六年级阶梯奥数34.最值问题

合集下载

小学数学六年级奥数《最值问题(2)》练习题(含答案)

小学数学六年级奥数《最值问题(2)》练习题(含答案)

小学数学六年级奥数《最值问题(2)》练习题(含答案)一、填空题1.下面算式中的两个方框内应填 ,才能使这道整数除法题的余数最大. □÷25=104…□2.在混合循环小数 2.718281的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大.写出新的循环小数:3.一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是 .4.将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个最大乘积等于 .5.一个五位数,五个数字各不同,且是13的倍数.则符合以上条件的最小的数是 .6.把1、2、3、4...、99、100这一百个数顺序连接写在一起成一个数. Z =1234567891011 (9899100)从数Z 中划出100个数码,把剩下的数码顺序写成一个Z ',要求Z '尽可能地大.请依次写出Z '的前十个数码组成一个十位数 .7.用铁丝扎一个空心的长方体,为了使长方体的体积恰好是216cm 3,长方体的长,宽,高各是 cm 时,所用的铁丝长度最短.8.若一个长方体的表面积为54平方厘米,为了使长方体的体积最大,长方体的长,宽,高各应为 厘米.9.把小正方体的六个面分别写上1、2、3、4、5、6.拿两个这样的正方体,同时掷在桌子上.每次朝上的两个面上的数的和,最小可能是 .最大可能是 ,可能出现次数最多的两个面的数的和是 .10.将进货的单价为40元的商品按50元售出时,每个的利润是10元,但只能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个.为了赚得最多的利润,售价应定为 .二、解答题11.王大伯从家(A 点处)去河边挑水,然后把水挑到积肥潭里(B 点处).请帮他找一条最短路线,在下图表示出来,并写出过程.12.某公共汽车线路上共有15个车站(包括起点站和终点站),公共汽车从起点站到终点站的行驶过程中,每一站(包括起点站)上车的人中恰好在以后的各站都各有1人下车,要使汽车在行驶中乘客都有座位,那么在车上至少要安排乘客A B ·· 河座位多少个?13.有一块长24厘米的正方形厚纸片,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒,现在要使做成的纸合容积最大,剪去的小正方形的边长应为几厘米?14.某公司在A,B两地分别库存有某机器16台和12台,现要运往甲乙两家客户的所在地,其中甲方15台,乙方13台.已知从A地运一台到甲方的运费为5百元,到乙方的运费为4百元,从B地运一台到甲方的运费为3百元,到乙方的运费为6百元.已知运费由公司承担,公司应设计怎样的调运方案,才能使这些机器的总运费最省?———————————————答案——————————————————————1. 2426和24因为除数是25,余数最大应是24,所以被除数为25⨯104+24=2426.算式应为2624÷25=104…24.2. 1.2871283. 471设这个整数为1000K+123,其中K是整数.因1000K+123=(1001K+117)+(K-6),1001K和117都是13的倍数,因而(K-6)是13的倍数,K的最小值是6,这个数为6123,6123÷13=471.4. 2618因37=17+11+7+2,它们的积为17⨯11⨯7⨯2=2618.5. 10257五位数字各不相同的最小的五位数是10234.10234÷13=787…3.故符合题意的13的最小倍数为788.验算:13⨯788=10244有两个重复数字,不合题意,13⨯789=10257符合题意.6. 9999978956由计算可知,Z共有192位数,去掉100位数码,还剩92个数字,所以Z'是92位数.对Z'来说,前面的数字9越多,该数越大.因此Z'中开头应尽可能多保留9.在Z中先划去第一个9前的8个数码,再分别划去第二个9、第三个9、第四个9、第五个9前各19个数码,这时共划去了84个数,这时得到的数是: 99999505152535455565758596061……还需要划去16个数码,第六个9前面有19个小于9的数码,划掉7以前的6和6以下的所有数码,这样又划掉16个数码,还剩下7、8、5等3个数码,新组成的数为:999997859606162…99100,前十个数码组成的十位数是9999978596.7.6,6,6设长方体的长、宽、高分别为xcm,ycm和zcm.则有xyz=216.铁丝长度之和为(4x+4y+4z)cm,故当x=y=z=6时,所用铁丝最短.8.3,3,3设长、宽、高分别为x、y、z厘米,体积为V厘米3,则有2(xy+yz+zx)=54,从而xy +yz +zx =27.因V 2=(xyz )2=(xy )(yz )(zx ),故当xy =yz =zx 即x =y =z =3时, V 2有最大值,从而V 也有最大值.9. 7每次朝上的两个面上的和,最小可能是2,这时两个面都出现1,最大可能是12.以朝上的两个面上的数为加数,依次列出的加法算式共有6⨯6=36个,其中和为7的算式共有6个:6+1,5+2,4+3,3+4,2+5,1+6.故每次朝上的两个面上的数的和,可能出现的次数最多是7.10. 20元设每个商品售价为(50+x )元,则销量为(500-10x )个,总共可获利(50+x -40) ⨯(500-10x )=10⨯(10+x )⨯(50-x )元.因(10+x )+(50-x )=60为一定值.故当10+x =50-x ,即x =20时,它们的积最大.11. 以河流为轴,取A 点的对称点C ,连结BC 与河流相交于D 点,再连续AD .则王大伯可沿着AD 走一条直线去河边D 点挑水,然后再沿DB 走一条直线到积肥潭去.这就是一条最短路线.12. 从第一站开始,车上人数为1⨯14,到第二站时,车上人数为2⨯13,依次可算出以下各站车上人数为3⨯12、4⨯11、5⨯10、6⨯9、7⨯8、8⨯6…车上最多的人数为56人,故车上至少应安排乘客座位56个.13. 如图,设剪去的小正方形边长为x 厘米,则纸盒容积为:V =x (24-2x )(24-2x )=2⨯2x (12-x )(12-x )因2x +(12-x )+(12-x )=24是一个定值,故当2x =12-x 时,即x =4时,其乘积最大从而纸盒容积也最大.14. 设由A 地运往甲方x 台,则A 地运往乙方(16-x )台,B 地运往甲方 (15-x )台,B 地运往乙方(x -3)台.于是总运价为(单位:元):S =500x +400(16-x )+300(15-x )+600(x -3)=400x +9100.显然x 满足不等式153≤≤x .故当x =3时,总运费最省,为400⨯3+9100=10300(元).A B D 河流x。

