Entire deformational characteristics and strain localization of jointed rock specimen in plane s
ZL205A_大厚板铝合金TIG_堆焊组织与性能研究
第15卷第7期孙捷,等:稀土元素对轧制Mg–Zn–Zr合金板材微观组织和力学性能的影响135a Mg-Y Alloy[J]. Materials & Design, 2014, 56: 966-974.[18] JIN Li, DONG Jie, SUN Jie, et al. In-Situ Investigationon the Microstructure Evolution and Plasticity of Two Magnesium Alloys during Three-Point Bending[J]. Inter-national Journal of Plasticity, 2015, 72: 218-232.[19] SIVASHANMUGAM N, HARIKRISHNA K L. Influ-ence of Rare Earth Elements in Magnesium Alloy - a Mini Review[J]. Materials Science Forum, 2020, 979: 162-166.[20] XU Jing, GUAN Bo, XIN Yun-chang, et al. A Weak Tex-ture Dependence of Hall–Petch Relation in a Rare-Earth Containing Magnesium Alloy[J]. Journal of Materials Sci-ence & Technology, 2022, 99: 251-259.[21] YU Zi-jian, XU Xi, SHI Kang, et al. Development andCharacteristics of a Low Rare-Earth Containing Magne-sium Alloy with High Strength-Ductility Synergy[J].Journal of Magnesium and Alloys, 2022.[22] JIN Li, MISHRA R K, SACHDEV A K. Texture Modi-fication during Extrusion of some Mg Alloys[J]. Metal-lurgical and Materials Transactions A, 2012, 43(6): 2148-2157.[23] WU W X, JIN L, ZHANG Z Y, et al. Grain Growth andTexture Evolution during Annealing in an Indi-rect-Extruded Mg–1Gd Alloy[J]. Journal of Alloys and Compounds, 2014, 585: 111-119.[24] FEATHER W G, GHORBANPOUR S, SAVAGE D J, etal. Mechanical Response, Twinning, and Texture Evolu-tion of WE43 Magnesium-Rare Earth Alloy as a Func-tion of Strain Rate: Experiments and Multi-Level Crys-tal Plasticity Modeling[J]. International Journal of Plas-ticity, 2019, 120: 180-204.[25] CHEN Yan-fei, ZHU Zheng-qiang, ZHOU Ji-xue. Studyon the Strengthening Mechanism of Rare Earth Yttriumon Magnesium Alloys[J]. Materials Science and Engi-neering: A, 2022, 850: 143513.[26] JUNG I H, SANJARI M, KIM J, et al. Role of RE in theDeformation and Recrystallization of Mg Alloy and a New Alloy Design Concept for Mg–RE Alloys[J].Scripta Materialia, 2015, 102: 1-6.[27] YU Zi-jian, XU Chao, MENG Jian, et al. Effects ofPre-Annealing on Microstructure and Mechanical Proper-ties of As-Extruded Mg-Gd-Y-Zn-Zr Alloy[J]. Journal of Alloys and Compounds, 2017, 729: 627-637.[28] YAN H, SHAO X H, LI H P, et al. Synergization ofDuctility and Yield Strength in a Dilute Quaternary Mg-Zn-Gd-Ca Alloy through Texture Modification and Guinier–Preston Zone[J]. Scripta Materialia, 2022, 207:114257.[29] STANFORD N, ATWELL D, BEER A, et al. Effect ofMicroalloying with Rare-Earth Elements on the Textureof Extruded Magnesium-Based Alloys[J]. Scripta Mate-rialia, 2008, 59(7): 772-775.[30] KUANG Jie, LI Xiao-hui, YE Xiao-xin, et al. Micro-structure and Texture Evolution of Magnesium Alloys dur-ing Electropulse Treatment[J]. Metallurgical and MaterialsTransactions A, 2015, 46(4): 1789-1804.责任编辑:蒋红晨精 密 成 形 工 程第15卷 第7期136 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年7月收稿日期:2022‒11‒25 Received :2022-11-25作者简介:刘浩(1993—),男,硕士,助理工程师,主要研究方向为先进连接技术。
基于双屈服条件准则的横观各向同性本构模型研究及其数值模拟
基于双屈服条件准则的横观各向同性本构模型研究及其数值模拟QU Guangxiu;REN Peng【摘要】为研究层状岩体的力学特性,提出基于双屈服条件强度准则的本构模型.基于双屈服条件强度准则,联合横观各向同性的广义虎克定律刚度矩阵建立考虑横观各向同性的本构模型,并结合岩石单轴压缩试验数据,通过最小二乘法拟合该模型的参数;实现该模型的单轴压缩试验数值模拟,并通过室内单轴压缩试验结果对数值模拟结果进行验证,分析模型的可靠性.研究结果表明:本文提出的本构模型在层状岩体的力学分析方面具有适用性,为层状岩体力学特性研究及层状岩质边坡的稳定性分析奠定了基础.【期刊名称】《铁道科学与工程学报》【年(卷),期】2019(016)006【总页数】6页(P1448-1453)【关键词】横观各向同性;本构模型;双屈服条件强度准则;数值模拟【作者】QU Guangxiu;REN Peng【作者单位】【正文语种】中文【中图分类】TU458层状岩质边坡广泛分布于我国西南地区,其明显的横观各向同性力学特性对边坡的稳定性有着显著影响,因此如何建立适用的本构模型以探究其力学行为具有重要的工程实践意义。
关于横观各向同性岩石的本构模型研究,国内外学者进行了大量研究。
刘运思等[1]通过室内试验对横观各向同性岩体的弹性参数进行了研究。
Gonzaga等[2]通过三轴压缩试验研究了如何确定横观各向同性岩石的力学参数。
ZHANG等[3−5, 11]通过不同试验手段研究了横观各向同性岩石的破坏机理,探讨了加载速率对破坏过程的影响。
熊良宵等[6−8]采用数值模拟方法,探讨了横观各向同性岩体的力学特性。
Colak等[9−10]对横观各向同性岩体的破坏强度准则进行了研究。
上述研究成果大都基于Hoek-Brown准则,描述横观各向同性岩体的强度和变形特征,并提出不同的强度准则和弹塑性本构模型,但大多研究成果仅从强度或者变形特征这种单一因素考虑横观各向同性岩体的本构模型,如何科学地描述层状岩石的强度和变形特征仍值得商榷。
TL245-2011中英互译
Descriptors: corrosion protection, surface protection, zinc, aluminum, flake, DELTA-PROTEKT, DELTA-TONE, Geomet, Magni, Zintek关键词:防腐,表面防护,锌,铝,薄片,Delta-Protekt, Delta-Tone,Geomet,Magni,ZintekPrevious issues 早期版本TL 245: 1987-08, 1989-10, 1990-01, 1991-03, 1991-11, 1992-10, 1993-07, 1997-12, 2002-10, 2004-12, 2007-06Changes 修订The following changes have been made compared with TL 245: 2007-06:相对于2007-06版本的TL 245比较,作了如下修改:– Section 1 "Scope" changed 第1条“适用范围”更新– former Table 2 removed (surface protection types no longer permitted)去除之前的表2(不再允许使用表面防护工艺)– Section 3.3 "Threaded parts with metric ISO thread" changed3.3 “带有米制 ISO-螺纹的螺纹零件”的修订– Note in Section 3.10 "Adhesion" added3.10 “附着力”新增标记– Note in Section 3.11.2 "NSS test as per DIN EN ISO 9227" added3.11.2 “NSS-实验按DIN EN ISO 9227” 新增标记– Section 3.12 "Resistance to chemicals" updated (new Table 2)3.12 “耐化学腐蚀”的更新(新表2)– Referenced standards updated 相关文献的更新– Appendix A updated 附件A的更新1 Scope 适用范围This standard defines the requirements on Cr(VI)-free surface protection types made of zinc flakes and aluminum flakes non-electrolytically applied to ferrous materials.本标准规定了钢铁表面,采用无 Cr(VI)的非电解质锌铝薄片表面防护工艺的技术要求。
非肠道用和制药设备用弹性部件 第二部分鉴别和特性
非肠道用和制药设备用弹性部件第二部分:鉴别和特性部分翻译如下:ISO 8871-2:2020Elastomeric partsfor parenterals and for devices for pharmaceutical use —非肠道用和制药设备用弹性部件—Part 2:第二部分:Identification and characterization鉴别和特性Contents内容Foreword前言Introduction介绍1 Scope范围2 Normative references标准参考文献3 Terms and definitions术语和定义4Tests测试4.1 General一般要求4.2 Hardness硬度4.3 Density密度4.4 Ash灼烧残渣4.5 Infrared spectrum红外光谱4.5.1 Material材料4.5.2 Coating覆膜4.6 Compression set压缩形变4.7 Swelling膨胀4.8 Development of a fingerprint by gaschromatography气相色谱法的指纹开发4.9 Detection of volatile substances by gaschromatography气相色谱法检测挥发性物质4.10 Determination of residual moisture残余水分的测定4.11Determination of fingerprint by thermogravimetricanalysis (TGA)热重分析指纹图谱测定法4.12Determination of extractables inaqueous autoclavates高压水溶液中可提取物的测定5 Preparation of samples for testing测试样品的准备5.1 Treatment before testing测试前的处理5.2 Number of samples needed for the tests测试所需的样品数量6 Reagents and materials试剂和材料Annex