行大规模的有限元分析计算,解决更复杂、更庞大的工程问题。

5.仿真与实验的结合:有限元分析在工程设计中与试验相结合,能够更好地验证和修正数值模型,并提供实验无法获得的信息。

有限元分析法概述

有限元分析法概述

第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。

它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。

在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。

求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。

应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。

而对于绝大多数问题,则很少能得出解析解。

这就需要研究它的数值解法,以求出近似解。

目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。

其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。

下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。

如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。

其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。

已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。

① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。

根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。

有限元的原理

有限元的原理

有限元的原理有限元分析是一种工程数值分析方法,它利用数学原理和计算机技术,对工程结构的力学行为进行模拟和分析。

有限元分析的原理是将复杂的结构分割成许多小的单元,通过对每个单元的力学行为进行精确描述,最终得到整个结构的力学响应。

本文将从有限元分析的基本原理、步骤和应用进行介绍。

有限元分析的基本原理是离散化方法,它将一个连续的结构分解成有限个单元,每个单元都是一个简单的几何形状,如三角形、四边形等。

然后对每个单元进行力学建模,建立单元的位移场和应力场的数学模型。

通过组合所有单元的数学模型,得到整个结构的位移场和应力场的近似解。

有限元分析的基本原理是基于弹性力学理论,它假设结构在受力作用下是弹性变形,即满足胡克定律。

有限元分析的数学模型通常是一个大型的代数方程组,通过求解这个方程组,得到结构的位移场和应力场。

有限元分析的步骤包括建立有限元模型、施加边界条件、求解代数方程组和后处理结果。

首先,需要对结构进行几何建模,将结构分解成有限个单元,并确定每个单元的材料性质和几何尺寸。

然后,需要施加边界条件,即给定结构的约束条件和外载荷。

接下来,需要将结构的力学行为建立成代数方程组,通常采用有限元法中的单元法则和变分原理。

最后,通过求解代数方程组,得到结构的位移场和应力场,并进行后处理,如应力分布、位移云图等。

有限元分析在工程领域有着广泛的应用,如结构分析、热传导分析、流体力学分析等。

在结构分析中,有限元分析可以用于预测结构的强度、刚度和稳定性,为结构设计提供理论依据。

在热传导分析中,有限元分析可以用于预测结构的温度分布和热传导性能,为热工设计提供支持。

在流体力学分析中,有限元分析可以用于模拟流体在结构内部的流动行为,为流体工程设计提供参考。

总之,有限元分析是一种强大的工程数值分析方法,它通过离散化方法和数学建模,对工程结构的力学行为进行模拟和分析。

有限元分析的原理是基于弹性力学理论,通过求解代数方程组,得到结构的位移场和应力场。

有限元法分析

有限元法分析
第四章
有限元法
第一节 引 言

现代设计方法包括设计分析、结构设计、试验分析和使用 考验四个阶段,每个阶段都利用计算机的不同功能来实现。 结构设计阶段的目的是要保证一个承受载荷的零部件,在 各种运行条件下,其内应力和变形须保持在容许的范围内。 此外,还希望所选定的方案在选用材料、构件重量、工艺 方法等技术限制内达到最佳状态,即优化设计。因此,通 常是利用计算机和借助近代一些数学、力学工具来做大量 的结构组合和分析研究工作,包括对多种方案的分析比较。 用计算机对产品结构进行分析,或对设计方案进行评价、 比较,一般借助所建立的反映结构(或设计方案)这一现 象特征的数学模型来完成。当前在这方面所采用的基本分 析方法是应用范围极广泛的有限元法。





结构静力分析 结构动力学分析 结构非线性分析 动力学分析 热分析 电磁场分析 流体动力学分析 声场分析 压电分析
第三节 有限元分析软件简介
软件主要包括三个部分

前处理模块
• 实体建模 • 网格划分

分析计算模块
• 包括结构分析、流体动力学分析、电磁场分析、声场分析、压 电分析以及多物理场的耦合分析
第二节 有限元法概述
有限元常用术语



1. 单元 2. 节点 3. 载荷 4.边界条件 5.初始条件
第二节 有限元法概述
有限元法的解题步骤



单元划分和插值函数的确定 单元特性分析 单元组集 解有限元方程 计算应力
第三节 有限元分析软件简介
ANSYS软件提供的分析类型
1 x 1 x A x B x C x D x E x F 6

cae与有限元分析解析

cae与有限元分析解析

cae与有限元分析解析在现代工程设计领域,计算机辅助工程(Computer-Aided Engineering, CAE)和有限元分析(Finite Element Analysis, FEA)解析是两种不可或缺的工具。