六年级奥数题:最值问题

六年级奥数题:最值问题

———————————————答 案——————————————————————
1. 6 第一把钥匙最坏的情况要试 3 次,第二把要试 2 次,第三把要试 1 次,共计 6 次. 2. 12 因 4 和 3 的最小公倍数为 12,故最少需这样的木块 12 块. 3. 50000.4 4. 48 一共有 100 个自然数,其中奇数应多于 50 个,因为这 100 个自然数的总和是 偶数,所以奇数的个数是偶数,至少有 52 个,因而至多有 48 个. 5. 20 因 975=3952,935=1875,972=24322,要使其积为 1000 的倍数,至少应乘以 522=20. 6. 1105 因为 12、13、14 的公倍数分别加上 12、13、14 后才依次是 12、13、14 倍 数的连续自然数,故要求是 13 的倍数的最小自然数,只须先求 12、13、14 的最小 公倍数为 1092,再加上 13 得 1105. 7. 20 第一横行取 6,第二横行取 7,第三横行取 7. 8. 12 米,6 米. 金属网应竖着放,才能使鸡窝高度不低于 2 米.如图,设长方形的长和宽分别 1 是 x 米和 y 米,则有 x+2y=1.220=24.长方形的面积为 S=xy= x 2 y . 2
4 3
二、解答题
11.下图中,已知 a、b、c、d、e、f 是不同的自然数,且前面标有两个箭头的 每一个数恰等于箭头起点的两数的和(如 b=a+d),那么图中 c 最小应为多少? a b d c e f
12.唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟 125 米,唐老鸭 的速度是每分钟 100 米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器, 通过这种遥控器发出第 n 次指令,米老鼠就以原速度的 n10%倒退一分钟,然后再 按原来的速度继续前进,如果唐老鸭想在比赛中获胜 ,那么它通过遥控器发出指 令的次数至少应是多少次?

小学数学人教新版六年级上册奥数系列讲座:最值问题(含答案解析)

小学数学人教新版六年级上册奥数系列讲座:最值问题(含答案解析)

小学数学人教新版六年级上册实用资料最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,F GH×IJ 尽可能的小.则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(moda+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9t a=15+17t ⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小学六年级奥数课件:最值问题

小学六年级奥数课件:最值问题
故图(3)的面积最大。
例4. 某商店有一天,估计将进货 单价为90元的某商品100元 售出后,能卖出500个。已 知这种商品每个涨价1元,其 销售量就减少10个。为了使 这一天能赚得更多利润,售 价应定为每个______元。
解析
卖价110时,利润为110-90=20元,售出500-10×10=400个,盈利20×400=8000元; 卖价120时,利润为120-90=30元,售出500-20×10=300个,盈利30×300=9000元; 卖价130时,利润为130-90=40元,售出500-30×10=200个,盈利40×200=8000元; 卖价150时,利润为150-90=60元,售出500-50×10=0,可以盈利60×0=0; 综上所述得,当售价为120时,获得最大利润9000元。
(3)14=3+3+3+3+2 3×3×3×3×2=162
(4)14=5+5+2+2 5×5×2×2=100
二、和最小的规律
几个数的积一定,当这几个数相等时,它们的和相等。用字母表达就是: 如果a1× a2× …× an=c(c为常数),
那么,当a1=a2=…=an时,a1+a2+…+an,有最小值。
序:1分,2分,3分,4分,5分,6分,7分,8分,9分,10分。 1× 10+2× 9+3× 8+4× 7+5× 6+6× 5+7× 4+8× 3+9× 2+10× 1 =(1× 10+2× 9+3× 8+4× 7+5× 6)×2 =220(分)
例6. 自行车的前轮胎行驶9000千米 后报废,后轮胎行驶7000千米 后报废,前后轮胎可在适当时候 交换位置,一辆自行车同时换上 一对新轮胎,最多蚁分别处在A、B、C的位置上,