A (informative) Identification ofelastomeric material by pyrolysis IR附录A(资料性)用热解红外光谱法鉴定弹性体材料Annex B (informative) Determination ofcompression set附录 B (资料性)压缩永久形变的测定Annex C (informative) Swelling behaviour inoils附录 C (资料性)在油中的膨胀行为Annex D (informative) Development of a fingerprintby gas chromatography附录D (资料性)气相色谱法指纹的开发Annex E (informative) Analysis of volatilecomponents by headspace gas chromatography附录 E(资料性)通过顶空气相色谱法分析挥发性成分Annex F (informative) Determination ofresidual moisture附录 F(资料性)残余水分的测定Annex G (informative) Determination of afingerprint by thermal gravimetry (TG)附录G(资料性)用热重分析法(TG)测定指纹图谱Annex H (informative) Determination of theelastomer identity and verification of the presence of a coating by surfaceinfrared spectroscopy [attenuated total reflection (ATR)]附录H (资料性)通过表面红外光谱确定弹性体特性并验证覆膜的存在 [衰减全反射(ATR)]Bibliography参考文献Introduction介绍The elastomeric parts specified in the ISO 8871series are produced from rubber. However, rubber is not a unique entity, sincethe composition of rubber materials can vary considerably. The base elastomerand the type of vulcanization have a major influence on the principlecharacteristics of an individual rubber material, as do additives such asfillers, softeners and pigments. These might have a significant effect on theoverall properties. Polymer coatings or films are often applied to eitherentire or partial surface(s)of a rubber component to impart certain physicalor chemical properties. The effectiveness, purity, stability and safe handlingof a drug preparation can be affected adversely during manufacture, storage andadministration if the rubber part used has not been properly selected andvalidated (approved).在ISO 8871系列中指定的弹性体部件由橡胶制成。
211251881_超高压处理对大豆拉丝蛋白特性的影响
张凯强,何晓叶,卫姣,等. 超高压处理对大豆拉丝蛋白特性的影响[J]. 食品工业科技,2023,44(11):103−110. doi:10.13386/j.issn1002-0306.2022070306ZHANG Kaiqiang, HE Xiaoye, WEI Jiao, et al. Effects of High Pressure Processing Treatment on Properties of Drawing Soy Protein[J]. Science and Technology of Food Industry, 2023, 44(11): 103−110. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022070306· 研究与探讨 ·超高压处理对大豆拉丝蛋白特性的影响张凯强,何晓叶,卫 姣,袁 芳*(中国农业大学食品科学与营养工程学院,北京 100083)摘 要:本文研究了超高压处理对大豆拉丝蛋白特性的影响,以达到改善其再加工特性的目的。
实验利用不同超高压处理条件(200~600 MPa ,10~30 min )对大豆拉丝蛋白进行处理,采用傅里叶变换红外光谱、紫外吸收光谱和内源荧光光谱分析超高压对大豆拉丝蛋白结构的影响,并通过持水力、表面相对疏水性、游离巯基含量的变化研究超高压对大豆拉丝蛋白功能特性的影响。
结果表明:随着压力和时间的增加,β-折叠、无规则卷曲相对含量上升,大豆拉丝蛋白的二级结构向着无序化方向进行;同时蛋白质三级结构伸展,内部疏水基团暴露量增多,但过大的压力和过长的时间则会使得疏水基团重新包埋。
400 MPa 、10 min 时,大豆拉丝蛋白的持水力、游离巯基含量以及表面相对疏水性达到最大值,分别比对照组高32.87%、41.57%、15.66%。
不同张开度裂隙类岩体循环加卸载下滞回环特征与损伤变形分析
Fig.4
图 4 不同张开度裂隙倾角试件和完整试件的应力—应变关系曲线 Stress-strain curves of specimens with different crack opening angles and complete fracture
注:b 为裂隙张开度,β 为裂隙倾角
图 5 加卸载滞回环 Fig.5 Loading and unloading hysteresis loop
0.8 mm 的 45°倾角裂隙类岩石试件和完整试件进行 单轴压缩和不同应力循环加载试验,获得了 5 组试 件在 3 种不同应力循环加载下的应力—应变曲 线(图 4)。
由图 4 可以看出:在相同张开度条件下,随着 循 环 应 力 的 增 大 ,类 岩 石 材 料 峰 值 强 度 呈 减 小 趋 势,出现强度弱化现象;结合单轴压缩应力—应变 曲线特征来看,低、中和高 3 种循环应力大致分别 对应孔隙压密、弹性变形和微裂纹稳定扩展 3 个阶 段,循环加载所累积的损伤随循环应力的增大而不 断增大,导致裂隙岩体强度降低幅度越来越大;循 环加载过程中,卸载曲线和加载曲线之间形成的近
图 3 循环加卸载方式 Fig.3 Cyclic loading and unloading mode
在同样的试验环境下,制作一批完整的试件, 然 后 进 行 单 轴 压 缩 试 验 、直 剪 试 验 和 巴 西 劈 裂 试 验,并测定试件的力学参数,如表 1 所示。
表 1 试件的力学参数 Table 1 Mechanical parameters of specimens
近年来,国内外学者对裂隙岩体在循环加载方 式下的破坏模式和能量演化进行了大量试验研究, 取得了良好的成果。胡盛斌等(2009)提出循环加 卸载下不同缺陷对岩石类材料试样的破坏特征以
西南交大科技英语翻译复习题解析
西南交大科技英语翻译复习题解析科技英语翻译复习题1.To transmit electromagnetic waves takes energy.传送电磁波需要能量。
2.Chemical control will do most of things in pest control.化学防治能在病虫害防治中起主要作用。
3. It is not until wires are connected that the path is completed.直到导线连上以后,此电路才连通。
4. The odds are heavily against any man being able to do the work in the field of abstract theory that Einstein is doing.对任何能从事爱因斯坦正在进行的抽象理论研究的人来说,条件都是极为不利的。
5. Oscillator design is of an art rather than an exact science.与其说振荡器的设计是一门严谨的科学,不如说它是一门艺术。
6. A rapid decrease by a factor of 7 was observed.发现迅速减少到1/7。
7. Birds and animals which hunt at night have eyes which contain few or no cones at all, so they cannot see colors.凡是在夜间觅食的飞禽走兽,因为眼睛中的视锥细胞数量极少或根本没有,所以不能辨别颜色。
8. Tsunami is sometimes powerful enough to destroy a coastwise building it strikes海啸有时威力很大,足可催毁它所冲击的沿岸的建筑物9. Not everybody is convinced the Leaning Tower of Pisa really can be saved.并非每一个人都相信比萨斜塔真的能够免于坍塌。
西门子Solid Edge模拟软件说明说明书
SummarySiemens Solid Edge® Simulation software is an easy-to-use, built-in finite element analysis (FEA) tool that enables design engineers to digitally validate part and assembly designs within the Solid Edge environment. Based on proven Simcenter Femap™ finite element modeling tech-nology, Solid Edge Simulation signifi-cantly reduces the need for physicalprototypes, reducing material and testing costs, while saving design time.For use by design engineersSolid Edge Simulation uses the same underlying geometry and user interface as all Solid Edge applications. It’s easy enough for any Solid Edge user with a fundamental understanding of FEA prin-ciples, yet robust enough to service almost any analysis need. By enabling engineers to perform their own simula-tion, more analysis can be performed in less time — improving quality, reducing material costs and minimizing the need for physical prototypes — without incurring the high costs of outsourced analysis. The layout of the user inter-face is designed to guide the user through the entire analysis process, with help available if needed, which makes it easy to learn initially, andrevisit if necessary./en/solutions/products/simulationBenefits• Innovate more by experimenting with designs virtually • Optimize material usage and minimize product weight • Reduce the need for costly prototypes with virtual testing • Get products to market faster with reduced physical testing • Reduce recalls by finding out if products fail before it reaches the customer • Execute redesigns faster with synchronous technology Features• Embedded finite element analysis for design engineers • Automatic finite element model creation with optional manual override • Realistic