它们可以为设计工程师提供准确、有效的技术支持,从而提高产品的可靠性和可持续性。

CAE是借助计算机技术来辅助工程设计的一种方法。

它涉及多个领域,如结构力学、流体力学、热力学和电磁学,能够预测产品性能并进行设计优化。

CAE可以模拟真实环境中的场景,例如承受荷载或受到碰撞等情况。

设计师可以使用CAE模型来预测产品在遇到这些情况时的行为,并进一步优化设计。

FEA是CAE领域中的一个常见分支。

它是一种数值算法,可以用于模拟结构、流体、热和电问题中的物理现象。

FEA可以将复杂的工程流程简化成简单的线性和非线性方程,并用计算机软件来解决。

FEA程序可以生成2D和3D模型,并通过应变、力等场值来分析其性能。

得到负载和反馈信息后,设计师可以做出相应的改进。

和其他建模方法相比,FEA的最大优点是其细节层面的分析能力。

FEA可以模拟大量不同结构的应力和应变状态,包括复杂设计中的混合材料。

它还能够对所有结构组件执行高级的力学和热学分析。

这种方法还可以提供许多其他带来的优势,如减少模型误差、提高设计安全等。

虽然有许多表明这种方法的好处,但FEA同样存在一些挑战。

设计师必须对数值方法具有充分的理解,并了解FEA程序中所使用的技巧和策略。

用户还需要应对外部因素的影响,比如温度对材料性能的影响。

因此,如果工程师没有经验或知识水平较低,则可能会遇到许多问题。

在设计产品过程中,使用CAE和FEA可以最大化减少设计过程中的错误,并增强工程估算的准确性。

由于这些工具的广泛应用,工程师们再次获得作为真正的技术专家的机会。

他们可以快速、准确地模拟并分析产品的性能,以提供安全、可靠并高效的产品。

总之,CAE和FEA解析作为现代工程设计领域的关键工具,已经得到了广泛的应用。

机械结构的有限元分析

机械结构的有限元分析

机械结构的有限元分析引言在现代工程设计与制造领域中,机械结构的设计是不可或缺的。

为了保证机械结构的稳定性、安全性以及耐用性,工程师们经常需要进行有限元分析。

有限元分析是一种利用计算机模拟材料力学行为的方法,能够帮助工程师们预测机械结构在实际工作条件下的性能。

第一部分:有限元分析的基本原理和步骤有限元分析的基本原理是将机械结构离散成许多小的有限元,然后通过求解有限元间的相互作用来模拟整个结构的行为。

这种离散的方法使得计算变得可行,同时还能提供关于结构应力分布、变形情况以及破坏点等有用信息。

有限元分析的步骤可以概括为以下几个方面:1. 建模:将机械结构根据实际几何形状、材料属性以及约束条件等进行建模。

这一步通常需要使用CAD软件来帮助创建结构模型。

2. 离散化:将机械结构划分成小的有限元,并为每个有限元分配材料属性和初始条件。

这一步可以通过网格生成工具来实现。

3. 定义边界条件:根据实际工作条件定义结构的边界条件,如约束和加载情况。

这些边界条件将影响结构的响应。

4. 计算求解:使用数值方法(如有限元算法)对有限元模型进行求解,得到结构的应力、变形等信息。

5. 分析结果:根据求解结果进行后处理分析,如应力云图、变形图以及破坏点的预测等。

第二部分:有限元分析在机械结构设计中的应用有限元分析在机械结构设计中具有广泛的应用。

下面将针对几个典型的应用领域进行介绍。

1. 振动分析在机械结构设计中,振动是一个重要的考虑因素。

通过有限元分析,可以预测机械结构在不同频率下的振动响应,并找到导致振动问题的原因。

进一步优化结构几何形状、选择合适的材料以及调整约束条件等,可以有效减少振动问题。

2. 疲劳分析机械结构在长期工作中容易受到疲劳损伤。

通过有限元分析可以模拟结构在不同工作条件下的疲劳寿命,并预测可能出现的疲劳破坏位置。