小学六年级奥数计算题及答案:最值问题

小学六年级奥数计算题及答案:最值问题

小学六年级奥数计算题及答案:最值问题
★这篇【小学六年级奥数计算题及答案:最值问题】,是特地为大家整理的,希望对大家有所帮助!
一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试( )次才能配好全部的钥匙和锁.
分析:第一把钥匙最坏的情况要试3次,把这把钥匙和这把锁拿出;剩下的3把锁和3把钥匙,最坏的情况要试2次,把这把钥匙和这把锁拿出;剩下的2把锁和2把钥匙,最坏的情况要试1次,把这把钥匙和这把锁拿出;剩下的1把锁和1把钥匙就不用试了.
解:3+2+1=6(次);
答:最多要试6次才能配好全部的钥匙和锁.
故答案为:6.。

【6年级奥数课本(上)】第18讲 最值问题二

【6年级奥数课本(上)】第18讲 最值问题二

小学奥数创新体系6年级(上册授课课本) 最新讲义小学奥数第十八讲最值问题二一、最值问题中的常用方法a)极端思考在分析某些最值问题时,可以考虑把问题推向“极端”,因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解.b)枚举比较根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案.c)分析推理根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法.d)构造调整在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果.二、求最大值和最小值的结论1.和一定的两个数,差越小,积越大;2.积一定的两个数,差越小,和越小;3.两点之间线段最短.例1.用一根长80厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?「分析」题目的限制条件是铁丝长为80厘米,要求体积的最大值,通过什么可以把这二者联系起来呢?练习1、(1)用一根长100厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?(2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是36立方厘米,这根铁丝的长度是多少厘米?例2.有5袋糖,其中任意3袋的总块数都超过60.这5袋糖块总共最少有多少块?「分析」每3袋的总块数都超过60,要求5袋的总块数.事实上我们以前做过类似的题:“已知三个数两两的和数,求这三个数的总和.”这样的题大家是怎么处理的呢?它的处理方法能否应用到本题中来呢?练习2、有5个学生参加暑期竞赛班,每人都拿了不少积分(所有积分都是整数).如果其中每三人的积分之和都不少于500分,那这五人的总积分最少是多少?例3.用1、2、3、4、5、6、7、8、9各一个组成3个三位数,使得它们都是9的倍数,并且要求乘积最大,请写出这个乘法算式.「分析」为了让这样的三个数的乘积最大,我们当然要让三个数的首位最大.那么首位应该是多少呢?注意到这三个数都是9的倍数,9的倍数有什么特征呢?它对这三个数提出了怎样的要求?练习3、用1、2、3、4、5、6各一个组成两个三位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.例4.把1至99依次写成一排,行成一个多位数:12349899.从中划去99个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?「分析」要使得到的数最大,所得的数前面几位应该是什么?如果要最小呢?练习4、把1至20依次写成一排,行成一个多位数:12341920.从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?例5.邮递员送信件的街道如图所示,每一小段街道长1千米.如果邮递员从邮局出发,必须走遍所有的街道,那么邮递员最少需要走多少千米?「分析」如果邮递员恰好没有重复地走遍所有的街道,则这样走的总路程就是最短的.那么邮递员能做到这一点吗?实际上这是一个一笔画问题,同学们回想一下,什么样的图形才能一笔画出来呢?1 1 11 1 1邮局例6.如图,有一个长方体的柜子,一只蚂蚁要从左下角的A 点出发,沿柜子表面爬到右上角的B 点去取食物,蚂蚁爬行路线的长度最短是多少?一共有几条最短路线?请在图中表示出来.「分析」众所周知,两点之间线段最短.然而在本题中,蚂蚁是不能穿过柜子的,只能在柜子表面爬行.这样一来,我们就要在柜子表面寻找一条从A 到B 的最短路线.可是蚂蚁应该怎么走才能距离最短呢?A B331罐头装箱问题 我们经常遇到把圆柱体罐头放入长方体包装箱的问题,怎么摆放才能最有效地利用包装箱内的空间呢?一种显而易见的办法是把各圆排列成矩形的形状,像图1这样.它是一种较优排法,但不是最优的办法.没有最大限度地利用空间,浪费不少,圆的面积只占总共的78.5%.比上述办法好得多的办法,是将罐头摆放成图2所示的六边形.不难算出,正六边形内圆所覆盖的面积超过了90%.实际上,数学家已经证明了如果空间是无限延展的,这种六边形摆放法是最紧密的包装方式.但是正六边形摆法的最紧密性质是有条件的,尤其在盒子不太大的时候.例如要放9个罐头,正六边形摆法需要的正方形不是最小的.如图3,它的放法就不比图4好.当罐头数目增加时,放罐头的最佳包装法会不断在变,越来越倾向于正六边形排法.比如,13个罐头的最优包装法,用边长大约为圆直径3.7倍的正方形就够了.如图5,虽然它看上去乱糟糟,但已被证明为最优解.我们可以看到,12个罐头紧紧地靠在一起,而第13个(黄色的那个)则自由自在地放在中间.最后,大家思考一个问题:设1角钱硬币的直径为a 厘米,那么我们在边长为10a 厘米的正方形中,最多可以不重叠地放入多少枚硬币呢?是100枚吗?能否放进去更多?图4图3 图2 图1 图5。