operating environment modeling with full complement of loads and constraint definitions • Evaluate designs for deformation, stress, resonant frequencies, buck-ling, heat transfer thermal stress and vibration response • Ability to maintain loads and con-straints during model changesSolid Edge SimulationEmbedded finite element analysis for design engineersSolid Edge SimulationFeatures continued• Import fluid pressure and tempera-ture results from Simcenter FLOEFD for Solid Edge • Embedded advanced motion simulationAutomatic finite element model creationSolid Edge Simulation supports solid meshes (using tetrahedral elements), two-dimensional shell element meshes on mid-surfaced sheet structures, hybrid models that contain both 2D shell and 3D solid elements, as well as 1D beam elements for frame structures. Users can create and refine finite ele-ment meshes where required to improve accuracy of results.A mesh size slider bar that makes ele-ment size adjustments to the overall finite element mesh is available with additional control of the number of ele-ments on individual edges and faces. With Solid Edge Simulation, you can leverage a mapped mesh capability to take advantage of certain geometry topologies and create a more orderly and well-shaped mesh. In addition, the mesh size will automatically adjust to accommodate detailed model features. You can fine-tune the mesh with man-ual edge and face element sizing to generate an efficient simulation model that will deliver accurate results. Prior to creating the finite element model, you can prepare and simplify the geom-etry model quickly and easily with syn-chronous technology and its ability to make history-free model changes. Solid Edge synchronous technology combines the speed and simplicity of direct mod-eling with the flexibility and control of parametric design.Full complement of load and constraint definitionsSolid Edge Simulation provides allboundary condition definitions needed to define realistic operating environ-ments. The constraints are geometry-based and include fixed, pinned, norotation, symmetric and cylindrical vari-ations. The loads are also geometry-based and include mechanical as well as temperature loading for thermal analy-ses. Mechanical loads include forces, pressures and effects caused by body rotation and gravity. Solid Edge Simulation facilitates load and con-straint applications with Quick Bar input options and handles for direction and orientation definition.Analyzing assembliesAssembly model components can quickly be connected, and interaction can be a glued connection between components or surface contacts based on an iterative linear solution.Contact between components can be detected automatically, or connectors can be defined individually through man-ual face selection. Assembly materials and properties can be applied manually, selected from a material library or inher-ited from the geometry model by default. The included Simcenter™ Nastran® solver assures realistic assembly/component interaction to facilitate robust solutions.Solid Edge Simulation offers complete control of the management of geome-tries in a simulation study. Components can easily be suppressed or removed from a study to maximize efficiency, improving user experience.Analysis typesUsing the industry-standard Simcenter Nastran solver, Solid Edge Simulation delivers structural simulation results, such as deformation, stress and strain, etc. caused by a static loading, finding the natural frequencies of vibration or determining buckling loads of a design. Both steady and transient heat transfer analysis validate cooling performance by evaluating the temperature distribu-tion of the model. In addition, the cou-pled thermal and structural analysis can be applied to determine thermal effects to the structural stress/strain.Fluid pressure and temperature results can be imported from Simcenter FLOEFD™ for Solid Edge as structural loads for analysis. FLOEFD for Solid Edge delivers the industry’s leading computational fluid dynamics (CFD) analysis tool for fluid flow and heat transfer. Integration between the two simulation solutions is seamless and easy, as both are fully embedded in the Solid Edge environment.Harmonic response analysis, dynamic response analysis in frequency domain, is also available to simulate the actual vibration level. Re-use of finite element model loads and constraints is as easy as dragging and dropping from one study to another.Designs in motionWith dynamic motion simulation, Solid Edge Simulation allows you to evaluate and visualize how parts will interact in an assembly. The easy-to-use solution simulates how a product will perform throughout its operational cycle, allow-ing you to see how it would function in the real world and measure the forces and loads on the design.Solid Edge Simulation offers you the ability to create motion models from existing Solid Edge assemblies.Mechanical joints can easily be created by either automatically converting them from assembly constraints, or by using the intuitive builder which walks you through the process step-by-step. Motion characteristics can then be added, including motors, actuators, gravity, realistic contact between bod-ies, springs, friction, damping and other generated forces as needed.Additionally, motion results, such as forces, can be utilized as load condi-tions for structural simulation.Scalable solutions for every user Powerful, scalable solution offerings allow you to select the best simulation tools for your individual requirements.Result evaluationSolid Edge Simulation allows you to inter-pret and understand the resulting model behavior quickly with comprehensive graphical result viewing tools. Simulation results can be displayed in various forms, including color and contour plots, which can be continuous, displayed as distinct contour bands or by element and dis-placement and mode shapes that can be animated. Minimum/maximum stress markers and a probe tool