这有助于进行结构的寿命评估和优化设计。

3. 强度分析机械结构的强度是制定设计决策的重要因素。

通过有限元分析,可以预测结构在不同加载情况下的应力分布,并评估结构是否满足强度要求。

现代设计理论与方法 有限元法

现代设计理论与方法 有限元法

5.1
3. 整体分析
概述
利用节点变形协调条件和结构力的平衡 条件各个单元按原来的结构重新连接起来, 形成整体的有限元方程。
4. 添加约束条件
上面形成的整体有限元方程,在求解时需 要已知约束以及边界条件,所以准确地添加 约束和边界条件是求解的关键之一。
5.1
5. 有限元方程求解
概述
求解各节点的位移、应力、应变等。
5.2.2
2. 虚功原理法
单元特性的推导方法
位移函数:(用多项式逼近的线性多项式)
u u( x, y ) 1 2 x 3 y v v( x, y ) 4 5 x 6 y
位移列阵:
u 1 x {d } v 0 0
单元特性的推导方法
建立刚度矩阵的方法:
直接刚度法、虚功原理法、能量变分法、 加权残数法。
5.2.2
1. 直接刚度法
单元特性的推导方法
分析对象:桁架,刚架和受剪杆板式结构.
研究的基础:杆,梁以及受剪板 一般情况,研究对象可能并不是由杆、梁板 直接组成,但是在离散化之后,可以将其分解为 这些基本单元。对于结构的分析,是以位移为基 本未知量进行的,位移包括线位移和角位移,而 这种研究的方法称为直接刚度法。 单元分析的实质是建立节点力和节点位移之 间的关系,然后得到单元刚度矩阵,以便进行计 算机分析或者计算。
5.1
概述
从单纯结构力学计算发展到求解许多物理场问题 有限元分析方法最早是从结构化矩阵分析发 展而来,逐步推广到梁、壳和实体等连续体固体 力学分析,实践证明这是一种非常有效的数值分 析方法。 有限元方法已发展到流体力学、温度场、电 传导、磁场、渗流和声场等问题的求解计算,最 近又发展到求解几个交叉学科的问题。

有限元分析-详解

有限元分析-详解

C、棱柱铰约束(Slider)
该约束只能施加于虚件之上,仅允许被约束的 对象沿指定放松的轴平移滑动,限制其它五个自由 度。一般施加过程为:单击 按钮,弹出图示对话 框。选择虚件加于Supports 栏,选择使用的坐标系, 并在需要放松的轴线方向输入1。单击确定完成定义。 如针对如图所示接触虚件示例,用加于虚件的取代 施加于Point1 的高级约束,结果相同。
Element Type 决定采用linear 线性直边单元亦或采 用parabolic 抛物线棱边单元,抛物线棱边单元能带 来更好的精度。
此外还可以通过如图所示对话框中的Local 卡片,通 过添加(Add)sage和sag来调整局部网格细密程度 和,带来更合适的分析精度。(注:全局网格划分越 细密或采用抛物线棱边单元同样能提高精度,但同时 计算耗时增加)。
网格和属性还可以通过模型管理工具条 来自行定义。其中:
图标用于给实体Solid 模型定义四面体单元;
图标用于给曲面surface 模型定义三角形单元,如 果用户决定把实体模型当作薄壳模型来处理,也可 以用于实体模型;
图标表示对线框wireframe 几何进行梁单元网格划 分,要求对象是在Generative Shape Design 或 Wireframe and Surface Design 中生成的部件, 或者在Structure Design 环境下生成的梁(不能对 Sketch 对象进行网格划分),且划分出的网格是一 维的。
CATIA有限元分析
有限元分析是实现安全设计的重要部分, 在日常设计工作中也经常得到应用。
一 、零件体有限元分析
零件体有限元分析的一般步骤为:
(1):建立零件模型并导入分析模块;