应用题中的最值问题

应用题中的最值问题

应用题中的最值问题在数学中,应用题是帮助我们将数学知识应用于实际问题的重要手段之一。

其中,最值问题是应用题中常见且具有挑战性的一类问题。

本文将探讨应用题中的最值问题,并通过实际例子展示如何解决这些问题。

一、最值问题的定义和解决方法最值问题是指在一定范围内,找出函数的最大值或最小值的问题。

在解决最值问题时,我们需要明确以下几个步骤:1. 确定问题背景和条件:了解题目所给的具体情境和限制条件,确保对问题有全面的理解。

2. 建立数学模型:将问题转化为数学表达式。

根据题目提供的信息,可以通过建立函数或方程来描述问题,以便后续求解。

3. 求导并解方程:对所建立的函数或方程进行求导,并解决相关方程。

根据问题要求,我们可以找到导数为0的临界值,以及一些特殊点。

4. 检验临界值和特殊点:将临界值和特殊点代入函数或方程,进行验证。

通过验证,确认所求的最值是否存在或有效。

5. 给出最终答案:根据问题所求,可以得到最大值或最小值,并做出符合问题背景的解释和结论。

二、实例分析:最值问题的应用为了更好地理解最值问题的应用,我们来看一个具体例子。

假设某电商平台推出了一件商品,初始价格为x元。

经过一段时间的销售,该商品的销量与价格之间存在一定的关系。

现在需要确定一个最佳价格,使得销售利润达到最大值。

解决该问题的关键步骤如下:1. 确定问题背景和条件:假设该商品的每个单位价格对应的销量可以通过函数f(x)表示,其中x为价格,f(x)为销量。

另外,我们还需要考虑商品的成本和利润率等因素。

2. 建立数学模型:根据题目要求,可以建立一个代表销售利润的函数p(x),其中p(x) = (x - c) * f(x),其中c表示商品的成本。

这里,我们通过将价格与销量的关系转化为销售利润的函数,建立了一个数学模型。

3. 求导并解方程:对所建立的销售利润函数p(x)进行求导,并解方程p'(x) = 0。

在求解过程中,我们可以找到导数为0时的价格值,即为存在最大利润的价格。

最值问题(小学奥数)

最值问题(小学奥数)

最值问题(小学奥数)在小学奥数中,最值问题是一个常见的题型。

最值问题主要考察学生对数值的理解和比较能力。

本文将从解题思路、答题技巧以及相关例题来进行详细讨论。

解题思路:在解决最值问题时,首先需要明确题目要求求解的最大值或最小值是什么,然后根据题目给出的条件和限制条件进行分析。

常见的解题思路有以下几种:1. 穷举法:逐个尝试所有可能的情况,将每种情况计算出来的结果进行比较,找出最大值或最小值。

2. 推理法:通过观察已知条件和限制条件,进行逻辑推理,找到最值的可能位置,并进行比较。

3. 抽象问题:将问题进行数学建模,通过建立数学模型,利用数学方法求解最值问题。

答题技巧:在解决最值问题时,以下几点技巧可以帮助学生提高解题效率和准确性:1. 变量转化:对于涉及多个变量的最值问题,可以通过变量的转化,将问题简化为只涉及一个变量的问题。