with results dis-plays are also available. The probe toolcan select nodes, faces and edges.With Solid Edge Simulation’s compre-hensive results evaluation functionality, you can quickly identify problem areas for potential design revision and gener-ate HTML reports of simulation model information and final results. Design updatesWith Solid Edge Simulation, you can quickly and easily make any required design update during post analysis. History-free, feature-based modelchanges with synchronous technologysignificantly accelerates the model+1 314 264 8499 © 2020 Siemens. A list of relevant Siemens trademarks can be found here . Other trademarks belong to their respective owners.78032-C9 6/20 Mrefinement process. In addition, Solid Edge Simulation maintains associativity between the CAD and finite element models, while making sure that applied loads and constraints are maintained for all geometry model changes.Analysis scalabilitySimulation functionality scales fromapplication to individual parts to analysis of large assemblies, all the way to Femap with Nastran, thereby enabling you to define and analyze complete systems. This complete line of products provides a scalable upgrade path for users who need to solve more challenging engi-neering problems. Complete geometry and finite element models with bound-ary conditions and results can be seam-lessly transferred from Solid Edge to Femap, where more advanced analyses can be employed if desired.Extending valueSolid Edge is a portfolio of affordable, easy to deploy, maintain and use soft-ware tools that advance all aspects of the product development process -- mechanical and electrical design, simu-lation, manufacturing, technicaldocumentation, data management and cloud-based collaboration. Minimum system configuration • Windows 10 Enterprise orProfessional (64-bit only) version 1809 or later • 16 GB RAM • 65K colors• Screen resolution: 1920 x 1080• 8.5 GB of disk space required for installation。
基于深度学习的油气管道变形管段识别方法
◀油气人工智能▶基于深度学习的油气管道变形管段识别方法∗王琳㊀马林杰㊀徐建㊀马如隆㊀宋鑫灿(西南石油大学机电工程学院)王琳,马林杰,徐建,等.基于深度学习的油气管道变形管段识别方法[J ].石油机械,2023,51(11):11-19.Wang Lin ,Ma Linjie ,Xu Jian ,et al.Deformed section identification of oil and gas pipeline based on deep learning[J ].China Petroleum Machinery ,2023,51(11):11-19.摘要:油气管道的惯性测量单元(Inertial Measurement Unit ,IMU )检测数据中隐含大量的管道变形信息,但目前缺乏智能㊁高效的特征识别方法㊂为此,提出了一种基于IMU 检测数据的管道全线变形特征智能识别方法㊂采用IMU 输出角速度和管道全线弯曲应变值作为模型的输入参数,卷积神经网络(Convolutional Neural Network ,CNN )和双向长短期记忆网络(Bi-directionalLong Short Memory ,BiLSTM )被用于提取输入信号的特征并建立学习输入的时序关系,通过全连接层和Softmax 函数分类不同管段类型㊂应用工程实测IMU 数据构建了10种管段类型数据集,对所提方法的可行性进行了验证,并对比了不同输入与不同模型分类的准确率㊂研究结果表明,所提方法可以有效地分类管道类型并识别变形管段,其分类精度为96.9%,高于其他对比模型㊂研究结果可为油气管道全线变形管段识别提供一种高效可行的方法㊂关键词:深度学习;油气管道;惯性测量单元;变形管段;卷积神经网络;双向长短期记忆网络中图分类号:TE832㊀文献标识码:A㊀DOI:10.16082/ki.issn.1001-4578.2023.11.002Deformed Section Identification of Oil and Gas Pipeline Based on Deep LearningWang Lin㊀Ma Linjie㊀Xu Jian㊀Ma Rulong㊀Song Xincan(School of Mechanical Engineering ,Southwest Petroleum University )Abstract :The detection data of inertial measurement unit (IMU)of oil and gas pipelines contain a large a-mount of pipeline deformation information,but currently there is a lack of intelligent and efficient feature identifica-tion method.Therefore,an intelligent identification method for pipeline deformation features based on IMU detec-tion data was proposed.The IMU output angular velocity and pipeline bending strain values were used as inputs of the model,the Convolutional Neural Network (CNN)and Bi-directional Long Short Term Memory Network (BiL-STM)were used to extract the features of the input signals and learn the sequential relationship of the input,and the fully connected layer and Softmax function were used to classify different pipe section types.Moreover,the IMU data obtained from actual oil and gas pipelines were used to construct a dataset of 10pipe section types to veri-fy the feasibility of the proposed method,and compare the accuracy of different input and model classifications.The results show that the proposed method can effectively classify the pipeline types and identify the deformed sec-tions,the classification accuracy is 96.9%,and higher than that of other models.The research results provide anefficient and feasible method for identifying the deformed sections of entire oil and gas pipelines.Keywords :deep learning;oil and gas pipeline;IMU;deformed section;CNN;BiLSTM11 ㊀2023年㊀第51卷㊀第11期石㊀油㊀机㊀械CHINA PETROLEUM MACHINERY㊀㊀㊀∗基金项目:国家自然科学基金青年基金项目 基于流固耦合动力学的气液两相流管道振动特性研究 (51904259)㊂0㊀引㊀言长输油气管道的敷设地形复杂,腐蚀㊁人为活动㊁长期的地壳运动等会导致管道在局部管段产生较大的弯曲变形,造成应力集中,严重时甚至会导致运输物质的泄漏,造成环境污染和经济损失,威胁人们的生命[1-3]㊂目前,管道全线弯曲变形检测主要是通过搭载惯性测量单元(Infertial Measure-meut Unit,IMU)的管道内检测方式来实现㊂理论上,弯曲应变值的大小反映了管道的弯曲程度,但实际应用中,真实的外力弯曲和凹陷㊁弯头㊁焊缝等局部的管道变形特征在IMU检测信号上存在一定的相似性,如何高效且准确地识别这些变形特征是管道IMU检测数据分析的重要环节㊂目前,基于IMU检测数据的变形管段识别方法主要分为2类,分别是传统的数据特征统计方法和机器学习方法㊂LI R.等[4-5]通过姿态角计算管道全线的弯曲应变,选取弯曲应变阈值识别弯曲变形管段,并通过试验验证了该方法的有效性㊂H.SATO等[6]通过陀螺仪输出角速度在经过管道弯头时会出现急剧的变化来识别管道的弯头㊂管练武[7]分析发现,IMU加速度信号在通过焊缝时会出现波动,可以据此识别管道的焊缝位置㊂刘啸奔等[8-9]采用不同管段类型的应变曲线统计特征和热力图作为机器学习模型的输入,实现了不同变形类型的分类㊂现有的方法已经证明了IMU检测在变形管段识别中的可行性,但无论是数据统计还是机器学习都不可避免以下2点:①需要从连续的IMU 检测信号中筛选变形管段信号;②需要选定合适的参数作为分类的指标或者机器学习的输入㊂近年来深度学习迅猛发展,其强大的特征提取和特征融合能力,在自动提取与学习时序数据多元数据特征上显示出巨大优势[10-13]㊂本文构建了深度学习网络以解决油气管道全线变形管段识别问题,将深度学习中时序信号分类的方法应用于管道IMU检测数据识别,避免了数据筛选和特征提取,可以有效识别和分类变形管段,可为油气管道全线变形管段识别提供一种高效可行的方法㊂1㊀方法介绍1.1㊀弯曲应变计算管道全线的弯曲应变由曲率来计算,它反映了管道在一段里程上的弯曲程度㊂弯曲应变为管道半径和曲率半径的比值,计算公式如下[14]:k v=ΔθΔs(1)k h=ΔψΔs cosθ(2)k=k2v+k2h(3)εv=D2k v(4)ε=D2k(5)式中:k v㊁k h㊁k分别为垂直曲率㊁水平曲率和总曲率,rad/m;εv为垂直应变,rad;ε为弯曲应变,rad;D为管道内径,m;θ为俯仰角,rad;Δθ为俯仰角差值,rad;Δψ为航向角差值,rad;Δs为里程差值,m㊂1.2㊀输入数据截取理论上,经曲率计算得到的弯曲应变结果直接反映了管道的弯曲程度㊂但在实际应用中,当管道内检测器通过焊缝㊁弯头及凹陷等管段时,内检测器的姿态会发生不同程度的变化,进而导致陀螺仪输出角速度及由姿态计算得到的弯曲应变值发生不同特征的改变,因此,角速度和管道全线弯曲应变值可以作为特征识别的有效输入㊂总的弯曲应变值同时反映管道在竖直方向和水平方向的弯曲,但经过凹陷管段时的变化主要体现在垂直应变分量上,三轴角速度中的ωy主要反映内检测器在管道内运行时自身的转动㊂综上所述,选择ωx㊁ωz㊁垂直应变分量㊁总的弯曲应变四维数据作为模型的输入㊁采用滑动窗口的方式来提取输入数据,如图1所示㊂图1㊀识别参数截取Fig.1㊀Interception of identification parameters沿里程平移固定长度的窗口来截取输入信号,主要参数有窗口的长度及每次的平移步长㊂1.3㊀卷积神经网络卷积神经网络(Convolutionel