现代设计方法课程总结

现代设计方法课程总结

f (X*)
i
igi (X*)0
i 0
若 点 X(k)是 函f数 (X)的 极 值 点 ,要 f (X么 (k))0(此 时
i 0),要么目标函数 的在 负该 梯点 度等于该点 起作用约束梯度 线的 性非 组(此 负 合时 i 0)。
工学院机制、机电、机化专业 现代设计方法
12
《现代设计方法》课程总结
I3
工学院机制、机电、机化专业 现代设计方法
9
《现代设计方法》课程总结
二、极值条件与数值迭代法
1.无约束优化问题的极值条件
f (X (k) ) 0 2 f (X (k) )正 定
如何判断矩阵的正定??
2.有约束问题的极值条件(K-T条件:作业) 注意等式约束和不等式约束的区别
工学院机制、机电、机化专业 现代设计方法
(2)如果 f1 f2 ,则缩小的区间为 x1,b (3)如果 f1 f2,则缩小的区间为 x1,x2
工学院机制、机电、机化专业 现代设计方法
16
《现代设计方法》课程总结
4.区间消去法:
5.黄金分割法:内分点计算公式和区间缩减原则、
迭代步骤
L α L- α
黄金分割法 求解一维优 化问题的迭 代步骤
现代设计方法课程总结
《现代设计方法》课程总结
主要内容
u绪 论 u 优化设计 u 有限元法
工学院机制、机电、机化专业 现代设计方法
2
《现代设计方法》课程总结
绪论
一、什么是现代设计?
以市场需求为驱动、以知识获取为中心、以现 代设计思想、方法和现代技术手段为工具,考虑产 品的整个生命周期和人、机、环境相容性等因素的 设计。
工学院机制、机电、机化专业 现代设计方法

第一节 有限元分析概述

第一节 有限元分析概述

第一节 有限元分析概述对于一般的工程受力问题,希望通过平衡微分方程、变形协调方程、几何方程和本构方程联立求解而获得整个问题的精确解是十分困难的,一般几乎是不可能的。

随着20世纪五六十年代计算机技术的出现和发展、以及工程实践中对数值分析要求的日益增长,并发展起来了有限元的分析方法。

有限元法自1960年由Clough首次提出后,获得了迅速的发展;虽然首先只是应用于结构的应力分析,但很快就广泛应用于求解热传导、电磁场、流体力学、成形工艺等连续问题。

一、有限元法的基本概念对于连续体的受力问题,既然作为一个整体获得精确求解十分困难;于是,作为近似求解,可以假想地将整个求解区域离散化,分解成为一定形状有限数量的小区域(即单元),彼此之间只在一定数量的指定点(即节点)处相互连接,组成一个单元的集合体以替代原来的连续体,如图7-1弯曲凹模的受力分析所示;只要先求得各节点的位移,即能根据相应的数值方法近似求得区域内的其他各场量的分布;这就是有限元法的基本思想。