2. 条件整理:对于给定的条件和限制条件,可以进行整理和分类,找到与最值问题相关的条件,有针对性地分析和求解。

3. 符号表示:在解题过程中,合理地使用符号表示,可以简化计算过程,提高解题效率。

例如,用代数式表示最值问题,通过求导等数学方法求解。

例题一:某次数学竞赛的“200米冲刺”项目中,小明和小红两位选手进行了比赛。

根据记录,小明在前半程跑得较快,但在后半程稍有掉队。

已知小明最终耗时为30秒,小红的总用时比小明多1秒。

求小明和小红的前后半程用时各为多少?解析:设小明的前半程用时为x秒,则后半程用时为30 - x 秒。

根据题目所给条件,可以列出方程:x + (30 - x) + 1 = 30。

解方程可得小明前半程用时29秒,后半程用时1秒。

小红的前半程用时为30 - 1 = 29秒,后半程用时为1秒。

因此,小明的前半程用时为29秒,后半程用时为1秒;小红的前半程用时为29秒,后半程用时为1秒。

例题二:甲乙两个国家的人口分别是1000万和2000万。

假设甲国每年的人口增长率是2%,乙国每年的人口增长率是3%。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小学六年级最值问题

小学六年级最值问题

最值问题1、六年级最值问题:难度:高难度表示一个四位数,表示一个三位数,A,B,C,D,E,F,G代表1至9的不同的数字。

已知,问:乘积的最大与最小值差多少?答:2、六年级六年级最值问题:难度:高难度一组互不相同的自然数,其中最小的数是1,最大的数是25,除1之外,这组数中的任一个数或者等于这组数中某一个数的2倍,或者等于这组数中某两个数之和,问:这组数之和最大值是多少?当这组数之和有最小值时,这组数都有哪些数?并说明和是最小值的理由。

答:3、六年级最值问题:难度:高难度将l,2,3…49,50任意分成l0组,每组5个数,在每组中取数值居中的那个数为“中位数”,求这l0个中位数之和的最大值及最小值。

答:4、六年级最值问题:难度:中难度把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?答:5、六年级最值问题:难度:高难度下面是一个乘法算式:问:当乘积最大时,所填的四个数字的和是多少?答:1、六年级最值问题习题答案:【解】可以看出A=1,因为E≠O,1,所以B最大为7,这时E=2由于D、G都不能是O,1,所以D+G=13,C+F=8由于F≠O,1,2,所以C最大为5。

从而三位数最大为759,这时=34。

最小为234(这时=759最大)。

=(1000+)×(993-),=1000×993-1000×+993×一×=993000-7×—-×于是在最大时,乘积最小,最小时,乘积最大,因此,所求的差是(993000-7×234-234×234)-(993000-7×759-759×759)=7×(759-234)+759×759-234×234 =7×(759-234)+(759+234)×(759-234)=7×(759-234)+993×(759-234)=1000×<759-234)=525000。

六年级(最值问题)

六年级(最值问题)

最值问题
知识要点
1.如果两个整数的和一定,那么这两个整数的差越小,他们的乘积越大。

当两
个数相等时,他们的乘积最大。

2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和越小。

3.把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,
那么这些自然数应全是2或3,且2的个数不超过2个。

例题
1.两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?
2.比较下面两个乘积的大小
A=57128463×87596512 B=57128470×87596505
3.要砌一个面积是144平方米的猪圈,这个猪圈的围墙最少长多少米?
4.把17拆分成若干个自然数的和,怎样拆分才能使他们的乘积最大
5.已知长方体的长宽高均为整厘米数,相邻两个面的面积是180平方厘米和84
平方厘米,求表面积最小的长方体的体积
习题
1.甲乙两项工作,单独做,张需10小时完成甲工作,15小时完成乙工作。


需8小时完成甲工作。

20小时完成乙工作,两人合作完成这两项工作最少要多少小时?
2.把546分解成四个不同的自然数之积,这四个自然数的和最大是多少?
3.今有一队学生(300以内),如果每9人排一列,最后余下4个人,如果每7
人排一列,最后余下3人。

问这对学生最少有多少人?最多有多少人?
4用铁丝扎一个长方体的模型,为了使长方体的体积恰好等于216立方厘米,长方体的长宽高格式多少厘米的时候用的铁丝最短?最短是多少?
5.把19拆成几个自然数的和才能使这些自然数的乘积最大?最大乘积是多少?。

六年级奥数数论专题练习最大值最小值-最新教育文档

六年级奥数数论专题练习最大值最小值-最新教育文档

六年级奥数数论专题练习最大值最小值
编者小语:数论专题是小学奥数的一个重点,为此编辑整理了一系列关于数论的试题供大家学习参考。

下面我们就开始关于六年级奥数数论专题练习:最大值最小值
黑板上写着1至2019共2019个自然数,小明每次擦去两个奇偶性相同的数,再写上它们的平均数,最后黑板上只剩下一个自然数,这个数可能的最大值和最小值的差是
________。

解答:要让和最小,那么应该擦去的数尽量大,最大的就是2019和2019这两个,擦去后添上2019,两个2019又能擦去一个,这样就变成了1~2019,一直进行,不难发现最后剩下一个2。