Neural Network,21 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第11期CNN)通常有5层:输入层㊁卷积层㊁激活层㊁池化层和全连接层㊂其中,一维卷积网络常被用于处理时间序列,卷积层通过卷积核提取输入信号的特征;池化层可以减少参数并简化计算量;全连接层用来对提取的特征进行分类[15]㊂卷积运算的数学表达式如下:y l+1i(j)=k l i x l(j)+b l i(6)式中:k㊁b表示第l层i个神经元的权置和偏置; x为j层的第l个输入㊂池化层通常在卷积层后用来选择和过滤提取的特征,池化层的表达式为:P l+1i(j)=max(j-1)W+1ɤtɤjW {q l i(t)}(7)式中:q为第i个通道上l个神经元;W为池化的核大小㊂1.4㊀双向长短期记忆网络循环神经网络(Recurrent Neural Network, RNN)以序列数据为输入,强调序列信号前后的关联,可有效地对时序信号进行处理[16]㊂但RNN 不具有选择功能,容易出现梯度消失和梯度爆炸㊂长短期记忆神经网络(Long Short-Term Memory, LSTM)是循环神经网络的改良,具体来说,它是在RNN的基础上引入了记忆单元,具体包括遗忘门㊁输入门和输出门㊂LSTM单元的基本结构如图2所示[17-18]㊂图2㊀LSTM单元Fig.2㊀LSTM unit BiLSTM(双向长短期记忆网络)由2层LSTM 网络组成,每层网络都有输入序列,但以相反的方向传输信息,即正向LSTM和反向LSTM[19]㊂将从正反方向提取的2个隐藏状态向量连接起来,以综合前后信号的特性㊂1.5㊀评价指标采用式(8)~式(11)对分类模型的准确性㊁精确率㊁召回率和F1分数进行评估㊂其中T P㊁T N㊁F P和F N分别为真阳性㊁真阴性㊁假阳性和假阴性㊂准确率P A表示分类的总体正确性:P A=T P+T NT P+F N+T N+F P(8)㊀㊀精确率P P是指正确分类的比例:P P=T PT P+F P(9)㊀㊀召回率P R表示实际阳性被正确分类的比率:P R=T PT P+F N(10)㊀㊀F1分数F S可以看作是模型的精确度和召回率的组合:F S=2T P2T P+F P+F N(11) 2㊀基于CNN-BiLSTM管道变形识别2.1㊀CNN-BiLSTMBiLSTM网络可以更好地捕捉输入信号双向的时序特征,但在空间维度上感知能力差,而卷积层具有较好的空间感知能力,将2种模型的优势相组合用于管段类型分类,可充分利用模型在空间和时域上的提取能力㊂构建的CNN-BiLSTM网络结构如图3所示㊂图3㊀CNN-BiLSTM网络结构Fig.3㊀Structure of CNN-BiLSTM2层卷积层被用来提取输入数据的特征,特征提取后的数据被输入BiLSTM层,学习输入特征在前后顺序上的关系[20]㊂之后,BiLSTM的输出将作为全连接层的输入并通过Softmax函数实现管段类312023年㊀第51卷㊀第11期王琳,等:基于深度学习的油气管道变形管段识别方法㊀㊀㊀型分类㊂2.2㊀识别流程基于IMU 检测的管道全线变形管段特征识别方法整体流程如图4所示㊂通过清管器搭载IMU 测量得到清管器在油气管道全线运行的姿态信息,根据弯曲应变计算公式计算里程间隔上管道全线的弯曲应变值,对角速度和弯曲应变进行归一化处理,采用里程滑动窗口截取归一化后的角速度和弯曲应变值㊂之后,截取的数据将作为CNN-BiLSMT 模型的输入,被送进网络模型学习其潜在的规律㊂最后,通过全连接层和Softmax 分类器对输入的类型进行分类,得到该段管段的类型㊂通过滑动窗口提取管道不同管段的输入信号可实现全线管道变形特征的识别㊂图4㊀管道形变管段识别方法Fig.4㊀Identification method for pipeline deformation sections3㊀应用分析利用现场实测IMU 200km 数据来制备管段类型数据集,以验证所提方法的正确性㊂角速度信号及计算得到的垂直应变和弯曲应变10km 部分数据如图5所示㊂弯曲应变的计算里程间隔取0.05m㊂图5㊀10km 管道实测角速度和弯曲应变Fig.5㊀Measured angular velocity andbending strain of a 10km pipeline3.1㊀不同管道特征数据在管道IMU 检测数据中,能够体现管段类型的主要有直管㊁焊缝㊁冷弯㊁热弯㊁弯曲变形和凹陷共计6类㊂检测器在直管中运行时,弯曲应变的值较小且波动小,如图6a 所示;焊缝处的弯曲应变为小范围内的局部凸起,如图6b 所示;管道内检测器通过弯头时,弯曲应变会在一个管节内出现急剧的变化,热弯和冷弯的区别主要体现在峰值上,如图6c㊁图6d 所示;弯曲变形管段弯曲应变的均值超过了0.125%,且持续的里程较长,超过了1个管节长度,如图6e 所示;凹陷处的垂直应变一般呈下凹状,应变的大小受凹陷程度和内检测器长度影响,如图6f 所示㊂综上所述,内检测器在不同管段运行时弯曲应变值会出现不同特性的变化,变化的幅度和长度取决于内检测器在通过不同管道特征时的姿态变化情况㊂3.2㊀标签及数据集准备信号截取窗口长度为6m,步长为0.1m㊂除6种单独的管段类型外,滑动窗口不可避免地会截取到混合的管道类型㊂因此,样本标签除6种单独类型外,还包含了4类常见的混合类型㊂管道IMU 检测数据中,直管㊁焊缝㊁弯头的数据量远多于弯曲变形㊁凹陷的数据量,在制作数据集时为避免模型过拟合,需要保证每种类型数据量相差不能过大㊂因此,对于较多的数据样本随机地选取部分数据,最终制备了包含10种管段类型共81565份数据的数据集㊂不同标签对应的类型及数据量见表1,不同管段类型在四维数据上的分布特征见图7㊂41 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第11期图6㊀不同管段类型弯曲应变数据特征Fig.6㊀Bending strain data characteristics of different pipe section types图7㊀不同管段类型在输入参数上的分布Fig.7㊀Distribution of different pipe section types on input parameters表1㊀不同标签对应的类型及数据量3.3㊀模型参数及训练过程表2是网络模型每层对应的超参数设置,模型在Pytorch 框架下搭建㊂学习率为0.001,损失函数为交叉熵损失,Batchsize (批次大小)设置为128,输入数据通过最大最小值归一化处理,每层超参数对应的数值为:卷积层(通道数,卷积核大小,步长),最大池化层(池化核大小,步长),Dropout 层(丢弃率),BiLSTM 层(输入维度,输出维度),线性层(输入维度,输出维度)㊂表2㊀模型超参数设置51 2023年㊀第51卷㊀第11期王琳,等:基于深度学习的油气管道变形管段识别方法㊀㊀㊀㊀㊀按8ʒ2的比例将数据集分为训练集和测试集,模型的训练过程如图8所示㊂由图8可知,预测准确率逐渐提高,损失逐渐减小,当训练次数大于200次后,模型的训练趋于稳定㊂图8㊀CNN-BiLSTM 模型训练过程Fig.8㊀Training process of CNN-BiLSTM model3.4㊀不同输入对比在第一个试验中,比较了以角速度㊁弯曲应变和角速度+弯曲应变作为输入的CNN-BiLSTM 模型的性能㊂图9㊁图10分别是3种输入下CNN-BiL-STM 网络测试集的混淆矩阵及评价指标㊂从图9和图10可以看出,当采用单一角速度输入时,整体分类效果较差,而采用角速度和弯曲应变双信号输入时,分类效果最好㊂原始的角速度信号包含大量的噪声,这对以角速度作为输入的模型分类准确率有很大的影响㊂弯曲应变通过经降噪处理后的姿态角和里程计算得到,在识别精度上对比角速度有很大提高㊂但降噪后的数据会丢失掉部分内检测在局部波动特征(如焊缝㊁部分凹陷管段)上的信号特征,以弯曲应变作为输入的模型在焊缝㊁凹陷和包含这2类特征的混合信号中其精度低于角速度+弯曲应变的输入模型㊂图9㊀不同输入混淆矩阵对比Fig.9㊀Confusion matrix comparison of differentinputs图10㊀不同输入CNN-BiLSTM 网络性能Fig.10㊀CNN-BiLSTM network performance of different inputs3.5㊀不同模型对比图11为GRU (Gate Recurrent Unit,门拴循环单元)㊁CNN-RNN㊁CNN-GRU㊁LSTM㊁CNN-LSTM 和CNN-BiLSTM 这6种模型在测试集上的混淆矩阵㊂结果表明,采用CNN-BiLSTM 的效果最好,准61 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第11期确率为96.90%,而采用CNN-RNN 的效果最差,准确率为69.20%㊂从混淆矩阵中可知,CNN-BiL-STM 模型对热弯的识别准确率最高,为98.70%,在冷弯㊁弯曲变形和凹陷方面的识别也有优异的表现㊂但其在直管+弯头和弯曲变形+焊缝2类中,准确率略低㊂热弯管段本身在IMU 信号中与其他特征类型的区别更大,是该模型中最好的可分离信号;而直管+弯头管段主要出现在内检测器进㊁出弯头的时间过程中,其信号与弯曲变形管段相似,分类准确率较差㊂混合特征由于是2种不同的管段类型信号的组合,所以混合类型与本身的单独类型存在一些误差,整体的分类准确率要差于单独的管段类型㊂图12是6种不同模型在每个类别中的精度㊁召回率和F 1评分方面的性能㊂由图12可知,CNN-BiLSTM 模型的性能优于其他模型㊂图11㊀不同网络模型测试集混淆矩阵Fig.11㊀Confusion matrix of different network models on testset图12㊀不同网络模型性能Fig.12㊀Performance of different network models3.6㊀分类可视化通过对比不同输入和模型,构建了基于CNN-BiLSTM 网络和角速度㊁弯曲应变输入的管段类型分类模型㊂测试集训练前后的t 分布随机邻近嵌入(t-Distvibufed stochastic Neighbor Enbedding,T-SNE)聚类可视化如图13所示㊂71 2023年㊀第51卷㊀第11期王琳,等:基于深度学习的油气管道变形管段识别方法㊀㊀㊀图13㊀10种管段类型分类可视化Fig.13㊀Classification visualization of10pipe section types ㊀㊀由图13可知,经过训练后的网络对于10种管段类型均具有较好的可分性㊂凹陷管段㊁弯曲变形管段㊁弯曲变形+焊缝管段是3类主要的管道变形缺陷,凹陷管段和弯曲变形管段分别是管道局部和整体的外力变形,而弯曲变形+焊缝管段容易在焊缝处造成应力集中㊂训练后的模型可以有效地将3类变形缺陷从10种管段类型中识别,识别的准确率分别为97.5%㊁97.4%㊁93.8%㊂4㊀结㊀论(1)时间序列模式识别方法可应用于管内IMU检测数据分析,采用工程实测数据构建了一份包含10种管段类型和81565份数据的数据集,搭建了以角速度+弯曲应变输入的CNN-BiLSTM网络模型㊂(2)对比了角速度㊁弯曲应变㊁角速度+弯曲应变3种输入下的模型性能,3种输入的分类准确率分别为77.1%㊁94.0%㊁96.9%㊂以角速度+弯曲应变为输入的模型性能最优㊂(3)对比了GRU㊁CNN-RNN㊁CNN-GRU㊁LSTM㊁CNN-LSTM及CNN-BiLSTM等6种不同网络模型的分类性能,结果表明所提的CNN-BiLSTM 模型性能优于其他对比的模型㊂参㊀考㊀文㊀献[1]㊀刘绪都,冯新,李明昊,等.基于分布式应变监测的埋地管道悬空识别方法研究[J].防灾减灾工程学报,2022,42(5):1076-1084.LIU X D,FENG X,LI M H,et al.Suspension iden-tification on buried pipeline based on distributed strainmonitoring[J].Journal of Disaster Prevention and Mit-igation Engineering,2022,42(5):1076-1084.[2]㊀孙成,韦博鑫,覃清钰,等.X80埋地管道应力腐蚀开裂关键影响因素研究进展[J].油气储运,2021,40(9):973-979.SUN C,WEI B X,QIN Q Y,et al.Progress of re-search on key influencing factors of stress corrosioncracking of X80buried pipeline[J].Oil&Gas Storageand Transportation,2021,40(9):973-979. [3]㊀唐俊杰,樊晓一,姜元俊.滑坡对纵向埋地管道的变形特征与减灾对策[J].科学技术与工程,2022,22(11):4307-4312.TANG J J,FAN X Y,JIANG Y J.Deformation char-acteristics and disaster reduction countermeasures of lon-gitudinal buried pipeline under landslides[J].ScienceTechnology and Engineering,2022,22(11):4307-4312.[4]㊀LI R,CAI M L,SHI Y,et al.Pipeline bending strainmeasurement and compensation technology based onwavelet neural network[J].Journal of Sensors,2016,2016:8363242.[5]㊀王富祥,冯庆善,杨建新,等.油气管道惯性测绘内检测及其应用[J].