从物理的角度理解,即将一个连续的凹模截面分割成图7-1所示的有限数量的小三角形单元,而单元之间只在节点处以铰链相连接,由单元组合成的结构近似代替原来的连续结构。

如果能合理地求得各单元的力学特性,也就可以求出组合结构的力学特性。

于是,该结构在一定的约束条件下,在给定的载荷作用下,各节点的位移即可以求得,进而求出单元内的其他物理场量。

这就是有限元方法直观的物理的解释。

从数学角度理解,是将图7-1所示的求解区域剖分成许多三角形子区域,子域内的位移可以由相应各节点的待定位移合理插值来表示。

根据原问题的控制方程(如最小势能原理)和约束条件,可以求解出各节点的待定位移,进而求得其他场量。

推广到其他连续域问题,节点未知量也可以是压力、温度、速度等物理量。

这就是有限元方法的数学解释。

从有限元法的解释可得,有限元法的实质就是将一个无限的连续体,理想化为有限个单元的组合体,使复杂问题简化为适合于数值解法的结构型问题;且在一定的条件下,问题简化后求得的近似解能够趋近于真实解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析-基本概念
现代设计方法
有限元法的基本思想
有限元分析-基本概念
现代设计方法
有限元法的基本思想
有限元分析-基本概念
现代设计方法
有限元法的基本思想
• 离散为单元网格的冲压件仍然要保证是一 个连续体,单元与单元之间没有裂缝、不 能重叠,所有单元通过单元节点相互关联 着 • 板料无论产生多大的塑性变形,单元与单 元之间依然不会产生裂缝、交叉和重叠, 关联单元的节点也不能脱开
有限元分析-基本概念
现代设计方法
3)利用节点间的刚度系数直接写出总体刚度矩阵 总体刚度矩阵对角线上的刚度系数 K ij 等于在节 (e) K 点 i 汇交的几个单元的刚度系数 ij 之和;非对角线 上的刚度系数 K ij 等于联结节点i与节点j间几个单元 的刚度系数
(e) K ij 之和。
有限元分析-基本概念
有限元分析-基本概念
现代设计方法 不合格单元
有限元法的基本思想
单元裂缝 有限元分析-基本概念
单元重叠
现代设计方法
有限元法的基本思想
根据研究对象的不同,有限元法中采用的单元 形式也不相同。 通常,按照单元结构,可将单元划分为一维单 元(线单元)、二维单元(面单元)和三维单元
一维单元
J
二维单元
L K
现代设计方法
4. 确定约束条件 由上述所形成的整体平衡方程是一组线性代数 整体平衡方程 方程,在求解之前,必修根据具体情况分析,确定 求解对象问题的边界约束条件,并对这些方程进行 求解对象问题 适当修正。
有限元分析-基本概念
现代设计方法
5. 有限元方程求解 通过求解整体平衡方程,即可求得各节点的 位移进而根据位移可计算单元的应力及应变。 6. 结果分析与讨论
有限元分析-基本概念
现代设计方法
2)节点(node) 单元与单元之间的联结点,称为节点。在有限 元法中,节点就是空间中的坐标位置,它具有物理 特性,且存在相互物理作用。
有限元分析-基本概念
现代设计方法
载荷
节点: 空间中的坐标位置,具有 一定相应,相互之间存在物理作 用。 单元:节点间相互作用的媒介, 用一组节点相互作用的数值矩阵 描述(称为刚度或系数矩阵)。
载荷 有限元模型由一些简单形状的单元组成,单元之间通 过节点连接,并承受一定载荷。 有限元分析-基本概念
现代设计方法
1-2 有限元法基本思想
• 先将求解域离散为有限个单元,单元与单元只在节点 相互连接;----即原始连续求解域用有限个单元的集合 近似代替 • 对每个单元选择一个简单的场函数近似表示真实场函 数在其上的分布规律,该简单函数可由单元节点上物 理量来表示----通常称为插值函数或位移函数 • 基于问题的基本方程,建立单元节点的平衡方程(即 单元刚度方程) • 借助于矩阵表示,把所有单元的刚度方程组合成整体 的刚度方程,这是一组以节点物理量为未知量的线形 方程组,引入边界条件求解该方程组即可。 有限元分析-基本概念
有限元分析-基本概念
现代设计方法
通过在单元内假设不同的插值函数,建立不同 的单元模型,适应各种各样的变形模式和受力 模式
F F
X 有限元分析-基本概念
X
现代设计方法
(2) 分析单元的特性,建立单元刚度矩阵 ◊ 进行单元力学特性分析,将作用在单元上的所有力(表面 力、体积力、集中力)等效地移置为节点载荷; ◊ 采用有关的力学原理建立单元的平衡方程,求得单元内节 点位移与节点力之间的关系矩阵-------单元刚度矩阵。
有限元分析-基本概念
现代设计方法
磁场分布
分析卫星、飞船在轨运行时磁场的影响
有限元分析-基本概念
现代设计方法
工程问题的三种解决方法: (1) theoretical analysis (exact solutions) (2) numerical methods : a, Finite element method, b, Finite difference method, c, Boundary element method; (3) experimental techniques (optical,electrical,…)
三维单元
P M L N K J O
I
I
J
I
有限元分析-基本概念
单元类型 现代设计方法