所以有:最小的:(2019,2019)&rarr;(2019,2019)&rarr;(2019,2019)&rarr;(2019,2019)&rarr;(2019,2019)&rarr;(2019,2019)&rarr;……(6,4)&rarr;(5,3)&rarr;(4,2)&rarr;(3,1)&rarr;2 最大的:(1,3)&rarr;(2,2)&rarr;(2,4)&rarr;(3,5)&rarr;(4,6)&rarr;(5,7)&rarr;……(2019,2019)&rarr;(2019,2019)&rarr;(2019,2019)&rarr;(2019,2019)&rarr;2019 这个数的最大值和最小值的差是2019-2=2019
第 1 页。

六年级数学精讲 最值问题

六年级数学精讲  最值问题

最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。

当两个数相等时,它们的乘积最大。

2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。

3.把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。

典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况:13=0+13,0×13=0; 13=1+12,1×12=12;13=2+11,11×2=22; 13=3+10,3×10=30;13=4+9,4×9=36; 13=5+8,5×8=40;13=6+7,6×7=42。

由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。

解13÷2=6……1,6×(6+1)=42。

答:这两个整数分别为6和7。

例2 比较下面两个乘积的大小。

A=57128463×87596512 B=57128470×87596505点拨要比较A与B的大小,用计算的方法求积会很麻烦。

仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比较每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大。

解 A组两个因数的差:87596512-57128463=30468049, B组两个因数的差:87596505-57128470=30468035。

因为30468049>30468035,所以B>A。

例3 两个自然数的积是50,这两个自然数是什么值时,它们的和最小?点拨两个自然数乘积是50的,共有三种情况:50=50×1,50+1=51;50=25×2,25+2=27;50=10×5,10+5=15。

最值问题(六年级奥数题及答案)

最值问题(六年级奥数题及答案)
最值问题(六年级奥数题及答案)
最值问题
阶梯教室座位有10排,每排有16个座位,当有150个人就坐时,某些排坐着的人数就一样多.我们希望人数一样的排数尽可能少,则相同人数的至少有排.
解:至少有4排.
如果排人数各不相同,那么这10排最多分别坐16、15、14、13、……、7人,则最多坐16+15+14+13+12+1பைடு நூலகம்+10+9+8+7=115
(人);
如果最多有2排人数相同,那么最多坐(16+15+14+13+12)×2=140(人);
如果最多有3排人数一样,那么最多坐(16+15+14)×3+13=148(人);
如果最多有4排人数一样,那么最多坐(16+15)×4+14×2=152(人).
由于148<150<152,所以只有3排人数一样的话将不可能坐下150个人,相同人数的至少有4排.

小学六年级奥数课件:最值问题共25页

小学六年级奥数课件:最值问题共25页
45、自己的饭量自己知道。——苏联
小学六年级奥数课件:最值问题
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、ቤተ መጻሕፍቲ ባይዱ革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬

最值问题19种题型

最值问题19种题型

最值问题19种题型最值问题是一个在数学中非常常见的问题类型,它要求我们找出一组数值中的最大值或最小值。

在解决最值问题的过程中,我们需要运用数学知识和技巧来推导和计算,以找到正确的答案。

下面将介绍19种最值问题的题型及其解法。

1.一元一次函数最值问题:给定一个一元一次函数,求其最大值或最小值。

解法一般是对函数进行求导,然后令导数为零求解。

2.二次函数最值问题:给定一个二次函数,求其最大值或最小值。

解法一般是对函数进行求导,然后令导数为零求解。

3.分段函数最值问题:给定一个分段函数,求其最大值或最小值。

解法是分别求出每个区间内的最大值或最小值,并比较大小。

4.绝对值函数最值问题:给定一个含有绝对值的函数,求其最大值或最小值。

解法是分别讨论绝对值的取正值和取负值的情况,并比较大小。

5.指数函数最值问题:给定一个指数函数,求其最大值或最小值。

解法一般是对函数进行求导,然后令导数为零求解。

6.对数函数最值问题:给定一个对数函数,求其最大值或最小值。

解法一般是对函数进行求导,然后令导数为零求解。

7.三角函数最值问题:给定一个三角函数,求其最大值或最小值。

解法一般是对函数进行求导,然后令导数为零求解。

8.组合函数最值问题:给定一个由多个函数复合而成的函数,求其最大值或最小值。

解法一般是使用复合函数的链式法则进行求导,并令导数为零求解。

9.线性规划最值问题:给定一组线性不等式和线性目标函数,求其满足约束条件的最大值或最小值。

解法一般是使用线性规划的方法进行求解。

10.几何图形最值问题:给定一个几何图形,求其最大面积、最小周长等最值问题。

解法一般是使用几何知识和公式进行计算。

11.统计问题最值问题:给定一组数据,求其中的最大值、最小值或其他统计量。

解法一般是对数据进行排序或使用统计学方法。

12.矩阵最值问题:给定一个矩阵,求其中的最大值、最小值或其他特殊元素。

解法一般是使用矩阵运算和线性代数方法。

13.排列组合最值问题:给定一组元素,求其中的最大值、最小值或特殊组合。

六年级最值问题教师版

六年级最值问题教师版

容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从A 地道B 地,可以乘火车,也可以乘汽车或乘轮船。

一天中,火车有4班,汽车有3班,轮船有2班。

那么从A 地道B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有3条道路(如下图)。

从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。

➢ 加法原理:为了完成一件事,有几类方法。

第一类方法中有1m 种不同的方法,第二类方法中有2m 种不同的方法…….第n 类方法中有n m 种不同的方法。

那么,完成这件事共有12n N m m m =++⋅⋅⋅+种不同的方法。

➢ 乘法原理:为了完成一件事,需要n 个步骤。

做第一步有1m 种不同的方法,做第二步有2m 种不同的方法……做第n 步有n m 种不同的方法。

那么,完成这件事共有12n N m m m =⨯⨯⋅⋅⋅⨯种不同的方法。

第34讲 最值问题典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ尽可能的小.则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以ABC×DE-FGH×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9t a=15+17t ⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m 、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m +12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小学数学奥数解题技巧-三到六年级 最值规律

小学数学奥数解题技巧-三到六年级 最值规律

【排序不等式】对于两个有序数组:
a1≤a2≤…≤an 及b1≤b2≤…≤bn, 则a1b1+a2b2+……+anb抇n(同序) T≥a1b抇1+a2b抇2+……+anb抇n(乱序)≥a1b n+a2bn-1+……+a>nb1(倒序)(其中b抇1、b抇2、……、b抇n 为b1、b2、……、bn的任意一种排列(顺序、倒序排列在外),当且仅 当a1=a2=…=an,或b1=b2=…=bn时,式中等号成立。)由这一不等式可知, 同序积之和为最大,倒序积之和为最小。
于和它周长相等的正方形面积。
【体积变化规律】在表面积一定的正多面体(各面为正n边形,各面角和
各二面角相等的多面体)中,面数越多,体积越大。 例如,表面积为8平方厘米的正四面体S—ABC(如图1.30),它每一个面 均为正三角形,每个三角形面积为2平方厘米,它的体积约是1.1697立方 厘米。而表面积为8平方厘米
【例】当n=4时,周长相等的所有四边形中,以正方形的面积 为最大。
例题:用长为24厘米的铁丝,围成一个长方形,长宽如 何分配时,它的面积为最大?
解 设长为a厘米,宽为b厘米,依题意得 (a+b)×2=24 即 a+b=12 由积最大规律,得a=b=6(厘米)时,面积最大为 6×6=36(平方厘米)。 (注:正方形是特殊的矩形,即特殊的长方形。) 结论2 在三度(长、宽、高)的和一定的长方体中,以 正方体的体积为最大。
【积最大的规律】(2)将给定的自然数N,分拆成若干个(不定) 的自然数的和,只有当这些自然数全是2或3,并且2至多为两个时, 这些自然数的积最大。
【例】将自然数8拆成若干个自然数的和,要使这些自然数的 乘积为最大。怎么办呢?