油气储运,2012,31(5):372-375.WANG F X,FENG Q S,YANG J X,et al.Inertialsurveying internal detection method and its application inoil and gas pipeline[J].Oil&Gas Storage and Trans-portation,2012,31(5):372-375.[6]㊀SATO H,MANO Y,ITO F,et al.Proposal for pipe-line-shape measurement method based on highly accu-rate pipeline length measurement by IMU sensor usingperistaltic motion characteristics[C]ʊ2020IEEE/ASME International Conference on Advanced IntelligentMechatronics(AIM).Boston,MA,USA:IEEE,2020:874-881.[7]㊀管练武.MEMS捷联惯性导航系统辅助的管道检测定位技术研究[D].哈尔滨:哈尔滨工程大学,2016.GUAN L W.Research on MEMS strapdown inertial nav-igation system aided pipeline inspection and locationtechniques[D].Harbin:Harbin Engineering Universi-ty,2016.81 ㊀㊀㊀石㊀油㊀机㊀械2023年㊀第51卷㊀第11期[8]㊀刘啸奔,刘燊,季蓓蕾,等.基于IMU数据的管道弯曲变形段智能识别方法[J].油气储运,2021,40(11):1228-1235.LIU X B,LIU S,JI B L,et al.Intelligent identifica-tion method of pipeline sections with bending deforma-tion based on IMU data[J].Oil&Gas Storage andTransportation,2021,40(11):1228-1235. [9]㊀刘燊,刘啸奔,李睿,等.基于机器学习的冻土区融沉变形管段识别方法[J].石油机械,2022,50(3):106-114.LIU S,LIU X B,LI R,et al.Identification of thawsettlement deformation pipe section in frozen soil areabased on machine learning[J].China Petroleum Ma-chinery,2022,50(3):106-114.[10]㊀SU C H,JIANG M S,LV S S,et al.Improved dam-age localization and quantification of CFRP using lambwaves and convolution neural network[J].IEEE Sen-sors Journal,2019,19(14):5784-5791. [11]㊀WILLIAMS R J,ZIPSER D.A learning algorithm forcontinually running fully recurrent neural networks[J].Neural Computation,1989,1(2):270-280.[12]㊀PULVER A,LYU S.LSTM with working memory[C]ʊ2017International Joint Conference on NeuralNetworks(IJCNN).Anchorage,AK,USA:IEEE,2017:845-851.[13]㊀CHEN T,XU R F,HE Y L,et al.Improving senti-ment analysis via sentence type classification usingBiLSTM-CRF and CNN[J].Expert Systems with Ap-plications,2017,72:221-230.[14]㊀赵晓明,李睿,陈朋超,等.中俄东线天然气管道弯曲变形识别与评价[J].油气储运,2020,39(7):763-768.ZHAO X M,LI R,CHEN P C,et al.Identificationand evaluation on bending deformation of China-Russiaeastern gas pipeline[J].Oil&Gas Storage andTransportation,2020,39(7):763-768. [15]㊀卢占标,黄细霞,姬克,等.基于多通道输入CNN-SVM的齿轮箱故障诊断[J].传感器与微系统,2021,40(6):138-141.LU Z B,HUANG X X,JI K,et al.Gearbox fault di-agnosis based on multi-channel input CNN-SVM[J].Transducer and Microsystem Technologies,2021,40(6):138-141.[16]㊀杨丽,吴雨茜,王俊丽,等.循环神经网络研究综述[J].计算机应用,2018,38(增刊2):1-6,26.YANG L,WU Y Q,WANG J L,et al.Research onrecurrent neural network[J].Journal of ComputerApplications,2018,38(S2):1-6,26. [17]㊀麻文刚,张亚东,郭进.基于LSTM与改进残差网络优化的异常流量检测方法[J].通信学报,2021,42(5):23-40.MAW G,ZHANG Y D,GUO J.Abnormal traffic de-tection method based on LSTM and improved residualneural network optimization[J].Journal on Commu-nications,2021,42(5):23-40. [18]㊀LINDEMANN B,MASCHLER B,SAHLAB N,etal.A survey on anomaly detection for technical systemsusing LSTM networks[J].Computers in Industry,2021,131:103498.[19]㊀张应成,杨洋,蒋瑞,等.基于BiLSTM-CRF的商情实体识别模型[J].计算机工程,2019,45(5):308-314.ZHANG Y C,YANG Y,JIANG R,et mer-cial intelligence entity recognition model based on BiL-STM-CRF[J].Computer Engineering,2019,45(5):308-314.[20]㊀HUANG L W,HONG X B,YANG Z J,et N-LSTM network-based damage detection approach forcopper pipeline using laser ultrasonic scanning[J].Ultrasonics,2022,121:106685.㊀㊀第一作者简介:王琳,副教授,生于1986年,2016年毕业于中国石油大学(华东)油气储运工程专业,获博士学位,现从事油气储运动力装备智能运维㊁多相管流及流动保障技术等研究和教学工作㊂地址:(610500)四川省成都市㊂email:lincw_wang@㊂㊀收稿日期:2023-05-23(本文编辑㊀刘锋)912023年㊀第51卷㊀第11期王琳,等:基于深度学习的油气管道变形管段识别方法㊀㊀㊀。
Deformation characteristics in β phase Ti-Nb alloys
I.
INTRODUCTION
A more complete understanding of plastic deformation mode in /3 phase (bcc) binary titanium alloys containing vanadium, molybdenum, or niobium is of importance because of their industrial applications. The {112} (111) twinning has commonly been observed in bcc metals and alloys. However, a less common {332}(113) twinning has been found to occur during deformation of/3 phase Ti-V 1'2'3 and Ti-Mo 1'4-6 alloys. Several studies confirmed that the {332} (113) twinning also occurs in commercial/3 phase titanium alloys. 7'8'9 Details of the {332} (113) twinning in bcc structure have been described crystallographically by Crocker ~~ and Richman N before the {332} (113) twinning was found in the/3 phase titanium alloys. According to them, the {332} (113) twinning is produced by shuffling of one half of atoms into the direction different from that of twinning shear. Recently, Oka and Taniguchi ~ considered that the shuffling easily occurs in unstable /3 phase titanium alloys. However, no systematic study of deformation mode in/3 phase titanium alloys has been performed, and no direct correlation of stability of/3 phase with deformation mode has been established. The aim of the present paper is to describe the results of a detailed experimental study on deformation mode in /3 phase Ti-Nb alloys which are isomorphous with Ti-V and Ti-Mo, as a function of stability of/3 phase. The experimental results will be compared with those on Ti-V and Ti-Mo alloys.
DIN 18134平板载荷试验规程(德国)
8 Evaluation and representation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Provided by IHS under license with DIN
No reproduction or networking permitted without license from IHS
Not for Resale
Ref. No. DIN 18134 : 2001-09
English price group 09 Sales No. 0009
--`,,,`-`-`,,`,,`,`,,`---
DIN 861-1 DIN 863-1 DIN 4018 DIN EN 10002-3 DIN EN 10025 DIN EN ISO 7500-1
Continued on pages 2 to 13.
Translation by DIN-Sprachendienst.
In case of doubt, the German-language original should be consulted as the authoritative text.
Amendments This standard differs from the January 1993 edition as follows:
a) The total thickness of loading plates of 600 mm and 762 mm in diameter including stiffeners has been reduced from 110 mm to 80 mm (cf. subclause 5.3 and figure 2). b) More detailed requirements for the measuring devices have been specified (cf. subclauses 5.5 and 5.6). c) Specifications for calibration of the plate loading apparatus have been included (cf. Annex A).