单元图形
节点数
节点自由度
杆单元 梁单元 平面单元
典 型 单 元 类 型
2 2 3 4 3 4 4
1 3 2 2 2 3 3
平面四边形
轴对称问题 板壳单元 四面体单元
有限元分析-基本概念
现代设计方法
按照单元结构特点和受力特点,可将单元划分为: 1)桁架杆单元:主要应用于受轴向力作用的杆和杆 系,如桁架结构; 2)刚架杆单元:用于梁及刚架结构分析; 3)三角形平面单元:主要用于弹性力学中平面应力 和平面应变问题的有限元分析; 4)三棱圆环单元:用于轴对称问题的有限元分析; 5)等参数单元:用于一些具有曲线轮廓的复杂结构。
现代设计方法
有限元法基本思想
A single finite element
Finite element mesh
图1 (a) A general two-dimensional domain of field variable . (b) A three-node finite element defined in the domain, (c) Additional elements showing a partial finite element mesh.
有限元分析-基本概念、梁、柱等称为杆系单元。连接的 点称为节点。 杆系单元为一维单元。 结构离散 一般原则: 杆系的交叉点、边界点、集中力作用点、 杆件截面尺寸突变处等都应该设置节点,节点之间的杆件 即构成单元。
F
单元① 节点1 节点2 节点2
单元②
节点3
分析指导思想
化整为零,裁弯取直,变难为易,先拆后搭
有限元分析-基本概念
现代设计方法
载荷 节点
单元
载荷
有限元分析-基本概念
现代设计方法
几个基本概念 1)单元(element) 将求解的工程结构看成是 由许多小的、彼此用点联结的 基本构件如杆、梁、板和壳组 成的,这些基本构件称为单元。 在有限元法中,单元用一 组节点间相互作用的数值和矩 阵(刚度系数矩阵)来描述。
有限元分析-基本概念
现代设计方法
网架杆件 基本单元 节点位移 基本未知量 单元刚度矩阵
节点平衡及变形协调条件
总刚度矩阵
总刚度方程
引入边界条件
节点位移值
单元内力与节点位移间关系
单元内应力应变
有限元分析-基本概念
现代设计方法 有限元求解实例分析
【例1】一根由两段组成的阶梯轴,一端固定,另 一端承受一个轴向载荷F3。这两段的横截面积分 别为A(1)和A(2),长度分别为L(1)和L(2),弹性模量 分别为E(1)和E(2) ,求出这两段的应力和应变。已 (1) −4 2 A = 2 × 10 m , 知数据分别为F =100N,F2=0N ,
有限元分析-基本概念
现代设计方法
确定总体刚度矩阵[K]的办法 1)直接利用总体刚度系数的定义 在求出整体结构中各节点力与节点位移关系的 基础上获得总体刚度矩阵。此方法只在简单情况下 才能采用。 2)集成法 将整体坐标下的单元刚度矩阵进行迭加而得。 这里所说的迭加不是简单的相加,而是将下角标相 同的刚度系数相加,然后按总码的顺序对号入座。
有限元分析-基本概念
现代设计方法
【解】 1.离散化 把这根阶梯轴看成是由两个单元组成的,节点 选在截面积突变处,两个单元的连接处是一个节 点,该阶梯轴的两端视为另外两个节点,所以整个 结构共有三个节点。这根轴是一维结构,并只受轴 向载荷,因此各单元内只有轴向位移。三个节点位 Φ 2、Φ 3 。在整个结构中节 置的位移量分别记为Φ1 、 点载荷及节点位移均用大写字母标记,其角标为节 点在总体结构中的编码,简称总码。
现代设计方法
华中科技大学 国家CAD支撑软件工程技术研究中心 黄正东 zdhuang@
有限元分析-基本概念
现代设计方法
有限元方法——概述
• 了解有限元在工程中应用 • 了解有限元分析的基本思想 • 求解有限元问题的过程
有限元分析-基本概念
现代设计方法
1-1 有限元法工程应用场景
(e) [ ] K 单元刚度矩阵 是由单元节点位移量 [Φ] 求单元节点
( e)
(e) 力 [F] 向量的转移矩阵,其关系式为:
{F }( e ) = {K }( e ) {Φ}( e )
有限元分析-基本概念
现代设计方法
3. 整体分析 ◊ 把各个单元的刚度矩阵集成为总体刚度矩阵,以 及将各单元的节点力向量集成总的力向量,求得整体 平衡方程。 集成总体刚度矩阵[K]并写出总体平衡方程: [K]是由整体节点位移向量 [Φ ] 求整体节点力向量 [F ] 的转移矩阵,其关系式为 {F } = {K }{Φ},这就是总体 平衡方程;
有限元分析-基本概念
现代设计方法
其中, 能用解析法求出精确解的只能是方程性质比较简单且几何 边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。这就需要研究它的 数值解法,以求出近似解。 传统方法要对一个实际的物理系统作出多种假设,比如形状假设、连 续性假设等,然后通过经典理论方法得出问题的解析解,可得出实际 问题的连续解,比如用方程描述三峡大坝某一点的位移和应变,但这 样的解析解往往和实际情况有比较大的偏差。这对于精度要求不高的 领域是可以的,但对于有些领域,就不能满足实际的需要了。
有限元分析-基本概念
现代设计方法
1-3 有限元法过程
相关文档
最新文档