六年级下册奥数最值问题全国通用

六年级下册奥数最值问题全国通用
用2—9这八个数字分别组成两个四位 数,使这两个四位数的乘积最大。
a、b、c、d、e、f、g、h、i分别代 表自然数1至9中的某一个,如果每一 个圆环内的各数字之和都相等,求每一 个圆环内的数字和的最大值和最小值。
a
bd c
e f
h g
i
你来当厂长
甲、乙两车间生产同一种成衣,但两 车间生产特长不同,甲每月用3/5的时 间生产上衣,2/5的时间生产裤子,每 月生产900套;乙每月用4/7的时间生 产上衣,3/7的时间生产裤子,每月生 产1200套。现在两车间联合起来生产, 尽量发挥各自特长多生产成衣,现在 比过去每月多生产多少套?
有自己的面,有的物体的面大一些,有的小一些。)
六(2)班56名同学选班长,候选 人是英英、辰辰、花花,三人以得 票最多的人当选,在选票开票中途 累计时,花花得16票,辰辰得13 票,英英得9票。此后花花还要得 多少票才能保证当选?
用0——9这十个数字组成5个两位数, 每个数字只能用一次,要求它们的和 是一个奇数,并且尽可能大。这5个 两位数的和是多少?
一张圆桌有12个座位,已有n 个人按某种方式就座,当某人
就座时,发现无论他坐在哪个
座位,都将与已经就座的人为
邻,则n的最小值是几?
已知一个长方体的长、宽、 高都是整厘米数,相邻两个 面的面积是180平方厘米和 84平方厘米。求表面积最小 的长方体的体积是多少?
五名选手在一次数学个红球 ②三个红球一个蓝球 ③一个红球三个蓝球
4整 921数分4,分。并,那且每么其人得中得分得分最分互低最不的高相选的等手选且至手都少是是得 2此这已1计a最这计a最计答刚你⑤这 的②(计三2计、、、 元 、后5知算大5算大算:才能秒节实秒3算、算bb个个)认,认花 一 小 值 时 值 时 如 是 猜 针 课际 针 小 教 小、、两两2识是识花个数和哪和哪果已得从我 问走数学数cc.5位位钟怎钟、、还长加最个最个把知出1们 题1加对加+数数面样20面dd要方减小竖小竖绿球来利 。减象减走小0、、上的算的上.得体法值式值式铅的吗用 法分法6到格ee的和出和的=、、多的时。更。更笔数?小 时析时1(秒是来是秒32ff少长,简简换量需数 ,:,1、、.((多的多(12票、要便便成,要加 要要gg元板到少吗少55、、才宽注??黄你知减注注分分,书2???hh能、意铅们道法 意意)))是、、62保高什笔就写解 什什0.怎ii分分秒证都么,可什决 么么样别别)当是?钱以么了 ??算代代选整不推?购出表表?厘够断物来自自米。出问的然然数它题吗数数,们,?11相出打2至至邻现车.599两的问+中中1个数题的的.2面量等某某=的多。一一3.面少在个个7元积,我,,呢是从们如如?而的1果果8说生每每0平出活一一方可中个个厘能,圆圆米性处环环和的处内内8大有的的4小数各各平,学数数方接。字字厘下我之之米来们和和。我 要都都不运相相告用等等诉所,,你学求求各的每每种数一一颜学个个色知圆圆球识环环的,内内具解的的体决数数数生字字量活和和,中的的 多少分,最多得多少分? 1、多媒体出示两个电视屏幕并设问:如果这两个电视播放动画片,你选择哪一个看?为什么? (生自由回答,师小结:每个物体都
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第34讲最值问题
内容概述
均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.
典型问题
2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?
【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.
则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.
这4袋糖的总和为20+20+21+21=82块.
方法二:设这4袋糖依次有a、b、c、d块糖,

61
61
61
61
a b c
a b d
a c d
b c d
++≥

⎪++≥


++≥

⎪++≥





,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥81
1
3
,因为a+b+c+d均是整数,
所以a+b+c+d的和最小是82.
评注:不能把不等式列为
a b c60
a+b+d60
a+c+d60
b+c+d60
++〉

⎪〉




⎪〉





,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、
d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.
4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.
【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ尽可能的小.
则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.
则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.
所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.
评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.
6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?
【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我
们首先考虑10,为了让和数最小,10两边的数必须为6和7.
然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.
8×7+7×10+10×6+6×9+9×8=312;
9×7+7×10+10×6+6×8+8×9=313.
所以,最小值为312.
8.一个两位数被它的各位数字之和去除,问余数最大是多少?
【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),
设最大的余数为k,有9a≡k(mod a+b).
特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;
所以当除数a+b不为18,即最大为17时,
:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有
m=7+9t
a=15+17t



(t为可取0的自然
数),而a是一位数,显然不满足;
:余数其次为15,除数a+b只能是17或16,
除数a+b=17时,有9a=15+17m,有
m=6+9t
a=13+17t



,(t为可取0的自然数),a是一位数,显然也不满足;
除数a+b=16时,有9a=15+16m,有
m=3+9t
a=7+16t



(t为可取0的自然数),因为a是一位数,所以a只能取7,
对应b为16-7=9,满足;
所以最大的余数为15,此时有两位数79÷(7+9)=4……15.
10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?
【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百
位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:
得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:
但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:
再考虑剩下的三个数字,可以找到如下几个算式:
,所以差最大为784.
12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?
【分析与解】设这四个分数为上
1
2m

1
2n

1
2a+1

1
2b+1
(其中m、n、a、b均为非零自然数)

1
2m
+
1
2n
=
1
2a+1
+
1
2b+1
,则有
1
2m
-
1
2b+1
=
1
2a+1
-
1
2n

我们从m=1,b=1开始试验:
1 2=
1
6
+
1
3
=
1
4
+
1
4

1
3
=
1
12
+
1
4
=
1
6
+
1
6

1 4=
1
20
+
1
5
=
1
8
+
1
8

1
5
=
1
30
+
1
6
=
1
10
+
1
10

1 6=
1
5
+
1
10
=
1
12
+
1
12
,﹍
我们发现,1
5

1
6
分解后具有相同的一项
1
10
,而且另外两项的分母是满足一奇一偶,满足题中条件:
1 5+
1
15
=
1
6
+
1
10
,所以最小的两个偶数和为6+10=16.
14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?
【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.
但是我们必须验证看是否有实例符合.
当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:
当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;
当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.
类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.
所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

相关文档
最新文档