Understanding the Mechanics of Elastic Deformation
Understanding the Mechanics of ElasticDeformationElastic deformation is a process where an object undergoes a reversible change in shape or size when subjected to an external force. This phenomenon is governed by certain mechanics, which are essential for understanding the behavior of materials under stress and strain. In this article, we will explore the mechanics of elastic deformation in detail, looking at the factors that influence it and its effects on various materials.The first factor that influences elastic deformation is the nature of the material itself. The elastic modulus of a material is a measure of its ability to resist deformation when a force is applied to it. The higher the modulus, the stiffer the material, and the less it deforms under stress. Materials like steel and diamond, which have high elastic moduli, are highly resistant to deformation and can withstand extremely high pressures without breaking.Another important factor that affects elastic deformation is the magnitude of the force applied to the material. The greater the force, the more the material deforms under stress. However, there is a limit to the amount of deformation that a material can undergo before it becomes permanently deformed or breaks. This limit is known as the yield point, and it varies depending on the nature of the material.The rate at which the force is applied also plays a role in elastic deformation. Materials that are subjected to sudden and rapid forces tend to deform more than those that are subjected to slow and gradual forces. This is due to the fact that sudden forces cause a greater stress on the material, whereas gradual forces allow the material to adjust over time.When an object undergoes elastic deformation, it stores energy in the form of strain energy. This energy is released when the object returns to its original shape or size, creating a force that can be used to do work. This is the principle of elastic potential energy, which is the energy stored in an object when it is deformed elastically.Elastic deformation has a number of important applications in various fields, including engineering, materials science, and manufacturing. Engineers use elastic deformation to design structures and components that can withstand different types of stresses without breaking. For example, the suspension system in a car is designed to deform elastically under the weight of the car and its passengers, absorbing shocks and vibrations without causing damage to the vehicle.In materials science, elastic deformation is studied to understand the behavior of various materials under different types of stress and strain. This knowledge is used to develop new materials that are more resistant to deformation and can withstand higher levels of stress. Researchers are constantly exploring new ways to improve the properties of existing materials and create new materials with unique and useful properties.In manufacturing, elastic deformation is used to shape and form various materials into different shapes and sizes. For example, sheet metal can be formed into different shapes by applying forces that cause it to deform elastically. This process is used to create a wide range of products, including automotive parts, appliances, and household items.In conclusion, understanding the mechanics of elastic deformation is essential for understanding the behavior of various materials under stress and strain. By studying this phenomenon, scientists and engineers can develop new materials and designs that can withstand different types of stresses and strains without breaking. Elastic deformation plays a vital role in a wide range of fields, from engineering and materials science to manufacturing and product design.。
deformation翻译
deformation翻译变形,变形常见释义英[ˌdiːfɔːˈmeɪʃn] 美[ˌdiːfɔːrˈmeɪʃn]n. 损形; 变形; 畸形; 破相; 变丑; 残废;[例句]Thus we can better understandthe deformation of chert in a highlyfluid form.这样我们就能更好地理解燧石在高度流体状态时的变形情况。
[其他] 复数:deformationsdeformation汉语翻译:n. 损形, 变丑, 畸形【化】变形; 形变【医】变形, 畸形英语解释:名词 deformation:a change for the worse同义词:distortionalteration in the shape or dimensions of an object as a result of the application of stress to itthe act of twisting or deforming the shape of something (e.g., yourself)同义词:contortion 例句:The capacity of a material, such as plastic or metal, to return to a previous shape after deformation.弹性,恢复能力物质变形后恢复原来形状的能力,如塑料或金属详细解释:de.for.ma.tionn.(名词)The act or process of deforming.变形:使外形受毁的行为或过程The condition of being deformed.变形的状况An alteration of form for the worse.畸形:向更恶劣的形式的转变Physics【物理学】An alteration of shape by pressure or stress. 扭曲变形:由于压力或拉力导致的形状改变The shape that results from such an alteration. 变形后的形状。
Unit4单词讲义高中英语选择性2
Unit4单词讲义artificial词性:形容词中文意思:人造的,人工的英文释义:made by humans, not naturally occurring词源:来自拉丁语"artificialis",意为“由技艺或艺术产生的”例句:She wore an artificial flower in her hair.固定搭配:artificial intelligence(人工智能),artificial respiration(人工呼吸)近义词:manmade, synthetic, imitationartificial intelligence词性:名词中文意思:人工智能英文释义:the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions词源:由"artificial"(人造的)和"intelligence"(智力)组成例句:Artificial intelligence is revolutionizing the way we live and work.固定搭配:machine learning(机器学习),deep learning(深度学习)近义词:AI, machine intelligence, putational intelligencehumanity词性:名词中文意思:人类,人性,人道英文释义:the human race or species; the qualities of being humane or kind; a system of principles based on passion and respect for all people词源:来自拉丁语"humanitas",意为“人性”例句:The pany has a strong mitment to humanity.固定搭配:human rights(人权),humanitarian aid(人道主义援助)近义词:humanity, mankind, humankindassistant词性:名词/形容词中文意思:助手,助理;辅助的,帮助的英文释义:a person who helps another person with a job or task; supporting or helping something else to happen or exist词源:来自拉丁语"ad"(向)和"assistentem"(助手)组成,意为“帮助的人”例句:She works as an assistant at a law firm.固定搭配:personal assistant(私人助理),assistant professor(助理教授)近义词:helper, aid, supportersusceptible词性:形容词中文意思:易受影响的,易受感染的,易受伤害的英文释义:easily influenced or affected by something; likely to be affected by something bad or harmful词源:来自拉丁语"susceptibilis",意为“能够接受的”例句:Children are more susceptible to illnesses than adults.固定搭配:susceptible to colds(容易感冒),susceptible to stress(容易受到压力影响)近义词:vulnerable, impressionable, sensitivevictim词性:名词中文意思:受害者,受骗者英文释义:a person who has suffered harm, injury, or loss as a result of someone else's action or event词源:来自拉丁语victima,意为“遭受苦难的人”例句:The police are trying to find the victim of the robbery.固定搭配:crime victim(犯罪受害者),sex victim(性侵犯受害者)近义词:survivor, casualty, suffererpotentially词性:副词中文意思:潜在地,可能地英文释义:in a way that is likely to happen or be true词源:来自拉丁语potentia,意为“能力,潜力”例句:This new drug could potentially save thousands of lives.固定搭配:potentially harmful(潜在有害的),potentially explosive(潜在爆炸性的)近义词:possibly, maybe, perhapsautomation词性:名词中文意思:自动化,自动操作英文释义:the use of machines and puters to do work that would normally be done by people 词源:来自希腊语automatos,意为“自动的”例句:The factory has implemented automation in its production process.固定搭配:automation technology(自动化技术),automation system(自动化系统)近义词:robotics, mechanization, puterizationcapacity词性:名词中文意思:容量,能力,才能英文释义:the amount that something can hold or contain; the ability to do something well词源:来自拉丁语capacitas,意为“能力,容量”例句:The stadium has a seating capacity of 50,000 people.固定搭配:production capacity(生产能力),storage capacity(储存容量),learning capacity (学习能力)近义词:ability, capability, talentanalyse词性:动词中文意思:分析,解析英文释义:to examine something carefully in order to understand it better词源:来自拉丁语analyzere,意为“分解”例句:The scientist will analyse the data collected from the experiment.固定搭配:data analysis(数据分析),financial analysis(财务分析),market analysis(市场分析)近义词:examine, scrutinize, dissectleap词性:动词中文意思:跳跃,跳过英文释义:to jump or spring from the ground, a surface, or into the air词源:来自古英语leappan,意为“跃过”例句:The cat leapt over the fence.固定搭配:leap year(闰年),leap frog(跳蛙)近义词:jump, hop, boundregulate词性:动词中文意思:调节,控制英文释义:to control or manage something by rules or standards词源:来自拉丁语regula,意为“规则”例句:The government is responsible for regulating the economy.固定搭配:regulate traffic(管理交通),regulate temperature(调节温度)近义词:control, manage, governillegal词性:形容词中文意思:非法的,违法的英文释义:not allowed by law; against the law词源:来自拉丁语illegalis,意为“不合法的”例句:It is illegal to drive without a license.固定搭配:illegal activity(非法活动),illegal immigration(非法移民)近义词:unlawful, illicit, prohibitedimmoral词性:形容词中文意思:不道德的,邪恶的英文释义:not morally good or acceptable; involving bad behavior or actions 词源:来自拉丁语immoralis,意为“不道德的”例句:It is immoral to cheat on an exam.固定搭配:immoral behavior(不道德行为),immoral act(不道德行为)近义词:unethical, wicked, corruptclient词性:名词中文意思:客户,顾客英文释义:a person who receives goods or services from another person or business词源:来自拉丁语clientela,意为“仆人”或“追随者”例句:The lawyer met with his client to discuss the case.固定搭配:client list(客户名单),client satisfaction(客户满意度)近义词:customer, patron, usercite词性:动词中文意思:引用,引证;传唤,传讯;表彰,嘉奖英文释义:to mention as an example or authority; to summon to appear in court; to honor with an award or mendation词源:来自拉丁语citare,意为“召唤”或“引用”例句:The author cited several sources in her research paper.assess词性:动词中文意思:评估,估算英文释义:to determine or estimate the amount, value, extent, or nature of something词源:来自古法语escemer,意为“估价”例句:The pany will assess the damage to the building.固定搭配:assess risk(评估风险),assess the impact(评估影响)近义词:estimate, evaluate, appraisebank on词性:短语动词中文意思:依赖,指望英文释义:to depend on someone or something for help or support词源:来自赌博术语,表示将钱存入银行以获取利息或赢得比赛例句:You can bank on me to be there on time.固定搭配:bank on someone(依赖某人),bank on success(寄希望于成功)horizon词性:名词中文意思:地平线;视野,眼界英文释义:the line where the earth or sea appears to meet the sky; the range of one's knowledge, experience, or interests词源:来自拉丁语horizonum,意为“地平线”例句:The sun was just above the horizon.固定搭配:broaden one's horizons(拓宽视野),on the horizon(即将发生的)reckon词性:动词中文意思:料想,估计;认为,看待英文释义:to have an opinion about something; to calculate or estimate something词源:来自古英语reccan,意为“计算”例句:I reckon that it will rain tomorrow.固定搭配:reckon with(面对,处理),reckon on(依靠,指望)cell词性:名词中文意思:细胞;小房间,小隔间英文释义:the basic unit of life in living organisms; a small room or enclosed space词源:来自拉丁语cella,意为“小房间”例句:The scientist studied the behavior of the cells under the microscope.固定搭配:cell phone(),cell block(牢房区)bound词性:形容词/动词/过去分词中文意思:被束缚的;跳跃的;必然的;准备前往的英文释义:held tightly by or tied with rope, string, etc.; jumping up and down; certain to happen; going somewhere with a strong feeling of excitement or happiness词源:来自古英语bindan,意为“捆绑”cycle词性:名词、动词中文意思:循环,自行车英文释义:repeated sequence of events or processes; a bicycle词源:来自拉丁语的cyclus,意为“环”例句:The seasons of the year form a natural cycle.(四季形成自然的循环。
龙骨的介绍与描写作文
龙骨的介绍与描写作文英文回答:Introduction to and Description of Dragon Bones.Dragon bones, also known as keel, are an essential component in the construction of buildings. They aretypically made of wood or metal and are used to provide support and stability to the structure. In this essay, Iwill discuss the importance of dragon bones in construction and provide a detailed description of their characteristics.First and foremost, dragon bones play a crucial role in ensuring the structural integrity of a building. They are usually installed horizontally, parallel to each other, and are spaced at regular intervals. These bones act as a framework that supports the weight of the entire structure, distributing it evenly and preventing any excessive stress on individual components. Without dragon bones, buildings would be prone to collapsing under their own weight.Moreover, dragon bones are known for their durability and strength. They are often made from high-quality materials, such as solid wood or sturdy metal alloys, which can withstand heavy loads and resist deformation. For instance, in traditional Chinese architecture, dragon bones made of timber are used in the construction of ancient temples and palaces. These wooden bones have stood the test of time and remain intact even after centuries of exposure to the elements.In addition to their functional properties, dragon bones also have an aesthetic appeal. They are often intricately carved and decorated, adding a touch of elegance to the overall design of a building. For example, in ancient Chinese architecture, dragon bones are sometimes embellished with intricate patterns and motifs, symbolizing good fortune and prosperity. This not only enhances the visual appeal of the structure but also reflects the cultural heritage and artistic craftsmanship of the time.To further illustrate the significance of dragon bones,let me provide an example. Imagine a traditional Chinese courtyard house, with its distinctive architecture and layout. The dragon bones used in the construction of this house provide the necessary support and stability, ensuring that the structure remains intact. Without these bones, the house would be vulnerable to collapse, especially during earthquakes or other natural disasters. Therefore, dragon bones are not only functional but also essential for the safety of the occupants.中文回答:龙骨,也被称为龙骨,是建筑中的重要组成部分。
【9A文】托福阅读词汇题单词汇总TPO1-49
TPO1:Dramatic剧烈的,戏剧化的–-striking显著的、突出的、惊人的Prevalent普遍的,常见的–-predictable可预见的Championed拥护、支持–-SupportedAttributes把。
归于--ascribesAutonomous自主的、自治的、自发的–independentPenchant倾向、嗜好、趣味--inclination倾向Incredible令人难以置信的--UnbelievableOutofsight看不见、在视野之外--hiddenOverlie躺在.。
上面,覆盖在。
上面--Cover Somuchfor–ThatisenoughaboutPlugged插入、填满–filledupTPO2:Threatened–endangeredDelicate易碎的、纤弱的–fragile易碎的ProgressivelR渐进的、日益增多的–increasinglRDevoidof没有、缺乏–lackinginPrecious宝贵的、珍贵的–valuableERposed暴露的–visiblePropulsion推进–movingforwardReadilR轻而易举的–easilRAssistance帮助–helpERpanded扩充的、展开的–wasenlargedTPO3:Feasible可行的–achievableEnhance增加、提高–improveDevised设计、发明–createdIntegral完整的、必须的–essential基本的、必要的Arduous艰巨的、困难的–difficultEnsuring跟随,接下来–subsequentUnprecedented史无前例的–unlikeanRthinginthepast VirtuallR几乎、实际上、事实上–almostInevitable不可避免的、必然的–unavoidableParticular特别的、特定的–specificGuarantee保证、确保–ensurePale苍白、使失色–losessignificanceAdjacent相邻–neighbouringTPO4Inhibits阻止,阻拦–restrictsInthesamebreath–immediatelRIndefiniteperiod没有限制的时间段–whoseendhasnotbeendetermined Rebound反弹–recoverR恢复Marked标记的、明显的、显著的–considerablePrincipal主要的–majorTrappings装饰–decorationAccumulate沉积、聚集、累积–buildup增进、积累Adjacent–nearbRSloping倾斜的、斜坡的–incliningFoul弄脏、污染–polluteTPO5:ERhibit显示、显出–showFacilitate促进、帮助、使容易–makeeasierSuspended悬垂、悬挂–hungAfford给予、提供–offerOverwhelming压倒性的、势不可挡的–powerfulImplements实施、执行、工具–toolsUndisputed无可辩驳的、毫无疑问的–acknowledge广为承认的Significant显著的、重要的–importantRelativelR相对地–comparativelRDiversification多样化–emergenceofmanRvarieties出现很多种类Promote促进、提升–encourageTPO6:ERploited开采、开发、利用、剥削–utilizedVastlR极大地–greatlRGrewaccustomed习惯于–becameusedtoRetained保留、保持–maintainedRudimentarR基本的、初步的–basicMeticulouslR仔细地–carefullREndure忍耐、耐久–survived存活,从。
内置弹簧金属C形密封环密封性能有限元分析
内置弹簧金属C形密封环密封性能有限元分析李琪琪;陈平;田乾;王昫心【摘要】针对新型内置弹簧金属C形密封环在高压管道法兰密封上的应用条件,采用ANSYS有限元软件建立三维仿真模型,并通过相关实验验证本文理论模拟方法的可靠性;基于仿真结果分析了C形密封环压缩-回弹性能和密封环相关参数对密封性能的具体影响.结果表明:对于管道密封环,其压缩率、合金包覆层厚度、弹簧丝直径和弹簧匝外径分别在20%~25%、0.25~0.30 mm、0.60~0.70 mm和4.0~4.2mm范围内时,密封环具有良好的密封性能.%A three-dimensional simulation model of a new type of metal C-ring with a built-in spring for a high pressure pipeline flange seal under actual application conditions has been constructed using ANSYS finite element software,and the reliability of the simulation method was verified by experiment.The compression-recovery performance of the sealing ring is analyzed and the effects of some relevant parameters on its sealing performance are also discussed in detail.The results show that when the compression ratios,thickness of the covering layer,diameter of the spring wire and diameter of the spring are in the ranges 20%-25%,0.25-0.30 mm,0.60-0.70 mm and 4.0-4.2mm,respectively,the sealing ring gives a good sealing performance.【期刊名称】《北京化工大学学报(自然科学版)》【年(卷),期】2017(044)003【总页数】6页(P93-98)【关键词】C形密封环;弹簧;密封性能;有限元【作者】李琪琪;陈平;田乾;王昫心【作者单位】北京化工大学机电工程学院,北京100029;北京化工大学机电工程学院,北京100029;航天材料及工艺研究所,北京100076;北京化工大学机电工程学院,北京100029【正文语种】中文【中图分类】TH49引言随着近代核电、石油化工等工业生产的迅速发展和技术水平的不断提高,其设备运行工况也呈现出越来越严苛的趋势,例如出现高温、低温、高压、强腐蚀、核辐射等极端使用条件,因此对设备中应用的相关密封圈设计也提出了越来越高的要求。
TC4钛合金冷却过程中组织变化分析
TC4钛合金冷却过程中组织变化分析李壮,康少酺,于欢欢,姜行,仇大同,于涛,李朝华【摘要】摘要:采用金相显微镜、扫描电镜和HV-50A维氏硬度分析仪研究了TC4钛合金自β相区冷却过程中相组成及微观组织变化。
结果表明,TC4钛合金冷却过程中发生β→α相变。
冷却速率越小,形成α相片层越厚。
TC4钛合金经1 000 ℃固溶后,冷却到850~800 ℃水冷时,析出α相均匀细小,试样硬度出现峰值。
随着冷却温度继续降低,试样硬度开始下降。
TC4钛合金固溶后在冷却过程中的硬度变化,很可能还与Ti2AlV(O)相和Ti2AlV相的析出、长大有关。
【期刊名称】沈阳航空航天大学学报【年(卷),期】2014(000)005【总页数】6【关键词】 TC4钛合金;冷却温度;冷却速率;相;硬度材料工程钛及其合金因具有密度小、比强度高等优点而广泛应用于航空航天、汽车和船舶等行业[1-3]。
TC4于1954年在美国首先研制成功[4],含有α相稳定元素Al和β相稳定元素V,属于Ti-Al-V系典型的α+β型双相热强钛合金,是目前世界范围内应用最为广泛的钛合金之一[5-8]。
TC4钛合金力学行为显著依赖于热机械处理后的显微组织,通过不同的热机械处理可以获得片层、等轴等组织形态,而不同的组织具有不同的力学性能。
目前TC4钛合金的研究多集中于等轴组织的形成及其与热机械工艺和力学性能的关系方面[9],而对在β相区固溶冷却过程中α片层的形成及演化过程的研究很少。
本实验旨在研究TC4合金自β相区冷却过程的相组成及显微组织的演变,期望对TC4合金热处理工艺制定、组织特征控制及力学性能优化提供帮助。
1 试验材料与方法本实验所用TC4钛合金化学成分如表1所示。
采用数控线切割机床将退火后的TC4钛合金原料制备成15个10 mm×10 mm×10 mm正方体试样。
取3个试样为一组在SX-14-14电阻炉中加热后,以二种不同的冷却速率分别冷却至不同温度取出水冷。